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Diffusive magnetic images of upwelling patterns in the core
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[1] A new technique for imaging convection in the outer core is presented, which is based
on mean field electrodynamics. The method assumes a frozen magnetic flux balance for
the global-scale part of the fluid velocity in the outer core and a diffusive magnetic flux
balance for smaller-scale parts of the fluid velocity. The diffusive flux balance implies that
local highs and lows in the magnetic field correspond approximately to fluid downwellings
and upwellings, respectively. Diffusive flux produces good images of the pattern of
upwellings and downwellings near the outer boundary in numerical dynamos, except near
the equator. The amplitudes of the upwellings in the diffusive magnetic images correspond
to the upwelling amplitudes below the Ekman boundary layer in the numerical dynamos.
We have applied this technique to the Oersted initial 2000 core field model and to time-
averaged models of the historical geomagnetic field on the core-mantle boundary. It
indicates that high-latitude, high magnetic flux density patches correspond to downwellings
in the outer core. INDEX TERMS: 1507 Geomagnetism and Paleomagnetism: Core processes (8115);

1510Geomagnetism and Paleomagnetism: Dynamo theories; 1545Geomagnetism and Paleomagnetism: Spatial

variations (all harmonics and anomalies); 1560 Geomagnetism and Paleomagnetism: Time variations—secular

and long term; 1515 Geomagnetism and Paleomagnetism: Geomagnetic induction; KEYWORDS: Earth’s core,

core flow, geomagnetic secular variation, geodynamo, geodynamo models

Citation: Olson, P., I. Sumita, and J. Aurnou, Diffusive magnetic images of upwelling patterns in the core, J. Geophys. Res., 107(B12),

2348, doi:10.1029/2001JB000384, 2002.

1. Introduction

[2] Delineation of the fluid motions in the outer core that
induce the Earth’s internal magnetic field is a longstanding
objective in geomagnetism. The roots of this effort can be
traced back to Halley’s [1692] interpretation of the geo-
magnetic secular variation as transport of magnetic field by
liquid currents flowing in channels deep in the Earth’s
interior. Early theories of the geodynamo [Elsasser, 1947;
Bullard et al., 1950] also interpreted secular variation as
transport of magnetic field lines by core fluid motion, and
they also identified other important mechanisms for mod-
ifying the magnetic field, including stretching of the field
lines by the fluid and magnetic diffusion.
[3] Since that time, most efforts to image flow in the core

assume an infinitely conducting outer core fluid. The
assumption of infinite electrical conduction (equivalent to
zero magnetic diffusion) is the basis for the frozen flux
method, in which the effects of diffusion are ignored in the
magnetic induction equation. A large number of models of
flow in the core based on frozen flux have been derived, for
example, Gire and Le Mouël [1990], Voorhies [1986, 1995],
Whaler [1986], Bloxham [1989], Bloxham and Jackson

[1991]. However, Love [1999] and Rau et al. [2000] have
recently shown there are limitations in applying the frozen
flux method to flow in the core, related to the fact that
magnetic diffusion plays an essential role in the geodynamo.
[4] Here we investigate an alternative approach to infer-

ring core flow. Our method provides a different image of
core motions, by explicitly including some of the effects of
magnetic diffusion that are ignored in frozen flux. After a
brief review of the frozen flux method, we derive a simple
model that links the smaller-scale magnetic field structures
on the core-mantle boundary to the pattern of outer core
fluid upwellings, using concepts drawn from mean field
electrodynamics. The method is tested against a numerical
dynamo model and then applied to short time and long time
average models of geomagnetic field on the northern hemi-
sphere of the core-mantle boundary.

2. Theory

[5] Methods for imaging core flow using the geomagnetic
field on the core-mantle boundary use some approximation
of the radial component of the magnetic induction equation
[Roberts and Gubbins, 1987]

@Br

@t
þ Uh � rhð ÞBr þ Br rh � Uhð Þ ¼ l

r
r2 rBrð Þ: ð1Þ

The objective is to invert equation (1) for Uh, the horizontal
(tangential) component of the fluid velocity below the core-
mantle boundary, given the radial component of the
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magnetic field Br there and its time derivative, the secular
variation @ Br/@ t. In equation (1), l is the magnetic
diffusivity of the outer core fluid, usually assumed constant,
t is time, r is the radial coordinate and the subscript h denotes
spherical coordinates (q,f).

2.1. Frozen Flux Method

[6] The frozen flux method assumes the core acts like a
perfectly conducting fluid, and neglects the diffusion term
in equation (1). Simple scaling considerations [Roberts and
Scott, 1965] indicate that neglecting magnetic diffusion is
justified for the large-scale part of the flow in the core. The
ratio of transport to diffusion terms in equation (1) is
measured by the magnetic Reynolds number

Rm ¼ UD

l
; ð2Þ

where U and D are characteristic velocity and length scales
of the fluid motion, respectively. Large magnetic Reynolds
number indicates magnetic diffusion is smaller than
advection. Using the outer core thickness for D and the
apparent drift rate of geomagnetic field structures to define a
velocity scale, equation (2) gives Rm ’ 300 for the global-
scale flow. Neglecting the diffusion term leads to a couple
of important simplifications. First, the induction equation
(1) is reduced by one order. Second, the radial derivatives of
Br are eliminated, so the tangential velocity Uh can be found
using only Br and its time derivative on the core-mantle
boundary, both of which are fairly well known from
historical geomagnetic field record [Bloxham and Jackson,
1992].
[7] There are several reasons, however, why frozen flux

