UC Davis
IDAV Publications

Title
Optimal Linear Spline Approximation of Digitized Models

Permalink
https://escholarship.org/uc/item/8hf4g09n

Authors

Hamann, Bernd
Kreylos, Oliver
Munno, G.

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8hf4g09n
https://escholarship.org/uc/item/8hf4g09n#author
https://escholarship.org
http://www.cdlib.org/

Optimal Linear Spline Approximation of Digitized Models

Bernd Hamann', Oliver Kreylos', Giuseppe Monno® and Antonio E. Uva®

'Center for Image Processing and Integrated Computing (CIPIC)
Department of Computer Science, University of California, Davis, USA
hamann(@cs.uedavis.edu, okreylosi@gallagher.cipic. wcdavis.edy

’Dipartimento di Progettazione e Produzione Industriale
Politecnico di Bari, Bari, ltaly
gmonno{@poliba.it, wea@dppi.poliba.it

Abstract

In this paper we preseni a new lechnique for surface
reconsiruction of digitized models in three dimensions.
Concerning this problem, we are given a data set in three-
dimensional space, represented as a sel of points without
connectivity information, and the goal is to find, for a
fixed number of vertices, a sei of approximating Iriangles
which minimize the error measured by the displacement
Srom the given OIS,

fur method creates near-optimal  linear  spline
approximations, using an lerative opfimization  scheme
based on simulated annealing. The algorithm adapis the
mesh to the data set and moves the triangles to enhance
feature lines. At the end we can use the approach la
create o hierarchy of different resolutions for the model,

1. Introduction

Surface reconstruction is concerned with the extraction of
shape information from point sets. Often, these point seis
describe complex objects and are generated by scanning
physical objects, by sampling other digital representations
{e.g.. contour functions), or by merging data from different
sources. The result of this scanning process is usually a
cloud of points at a very high resolution bul withoul
connectivity information. In order to utilize this data for
actual modeling in a CAD system, il is imporiant 1o reduce
the amount of data significantly and determine a polygonal
representation from the samples. Moreover, multiple
approximation levels are often needed 1o allow rapid
rendering and interactive exploration of massive data seis
of this type. Surface reconstruction problems arise in @
wide range of scientific and engineenng applications,
including reverse engineering, industrial design, geometnc
modeling, grid generation, and multiresolution rendering.
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1.1. Related Work

Hoppe et al.[4] address the problem of reconstruction of
surfaces using only the three-dimensional coordinates of
the data points. Their method uses a “zero-set” approach to
reconstruction, using the inputl points lo creale a signed
distance function d, and then triangulating the isosurface
d=0. They determine an approximate fangent planc at each
sample point, using a leasl-squarcs approximation based
on k neighbors, The isosurface is then generaled using the
marching cubes algorithm.

Amenta| 14] directly uses a three-dimensional Voronoi
diagram, and an associaled Delaunay triangulation 1o
generale certain “crust” triangles which are used in the
final triangulation. The output of their algorithm is
puaranteed 1o be topologically correct and convergenl 10
the original surface as the sampling density increascs

Heckel et al[?] introduce a surface recomstruction
method that is based on cluster analysis. The reconstrucied
model is generated in two steps. First, an adaptive
clustering method is applied to the data set, which yields a
set of almost flat shapes, so-called tiles. Second, the gaps
are eliminated between the tiles by using a constrained
Delaunay triangulation, producing a valid geometrical and
topological model. This method allows onc o crealc a
higrarchy of representations

1.2. Our Approach

We present a new “oplimal” (more preciscly, near-

optimal) method for the generation of surface
tnangulation. Our method exhibits  the following
charactenstics:

« It requires only scatiered points in the space,
without connectivity information;



« il needs a minimal user-interaction for a general
jopology, none for particular topologies,

« it pencrales an optimal approximation of the
surface, with a fixed number of verices, and

« it produces a muliiresolution approximation of the
data, where the user can specify the number of vertices in
{he reconstrucion.

(ch

(b}

(a)

{n} The original point data set. (b) The final inangulation.
{1 The shaded reconstrucied model. The ongmal data sl
comsists af 37,504 -:m'n|'||r: pianis and the model has been
reconsimuicled with 400 verlices

Fipure 1. Laser scan af a 5ki-Doo hood

The algorithm reconstructs a valid triangulaied surface
miodel in & three-step procedure
Cutting the data set in iopological simple areas
Dptimization applicd 1o all areas
Stitching the shells topgether

2, Cutting Step

The core reconstruction algorithm treats the poini cloud
as a =el of samples of a two-dimensional function f{xy),
where the samples are taken al random sites (x;, yi). If the
original surface, or the surface we wanl 10 reconstruct, 1s
nod functional, the algorithm will deliver invalid resulis
This forces us to first find a mapping M from three-
dimensional space (x,¥,2) into two-dimensional parameler
space (s, 1) such that the mapping satisfies

