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Abstract

The stochastic bandit problem (Robbins, 1952) is a type of decision-making problem where an

agent must repeatedly choose between multiple arms from a (varying) arm set, where each arm is

associated with an unknown and different reward distribution, and the objective is to maximize the

cumulative reward over time. This problem gets its name from the analogy of a gambler choosing

which arm of a row of slot machines to pull, where each machine provides a different and unknown

probability of winning. This problem framework is widely applicable in various areas and several

sub-problems of it have been extensively studied during the past few years, e.g. multi-armed bandits

(MAB) (Robbins, 1952), linear bandits (Abbasi-Yadkori et al., 2011), Lipschitz bandits (Agrawal,

1995) and so on. However, existing research on bandits faces certain limitations, both theoretical

and crucially in practical applications. These challenges have become significant bottlenecks in

advancing the field of stochastic bandit problems. To name a few, (1) robustness against adversarial

attacks (Chapter 2); (2) auto-hyperparameter tuning (Chapter 3); (3) adaptivity to non-stationary

environment (Chapter 3); (4) efficiency under high-dimensional structure with sparsity (Chapter 4);

(5) resilience to heavy-tailed payoffs (Chapter 5).

Given that these fundamental issues have rarely been explored in the past, we have committed

significant effort to addressing and resolving these challenges both theoretically and practically. In

Chapter 1, we present a brief introduction to the bandit problem along with some limitations on

the existing literature, which motivates our research. In Chapter 2, we introduce the stochastic

Lipschitz bandit problem under the presence of adversarial attacks, and we propose a line of novel

algorithms under different types of adversaries even agnostic to the total corruption level C. Sub-

sequently, we study how to dynamically tune the hyperparameters in bandit algorithms with an

infinite number of hyperparameter value candidates in Chapter 3. In Chapter 4, we investigate

the recently popular low-rank matrix bandit problem and propose two types of algorithms with

improved empirical performance and decent regret bounds. Then in Chapter 5, we revisit the

low-rank matrix bandit problem but under a more sophisticated scenario: the stochastic payoffs

are infused with heavy-tailed noise, and propose a novel framework to handle the heavy-tailedness

and sparsity simultaneously. All the algorithms and frameworks we propose are backed by robust

theoretical guarantees, with proofs provided in the Appendix.
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CHAPTER 1

Introduction

The stochastic bandit problem is a cornerstone and the most basic framework in the field of sequen-

tial decision-making under uncertainty, where at each round an agent follows some policy and pulls

an arm from a (varying) arm pool, and then only observes the stochastic reward of the chosen arm.

This partial feedback setting presents a classic dilemma of balancing exploration and exploitation

tradeoffs. Exploration involves trying different arms to gather more information about their reward

distributions, while exploitation means choosing the arm that has so far appeared to offer the best

rewards. In this framework, an agent aims to follow an optimal strategy to choose between multi-

ple arms with uncertain rewards in order to maximize its total reward over some time horizon T .

The challenge lies in deciding whether to exploit the arm that has historically provided the best

estimated reward, or to explore other arms that might yield even greater rewards. This problem is

not only a fundamental model for reinforcement learning but also has far-reaching applications in

fields such as healthcare (Woodroofe, 1979), finance (Kleinberg & Leighton, 2003), and personalized

recommendation (Li et al., 2010). For example, in the randomized controlled trials problem, multi-

armed bandits are widely used to correctly identify the best treatment (best arm identification)

and to treat patients as effectively as possible during the clinical trial (exploitation) (Villar et al.,

2015). And in the e-commerce recommendation system, companies commonly use contextual ban-

dit algorithms with user-item side information to post items that the users are very likely to click

into (Zhu & Van Roy, 2023). The inherent complexity and broad applicability make the bandit

problem an intriguing and rich study area, inviting innovative approaches and solutions.

Given the wide-ranging applications of bandit algorithms, there has been a substantial body of

literature emerging over recent years in various types of bandits. In general, bandit problems

can be classified into two categories according to how the rewards are generated. In stochastic

bandits (Robbins, 1952), which are the concentration of our research, assumes all rewards of the

same arm are generated from the same distribution. The other extreme is adversarial bandits (Auer

et al., 2002b), which assume the rewards of arms can be arbitrarily manipulated by an adversary
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at each round. Recently, there has been a line of work studying the best-of-both-world bandit that

attempts to jointly optimize under both stochastic and adversarial rewards and achieves the nearly

optimal regret bound for both settings. We will mainly focus the stochastic bandit problem in the

following text, and we would first recall the basic definitions here: the agent receives an arm set

denoted by At at round t and each arm a ∈ At corresponds to an unknown but fixed distribution

νa. The agent selects some arm at ∈ At and receives a reward yat,t drawn from νat independently

of historical observations. Denote the expected reward of the optimal arm at round t as

µ∗t = argmax
a∈At

E (va) .

And the quantity of interest we hope to control in time horizon T is the cumulative regret (pseudo

regret) defined as RT =
∑T

i=1 µ
∗
t − E (νat).

Before we switch to the motivations and details of our work, we’d like to present a series of seminal

works on multiple types of stochastic bandit problems. Most existing works on the stochastic

bandits follow two key ideas: one is the upper confidence bound (UCB) strategy (Auer et al.,

2002a) that optimistically pulls the arm with the highest upper confidence estimate of potential

reward to balance the need to exploit well-performing options and explore less certain ones; the

other is the Thompson sampling (a.k.a. Bayesian bandit) methodology (Chapelle & Li, 2011;

Granmo, 2010) choosing actions based on sampling from posterior distributions of their rewards.

The most fundamental type of stochastic bandit should be the multi-armed bandit (MAB) (Auer

et al., 2002a), which assumes there are finite and fixed arms at each round. To extend this idea

with a more complex arm set, the continuum-armed bandit (Agrawal, 1995) (a.k.a. Lipschitz

bandit) has been well studied where the infinite arm set lies in a metric space and the expected

reward function is an unknown Lipschitz function. Another popular approach to modelling bandit

problems with a continuum arm setting is via the framework of Gaussian processes (Srinivas et al.,

2009) (a.k.a. kernel bandit (Chowdhury & Gopalan, 2017)) which assumes the unknown expected

reward function is defined on a reproducing kernel Hilbert space with various norms. Some other

types of stochastic bandits, such as dueling bandit Yue et al. (2012) where the agent pulls a pair

of arms and then observes the winner, and causal bandit that regards each intervention as an

arm in a causal structure (Ma et al., 2022b; 2023), has been systematically investigated recently.

Parametric bandits are a well-researched area within stochastic decision-making settings as well.
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The most popular (generalized) linear contextual (Abbasi-Yadkori et al., 2011; Filippi et al., 2010)

bandit assumes each arm is associated with a known, finite-dimensional vector (its feature vector),

and the expected reward is presumed to be an unknown (generalized) linear function of this vector.

This comprehensive review sets the stage for introducing our own contributions and innovations in

tackling some of the unresolved challenges within this field.

1.1. Motivation

Although the bandit framework has been extensively studied under various settings during the past

few years, several interesting challenges still remain unexplored in the existing literature:

• Robustness to adversarial corruptions: Although there has been extensive research

on the adversarial robustness of stochastic bandits, most existing works consider problems

with a discrete arm set, such as the traditional MAB (Gupta et al., 2019; Jun et al., 2018;

Lykouris et al., 2018) and contextual linear bandit (Bogunovic et al., 2021; He et al., 2022;

Li et al., 2019). To the best of our knowledge, the stochastic Lipschitz bandit problem

with adversarial corruptions with a wide range of applications has never been explored

so far under the weak or strong adversary, and it is intrinsically more challenging due to

the complex structure of different metric spaces and the infinite number of arms in the

Lipschitz bandit setting.

• Auto-tuning hyperparameters: The empirical performance of all bandit algorithms

significantly depends on the configuration of hyperparameters, and simply using theoret-

ical optimal values is too conservative and always yields unsatisfactory practical results.

This limitation has already become a bottleneck for bandits algorithms in real-world ap-

plications, and the few existing methods Bogunovic et al. (2021); Ding et al. (2022b)

have apparent flaws such as the lack of theoretical support and the inefficiency of model

configurations.

• Non-stationarity: As previously mentioned, a crucial assumption in the stochastic ban-

dit setting is that the rewards from the arms remain constant, and the stochastic contextual

bandit setting presumes that the relationship between features and rewards is stationary.

However, these conditions are often not met in real-world applications. For example,
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in the context of news article recommendations—a significant application area for ban-

dit algorithms—users’ preferences might lean towards sports news during the Olympics.

Although the non-stationary bandits under the drifting environment (gradually drifting)

and the switching environment (abruptly change) have been well studied for MABs (Auer

et al., 2002b; 2019; Besbes et al., 2014) and contextual linear bandits (Cheung et al., 2019;

Zhao et al., 2020), this intriguing problem has never been explored in the Lipschitz bandit

literature.

• Practical efficiency: For the high-dimensional bandit problems with sparsity, such as

the LASSO bandit (Kim & Paik, 2019) and the low-rank matrix bandit (Jun et al., 2019;

Lu et al., 2021), a challenging problem is to propose an efficient algorithm with a decent

theoretical guarantee. We focus on the popular low-rank matrix bandit problem, where

the contextual information of the arm can be represented by a matrix and the unknown

parameter matrix preserves a low-rank property. The existing low-rank matrix bandit

algorithms (Lu et al., 2021) are practically inefficient, which dampers their applications in

the real-world problems.

• Resilience to heavy-tailedness: Another very important assumptions for most sto-

chastic bandit literature is that the random noise follows some sub-Gaussian distribution,

but in many real-life applications such as financial markets (Bradley & Taqqu, 2003; Cont

& Bouchaud, 2000), there’s a notable trend where extreme noise, a.k.a. heavy-tailed noise,

in observations occur more frequently than what would be expected under a sub-Gaussian

distribution. To address this practical challenge, a line of algorithms has been proposed to

handle heavy-tailed noise under the MAB (Bubeck et al., 2013) and linear bandit (Med-

ina & Yang, 2016), but effectively managing heavy-tailed noise under the more complex

high-dimensional bandit framework such as the low-rank matrix bandit still remains un-

explored.

Overall, the aforementioned difficulties persist within the literature, and our goal in this dissertation

is to tackle and resolve these challenges.
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1.2. Contribution

Build upon the motivations we present in the earlier section, the detailed contributions of our work

can be summarized as follows:

In Chapter 2, we present our paper entitled “Robust Lipschitz bandits to adversarial corrup-

tions” (Kang et al., 2024c). We develop efficient robust Lipschitz bandit algorithms whose regret

bounds degrade sub-linearly in terms of the corruption budget C. Under the weak adversary, we ex-

tend the idea in Lykouris et al. (2018) and propose an efficient algorithm named Robust Multi-layer

Elimination Lipschitz bandit algorithm (RMEL) that is agnostic to C and attains Õ(C
1

dz+2T
dz+1
dz+2 )

regret bound. This bound matches the minimax regret bound of Lipschitz bandits (Bubeck et al.,

2008; Kleinberg et al., 2019) in the absence of corruptions up to logarithmic terms. Under the

strong adversary, we first show that when the budget C is given, a simple modification on the

classic Zooming algorithm (Kleinberg et al., 2019) would lead to a robust method, namely, Robust

Zooming algorithm, which could obtain a regret bound of order Õ(T
dz+1
dz+2 +C

1
dz+1T

dz
dz+1 ) (dz is called

zooming dimension and is explained in Chapter 2 in detail). We then provide a lower bound to

prove the extra O(C
1

dz+1T
dz

dz+1 ) regret is unavoidable. Further, inspired by the Bandit-over-Bandit

(BoB) model selection idea (Cheung et al., 2019; Ding et al., 2022b; Pacchiano et al., 2020), we

design a two-layer framework adapting to the unknown C. Three types of algorithms are discussed

and compared in both theory and practice.

In Chapter 3, we present our work entitled “Online continuous hyperparameter optimization for

generalized linear contextual bandits” (Kang et al., 2024a). We propose an online continuous hyper-

parameter optimization framework for contextual bandits called CDT with theoretical guarantees.

To the best of our knowledge, CDT is the first hyperparameter tuning method (even model selec-

tion method) with continuous candidates in the bandit community. For the top layer of CDT, we

propose the Zooming TS algorithm with Restarts for Lipschitz bandits under the switching envi-

ronment. To the best of our knowledge, our work is the first one to consider the Lipschitz bandits

under the switching environment, and the first one to utilize TS methodology in Lipschitz bandits.

Experiments on both synthetic and real datasets with various GLBs validate the efficiency of our

method.
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In Chapter 4, we present our work named “Efficient frameworks for generalized low-rank matrix

bandit problems” (Kang et al., 2022). We propose two efficient methods called G-ESTT and G-

ESTS for this problem by modifying two stages of ESTR (Jun et al., 2019) appropriately from

different perspectives. To the best of our knowledge, the proposed methods are the first two

generalized (contextual) low-rank bandit algorithms that are computationally feasible, and achieve

the decent regret bound. The practical superiority of our algorithms are firmly validated based on

our experimental results.

In Chapter 5, we introduce our work entitled “Low-rank matrix bandits with heavy-tailed re-

wards” (Kang et al., 2024b). Inspired by the success of Huber loss (Kang & Kim, 2023; Sun et al.,

2020) and nuclear norm penalization (Negahban & Wainwright, 2011), we first introduce a convex-

relaxation-based estimator to approximate the low-rank parameter matrix with heavy-tailed noise.

As far as we’re aware, our work is the first one to solve the trace regression problem under arbitrary

heavy-tailed noise with bounded (1 + δ) moment (δ ∈ (0, 1)). Equipped with this estimator, we

develop an algorithm named LOTUS for the low-rank matrix bandits under heavy-tailed noise. LO-

TUS is agnostic to the time horizon T and can work without knowing the rank r, and its practical

superiority is then validated in our simulations.

In Chapter 6, we ultimately wrap up our work and touch upon potential future work. The rest of the

dissertation includes important technical proof and additional experimental results as Appendix.

Notations: For a vector x ∈ Rd, we use ∥x∥ to denote its l2 norm and ∥x∥A :=
√
x⊤Ax for any

positive definite matrix A ∈ Rd×d. For matrices X,Y ∈ Rn1×n2 , we use ∥X∥op, ∥X∥nuc and ∥X∥F
to define the operator norm, nuclear norm and Frobenious norm of matrix X respectively, and we

denote ⟨X,Y ⟩ := trace(X⊤Y ) as the inner product between X and Y . We write f(n) ≍ g(n) if

f(n) = O(g(n)) and g(n) = O(f(n)), f(n) ≳ g(n) if g(n) = O(f(n)), and f(n) ≲ g(n) if f(n) =

O(g(n)), and these are the common notations used in high-dimensional statistics (Wainwright,

2019). The notation Õ(·) ignores the polylogarithmic factors. We also denote [T ] = {1, . . . , T} for

T ∈ N+.
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CHAPTER 2

Robust Lipschitz Bandits to Adversarial Corruptions

2.1. Introduction

Multi-armed Bandit (MAB) (Auer et al., 2002a) is a fundamental and powerful framework in

sequential decision-making problems. Given the potential existence of malicious users in real-world

scenarios (Chen & Hsieh, 2022), a recent line of works considers the stochastic bandit problem

under adversarial corruptions: an agent adaptively updates its policy to choose an arm from the

arm set, and an adversary may contaminate the reward generated from the stochastic bandit before

the agent could observe it. To robustify bandit learning algorithms under adversarial corruptions,

several algorithms have been developed in the setting of traditional MAB (Gupta et al., 2019; Jun

et al., 2018; Lykouris et al., 2018) and contextual linear bandits (Bogunovic et al., 2021; Ding et al.,

2022a; He et al., 2022; Li et al., 2019; Zhao et al., 2021). These works consider either the weak

adversary (Lykouris et al., 2018), which has access to all past data but not the current action before

choosing its attack, or the strong adversary (Bogunovic et al., 2021), which is also aware of the

current action for contamination. Details of these two adversaries will be elaborated in Section 2.3.

In practice, bandits under adversarial corruptions can be used in many real-world problems such as

pay-per-click advertising with click fraud and recommendation systems with fake reviews (Lykouris

et al., 2018), and it has been empirically validated that stochastic MABs are vulnerable to slight

corruption (Ding et al., 2022a; Garcelon et al., 2020; Jun et al., 2018).

Although there has been extensive research on the adversarial robustness of stochastic bandits,

most existing works consider problems with a discrete arm set, such as the traditional MAB and

contextual linear bandit. In this paper, we investigate robust bandit algorithms against adversarial

corruptions in the Lipschitz bandit setting, where a continuously infinite arm set lie in a known

metric space with covering dimension d and the expected reward function is an unknown Lipschitz

function. Lipschitz bandit can be used to efficiently model many real-world tasks such as dynamic

pricing, auction bidding (Slivkins et al., 2019) and hyperparameter tuning (Kang et al., 2024a). The

7



Table 2.1. Comparisons of regret bounds for our proposed robust Lipschitz bandit
algorithms.

Algorithm Regret Bound Format C Adversary

Robust Zooming Õ
(
T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
High. Prob. Known Strong

RMEL Õ
(
(C

1
dz+2 + 1)T

dz+1
dz+2

)
High. Prob. Unknown Weak

EXP3.P Õ
(
(C

1
d+2 + 1)T

d+2
d+3

)
Expected Unknown Strong

CORRAL Õ
(
(C

1
d+1 + 1)T

d+1
d+2

)
Expected Unknown Strong

BoB Robust Zooming Õ
(
T

d+3
d+4 + C

1
d+1T

d+2
d+3

)
High. Prob. Unknown Strong

stochastic Lipschitz bandit has been well understood after a large body of literature (Bubeck et al.,

2008; Kleinberg et al., 2019; Magureanu et al., 2014), and state-of-the-art algorithms could achieve

a cumulative regret bound of order Õ(T
dz+1
dz+2 )1 in time T . However, to the best of our knowledge,

the stochastic Lipschitz bandit problem with adversarial corruptions has never been explored, and

we believe it is challenging since most of the existing robust MAB algorithms utilized the idea of

elimination, which is much more difficult under a continuously infinite arm pool. Furthermore, the

complex structure of different metric spaces also poses challenges for defending against adversarial

attacks (Solomon et al., 2021) in theory. Therefore, it remains intriguing to design computationally

efficient Lipschitz bandits that are robust to adversarial corruptions under both weak and strong

adversaries.

We develop efficient robust algorithms whose regret bounds degrade sub-linearly in terms of the

corruption budget C. Our contributions can be summarized as follows: (1) Under the weak ad-

versary, we extend the idea in Lykouris et al. (2018) and propose an efficient algorithm named

Robust Multi-layer Elimination Lipschitz bandit algorithm (RMEL) that is agnostic to C and at-

tains Õ(C
1

dz+2T
dz+1
dz+2 ) regret bound. This bound matches the minimax regret bound of Lipschitz

bandits (Bubeck et al., 2008; Kleinberg et al., 2019) in the absence of corruptions up to logarithmic

terms. This algorithm consists of multiple parallel sub-layers with different tolerance against the

budget C, where each layer adaptively discretizes the action space and eliminates some less promis-

ing regions based on its corruption tolerance level in each crafted epoch. Interactions between layers

assure the promptness of the elimination process. (2) Under the strong adversary, we first show

that when the budget C is given, a simple modification on the classic Zooming algorithm (Kleinberg

1dz is the zooming dimension defined in Section 2.3.
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et al., 2019) would lead to a robust method, namely, Robust Zooming algorithm, which could obtain

a regret bound of order Õ(T
dz+1
dz+2 +C

1
dz+1T

dz
dz+1 ). We then provide a lower bound to prove the extra

O(C
1

dz+1T
dz

dz+1 ) regret is unavoidable. Further, inspired by the Bandit-over-Bandit (BoB) model

selection idea (Cheung et al., 2019; Ding et al., 2022b; Pacchiano et al., 2020), we design a two-layer

framework adapting to the unknown C where a master algorithm in the top layer dynamically tunes

the corruption budget for the Robust Zooming algorithm. Three types of master algorithms are

discussed and compared in both theory and practice. Table 2.1 outlines our algorithms as well as

their regret bounds under different scenarios.

2.2. Related Work

Stochastic and Adversarial Bandit. Extensive studies have been conducted on MAB and

its variations, including linear bandit (Abbasi-Yadkori et al., 2011), matrix bandit (Kang et al.,

2022), etc. The majority of literature can be categorized into two types of models (Lattimore &

Szepesvári, 2020): stochastic bandit, in which rewards for each arm are independently sampled

from a fixed distribution, and adversarial bandit, where rewards are maliciously generated at all

time. However, adversarial bandit differs from our problem setting in the sense that rewards are

arbitrarily chosen without any budget or distribution constraint. Another line of work aims to

obtain “the best of both worlds” guarantee simultaneously (Bubeck & Slivkins, 2012). However,

neither of these models is reliable in practice (Cao et al., 2019), since the former one is too ideal,

while the latter one remains very pessimistic, assuming a fully unconstrained setting. Therefore,

it is more natural to consider the scenario that lies ”in between” the two extremes: the stochastic

bandit under adversarial corruptions.

Lipschitz Bandit. Most existing works on the stochastic Lipschitz bandit (Agrawal, 1995) follow

two key ideas. One is to uniformly discretize the action space into a mesh in the initial phase so that

any MAB algorithm could be implemented (Kleinberg, 2004; Magureanu et al., 2014). The other

is to adaptively discretize the action space by placing more probes in more promising regions, and

then UCB (Bubeck et al., 2008; Kleinberg et al., 2019; Lu et al., 2019), TS (Kang et al., 2024a) or

elimination (Feng et al., 2022) method could be utilized to deal with the exploration-exploitation

tradeoff. The adversarial Lipschitz bandit was recently introduced and solved in Podimata &

Slivkins (2021), where the expected reward Lipschitz function is arbitrarily chosen at each round.

9



However, as mentioned in the previous paragraph, this fully adversarial setting is quite different

from ours. And their algorithm relies on several unspecified hyperparameters and hence is compu-

tationally formidable in practice.

Robust Bandit to Adversarial Corruptions. Adversarial attacks were studied in the setting

of MAB (Jun et al., 2018) and linear bandits (Garcelon et al., 2020). And we will use two classic

attacks for experiments in Section 2.5. To defend against attacks from weak adversaries, Lykouris

et al. (2018) proposed the first MAB algorithm robust to corruptions with a regret C times worse

than regret in the stochastic setting. An improved algorithm whose regret only contains an additive

term on C was then proposed in Gupta et al. (2019). Li et al. (2019) subsequently studied the linear

bandits with adversarial corruptions and achieved instance-dependent regret bounds. Lee et al.

(2021) also studied the corrupted linear bandit problem while assuming the attacks on reward are

linear in action. Recently, a robust VOFUL algorithm achieving regret bound only logarithmically

dependent on T was proposed in Wei et al. (2022). Another line of work on the robust bandit

problem focuses on a more challenging setting with strong adversaries who could observe current

actions before attacking rewards. Bogunovic et al. (2021) considered the corrupted linear bandit

when small random perturbations are applied to context vectors, and Ding et al. (2022a); He

et al. (2022); Zhao et al. (2021) extended the OFUL algorithm (Abbasi-Yadkori et al., 2011) and

achieved improved regret bounds. However, the study of Lipschitz bandits under attacks remains

an unaddressed open area.

2.3. Preliminaries

We will introduce the setting of Lipschitz bandits with adversarial corruptions in this section. The

Lipschitz bandit is defined on a triplet (X , D, µ), where X is the arm set space equipped with some

metric D, and µ : X → R is an unknown Lipschitz reward function on the metric space (X , D)

with Lipschitz constant 1. W.l.o.g. we assume X is compact with its diameter no more than 1.