does not provide a complete picture of core flow. One
reason is that the components of Uh represent two inde-
pendent unknowns in equation (1). Some additional con-
straint must be placed on the flow that relates the two
velocity components to each other. Various constraints have
been applied in the past, motivated by dynamical argu-
ments. Constraints that have been tried before include
assuming the motion is geostrophic, steady, or toroidal.
The flow patterns obtained with these different constraints
are also different, as shown in the comparison by Bloxham
and Jackson [1991].
[8] Another limitation, which all methods for inverting

equation (1) suffer from, stems from the finite resolution of
the geomagnetic field. Models of the geomagnetic field on
the core-mantle boundary are truncated at spherical har-
monic degrees around 12 or 14 [Bloxham and Jackson,
1992]. This appears to be an serious limitation when using
the geomagnetic field to image core flow. Judging from the
results of recent numerical dynamo calculations [Christen-
sen et al., 1999; Roberts and Glatzmaier, 2000; Kono et al.,
2000a], the geodynamo likely contains significant amounts
of magnetic energy and kinetic energy at spherical harmonic
degrees above 14. The higher-degree (i.e., smaller-scale)
magnetic fields, which are closely related to the pattern of
the convection in the numerical dynamos, are not resolved
in the geomagnetic field on the core-mantle boundary. This
is especially true for the geomagnetic secular variation.
[9] A third reason why frozen flux images of core

flow are incomplete is related to the neglect of magnetic

diffusion. By neglecting diffusion, the frozen flux method
implies a balance between the geomagnetic secular varia-
tion and transport and stretching of the magnetic field by
the fluid motion. The fluid motions imaged this way are
directly proportional to the secular variation. Flows that do
not induce secular variation, either because their motion is
parallel to contours of the radial magnetic field [Backus,
1968] or because the magnetic field they induce is bal-
anced by diffusion [Gubbins, 1996a, 1996b], cannot be
detected this way.
[10] The frozen flux approach to imaging core flow has

recently been tested using magnetic and velocity fields
obtained from numerical dynamos [Love, 1999; Rau et
al., 2000; Roberts and Glatzmaier, 2000]. Numerical
dynamo models offer the advantages that the velocity and
magnetic fields are known a priori and are electromagneti-
cally self-consistent. One simple test involves the conserva-
tion of total magnetic flux, a constraint implicit in the frozen
flux approximation. Roberts and Glatzmaier [2000] have
determined how well total magnetic flux is conserved in
numerical dynamos with large but finite magnetic Reynolds
number. They find that the total flux is constraint to within a
few percent in their dynamo models, over timescales
corresponding to a couple of hundred years in the core. A
more demanding test is to compare the actual velocity
pattern from the numerical dynamo with its frozen flux
image, derived by applying the frozen flux method to the
magnetic field from the same dynamo model. Rau et al.
[2000] have performed this type of test on several numerical
dynamos. They obtained frozen flux images of the flow
using standard flow constraints, including tangentially geo-
strophic flow, steady flow, and toroidal flow assumptions.
They report correlation coefficients of about 0.5 between
the frozen flux image of the velocity and the actual velocity
from the numerical dynamo. Importantly, they find that
certain components of the flow are not well imaged by the
frozen flux approach. In particular, Rau et al. [2000] find
that much of the velocity field in their numerical dynamos is
oriented parallel to the magnetic field contours. This com-
ponent of motion does not induce secular variation of its
own, and so is missing from frozen flux images.
[11] Love [1999] has made other tests of the frozen flux

method, using nearly steady kinematic dynamos. He argues
that nearly steady dynamo models constitute a good test of
any imaging technique, since the core field is also nearly
steady, in the sense that much of the structure in the
nondipole part of the field on the core-mantle boundary
evolves slowly in time. Like Rau et al. [2000], Love [1999]
finds the frozen flux method fails to give the correct fluid
velocity pattern, but for somewhat different reasons. Love
[1999] concludes that the frozen flux method fails to image
important components of the flow in nearly steady dynamos
because it ignores diffusion. In steady state, frozen flux
implies a balance between advection and stretching of
magnetic field lines; in contrast, magnetic diffusion is
always important in numerical dynamo models, particularly
for the time-averaged field.

2.2. A Mean Field Magnetic Induction Model

[12] Some of the limitations implicit in the frozen flux
approach can be overcome by distinguishing between long-
and short-wavelength structures in the flow and the mag-
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netic field, and including magnetic diffusion effects at short
wavelengths. Distinction between long- and short-wave-
lengths in the fluid velocity and the magnetic field is the
basis for mean field electrodynamic dynamos [see Moffatt,
1978; Gubbins and Roberts, 1987]. The assumption of
separate global and local scales of magnetic field and fluid
motion within the outer core is supported by the results of
recent numerical dynamo models [Glatzmaier and Roberts,
1996; Kuang and Bloxham, 1997; Kageyama and Sato,
1997; Christensen et al., 1999; Kono et al., 2000a]. In these
models the convection is characterized by length scales very
much smaller than the core radius, and magnetic induction
on these length scales involves diffusion.
[13] Here we derive the lowest-order balance of terms in

the radial induction equation (1) on the surface of a fluid
dynamo that involves both large- and small-scale velocity
components, according to the mean field electrodynamics
[Moffatt, 1978; Roberts and Gubbins, 1987]. Our derivation
makes use of spatial averages rather than the time averages
used by Love [1999]; however, our results are similar to his.
[14] We first separate the radial magnetic field and the

tangential fluid velocity into large- and small-scale parts:

Br ¼ Bþ b ð3Þ

Uh ¼ Uþ u: ð4Þ

For purposes of definition, we suppose that the large-scale
magnetic field and fluid velocity correspond to averages
over a region of the core-mantle boundary. Denoting
spatial averages by overbars gives Br;Uh

� �
¼ B;Uð Þ so

that b = u = 0. On scales smaller than the averaging
region, the large-scale velocity and magnetic field can be
considered uniform. Substituting equations (3) and (4) into
(1) and averaging yields separate equations for the large-
scale magnetic field