(x, y,z)=M" (5,1, /(5,1))

for a function [ 1f we restnict ourselves 1o use orlhogondl
projections onlo planes to define such a mapping, we have
o find a plane the surface can be projecied onto withow
self-overlap. If the model is too complex 1o find such a
progection plane, we subdivide the model indo smaller pans
of simpler topology and provide different projection planes
for the parts. To achieve this we first visualize the cloud of
points. The wuser interacts with “cutting planes”
subdividing the data set in sub-domains. Instead of cutling
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planes we should more precisely say “hall-spaces™ since we
visualize the plancs and the oriented pormals. All the
poinis incleded in those half-spaces are mapped {using
orthogonal projection) onto the respective planes. Since the
resull of this subdivision is quite hard io visualize, the
convex hull of the projections on the plane is shown 10 a
user. This subdivision phase is typically notl necessary if we
arc given a sel of laser scanned images. This type of device
usually captures points as disiance from a sensor and then
geometrically evaluates ihe xyz-coordinates. For all the
points coming from a single pass scan, we are sure (o find
one single onthogonal projection plane.

3. Optimization Step

Faor each of the sub-domains {where all the poinis are
“functional” in the way descnbed above), we apply oar
ilerative oplimization algorithm based on the principle of
simulpled annealing, soc [8]|9][10]. The core of this
algorithm is a function that changes the cuorrent
triangulation randomly in every iteration step. Afier each
step, a distance between the triangulation and the original
data set is calculated, and the current siep is accepled or
rejected bagsed on the change of distance during the step
The main difference  between simulaled  anncaling
alponthms and classic optimization algorthms s that a
gimulated annealing algorithm not only accepts “good”

steps, buot also accepts some steps thal increasc the
distance
The strategy Lo accepl sieps s bormowed  from

thermodynamics. where Bollzmann's law states that a
change AE in internal encrgy of a body occurs with the
probability;

it

g B

where k is the Bolizmann constant, and T 15 the
absolute temperature of the body. We use the same
function here, replacing AE with the change in distance
during a siep and kT with an arbitrary wvalue we
nonetheless call “temperature.” If AE is negative, meaning
the step was a pood step, we always accept it in the other
case, we accepd it with the probability given by
Bolizmann's law

We then lower the value kT dunng the course of
ileration to decrease the probability of accepting “bad™
sieps. In the end, when the temperature is almost zero, the
algorithm proceeds like a classic optimization, The
function decreasing the temperature over time is called
“annealing schedule,” and [1] presents a heunistic (o create
it, The bencfit of allowing “bad” sieps is, thal such
algorithms do nod as easily get stuck al focal minima as
classic algonihms do, This 1s an imponanl property for ws,



since we are dealing with problems tvpically having local
minima in abundance, see Figure 2.
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Figure 2. Typical error graph: general error behavior 85 o
function of ilerntion steps

The previous formula shows the effect of the
temperature on the probability of accepting a bad siep.

The user can define the number of vertices 1o be used in
the triangular approximation of the sub-domains The
following pscudo-code summarizes the optimization
algorithm, which is described in more detail in the
following sections.

Algorithm 1: Optimal lincar spline approximation
Create initial configuration (verfex placement and
commectiviiy;
Determine initial temperature ond create annealing
schedule;
While iteration is not finished
{
Change current configuration;
Calculate change in error measure,;
Undo iteration if refecied by simulated annealing,

/

Return current configuration,

3.1. Creating an Initial Configuration

To evaluate a reasonable initial configuration we stan 1o
determine the data set’s comvex hull by selecting all
non-interior  vertices, then we choose the rest of the
verlices (according 1o the user-specified number) randomly
from the original data set. A Delaunay triangulation of the
initial vertices’ sites defines the initial conmectivity.

To define the anncaling schedule, we first estimate the
mean change in distance during the first ileration sieps and
sci the initial temperature such, that an “expected bad”™
step 15 initially accepted with a probability of one hall.
Next, we lower the iemperature in steps, leaving it constant
for a fixed number of ilerations and scaling it by a fixed
factor afterwards.
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3.2, Changing the Configuration

The simulated annealing algorithm's core is its iteration
step. In principle, ene can use any method 10 change the
current configuration, but we have found out that the
“split” approach, presented in Algorithm 2, works very
well.