Under the stochastic setting, at each round t ∈ [T ] := {1, 2, . . . , T}, stochastic rewards are sampled

for each arm x ∈ X from some unknown distribution Px independently, and then the agent pulls

an arm xt and receives the corresponding stochastic reward ỹt such that,

ỹt = µ(xt) + ηt,(2.1)
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where ηt is i.i.d. zero-mean random error with sub-Gaussian parameter σ conditional on the

filtration Ft = {xt, xt−1, ηt−1, . . . , x1, η1}. W.l.o.g we assume σ = 1 for simplicity in the rest of

our analysis. At each round t ∈ [T ], the weak adversary observes the payoff function µ(·), the

realizations of Px for each arm x ∈ X and choices of the agent {xi}t−1
i=1 in previous rounds, and

injects an attack ct(xt) into the reward before the agent pulls xt. The agent then receives a corrupted

reward yt = ỹt + ct(xt). The strong adversary would be omniscient and have complete information

about the problem Ft. In addition to the knowledge that a weak adversary possesses, it would

also be aware of the current action xt while contaminating the data, and subsequently decide upon

the corrupted reward yt = ỹt + ct(xt). Some literature in corrupted bandits (Ding et al., 2022a;

Garcelon et al., 2020) also consider attacking on the contexts or arms, i.e. the adversary modifies

the true arm xt in a small region, while in our problem setting it is obvious that attacking contexts

is only a sub-case of attacking rewards due to the Lipschitzness of µ(·), and hence studying the

adversarial attacks on rewards alone is sufficient under the Lipschitz bandit setting.

The total corruption budget C of the adversary is defined as C =
∑T

t=1maxx∈X |ct(x)|, which is

the sum of maximum perturbation from the adversary at each round across the horizon T . Note

the strong adversary may only corrupt the rewards of pulled arms and hence we could equivalently

write C =
∑T

t=1 |ct(xt)| in that case as Bogunovic et al. (2021); He et al. (2022). Define the

optimal arm x∗ = argmaxx∈X µ(x) and the loss of arm x as ∆(x) = µ(x∗)−µ(x), x ∈ X . W.l.o.g.

we assume C ≤ T and each instance of attack |ct(x)| ≤ 1,∀t ∈ [T ], x ∈ X as in other robust bandit

literature (Gupta et al., 2019; Lykouris et al., 2018) since the adversary could already make any

arm x ∈ X optimal given that ∆(x) ≤ 1. (We can assume |ct(x)| ≤ u,∀t ∈ [T ], x ∈ X for any

positive constant u.) Similar to the stochastic case (Kleinberg, 2004), the goal of the agent is to

minimize the cumulative regret defined as:

RegretT = Tµ(x∗)−
T∑
t=1

µ(xt).(2.2)

An important pair of concepts in Lipschitz bandits defined on (X , D, µ) are the covering dimension

d and the zooming dimension dz. Let B(x, r) denotes a closed ball centered at x with radius r in X ,

i.e. B(x, r) = {x′ ∈ X : D(x, x′) ≤ r}, the r-covering numberNc(r) of metric space (X , D) is defined

as the minimal number of balls with radius of no more than r required to cover X . On the contrary,

the r-zooming number Nz(r) introduced in Kleinberg et al. (2019) not only depends on the metric

11



Algorithm 1 Robust Zooming Algorithm

Input: Arm metric space (X , D), time horizon T , probability rate δ.
1: Active arm set J = {}, active space Xact = X .
2: for t = 1 to T do
3: if f(v)− f(u) ≥ r(v) + 2r(u) for some pair of active arms u, v ∈ J . then
4: Set J = J \{u} and Xact = Xact \B(u, r(u)). ▷ Removal

5: if Xact ⊈ ∪v∈JB(v, r(v)) then
6: Activate and pull some arm x /∈ ∪v∈JB(v, r(v)) in Xact such that xt = x, J = J ∪ {x},

and set the components n(x) = 0, f(x) = 0. ▷ Activation
7: else
8: Pull xt = argmaxv∈J I(v) = f(v) + 2r(v), and break ties arbitrarily. ▷ Selection

9: Observe the payoff yt. And update components associated with xt in the Robust Zooming
Algorithm: n(xt) = n(xt) + 1, f(xt) = (f(xt) (n(xt)− 1) + yt) /n(xt).

space (X , D) but also the payoff function µ(·). It describes the minimal number of balls of radius

not more than r/16 required to cover the r-optimal region defined as {x ∈ X : ∆(x) ≤ r} (Bubeck

et al., 2008)2. Next, we define the covering dimension d (zooming dimension dz) as the smallest

q ≥ 0 such that for every r ∈ (0, 1] the r-covering number Nc(r) (r-zooming number Nz(r)) can be

upper bounded by αr−q for some multiplier α > 0 that is free of r:

d = min{q ≥ 0 : ∃α > 0, Nc(r) ≤ αr−q, ∀r ∈ (0, 1]},

dz = min{q ≥ 0 : ∃α > 0, Nz(r) ≤ αr−q, ∀r ∈ (0, 1]}.

It is clear that 0 ≤ dz ≤ d since the r-optimal region is a subset of X . On the other hand, dz

could be much smaller than d in some benign cases. For example, if the payoff function µ(·) defined

on the metric space (Rk, ∥·∥2), k ∈ N is C2-smooth and strongly concave in a neighborhood of the

optimal arm x∗, then it could be easily verified that dz = k/2 whereas d = k. However, dz is never

revealed to the agent as it relies on the underlying function µ(·), and hence designing an algorithm

whose regret bound depends on dz without knowledge of dz would be considerably difficult.

2.4. Methods

We will present our main algorithms in this Section.

2.4.1. Known Budgets under Strong Adversaries. To defend against attacks on Lipschitz

bandits, we first consider a simpler case where the agent is aware of the corruption budget C. We

2We actually use the near-optimality dimension introduced in Bubeck et al. (2008), where the authors imply the
equivalence between this definition and the original zooming dimension proposed in Kleinberg et al. (2019).
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demonstrate that a slight modification of the classic Zooming algorithm (Kleinberg et al., 2019) can

result in a robust Lipschitz bandit algorithm even under the strong adversary, called the Robust

Zooming algorithm, which achieves a regret bound of order Õ(T
dz+1
dz+2 + C

1
dz+1T

dz
dz+1 ).

We first introduce some notations of the algorithm: denote J as the active arm set. For each active

arm x ∈ J , let n(x) be the number of times arm x has been pulled, f(x) be the corresponding

average sample reward, and r(x) be the confidence radius controlling the deviation of the sample

average f(x) from its expectation µ(x). We also define B(x, r(x)) as the confidence ball of an active

arm x. In essence, the Zooming algorithm works by focusing on regions that have the potential

for higher rewards and allocating fewer probes to less promising regions. The algorithm consists of

two phases: in the activation phase, a new arm gets activated if it is not covered by the confidence

balls of all active arms. This allows the algorithm to quickly zoom into the regions where arms are

frequently pulled due to their encouraging rewards. In the selection phase, the algorithm chooses

an arm with the largest value of f(v) + 2r(v) among J based on the UCB methodology.

Our key idea is to enlarge the confidence radius of active arms to account for the known corruption

budget C. Specifically, we could set the value of r(x) as:

r(x) =

√
4 ln (T ) + 2 ln (2/δ)

n(x)
+

C

n(x)
,

where the first term accounts for deviation in stochastic rewards and the second term is used

to defend the corruptions from the adversary. The robust algorithm is shown in Algorithm 1. In

addition to the two phases presented above, our algorithm also conducts a removal procedure at the

beginning of each round for better efficiency. This step adaptively removes regions that are likely

to yield low rewards with high confidence. Theorem 2.4.1 provides a regret bound for Algorithm 1.

Theorem 2.4.1. Given the total corruption budget that is at most C, with probability at least 1−δ,

the overall regret of Robust Zooming Algorithm (Algorithm 2.1) can be bounded as:

RegretT = O
(
ln (T )

1
dz+2T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
= Õ

(
T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
.

Furthermore, the following Theorem 2.4.2 implies that our regret bound attains the lower bound

and hence is unimprovable. The detailed proof is given in Appendix A.6.1.
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Theorem 2.4.2. Under the strong adversary with a corruption budget of C, for any zooming di-

mension dz ∈ Z+, there exists an instance for which any algorithm (even one that is aware of C)

must suffer a regret of order Ω(C
1

dz+1T
dz

dz+1 ) with probability at least 0.5.

In addition to the lower bound provided in Theorem 2.4.2, we further propose another lower bound

for the strong adversary particularly in the case that C is unknown in the following Theorem 2.4.3:

Theorem 2.4.3. For any algorithm, when there is no corruption, we denote R0
T as the upper

bound of cumulative regret in T rounds under our problem setting described in Section 2.3, i.e.

RegretT ≤ R0
T with high probability, and it holds that R0

T = o(T ). Then under the strong adversary

and unknown attacking budget C, there exists a problem instance on which this algorithm will incur

linear regret Ω(T ) with probability at least 0.5, if C = Ω(R0
T /4

dz) = Ω(R0
T ).

However, there are also some weaknesses to our Algorithm 1. The first weakness is that the

algorithm is too conservative and pessimistic in practice since the second term of r(x) would

dominate under a large given value of C. We could set the second term of r(x) as min{1, C/n(x)}

to address this issue and the analysis of Theorem 2.4.1 will still hold as shown in Appendix A.1

Remark A.1.1. The second weakness is that it still incurs the same regret bound shown in Theorem

2.4.1 even if there are actually no corruptions applied. To overcome these problems and to further

adapt to the unknown corruption budget C, we propose two types of robust algorithms in the

following Sections.

2.4.2. Unknown Budgets under Weak Adversaries. The weak adversary is unaware of

the agent’s current action before contaminating the stochastic rewards. We introduce an efficient

algorithm called Robust Multi-layer Elimination Lipschitz bandit algorithm (RMEL) that is sum-

marized in Algorithm 2. Four core steps are introduced as follows.

Multi-layer Parallel Running: Our algorithm consists of multiple sub-layers running in parallel,

each with a different tolerance level against corruptions. As shown in Algorithm 2, there are l∗

layers and the tolerance level of each layer, denoted as vl, increases geometrically with a ratio of B

(a hyperparameter). At each round, a layer l is sampled with probability 1/vl, meaning that layers

that are more resilient to attacks are less likely to be chosen and thus may make slower progress.

This sampling scheme helps mitigate adversarial perturbations across layers by limiting the amount

of corruptions distributed to layers whose tolerance levels exceed the unknown budget C to at most

14



Algorithm 2 Robust Multi-layer Elimination Lipschitz Bandit Algorithm (RMEL)

Input: Arm metric space (X , D), time horizon T , probability rate δ, base parameter B.
1: Tolerance level vl = ln (4T/δ)Bl−1,ml = 1, nl = 0,Al = 1/2-covering of X , fl,A = nl,A = 0 for

all A ∈ Al, l ∈ [l∗] where l∗ := min{l ∈ N : ln (4T/δ)Bl−1 ≥ T}.
2: for t = 1 to T do
3: Sample layer l ∈ [l∗] with probability 1/vl, with the remaining probability sampling l = 1.

Find the minimum layer index lt ≥ l such that Alt ̸= ∅. ▷ Layer sampling
4: Choose At = argminA∈Alt

nlt,A, break ties arbitrary.
5: Randomly pull an arm xt ∈ At, and observe the payoff yt.
6: Set nlt = nlt + 1, nlt,At = nlt,At + 1, and flt,At = (flt,At(nlt,At − 1) + yt) /nlt,At .
7: if nlt = 6 ln(4T/δ) · 4ml × |Alt | then
8: Obtain flt,∗ = maxA∈Alt

flt,A.

9: For each A ∈ Alt , if flt,∗ − flt,A > 4/2mlt , then we eliminate A from Alt and all active
regions A′ from Al′ in the case that A′ ⊆ A,A′ ∈ Al′ , l′ < l. ▷ Removal

10: Find 1/2ml+1-covering of each remaining A ∈ Alt in the same way as A was partitioned
in other layers. Then reload the active region set Alt as the collection of these coverings.

11: Set nlt = 0, mlt = mlt + 1. And renew nlt,A = flt,A = 0,∀A ∈ Alt . ▷ Refresh

O(ln(T/δ)). For the other low-tolerance layers which may suffer from high volume of attacks, we

use the techniques introduced below to rectify them in the guidance of the elimination procedure

on robust layers. While we build on the multi-layer idea introduced in Lykouris et al. (2018), our

work introduces significant refinements and novelty by extending this approach to continuous and

infinitely large arm sets, as demonstrated below.

Active Region Mechanism: For each layer ℓ, our algorithm proceeds in epochs: we initialize the

epoch index ml = 1 and construct a 1/2ml-covering of X as the active region set Al. In addition,

we denote nl as the number of times that layer l has been chosen, and for each active region

A ∈ Al we define nl,A, fl,A as the number of times A has been chosen as well as its corresponding

average empirical reward respectively. Assume layer lt is selected at time t, then only one active

region (denoted as At) in Alt would be played where we arbitrarily pull an arm xt ∈ At and collect

the stochastic payoff yt. For any layer l, if each active region in Al is played for 6 ln (4T/δ) · 4m

times (i.e. line 6 of Algorithm 2), it will progress to the next epoch after an elimination process

that is described below. All components mentioned above that are associated with the layer l will

subsequently be refreshed (i.e. line 10 of Algorithm 2).

Within-layer Region Elimination and Discretization: For any layer l ∈ [l∗], the within-layer

elimination occurs at the end of each epoch as stated above. We obtain the average empirical

reward fl,A for all A ∈ Al and then discard regions with unpromising payoffs compared with the
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optimal one with the maximum estimated reward (i.e. fl,∗ defined in line 7 of Algorithm 2). We

further “zoom in” on the remaining regions of the layer l that yield satisfactory rewards: we divide

them into 1/2ml+1-covering and then reload Al as the collection of these new partitions for the

next epoch (line 9 of Algorithm 2) for the layer l. In consequence, only regions with nearly optimal

rewards would remain and be adaptively discretized in the long run.

Cross-layer Region Elimination: While layers are running in parallel, it is essential to facilitate

communication among them to prevent less reliable layers from getting trapped in suboptimal

regions. In our Algorithm 2, if an active region A ∈ Al is eliminated based on the aforementioned

rule, then A will also be discarded in all layers l′ ≤ l. This is because the lower layers are faster

whereas more vulnerable and less resilient to malicious attacks, and hence they should learn from the

upper trustworthy layers whose tolerance levels surpass C by imitating their elimination decisions.

A tradeoff lies in the selection of the hyperparameter B, which controls the ratio of tolerance levels

between adjacent layers. With a larger value of B, only fewer layers are required, and hence more

samples could be assigned to each layer for better efficiency. But the cumulative regret bound would

deteriorate since it’s associated with B sub-linearly. The cumulative regret bound is presented in

the following Theorem 2.4.4, with its detailed proof in Appendix A.2.

Theorem 2.4.4. If the underlying corruption budget is C, then with probability at least 1− δ, the

overall regret of our RMEL algorithm (Algorithm 2) could be bounded as:

RegretT = Õ
((

(BC)
1

dz+2 + 1
)
T

dz+1
dz+2

)
= Õ

((
C

1
dz+2 + 1

)
T

dz+1
dz+2

)
.

Note that if no corruption is actually applied (i.e. C = 0), our RMEL algorithm could attain

a regret bound of order Õ(T
dz+1
dz+2 ) which coincides with the lower bound of stochastic Lipschitz

bandits up to logarithmic terms. We further prove a regret lower bound of order Ω(C) under the

weak adversary in Theorem 2.4.5 with its detailed proof in Appendix A.6.2. Therefore, a compelling

open problem is to narrow the regret gap by proposing an algorithm whose regret bound depends

on C in another additive term free of T under the weak adversary, like Gupta et al. (2019) for

MABs and He et al. (2022) for linear bandits.
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Theorem 2.4.5. Under the weak adversary with corruption budget C, for any zooming dimension

dz, there exists an instance such that any algorithm (even is aware of C) must suffer from the regret

of order Ω(C) with probability at least 0.5.

2.4.3. Unknown Budgets under Strong Adversaries. In Section 2.4.1, we propose the

Robust Zooming algorithm to handle the strong adversary given the knowledge of budget C and

prove that it achieves the optimal regret bound. However, compared with the known budget C

case, defending against strong adversaries naturally becomes more challenging when the agent is

unaware of the budget C. Motivated by the literature on model selection in bandits, we extend our

Robust Zooming algorithm by combining it with different master algorithms to learn and adapt to

the unknown C on the fly. We consider two approaches along this line: the first approach uses the

master algorithms EXP3.P and CORRAL with the smoothing transformation (Pacchiano et al.,

2020) to deal with unknown C, which leads to a promising regret bound but a high computa-

tional cost. We then equip Robust Zooming algorithm with the efficient bandit-over-bandit (BoB)

idea (Cheung et al., 2019) to adapt to the unknown C, leading to a more efficient algorithm with

a slightly worse regret bound.

Model Selection: When an upper bound on C is known, we propose the Robust Zooming al-

gorithm with regret bound Õ(T
dz+1
dz+2 + C

1
dz+1T

dz
dz+1 ) against strong adversaries in Section 2.4.1.

Therefore, it is natural to consider a decent master algorithm that selects between ⌈log2(T )⌉ base

algorithms where the i-th base algorithm is the Robust Zooming algorithm with corruptions at

most 2i. As C ≤ T , there must exist a base algorithm that is at most 2C-corrupted. Here we

choose the stochastic EXP3.P and CORRAL with smooth transformation proposed in Pacchiano

et al. (2020) as the master algorithm due to the following two reasons with respect to theoretical

analysis: (1). our action set A is fixed and the expected payoff is a function of the chosen arm, which

satisfies the restrictive assumptions of this master algorithm (Section 2, (Pacchiano et al., 2020));

(2). the analysis in Pacchiano et al. (2020) still works even the regret bounds of base algorithms

contain unknown values, and note the regret bound of our Zooming Robust algorithm depends on

the unknown C. Based on Theorem 3.2 in Pacchiano et al. (2020), the expected cumulative regret

of our Robust Zooming algorithm with these two types of master algorithms could be bounded as

follows:
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Figure 2.1. Plots of regrets of Zooming algorithm (blue), RMEL (green) and BoB
Robust Zooming algorithm (red) under different settings with three levels of cor-
ruptions: (1) dotted line: no corruption; (2) dashed line: moderate corruptions; (3)
solid line: strong corruptions. Numerical values of final cumulative regrets in our
experiments are also displayed in Table A.2 in Appendix A.7.

Theorem 2.4.6. When the corruption budget C is unknown, by using our Algorithm 1 with {2i}⌈log2(T )⌉i=1

corruptions as base algorithms and the EXP3.P and CORRAL with smooth transformation (Pac-

chiano et al., 2020) as the master algorithm, the expected regret could be upper bounded by

E(RegretT ) =


Õ
(
(C

1
d+2 + 1)T

d+2
d+3

)
EXP3.P,

Õ
(
(C

1
d+1 + 1)T

d+1
d+2

)
CORRAL.

We can observe that the regret bounds given in Theorem 2.4.6 are consistent with the lower bounds

presented in Theorem 2.4.3. And CORRAL is better under small corruption budgets C (i.e. C =

Õ(T
d+1
d+3 )) whereas EXP3.P is superior otherwise. Note that the order of regret relies on d instead

of dz since the unknown dz couldn’t be used as a parameter in practice, and both regret bounds are

worse than the lower bound given in Theorem 2.4.2 for the strong adversary. Another drawback

of the above method is that a two-step smoothing procedure is required at each round, which is

computationally expensive. Therefore, for better practical efficiency, we propose a simple BoB-

based method as follows:

BoB Robust Zooming: The BoB idea (Cheung et al., 2019) is a special case of model selection

in bandits and aims to adjust some unspecified hyperparameters dynamically in batches. Here
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we use ⌈log2(T )⌉ Robust Zooming algorithms with different corruption levels shown above as base

algorithms in the bottom layer and the classic EXP3.P (Auer et al., 2002b) as the top layer. Our

method, named BoB Robust Zooming, divides T into H batches of the same length, and in one

batch keeps using the same base algorithm that is selected from the top layer at the beginning of

this batch. When a batch ends, we refresh the base algorithm and use the normalized accumulated

rewards of this batch to update the top layer EXP3.P since the EXP3.P algorithm (Auer et al.,

2002b) requires the magnitude of rewards should at most be 1 in default. Specifically, we normalize

the cumulative reward at the end of each batch by dividing it with (2H +
√
2H log(12T/Hδ)) due

to the fact that the magnitude of the cumulative reward at each batch would at most be this value

with high probability as shown in Lemma A.4.0.1 in Appendix A.4. Note that this method is highly

efficient since a single update of the EXP3.P algorithm only requires O(1) time complexity, and

hence the additional computation from updating EXP3.P is only O(H). Due to space limit, we

defer Algorithm 10 to Appendix A.5, and the regret bound is given as follows:

Theorem 2.4.7. When the corruption budget C is unknown, with probability at least 1 − δ, the

regret of our BoB Robust Zooming algorithm with H = T (d+2)/(d+4) could be bounded as:

RegretT = Õ
(
T

d+3
d+4 + C

1
d+1T

d+2
d+3

)
.

Although we could deduce the more challenging high-probability regret bound for this algorithm,

its order is strictly worse than those given in Theorem 2.4.6. In summary, the BoB Robust Zooming

algorithm is more efficient and easier to use in practice, while yielding worse regret bound in theory.

However, due to its practical applicability, we will implement this BoB Robust Zooming algorithm

in the experiments. It is also noteworthy that we can attain a better regret bound with Algorithm 2

under the weak adversary as shown in Theorem 2.4.4, which aligns with our expectation since the

strong adversary considered here is more malicious and difficult to defend against.

2.5. Experimental Results

In this section, we show by simulations that our proposed RMEL and BoB Robust Zooming al-

gorithm outperform the classic Zooming algorithm in the presence of adversarial corruptions. To

firmly validate the robustness of our proposed methods, we use three types of models and two

sorts of attacks with different corruption levels. We first consider the metric space ([0, 1], | · |)
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with two expected reward functions that behave differently around their maximum: (1). µ(x) =

0.9 − 0.95|x − 1/3| (triangle) and (2). µ(x) = 2/(3π) · sin (3πx/2) (sine). We then utilize a

more complicated metric space ([0, 1]2, ∥ · ∥∞) with the expected reward function (3). µ(x) =

1−0.8∥x− (0.75, 0.75)∥2−0.4∥x− (0, 1)∥2 (two dim). We set the time horizon T = 50, 000 (60, 000)

for the metric space with d = 1 (2) and the false probability rate δ = 0.01. The random noise

at each round is sampled IID from N(0, 0.01). Average cumulative regrets over 20 repetitions are

reported in Figure 2.1.

Since adversarial attacks designed for stochastic Lipschitz bandits have never been studied, we ex-

tend two types of classic attacks, named Oracle (Jun et al., 2018) for the MAB and Garcelon (Garcelon

et al., 2020) for the linear bandit, to our setting. The details of these two attacks are summarized

as follows:

• Oracle: This attack (Jun et al., 2018) was proposed for the traditional MAB, and it pushes the

rewards of “good arms” to the very bottom. Specifically, we call an arm is benign if the distance

between it and the optimal arm is no larger than 0.2. And we inject this attack by pushing the

expected reward of any benign arm below that of the worst arm with an additional margin of 0.1

with probability 0.5.

• Garcelon: We modify this type of attack studied in Garcelon et al. (2020) for linear bandit frame-

work, which replaces expected rewards of arms outside some targeted region with IID Gaussian

noise. For d = 1, since the optimal arm is set to be 1/3 for both triangle and sine payoff functions,

we set the targeted arm interval as [0.5, 1]. For d = 2, since the optimal arm is close to (0.75, 0.75),

we set the targeted region as [0, 0.5]2. Here we contaminate the stochastic reward if the pulled

arm is not inside the target region by modifying it into a random Gaussian noise N(0, 0.01) with

probability 0.5.

We consider the strong adversary in experiments as both types of attack are injected only if the

pulled arms lie in some specific regions. Note although we originally propose RMEL algorithm for

the weak adversary in theory, empirically we find it works exceptionally well (Figure 2.1) across all

settings here. We also conduct simulations based on the weak adversary and defer their settings

and results to Appendix A.7 due to the limited space. The first Oracle attack is considered to be

more malicious in the sense that it specifically focuses on the arms with good rewards, while the
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second Garcelon attack could corrupt rewards generated from broader regions, which may contain

some “bad arms” as well.

Since there is no existing robust Lipschitz bandit algorithm, we use the classic Zooming algo-

rithm (Kleinberg et al., 2019) as the baseline. As shown in Figure 2.1, we consider three levels of

quantities of corruptions applied on each case to show how attacks progressively disturb different

methods. Specifically, we set C = 0 for the non-corrupted case, C = 3, 000 for the moderate-

corrupted case and C = 4, 500 for the strong-corrupted case. Due to space limit, we defer detailed

settings of algorithms to Appendix A.7.

