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PAPER

Acylation stimulating protein stimulates insulin
secretion

B Ahrén1*, PJ Havel2, G Pacini3 and K Cianflone4

1Department of Medicine, Lund University, Lund, Sweden; 2Department of Nutrition, University of California, Davis, Ca, USA;
3Metabolic Unit, Institute of Biomedical Engineering, ISIB-CNR, Padua, Italy; and 4Mike Rosenbloom Laboratory for
Cardiovascular Research, Medicine, McGill University, Montreal, Quebec, Canada

Acylation stimulating protein (ASP) is a hormone produced by adipocytes and is of importance for the storage of energy as fat.
We examined whether ASP might also have effects on islet function. In clonal INS-1 cells, ASP dose-dependently augmented
glucose-stimulated insulin secretion. The lowest effective dose of ASP at 10 mmol/l glucose was 5 mmol/l. The effect was glucose-
dependent because ASP did not increase insulin secretion at 1 mmol/l glucose but had clear effect at 10 and 20 mmol/l glucose.
Similarly, ASP augmented glyceraldehyde-induced insulin secretion but the hormone did not enhance insulin secretion in
response to depolarization by 20 mmol/l of KCl. ASP-induced insulin secretion was completely abolished by competitive
inhibition of glucose phosphorylation by glucokinase with 5-thio-glucose and was partially inhibited by the calcium channel
blocker, nifedipine, and by the protein kinase C inhibitor, GF109203. Furthermore, thapsigargin, an inhibitor of Ca2+-ATPase in
the endoplasmic reticulum, did not affect ASP-induced insulin secretion. ASP (45 mmol/l) also augmented glucose-stimulated
insulin secretion from islets isolated from C57BL/6J mice, and intravenous administration of ASP (50 nmol/kg) augmented the
acute (1 and 5 min) insulin response to intravenous glucose (1 g/kg) in C57BL/6J mice. This was accompanied by an increased
rate of glucose disposal. Minimal model analyses of data derived from the intravenous glucose tolerance test revealed that
whereas ASP augmented insulin secretion, the hormone did not affect insulin sensitivity (SI) or glucose effectiveness (SG). We
conclude that ASP augments glucose-stimulated insulin secretion through a direct action on the islet beta cells. The effect is
dependent on glucose phosphorylation, calcium uptake and protein kinase C. Stimulation of insulin secretion by ASP in vivo
results in augmented glucose disposal.
International Journal of Obesity (2003) 27, 1037–1043. doi:10.1038/sj.ijo.0802369

Keywords: acylation stimulating protein; ASP; insulin secretion; insulin sensitivity; INS cells; in vivo; mice

Introduction
During recent years, it has become evident that adipocytes

express and secrete a number of hormones involved in the

regulation of energy and substrate metabolism including

leptin, adiponectin, resistin and acylation stimulating

protein (ASP).1–3 ASP is a 8.9 kDa hormone produced in the

adipocytes through an interaction of complement factor C3

with factor B and factor D (also called adipsin), which results

in the formation of C3a-des-Arg, also called ASP.4 ASP is

released into the circulation and has been shown to augment

triglyceride synthesis and storage in adipocytes in combina-

tion with stimulation of glucose uptake and diacylglycerol

acyltransferase and inhibition of hormone-sensitive lipase

via phosphodiesterase.5–7 This would suggest that ASP

contributes to the storage of energy as lipids. Such a function

is supported by data indicating that ASP administration

increases triglyceride clearance from plasma,8 and that ASP-

deficient (C3�/�) mice exhibit delayed postprandial lipid

clearance, reduced adipose tissue depots and are resistant to

obesity induced by high-fat diet.9,10 Involvement by ASP in

the regulation of energy storage is also supported by reports

that plasma levels of ASP are increased in obesity 11 and

reduced in fasting 12 and in postobese women.13 Adipose

tissue release of ASP increases postprandially, with a peak

release observed at 4–5 h after meal ingestion, although

circulating levels remain constant.14

Whether ASP is involved in the regulation of glucose

homeostasis is not known. ASP-deficient mice exhibit

reduced fasting insulin levels and improved glucose

tolerance.9 This would suggest that ASP reduces insulin
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sensitivity. This idea is supported by a study in humans

showing that plasma ASP correlates inversely to glucose

disposal during a euglycemic clamp,15 although this finding

was not reproduced in a subsequent study.16 An effect of ASP

to reduce insulin sensitivity could be explained by its action

to increase triglyceride storage, because intracellular lipid

accumulation in some tissues including liver and muscle is

associated with reduced insulin sensitivity.17,18 In the

present study, we have examined the direct effect of ASP

on insulin secretion in vitro in insulin-producing clonal INS-

1 cells and in isolated mouse islets. In addition, the effects of

ASP on insulin secretion were examined in vivo in C57BL/6J

mice along with the influences of ASP on insulin sensitivity

and on glucose disposal.

