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The Diabetic Dog as a Translational Model for 
Human Islet Transplantation
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aDepartment of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC; bDepartment of 
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The dog model has served as the primary method for early development of many diabetes therapies, 
including pancreatic islet transplantation techniques and immunosuppressive protocols. Recent trends 
towards the use of monoclonal antibody therapies for immunosuppression in human islet transplantation 
have led to the increasing use of primate models with induced diabetes. In addition to induced-disease 
models in large animals, scientists in many fields are considering the use of naturally-occurring disease 
models in client-owned pets. This article will review the applicability of naturally-occurring diabetes in 
dogs as a translational model for developing islet transplantation in the human diabetic patient.
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INTRODUCTION

The dog has been used as a translational model for 
diabetes mellitus since the very advent of therapeutic 
trials, with Banting and Best performing their first ex-
periments of pancreatic extracts therapy in diabetic dogs 
nearly one century ago [1,2]. Later, the dog served as an 
important large animal model for the development of ad-
vanced surgical techniques in whole pancreas transplan-
tation and islet transplantation in human diabetics. With 
their similar pancreatic anatomy, common clinical signs 
of diabetes and readily available information on pharma-
cokinetics of immunosuppressive drugs, dogs were used 
to perform pre-clinical evaluation of the standard organ 

and cellular transplant procedures from their initiation in 
the 1960s to their wide clinical application in humans in 
the 1990s. The majority of these studies used dogs with 
surgically or chemically-induced diabetes, which served 
as convenient (if not accurate) models for type 1 diabetes 
mellitus in human patients. With the advent of transgenic 
animals, initial screening of targeted immunotherapy was 
carried out using knockout mouse models and the result-
ing monoclonal antibody therapies were species-specific. 
Pre-clinical testing in large animals often required the use 
of non-human primates (NHP†) where homology with 
humans was closer than that of dogs; human monoclonal 
antibodies could be tested directly in NHP for efficacy 
and safety. This switch in the standard pathway for testing 
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of transplant strategies had largely removed the dog from 
standard research models for the last decade. However, 
the NIH has recently recognized the value of using spon-
taneously occurring disease models in large animals to 
improve the likelihood of success during Stage 3 clinical 
trials in human patients and is supporting the develop-
ment of these models for use in studies of regenerative 
medicine and cell transplantation (https://grants.nih.gov/
grants/guide/pa-files/PAR-16-093.html). This has led to 
an interest in preclinical testing using companion animals 
as large animal models of naturally occurring disease. 
This perspective article will consider the advantages and 
disadvantages to the use of the client-owned dog with 
naturally occurring diabetes as an example of a potential 
untapped resource for studies of cell-based therapy for 
diabetes.

INCIDENCE OF DIABETES IN COMPANION 
ANIMALS

Many literary reviews of animal models of diabetes 
limit the discussion to inbred rodent models and chemi-
cally or surgically induced large animal models [3,4] and 
some even suggest that spontaneous diabetes is rare in 
larger animals, making their use impractical in studies of 
diabetes therapies [5]. While spontaneous diabetes is rare 
in the pig, NHP and to some degree, the purpose-bred 
dog, the incidence of the disease in the pet population 
is estimated to be 0.4 to 1.2 percent and is significantly 
higher in selected breeds with a known genetic predis-
position [6,7]. According to estimates from the Ameri-
can Veterinary Medical Association (https://www.avma.
org/kb/resources/statistics/pages/market-research-statis-
tics-us-pet-ownership-demographics-sourcebook.aspx), 
there are an about 70 million pet dogs in the United 
States, translating to an estimated 700,000 pet dogs with 
naturally occurring diabetes that are available for thera-
peutic trials.

SIMILARITY OF NATURALLY OCCURRING 
DIABETES MELLITUS BETWEEN DOG AND 
HUMAN

Diabetes mellitus in the dog bears many phenotypic 
similarities to advanced human type 1 diabetes mellitus 
(T1DM), with the majority of affected animals having 
no detectable insulin at the time of diagnosis and pan-
creatic histology generally showing a complete lack of 
identifiable islets (Table 1). Dogs display classic signs of 
polyuria and polydipsia, although clinical onset is typi-
cally in adult animals. Due to the severity of insulin de-
ficiency at the time of diagnosis, affected animals cannot 
survive without insulin therapy and will progress from 
profound hyperglycemia to life-threatening ketoacidosis. 