From the plots in Figure 2.1, we observe that our proposed algorithms consistently outperform the

Zooming algorithm and achieve sub-linear cumulative regrets under both types of attacks, whereas

the Zooming algorithm becomes incompetent and suffers from linear regrets even under a moderate

volume of corruption. This fact also implies that the two types of adversarial corruptions used here

are severely detrimental to the performance of stochastic Lipschitz bandit algorithms. And it is

evident our proposed RMEL yields the most robust results under various scenarios with different

volumes of attacks. It is also worth noting that the Zooming algorithm attains promising regrets

under a purely stochastic setting, while it experiences a huge increase in regrets after the corruptions

emerge. This phenomenon aligns with our expectation and highlights the fact that our proposed

algorithms balance the tradeoff between accuracy and robustness in a much smoother fashion.
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CHAPTER 3

Online Continuous Hyperparameter Optimization for Generalized

Linear Contextual Bandits

3.1. Introduction

Generalized linear bandit (GLB) was first proposed in Filippi et al. (2010) and has been extensively

studied under various settings over the recent years (Jun et al., 2017; Kang et al., 2022), where

the stochastic payoff of an arm follows a generalized linear model (GLM) of its associated feature

vector and some fixed, but initially unknown parameter θ∗. Note that GLB extends the linear

bandit (Abbasi-Yadkori et al., 2011) in representation power and has greater applicability in real-

world applications, e.g. logistic bandit algorithms (Zhang et al., 2016) can achieve improvement

over linear bandit when the rewards are binary. Upper Confidence Bound (UCB) (Auer et al.,

2002a; Filippi et al., 2010; Li et al., 2010) and Thompson Sampling (TS) (Agrawal & Goyal, 2012;

2013) are the two most popular ideas to solve the GLB problem. Both of these methods could

achieve the optimal regret bound of order Õ(
√
T ) under some mild conditions, where T stands for

the total number of rounds (Agrawal & Goyal, 2013).

However, the empirical performance of these bandit algorithms significantly depends on the config-

uration of hyperparameters, and simply using theoretical optimal values often yields unsatisfactory

practical results, not to mention some of them are unspecified and need to be learned in reality. For

example, in both LinUCB (Li et al., 2010) and LinTS (Abeille & Lazaric, 2017; Agrawal & Goyal,

2013) algorithms, there are hyperparameters called exploration rates that govern the tradeoff and

hence the learning process. But it has been empirically verified that the best exploration rate to

use is always instance-dependent and may vary at different iterations (Bouneffouf & Claeys, 2020;

Ding et al., 2022b). Note it is inherently impossible to use any state-of-the-art offline hyperpa-

rameter tuning methods such as cross validation (Stone, 1974) or Bayesian optimization (Frazier,

2018) since decisions in bandits should be made in real time. To choose the best hyperparameters,

some previous works use grid search in their experiments (Ding et al., 2021; Jun et al., 2019), but
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obviously, this approach is infeasible when it comes to reality, and how to manually discretize the

hyperparameter space is also unclear. Conclusively, this limitation has already become a bottleneck

for bandit algorithms in real-world applications, but unfortunately, it has rarely been studied in

the previous literature.

The problem of hyperparameter optimization for contextual bandits was first studied in Bouneffouf

& Claeys (2020), where the authors proposed two methods named OPLINUCB and DOPLINUCB

to learn the practically optimal exploration rate of LinUCB in a finite candidate set by viewing

each candidate as an arm and then using multi-armed bandit to pull the best one. However, 1) the

authors did not provide any theoretical support, and 2) we believe the best exploration parameter

in practice would vary during iterations – more exploration may be preferred at the beginning

due to the lack of observations, while more exploitation would be favorable in the long run when

the model estimate becomes more accurate. Furthermore, 3) they only consider tuning one single

hyperparameter. To tackle these issues, Ding et al. (2022b) proposed TL and Syndicated framework

by using a non-stationary multi-armed bandit for the hyperparameter set. However, their approach

still requires a pre-defined set of hyperparameter candidates. In practice, choosing the candidates

requires domain knowledge and plays a crucial role in the performance. Also, using a piecewise-

stationary setting instead of a complete adversarial bandit (e.g. EXP3) for hyperparameter tuning

is more efficient since we expect a fixed hyperparameter setting would yield indistinguishable results

in a period of time. Conclusively, it would be more efficient to use a continuous space for bandit

hyperparameter tuning.

We propose an efficient bandit-over-bandit (BOB) framework (Cheung et al., 2019) named Con-

tinuous Dynamic Tuning (CDT) framework for bandit hyperparameter tuning in the continuous

hyperparameter space, without requiring a pre-defined set of hyperparameter candidate configura-

tions. For the top layer bandit we formulate the online hyperparameter tuning as a non-stationary

Lipschitz continuum-arm bandit problem with noise where each arm represents a hyperparame-

ter configuration and the corresponding reward is the performance of the GLB, and the expected

reward is a time-dependent Lipschitz function of the arm with some biased noise. Here the bias

depends on the previous observations since the history could also affect the update of bandit al-

gorithms. It is also reasonable to assume the Lipschitz functions are piecewise stationary since we

believe the expected reward would be stationary with the same hyperparameter configuration over
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a period of time (i.e. switching environment). Specifically, for the top layer of our CDT framework,

we propose the Zooming TS algorithm with Restarts, and the key idea is to adaptively refine the

hyperparameter space and zoom into the regions with more promising reward (Kleinberg et al.,

2019) by using the TS methodology (Chapelle & Li, 2011). Moreover, we demonstrate that a sim-

ple restart trick could handle the piecewise changes of the bandit environments in both theory and

practice. To sum up, we summarize our contributions as follows:

1) We propose an online continuous hyperparameter optimization framework for contextual bandits

called CDT that handles all aforementioned issues of previous methods with theoretical guarantees.

To the best of our knowledge, CDT is the first hyperparameter tuning method (even model selection

method) with continuous candidates in the bandit community. 2) For the top layer of CDT,

we propose the Zooming TS algorithm with Restarts for Lipschitz bandits under the switching

environment. To the best of our knowledge, our work is the first one to consider the Lipschitz

bandits under the switching environment, and the first one to utilize TS methodology in Lipschitz

bandits. 3) Experiments on both synthetic and real datasets with various GLBs validate the

efficiency of our method.

3.2. Related Work

There has been extensive literature on contextual bandit algorithms, and most of them are based

on the UCB or TS techniques. For example, several UCB-type algorithms have been proposed for

GLB, such as GLM-UCB (Filippi et al., 2010) and UCB-GLM (Li et al., 2017) that achieve the

optimal Õ(
√
T ) regret bound. Another rich line of work on GLBs follows the TS idea, including

Laplace-TS (Chapelle & Li, 2011), SGD-TS (Ding et al., 2021), etc. In this paper, we focus on the

hyperparameter tuning of contextual bandits, which is a practical but under-explored problem. For

related work, Sharaf & Daumé III (2019) first studied how to learn the exploration parameters in

contextual bandits via a meta-learning method. However, this algorithm fails to adjust the learning

process based on previous observations and hence can be unstable in practice. Bouneffouf & Claeys

(2020) then proposed OPLINUCB and DOPLINUCB to choose the exploration rate of LinUCB from

a candidate set, and moreover Ding et al. (2022b) formulates the hyperparameter tuning problem

as a non-stochastic multi-armed bandit and utilizes the classic EXP3 algorithm. However, as we

mentioned in Section 3.1, both works have several limitations that could be decently fixed. Note that
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hyperparameter tuning could be regarded as a branch of model selection in bandit algorithms. To

name a few for this general problem, Agarwal et al. (2017) proposed a master algorithm that could

combine multiple bandit algorithms, while Foster et al. (2019) initiated the study of model selection

tradeoff in contextual bandits and proposed the first model selection algorithm for contextual linear

bandits. However, these general model selection methods may fail for the bandit hyperparameter

tuning task. To clarify this point, we take the state-of-the-art corralling idea (Agarwal et al., 2017)

as an example: in theory, it has regret bound or order O(
√
MT +MRmax) where M is the number

of base models (number of hyperparameter combinations in our setting) and Rmax is the regret of

the worst candidate model in the tuning set. Therefore, on the one hand, M is infinitely large in

our problem setting with a continuous candidate set, which means the regret bound would also be

infinitely large. On the other hand, in order to achieve sub-linear regret in hyperparameter tuning,

the corralling idea requires that all hyperparameter candidates yield sub-linear regret in theory,

which is a very unrealistic assumption. On the contrary, our work only assumes the existence of

a hyperparameter candidate in the tuning set which yields good theoretical regret in theory. In

experiments, it is also costly to use since it requires updating all base models at each round, and

we have infinitely many base models under our setting. (Ding et al., 2022b) includes the corralling

idea in their experiments, and we can observe that it achieves almost linear regret in each setting

since it has no sub-linear regret guarantee for the bandit hyperparameter tuning problem. In

conclusion, the only existing methods that focus on hyperparameter tuning of bandits are OP

and TL (Syndicated), and we use both of them in our paper as baselines. And we propose the

first continuous hyperparameter tuning framework for contextual bandits, which doesn’t require a

pre-defined set of candidates. Note it is doable to finely discretize the continuous space and then

implement an algorithm with discrete candidate sets (e.g. Syndicated) in methodology, but we

highlight the inefficiency of this idea on both the empirical and theoretical side in Appendix B.1.4.

We also briefly review the literature on Lipschitz bandits that follows two key ideas. One is

uniformly discretizing the action space into a mesh (Kleinberg, 2004; Magureanu et al., 2014) so

that any learning process like UCB could be directly utilized. Another more popular idea is adaptive

discretization on the action space by placing more probes in more encouraging regions Bubeck et al.

(2008); Kleinberg et al. (2019); Lu et al. (2019); Valko et al. (2013), and UCB could be used for

exploration. Furthermore, the Lipschitz bandit under adversarial corruption was recently studied
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in Kang et al. (2024c). In addition, Podimata & Slivkins (2021) proposed the first fully adversarial

Lipschitz bandit in an adaptive refinement manner and derived instance-dependent regret bounds,

but their algorithm relies on some unspecified hyperparameters and is computationally infeasible.

Since the expected reward function for hyperparameters would not drastically change every time, it

is also inefficient to use a fully adversarial algorithm here. Therefore, we introduce a new problem

of Lipschitz bandits under the switching environment, and propose the Zooming TS algorithm with

a restart trick to deal with the “almost stationary” nature of the bandit hyperparameter tuning

problem.

3.3. Preliminaries

We first review the problem setting of contextual bandit algorithms. Denote T as the total number

of rounds andK as the number of arms we could choose at each round, whereK could be infinite. At

each round t ∈ [T ] := {1, . . . , T}, the player is given K arms represented by a set of feature vectors

Xt = {xt,a | a ∈ [K]} ⊆ Rd drawn from some unknown distribution, where xt,a is a d-dimensional

vector containing information of arm a at round t. The player selects an action at ∈ [K] based on

the current Xt and previous observations, and only receives the payoff of the pulled arm at. Denote

xt := xt,at as the feature vector of the chosen arm at and yt as the corresponding reward. We

assume the reward yt follows a canonical exponential family with minimal representation, a.k.a.

generalized linear bandits (GLB) with some mean function µ(·). In addition, one can represent

this model by yt = µ(x⊤t θ
∗) + ϵt, where ϵt follows a sub-Gaussian distribution with parameter σ2

independent with the information filtration Ft = σ({as,Xs, ys}t−1
s=1) and σ(Xt) up to round t, and

θ∗ is some unknown coefficient. Denote at,∗ := argmaxa∈[K] µ(x
⊤
t,aθ

∗) as the optimal arm at round

t and xt,∗ as its corresponding feature vector. The goal is to minimize the expected cumulative

regret defined as:

R(T ) =

T∑
t=1

[
µ(xt,∗

⊤θ∗)− E
(
µ(x⊤t θ

∗)
)]
.(3.1)

Note that all state-of-the-art contextual GLB algorithms depend on at least one hyperparameter to

balance the well-known exploration-exploitation tradeoff. For example, LinUCB (Li et al., 2010),
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the most popular UCB linear bandit, uses the following rule for arm selection at round t:

at = arg max
a∈[K]

x⊤t,aθ̂t + α1(t) ∥xt,a∥V −1
t
.(LinUCB)

Here the model parameter θ̂t is estimated at each round t via ridge regression, i.e. θ̂t = V −1
t

∑t−1
s=1 xsys

where Vt = λIr +
∑t−1

s=1 xsx
⊤
s . And it considers the standard deviation of each arm with an ex-

ploration parameter α1(t), where with a larger value of α1(t) the algorithm will be more likely to

explore uncertain arms. Note that the regularization parameter λ is only used to ensure Vt is in-

vertible and hence its value is not crucial and commonly set to 1. In theory we can choose the value

of α1(t) as α1(t) = σ
√
r log ((1 + t/λ)/δ)+∥θ∗∥

√
λ, to achieve the optimal Õ(

√
T ) bound of regret:

However, in practice, the values of σ and ∥θ∗∥ are unspecified, and hence this theoretical value of

α1(t) is inaccessible. Furthermore, it has been shown that this is a very conservative choice that

would lead to unsatisfactory practical performance, and the practically optimal hyperparameter

values to use are distinct and far from the theoretical ones under different algorithms or settings.

We also conduct a series of simulations with several state-of-the-art GLB algorithms to validate

this fact, which is deferred to Appendix B.1.1. Conclusively, the best exploration parameter to use

in practice should always be chosen dynamically based on the specific scenario and past observa-

tions. In addition, many GLB algorithms depend on some other hyperparameters, which may also

affect the performance. For example, SGD-TS also involves a stepsize parameter for the stochastic

gradient descent besides the exploration rate, and it is well known that a decent stepsize could

remarkably accelerate the convergence (Loizou et al., 2021). To handle all these cases, we propose

a general framework that can be used to automatically tune multiple continuous hyperparameters

for a contextual bandit.

For a certain contextual bandit, assume there are p different hyperparameters α(t) = {αi(t)}pi=1,

and each hyperparameter αi(t) could take values in an interval [ai, bi], ∀t. Denote the parameter

space A =
⊗p

i=1[ai, bi], and the theoretical optimal values as α∗(t). Given the observations Ft up

to round t, we write at(α(t)|Ft) as the arm we pulled when the hyperparameters are set to α(t),

and xt(α(t)|Ft) as the corresponding feature vector.

Motivated by the success of Bayesian optimization (Frazier, 2018) on the hyperparameter tuning of

the offline machine learning algorithms, the main idea of our algorithm is to formulate the hyper-

parameter optimization as a (another layer of) non-stationary Lipschitz bandit in the continuous
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space A ⊆ Rp, i.e. the agent chooses an arm (hyperparameter combination) α ∈ A in round t ∈ [T ],

and then we decompose µ(xt(α|Ft)⊤θ∗) as

µ(xt(α|Ft)⊤θ∗) = gt(α) + ηFt,α.(3.2)

Here gt is some time-dependent Lipschitz function that formulates the performance of the bandit

algorithm under the hyperparameter combination α at round t, since the bandit algorithm tends to

pull similar arms if the chosen values of hyperparameters are close at round t. In other words, we ex-

pect close hyperparameter values to yield similar results with other conditions fixed, as in Bayesian

optimization on offline hyperparameter tuning. To demonstrate that our Lipschitz assumption

w.r.t. the hyperparameter values in Eqn. (3.3) is reasonable, we conduct simulations with LinUCB

and LinTS, and defer it to Appendix B.1 due to the space limit. Moreover, (ηFt,α − E[ηFt,α]) is

IID sub-Gaussian with parameter τ2, and to be fair we assume E[ηFt,α] could also depend on the

history Ft since past observations and action sets would explicitly influence the model parameter

estimation and hence the decision making at each round. In addition to Lipschitzness, we also

suppose gt follows a switching environment: gt is piecewise stationary with some change points, i.e.

|gt(α1)− gt(α2)| ≤ ∥α1 − α2∥ , ∀α1, α2 ∈ A;(3.3)

T−1∑
t=1

1[∃α ∈ A : gt(α) ̸= gt+1(α)] = c(T ), c(T ) ∈ N.(3.4)

Since after sufficient exploration, the expected reward should be stable with the same hyperparam-

eter setting, we could assume that c(T ) = Õ(1). Detailed justification on this piecewise Lipschitz

assumption is deferred to Remark B.2.1 in Appendix B.2. Although numerous research works have

considered the switching environment (a.k.a. abruptly-changing environment) for multi-armed or

linear bandits (Auer et al., 2002b; Wei et al., 2016), our work is the first to introduce this setting

into the continuum-armed bandits. The switching environment is extended from the well-known

classic change-point detection problem in statistics, which has great applications in a wide range

of fields such as climatology (Reeves et al., 2007) and neuroscience (Ma et al., 2022a). In Section

3.4.1, we will show that by combining our proposed Zooming TS algorithm for Lipschitz bandits

with a simple restarted strategy, a decent regret bound could be achieved under the switching

environment.
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Algorithm 3 Zooming TS algorithm with Restarts

Input: Time horizon T , space A, epoch size H.
1: for t = 1 to T do
2: if t∈{τH + 1:τ=0, 1, . . . } then
3: Initialize the total candidate space A0 = A and the active set J ⊆ A0 s.t. A0 ⊆
∪v∈JB(v, r1(v)) and n1(v)← 1,∀v ∈ J . ▷ Restart

4: else if f̂t(v)− f̂t(u) > rt(v) + 2rt(u) for some pair of u, v ∈ J then
5: Set J = J\{u} and A0 = A0\B(u, rt(u)). ▷ Removal

6: if A0 ⊈ ∪v∈JB(v, rt(v)) then ▷ Activation
7: Activate and pull some point v ∈ A0 that has not been covered: J = J ∪ {v}, vt = v.
8: else
9: vt = argmaxv∈J It(v), break ties arbitrarily. ▷ Selection

10: Observe the reward ỹt+1, and then update components in the Zooming TS algorithm:

nt+1(v), f̂t+1(v), rt+1(v), st+1(v) for the chosen vt ∈ J :

nt+1(vt) = nt(vt) + 1, f̂t+1(vt) = (f̂t(vt)nt(vt) + ỹt+1)/nt+1(vt).

3.4. Methods

3.4.1. Lipschitz Bandits under the Switching Environment. For simplicity and con-

sistency, we will reload and introduce a new system of notations in this subsection. Consider the

non-stationary Lipschitz bandit problem on a compact space A under some metric Dist(·, ·) ≥ 0,

where the covering dimension is denoted by pc. The learner pulls an arm vt ∈ A at round t ∈ [T ]

and subsequently receives a reward ỹt sampled independently of Pvt as ỹt = ft(vt) + ηv, where

t = 1, . . . , T and ηv is IID zero-mean error with sub-Guassian parameter τ20 , and ft is the expected

reward function at round t and is Lipschitz with respect to Dist(·, ·). The switching environment

assumes the time horizon T is partitioned into c(T ) + 1 intervals, and the bandit stays stationary

within each interval, i.e.

|ft(m)− ft(n)| ≤ Dist(m,n), m, n ∈ A; and

T−1∑
t=1

1[∃m ∈ A : ft(m) ̸= ft+1(m)] = c(T ).

Here in this section c(T ) = o(T ) could be any integer. The goal of the learner is to minimize the

expected (dynamic) regret that is defined as:

RL(T ) =

T∑
t=1

max
v∈A

ft(v)−
∑T

t=1
E (ft(vt)) .

Since we consider the non-stationary Lipschitz bandit different from the setting in Chapter 2, we

will reload some notations here: at each round t, v∗t := argmaxv∈A ft(v) denotes the maximal point
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(w.l.o.g. assume it’s unique), and ∆t(v) = ft(v
∗) − ft(v) is the “badness” of each arm v. We also

denote Ar,t as the r-optimal region at the scale r ∈ (0, 1], i.e. Ar,t = {v ∈ A : r/2 < ∆t(v) ≤ r} at

time t. Then the r-zooming number Nz,t(r) of (A, ft) is defined as the minimal number of balls of

radius no more than r required to cover Ar,t. (Note the subscript z stands for zooming here.) Next,

we define the zooming dimension pz,t at time t as the smallest q ≥ 0 such that for every r ∈ (0, 1]

the r-zooming number can be upper bounded by cr−q for some multiplier c > 0 free of r:

pz,t = min{q ≥ 0 : ∃c > 0, Nz,t(r) ≤ cr−q, ∀r ∈ (0, 1]}.

It’s obvious that 0 ≤ pz,t ≤ pc, ∀t ∈ [T ]. (Note pz,t is fixed under the stationary environment.) On

the other hand, the zooming dimension could be much smaller than pc under some mild conditions.

For example, if the payoff function ft defined on Rpc is greater than ∥v∗t − v∥
β in scale for some

β ≥ 1 around v∗ in the space A, i.e. ft(v
∗
t ) − ft(v) = Ω(∥v∗t − v∥

β), then it holds that pz,t ≤

(1 − 1/β)pc. Note that we have β = 2 (i.e. pz,t ≤ pc/2) when ft(·) is C2-smooth and strongly

concave in a neighborhood of v∗. More details are presented in Appendix B.3. Since the expected

reward Lipschitz function ft(·) is fixed in each time interval under the switching environment,

the zooming number and zooming dimension pz,t would also stay identical. And we also write

pz,∗ = maxt∈[T ] pz,t ≤ pc.

Our proposed Algorithm 3 extends the classic Zooming algorithm (Kleinberg et al., 2019), which

was used under the stationary Lipschitz bandit environment, by adding several new ingredients

for better efficiency and adaptivity to non-stationary environment: on the one hand, we employ

the TS methodology and propose a novel removal step. Here we utilize TS since it was shown

that TS is more robust than UCB in practice (Chapelle & Li, 2011; Wang & Chen, 2018), and

the removal procedure in line 5 of Algorithm 3 could adaptively subtract regions that are prone to

yield low rewards. Both of these two ideas could enhance the algorithmic efficiency, which coincides

with the practical orientation of our work. On the other hand, the restarted strategy proceeds our

proposed Zooming TS in epochs and refreshes the algorithm after every H rounds. The epoch size

H is fixed through the total time horizon and controls the tradeoff between non-stationarity and

stability. Note that H in our algorithm does not need to match the actual length of stationary

intervals of the environment, and we would discuss its selection later. At each epoch, we maintain

a time-varying active arm set St ⊆ A, which is initially empty and updated every time. For each
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arm v ∈ A and time t, denote nt(v) as the number of times arm v has been played before time

t since the last restart, and f̂t(v) as the corresponding average sample reward. We let f̂t(v) = 0

when nt(v) = 0. Define the confidence radius and the TS standard deviation of active arm v at

time t respectively as

rt(v) =

√
13τ20 lnT

2nt(v)
, st(v) = s0

√
1

nt(v)
,(3.5)

where s0 =
√

52πτ20 ln(T ). We call B(v, rt(v)) = {u ∈ Rp : Dist(u, v) ≤ rt(v)} as the confidence

ball of arm v at time t ∈ [T ]. We construct a randomized algorithm by choosing the best active

arm according to the perturbed estimate mean It(·):

It(v) = f̂t(v) + st(v)Zt,v,(3.6)

where Zt,v is i.i.d. drawn from the clipped standard normal distribution: we first sample Z̃t,v from

the standard normal distribution and then set Zt,v = max{1/
√
2π, Z̃t,v}. This truncation was also

used in TS multi-armed bandits (Jin et al., 2021), and our algorithm clips the posterior samples

with a lower threshold to avoid underestimation of good arms. Moreover, the explanations of the

TS update is deferred to Appendix B.4 due to the space limit.

The regret analysis of Algorithm 3 is very challenging since the active arm set is constantly chang-

ing and the optimal arm v∗ cannot be exactly recovered under the Lipschitz bandit setting. Thus,

existing theory on multi-armed bandits with TS is not applicable here. We overcome these diffi-

culties with some innovative use of metric entropy theory, and the regret bound of Algorithm 3 is

given as follows.