Methods
Studies in INS-1 cells

INS-1 cells (kindly provided by Dr C Wollheim, Geneva,

Switzerland) were cultured in plastic flasks ar 371 C in 5%

CO2/95% air in RPMI medium supplemented with 50 mmol/l

mercaptoethanol (GIBCO BRL, Paisley, UK), 2.06 mmol/l

L-gluthamine (Life Technologies, Täby, Sweden), 10% fetal

bovine serum, 100 U/ml penicillin and 2.5 mg/ml amphoter-

icin B (all from Kebo Laboratory, Spånga, Sweden). The cells

were divided after 7 days (about 75% confluence), washed

twice in a HEPES medium containing (in mmol/l) 125 NaCl,

5.9 KCl, 1.28 CaCl2, 1.2 MgCl2, 25 Hepes and 0.1% bovine

serum albumin (pH 7.36). In studies on insulin secretion,

cells were preincubated for 30 min at 371C in 200 ml of the

medium supplemented with 1 mmol/l glucose. Thereafter,

the cells were incubated for 60 min in the medium

supplemented with glucose, glyceraldehyde, nifedipine,

GF109203, thapsigargin with or without addition of ASP

according to the protocols. Following the incubation, 150 ml

of the medium were removed and centrifuged at 350� g for

5 min, whereafter aliquots of 50 ml were saved at �201C until

analysis. GF109203 was purchased from Biomol. Res. Labs.,

Plymoth Meeting, PA, USA. ASP was prepared as described

previously 19 and its purity (99%) was ascertained by ion

spray mass spectrophotometry.20 Other substances and

reagents were from Sigma Chemical Co., St Louis, MO, USA.

Studies in mice

Female C57BL/6J mice, weighing 23.070.3 g, obtained from

the Taconic M&B A/S, Ry, Denmark, were used for this study.

The mice were fed a normal laboratory chow diet and tap

water ad libitum. The study was approved by the Ethics

Committee of Lund University.

Islet studies

Islets were isolated by collagenase digestion, hand-picked

under a stereomicroscope and incubated overnight in RPMI

1640 medium supplemented with 10% fetal calf serum,

100 U/ml penicillin G, 0.1 mg/ml streptomycin and 2.5 mg/

ml amphotericin B. Islets were then incubated in groups of

three in 96-well microtiter plates in a Hepes buffer contain-

ing 3.3, 11.1 or 22.2 mmol/l D-glucose with or without

10 mmol/l ASP. After 60 min incubation at 371C, the super-

natant was collected and stored at –201C until analyzed for

insulin concentration.

In vivo study

The animals were anesthetized with an intraperitoneal

injection of midazolam (0.14 mg/mouse; Dormicums, Hoff-

man-La-Roche, Basel, Switzerland) and a combination of

fluanison (0.28 mg/mouse) and fentanyl (0.02 mg/mouse;

Hypnorms, Janssen, Beerse, Belgium). After 30 min, a blood

sample (75 ml) was taken from the retrobulbar, intraorbital,

capillary plexus in a 100 ml pipette that had been prerinsed in

heparin solution (100 U/ml in 0.9% NaCl; Lövens, Ballerud,

Denmark). Thereafter, D–glucose (British Drug Houses, Poole,

UK) was injected intravenously over 3 s at the dose of 1 g/kg

in a tail vein without flushing of the 27 gauge needle after

injection, either alone or together with ASP (50 nmol/kg

body weight; resulting in a peak level of approximately 5–10

times the circulating level). The injection volume load was

10 ml/g body weight. Additional blood samples (75 ml each)

were collected at 1, 5, 10, 20, 30 and 50 min. Plasma samples

were immediately separated and stored at �201C until

analyzed for insulin and glucose concentrations.