Cataract formation and secondary blindness are common. 
Standard therapy for canine diabetes equates to therapy 
for human TIDM and is centered around dietary manage-
ment and insulin replacement, usually twice daily insulin 
injections administered subcutaneously; dosage is titrated 
based on blood glucose monitoring, urine glucose moni-
toring, and by clinical signs. Pork or human insulin prod-
ucts are both effective in managing canine diabetes, as 
the human insulin molecule differs from canine insulin by 
only one amino acid and both formulations have biologi-
cal activity in the dog.

DIABETES ETIOLOGY IN DOGS

Much like the historical classification systems used 
in human diabetics, diabetes in companion animals has 
been described using phenotypic characteristics, such 
as insulin dependent or non-insulin dependent diabetes 
mellitus. In this system, it is clear that dogs are nearly 
uniformly affected by ß-cell deficiency and are therefore 
most aligned with human T1DM. Breed predispositions 
in Samoyeds, Tibetan Terriers, and Cairn Terriers sug-
gested a genetic component that is analogous to ethnic 
predispositions in human diabetes and subsequent anal-
yses of histocompatibility complex haplotypes (termed 
Dog Lymphocyte Antigens or DLAs) have demonstrated 
at least three haplotypes that are associated with increased 
risk while one other was shown to have a protective ef-
fect [7]. The fact that major histocompatibility complex 
alleles are associated with disease risk in dogs might 
suggest an immune-mediated etiology and reinforces the 
similarities with human T1DM [7]. Later studies evalu-
ating single nucleotide polymorphisms in a large popula-
tion of dogs suggested that several genes associated with 
human diabetes were found to increase susceptibility in 
dogs, further confirming the translational value of the ca-
nine diabetic model [8]. However, it must be noted that 
the DLA haplotypes and other candidate genes that are 
epidemiologically associated with diabetes in dogs can 
be found in both affected and control dogs within high 
risk breeds and may be the result of inbreeding or genetic 
drift [9]. In addition, despite the fact that canine genet-
ic studies have been supportive of an immune-mediated 
disease, autoantibodies common islet associated antigens 
(GAD65 and IA2) are usually not found in the serum of 
affected dogs at the time of diagnosis [10-14]. Insulitis 
(lymphocytic infiltration of islets) is also an inconsistent 
finding in studies examining pancreatic histology of ca-
nine diabetics [15]. Some investigators have theorized 
that autoimmunity is present in dog with diabetes melli-
tus, but that they typically present in the late stages of dis-
ease, at a time when the complete lack of remaining islet 
tissue has led to a drop in circulating autoantibodies and 
to lack of inflammation in the pancreas [9]. An alternative 
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theory is that canine diabetes mellitus may arise second-
ary to diffuse, non-specific pancreatic injury secondary 
to pancreatitis, a relatively common condition in the 
dog. Acute hyperglycemia from this condition may lead 
to beta cell toxicity, which then progresses to beta cell 
deficiency and diabetes [9]. In summary, canine diabetes 
shares many phenotypic and genetic characteristics with 
human T1DM, although specific disease etiologies are 
heterogeneous in both populations and careful selection 
of certain populations of dogs may be required to provide 
the most valid models for specific human populations.

IMMUNOLOGY OF TRANSPLANTATION

The dog is a well-accepted model of human allograft 
and xenograft rejection, and canine allograft transplanta-
tion was used as an important model for the development 
of the triple drug immunosuppressive protocols required 
for immunosuppression in both dogs and human beings 
undergoing whole organ transplantation. With a complex 
MHC system consisting of four alleles and an outbred 
background in comparison to rodent strains, the dog mod-
el is a much more realistic and rigorous test for anti-rejec-
tion strategies [16,17]. Due to their historical use in the 
screening of anti-rejection drugs, pharmacokinetics and 
pharmacodynamics of commonly used immunosuppres-
sive drugs such as cyclosporine, mycofenolate, and tac-
rolimus are well known and additional information can 
be obtained from their years of use in treating canine pa-
tients with immune mediated diseases [18-33]. As men-
tioned earlier, the primary difficulty in the use of the dog 
model is the inability to directly apply biologics such as 
monoclonal antibody therapies (basiliximab, daclizum-

ab) without the developing of dog-specific therapies — a 
step that some companies may be unwilling to take due to 
the smaller perceived market for these drugs. However, 
many cell therapies for diabetes focus on the delivery of 
stem cells and the use of nanoporous devices or coatings 
that provide some degree of immunoisolation, with a goal 
of avoiding the use of immunosuppressive therapies al-
together. The dog model is particularly relevant in eval-
uating these technologies and these also fit better with 
providing the quality of life that is desired by pet owner, 
avoiding daily immunosuppressive medications and po-
tential side effects associated with standard islet allograft 
transplantation.