@B

@t
þ u � rhð Þbþ b rh � uð Þ ¼ l

r
r2 rBð Þ ð5Þ

and for the small-scale magnetic field

@b

@t
þ U � rhð Þbþ B rh � uð Þ þ G ¼ l

r
r2 rbð Þ; ð6Þ

where

G ¼ u � rhð Þb� u � rhð Þbþ b rh � uð Þ � b rh � uð Þ: ð7Þ

The steady state version of equation (5) corresponds to
equation 11 used by Love [1999] and equation (6)
corresponds to his equation 12.
[15] In mean field electrodynamics, it is usual to assume

first-order smoothness, in which the term G is neglected in
equation (6). Moffatt [1978] gives some examples of sit-
uations where this assumption is justified. In section 3, we
show that G is, in fact, negligible compared to other terms
in equation (6) for the numerical dynamos we analyze. In
addition to first-order smoothness, we also assume local
equilibrium. For local equilibrium, the smaller-scale mag-
netic field structures are steady in a frame of reference
moving with the large-scale velocity U. This is equivalent to

the following frozen flux balance between the secular
variation of the small-scale field and the large-scale flow:

@b

@t
þ U � rhð Þb ¼ 0: ð8Þ

With these assumptions, equation (6) reduces to

B rh � uð Þ ¼ l
r
r2 rbð Þ: ð9Þ

[16] The final step is to properly evaluate equation (9) on
the core-mantle boundary r = R. Here two more difficulties
arise, related to the fact that both remaining terms in
equation (9) vary with depth below the core-mantle boun-
dary, and neither the magnetic field nor the fluid velocity are
known inside the core. Consider first the problem of
evaluating the radial derivatives in the diffusion term. Apart
from the constraint that the radial component of the mag-
netic field is continuous at the core-mantle boundary, we
have little information on how the field varies with depth
inside the electrically conducting core. Since we cannot
compute radial derivatives of the geomagnetic field within
the core, the most expedient way to deal with the contribu-
tion from radial magnetic diffusion is to simply ignore it and
keep only the tangential diffusion term in equation (9). This
procedure is justifiable only in those places where tangential
diffusion exceeds radial diffusion. Gubbins [1996] has
argued that the relative importance of radial magnetic
diffusion is related to the presence or absence of boundary
layers in the tangential electric current. In our numerical
dynamos, we find that tangential diffusion tends to domi-
nate over radial diffusion at high magnetic latitudes, where
the magnetic field lines are nearly radial. Conversely, the
opposite relationship is found at low magnetic latitudes,
where the field lines are more nearly tangential.
[17] The second problem with evaluating equation (9) on

the core-mantle boundary is that rh � u varies rapidly with
depth. To the extent that the core mantle boundary approx-
imates an impermeable, equipotential surface, rh � u = 0 at
r = R but is generally nonzero for r < R. It is therefore not
clear what depth (or, what depth interval) the upwelling
term in equation (9) actually represents. The argument that
is usually given to overcome this ambiguity is that the
imaged velocities correspond to fluid motion in the free
stream, at some finite depth in the core, beneath the velocity
boundary layers that must be present below the core-mantle
boundary [Roberts and Gubbins, 1987]. According to this
argument, the variation of the free stream velocity with
depth is small and can be ignored, so that the upwelling
term in equation (9) can be treated as depth-independent.
[18] This argument is perhaps justifiable for interpreting

global-scale velocities in the core, but the results of numer-
ical dynamo models give a somewhat different picture for
the smaller-scale velocity field. The velocity boundary
layers in numerical dynamos are typically quite thin and
indeed they seem to have little influence on the global
structure of the magnetic field [Christensen et al., 1999;
Kono et al., 2000a]. However, these same dynamo models
show that there is no well-defined free stream region, where
the fluid velocities attain constant (depth-independent) val-
ues. Instead the amplitudes of the velocities and the upwel-
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lings associated with them vary continuously with depth
beneath the boundary. Accordingly, when we evaluate the
first term in This argument is perhaps(9) on the surface r =
R, we are in fact projecting the three-dimensional upwelling
onto the two-dimensional outer spherical boundary.
[19] In order to emphasize this distinction, we define

w0 ¼ rh � u to be the upwelling image, a depth-averaged
projection of the three-dimensional upwelling onto the outer
boundary. Then equation (9) becomes

Bw0 ¼ lr2
hb ð10Þ

on r = R, with

r2
h ¼

1

R2 sin q
@

@q
sin q

@

@q
þ 1

sin q
@2

@f2

� �
: ð11Þ

According to equation (10), tangential diffusion of small-
scale magnetic field is correlated with fluid upwellings in
dynamos with mean field electrodynamic effects. For this
class of dynamos, and possibly more generally, tangential
magnetic diffusion on the outer boundary can be used to
image the convection pattern in the fluid.
[20] There is another useful result from mean field

electrodynamics that has been substantiated in numerical
dynamo models, which provides a way to image the non-
divergent part of the tangential velocity, including the
tangential velocity parallel to magnetic field contours that
produces no magnetic secular variation of its own. Magnetic
induction in rotating, convection-driven dynamos occurs
primarily through the mean field ‘‘alpha effect’’ [Moffatt,
1978], which is proportional to the volume average helicity
of the convective motions. Helicity is the inner product of
fluid vorticity, x = r 
 u, and velocity:

H ¼ x � u: ð12Þ

Numerical dynamo models driven by convection in rotating
spherical geometry show large amounts of helicity asso-
ciated with columnar convection [Glatzmaier and Roberts,
1996; Kuang and Bloxham, 1997; Christensen et al., 1999].
The helicity in these dynamos is due to the combination of
quasi-geostrophic flow around the convection columns and
ageostrophic flow along the axis of the columns, the latter
being driven by the combined effects of buoyancy and
Ekman pumping. (The dissipative Ekman pumping tends to
restore the flow toward the state of solid body rotation.)
Convection columns with positive axial vorticity (vorticity
parallel to the planetary rotation, i.e., cyclones) have axial
downwellings near the outer boundary, whereas convection
columns with negative axial vorticity (anticyclones) have
axial upwellings [Olson et al., 1999]. For these reasons, the
average helicity in convection-driven dynamo models tends
to be negative in the northern hemisphere and positive in the
southern hemisphere. Negative helicity at high northern
latitudes, for example, means that the radial component of
vorticity xr and the radial component of velocity ur are
negatively correlated there. Near the outer boundary, the
radial velocity pattern is similar to the upwelling pattern. So
the negative helicity in the northern hemisphere also means
that the radial vorticity xr is negatively correlated with the

fluid upwelling w0 near the outer boundary. This relationship
holds particularly at high latitudes.
[21] Suppose that we represent proportionality between

�xr and w0 at high latitudes near the outer boundary with a
coefficient c. The radial vorticity is related to the toroidal
stream function y via xr = �rh

2 y. Then the toroidal stream
function can then be calculated from the upwelling obtained
from equation (10) by solving the following equation over
the outer boundary:

r2
hy ¼ cw0: ð13Þ

Note that most of the toroidal velocity u = r
br y obtained
from solving equation (13) lies in the null-space, that is, it is
parallel to the contours of the small-scale magnetic field
[Backus, 1968]. The relationship between small magnetic
field variations b and the toroidal stream function y is
particularly simple in regions where the large-scale field B
can be considered uniform. Then equations (10) and (13)
combine to give the following linear relation between the
toroidal stream function and the small-scale magnetic field
in that region:

y ¼ c
l
B

� �
b: ð14Þ

This result indicates that over those portions of the
boundary where the large-scale magnetic field is approxi-
mately uniform and where the assumption of local
equilibrium is met, contours of the small-scale magnetic
field correspond approximately to stream lines of the
toroidal fluid motion. The scale factor between the stream
function and the small-scale field in equation (14) includes
the magnetic diffusivity, the large-scale field intensity and
the coefficient c introduced in equation (13). The value of c
depends on the dynamics of the convection. In the special
case that upwelling is entirely due to Ekman pumping at the
outer boundary, then c ’ 2R/d, where R is the core radius

and d ’
ffiffiffiffiffiffiffiffiffi
n=�

p
is the Ekman boundary layer thickness

where n is the kinematic viscosity [Greenspan, 1968]. In a
dynamo, other forces such as buoyancy and the Lorentz
force contribute to the upwelling, so the coefficient c
depends on other effects in addition to the strength of
Ekman pumping.
[22] In the numerical dynamo models, the magnetic

induction is scaled by the Elsasser number is �= s B2/r�.
Here s is electrical conductivity, r is density, and � is
angular velocity of rotation. The Elsasser number defines
the scale factor (r�/s)1/2 for converting the dimensionless
magnetic field in the numerical dynamos to dimensional
units of magnetic induction. Using asterisks to indicate
dimensionless variables, the dimensional and dimensionless
versions of the small-scale magnetic field are related by

b* ¼ s
r�

� �1=2

b: ð15Þ

For comparison with the images derived from geomagnetic
data, it is also useful to define nondimensional versions of
the upwellingrh � u, the upwelling image w0, the vorticity x,
and the stream function y. Again using asterisks to denote
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dimensionless variables, these are related to their dimen-
sional counterparts by

rh � u*;w*; x*ð Þ ¼ D2

l
rh � u;w0; xð Þ ð16Þ

y* ¼ y
l
: ð17Þ

The magnitude of each of these dimensionless variables is
essentially the magnetic Reynolds number of that quantity.
The results of our dynamo model calculations and the
results of our geomagnetic field analyses are given in terms
of these variables.
[23] A practical difficulty in numerically calculating a

diffusive upwelling image using a magnetic field model
with equation (10) stems from the singularity in the inverse
of equation (10) near the magnetic equator of the large-scale
field. We have tried two different solution methods to
overcome this problem. In the first method we evaluate
equation (10) directly for w0 everywhere on the sphere,
except in a band around the main field equator. We define
this band is as the region where the main field is less than
2% of its global maximum value. For most dynamo models
examined, this band extends about ±4	 about the main field
equator. We then use spline functions to interpolate the field
image across the band. In the second method we solve for w0

globally, using singular value decomposition with spherical
harmonic basis functions. The results of these two
approaches are grossly similar, although we do find some
differences between them near the main field equator. Since
the first method seems to produce smoother images, we
show the results obtained using it. However, with both
solution methods we find that the results of this method are
not very robust at low magnetic latitudes. Small differences
in magnetic field structure lead to large differences in the
upwelling image there. Instability in the solutions in this
region occurs because assumptions underlying equation
(10) are generally not valid at low latitudes. In particular,
the balance between radial stretching and tangential diffu-
sion which forms the basis of equation (10) is not appro-
priate at low magnetic latitudes, since radial diffusion and
other forms of field line stretching and transport not
included in equation (10) are important there. Accordingly,
although we calculate the upwelling pattern over the whole
sphere, we do not interpret the images close to the equator.