Analyses

Insulin concentration was determined by a double-antibody

radioimmunoassay using guinea pig anti rat insulin anti-

bodies, 125I-labeled human insulin and, as standard, rat

insulin (Linco Res., St Charles, MO, USA). Glucose was

measured by the glucose oxidase technique.

Statistics and calculations

Data and results are reported as means7s.e.m. Statistical

comparisons between the groups were performed with

unpaired Student’s t-test. ANOVA was used for multiple

comparisons. Insulin and glucose data from the intravenous

glucose tolerance test (IVGTT) were analyzed with the

minimal model technique as previously described.21 This

analysis provides parameter SI (insulin sensitivity index),

which is defined as the ability of insulin to enhance net

glucose disappearance and inhibit glucose production, and

the parameter SG, which is the glucose effectiveness,

representing net glucose disappearance per se from plasma

without any change in dynamic insulin. Acute insulin

response (AIR; mean of 1 and 5 min insulin levels after

subtraction of baseline value) and the area under the 50 min

curve of insulin concentration (ie the total insulin response,

AUCinsulin; calculated by the trapezoid rule) were deter-

mined. The glucose tolerance index, KG, was obtained as the
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slope of the logarithmic transformation of the individual

plasma glucose values in the interval 1–20 min after glucose

injection.

Results
Effects of ASP on glucose-stimulated insulin secretion in
INS-1 cells

Glucose-stimulated insulin secretion from INS-1 cells was

augmented by adding ASP to the incubation media. The

effect of ASP was dose-dependent with 5mmol/l being the

lowest effective dose (Figure 1, upper panel). The effect also

required a threshhold concentration of glucose because ASP

did not increase insulin secretion in the presence of 1 mmol/l

glucose but augmented insulin secretion in the presence of

10 or 20 mmol/l glucose (Figure 1, lower panel). ASP also

augmented the insulin response to glyceraldehyde at 10 and

20 mmol/l, but not at 1 mmol/l (Figure 2, upper panel). In

contrast, ASP did not increase insulin secretion elicited by

depolarization by a high concentration of K+ (Figure 2, lower

panel).

To examine whether the insulinotropic action of ASP is

dependent on glucose phosphorylation, cells were incubated

in the presence of 5-thio-glucose (10 mmol/l), which is a

potent competitive inhibitor of glucokinase.22,23 When the

cells were incubated in the presence of 10 mmol/l 5-thio-

glucose, ASP-stimulated insulin secretion was completely

abolished (Figure 3). Furthermore, ASP-induced insulin

secretion was inhibited by approximately 50% by nifedipine

(5 mmol/l), which is a blocker of the L-type Ca2+ channels.24

Thus, in the absence of nifedipine, ASP augmented glucose-

stimulated insulin secretion by 7.470.8 nmol/l and this was

reduced by nifedipine to 4.070.4 nmol/l (Po0.001; Figure 3).

Activation of protein kinase C (PKC) is known to contribute

to glucose-stimulated insulin secretion.25,26 We found that

bisindolylmaleimide (GF109203; 2 mmol/l), which inhibits

PKC,27 inhibited ASP-induced insulin secretion by approxi-

mately 30%. Thus, whereas ASP in the absence of GF109203

augmented glucose-stimulated insulin secretion by

7.570.9 nmol/l, the inhibitor reduced the effect of ASP to

4.870.5 nmol/l (Po0.001). Finally, by combining nifedipine

and GF109203 together, ASP-induced insulin secretion was

completely abolished (Figure 3). In contrast, intracellular

Ca2+ stores do not appear to be required for ASP-induced

insulin secretion, because incubation of the cells with

thapsigargin, which inhibits the Ca2+/ATPase in the endo-

plasmic reticulum thereby depleting the intracellular Ca2+

stores,28 did not affect ASP-induced insulin secretion

(Figure 3).

Effects of ASP on glucose-stimulated insulin secretion in
isolated mouse islets

To examine whether ASP also affects glucose-stimulated

insulin secretion in normal islets, isolated islets from

C57BL/6J mice were incubated in the presence of ASP at

different glucose concentrations. ASP potentiated glucose-

stimulated insulin secretion (Figure 4). The effect showed

similar characteristics to that observed in INS-1 cells, that is,

being glucose-dependent and requiring a threshhold level of

glucose.