Theorem 3.4.1. With H = Θ
(
(T/c(T ))(pz,∗+2)/(pz,∗+3)]

)
, the total regret of our Zooming TS algo-

rithm with Restarts under the switching environment over time T is bounded as

RL(T ) ≤ Õ
(
(c(T ))1/(pz,∗+3) T (pz,∗+2)/(pz,∗+3)

)
,

when c(T ) > 0. In addition, if the environment is stationary (i.e. c(T ) = 0, ft = f, pz,t = pz,∗ :=

pz, ∀t ∈ [T ]), then by using H = T (i.e. no restart), our Zooming TS algorithm could achieve the
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Algorithm 4 Continuous Dynamic Tuning (CDT)

Input: T1, T2, {Xt}Tt=1, A =
⊗p

i=1[ai, bi].
1: Randomly choose at ∈ [K] and observe xt, yt, t ≤ T1.
2: Initialize the hyperparameter active set J s.t. A ⊆ ∪v∈JB(v, r1(v)) where nT1(v)← 1,∀v ∈ J .
3: for t = (T1 + 1) to T do
4: Run the t-th iteration of Algorithm 3 with initial input horizon T − T1, input space A and

restarting epoch length T2. Denote the pulled arm at round t as α(it) ∈ A. ▷ Top
5: Run the contextual bandit algorithm with hyperparameter α(it) to pull an arm at. ▷

Bottom
6: Obtain yt and update components in the contextual bandit algorithm. ▷ Bottom Update
7: Update components in Algorithm 1 by treating yt as the reward of arm α(it) ▷ Top Update

optimal regret bound for Lipschitz bandits up to logarithmic factors:

RL(T ) ≤ Õ
(
T (pz+1)/(pz+2)

)
.

We also present empirical studies to further evaluate the performance of our Algorithm 3 compared

with stochastic Lipschitz bandit algorithms in Appendix B.1.3. A potential drawback of Theorem

3.4.1 is that the optimal epoch size H under switching environment relies on the value of c(T ) and

pz,∗, which are unspecified in reality. However, this problem could be solved in theory by using

the BOB idea (Cheung et al., 2019; Zhao et al., 2020) to adaptively choose the optimal epoch

size with a meta algorithm (e.g. EXP3 (Auer et al., 2002b)) in real time. In this case, we prove

the expected regret can be bounded by the order of Õ
(
T

pc+2
pc+3 ·max

{
c(T )

1
pc+3 , T

1
(pc+3)(pc+4)

})
in

general, and some better regret bounds in problem-dependent cases. More details are presented in

Theorem B.6.1 with its proof in Appendix B.6. However, in the following Section 3.4.2 we could

simply set H = T (2+p)/(3+p) in our CDT framework where p is the number of hyperparameters to

be tuned after assuming c(T ) = Õ(1) is of constant scale up to logarithmic terms. The value of

τ0 can be determined by assuring the observed rewards are bounded. Note our work introduces a

new problem on Lipschitz bandits under the switching environment. One potential limitation of

our work is how to deduce a regret lower bound under this problem setting is unclear, and we leave

it as a future work.

3.4.2. Continuous Hyperparameter Tuning (CDT). Based on the proposed algorithm in

the previous subsection, we introduce our online double-layer Continuous Dynamic Tuning (CDT)

framework for hyperparameter optimization of contextual bandit algorithms. We assume the arm

to be pulled follows a fixed distribution given the hyperparameters to be used and the history at
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each round. The detailed algorithm is shown in Algorithm 4. Our method extends the bandit-over-

bandit (BOB) idea that was first proposed for non-stationary stochastic bandit problems (Cheung

et al., 2019), where it adjusts the sliding-window size dynamically based on the changing model.

In our work, for the top layer we use our proposed Algorithm 3 to tune the best hyperparameter

values from the admissible space, where each arm represents a hyperparameter configuration and

the corresponding reward is the algorithmic result. T2 is the length of each epoch (i.e. H in

Algorithm 3), and we would refresh our Zooming TS Lipschitz bandit after every T2 rounds as

shown in Line 5 of Algorithm 4 due to the non-stationarity. The bottom layer is the primary

contextual bandit and would run with the hyperparameter values α(it) chosen from the top layer

at each round t. We also include a warming-up period of length T1 in the beginning to guarantee

sufficient exploration as in Ding et al. (2021); Li et al. (2017). Despite the focus of our CDT

framework is on the practical aspect, we also present a novel theoretical analysis in the following

for the completeness of our work.

Although there has been a rich line of work on regret analysis of UCB and TS GLB algorithms,

most literature certainly requires that some hyperparameters, e.g. exploration rate, always take

their theoretical values. It is challenging to study the regret bound of GLB algorithms when their

hyperparameters are synchronously tuned in real time, since the chosen hyperparameter values

may be far from the theoretical ones in practice, not to mention that previous decisions would

also affect the current update cumulatively. Moreover, there is currently no existing literature and

regret analysis on hyperparameter tuning (or model selection) for bandit algorithms with an infinite

number of candidates in a continuous space. Recall that we denote Ft = σ
(
{as,Xs, ys}t−1

s=1

)
as the

past information before round t under our CDT framework, and at, xt are the chosen arm and

its corresponding feature vector at time t, which implies that at = at(α(it)|Ft), xt = xt(α(it)|Ft).

Furthermore, we denote α∗(t) as the theoretical optimal value at round t and F∗
t as the past

information filtration by always using the theoretical optimal α∗(t). Since the decision at each round

t also depends on the history observed by time t, the pulled arm with the same hyperparameter

α(t) might be different under Ft or F∗
t . To analyze the cumulative regret R(T ) of our Algorithm

4, we first decompose it into four quantities:
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R(T ) = E

[
T1∑
t=1

(
µ(x⊤t,∗θ

∗)− µ(xt⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (A)

+E

 T∑
t=T1+1

(
µ(x⊤t,∗θ

∗)− µ(xt(α∗(t)|F∗
t )

⊤θ∗)
)

︸ ︷︷ ︸
Quantity (B)

+E

 T∑
t=T1+1

(µ
(
xt(α

∗(t)|F∗
t )

⊤θ∗)−µ(xt(α∗(t)|Ft)⊤θ∗)
)

︸ ︷︷ ︸
Quantity (C)

+E

 T∑
t=T1+1

(µ
(
xt(α

∗(t)|Ft)⊤θ∗)−µ(xt(α(it)|Ft)⊤θ∗)
)

︸ ︷︷ ︸
Quantity (D)

.

Intuitively, Quantity (A) is the regret paid for pure exploration during the warming-up period

and could be controlled by the order O(T1). Quantity (B) is the regret of the contextual bandit

algorithm that runs with the theoretical optimal hyperparameters α∗(t) all the time, and hence it

could be easily bounded by the optimal scale Õ(
√
T ) based on the literature. Quantity (C) is the

difference of cumulative reward with the same α∗(t) under two separate lines of history. Quantity

(D) is the extra regret paid to tune the hyperparameters on the fly. By using the same line of

history Ft in Quantity (D), the regret of our Zooming TS algorithm with Restarts in Theorem

3.4.1 can be directly used to bound Quantity (D). Conclusively, we deduce the following theorem

for the regret bound:

Theorem 3.4.2. Under our problem setting in Section 3.3, for UCB and TS GLB algorithms

with exploration hyperparameters (e.g. LinUCB, UCB-GLM, GLM-UCB, LinTS), by taking T1 =

O(T 2/(p+3)), T2 = O(T (p+2)/(p+3)) where p is the number of hyperparameters, and let the theoreti-

cally optimal hyperparameter combination α∗(T ) ∈ A, it holds that

E[R(T )] ≤ Õ(T (p+2)/(p+3)).

The detailed proof of Theorem 3.4.2 is presented in Appendix B.7. Note that this regret bound

could be further improved to Õ(T (p0+2)/(p0+3)) where p0 is any constant that is no smaller than

the zooming dimension of (A, gt),∀t. For example, from Figure B.1 in Appendix B.1 we can
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observe that in practice gt would be C2-smooth and strongly concave, which implies that E[R(T )] ≤

Õ(T (p+4)/(p+6)).

Note our work is the first one to consider model selection for bandits with a continuous candidate

set, and the regret analysis for online model selection in the bandit setting (Foster et al., 2019) is

intrinsically more difficult compared with the offline model selection (Han & Lee, 2022; Zhao &

Yu, 2006). For example, regret bounds of the algorithm CORRAL (Agarwal et al., 2017) for model

selection and Syndicated (Ding et al., 2022b) for bandit hyperparameter tuning are (sub)linearly

dependent on the number of candidates, which would be infinitely large and futile in our case.

Furthermore, given the fact that Syndicated in Ding et al. (2022b) fails to recover the optimal

O(
√
T ) bound of regret without stringent assumptions under the easier setting with finite hyper-

parameter candidates, it would be substantially difficult to deduce a feasible regret bound under

our more complicated problem setting. Moreover, the non-stationarity under the switching envi-

ronment would further deteriorate the optimal order of cumulative regret (Cheung et al., 2019).

And it is intrinsically more difficult to consider the continuum-armed bandit over the multi-armed

bandit. Therefore, we believe our theoretical result is non-trivial and significant. Our work stands

as the first seminal attempt in bandit hyperparameter tuning (or even bandit model selection) with

an infinite number of candidates. An extensive study on this new problem will be an interesting

future direction.

3.5. Experimental Results

In this section, we show by experiments that our hyperparameter tuning framework outperforms

the theoretical hyperparameter setting and other tuning methods with various (generalized) linear

bandit algorithms. We utilize seven state-of-the-art bandit algorithms: two of them (LinUCB (Li

et al., 2010), LinTS (Agrawal & Goyal, 2013)) are linear bandits, and the other five algorithms

(UCB-GLM (Li et al., 2017), GLM-TSL (Kveton et al., 2020), Laplace-TS (Chapelle & Li, 2011),

GLOC (Jun et al., 2017), SGD-TS (Ding et al., 2021)) are GLBs. Note that all these bandit algo-

rithms except Laplace-TS contain an exploration rate hyperparameter, while GLOC and SGD-TS

further require an additional learning parameter. And Laplace-TS only depends on one stepsize

hyperparameter for a gradient descent optimizer. We compare our CDT framework with the theo-

retical setting, OP (Bouneffouf & Claeys, 2020) and TL (Ding et al., 2022b) (one hyperparameter)

35



3000 6000 9000 12000
Iterations

0
100
200
300
400
500
600
700

Cu
m

ul
at

iv
e 

Re
gr

et
Simulations for LinUCB

Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

200

400

600

800

1000

1200

Cu
m

ul
at

iv
e 

Re
gr

et

Movielens for LinUCB
Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

250

500

750

1000

1250

1500

1750

Cu
m

ul
at

iv
e 

Re
gr

et

Simulations for LinTS
Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

250

500

750

1000

1250

1500

1750

Cu
m

ul
at

iv
e 

Re
gr

et

Movielens for LinTS
Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

100

200

300

400

Cu
m

ul
at

iv
e 

Re
gr

et

Simulations for UCB-GLM
Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

100

200

300

400

500

600

700

Cu
m

ul
at

iv
e 

Re
gr

et

Movielens for UCB-GLM
Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

100

200

300

400

500

600

Cu
m

ul
at

iv
e 

Re
gr

et

Simulations for GLM-TSL
Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

200

400

600

800

Cu
m

ul
at

iv
e 

Re
gr

et

Movielens for GLM-TSL
Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

100

200

300

400

500

600

700

Cu
m

ul
at

iv
e 

Re
gr

et

Simulations for Laplace-TS
Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

250

500

750

1000

1250

1500

Cu
m

ul
at

iv
e 

Re
gr

et

Movielens for Laplace-TS
Theory
CDT
OP
TL

3000 6000 9000 12000
Iterations

0

100

200

300

400

500

Cu
m

ul
at

iv
e 

Re
gr

et

Simulations for GLOC
CDT
OP
Syndicated

3000 6000 9000 12000
Iterations

0

100

200

300

400

500

600

700

Cu
m

ul
at

iv
e 

Re
gr

et

Movielens for GLOC
CDT
OP
Syndicated

3000 6000 9000 12000
Iterations

0

100

200

300

400

500

600

Cu
m

ul
at

iv
e 

Re
gr

et

Simulations for SGD-TS
Theory
CDT
OP
Syndicated

3000 6000 9000 12000
Iterations

0

200

400

600

800

1000

1200

Cu
m

ul
at

iv
e 

Re
gr

et

Movielens for SGD-TS
Theory
CDT
OP
Syndicated

Figure 3.1. Cumulative regret curves of our CDT framework compared with ex-
isting hyperparameter selection methods under multiple (generalized) linear bandit
algorithms on the simulations and Movielens dataset.

and Syndicated (Ding et al., 2022b) (multiple hyperparameters) algorithms. Their details are given

as follows:

(1)Theoretical setting: We implement the theoretical exploration rate and stepsize for each

algorithm. For the stepsize of gradient descent used in SGD-TS and Laplace-TS, we set it as 1

instead. (We observe the algorithmic performance is not sensitive to this stepsize.)

(2)OP: Bouneffouf & Claeys (2020) proposes OPLINUCB to tune the exploration rate of LinUCB.

Here we modify it so that it could be used in other bandit algorithms. Note that OP is only

applicable to algorithms with one hyperparameter, and hence we fix the learning parameter of

GLOC and SGD-TS as their theoretical values instead, and only tune the exploration rates.

(3)TL (Ding et al., 2022b) (one hyperparameter): For algorithms with only one hyperparameter,

TL is used.
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(4)Syndicated (Ding et al., 2022b) (multiple hyperparameters): For GLOC and SGD-TS (two

hyperparameters), the Syndicated framework is utilized for comparison.

We run comprehensive experiments on both simulations and real-world datasets. Specifically, for

the real data, we use the benchmark Movielens 100K dataset along with the Yahoo News dataset:

(1)Simulation: In each repetition, we simulate all the feature vectors {xt,a} and the model pa-

rameter θ∗ according to Uniform(−1/
√
r,1/
√
r) elementwisely, and hence we have ∥xt,a∥ ≤ 1.

We set d =25, K =120 and T =14,000. For linear model, the expected reward of arm a is

formulated as x⊤t,aθ
∗ and random noise is sampled from N(0, 0.25); for Logistic model, the mean

reward of arm a is defined as p = 1/(1+exp(−x⊤t,aθ∗)), and the output is drawn from a Bernoulli

distribution.

(2)Movielens 100K dataset: This dataset contains 100K ratings from 943 users on 1,682 movies.

For data pre-processing, we utilize LIBPMF (Yu et al., 2014) to perform matrix factorization

and obtain the feature matrices for both users and movies with d =20, and then normalize

all feature vectors into unit r-dimensional ball. In each repetition, the model parameter θ∗ is

defined as the average of 300 randomly chosen users’ feature vectors. And for each time t, we

randomly choose K = 300 movies from 1,682 available feature vectors as arms {xt,a}300a=1. The

time horizon T is set to 14,000. For linear models, the expected reward of arm a is formulated

as x⊤t,aθ
∗ and random noise is sampled from N(0, 0.5); for Logistic model, the output of arm a

is drawn from the Bernoulli distribution with p = 1/(1 + exp(−x⊤t,aθ∗)).

(3)Yahoo News dataset: We downloaded the Yahoo Recommendation dataset R6A, which

contains Yahoo data from May 1 to May 10, 2009 with T = 2881 timestamps. For each user’s

visit, the module will select one article from a pool of 20 articles for the user, and then the

user will decide whether to click. We transform the contextual information into a 6-dimensional

vector based on the processing in Chu et al. (2009). We build a Logistic bandit on this data,

and the observed reward is simulated from a Bernoulli distribution with a probability of success

equal to its click-through rate at each time.

We first present the results on simulations and Movielens datasets: since all the existing tuning

algorithms require a user-defined candidate set, we design the tuning set for all potential hyperpa-

rameters as {0.1, 1, 2, 3, 4, 5}. And for our CDT framework, which is the first algorithm for tuning

hyperparameters in an interval, we simply set the interval as [0.1, 5] for all hyperparameters. Each
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experiment is repeated for 20 times, and the average regret curves with standard deviation are dis-

played in Figure 3.1. We further explore the existing methods after enlarging the hyperparameter

candidate set to fairly validate the superiority of our proposed CDT in Appendix B.1.4.1. The

results in Appendix B.1.4.1 further lead to discussion on why it is inefficient to first discretize the

continuous space and then implement an algorithm (e.g. Syndicated) with discrete candidate sets.

We believe a large value of warm-up period T1 may abandon some useful information in practice,

and hence we use T1 = T 2/(p+3) according to Theorem 3.4.2 in experiments. And we would restart

our hyperparameter tuning layer after every T2 = 3T (p+2)/(p+3) rounds. An ablation study on the

role of T1, T2 in our CDT framework is also conducted and deferred to Appendix B.1.4.2, where we

demonstrate that the performance of CDT is pretty robust to the choice of T1, T2 in practice.

From Figure 3.1, we observe that our CDT framework outperforms all existing hyperparameter

tuning methods for most contextual bandit algorithms. It is also clear that CDT performs sta-

bly and soundly with the smallest standard deviation across most datasets (e.g. experiments for

LinTS, UCB-GLM), indicating that our method is highly flexible and robustly adaptive to different

datasets. Moreover, when tuning multiple hyperparameters (GLOC, SGD-TS), we can see that the

advantage of our CDT is also evident since our method is intrinsically designed for any hyperpa-

rameter space. It is also verified that the theoretical hyperparameter values are too conservative

and would lead to terrible performance (e.g. LinUCB, LinTS). Note that all tuning methods ex-

hibit similar results when applied to Laplace-TS. We believe it is because Laplace-TS only relies

on an insensitive hyperparameter that controls the stepsize in gradient descent loops, which mostly

affects the convergence speed.

For the Yahoo News Recommendation dataset, since it is a logistic bandit, we only output the

cumulative rewards of GLBs in Table 3.1. From the table, we can observe that our proposed CDT

also performs the best overall. Specifically, it is only slightly worse than TL for GLM-TSL and

GLOC, and yields the best results among all hyperparameter tuning frameworks for UCB-GLM,

GLM-TSL, and SGD-TS. And the theoretical hyperparameter setting is very unstable again as in

Figure 3.1. Conclusively, our proposed CDT yields uniformly the best performances compared with

existing baselines in both large-scale and mild-scale experiments with multiple contextual bandit

algorithms. This fact also validates the rationality of Lipschitz continuity assumption on the bandit

hyperparameter tuning problem in Section 3.3.
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Method UCB-GLM GLM-TSL Laplace-TS GLOC SGD-TS
Theory 221.51 214.67 217.38 206.73
CDT 221.69 218.27 217.05 217.95 218.35
OP 217.25 217.08 213.95 216.28 215.58
TL/Syndicated 218.95 219.36 214.42 218.19 215.02

Table 3.1. Comparisons of cumulative rewards from different algorithms on Yahoo
dataset.
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CHAPTER 4

Efficient Frameworks for Low-rank Matrix Bandits

4.1. Introduction

The contextual bandit has proven to be a powerful framework for sequential decision-making prob-

lems, with great applications to clinical trials (Woodroofe, 1979), recommendation system (Li et al.,

2010), and personalized medicine (Bastani & Bayati, 2020). This class of problems evaluates how

an agent should choose an action from the potential action set at each round based on an updating

policy on-the-fly so as to maximize the cumulative reward or minimize the overall regret. With

high dimensional sparse data becoming ubiquitous in various fields nowadays (Zhao & Yu, 2006;

Zhu et al., 2019), the most fundamental (generalized) linear bandit framework, although has been

extensively studied, becomes inefficient in practice. This fact consequently leads to a line of work

on stochastic high dimensional bandit problems with low dimensional structures (Johnson et al.,

2016; Li et al., 2022), such as the LASSO bandit and low-rank matrix bandit.

In this work, we investigate on the generalized low-rank matrix bandit problem firstly studied in Lu

et al. (2021): at round t = 1, . . . , T , the algorithm selects an action represented by a d1 by d2 matrix

Xt from the admissible action set Xt (Xt may be fixed), and receives its associated noisy reward

yt = µ(⟨Θ∗, Xt⟩) + ηt where Θ∗ ∈ Rd1×d2 is some unknown low-rank matrix with rank r ≪ {d1, d2}

and µ(·) is the inverse link function. More details about this setting are deferred to Section 4.3.

This problem has vast applicability in real world applications. On the one hand, matrix inputs are

appropriate when dealing with paired contexts which are omnipresent in practice. For instance,

to design a personalized movie recommendation system, we can formulate each user as m d1-

dimensional feature vectors (x1, . . . , xm ∈ Rd1) and each movie as m d2-dimensional feature vectors

(y1, . . . , ym ∈ Rd2). A user-item pair can then be naturally represented by a feature matrix defined

as the summation of the outer products
∑m

k=1 xky
⊤
k ∈ Rd1×d2 , which will become the contextual

feature observed by the bandit algorithm. Other applications involve interaction features between

two groups, such as flight-hotel bundles (Lu et al., 2021) and dating service (Jun et al., 2019) can
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also be similarly established. Besides, low-rank models have gained tremendous success in various

areas (Candès & Recht, 2009). In particular, our problem can be regarded as an extension of the

inductive matrix factorization problem (Jain & Dhillon, 2013; Zhong et al., 2015), which estimates

low-rank matrices with contextual information, under the online learning scenario.

Our study is inspired by a line of work on stochastic contextual low-rank matrix bandit (Jang

et al., 2021; Jun et al., 2019; Lu et al., 2021). To design an algorithm for matrix bandit problems,

a näıve approach is to flatten the d1 by d2 feature matrices into vectors and then apply any

(generalized) linear bandit algorithms, which, however, would be inefficient when d1d2 is large. To

take advantage of the low-rank structure, Jun et al. (2019) have introduced the bilinear low-rank

bandit problem and proposed a two-stage algorithm named ESTR which could achieve a regret

bound of Õ((d1 + d2)
3/2
√
rT/Drr)

1. Subsequently, Jang et al. (2021) constructed a new algorithm

called ϵ-FALB for bilinear bandits and achieved a better regret of Õ(
√
d1d2(d1 + d2)T ). However,

they only studied the linear reward framework and also restricted the feature matrix as a rank-

one matrix. As a follow-up work, Lu et al. (2021) further released the rank-one restriction on

the action feature matrices, and they introduced an algorithm LowGLOC based on the online-

to-confidence-set conversion (Abbasi-Yadkori et al., 2012) for generalized low-rank matrix bandits

with Õ(
√
(d1 + d2)3rT ) regret bound. However, this method can’t handle the contextual setting

since the arm set is assumed fixed at each round. This algorithm is also computationally prohibitive

since it requires to calculate the weights of a self-constructed covering of the admissible parameter

space at each iteration. And how to find this covering for low-rank matrices is also unclear.

In this work, we propose two efficient methods called G-ESTT and G-ESTS for this problem by

modifying two stages of ESTR appropriately from different perspectives. To the best of our knowl-

edge, the proposed methods are the first two generalized (contextual) low-rank bandit algorithms

that are computationally feasible, and achieve the decent regret bound of Õ(
√

(d1 + d2)3rT/Drr)

and Õ((d1 + d2)
7/4r3/4T/Drr) on low-rank bandits. The main contributions of this paper can be

summarized as: 1) we propose two novel two-stage frameworks G-ESTT and G-ESTS under some

mild assumptions. Compared with ESTR in Jun et al. (2019), ϵ-FALB in Jang et al. (2021) and

LowESTR in Lu et al. (2021), our algorithms are proposed for the nonlinear reward framework

with arbitrary action matrices. Compared with LowGLOC in Lu et al. (2021), our algorithms are

1Õ ignores the polylogarithmic factors.
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computationally feasible in practice. 2) For G-ESTT, we extend the GLM-UCB algorithms (Filippi

et al., 2010) via a novel regularization technique. 3) Our proposed G-ESTS is simple and could be

easily implemented based on any state-of-the-art misspecified linear bandit algorithms to achieve

the regret bound of order Õ(d1 + d2)
7/4r3/4T/Drr). In practice, it can be used with any generalized

linear bandit to achieve high efficiency. Particularly, when we combine G-ESTS with some efficient

algorithms (e.g. SGD-TS (Ding et al., 2021)), the total time complexity after a warm-up stage

scales as O(Tr(d1 + d2)). 4) The practical superiority of our algorithms are firmly validated based

on our experimental results.

4.2. Related Work

In this section, we briefly discuss some previous algorithms on low-rank matrix bandit problems.