3. Diffusive Flux Images of Convection in
Numerical Dynamos

[24] We have tested the diffusive flux method using a
number of well-resolved numerical dynamos driven by
thermal convection in a rotating spherical shell. Details of
the numerical dynamos, including the dimensionless param-
eter values, grid sizes and the structure of the flow and
magnetic field they produce, are given by Olson et al.
[1999] and Christensen et al. [1999]. All the dynamos
calculations we have examined use the Navier-Stokes,
magnetic induction, and heat equations for an incompres-
sible Boussinesq fluid, including complete inertial terms
and Newtonian viscosity. The diffusivities are constant, and
no scale-dependent parameterizations such as hyperdiffu-

sivity have been used. The domain is a spherical shell with
same radius ratio as the liquid outer core. The boundary
conditions are simple and homogeneous: no-slip, isother-
mal, and electrically insulating. The numerical solution
method is described by Olson and Glatzmaier [1996] and
Christensen et al. [1999]. The solutions are typically time-
dependent columnar convection generating a time-depend-
ent magnetic field dominated by the axial dipole compo-
nent. These dynamos are in the strong field (Elsasser
number � ’ 1) regime, where the Coriolis and Lorentz
force have comparable magnitude.
[25] The procedure we use for constructing the upwelling

image from a numerical dynamo is as follows. We run the
dynamo model until the magnetic field has reached statis-
tical equilibrium, where the power spectrum of the field has
ceased to evolve, and then select a particular time snapshot
of the radial component of the magnetic field on the outer
boundary for analysis. The next step is to separate the radial
field into a large- (global) scale and small- (local) scale
parts. The definition of what constitutes the global part of
the field is somewhat arbitrary in this context. For each case
examined we have made parallel analyses, first using the
azimuthally averaged magnetic field as the global field
model, and then using the axial dipole component as the
global field model. The difference between these options
turns out to be minor in nearly every case. Once the
definition of the global magnetic field is established, we
calculate the local field according to equation (3) and solve
the dimensionless version of equation (10) over the sphere
for the dimensionless upwelling image w*. We then com-
pare this image with rh � u*, the upwelling from the
numerical dynamo model. Since the dynamo upwelling
amplitude varies with depth below the outer boundary, we
calculate the depth-averaged upwelling as a function of
depth, from the surface z* = 0 to a nominal maximum depth
of z* = 0.1, to determine the effective averaging depth that
the diffusive image corresponds to.
[26] A typical test case is shown in Figure 1. The maps

are northern hemisphere polar projections of a snapshot in
time from a convective dynamo in the regime of strongly
columnar flow. The dimensionless parameters of the calcu-
lation have the following values: Rayleigh number Ra = 8 

106 (nearly 5 times critical), Ekman number E = 10�4,
Prandtl number Pr = 1, magnetic Prandtl number Pm = 2.
Here Ra = ag�TD3/nk, Ek = n / � D2, Pr = n/k and Pm =
n/l, where a is the thermal expansion coefficient, g is
gravity on the outer boundary, �T is the temperature
difference across the spherical shell and � is the planetary
angular velocity. The kinematic viscosity and thermal dif-
fusivity are n and k, respectively. The basic length scale
used in these parameters is the shell thickness D = Ro�Ri,
where Ro and Ri are the outer and inner radii, and the
basic timescale is the viscous diffusion time across the shell,
D2/n. The calculation was made using a finite difference
grid with 33, 80, and 160 points in radius, latitude, and
longitude, respectively, and truncation at spherical harmonic
degree lmax = 64. Twofold azimuthal symmetry is imposed
on the solution.
[27] The axisymmetric part of the magnetic field gener-

ated by this dynamo is very nearly an axial dipole. Because
the flow in this dynamo is nearly symmetric and the
magnetic field is nearly antisymmetric with respect to the
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Figure 1. Comparison of upwelling planform with its diffusive magnetic image in a dynamo driven by
strongly columnar-style thermal convection in a rotating spherical shell at Ra = 8 
 106(’ 4.8 
 Rac),
E = 1 
 10 �4, and Pr = 1, Pm = 2. See text for other calculation parameters and scalings of the
dimensionless variables. Shown are northern hemisphere projections with the outer circle representing
the outer boundary equator and the inner circle representing the tangent cylinder, the axial projection of
the inner spherical boundary onto the outer boundary. (a) Stream function of toroidal motion at depth z* =
0.07 beneath the outer boundary (contour steps in dimensionless units defined by equation (15)). (b)
Upwelling planform at depth z* = 0.07 (contour steps in dimensionless units defined by equation (16)).
(c) Nonaxisymmetric part of the radial magnetic field at the outer boundary z* = 0 (contour steps in
dimensionless units defined by equation (16)). (d) Diffusive magnetic image of upwelling (contour steps
in dimensionless units defined by equation (16)).
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equator, the southern hemisphere is similar to what is shown
in Figure 1, except that the radial magnetic field is reversed.
The particular initial conditions used to begin this calcu-
lation have created a main magnetic field with reverse
polarity, that is, with positive (outward directed) radial field
in the northern hemisphere.
[28] Two important dimensionless output parameters that

characterize the solution are the magnetic Reynolds number
Rm and the Elsasser number �. The volume averaged
Elsasser number is near unity in Figure 1, consistent with
this case being a strong field dynamo. According to the
definition of Rm in equation (2), the volume averaged
magnetic Reynolds number of the dynamo shown in Figure
1 is about 60. This is large enough so that the planform of
the convection columns does not have a simple azimuthal
periodicity but instead evolves chaotically in time. How-
ever, the flow structure remains strongly columnar at all
times, and each snapshot of the flow shows a pattern of
columns nearly symmetric with respect to the equatorial
plane. There is a small, statistical azimuthal drift in the
convection pattern, but the average azimuthal drift speed is
significantly less than the characteristic speed of the fluid
around the convection columns.
[29] Figure 1a shows a snapshot of y*, the toroidal