ISLET TRANSPLANTATION TECHNIQUES 
AND IMAGING STUDIES

One of the ongoing challenges in islet transplantation 
therapy is evaluation of islet transplant techniques and 
implantation sites in an appropriate large animal model 
[34-49]. While human islet transplantation has focused 
on the intraportal implantation of islets for many years, 
this technique results in an immediate blood-mediated 
inflammatory reaction and varying degrees of thrombo-
embolism of the hepatic portal system. Many advances 
have been made in reducing the IBMIR, although study 
of these techniques in a rodent model is technically chal-
lenging due to their small size and cannot be performed 
using interventional radiology as would occur in human 
diabetics. On the contrary, the dog has been used to study 
and develop the intraportal, intraperitoneal, splenic, pan-
creatic, and bone marrow sites of implantation and for 
the investigation of various encapsulation methods cur-

Table 1. Comparative Features of Diabetes Mellitus in the Human and the Dog.

Attributes Human Type 1 Diabetes Mellitus Canine Diabetes Mellitus
Time of onset - Juvenile mode (childhood-adolescence) 

but can be diagnosed at any age (usually 
< 30-40)

- Middle aged to older (8 years) 

Etiology - Immune mediated
- Known genetic predisposition

- Variable evidence of anti-islet Ab
- May be secondary to pancreatitis
- Etiology often not determined (diagnosed at end 
stage disease)
- Genetic predisposition (Keeshond, Min. 
Schnauzer, Min. Poodle, Beagle)

Pancreatic 
Histology

- Beta cell deficiency
- Insulitis (lymphocytic infiltration of islets) in 
early stages of disease

- Near complete absence of beta cells in majority 
of dogs at the time of diagnosis
- Insulitis is rarely detected 

Clinical 
presentation &
secondary organ 
injury

- Ketosis-prone insulin dependent diabetes 
mellitus
- Microvascular disease (retinopathy, 
nephropathy) and atherosclerosis

- Ketosis-prone insulin dependent diabetes 
mellitus
- Cataract formation leading to blindness
- Rarely: Atherosclerosis 

Therapy - Insulin therapy required
- Dietary management is complementary

- Insulin therapy required
- Dietary management is complementary
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nors, although tissue availability from planned euthana-
sia far exceeds current demand for islet transplantation 
research and the use of multiple organs for each recip-
ient is not a limiting factor. Tissue typing services and 
reagents are available for dogs (https://sharedresources.
fredhutch.org/services/dla-typing-services), allowing 
MHC compatibility testing, although a national system 
for tissue matching and quality control has not been es-
tablished for companion animals. Much like the future 
of human diabetes therapy, use of porcine xenografts or 
stem cells will provide a more reliable and consistent 
source of beta cells. Our laboratory is actively pursuing 
all of these areas with clinical trials in companion animals 
with naturally-occurring diabetes. Future work will need 
to establish whether islet allograft or xenograft transplan-
tation provides improved glycemic control in dogs with 
naturally occurring DM.

POTENTIAL DUAL MARKET FOR 
COMMERCIALIZATION OF PRODUCTS

Clinical trials in companion animals have to the 
unique ability to rapidly commercialize a product in a 
veterinary market while concurrently obtaining efficacy 
and safety data to support eventual application for ap-
proval in the human market [67]. While the potential for 
revenue generation in the veterinary market is admittedly 
limited when compared to the human market, small start-
up companies and entrepreneurial researchers at univer-
sities are now recognizing that up to 700,000 diabetic pet 
dogs constitutes a legitimate market for cell therapy prod-
ucts. Companies can use this revenue to access capital 
far earlier in the process than would be realized in direct 
development of a human medical device or cell product, 
as approval of veterinary products can be achieved with 
relatively low cost. The lack of third party payment in 
veterinary medicine leads to the client paying direct costs 
for most therapies that are performed in companion an-
imals and can limit both the market size and the poten-
tial revenue gained by companies working in this area. 
However, this requirement has not suppressed the market 
for veterinary specific products used in advanced proce-
dures such as total hip replacement, interlocking nails, 
ring fixators, and stents used in interventional procedures. 
Indeed, veterinary stem cell therapy is an active area of 
corporate interest and shows that cell based therapies can 
be economically viable in veterinary medicine [68]. The 
adoption of a broad One Health approach that includes 
naturally occurring disease models in companion animals 
is one of the key methods to reducing the high failure rate 
of medications and therapies in late stage human clinical 
trials [67].