Besides the works we have discussed in the former section, Katariya et al. (2017a); Trinh et al. (2020)

considered the rank-one bandit problems where the expected reward forms a rank-one matrix and

the player selects an element from this matrix as the expected reward at each round. In addition,

Katariya et al. (2017b) also studied the rank-one matrix bandit via an elimination-based algorithm.

Alternatively, Gopalan et al. (2016); Kveton et al. (2017); Lu et al. (2018) considered the general

low-rank matrix bandit, and furthermore Hao et al. (2020) considered a stochastic low-rank tensor

bandit. However, for all these works the feature matrix of an action could be flattened into a

one-hot basis vector, and our work yields a more general structure.

Additionally, Li et al. (2022) extended some previous works (Johnson et al., 2016) and presented

a unified algorithm based on a greedy search for high-dimensional bandit problems. But it’s non-

trivial to extend the framework to the matrix bandit problem. For example, they assume that

the minimum eigenvalue of the covariance matrix could be strictly lower bounded, but this lower

bound would mostly depend on the size of feature matrices, and hence would affect the regret

bound consequently.

4.3. Preliminaries

In this section we review our problem setting and introduce the assumptions for our theoretical

analysis. Let T be the total number of rounds and Xt be the action set (Xt could be fixed or not).

Throughout this paper, we denote the action set Xt = X as fixed for notation simplicity, while our

frameworks also work with the same regret bound when Xt varies over time (see Appendix C.8.3
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for more details.) Algorithms along with theory could be identically obtained when the action set

varies (Appendix C.8.3). At each round t ∈ [T ], The agent selects an action Xt ∈ Xt and gets the

payoff yt which is conditionally independent of the past payoffs and choices. For the generalized

low-rank matrix bandits, we assume the payoff yt follows a canonical exponential family such that:

pΘ∗(yt|Xt) = exp

(
ytβ − b(β)

ϕ
+ c(yt, ϕ)

)
, where β = vec(Xt)

⊤vec(Θ∗) := ⟨Xt,Θ
∗⟩,(4.1)

EΘ∗(yt|Xt) = b′(⟨Xt,Θ
∗⟩) := µ(⟨Xt,Θ

∗⟩),

where Θ∗ ⊆ Θ is a fixed but unknown matrix with rank r ≪ {d1, d2} and Θ is some admissible

compact subset of Rd1×d2 (w.l.o.g. d1 = Θ(d2)). We also call µ(⟨Xt,Θ
∗⟩) the reward of action Xt.

In addition, one can represent model (4.1) in the following Eqn. (4.2). Note that if we relax the

definition of µ(·) to any real univariate function with some centered exogenous random noise ηt, the

model shown in Eqn. (4.2) generalizes our problem setting to a single index model (SIM) matrix

bandit, and the generalized low-rank matrix bandit problem is a special case of this model.

yt = µ(⟨Xt,Θ
∗⟩) + ηt.(4.2)

Here, ηt follows the sub-Gaussian property with some constant parameter σ0 conditional on the

filtration Ft = {Xt, Xt−1, ηt−1, . . . , X1, η1}. We also denote d = max{d1, d2}. And it is natural to

evaluate the agent’s strategy based on the regret (Audibert et al., 2009), defined as the difference

between the total reward of optimal policy and the agent’s total reward in practice:

Regrett =
t∑
i=1

max
X∈X

µ(⟨X,Θ∗⟩)− µ(⟨Xi,Θ
∗⟩).

We also present the following two definitions to facilitate further analysis via Stein’s method:

Definition 4.3.1. Let p : R → R be a univariate probability density function defined on R. The

score function Sp : R→ R regarding density p(·) is defined as:

Sp(x) = −∇xlog(p(x)) = −∇xp(x)/p(x), x ∈ R.

In particular, for a random matrix with its entrywise probability density p = (pij) : Rd1×d2 →

Rd1×d2, we define its score function Sp = (Sp
ij) : Rd1×d2 → Rd1×d2 as Sp

ij(x) = Spij (x) by applying

the univariate score function to each entry of p independently.
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Definition 4.3.2. (Fact 2.6, (Minsker, 2018)) Given a rectangular matrix A ∈ Rd1×d2, the (Her-

mitian) dilation H : Rd1×d2 → R(d1+d2)×(d1+d2) is defined as:

H(A) =

 0 A

A⊤ 0

 .

We would omit the subscript x of ∇ and the superscript p of S when the underlying distribution

is clear. With these definitions, we make the following mild assumptions:

Assumption 4.3.3. (Finite second-moment score) There exists a sampling distribution D over X

such that for the random matrix X drawn from D with its associated density p : Rd1×d2 → Rd1×d2 ,

we have E[(Sp(X))2ij ] ≤ M, ∀i, j. And the columns or rows of random matrix X are pairwisely

independent.

Assumption 4.3.4. The norm of true parameter Θ∗ and feature matrices in X is bounded: there

exists S ∈ R+ such that for all arms X ∈ X , ∥X∥F , ∥Θ∗∥F ≤ S0.

Assumption 4.3.5. The inverse link function µ(·) in GLM is continuously differentiable and there

exist two constants cµ, kµ such that 0 < cµ ≤ µ′(x) ≤ kµ for all |x| ≤ S0.

Assumption 4.3.3 is commonly used in Stein’s method (Chen et al., 2010), and easily satisfied by a

wide range of distributions that are non-zero-mean or even non sub-Gaussian thereby allowing us

to work with cases not previously possible. For example, to find D we only need the convex hull of

X contains a ball with radius R, and then we can use pij as centered normal p.d.f. with variance

R2/(didj). This choice works well in our experiments and please refer to Appendix C.9 for more

details. Furthermore, Assumption 4.3.4 and 4.3.5 are also standard in contextual generalized bandit

literature, and they explicitly imply that we have an upper bound as |µ(⟨X,Θ⟩)| ≤ |µ(0)|+kµS0 :=

Sf .

4.4. Methods

In this section, we present our novel two-stage frameworks, named Generalized Explore Subspace

Then Transform (G-ESTT) and Generalized Explore Subspace Then Subtract (G-ESTS) respec-

tively. These two algorithms are inspired by the two-stage algorithm ESTR proposed in Jun et al.

(2019). ESTR estimates the row and column subspaces for the true parameter Θ∗ in stage 1. In
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Algorithm 5 Generalized Explore Subspace Then Transform (G-ESTT)

Input: X , T, T1,D, the probability rate δ, parameters for Stage 2: λ, λ⊥.

Stage 1: Subspace Estimation
1: for t = 1 to T1 do
2: Pull arm Xt ∈ X according to D, observe payoff yt.

3: Obtain Θ̂ based on Eqn. (4.6).

4: Obtain the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤ where Û ∈ Rd1×r, V̂ ∈ Rd2×r.

Stage 2: Sparse Generalized Linear Bandits

5: Rotate the arm feature set: X ′ := [Û , Û⊥]
⊤X [V̂ , V̂⊥] and the admissible parameter space:

Θ ′ := [Û , Û⊥]
⊤Θ [V̂ , V̂⊥].

6: Define the vectorized arm set so that the last (d1 − r) · (d2 − r) components are negligible:

X0 := {vec(X ′
1:r,1:r), vec(X ′

r+1:d1,1:r), vec(X
′
1:r,r+1:d2), vec(X

′
r+1:d1,r+1:d2)},(4.3)

and similarly define the parameter set:

Θ0 := {vec(Θ ′
1:r,1:r), vec(Θ

′
r+1:d1,1:r), vec(Θ

′
1:r,r+1:d2), vec(Θ

′
r+1:d1,r+1:d2)}.(4.4)

7: For T2 = T − T1 rounds, invoke (P)LowGLM-UCB with X0,Θ0, k = (d1 + d2)r − r2, (λ0, λ⊥).

stage 2, it exploits the estimated subspaces and transforms the original matrix bandits into linear

bandits with sparsity, and then invoke a penalized approach called LowOFUL.

4.4.1. Subspace Exploration. For any real-value function f(·) defined on R, and symmetric

matrix A ∈ Rd×d with its SVD decomposition as A = UDU⊤, we define

f(A) := U diag(f(D11), . . . , f(Ddd))U
⊤.

To explore the valid subspace of the parameter matrix Θ∗, we firstly define a function ψ : R →

R (Minsker, 2018) in Eqn. (4.5) and subsequently we define ψ̃ν : Rd1×d2 → Rd1×d2 as ψ̃ν(A) =

ψ(νH(A))1:d1,(d1+1):(d1+d2)/ν for some parameter ν ∈ R+.

ψ(x) =


log(1 + x+ x2/2), x ≥ 0;

− log(1− x+ x2/2), x < 0.

(4.5)

We consider the following well-defined regularized minimization problem with nuclear norm penalty:

Θ̂ = arg min
Θ∈Rd1×d2

LT1(Θ) + λT1 ∥Θ∥nuc , LT1(Θ) = ⟨Θ,Θ⟩ − 2

T1

T1∑
i=1

⟨ψ̃ν(yi · S(Xi)),Θ⟩.(4.6)
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An interesting fact is that our estimator is invariant under different choices of function µ(·), and

we could present the following oracle inequality regarding the estimation error
∥∥∥Θ̂− µ∗Θ∗

∥∥∥
F

for

some nonzero constant µ∗ by adapting generalized Stein’s Method (Chen et al., 2010).

Theorem 4.4.1. (Bounds for GLM) For any low-rank generalized linear model with samples X1 . . . , XT1

drawn from X according to D in Assumption 4.3.3, and assume Assumption 4.3.4 and 4.3.5

hold, then for the optimal solution to the nuclear norm regularization problem (4.6) with ν =√
2 log(2(d1 + d2)/δ)/((4σ20 + S2

f )MT1(d1 + d2)) and

λT1 = 4

√
2(4σ20 + S2

f )M(d1 + d2) log(2(d1 + d2)/δ)

T1
,

with probability at least 1− δ it holds that:

∥∥∥Θ̂− µ∗Θ∗
∥∥∥2
F
≤
C1M(d1 + d2)r log(

2(d1+d2)
δ )

T1
,(4.7)

for C1 = 36(4σ20 + S2
f ) and some nonzero constant µ∗.

The proof of Theorem 4.4.1 is based on a novel adaptation of Stein-typed Lemmas and is deferred

to Appendix C.2. We believe this oracle bound is non-trivial since the rate of convergence is no

worse than that deduced from the restricted strong convexity (details in Appendix C.10) given

M = O((d1 + d2)
2), even without the regular sub-Gaussian assumption. For completeness, we also

present detailed proof of the matrix recovery rate with the restricted strong convexity in Appendix

C.10 which may be of separate interest. And its proof is highly different from the one used in the

simple linear case (Lu et al., 2021). We also present an intuitive explanation on why our Stein-type

method works well under our problem setting in Appendix C.10.2 even without the sub-Gaussian

assumption. In addition, this bound also holds under a more general SIM in Eqn. (4.2) other than

just GLM. Furthermore, although there exists a non-zero constant µ∗ in the error term, it will not

affect the singular vectors and subspace estimation of Θ∗ at all.

After acquiring the estimated Θ̂ in stage 1, we can obtain the corresponding SVD as

Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤, where Û ∈ Rd1×r, Û⊥ ∈ Rd1×(d1−r), V̂ ∈ Rd2×r and V̂⊥ ∈ Rd2×(d2−r).

And we assume the SVD of the matrix Θ∗ can be represented as Θ∗ = UDV ⊤ where U ∈ Rd1×r

and V ∈ Rd2×r. To transform the original generalized matrix bandits into generalized linear

bandit problems, we follow the works in Jun et al. (2019) and penalize those covariates that are
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Algorithm 6 LowGLM-UCB

Input: T2, k,X0, the probability rate δ, penalization parameters (λ0, λ⊥).

Initialize M1(cµ) =
∑T1

i=1 xs1,i x
⊤
s1,i

+ Λ/cµ.
for t ≥ 1 do

Estimate θ̂t according to (4.10).

Choose the arm xt = argmaxx∈X0{µ(x⊤θ̂t) + ρt(δ) ∥x∥M−1
t (cµ)

}, receive yt,
Update Mt+1(cµ)←−Mt(cµ) + xtx

⊤
t .

complementary to Û and V̂ . Specifically, we could orthogonally rotate the parameter space Θ and

the action set X as:

Θ ′ = [Û , Û⊥]
⊤Θ [V̂ , V̂⊥], X ′ = [Û , Û⊥]

⊤X [V̂ , V̂⊥],

Define the total dimension p := d1d2, the effective dimension k := d1d2−(d1−r)(d2−r) and the r-th

largest singular value for Θ∗ as Drr, and vectorize the new arm space X ′ and admissible parameter

space as shown in Eqn. (4.3) and (4.4). Then for the true parameter θ∗ after transformation,

we know that θ∗k+1:p = vec(Θ∗, ′
r+1:d1,r+1:d2

) is almost null based on results in Stewart (1990) and

Theorem 4.4.1:

∥∥θ∗k+1:p

∥∥
2
=
∥∥∥Û⊤

⊥UDV
⊤V̂⊥

∥∥∥
F
≤
∥∥∥Û⊤

⊥U
∥∥∥
F

∥∥∥V̂ ⊤
⊥ V

∥∥∥
F
· ∥D∥op ≲

(d1 + d2)Mr

T1D2
rr

log

(
d1 + d2

δ

)
:= S⊥.

(4.8)

Therefore, this problem degenerates to an equivalent d1d2−dimensional generalized linear bandit

with a sparse structure (i.e. last p − k entries of θ∗ are almost null according to Eqn. (4.8)).

To reload the notation we define X0,Θ0 as the new feature set and parameter space as shown in

Algorithm 5.

Remark. Note the magnitude of Drr would be free of d since Θ∗ contains only r nonzero singular

values, and hence we assume that Drr = Θ(1/
√
r) under Assumption 4.3.4. This issue has been

ignored in all previous analysis of explore-then-commit-type algorithms (e.g. ESTR (Jun et al.,

2019), LowESTR (Lu et al., 2021)), where the final regret bound of them should be of order

Õ(d3/2r
√
T ) instead of the originally-used Õ(d3/2

√
rT ) because of the existence of Drr.

4.4.2. G-ESTT. After reducing the original generalized matrix bandit problem into an iden-

tical p-dimensional generalized linear bandit problem in stage 2, we can reformulate the problem

in the following way: at each round t, the agent chooses a vector xt of dimension p from the
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transformed action set X0, and observes a noisy reward yt = µ(xt
⊤θ∗)+ ηt. To make use of our ad-

ditional knowledge shown in Eqn. (4.8), we propose LowGLM-UCB as an extension of the standard

generalized linear bandit algorithm GLM-UCB (Filippi et al., 2010) combined with self-normalized

martingale technique (Abbasi-Yadkori et al., 2011). Specifically, we consider the following max-

imum quasi-likelihood estimation problem shown in Eqn. (4.9) for each round with a weighted

regularizer, where the regularizer is ∥θ∥2Λ /2 = θ⊤Λθ/2 for some positive definite diagonal matrix

Λ = diag(λ0, . . . , λ0, λ⊥, . . . , λ⊥) with λ0 only applied to the first k diagonal entries. By enlarging

λ⊥, we ensure more penalization forced on the last p− k element of θ∗ as desired.

θ̂t = argmax
θ
L̃Λ
t (θ),

L̃Λ
t (θ) =

T1∑
i=1

[
ys1,ixs1,i

⊤θ − b(xs1,i⊤θ)
]
+

t−1∑
i=1

[
yixi

⊤θ − b(xi⊤θ)
]
− 1

2
∥θ∥2Λ .(4.9)

Here xs1,i in Eqn. (4.9) is the special vectorization shown in Eqn. (4.3) of [Û , Û⊥]
⊤Xi[V̂ , V̂⊥] where

Xi is the arm we randomly pull at i-th step in stage 1, and ys1,i is the corresponding payoff we

observe. xi in the second summation of Eqn. (4.9) refers to the arm we pull at i-th step in stage 2.

Since L̃Λ
t (θ) is a strictly concave function of θ, we have its gradient equal to 0 at the maximum θ̂t,

i.e. ∇θL̃Λ
t (θ)|θ̂t = 0. In what follows, for t ≥ 2, θ ∈ Rp we define the function gt(θ) and have that

∇θL̃Λ
t (θ) =

T1∑
i=1

ys1,i xs1,i +
t−1∑
i=1

yi xi −
( T1∑

i=1

µ(xs1,i
⊤θ)xs1,i +

t−1∑
i=1

µ(xi
⊤θ)xi + Λθ︸ ︷︷ ︸

:= gt(θ)

)
,

∇θL̃Λ
t (θ)|θ̂t = 0 =⇒ gt(θ̂t) =

T1∑
i=1

ys1,i xs1,i +

t−1∑
i=1

yi xi.(4.10)

We also define a matrix functionMt(s) =
∑T1

i=1 xs1,ix
⊤
s1,i

+
∑t−1

k=1 xkx
⊤
k +Λ/s for s ∈ R+ and denote

Vt :=Mt(1). Furthermore, a remarkable benefit of reusing the actions {Xi}T1i=1 we randomly pull in

stage 1 is that they contain more randomness and are preferable to the ones we select based on some

strategy in stage 2 regarding the parameter estimation because most vector recovery theory requires

sufficient randomness during sampling. More inspiring, the projection step in the tradition GLM-

UCB (Filippi et al., 2010), which might be nonconvex and hence hard to solve, is no longer required

due the consistency of θ̂t after reutilizing {Xi}T1i=1. Specifically, if we assume the true parameter
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θ∗ lies in the interior of Θ0 and the sampling distribution D satisfies sub-Gaussian property with

parameter σ, and Assumption 4.3.4, 4.3.5 held, then we can show that
∥∥∥θ̂t − θ∗∥∥∥

2
≤ 1 holds with

probability at least 1 − δ as long as T1 ≥ ((Ĉ1
√
p + Ĉ2

√
log(1/δ))/σ2)2 + 2B/σ2 holds for some

absolute constants Ĉ1, Ĉ2 with the definition B := 16σ20(p+ log(1/δ))/c2µ. An intuitive explanation

along with a rigorous proof are deferred to Appendix C.4 due to the space limit. The proposed

LowGLM-UCB is shown in Algorithm 6, and its regret analysis is presented in Theorem C.3.1 in

Appendix.

Notice that we can simply replaceMt(cµ) by Vt in Algorithm 6, and the regret bound would increase

at most up to a constant factor (Appendix C.7). A potential drawback of Algorithm 6 is that in

each iteration we have to calculate θ̂t, which might be computationally expensive. We could resolve

this problem by only recomputing θ̂t whenever |Mt(cµ)| increases significantly, i.e. by a constant

factor C > 1 in scale. And consequently we only need to solve the Eqn. (4.10) for O(log(T2)) times

up to the horizon T2, which remarkably saves the computation. Meanwhile, the bound of the regret

would only increase by a constant multiplier
√
C. We call this modified algorithm as PLowGLM-

UCB with the initial letter “P” standing for “Parsimonious”. Its pseudo-code and regret analysis

are given in Appendix C.8.1. Equipped with LowGLM-UCB in stage 2, we deduce the overall regret

of G-ESTT in the following text.

To quantify the performance of our algorithm, we first define αxt (·) and βxt (·) as

αt(δ) :=
kµ
cµ

(
σ0

√
k log(1 +

cµS2
0t

kλ0
) +

cµS2
0t

λ⊥
− log(δ2) +

√
cµ(
√
λ0S0 +

√
λ⊥S⊥)

)
,(4.11)

βxt (δ) := αt(δ) ∥x∥M−1
t (cµ)

.(4.12)

And the following Theorem 4.4.2 exhibits the overall regret bound for G-ESTT.

Theorem 4.4.2. (Regret of G-ESTT) Suppose we set T1 ≍
√
M(d1 + d2)rT log((d1 + d2)/δ)/Drr,

and we invoke LowGLM-UCB (or PLowGLM-UCB) in stage 2 with ρt(δ) = αt+T1(δ/2), p =

d1d2, k = (d1 + d2)r − r2, λ⊥ = cµS
2
0T/(k log(1 + cµS

2
0T/(kλ0))), and the rotated arm sets X0

and available parameter space Θ0. With M = O((d1 + d2)
2), the overall regret of G-ESTT is, with

probability at least 1− δ,

RegretT = Õ

(
(

√
r(d1 + d2)M

Drr
+ k)
√
T

)
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Algorithm 7 Generalized Explore Subspace Then Subtract (G-ESTS)

Input: X , T, T1,D, the probability rate δ, parameters for Stage 2: λ, λ⊥.

Stage 1: Subspace Estimation
1: Randomly choose Xt ∈ X according to D and record Xt, Yt for t = 1, . . . T1.

2: Obtain Θ̂ from Eqn. (4.6), and calculate its full SVD as Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤ where Û ∈

Rd1×r, V̂ ∈ Rd2×r.
Stage 2: Low Dimensional Bandits

3: Rotate the arm feature set: X ′ := [Û , Û⊥]
⊤X [V̂ , V̂⊥] and the admissible parameter space:

Θ ′ := [Û , Û⊥]
⊤Θ [V̂ , V̂⊥].

4: Define the vectorized arm set so that the last (d1 − r) · (d2 − r) components are negligible, and
then drop them:

X0,sub := {vec(X ′
1:r,1:r), vec(X ′

r+1:d1,1:r), vec(X
′
1:r,r+1:d2)},(4.13)

and also refine the parameter set accordingly:

Θ0,sub := {vec(Θ ′
1:r,1:r), vec(Θ

′
r+1:d1,1:r), vec(Θ

′
1:r,r+1:d2)}.(4.14)

5: For T2 = T − T1 rounds, invoke any misspecified generalized linear bandit algorithm with
X0,sub,Θ0,sub, k = (d1 + d2)r − r2.

Specifically, with M = O((d1 + d2)
2), the regret bound becomes Õ

(
(
√
r(d1 + d2)3/Drr + k)

√
T
)
.

4.4.3. G-ESTS. Although G-ESTT is more efficient than all existing algorithms on our prob-

lem setting, it still needs to calculate the MLE in high dimensional space which might be increasingly

formidable with large sizes of feature matrices. Note this computational issue remains ubiquitous

among most bandit algorithms on high dimensional problems with sparsity, not to mention these

algorithms rely on multiple unspecified hyperparameters. Therefore, to handle this practical issue,

we propose another fast and efficient framework called G-ESTS in this section.

Inspired by the success of dimension reduction in machine learning (Van Der Maaten et al., 2009),

we propose G-ESTS as shown in Algorithm 7. And we summarize the core idea of G-ESTS as:

After rearranging the vectorization of the action set X ′ and the unknown Θ′ ∗ as we have shown in

Eqn. (4.3) and (4.4) for G-ESTT, we can simply exclude, rather than penalize, the subspaces that

are complementary to the rows and columns of Θ̂. In other words, we could remove the last p− k

entries directly, i.e. Eqn. (4.13) and (4.14). Intriguingly, not only can we get a low-dimensional (k)

generalized linear bandit problem in stage 2, where redundant dimensions are excluded and hence

any state-of-the-art algorithms could be readily invoked. Specifically, by utilizing any misspecified

generalized linear bandit algorithm, we could validate the following Theorem 4.4.3.
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Theorem 4.4.3. (Regret of G-ESTS) Suppose we set T1 ≍
√
M(d1 + d2)3/2r3/2T log((d1 + d2)/δ)/Drr,

and we invoke any efficient misspecified generalized linear bandit algorithm with regret bound Õ(ϵ
√
kT )

2 in stage 2 with p = d1d2, k = (d1 + d2)r − r2, and the reduced arm sets X0,sub and available pa-

rameter space Θ0,sub. The overall regret of G-ESTS is, with probability at least 1− δ,

RegretT = Õ

(
(

√
r3/2(d1 + d2)3/2M

Drr
+ k)
√
T

)
.

Specifically, with M = O((d1 + d2)
2), the regret bound becomes Õ

(√
r3/2(d1 + d2)7/2T/Drr

)
.