Algorithm 2: Changing the configuration.
iffaccept WithProbability(moveVerfex)) M™move a verter/
{
Choose an inlerior veriex v,
Estimate v's contribution vE fo the error measure;:
ifivE < localMovementFactor x E)
Move v globally;
elee
Move v locally;
iffmeoveVertex == ) /* Vertex movements only? %/
Rextare Delounay properiy;
/

else /™ swap an edge */
{
Choose a swappable edge e;
Swap edpe e;
/

The constant move Perfexr gives the probability of
moving a veriex during an iteration step. If it is zero, the
algonthm never moves vertices, but becomes a data-
dependent tnangulation algorithm as presented in [8]. If
maoveVertex is one, we only move vertices, and we decided
1o uphold the connectivity’s Delaunay property throughout
the ileration in this case, In all other cases the algorithm
can either move a veriex or swap an edge. thereby
oplimizing both vertex placement and triangulation
gimultaneously,. When moving a werlex, we use [wo
different stralegics;
If the chosen vertex is located in a planar region
of the surface, we move it globally to a random new
position inside the point set’s convex hull, see Figare 3.
If the chosen Vertex is located in a high-curvature

region of the surface, we move it locally to a random

new position inside its platelet, see Figure 4.

We decide which strategy to use by estimating how much
the chosen veriex contributes to the current distance. If this
contribution is larger than a constant [actor
localMovementFactor times the distance, we move Lhe
veriex globally, otherwise, we move it locally.

By using global movements we ensure that vertices gel
driven away from nearly planar regions of a function
during early stages of the iteration



1} Initial staie, 2) removing veriex, 3) filling hole, 4) inserting
pew vertex, 5 restoring Delaunay property.

Figure 3. Moving a venex globally.

If ihe venex is currently locaied in an important high-
curvature tegion of the surface, we keep this veriex “in
loco™ and we try 1o move it 1o a beter sitc inside its
platelet. To move a veriex locally, we “shde™ the veriex on
the line from its old 1o its new site, dragging the edpes
connecting it 1o all surrounding vertices along. Whenever o
surrounding simplex becomes  degenerale during the
veriex' motion, we swap one edge of the affected simplex
belore moving the veriex any further, sce Figure 4.

1} Initial state; 2) swappng edge lo prevent trmangle T from
becoming degenernte, 3) resulling state

Figure 4. Moving a vertex locally.

In our case, the quality of a configuration depends on
both vertex placement and connectivity. The cutput of this
sccond step is a set of two-manifold shells, which
correspond 1o the number of topological sub-domains the
whole data set wis subdivided imto. Defining an increasing
number of verfices, we can create a hierarchy of linear
spline approximalions, cach onc being a supersel of all
lower-resolution ones (Figure 6.)

4. Stitching Step

In this step we stitch together the boundaries of the
chells 1o define a consistent model. ‘We do nol move the
vertices of the shell boundaries to maich, but we add a new
set of fill-the-gap triangles. The inpul of the stilching
algorithm comsistis of 1wo boundaries, each of them
described by a sequence of veriices and edges. To define
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the boundaries we first project each point into the selecied
half-space onto the cutting plane. Then we calculate the
comvex hull boundary on the plane and afierwards map the
segments back into three-dimensional space. The second
boundary is evaluated with the same procedure with a few
modifications for the unselected half-space. In this case not
all the points participate in the definition of the comvex
hull.

The stitching algorithm is applied every nime a cul is
performed. In this way we alrcady have two sels ol points
{and edges) to define a strip 1o be triangulated. We stari
from a random point and we find the closest point on the
other boundary. Those two points define a new edge. For
each veriex we maintain a flag indicating whether this
veriex was already matched or nol. We repeat this edge-
creation sicp until all the vertices are maiched. Then we
scan the edge list 1o eliminate duplicates and we exiract the
fill-the-gap triangles (Figure 5.a.) When a new cul is
performed over a previous subset, an edpe of its boundary
{defined by the previous cut) is hit by the cutling planc.
This edge is preserved in the subscquent phase 1o ensure
ihat this new fill-the-gap set will maich exactly on the
boundary (Figure 5.b.)

{u) First stitch. {h) subsequent stilch preserving Use first
iriangulation

Figure 5. Stilching two boundanies.



5. Results

This method has revealed 1o be very powerful with
regard to error reduction. Concerning the Ski-Doo test
case, afier a fow thousand ileration steps (requiring just a
few seconds on an SGI Ocanc), we reduced the error 10
40% of the initial configuration error (Delaunay
triangulation). Figure 6 shows how the vertices move away
from flat arcas (large tnangles) to converge towards the
features of the model (high curvature, small inangles). The
last example shows the reconstruction of a model with
2,000 vertices starting from a 12000 points data sel
(Figure 7).
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Figure 6. Multiresolution reconstructions using 400, 700, and 1000 verices for the Ski-Doo data sci

i) Randeanly chosen points b Aller optomention step

Figure 7. Reconstruction of & mechanical part using 2,000 vertices for a 12,000 points data set
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