Effects of ASP on glucose-stimulated insulin secretion in
mice

To determine whether ASP affects glucose-stimulated insulin

secretion in vivo, anesthetized mice were injected intra-
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Figure 1 Medium insulin concentration after 60 min incubation of INS-1

cells in the presence of 1 or 10 mmol/l glucose with or without addition of ASP

at different concentrations (upper panel) or in the presence of glucose at 1, 10

or 20 mmol/l with or without ASP at 10 mmol/l (lower panel). Means7s.e.m.

are shown. In the upper panel asterisks indicate probability level of random

difference vs 10 mmol/l glucose without ASP (ANOVA with Bonferroni post hoc

analysis) and in the lower panel asterisks indicate probability level of random

difference between groups (Student’s unpaired t-test). *Po0.05, **Po0.01,

***Po0.001. There were 16 incubations in each column.
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venously with glucose alone or in combination with ASP

(50 nmol/kg). ASP augmented the insulin response to glucose

(Figure 5). The effect was rapid in onset and short-lived and

evident during the first 5 min after injection, when the AIR

to glucose was increased from 346746 pmol/l in controls to

571795 pmol/l by ASP (P¼0.042). This resulted in an

increased glucose disposal rate. KG was augmented by ASP

from 2.470.2%/min in controls to 2.970.2%/min

(P¼ 0.033; Table 1). After the initial 5 min exaggeration of

the insulin response to glucose, plasma insulin levels were

slightly lower in the animals that received ASP in combina-

tion with glucose at 20 and 30 min (Po0.05). The total

AUCinsulin throughout the 50 min study period was not

significantly different between the groups. Minimal model

analysis of the glucose and insulin data showed that ASP did

not affect insulin sensitivity (SI) or glucose effectiveness (SG;

Table 1). A significant linear correlation was found between

AIR and KG (r¼0.52, P¼0.010).

Discussion
Previous studies have suggested that the adipocyte-derived

hormone ASP promotes energy storage as lipids through a

direct action on adipocytes.3–10 This study shows that ASP

may be involved also in the regulation of glucose home-

ostasis and islet function because the hormone augments

glucose-stimulated insulin secretion both in vitro and in vivo,
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Figure 3 Medium insulin concentration after 60 min incubation of INS-1

cells in the presence of 1 or 10 mmol/l glucose. Incubations at 10 mmol/l

glucose were performed with (black bars) or without (open bars) addition of

ASP at 10 mmol/l. Each panel shows incubations under control conditions (no

inhibitor added) or incubations in the presence of one inhibitor: the inhibitor

of glucokinase, 5-thio-glucose (10 mmol/l; upper left panel), the Ca2+ channel

blocker, nifedipine (5mmol/l; upper right panel), the inhibitor of PKC,

bisindolylmaleimide (GF109203; 2 mmol/l; middle left panel), the combina-

tion of nifedipine and GF109203 (middle right panel) or the inhibitor of Ca2+/

ATPase, thapsigargin (lower left panel). Means7s.e.m. are shown. Asterisks

indicate significance between conditions with vs without ASP, that is,

conditions without and with inhibitor analyzed separately (Student’s t-test

for unpaired conditions). *Po0.05, **Po0.01, ***Po0.001. There were 16–24

incubations in each bar.
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and that this action results in augmentation of glucose

disposal rate under in vivo conditions.

In the clonal INS-1 cells, ASP dose-dependently augmented

insulin secretion in a glucose-dependent manner. This

suggests that ASP augments insulin secretion by promoting

the efficiency of the glucose signaling in the beta cells. In

insulin-producing cells, glucose is taken up and phosphory-

lated. These processes are mediated by the glucose transpor-

ter, GLUT-2, and a high Km hexokinase, type IV

(glucokinase). Glucokinase is of particular importance, being

the ‘glucose sensor’ and the rate-limiting step in glucose-

stimulated insulin secretion.29 As a tool to examine whether

this process is required also for the ASP-induced potentiation

of glucose-stimulated secretion, we used 5-thio-glucose,

which is known to inhibit glucokinase in beta cells.23 We

found that 5-thio-glucose abolished ASP-induced insulin

secretion. Since glyceraldehyde-induced insulin secretion

was also potentiated by ASP, our results imply that ASP

augments insulin secretion by generating a signal down

stream of glyceraldehyde-3-phosphate.