Although our G-ESTS could achieve decent theoretical regret bound only equipped with misspeci-

fied generalized linear bandit algorithms, we showcase in practice it can work well with any state-

of-the-art generalized linear bandit algorithm: In the following experiments, We will implement the

SGD-TS algorithm (Ding et al., 2021) in stage 2 of G-ESTS since SGD-TS could efficiently proceed

with only O(dT ) complexity for d−dimensional features over T rounds. Therefore, the total com-

putational complexity of stage 2 is at most O(T2(d1 + d2)r), which is significantly less than that

of other methods for low-rank matrix bandits (e.g. LowESTR (Lu et al., 2021)). And the total

time complexity of G-ESTS would only scale O(T1d1d2/ϵ
2 + T2(d1 + d2)r) where ϵ is the accuracy

for subgradient methods in stage 1. This fact also firmly validates the practical superiority of our

G-ESTS approach. We naturally believe that this G-ESTS framework can be easily implemented

in the linear setting as a special case of GLM, where in stage 2 one can utilize any linear bandit

algorithm accordingly. In addition, we can easily modify our approaches for the contextual setting

by merely transforming the action sets at each iteration with the same regret bound. More details

with pseudo-codes for the contextual case are in Appendix C.8.3.

4.5. Experimental Results

In this section, we show by simulation experiments that our proposed G-ESTT (with LowGLM-

UCB), G-ESTS (with SGD-TS) outperform existing algorithms for the generalized low-rank matrix

bandit problems. Since we are the first to propose a practical algorithm for this problem, currently

there is no existing literature for comparison. In order to validate the advantage of utilizing low-rank

structure and generalized reward functions, we compare with the original SGD-TS after näıvely

2Modern misspecified generalized linear bandit algorithms can achieve Õ(ϵ
√
kT ) bound of regret where ϵ is the

misspecified rate.
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Table 4.1. Time in minutes required to make decisions all over round T in simu-
lations (480 arms).

d 10 12

r 1 2 1 2

G-ESTS 39.46 45.41 41.28 48.52
G-ESTT 516.14 531.95 520.25 539.83
SGD-TS 99.57 101.34 101.82 104.42
LowESTR 401.88 419.15 410.31 425.92

flattening the d1 by d2 matrices without using the low-rank structure, and LowESTR (Lu et al.,

2021), which works well for linear low-rank matrix bandits.

We simulate a dataset with d1 = d2 = 10 (12) and r = 1 (2): when r = 1, we set the diagonal

matrix Θ∗ as diag(Θ∗) = (0.8, 0, · · · , 0). When r = 2, we set Θ∗ = v1v
⊤
1 + v2v

⊤
2 for two random

orthogonal vectors v1, v2 with ∥v1∥2 = ∥v2∥2 = 3. For arms we draw 480 (1000) random matrices

from {X ∈ Rd1×d2 : ∥X∥F ≤ 1}, and we build a logistic model where the payoff yt is drawn

from a Bernoulli distribution with mean µ(X⊤
t θ

∗). More details on the hyper-parameter tuning

are in Appendix C.9. Each experiment is repeated 100 times for credibility and the average regret,

along with standard deviation, is displayed in Figure 4.1. Note that our experiments are more

comprehensive than those in Lu et al. (2021). And due to the expensive time complexity of UCB-

based baselines (Table 4.1), it is formidable for us to increase d here.

From the plots, we observe that our algorithms G-ESTT and G-ESTS always achieve less regret

compared with LowESTR and SGD-TS in all four scenarios consistently. Intriguingly, in the warm-

up period SGD-TS incurs less regret compared with our methods due to the sacrifice of random

sampling in stage 1, but our proposed framework quickly overtakes SGD-TS after utilizing the

low-rank structure as desired. This phenomenon exactly coincides with our theory. Notice that

G-ESTT is slightly better than G-ESTS in the case for r = 2 especially in the very beginning of

stage 2, and we believe it is because that our G-ESTT could reutilize the actions in stage 1 and

hence could yield more robust performance when switching to stage 2. However, G-ESTS would

gradually catch up with G-ESTT in the long run as expected. Besides, it costs G-ESTS extremely

less running time than other existing methods to update the decisions due to its dimensional

reduction as shown in Table 4.1. We also observe that the cumulative regret of G-ESTS tends to

become better eventually if we increase T1 decently. (Further investigation and plots for 1000 arms
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Figure 4.1. Plots of regret curves of algorithm G-ESTS, G-ESTT, SGD-TS and
LowESTR under four settings (480 arms). (a): diagonal Θ∗ d1 = d2 = 10, r = 1;
(b): diagonal Θ∗ d1 = d2 = 12, r = 1; (c): non-diagonal Θ∗ d1 = d2 = 10, r = 2; (d):
non-diagonal Θ∗ d1 = d2 = 12, r = 2.

are in Appendix C.9.) Moreover, to pre-check the efficiency of our Stein’s lemma-based method

for subspace estimation shown in Eqn. (4.6), we also tried some other low-rank subspace detection

algorithms for comparison. The details are also deferred to Appendix C.9.4 due to the space limit.
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CHAPTER 5

Low-rank Matrix Bandits under Heavy-tailed Rewards

5.1. Introduction

The Multi-armed Bandit (MAB) has proven to be a powerful framework to model various decision-

making problems with great applications to medical trials (Villar et al., 2015), personalized recom-

mendation (Li et al., 2010), and hyperparameter learning (Ding et al., 2022b; Kang et al., 2024a),

etc. To leverage the side information (contexts) of arms in real-world scenarios, the most important

variant of MAB, named stochastic linear bandit (SLB), has been extensively investigated. However,

the rise of high-dimensional sparse data in modern applications has revealed the inefficiencies of the

traditional SLB, particularly in its failure to account for sparsity. To address this limitation, the

stochastic high-dimensional bandit with low-dimensional structures has emerged as the pioneering

model, such as the LASSO bandit (Bastani & Bayati, 2020) and the low-rank matrix bandit (Jun

et al., 2019). In this work, we investigate the stochastic low-rank matrix bandit, where at each

round t the agent first observes the arm set Xt ⊆ Rd1×d2 composing of context matrices (Xt can be

infinite and changing over time). Then the agent pulls an arm Xt ∈ Xt and only obtains its asso-

ciated noisy reward yt = ⟨Xt,Θ
∗⟩ + ηt with some inherent low-rank parameter Θ∗ and zero-mean

white noise ηt. This bandit problem is broadly applicable in recommendation systems with pair

contexts, like dating service and combined flight-hotel promotion (Kang et al., 2022).

In all existing literature on low-rank matrix bandit, a default assumption is that the noise ηt

is sub-Gaussian conditioned on historical observations (Jun et al., 2019). However, in various

real-world scenarios such as financial markets (Bradley & Taqqu, 2003; Cont & Bouchaud, 2000),

there’s a notable trend where extreme noise, a.k.a. heavy-tailed noise, in observations occur more

frequently than what would be expected under a sub-Gaussian distribution, in which case previous

studies would become futile. These heavy-tailed observations do not exhibit exponential decay

and may crucially affect the estimation. To address this challenge, a line of algorithms has been

proposed to handle heavy-tailed noise under MAB (Bubeck et al., 2013) and SLB (Medina & Yang,
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2016). However, to the best of our knowledge, effectively managing heavy-tailed noise under the

more complex and efficient low-rank matrix bandit framework remains unexplored. In this study,

we examine this crucial problem: low-rank matrix bandit with heavy-tailed rewards (LowHTR).

Specifically, to keep consistent with the heavy-tailed studies under MAB and SLB, we assume that

the noise has finite (1 + δ) moment for some δ ∈ (0, 1]. We first propose an efficient algorithm

named LOTUS when T is unrevealed to the agent. Then we demonstrate it attains a regret lower

bound of LowHTR for the order of T ignoring logarithmic factors. Our LOTUS can be further

improved to be agnostic to rank r with slightly worse regret bound.

The detailed contributions of our work can be summarized as follows: (1) inspired by the success

of Huber loss (Kang & Kim, 2023; Sun et al., 2020) and nuclear norm penalization (Negahban

& Wainwright, 2011), we first introduce a convex-relaxation-based estimator to approximate the

low-rank parameter matrix with heavy-tailed noise. As far as we’re aware, our work is the first

one to solve the trace regression problem under arbitrary heavy-tailed noise with bounded (1 + δ)

moment (δ ∈ (0, 1)), which is highly non-trivial and stands as a noteworthy advancement on its own

merits. (2) Equipped with the aforementioned estimator, we develop an algorithm named LOTUS

for LowHTR. LOTUS exploits the estimated subspace by proposing a sub-method called LowTO

that extends from the TOFU algorithm (Shao et al., 2018) designed for SLB with heavy-tailed noise.

Our LowTO truncates the rewards to mitigate the heavy-tailed effect and penalizes the redundant

features within the sparsity structure. When the total horizon T is unrevealed, our algorithm

could adaptively switch between exploration and exploitation to achieve the Õ(d
3
2 r

1
2T

1
1+δ /D̃rr)

1

regret bound. (3) We further provide a lower bound for LowHTR of order Ω(d
δ

1+δ r
δ

1+δT
1

1+δ ),

which indicates that our LOTUS is nearly optimal in the scale of T . (4) While all existing works

on low-rank matrix bandits require a priori knowledge of the rank r, we further improve our

LOTUS to operate without knowing r even under the more difficult heavy-tailed setting with

Õ(dr
3
2T

1+δ
1+2δ + d

3
2 r

1
2T

1
1+δ ) regret bound, which is better than the trivial one in high-dimensional

case, i.e. when d ≳ T
δ2

(1+2δ)(1+δ) . Intuitively, it obtains a useful rank r̂ by truncating the estimated

singular values at each batch. (4) The practical superiority of our LOTUS is then firmly validated

in our simulations.

1Õ ignores polylogarithmic factors. d := d1 ∨ d2 and D̃rr := (Drr − 1)1δ=1 + 1 where Drr is the r-th singular value
of Θ∗.
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5.2. Related Work

Besides the line of literature on stochastic low-rank matrix bandit with sub-Gaussian noise that is

summarized in Chapter 4, we would introduce some other work that is related with our topic.

Bandit under Heavy-tailedness. Research on bandits with heavy-tailed rewards assumes the

noise has finite (1 + δ) moment, δ ∈ (0, 1), and most existing algorithms follow two key strategies:

truncation and median of means. Start with Bubeck et al. (2013), a UCB-based algorithm was

proposed for MAB with heavy-tailed rewards, enjoying a logarithmic regret bound. To extend

their study to the SLB setting, Medina & Yang (2016) developed two algorithms based on the

truncation and median of means ideas, but both methods could only attain the regret bound of

order Õ(T
3
4 ) when ϵ = 1, which fails to fulfill our expectations. Shao et al. (2018) then refined their

results on SLB and introduced two algorithms with improved regret bound. They also constructed a

matching lower bound with T . Xue et al. (2020) investigated on the finite arm case and provided two

SubLinUCB-based (Chu et al., 2011) algorithms. Recently, Kang & Kim (2023) borrowed the ideas

from Huber regression and proposed an improved Huber bandit under finite arm sets. However,

their work is confined to the low-dimensional bandit without sparsity, and their parameter vectors

are presumed to be arm-dependent under the finite arm set. Another contemporary work (Xue

et al., 2023) developed a nearly optimal algorithm for arbitrary arm sets with reduced computation

in practice. Yet, none of these studies tackle the heavy-tailedness under the more challenging

contextual high-dimensional bandits problem with sparsity, a useful niche our work aims to fill.

Matrix Recovery under Heavy-tailedness. All studies on low-rank matrix estimation revolve

around two ideas: Convex approaches tend to replace the classic square loss with some more robust

ones, like the renowned Huber loss (Huber, 1965; Sun et al., 2020). Tan et al. (2022) considered the

sparse multitask regression under heavy-tailed noise, contrasting our focus on the trace regression

problem. The two works most closely related to ours are Fan et al. (2021); Yu et al. (2023). Fan et al.

(2021) established a two-step method for the robust trace regression, but they assumed the noise

possesses finite 2k moment for k > 1 and their approximation error is not even proportional to the

noise size. Yu et al. (2023) further employed the Huber loss to develop an enhanced regressor with

error aligned with the noise scale as long as the noise has bounded variance. In our work, we further

complement their result and revisit the Huber-type estimator robust to noise with only finite (1+δ)
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moment for any δ ∈ (0, 1], and we deduce the error rate of order Õ((d/n)
δ

1+δE(|ηt|1+δ)
1

1+δ ) scaling

with the noise scale decently. On the other hand, nonconvex methods aim to seek local optima of

the matrix recovery problem via gradient descent. The notable work Shen et al. (2022) developed

a Riemannian sub-gradient method and attained the optimal statistical rate under heavy-tailed

noises with bounded (1+ δ) moment, but their work relies on some additional assumptions like the

noise is symmetric or zero-median. In summary, our work stands as the first solution to address

the trace regression problem under arbitrary heavy-tailed noise with only bounded (1+ δ) moment

(δ ∈ (0, 1)), which is significant on its own strengths.

5.3. Preliminaries

We will present the setting of LowHTR and introduce the common assumptions for theoretical

analysis in this section. Denote T as the total horizon, which may be unknown to the agent. At

each round t ∈ [T ], the agent is given an arm set Xt ⊆ Rd1×d2 (d1 ≍ d2) that can be fixed or varying

over time. Then the agent chooses an arm Xt ∈ Xt and observes the associated stochastic reward

yt such that,

yt = ⟨Xt,Θ
∗⟩+ ηt,(5.1)

where Θ∗ ∈ Rd1×d2 is an unknown parameter matrix with rank r ≪ d1 ∧ d2 and ηt is the

heavy-tailed noise. Specifically, we assume E(ηt|Ft) = 0 and E(|ηt|1+δ|Ft) ≤ c for some δ ∈

(0, 1], c > 0 conditional on the history filtration Ft = {Xt, Xt−1, ηt−1, . . . , X1, η1}, which indicates

that E(yt|Ft) = ⟨Xt,Θ
∗⟩. The compact SVD of Θ∗ can be written as Θ∗ = UDV ⊤ for some

U ∈ Rd1×r and V ∈ Rd2×r, and we denote Dii as its i-th largest singular value. Furthermore, we

define X∗
t := argmaxX∈Xt⟨X,Θ∗⟩ as the feature matrix of the optimal arm at round t, and the goal

is to minimize the cumulative regret in total T rounds formulated as RT =
∑T

t=1⟨X∗
t ,Θ

∗⟩−⟨Xt,Θ
∗⟩.

Next, we present two mild and regular assumptions.

Assumption 5.3.1. We can find a sampling distribution D over Xt with the covariance matrix Σ,

such that D is sub-Gaussian with parameter σ2 ≍ cl := λmin(Σ) ≍ 1/(d1d2).

Assumption 5.3.1 is commonly used in the modern low-rank matrix bandits (Kang et al., 2022; Lu

et al., 2021), and can be easily satisfied in many cases. For instance, when Xt is a region in Rd1×d2
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(e.g., Euclidean unit ball), we can find such a sampling distribution if the convex hull of this region

contains a ball with some constant radius. And when Xt is a finite set, it suffices if the arms are

IID drawn from some sub-Gaussian distribution at each time. Note a random matrix X ∈ Rd1×d2

follows sub-Gaussian distribution with parameter σ2 if for any t ∈ R s.t.,

P (⟨A,X⟩ ≥
√
2 ∥A∥F t)≤2 exp

(
−t2/σ2

)
, ∀A∈Rd1×d2 .

Assumption 5.3.2. We have ∥Θ∗∥F ≤ S, and for any t ∈ [T ], X ∈ Xt, it holds that ∥X∥F ≤ S.

Assumption 5.3.2 is very standard in contextual bandit literature. As a consequence, we can deduce

that E(|yt|1+δ|Ft) ≤ 2δS2 + 2δc := b. Based on the conditions on the sub-Gaussian parameter σ

in Assumption 5.3.1, we can prove that ∥X∥F is bounded in a constant scale with high probability

with its proof in Appendix D.1. But for simplicity and consistency with previous literature, we still

impose this common assumption to bound ∥X∥F here. Note our work can be naturally extended to

the generalized low-rank matrix bandit problem by further assuming the derivative of the inverse

link function is bounded in the interval [−S2, S2]. Such an adaptation would result in the final

regret bound being affected only by a constant factor, and we will leave it as our future work.

5.4. Methods

In this section, we present our novel LowTO With Estimated Subspaces (LOTUS) algorithm for the

LowHTR problem. Our algorithm runs in a batched format adapted from the doubling trick (Besson

& Kaufmann, 2018). And inspired by the success of the two-stage framework in ESTR (Jun et al.,

2019), in each batch our algorithm also first recovers the subspaces spanned by Θ∗, and then invokes

a new approach called LowTO that heavily penalizes on columns and rows complementary to our

estimated subspaces. Contrasting prior works, our algorithm could dynamically switch between

the exploration and exploitation stages so as to be agnostic to the horizon T , which is significantly

more useful. We further improve LOTUS to operate without knowing the sparsity r, which further

enhances its practicality.

Initially, we will introduce the nuclear penalized Huber-type low-rank matrix estimator under

heavy-tailed noise as follows. Contracting the results in Yu et al. (2023), we further prove that our

Huber-type estimator is robust to arbitrary heavy-tailed noise with the finite (1 + δ) moment for

δ ∈ (0, 1) on the trace regression problem.
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Algorithm 8 LowTO With Estimated Subspaces (LOTUS)

Input: Arm set Xt, sampling distribution Dt, δ, T0, η, λ, {λi,⊥}+∞
i=1 .

Initialization: The history buffer index set H1 = {}, the exploration buffer index set H2 = {}.
1: Pull arm Xt ∈ Xt according to Dt and observe payoff yt. Then add (Xt, yt) into H1 and H2 for
t ≤ T0.

2: for i = 1, 2, . . . until the end of iterations do

3: Set the exploration length T1 = min

{[
d2+4δr1+δ

D2+2δ
rr

2i(1+δ)
] 1

1+3δ
, 2i
}
.

4: For iteration t from |H1| + 1 to |H1| + T1, pull arm Xt ∈ Xt according to Dt and observe
payoff yt. Then add (Xt, yt) into H1 and H2

5: Obtain the estimate Θ̂ based on Eqn. (5.3) with H2, where we set τi ≍(
|H2|/(d+ ln (2i+1/ϵ))

) 1
1+δ c

1
1+δ , λi ≍ σ

(
(d+ ln (2i+1/ϵ))/|H2|

) δ
1+δ c

1
1+δ .

6: Calculate the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤ where Û ∈ Rd1×r, V̂ ∈ Rd2×r.

7: For T2 = 2i − T1 rounds, invoke LowTO with δ, [Û , Û⊥], [V̂ , V̂⊥], λ, λi,⊥,H1 and obtain the
updated H1.

5.4.1. Low-rank Matrix Estimation. Suppose we collect n pairs of data {(Xi, yi)} accord-

ing to some distribution satisfying Assumption 5.3.1 for Xi and the model of Eqn. (5.1) for the

associated yi after time n. Define the Huber loss (Huber, 1965) lτ (·) parameterized by the robus-

tification τ > 0 (Sun et al., 2020) as:

lτ (x) =


x2/2 if |x| ≤ τ,

τ |x| − τ2/2 if |x| > τ.

To obtain a low-rank matrix estimate, we use the nuclear norm penalization as a convex surrogate

for the rank and implement the following nuclear norm regularized Huber regressor to recover the

subspaces under heavy-tailedness:

Θ̂ = arg min
Θ∈Rd1×d2

L̂τ,[n](Θ) + λ ∥Θ∥nuc , L̂τ,[n](Θ) =
1

n

∑
i∈[n]

lτ (yi − ⟨Xi,Θ⟩) ,(5.2)

where τ and λ stand for the Huber loss robustification and the nuclear norm penalization parame-

ters, respectively.

We then establish the following statistical properties of the estimator defined in Eqn. (5.2):

Theorem 5.4.1. By extending Assumption 5.3.1 with any order of σ and cl, With probability

at least 1 − ϵ, the low-rank estimator Θ̂ in Eqn. (5.2) with τ ≍ (n/(d+ ln (1/ϵ)))
1

1+δ c
1

1+δ and
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λ ≍ σ ((d+ ln (1/ϵ))/n)
δ

1+δ c
1

1+δ satisfies

∥∥∥Θ̂−Θ∗
∥∥∥
F
≤ C1

σ

cl

(
d+ ln (1/ϵ)

n

) δ
1+δ

c
1

1+δ
√
r,

for some constant C1 as long as we have n ≳ drν3, d, ν2, and (d− ln (ϵ))
√
rν3 with ν = σ2/cl.

The proof of Theorem 5.4.1 involves a construction of the restricted strong convexity for the empir-

ical Huber loss function L̂τ (·) and a deduction of an upper bound for
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op
, and the details

are presented in Appendix D.4. Note Theorem 5.4.1 generally holds without any restriction on the

scale of σ and cl. Provided the noise has a finite variance, i.e., δ = 1, the deduced l2-error rate aligns

with the minimax value (Fan et al., 2019) under the standard penalized low-rank estimator with

sub-Gaussian noise. Based on our knowledge, this is the first error bound in the trace regression

problem under noise with finite (1 + δ) moment (δ < 1) assuming nothing further.

To solve the convex optimization problem in Eqn. (5.2), we adopt the local adaptive majorize-

minimization (LAMM) method (Fan et al., 2018; Sun et al., 2020; Yu et al., 2023) that is fast

to use and scalable to large datasets. This method constructs an isotropic quadratic function to

upper bound the Huber loss and utilizes a majorize-minimization algorithm for finding the optimal

solution. One noteworthy advantage of this procedure is that the minimizer often yields a closed-

form solution. Due to the space limit, we defer more details and the pseudocode to Appendix D.3.

5.4.2. LOTUS: The Rank r is Known. We will present our LOTUS algorithm in this

subsection. To improve the two-stage framework introduced in Jun et al. (2019) which requires

the knowledge of T and to further yield robust performance against heavy-tailedness, our LOTUS

adaptively switches between exploration and exploitation in a batch manner without knowing T ,

and is equipped with a new LowTO algorithm designed for heavy-tailed rewards. The LOTUS

algorithm is presented in Algorithm 8, with three core steps introduced in detail as follows:

Adaptive Exploration and Exploitation: Drawing inspiration from the doubling trick (Besson

& Kaufmann, 2018), after some warm-up iterations of size T0, our LOTUS operates with batches un-

til termination where the batch sizes increase exponentially as {2i}+∞
i=1 . We define H1 and H2 as the

history and exploration buffer index sets, where after time t all the indexes [t] of past observations

are included in H1 while H2 only contains sample indexes particularly used for subspace estimation

of Θ∗. At the i-th batch of length 2i, we first set T i1 = min{(d2+4δr1+δ2i+iδ/D2+2δ
rr )

1
1+3δ , 2i} as
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the exploration length, and we randomly sample T1 arms according to the sampling distribution in

Assumption 5.3.1 and put their indexes into both H1 and H2. Subsequently, we obtain an estimate

Θ̂ based on Eqn.(5.2) with samples indexed by H2, and then leverage the recovered subspaces in the

remaining T i2 = 2i − T i1 rounds as the exploitation phase, where we invoke a new algorithm named

LowTO. The details of this exploitation phase will be elaborated in the following two points. As

shown in Algorithm 8 line 8, indexes of observations under LowTO are only added to H1 but not

H2 and hence will not be used for matrix estimation. Unlike the traditional doubling trick that

restarts the algorithm at each batch, our algorithm facilitates interaction across different batches.

Specifically, at the i-th batch, it utilizes all the samples in H1 and H2 accumulated from the pre-

vious batches for more informed decision-making. Another point to highlight is that our LOTUS

algorithm can also be run in a more randomized manner with the same regret bound: at the i-th

batch, there is an option to explore with a probability of T i1/2
i and to exploit with the remaining

probability. We defer its pseudocode to Appendix D.2. For simplicity, we consider our original

approach in this work, which involves an initial exploration phase of deterministic length followed

by the use of LowTO.

Subspace Transformation: At the i-th batch, after we randomly sample arms for a carefully

designed duration and add their observations into H2, we first acquire the estimated Θ̂ based

on the current H2 as shown in Eqn. (5.3). With the knowledge of r, then we can obtain its

corresponding full SVD as Θ̂ = [Û , Û⊥]D̂[V̂ , V̂⊥]
⊤ where Û ∈ Rd1×r, Û⊥ ∈ Rd1×(d1−r), V̂ ∈ Rd2×r

and V̂⊥ ∈ Rd2×(d2−r).