stream function of the fluid motion at a depth z* = 0.07,
just below the outer boundary Ekman layer, over the
northern hemisphere of the dynamo. Figure 1b shows the
upwelling pattern from the numerical dynamo at the same
time, averaged over the depth interval from z* = 0 to z* =
0.07. Although the pattern of the upwelling changes little
with depth near the outer boundary, the amplitude of the
upwelling varies strongly with depth. The upwelling ampli-
tude increases from zero at depth z* = 0, a consequence of
the no-slip velocity condition used at the outer boundary,
reaches a maximum within the Ekman layer, and then
decreases below that. Figure 1c shows the nonaxisymmetric
part of the radial magnetic field over the same portion of the
northern hemisphere on the outer boundary of the dynamo.
Figure 1d is w*, the diffusive magnetic image of the
upwelling pattern, obtained by solving the dimensionless
version of equation (10) using the nonzonal magnetic field
from Figure 1a. The contour intervals used in the upwelling
image (Figure 1d) are the same as in the dynamo upwelling
(Figure 1b).
[30] Comparison of Figures 1b and 1d demonstrates how

the diffusive magnetic image contains many of the impor-
tant elements of the dynamo upwelling pattern, especially in
the high-latitude zone where the columnar convection
intersects the outer boundary. Nearly all of the intense,
small-scale upwellings and downwellings arrayed around
the inner core tangent cylinder in the dynamo are also
present in the image.
[31] Figure 2 shows scatterplots between pairs of impor-

tant variables from this dynamo, obtained using the values
on the numerical grid at the outer surface z* = 0 and at depth
z* = 0.07. Note that the vorticity and surface divergence are
particularly well correlated in Figure 2a. The global (full
sphere) correlation between the dynamo upwelling pattern
and its diffusive image is about 0.89 in this case. However,
there is a large variation in the correlation with latitude. In
particular, Figure 1 shows that the upwellings in the image
tend to be enhanced at lower latitudes, compared to the

upwellings in the dynamo model. As shown in Figure 3, the
correlation often exceeds 0.9 in the latitude zone where the
columns intersect the outer boundary, whereas it drops to
about 0.7 closer to the equator. This latitude dependent
deviation accounts for about one half of the scatter between
the variables shown in Figure 2, and is typical for the
dynamo models we have examined. The systematic devia-
tion with latitude between the dynamo upwelling and its
image is partly a consequence of the somewhat arbitrary
distinction between the large-scale and the small-scale
magnetic fields in equation (3), but more importantly it
reflects the fact that approximations used to derive equation
(10) become increasingly less valid at low latitudes. In
contrast, the anomalously low correlation at both poles in
Figure 3 is a localized artifact, due to our particular choice
of the main part of the magnetic field there.
[32] For this dynamo, the RMS amplitudes of the diffu-

sive magnetic image matches the upwelling amplitude at the
depth z* = 0.07, which corresponds approximately to the
base of the viscous Ekman boundary layer. At this particular
depth the image accounts for approximately 75% of the
variance in the dynamo upwelling.
[33] Several of the key assumptions we have used can

be justified, by calculating the magnitude of the terms
neglected in the derivation of equation (10) from equa-
tion (1). One of our critical assumptions is first-order
smoothness, used to justify neglect of the function G in
equation (6). The ratio of the RMS amplitude of G is in fact
nearly always small compared to the diffusion term in
equation (6). In the dynamo shown in Figure 1 for example,
the ratio of the two terms is �0.06. Another important
assumption involves the helicity defined in equation (12),
the correlation between vorticity and axial velocity (upwell-
ing) in the columnar convection. Figure 2a demonstrates the
strong negative correlation between radial vorticity and
upwelling in the northern hemisphere. At the depth shown
(z* = 0.07), the correlation is �0.983, and it is larger still
at shallower depths. A corollary of the assumption of
correlated vorticity and axial velocity is that the upwelling
image should be negatively correlated with the actual
radial vorticity. Figure 2d shows these variables have a
crude negative correlation, the coefficient being �0.82 in
this case.
[34] Finally, Figures 1 and 2 demonstrate that the pertur-

bation magnetic field contours indeed do approximate the
streamlines of the toroidal motion, as predicted by equation
(14). Figure 1a shows the stream function of the toroidal
motion y below the outer boundary Ekman layer. Compar-
ison with Figure 1c shows the similarity between the stream
function and the nonaxisymmetric radial field structure:
nonaxisymmetric field highs mark positive (cyclonic) vor-
tices and nonaxisymmetric field lows mark negative (anti-
cyclonic) vortices. Although there is significant scatter in
this relationship (in particular, high field values do not fit
well for the reason given above), the global correlation is
still large, about + 0.9. This is another demonstration that in
dynamos driven by columnar-style convection, much of the
fluid circulation is along magnetic field contours, consistent
with the findings of Rau et al. [2000].
[35] The observed similarity between y* and b* supports

the local equilibrium assumption used to derive equation
(10). It also provides a way to estimate the inert part of the
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core surface flow, the part that is tangent to field intensity
contours and induces no secular variation of its own. Using
the dipole field amplitude and the magnetic diffusivity from
the dynamo model, and assuming c ’ 2E�1/2 appropriate
for Ekman pumping, equation (14) gives y* (rms) ’ 3
calculated from the nondipole field, versus y* (rms) ’ 8
from the actual numerical dynamo model. These values are
consistent with the general behavior of this class of numer-
ical dynamos: roughly one half of the upwelling in the
columnar convection is attributable to Ekman pumping,
with the remainder being due to buoyancy forces [Olson
et al., 1999].
[36] We have also calculated the correlation between the

upwelling pattern and the other terms in the radial induc-
tion equation (1). We find that the global correlation
between upwelling and the other terms in equation (1) is
less than the correlation with the tangential diffusion, even
though the magnitudes of some of these terms are far
larger, in particular the secular variation and transport
terms. An explanation we offer for this seemingly para-
doxical finding is based on the concept of local equili-
brium: the secular variation and transport terms in equation