Our results further implicate two separate mechanisms in

the effects of ASP to stimulate insulin secretion. A first step is

the uptake of Ca2+ through opening of L-type Ca2+ channels,

because nifedipine, which blocks these Ca2+ channels in beta

cells,24 inhibited ASP-induced insulin secretion by approxi-

mately 50%. The Ca2+ channels are normally opened by

depolarization instituted by ATP-induced closure of KATP

channels.25 ASP may thus augment insulin secretion

through opening of Ca2+ channels by increasing the

generation of ATP. However, also in the presence of

nifedipine, a considerable fraction (E50%) of the ASP-

induced insulin secretion remained intact. We found that

this remaining ASP-induced insulin secretion was inhibited

by GF109203, which is an inhibitor of classical PKC

subtypes.27 PKC is involved in insulin secretion by first

being activated by glucose through diacylglycerol formed

after phosphoinositide hydrolysis instituted by phospholi-

pase C, and then translocated to the cell membrane and

activating the exocytosis of insulin.26 The results thus

suggest that ASP stimulates insulin secretion by augmenting

the action of glucose to open Ca2+ and to activate PKC.

Interestingly, these effects resemble the actions of ASP in

adipocytes, where the hormone has been shown to enhance

glucose uptake through translocation of glucose transporters

by a mechanism involving translocation and activation of

PKC.4,30–32 In contrast, release of Ca2+ from intracellular

stores does not seem to be a mechanism of ASP in beta cells,

because depletion of Ca2+ stores with thapsigargin28 did not

affect ASP-induced insulin secretion. The involvement of

proximal mechanisms for ASP-induced insulin secretion is

also supported by the results that the hormone was unable to
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augment insulin secretion stimulated by high K+. Stimula-

tion by K+ bypasses the proximal effects of glucose and

increases an uptake of Ca2+ through a direct depolarization

effect, which is a KATP channel-independent pathway.25,33

We also found that ASP augments insulin secretion in vivo

in mice. Intravenous administration of ASP in combination

with glucose during an IVGTT potentiated glucose-stimu-

lated insulin secretion. The effect was rapid in onset and

observed within 1 min after administration. This augmented

glucose-stimulated insulin secretion resulted in increased

rate of glucose disposal. This induced slightly lower glucose

levels at the later time points during the IVGTT, and is likely

to explain the reduced plasma insulin levels at these later

time points. The use of the minimal model analysis of the

data obtained from the IVGTT also allowed us to investigate

the potential influence of ASP on insulin sensitivity and

glucose effectiveness, that is, the glucose disappearance

independent of any dynamic change of insulin.21 The

analysis revealed, however, that these parameters were not

affected by ASP. Therefore, the augmented glucose disposal

seen after administration of ASP appears to be mediated by

the increased insulin secretion. Our finding that ASP did not

affect insulin sensitivity might seem to contradict earlier

observations that plasma ASP levels in humans correlate

inversely to glucose disposal during a euglycemic clamp 15

and that ASP-deficient mice exhibit reduced plasma insulin

levels as a sign of increased insulin sensitivity.9 However, it

has to be emphasized that during chronic studies the action

of ASP to alter triglyceride stores and adipose tissue mass

might indirectly influence insulin sensitivity, an action

which may be distinct from direct actions observed after

short-term administration of the hormone.

In summary, the results presented here provide evidence

that, in addition to its involvement in the local regulation of

lipid formation in adipocytes,3–10 ASP may also have a role in

the regulation of islet function by augmenting glucose-

stimulated insulin secretion via a direct action on the beta

cells. This highlights an interaction between the adipocytes

and the regulation of islet function.34 Furthermore, in

addition to promoting glucose uptake and utilization,

insulin also prominently inhibits lipolysis in adipocytes.35

Therefore, based on the available data, the main actions of

ASP appear to be its effects to promote energy storage as

lipids, both directly to stimulate lipid synthesis in adipo-

cytes,5–7 and indirectly by promoting insulin secretion and

thereby inhibiting lipolysis. Further studies will be required

to examine whether perturbations of this regulation may be

involved in metabolic disorders, such as diabetes and obesity.
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