Θ̂ = arg min
Θ∈Rd1×d2

L̂τi,H2(Θ) + λi ∥Θ∥nuc(5.3)

Intuitively, Theorem 5.4.1 implies that our estimated column and row subspaces should align with

the ground truth U, V . Borrowing the ideas from ESTR (Jun et al., 2019), we aim to transform the

original LowHTR into the linear bandit problem under heavy-tailed rewards with some sparsity

feature. Specifically, we first orthogonally rotate the actions set Xj in the exploitation phase as

X−
j =

{
[Û , Û⊥]

⊤X[V̂ , V̂⊥] : X ∈ Xj
}
,(5.4)

Θ∗,′ = [Û , Û⊥]
⊤Θ∗[V̂ , V̂⊥].(5.5)
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Define the total dimension p := d1d2 and the effective dimension k := p − (d1 − r)(d2 − r). We

perform a tailored vectorization of the arm set X−
j as in Algorithm 9 line 4 to obtain a new arm

set X ′
t ⊆ Rp, and denote θ∗ to be the corresponding rearranged version of vec(Θ∗,′) such that

θ∗k+1:p = vec(Θ∗,′
r+1:d1,r+1:d2

). Then it holds that θ∗k+1:p is nearly zero based on the results in Stewart

(1990) and Theorem 5.4.1. The formal result is shown as follows for the i-th batch with probability

at least 1− ϵ:

∥∥θ∗k+1:p

∥∥
2
≲ S⊥ :=

rσ2c
2

1+δ

c2lD
2
rr

(
d+ ln (1/ϵ)

|H2|

) 2δ
1+δ

,(5.6)

with the parameter setting that

τi ≍ (|H2|/(d+ ln (1/ϵ)))
1

1+δ c
1

1+δ , λi ≍ σ ((d+ ln (1/ϵ))/|H2|)
δ

1+δ c
1

1+δ ,

Its complete proof is presented in Appendix D.6. Consequently, we can simplify the LowHTR

problem to an equivalent p-dimensional linear bandits under heavy-tailedness with a unique sparse

pattern, i.e., the final (p− k) entries of θ∗ are almost zero based on Eqn. (5.6).

Following the recovery of row and column subspaces of Θ∗ and the particular arm set transformation

after T i1 rounds in the i-th batch, we will leverage the resulting almost-low-dimensional structure

by using the following LowTO algorithm for the rest of the batch’s duration.

LowTO Algorithm: To begin with, we reformulate the resulting p-dimensional linear bandit

problem under heavy-tailed rewards in the following way: at round t, the agent chooses an arm

xt ∈ X ′
t of dimension p where X ′

t is a rearranged vectorization of X−
t as defined in Algorithm 9 line

4, and observes a noisy payoff yt = x⊤t θ
∗ + ηt mixed with some heavy-tailed noise ηt.

Our LowTO algorithm is presented in Algorithm 9. Inspired by LowOFUL in the ESTRmethod (Jun

et al., 2019), to exploit the additional pattern of θ∗ shown in Eqn. (5.6), we propose the almost-low-

dimensional truncation under OFU (LowTO) algorithm As shown in Algorithm 9 line 2, our LowTO

also truncates each entry of M−1/2xiyi for i = 1, . . . , t − 1 at time t by some increasing threshold

bt, Different from linear bandits under heavy-tailedness, when calculating the estimator θ̂ in Algo-

rithm 9 line 3, we put a weighted regularizer as the diagonal matrix Λ = diag(λ, . . . , λ, λ⊥, . . . , λ⊥)

with λ only applied to the first k coordinates. By amplifying λ⊥, we ensure greater penalization is

applied to the final p− k elements of θ̂ leading to their diminished values, and this phenomenon is

well intended under the almost-low-dimensional structure. Subsequently, we utilize a UCB-based

62



Algorithm 9 LowTO

Input: T, δ, [Û , Û⊥], [V̂ , V̂⊥], λ0, λ⊥,H1.

Stage M=
∑

(x,y)∈H′
1
xx⊤+Λ =

∑|H′
1|

t=1 xs,tx
⊤
s,t+Λ, X⊤=[xs,1, . . . , xs,|H′

1|], [u1, . . . , up]
⊤=M− 1

2X⊤

with H′
1 =

{(
x⊤s,t = [vec(Û⊤XV̂ )⊤, vec(Û⊤XV̂⊥)

⊤,

vec(Û⊤
⊥XV̂ )⊤, vec(Û⊤

⊥XV̂⊥)
⊤], ys,t = y

)
: (X, y)∈H1

}
.

Λ = diag([λ0, . . . , λ0︸ ︷︷ ︸
k

, λ⊥, . . . , λ⊥︸ ︷︷ ︸
p− k

])

1: for t = 1 to T do
2: Get ŷi=[ys,11ui,1ys,1≤bt−1 , . . . , yt−11ui,|H1|+t−1yt−1

≤bt−1 ]
⊤ for i ∈ [p], where ŷi ∈ R|H1|+t−1.

3: Calculate θ̂t−1 =M−1/2[u⊤1 ŷ1, . . . , u
⊤
p ŷp]

⊤.
4: Transform the arm set Xt as

X ′
t =
{
[vec(Û⊤XV̂ )⊤, vec(Û⊤XV̂⊥)

⊤, vec(Û⊤
⊥XV̂ )⊤,

vec(Û⊤
⊥XV̂⊥)

⊤]⊤ ∈ Rp : X ∈ Xt
}
.

5: Pull xt = argmaxx∈X ′
t
x⊤θ̂t−1 + βt−1 ∥x∥M−1 and observe the reward yt.

6: Restore xt into its original matrix form Xt and then add (Xt, yt) into H1.

7: Update M =M + xtx
⊤
t , X

⊤ = [X⊤, xt] and [u1, . . . , up]
⊤ =M−1/2X⊤.

8: return The history buffer H1.

criterion to choose the pulled arm according to Algorithm 9 line 5, where we also decrease the vari-

ation of the last p−k elements withM−1 to further reduce their impact on the decision-making. It

is also noteworthy that we always reuse all the past observations stored in H1 at each batch when

initializing the matrix M , which can facilitate a consistent and accurate estimator θ̂ in the early

stage of the exploitation phase. And the randomly drawn samples in H1 contain more stochasticity

and thus are more preferable for the parameter estimation.

We then state the regret bound of LowTO in Theorem 5.4.2:

Theorem 5.4.2. Suppose the input H1 is of size H ≲ T and we run our LowTO algorithm for

T rounds. By setting bt = (b/ log(2p/ϵ))
1

1+δ (t + H)
1−δ
2+2δ , βt = 4

√
pb

1
1+δ log(2p/ϵ)

δ
1+δ (t + H)

1−δ
2+2δ +

√
λ0S+

√
λ⊥S⊥ with λ⊥ = S2T2/(k log(1+

S2T
kλ0

)), with probability at least 1−ϵ, the regret of LowTO

can be bounded by:

Õ
(√

kp (T +H)
1

1+δ +
√
kT + S⊥T

)
,

where S⊥ is the upper bound of ∥θk+1:p∥2 as shown in Eqn. (5.6) depending on |H2|.
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In standard linear bandit under heavy-tailed noise case, we can recover the same regret bound of

TOFU in the order of Õ(p · T
1

1+δ ) by setting S⊥ = S and λ⊥ = λ.

Overall regret: Now we are ready to present the overall regret bound for LOTUS in the following

Theorem 5.4.3.

Theorem 5.4.3. By using the configuration of LowTO described in Theorem 5.4.2 and the param-

eter values of LOTUS shown in Algorithm 8 for each batch, and set ϵ as ϵ/2i+1 in βt (formulated

in Theorem 5.4.2) for the i-th batch. Then with probability at least 1− ϵ, it holds that

R(T ) ≤ Õ
(
d

2+4δ
1+3δ r

1+δ
1+3δT

1+δ
1+3δ /D

2+2δ
1+3δ
rr + d

3
2 r

1
2T

1
1+δ

)
,

under the condition that T1 ≥ 5d
1+2δ

δ r
1+δ
2δ /D

1+δ
δ

rr . Furthermore, we can simplify the above result as

R(T ) ≤


Õ
(
d

3
2 r

1
2T

1
2 /Drr

)
, δ = 1;

Õ
(
d

3
2 r

1
2T

1
1+δ

)
, δ < 1, T ≳ (dr)

1+δ
2δ /D

2(1+δ)2

δ(1−δ)
rr .

Note the regret bound in Theorem 5.4.3 improves upon the one attained for a simple linear bandit

reduction, which contains the order of d2. When the rewards have bounded variance, i.e., δ = 1,

our regret bound matches the modern one for low-rank matrix bandit under sub-Gaussian noise up

to logarithmic terms (Kang et al., 2022; Lu et al., 2021).

5.4.3. LOTUS: The Rank r is Unknown. While all existing algorithms for low-rank matrix

bandits require prior knowledge of the rank r, this information is never revealed to agents in

real-world applications, and hence misspecification of r will not only undermine the theoretical

foundations but also severely compromise the performance of these methods. To solve this crucial

challenge, in this section we aim to enhance our LOTUS algorithm to be agnostic to r even under

the more complex heavy-tailed scenario. For the Lasso bandit, which is another popular and easier

high-dimensional bandit with sparsity, some algorithms (Ariu et al., 2022; Oh et al., 2021) free of

the sparsity index have been recently introduced. However, when compared with our work, all of

them necessitate some additional assumptions on the structure of the underlying parameter as well

as the sampling distribution. For example, Oh et al. (2021) further assumes that the active entries

of the parameter vector are relatively independent and the skewness of the sampling distribution is

bounded. This fact substantiates the huge difficulty of devising an efficient algorithm for LowHRT
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without additional conditions. Note our work also opens up a potential avenue for exploring low-

rank matrix bandits without the need for knowledge about r, and we believe that completely

addressing this intriguing problem must require more specific assumptions and investigations.

To improve our batched-explore-then-exploit-based LOTUS algorithm, an intuitive idea is to es-

timate the effective rank of Θ̂ right after the matrix recovery in each batch. By trimming the

estimated singular values {Dii}di=1 with some craftily designed increasing sequence that is deduced

from Theorem 5.4.1, we could obtain a useful rank r̂ with r̂ ≤ r and then only focus on the

top-r̂ row and column subspaces. We can demonstrate that all the ground truth singular values

{Dii}di=r̂+1 omitted are nearly null and hence negligible. Therefore, by penalizing the subspaces

parallel to those omitted directions with a similar idea used in our original LOTUS, we could en-

joy the low-rank benefit of LowHTR. Specifically, to modify line 6 and line 7 in Algorithm 8, we

abuse the notation here and denote D̂ as the singular value matrix of Θ̂ that is deduced in line 5.

Subsequently, we estimate the useful rank r̂ as

r̂ = min

{
i ∈ [d+1] :D̂ii≤C1

σ
√
i

cl

(
d+ ln (2i+1/ϵ)

|H2|

) δ
1+δ

· c
1

1+δ

}
− 1 ∧ 1,

where C1 is some specific constant in Theorem 5.4.1 and D̂(d+1)(d+1) is set to be 0 to avoid the empty

set case. Afterward, we rewrite the full SVD of Θ̂ as Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤ with Û ∈ Rd1×r̂, V̂ ∈

Rd2×r̂ for each batch in line 6. In new line 7 of our improved LOTUS, we then input the new

[Û , Û⊥] and [V̂ , V̂⊥] with the estimated rank r̂ as described above, and the effective dimension k in

the following subspace estimation and LowTO implementation will become k = p− (d1− r̂)(d2− r̂).

Note r̂ might differ across different batches, but r̂ ≤ r consistently holds. Conclusively, we can

obtain the following regret bound of our improved LOTUS algorithm agnostic to r:

Theorem 5.4.4. By using the same setting and conditions of LOTUS as described in Theorem 5.4.3

and Algorithm 8 with T1 = min

{
d · 2

i(1+δ)
1+2δ , 2i

}
in line 3 of Algorithm 8, and utilizing the estimated

useful rank r̂ to set the corresponding value of k at each batch, the cumulative regret of our LOTUS

agnostic to r can be bounded as

R(T ) ≤ Õ
(
d

3
2 r

1
2T

1
1+δ + dr

3
2T

1+δ
1+2δ

)
,

with probability at least 1− ϵ.
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The above regret bound is efficient under the high-dimensional scenario, i.e., d ≳ T
δ2

(1+2δ)(1+δ) .

While generally there exists a disparity between our derived regret bound in cases where r remains

undisclosed and the optimal one, as previously discussed in this section, it would prove exceptionally

difficult to devise an algorithm for LowHTR that remains agnostic to r while achieving an enhanced

regret bound. Solving this issue would necessitate the formulation of more specific assumptions on

the underlying structure of the arm matrices and Θ∗.

Moreover, we will showcase the superior efficiency of our LOTUS algorithm in both scenarios,

whether the agent possesses knowledge of r or not, in the following experimental results in Sec-

tion 5.6.

5.5. Regret Lower Bound

In this section, we provide a lower bound for the expected cumulative regret in LowHTR particularly

regarding the order of T . The result is given as follows:

Theorem 5.5.1. Under the LowHTR problem with d, r, T and S = 1 in Assumption 5.3.2, there

exists an instance with a fixed Xt containing (d− 1)r arms for which any algorithm must suffer an

expected regret of order Ω(d
δ

1+δ r
δ

1+δT
1

1+δ ), i.e., E(RT ) ≳ d
δ

1+δ r
δ

1+δT
1

1+δ ≳ T
1

1+δ .

Theorem 5.5.1 demonstrates that our LOTUS could attain the lower bound for LowHTR regarding

the order of T when r is given. And this lower bound is tight with r = d and finite arm sets since it

matches the minimax rate for standard linear bandits under heavy-tailed noise (Xue et al., 2020).

Further exploring the regret lower bound for d and r under LowHTR is notably challenging, given

the fact that even the simpler low-rank matrix bandits under sub-Gaussian noise this problem is

not thoroughly studied (Kang et al., 2022). And the regret lower bound may differ in the order

of d when the arm set is infinitely large and arbitrary (Shao et al., 2018). We will leave them as

future directions.

5.6. Experimental Results

We demonstrate that our proposed LOTUS yields superior performance over the existing LowESTR

algorithm (Lu et al., 2021) in the presence of heavy-tailed noise under a suite of simulations. Since

our work is the first one to study the LowHTR problem and currently there is no existing method

for comparison, we utilize the LowESTR algorithm specifically designed for the sub-Gaussian noise
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Figure 5.1. Plots of cumulative regrets of LowESTR and our proposed LOTUS
with fixed or changing contextual arm set under t-distribution, Pareto, and Laplace
heavy-tailed noise. We use the LOTUS algorithm agnostic to r in the first three
experiments displayed in the first row, and we utilize the value of r in LOTUS in
experiments shown in the second row.

to validate the robustness of our proposed LOTUS. LowESTR also borrows the idea of the two-

stage framework from ESTR, and it improves upon ESTR on the computational efficiency of the

matrix recovery step. It requires both the knowledge of the horizon T and the rank r as inputs.

In the following experiments, we showcase that it becomes vulnerable and achieves suboptimal

performance under heavy-tailed noise in practice as expected.

We consider two different settings of the parameter matrices Θ∗ with d1 = d2 = 10 and r = 2.

For the first scenario, we set the parameter matrix as a diagonal matrix Θ∗ = diag([7, 4, 0, . . . , 0]).

The arm set is fixed where we draw 500 random matrices from {X ∈ R10×10 : ∥X∥F ≤ 1} in the

beginning. And we implement the improved LOTUS algorithm introduced in Subsection 5.4.3 that

is unaware of the rank r in this scenario. For the second case, we consider a more challenging

parameter matrix Θ∗ such that its first row represents a random vector of norm 7 and its second

row is a perpendicular vector of norm 4 with other entries set to 0. Contrasting the first scenario,

we consider a contextual arm set with 10 feature matrices drawn from {X ∈ R10×10 : ∥X∥F ≤ 1}

at each round. And we use the original LOTUS algorithm introduced in Subsection 5.4.2 requiring

the knowledge of r = 2. For the heavy-tailed noise ηt, we consider the following three types of

distribution for both scenarios introduced above:
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• Student’s t-distribution: The density function is given as f(x) ≍ (1 + x2/ν)−
ν+1
2 with degree

of freedom parameter ν > 0 and x ∈ R. By setting ν = 1.7, it has infinite variance but finite 1.5

moment bounded by 6. The heavy-tail index is equal to 1.60.2

• Pareto distribution: The density function is given as f(x) ≍ α/(x + 1)α+1 for some shape

parameter α > 0 and x > 0. By setting α = 1.9, it also has infinite variance but finite 1.5 moment

bounded by 5. And the heavy-tail index is equal to 2.20.

• Laplace distribution: The density distribution is formulated as f(x) ≍ exp(−|x|/b) with some

scale parameter b for x ∈ R. By setting b = 1, the distribution possesses a finite variance bounded

by 2. The heavy-tail index of this distribution is 1.36.

According to Figure 5.1, we observe that our LOTUS algorithm consistently exhibits superior and

more resilient performance across all six scenarios compared to LowESTR. This advantage is partic-

ularly evident when dealing with distributions with a higher heavy-tail index, which is aligned with

our expectations. On the contrary, LowESTR performs fairly in the presence of Laplace noise with

a finite variance but struggles when faced with Pareto noise possessing stronger heavy-tailedness.

Furthermore, it is noteworthy that the cumulative regret of the LOTUS algorithm exhibits a batch-

wise increase, with a progressively clearer sub-linear pattern emerging in subsequent batches. This

fact firmly validates the practical superiority of our LOTUS algorithm under both cases when the

rank r is presented or not.

2A greater heavy-tail index exceeding 1 indicates that the distribution possesses stronger fluctuation and heavy-
tailedness. (Hoaglin et al., 2000)
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CHAPTER 6

Conclusion and Future Work

In this dissertation, we aim to solve some important and unexplored challenges of the bandit prob-

lems from both theoretical and practical perspectives. In Chapter 2, we introduce a new problem

of Lipschitz bandits in the presence of adversarial corruptions, and we originally provide efficient

algorithms against both weak adversaries and strong adversaries when agnostic to the total corrup-

tion budget C. The robustness and efficiency of our proposed algorithms is then validated under

comprehensive experiments. In Chapter 3, we propose the first online continuous hyperparameter

optimization method for contextual bandit algorithms named CDT given the continuous hyperpa-

rameter search space. Our framework can attain sublinear regret bound in theory, and is general

enough to handle the hyperparameter tuning task for most contextual bandit algorithms. Multiple

synthetic and real experiments with multiple GLB algorithms validate the remarkable efficiency

of our framework compared with existing methods in practice. In the meanwhile, we propose

the Zooming TS algorithm with Restarts, which is the first work on Lipschitz bandits under the

switching environment. In Chapter 4, we discussed the generalized linear low-rank matrix bandit

problem. We proposed two novel and efficient frameworks called G-ESTT and G-ESTS, and these

two methods could achieve decent bounds of regret under some mild conditions. The practical

superiority of our proposed frameworks is also validated under comprehensive experiments. And

finally in Chapter 5, we introduce and examine the new problem of LowHTR, and we propose a

robust algorithm named LOTUS that can be agnostic to T and even the rank r with a slightly

milder regret bound. We also develop a matching lower bound to demonstrate our LOTUS is nearly

optimal in the order of T . Meanwhile, we prove that our Huber-type estimator could solve the trace

regression problem under arbitrary heavy-tailed noise with finite (1+δ) moment (δ ∈ (0, 1]) and its

Frobenious norm error is of scale Õ((d/n)
δ

1+δE(|η|1+δ)
1

1+δ ) (η is the random noise). The practical

superiority of our proposed method is validated under simulations.
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There are several directions for our future work. For the Lipschitz bandits, how to propose an

algorithm attaining the regret lower bound without knowing the rank r under adversarial corrup-

tions is unknown, and conducting a comprehensive study on the non-stationary Lipschitz bandit

problem also remains intriguing and unexplored. For the model selection of bandits, considering a

continuous candidate space has hardly been explored and remains an interesting future direction.

For the high-dimensional bandits without knowing the sparsity value (e.g. low rank r), it remains

compelling to close the regret gap of the lower bound under some mild assumptions.
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APPENDIX A

Appendix for Chapter 2

A.1. Analysis of Theorem 2.4.1

We modify the proof in Kleinberg et al. (2019) by dividing the cumulative regret into two parts,

where the first part controls the error coming from the stochastic rewards and the second part deals

with the extra error from adversarial corruptions in the following Appendix A.1.2. In the beginning

we will present some auxiliary lemmas for preparation.

A.1.1. Useful Lemmas.

Definition A.1.1. We call it a clean process for Algorithm 1, if for each time t ∈ [T ] and each

active arm v ∈ X at any time t, we have |f(v)− µ(v)| ≤ r(v).

Here we expand some notations from Algorithm 1: we denote nt(v) as the number of times the

arm v has been pulled until the round t, and ft(x), rt(x) as the corresponding average stochastic

rewards and confidence radius respectively at time t such that,

rt(x) =

√
4 ln (T ) + 2 ln (2/δ)

nt(x)
+

C

nt(x)
.

Note in our Algorithm 1 we do not write this subscript t for these components since there is no

ambiguity in the description. And W.l.o.g we assume the optimal arm x∗ = argmaxx∈X µ(x) is

unique in X .

Lemma A.1.1.1. Given the adversarial corruptions are at most C, for Algorithm 1, the probability

of a clean process is at least 1− δ.

Proof. For each time t ∈ [T ], consider an arm x ∈ X that is active by the end of time t. Recall

that when Algorithm 1 pulls the arm x, the reward is sampled IID from some unknown distribution

Px with expectation µ(x). And in the meanwhile, the stochastic reward may be corrupted by the

adversary. Define random variables Ux,s and values Cx,s for 1 ≤ s ≤ nt(x) as follows: for s ≤ nt(x),
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Ux,s is the stochastic reward from the s-th time arm x is played and Cx,s is the corruption injected

on Ux,s before the agent observing it. By applying Bernstein’s Inequality, it naturally holds that

P (|ft(x)− µ(x)| ≥ rt(x)) = P

(
|ft(x)− µ(x)| ≥

√
4 lnT + 2 ln (2/δ)

nt(x)
+

C

nt(x)

)

=P

∣∣∣∣∣∣
nt(x)∑
s=1

Ux,s
nt(x)

+

nt(x)∑
s=1

Cx,s
nt(x)

− µ(x)

∣∣∣∣∣∣ ≥
√

4 lnT + 2 ln (2/δ)

nt(x)
+

C

nt(x)


≤P

∣∣∣∣∣∣
nt(x)∑
s=1

Ux,s
nt(x)

− µ(x)

∣∣∣∣∣∣+
nt(x)∑
s=1

|Cx,s|
nt(x)

≥

√
4 lnT + 2 ln (2/δ)

nt(x)
+

C

nt(x)


(i)

≤P

∣∣∣∣∣∣
nt(x)∑
s=1

Ux,s
nt(x)

− µ(x)

∣∣∣∣∣∣ ≥
√

4 lnT + 2 ln (2/δ)

nt(x)

 ≤ 2 · exp
(
−nt(x)

2
× 4 lnT + 2 ln (2/δ)

nt(x)

)

= δT−2,

where the inequality (i) comes from the fact that the total corruption budget is at most C. Since

there are at most t active arms by time t, by taking the union bound over all active arms it holds

that,

P (∀ active arm x at round t, |ft(x)− µ(x)| ≤ rt(x)) ≥ 1− δT−1, ∀t ∈ [T ].

Finally, we take the union bound over all round t ≤ T , and it holds that,

P (∀t ≤ T, ∀ active arm x at round t, |ft(x)− µ(x)| ≤ rt(x)) ≥ 1− δT−1,

which implies that the probability of a clean process is at least 1− δ. □

Lemma A.1.1.2. If it is a clean process and the optimal arm x∗ ∈ B(v, rt(v)), then B(v, rt(v)) could

never be eliminated from Algorithm 1 for any t ∈ [T ] and active arm v at round t.

Proof. Recall that from Algorithm 1, at round t the ball B(u, rt(u)) would be discarded if we

have for some active arm v s.t.

ft(v)− rt(v) > ft(u) + 2rt(u).

If x∗ ∈ B(u, rt(u)), then it holds that

ft(u) + 2rt(u)
(i)

≥ µ(u) + rt(u) ≥ µ(u) +D(u, x∗)
(ii)

≥ µ(x∗),
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where inequality (i) is due to the clean process and inequality (ii) comes from the fact that µ(·) is

a Lipschitz function. On the other hand, we have that for any active arm v,

µ(v) ≥ ft(v)− rt(v), µ(x∗) ≥ µ(v).