(1) tend to nearly balance at leading order in the magnetic
Reynolds number, and the upwelling and diffusion terms
balance at the next order. Although these later terms do
not form the primary balance, they are well correlated,
since tangential diffusion tends to be large at the centers of
upwellings and downwellings and small in the regions in
between.
[37] The approach to local equilibrium depends some-

what on the structure of the convection, and may not occur
in some dynamo models. Our tests were made using
numerical dynamos that are dominated by narrow convec-
tion columns with smaller-scale, helical induction of the
poloidal magnetic field. In these dynamos the radial field at
the outer boundary is closely coupled to the pattern of
convection. This relationship may be different for other
dynamo types. In aw-type dynamos for example, radial
field concentrations at the outer boundary can be induced
by outward diffusion of kinks in the strong toroidal
component of the internal magnetic field. Indeed, we find
that the agreement between the upwelling and the upwell-
ing image is best for dynamo models without strong
azimuthal flows. Conversely, the agreement tends to dimin-

Figure 2. Scatter diagrams of the magnetic field and flow variables from the dynamo model shown
in Figure 1. (a) Radial vorticity versus horizontal divergence at depth z* = 0.07; (b) nonaxisymmetric
part of the radial magnetic field at the outer boundary z* = 0 versus toroidal stream function at depth
z* = 0.07; (c) diffusive magnetic image of upwelling versus horizontal divergence at z* = 0.07; (d)
diffusive magnetic image of upwelling versus radial vorticity at z* = 0.07.
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ish as the strength of the azimuthal flow in the dynamo
model increases.

4. Diffusive Flux Images of Upwellings From
Geomagnetic Field Models

[38] We have applied this technique to instantaneous and
time-averaged models of the geomagnetic field on the
core-mantle boundary. Models of the core field represent-
ing four progressively longer time intervals are considered:
(1) a snapshot at epoch 2000.0, the initial Oersted field
model [Olsen et al., 2000]; (2) a two decade average core
field model derived by combining the Magsat field [Cain
et al., 1989] plus the initial Oersted field model; (3) a time
average core field for 1900–2000 derived by combining
Oersted, Magsat, plus the historic field model UFM1 of
Bloxham and Jackson [1992]; and (4) a time average core
field for 1700–2000 derived by combining the above core
field models.

[39] Models of the core field derived from the Magsat and
Oersted satellite measurements have nearly uniform global
coverage and are typically truncated near spherical har-
monic degree and order 14, due to the overlap with the
crustal field [Cain et al., 1989]. The historical field model
UFM1 is also truncated at degree and order 14. Ground-
based intensity data as well as directional data are used
construct the historical core field models since about 1840,
although the spatial coverage is not very uniform prior to
about 1900. The earliest historical field models are based on
directional information alone and are subject to limitations
from sparse and nonuniform data coverage (see Bloxham
and Jackson [1992] for details).
[40] Figure 4 shows the nondipole magnetic field on the

core-mantle boundary from theses geomagnetic field mod-
els. The maps show the radial component of the magnetic
induction in millitesla (mT) for the four time intervals with
the axial dipole term removed, on a 5	 
 5	 grid. The maps
are orthographic projections centered on the north pole, with

Figure 3. Correlation of magnetic field and flow variables as a function of latitude from the dynamo
model shown in Figure 1. (a) Correlation between diffusive magnetic upwelling image and horizontal
divergence at z* = 0.07; (b) correlation between diffusive magnetic upwelling image and radial vorticity
at z* = 0.07; (c) correlation between toroidal stream function at z* = 0.07 and nonaxisymmetric radial
magnetic field at z* = 0; (d) correlation between radial vorticity and horizontal divergence at z* = 0.07.
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the continental outlines drawn for reference. The outer circle
of each map is 30	N latitude, and the inner solid circle on
each map is the cylindrical projection of the inner core onto
the core-mantle boundary, the inner core tangent cylinder.

As seen in Figure 4, the basic structure of the time average
nondipole field in the northern hemisphere consists of two
patches with high magnetic flux density located beneath
North America and Siberia, respectively, plus a low mag-

Figure 4. Nondipole part of the radial geomagnetic field on the core-mantle boundary. Northern
hemisphere polar projections to 30	N latitude. The solid line indicates the inner core tangent cylinder
intersection. (a) The 2000.0 initial Oersted field model; (b) time-average field model 1980–2000 from
Magsat and Oersted; (c) time-average field model 1900–2000 from Magsat, Oersted and historical field
model UFM1 of Bloxham and Jackson [1992]; (d) time-average field 1700–2000 from models in
Figure 4c.
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netic flux density patch beneath the north polar region.
These structures are known to be present during much or all
of the historical record [Gubbins and Bloxham, 1985]. In
addition, northern hemisphere lobes with high magnetic
flux density appear in some models of the time-averaged
paleomagnetic field [Kelly and Gubbins, 1997; Johnson and
Constable, 1997, 1998], but not in others [Kono et al.,
2000b]. In addition to the persistent longer-wavelength
structures, there are shorter-wavelength structures, particu-

larly evident in the Oersted 2000 snapshot field model
shown in Figure 4a. However, most of the short-wavelength
features are transients that tend to average to zero in the
longer time averages.
[41] Figure 5 shows the diffusive magnetic images of

upwelling and downwelling pattern, derived from the non-
dipole fields in Figure 4 using equation (10). The upwelling
patterns are contoured in the dimensionless magnetic Rey-
nolds number units defined in equation (16). Note the