 
 

rently being used in human diabetics [34-49]. For simi-
lar reasons, the dog would serve as a potential candidate 
for the investigation of novel imaging and cell tracking 
techniques to identify the fate of islet graft as they are 
ideally sized for imaging in human clinical CT and MRI 
units. Facilities for interventional radiology, minimally 
invasive surgery, and advanced imaging (CT or MRI) are 
available at most veterinary referral centers and teaching 
hospitals in the United States so that clinical trials in dogs 
with diabetes could be performed using dedicated equip-
ment for companion animals.

EASE OF MONITORING

Blood sampling from peripheral veins is routine in 
pet dogs and adequate volumes of blood or plasma can be 
obtained for use in complete characterization of diabetes 
therapies. Diabetes monitoring of client owned dogs can 
include home monitoring, such as blood glucose sam-
pling using a lancet or urine glucose monitoring [50,51]. 
Standard hospital techniques like 24-hour glucose curves 
and measurement of glycosylated hemoglobin can pro-
vide information on both short and long-term glycemic 
control [51,52]. Interstitial glucose monitors have even 
been validated in dogs and can provide continuous glu-
cose monitoring for up to 14 days after application, an 
excellent tool for objective documentation of glycemic 
control on a moment to moment basis [53-57]. Kits for 
measurement of canine insulin and c-peptide are readi-
ly available as an additional method for monitoring islet 
graft function after transplantation in the dog model. Ad-
ditional monitoring of the immune system has become 
routine and predictive of islet allograft rejection in human 
transplant recipients. Techniques for mixed lymphocyte 
reactivity [58-60] and measurement of autoantibody ti-
ters to IA-2A or GADA have been described in dogs [11] 
and would greatly add to the translational information ob-
tained in canine clinical studies.

SOURCES FOR DONOR TISSUES IN 
COMPANION ANIMALS

Islet transplantation can never be a realistic option in 
pet dogs without identification of an acceptable source of 
donor animals. Veterinary researchers are presented with 
a unique opportunity for planned tissue collection from 
dogs that are euthanized for unrelated reasons. While nu-
merous studies have shown that high quality islets can 
be obtained after pancreatectomy in anesthetized research 
dogs [61-64], our laboratory has made some of the first 
strides in accessing a more widely available tissue source 
by developing methods for islet isolation from dogs fol-
lowing standard euthanasia with barbiturates [65,66]. As 
expected, islet yields are lower from these cadaveric do-
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22. Fukuse T, Hirai T, Yokomise H, Hasegawa S, Hirata 
T, Muro K et al. Combined therapy with FK-506 and 
cyclosporine for canine lung allotransplantation: immuno-
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immunosuppression after kidney transplantation in dogs. 
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Drewelow B et al. Everolimus in combination with cyclo-
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stem cell transplantation. Biol Blood Marrow Transplant. 
2012 Jul;18(7):1061–8.
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T et al. Effect of multiple oral dosing of fluconazole on the 
pharmacokinetics of cyclosporine in healthy beagles. J Vet 
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CONCLUSIONS AND OUTLOOK

While the use of client-owned animals cannot sub-
stitute for all of the current steps in pre-clinical screening 
of diabetes therapeutics, there are a variety of economic 
and scientific advantages to using a naturally-occurring 
disease model in pet animals as an important component 
of that process. An increasing number of translational 
researchers are focusing their research programs around 
spontaneous osteoarthritis, cancer, and diabetes models 
in companion animals [67]. Veterinary researchers are 
currently focusing on identifying a safe and dependable 
source of beta cells for use in transplantation studies. Col-
laboration from established human transplant programs 
and from companies with novel technologies will be es-
sential in leveraging the dog diabetes model as a mech-
anism to advance diabetes care in both animals and in 
human beings.
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