Figure 5. Diffusive magnetic upwelling images obtained from geomagnetic field models in Figure 4.
(a) The 2000 snapshot; (b) 1980–2000 time average; (c) 1900–2000 time average; (d) 1700–2000 time
average.
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difference in contour intervals used for the short-term
averages in Figures 5a and 5b versus the longer-term
averages in Figures 5c and 5d. As the averaging time
increases, the shorter-wavelength features in the diffusive
image are selectively removed, and a nearly stationary flow
pattern emerges. The persistent structures in these images
include fluid downwellings centered near the two high-
density magnetic flux patches, and less well defined upwel-
lings located between the upwellings. These persistent
structures are not so evident in the image derived from
the Oersted 2000 snapshot but are seen clearly in the images
derived from time averages 20 years and longer, suggesting
that the timescale for establishing local equilibrium in the
core field is several decades. Although the upwelling pattern
in the images is nearly stationary for longer time averages,
there is a continual decrease in amplitude with increasing
averaging time. The peak values of the upwelling magnetic
Reynolds number steadily decrease from nearly 100 in the
Oersted 2000 image (Figure 5a) to about 20 in the 300 year
average image (Figure 5d).
[42] Assuming a linear relationship between the nondi-

pole field and the toroidal stream function as in equation
(14), the inferred circulation is counterclockwise around
the two high-intensity flux patches and clockwise around
the low-intensity flux regions separating them. That is, the
inferred circulation is cyclonic where the flux intensity is
high and anticyclonic where the flux intensity is low.
[43] The amplitude of the inferred cyclonic motion can

be roughly estimated by assuming the downwellings are
entirely due to turbulent Ekman pumping. Combining
equations (14), (15), and (17) gives c��1/2 as the scale
factor between the dimensionless toroidal stream function
and the dimensionless nondipole field. Using a turbulent
Ekman number E = 10�8 (obtained by assigning the
turbulent magnetic Prandtl equal one) we get c = R/d ’
E�1/2 ’ 104. According to this reasoning, the magnetic
Reynolds number of the cyclonic toroidal flow inferred
from the Oersted field model is of order 1000 and of order
500 in the 300 year time average. These are crude
numbers at best, but they are broadly consistent with other
estimates.

5. Comparison With Other Upwelling Images

[44] Other images of the core upwelling pattern have
already been constructed by applying the frozen flux
technique to the historical geomagnetic field and its secular
variation. Unfortunately, there is little consistency among
these images, since the upwelling planforms inferred using
frozen flux depend strongly on the closure assumption
chosen, that is, on whether the flow is assumed to be
tangentially geostrophic, steady, or toroidal.
[45] For example, the assumption of tangential geostrophy,

rh � u cos qð Þ ¼ 0; ð18Þ

when applied to the geomagnetic secular variation yields a
pattern of alternating upwellings and downwellings con-
centrated near the equator [Gire and Le Mouël, 1990;
Bloxham and Jackson, 1991]. Concentration of upwellings
and downwellings near the equator in the tangentially
geostrophic model is largely a consequence of the (tan q)�1

singularity in equation (18). Another closure constraint that
has been used in conjunction with frozen flux is to assume
the flow is steady over some finite interval of time [Voorhies
and Backus, 1985]. When applied to the recent geomagnetic
secular variation, the steady motions assumption yields a
pattern of upwellings and downwellings that is strongest at
middle latitudes, particularly in the regions beneath south-
ern North America and southern Africa. A third closure
constraint that is often used assumes the tangential velocity
is purely toroidal, that is, fully represented by the stream
function y in equation (16). Using this constraint together
with frozen flux produces a pattern of horizontal velocity
that is broadly similar to the tangential geostrophic
constraint equation (18). However, the toroidal flow
constraint together with frozen flux does not yield motions
that are in anyway similar to diffusive flux. In the first
place, purely toroidal flow implies zero radial motion and
therefore zero upwellings [Lloyd and Gubbins, 1990;
Bloxham and Jackson, 1991]. Second, the toroidal stream
function obtained by frozen flux is orthogonal to y
determined using equation (14).

6. Discussion

[46] We have found that tangential magnetic diffusion
correlates with fluid upwellings at the outer boundary in
numerical dynamos where the primary flow is columnar-
style convection. This relationship provides a simple tech-
nique for imaging the planform of the convection, using
either snapshots or time averages of the radial magnetic
field on the outer boundary of the conducting fluid. Com-
parison with dynamo model results shows that the diffusive
magnetic image recovers the pattern and amplitude of the
upwellings at high latitudes, particularly in the latitude band
where the convection columns impinge on the outer core
boundary. Conversely the diffusive image gives poor results
at low magnetic latitudes (near the equator), where the
assumptions underlying the method break down.
[47] Diffusive magnetic images derived from models of

the historical geomagnetic field at the core-mantle boundary
representing four different time averages show a consistent
image in the northern hemisphere. The persistent, high-
intensity magnetic flux patches arrayed around the inner
core tangent cylinder correspond to fluid downwellings in
the diffusive magnetic image, with an inferred anticyclonic
circulation around them. In between the high-flux regions,
the diffusive image shows fluid upwellings with an inferred
cyclonic circulation.
[48] Gubbins and Bloxham [1987] have already inter-

preted the two high-latitude magnetic flux bundles in the
northern hemisphere in terms of columnar-style convection
with axial downwellings. They proposed that the location of
the flux patches, just outside of the inner core tangent
cylinder, indicates a topographic control by the solid inner
core on columnar convection in the fluid outer core. Our
diffusive magnetic images from time averaged geomagnetic
field models support this interpretation.
[49] An interesting question is whether the diffusive

magnetic images in Figure 5 represent the primary scale
of convection in the core, or alternatively, represent a
residual, spatial average of convective motions occurring
on smaller scales. The decrease we infer in upwelling

EPM 8 - 12 OLSON ET AL.: DIFFUSIVE MAGNETIC IMAGING OF CORE UPWELLINGS



velocity with increasing long time average seems to favor
the second possibility.
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