Therefore, it naturally holds that

ft(v)− rt(v) ≤ ft(u) + 2rt(u).

□

Lemma A.1.1.3. If it is a clean process, then for any time t and any (previously) active arm v we

have ∆(v) ≤ 3rt(v). Furthermore, we could deduce that D(u, v) ≥ min{∆(u),∆(v)}/3 for any pair

of (previously) active arms (u, v) by the time horizon T .

Proof. Let St be the set of all arms that are active or were once active at round t. Suppose

an arm xt is played at time t. If xt is just played for one time, i.e. xt is just activated at time t,

then we naturally have that,

∆(xt) ≤ 1 ≤ 3rt(xt),

since the diameter of X is at most 1. Otherwise, if xt was played before, i.e. xt is chosen based on

the selection rule instead of the activation rule, we will claim that

µ(x∗) ≤ ft(xt) + 2rt(xt) ≤ µ(xt) + 3rt(xt),

under a clean process. First we will show that ft(xt) + 2rt(xt) ≥ µ(x∗). Recall that the optimal

arm x∗ is never eliminated according to A.1.1.2 under a clean process and hence is covered by some

confidence ball, i.e. x∗ ∈ B(x′, rt(x′)),∃x′ ∈ St. Then based on the selection rule, it holds that

ft(xt) + 2rt(xt) ≥ ft(x′) + 2rt(x
′) ≥ µ(x′) + rt(x

′) ≥ µ(x∗) + rt(x
′)−D(x∗, x

′) ≥ µ(x∗).

On the other hand, it holds that,

ft(xt) + 2rt(xt) ≤ µ(xt) + 3rt(xt)
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since it is a clean process. And these two results directly imply that

µ(x∗)− µ(xt) = ∆(xt) ≤ 3rt(xt).(A.1)

For the other active arms v ∈ St that was played before time t, let s < t be the last time arm v

was played, where we have ft(v) = fs(v) and rt(v) = rs(v), and then based on Eqn. (A.1) it holds

that ∆(v) ≤ 3rs(v) = 3rt(v).

Furthermore, we will show that D(u, v) ≥ min{∆(u),∆(v)}/3 for any pair of active arms (u, v) by

the time horizon T . W.l.o.g we assume that v was activated before u, and u was first activated at

some time s′. Then if v was active at the time s′ it naturally holds that D(u, v) > rs′(v) ≥ ∆(v)/3

according to the activation rule. If v was removed at the time s′ then we also have D(u, v) > rs′(v)

since u was not among the discarded region, and hence D(u, v) ≥ ∆(v)/3 holds as well. And this

concludes our proof. □

A.1.2. Proof of Theorem 2.4.1. Wemodify the original argument for Zooming algorithm (Klein-

berg et al., 2019) to decently resolve the presence of adversarial corruptions. In summary, we could

bound the cumulative regret of order Õ
(
T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
: the first term is the regret caused

by the stochastic rewards, which is identical to the regret we have without any corruptions; the

second quantity bounds the additional regret caused by the corruptions.

Denote ST as the active (or previously active) arm set across the time horizon T . Then based on

Lemma A.1.1.3, for any x ∈ ST it holds that,

∆(x) ≤ 3rT (x) = 3

√
4 ln (T ) + 2 ln (2/δ)

nT (x)
+

3C

nT (x)
.

And this indicates that

∆(x)nT (x) ≤ 3

√(
4 ln (T ) + 2 ln

(
2

δ

))
nT (x) + 3C.(A.2)

Then we denote

Bi,T =

{
v ∈ ST : 2i ≤ 1

∆(v)
< 2i+1

}
, where ST =

+∞⋃
i=0

Bi,T ,
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and write ri = 2−i. Then for arbitrary u, v ∈ Bi,T , i ≥ 0, we have

ri
2
< ∆(u) ≤ ri,

ri
2
< ∆(v) ≤ ri,

which implies that D(x, y) > ri/6 under a clean process based on Lemma A.1.1.3. Based on the

definition of the zooming dimension dz, it follows that |Bi,T | ≤ O(rdzi ). Subsequently, for any

0 < ρ < 1 it holds that

∑
v∈ST ,
∆(v)>ρ

1 ≤
∑

i<− log2(ρ)

O(r−dzi ) = O

(
1

ρdz

)
.(A.3)

Now we define the set I as:

I :=

{
v ∈ ST : C ≤

√(
4 ln (T ) + 2 ln

(
2

δ

))
nT (v)

}
.

When an arm v is in the set I, the cumulative regret in terms of it would be more related to the

stochastic errors other than the adversarial attacks. Subsequently, we could divide the cumulative

regret into two quantities:

RegretT =
∑
v∈ST

∆(v)nT (v) =
∑

v∈ST∩I
∆(v)nT (v) +

∑
v∈ST∩Ic

∆(v)nT (v)

=
∑

v∈ST∩I,
∆(v)≤ρ1

∆(v)nT (v) +
∑

v∈ST∩I,
∆(v)>ρ1

∆(v)nT (v) +
∑

v∈ST∩Ic,
∆(v)≤ρ2

∆(v)nT (v) +
∑

v∈ST∩Ic,
∆(v)>ρ2

∆(v)nT (v)

(i)

≤ ρ1T + 2
∑

v∈ST∩I,
∆(v)>ρ1

3

√(
4 ln (T ) + 2 ln

(
2

δ

))
nT (v) + ρ2T + 2

∑
v∈ST∩Ic,
∆(v)>ρ2

3C

(ii)

≲ ρ1T +

√
ln

(
T

δ

)√√√√√√√
 ∑
v∈ST∩I,
∆(v)>ρ1

nT (v)


 ∑
v∈ST∩I,
∆(v)>ρ1

1

+ ρ2T + C
∑

v∈ST∩Ic,
∆(v)>ρ2

1

≲ ρ1T +

√
ln

(
T

δ

)√√√√√√√
 ∑
v∈ST∩I,
∆(v)>ρ1

nT (v)


 ∑
v∈ST∩I,
∆(v)>ρ1

1

+ ρ2T + C
∑

v∈ST∩Ic,
∆(v)>ρ2

1

(iii)

≲ ρ1T +

√
ln

(
T

δ

)√
T

(
1

ρ1

) dz
2

+ ρ2T + C

(
1

ρ2

)dz
.(A.4)
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The inequality (i) comes from the definition of set I and Eqn. (A.2), and inequality (ii) is due to

the Cauchy-Schwarz inequality where ≲ denotes “less in order”. Furthermore, we get inequality

(iii) based on Eqn. (A.3). Note Eqn. (A.4) holds for arbitrary ρ1, ρ2 ∈ (0, 1), and hence by taking

ρ1 = T− 1
dz+2 ln (T )

1
dz+2 , ρ2 = T− 1

dz+1C
1

dz+1 ,

we have

RegretT = O
(
ln (T )

1
dz+2T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
= Õ

(
T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
.

And this concludes our proof. □

Remark A.1.1. Note we could replace the second term of r(x) with min{1, C/n(x)}, i.e.

rt(x) =

√
4 ln (T ) + 2 ln (2/δ)

nt(x)
+ min

{
1,

C

nt(x)

}
,

since we know each instance of attack is assumed to be upper bounded by 1. And all our analyses

and Lemmas introduced above could be easily verified. Specifically, the core Lemma A.1.1.1 still

holds as
nt(x)∑
s=1

Cx,s
nt(x)

≤
nt(x)∑
s=1

1

nt(x)
= 1.

A.2. Analysis of Theorem 2.4.4

A.2.1. Useful Lemmas. We first present some supportive Lemmas.

Lemma A.2.0.1. For a sequence of IID Bernoulli trials with a fix success probability p, then with

probability 1− δ, we could at most observe [(1− p) ln (1/δ)/p] failures until the first success.

Proof. This is based on the property of negative binomial distribution: after we complete the

first N trials, the probability of no success is (1− p)N . To ensure this value is less than δ, we get

N = log1−p(δ) =
ln (1/δ)

ln (1/(1− p))
=

ln (1/δ)

ln (1 + p/(1− p))
.

By using the inequality ln (x+ 1) ≤ x,∀x > −1, we could take N = [(1− p) ln (1/δ)/p]. □
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Lemma A.2.0.2. (Adapted from Lemma 3.3 (Lykouris et al., 2018)) In Algorithm 2, for any layer

whose tolerance level exceeds the unknown C, i.e. any layer with index i ∈ [l∗] s.t. vi ≥ C, with

probability at least 1− δ, this layer suffers from at most corruptions of amount (ln (1/δ) + 2e− 1).

Proof. The proof of this Lemma is an adaptation from the proof of Lemma 3.3 in Lykouris

et al. (2018), and we present the detailed proof here for completeness:

In the beginning, we introduce an important result (Lemma 1 in Beygelzimer et al. (2011)): Let

X1, . . . , XT be a real-valued martingale difference sequence, i.e. ∀t ∈ [T ],E(Xt|Xt−1, . . . , X1) = 0.

And Xt ≤ R. Denote V =
∑T

t=1 E(X2
t |Xt−1, . . . , X1). Then for any δ > 0, it holds that,

P

(
T∑
t=1

Xt > R ln

(
1

δ

)
+
e− 2

R
· V

)
≤ δ.

Assume a layer whose tolerance level C̃ is no less than C, and hence the probability of pulling this

layer would be 1/C̃ ≤ 1/C. For this layer, let C̃tx be the corruption that is observed at round t

when arm x is pulled, x ∈ X. Then at any time t, if the adversary selects corruption ct(a) then we

know C̃tx is equal to ct(a) with probability 1/C̃ and 0 otherwise. Denote the filtration F̃t containing

all the realizations of random variables before time t. And hence at time t the adversary could

contaminate the stochastic rewards of X according to F̃t. Let ãt be the arm that would be selected

if this layer is chosen at the time t. Since our Algorithm 2 is deterministic in terms of the active

region conditioned on selecting each layer, and the pulled arm is randomly selected from the active

region. Therefore, the selection of ãt is also independent with C̃tx given F̃t. We construct the

martingale as:

Xt =
∣∣∣C̃tx∣∣∣− E

(∣∣∣C̃tx∣∣∣ ∣∣ F̃t) .
Therefore, it holds that

E(X2
t |Xt−1, . . . , X1) =

1

C̃

(
|ct(a)| −

|ct(a)|
C̃

)2

+
C̃ − 1

C̃

(
|ct(a)|
C̃

)2

≤ 2
|ct(a)|
C

,

since we have that C ≤ C̃ and |ct(a)| ≤ 1. And conclusively it holds that

V =

T∑
t=1

E(X2
t |Xt−1, . . . , X1) ≤

T∑
t=1

2
|ct(a)|
C

≤ 2.
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Furthermore, it naturally holds that Xt ≤ 1 due to the fact that |ct(a)| ≤ 1. Based on Lemma 1

in Beygelzimer et al. (2011) we introduced above, with probability at least 1− δ, it holds that

T∑
t=1

Xt ≤ ln

(
1

δ

)
+ 2(e− 2).

On the other hand, we can trivially deduce that the expected corruption injected in this layer is at

most 1 since we have total amount of corruptions C and the probability of choosing this layer at

each time is fixed as 1/C̃ ≤ 1/C. Conclusively, we have with probability at least 1− δ,

T∑
t=1

∣∣∣C̃tx∣∣∣ = T∑
t=1

Xt + E

(
T∑
t=1

∣∣∣C̃tx∣∣∣ ∣∣ F̃t
)
≤ ln

(
1

δ

)
+ 2(e− 2) + 1 = ln

(
1

δ

)
+ 2e− 1.

And this completes the proof. □

Definition A.2.1. We call it a clean process for Algorithm 2, if for any time t ∈ [T ], any layer

l ∈ [l∗] whose tolerance level vl ≥ C, any active region A ∈ Al and any x ∈ A at time t, we have

|fl,A − µ(x)| ≤
1

2ml
+

√
4 ln (T ) + 2 ln (4/δ)

nl,A
+

ln (T ) + ln (4/δ)

nl,A

hold for some 0 < δ < 1.

To facilitate our analysis in the rest of this section, we expand notations here for Algorithm 2. Sim-

ilar as in Appendix A.1, we would add the subscript time t to some notations used in Algorithm 2.

• ml,t: epoch index of layer l at time t;

• nl,t: number of selecting the layer l at time t since the last refresh (line 10 of Algorithm 2) on

the layer l;

• Al,t: active arm set of layer l at time t;

• nl,A,t: number of selecting the layer l and active region A ∈ Al,t by time t since the last refresh

on the layer l;

• fl,A,t: average stochastic rewards of selecting the layer l and active region A ∈ Al,t by time t

since the last refresh on the layer l.

We also denote l0 as the minimum index of layer whose tolerance level just surpasses C, i.e.

l0 = argmin{l ∈ [l∗] : vl ≥ C}. Therefore, we get a clean process defined in Definition A.2.1 iff.
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the following set Φ holds:

Φ =

{
|fl,A,t − µ(x)| ≤

1

2ml
+

√
4 ln (T ) + 2 ln (4/δ)

nl,A,t
+

ln (T ) + ln (4/δ)

nl,A,t
:

∀x ∈ A, ∀A ∈ Al,t, ∀l ∈ {l0, l0 + 1, . . . , l∗}, ∀t ∈ [T ]

}
.(A.5)

Note we only need to prove the set Φ holds at the end of each epoch for the analysis of Algorithm 2.

W.l.o.g. we will just prove the regret bound in Theorem 2.4.4 of Algorithm 2.

Corollary A.2.1. With probability at least 1 − δ
4 , we select one time of layer l0 at most every

BC log(4T/δ) times of other layers simultaneously.

Proof. The proof is straight forward based on Lemma A.2.0.1. According to the construction

of {vl}l
∗
l=1, it holds that C ≤ vl0 < BC. This implies that the probability of sampling layer l0

at each round is at least 1
BC . Therefore, after sampling layer l0 in line 2 of Algorithm 2, with

probability at least 1− δ
4T , we would sample all the other layers for at most

BC
log(4T/δ)

1− 1
BC

≤ BC log(4T/δ)

times. Since we know the number of time sampling layer l0 is naturally at most T , by taking the

union bound, we conclude the proof of Corollary A.2.1. □

Lemma A.2.1.1. For algorithm 2, the probability of a clean process is at least 1− 3
4δ, i.e. P (Φ) ≥

1− 3
4δ.

Proof. For each layer l whose tolerance level surpasses C, i.e. l ≥ l0, we know the probability

of sampling this layer in line 2 of Algorithm 2 is at most 1/C, and this indicates that with probability

at least 1 − δ1, this layer suffers from at most (− ln (δ1) + 2e− 1) levels of corruptions based on

Lemma A.2.0.2. Note the number of layers is less than logB(T ). This indicates that by taking

the union bound on all layers whose tolerance levels surpass C, we have with probability at least

1− δ1, all these layers suffer from at most
(
ln
(
logB(T )
δ1

)
+ 2e− 1

)
levels of corruptions across the

time horizon T . And note

ln

(
logB(T )

δ1

)
+ 2e− 1 ≤ ln

(
T

δ1

)
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since it is natural to have T/ logB(T ) ≥ e3. Then for any time t, any layer l ≥ l0 and any active

region A ∈ Al,t, define xA,s, CA,s and random variables UA,s as the s-th time arm pulled, the

stochastic reward from pulling xA,s and the corruption injected on UA,s for 1 ≤ s ≤ nl,A,t. Also

denote

rl,A,t =
1

2ml,t
+

√
4 ln (T ) + 2 ln (4/δ)

nl,A,t
+

ln (T ) + ln (4/δ)

nl,A,t
.

With probability at least 1− δ/4, from the above argument, we know that all layers with the index

at least l0 suffer from at most ln
(
4T
δ

)
levels of corruptions across the time horizon T . Denote this

event as Ψ, i.e. P (Ψ) ≥ 1− δ/4, then under Ψ it holds that

P (|fl,A,t − µ(x)| ≤ rl,A,t, ∀x ∈ A)

= P

(∣∣∣∣∣
nl,A,t∑
s=1

Ux,s
nl,A,t

+

nl,A,t∑
s=1

Cx,s
nl,A,t

− µ(x)

∣∣∣∣∣ ≤ rl,A,t, ∀x ∈ A
)

≥ P

(∣∣∣∣∣
nl,A,t∑
s=1

Ux,s
nl,A,t

−
nl,A,t∑
s=1

µ(xA,s)

nl,A,t

∣∣∣∣∣+
∣∣∣∣∣
nl,A,t∑
s=1

µ(xA,s)

nl,A,t
−µ(x)

∣∣∣∣∣+
∣∣∣∣∣
nl,A,t∑
s=1

Cx,s
nl,A,t

∣∣∣∣∣ ≤ rl,A,t, ∀x ∈ A
)

(i)

≥P

(∣∣∣∣∣
nl,A,t∑
s=1

Ux,s
nl,A,t

−
nl,A,t∑
s=1

µ(xA,s)

nl,A,t

∣∣∣∣∣+
∣∣∣∣∣
nl,A,t∑
s=1

µ(xA,s)

nl,A,t
− µ(x)

∣∣∣∣∣ ≤ 1

2ml,t
+

√
2 ln (4T 2/δ)

nl,A,t
, ∀x ∈ A

)
(ii)

≥ P

(∣∣∣∣∣
nl,A,t∑
s=1

Ux,s
nl,A,t

−
nl,A,t∑
s=1

µ(xA,s)

nl,A,t

∣∣∣∣∣ ≤
√

2 ln (4T 2/δ)

nl,A,t

)

≥ 1− δ

2
· T−2.

Inequality (i) is due to the definition of event Ψ and inequality (ii) comes from the fact that the

diameter of A is at most 1/2ml,t and µ(·) is a Lipschitz function. We know that at most T active

regions would be played across time T . By taking the union bound on all rounds t ∈ [T ] and all

active regions that have been played, it holds that

P (|fl,A,t − µ(x)| ≤ rl,A,t, ∀x ∈ A, ∀A ∈ Al,t, ∀l ∈ {l0, l0 + 1, . . . , l∗}, ∀t ∈ [T ]) ≥ 1− δ

2

under the event Ψ. Since P (Ψ) ≥ 1− δ/4, overall it holds that

P (|fl,A,t − µ(x)| ≤ rl,A,t, ∀x ∈ A, ∀A ∈ Al,t, ∀l ∈ {l0, l0 + 1, . . . , l∗}, ∀t ∈ [T ]) ≥ 1− 3δ

4
,

i.e. P (Φ) ≥ 1− 3δ/4. And this concludes our proof. □
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Lemma A.2.1.2. We have rl,A,t ≤ 2/2ml,t if nl,A,t = 6 ln(4T/δ) · 4ml,t.

Proof. Based on the formulation of rl,A,t

rl,A,t =
1

2ml,t
+

√
4 ln (T ) + 2 ln (4/δ)

nl,A,t
+

ln (T ) + ln (4/δ)

nl,A,t
.

It suffices to show that √
4 ln (T ) + 2 ln (4/δ)

nl,A,t
+

ln (T ) + ln (4/δ)

nl,A,t
≤ 1

2ml,t
(A.6)

by taking nl,A,t = 6 ln(4T/δ) · 4ml,t . Firstly, we have that√
4 ln (T ) + 2 ln (4/δ)

nl,A,t
≤ 2

√
ln (T ) + ln (4/δ)

6 ln(4T/δ) · 4ml,t
≤ 2

√
ln (T ) + ln (4/δ)

(3 + 2
√
2) ln(4T/δ) · 4ml,t

≤ (2
√
2− 2)

1

2ml,t

Secondly, it holds that

ln (T ) + ln (4/δ)

nl,A,t
≤ 1

3 + 2
√
2

1

4ml,t
≤ (3− 2

√
2)

1

2ml,t
.

Combining the above two results, we have Eqn. (A.6) holds, which concludes our proof. □

Lemma A.2.1.3. Under a clean process, for any layer l whose tolerance level vl is no less than C,

i.e. l ≥ l0, it holds that

∆(x) ≤ 16/2ml,t , ∀x ∈ A,∀A ∈ Al,t, ∀t ∈ [T ].

Proof. We will show that under a clean process Φ, the optimal arm x∗ would never be elim-

inated from layers whose tolerance levels are no less than C. Obviously, the optimal arm x∗ is in

the covering when ml,t = 1, where the whole arm space X is covered. Assume the layer lt reaches

the end of epoch mlt,t at time t (i.e. mlt,t+1 = mlt,t + 1), and the optimal arm x∗ is contained in

some active region A∗ ∈ Alt,t. Then under a clean process, for any active region A0 ∈ Alt,t it holds

that,

flt,A∗,t ≥ µ(x∗)− rlt,A∗,t ≥ µ(x∗)− 2/2mlt,t(A.7)

flt,A0,t ≤ µ(x) + rlt,A0,t ≤ µ(x) + 2/2mlt,t ,∀x ∈ A0(A.8)

81



based on Lemma A.2.1.2 since we have nlt,A,t = 6 ln(4T/δ) · 4mlt,t ,∀A ∈ Alt,t in the end of the

epoch. And since µ(x∗) ≥ µ(x),∀x ∈ A0, it holds that

flt,A0,t − flt,A∗,t ≤ 4/2mlt,t .(A.9)

This implies that A∗ will not be removed. Note the above argument holds for any epoch index

and any layer whose corruption level surpasses C, and hence the optimal arm x∗ would never be

eliminated from layers whose tolerance levels are no less than C.

To prove Lemma A.2.1.3. When ml,t = 1, it naturally holds since ∆(x) ≤ 1 ≤ 16/21. Otherwise,

let A∗ be the covering that contains the optimal arm x∗ for layer l in the previous epoch ml,t − 1,

and according to the above argument it is well defined. And we know x is also alive in the previous

epoch, where we denote Ax as the covering that contains x in the previous epoch ml,t − 1. Denote

t0 as the time the last epoch reaches the end of layer l (ml,t − 1 = ml,t0), and then it holds that

∆(x) ≤ fl,A∗,t0−fl,Ax,t0 + 2rl,A∗,t0 = fl,A∗,t0−fl,Ax,t0 +
4

2ml,t0
= fl,A∗,t0−fl,Ax,t0 +

8

2ml,t

since rl,A∗,t0 = rl,Ax,t0 = 4/2ml,t0 at the end of the epoch ml,t0 . On the other hand, since Ax was

not eliminated at the end of the epoch ml,t0 , based on the same argument used with Eqn. (A.7),

(A.8), (A.9), we have that

fl,A∗,t0 − fl,Ax,t0 ≤
4

2ml,t0
=

8

2ml,t
,

and this fact indicates that

∆(x) ≤ 16

2ml,t
.

Note this result holds for any layer whose tolerance level surpasses C and any t ∈ [T ]. This implies

Lemma A.2.1.3 holds conclusively. □

A.2.2. Proof of Theorem 2.4.4.

Proof. If the corruption budget C ≤ ln (4T/δ), then all the layers’ tolerance levels exceed the

unknown C, in which case based on Lemma A.2.1.1, with probability at least 1 − 3δ/4, it holds

that ∀x ∈ A,∀A ∈ Al,t, ∀l ∈ [l∗], ∀t ∈ [T ]

|fl,A,t − µ(x)| ≤
1

2ml
+

√
4 ln (T ) + 2 ln (4/δ)

nl,A,t
+

ln (T ) + ln (4/δ)

nl,A,t
.
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We denote RegretT (l) as the cumulative regret encountered from the layer l across time T , which

implies that

RegretT =

l∗∑
l=1

RegretT (l).

For any fixed layer l ∈ [l∗], we will then show thatRegretT (l) = Õ(T
dz+1
dz+2 ). Based on Lemma A.2.1.3,

we know that for any layer l, any arm played after the epoch m would at most incurs a regret of

volume 16/2m. Note at epoch m, the active arm set consists of 1/2m-coverings for some region in

{x ∈ X : ∆(x) ≤ 16/2m}. Therefore, the number of active regions at this epoch m could be upper

bounded by α2dzm for some constant α > 0. And for each active region, we will pull it for exactly

6 ln(4T/δ) · 4m times in epoch m. Therefore, the total regret incurred in the epoch m for any layer

would at most be

α2dzm × 6 ln(4T/δ) · 4m × 16/2m = 192α ln(4T/δ)2(dz+1)m.

Therefore, the total cumulative regret we experience for any layer l could be upper bounded as:

RegretT (l) ≤
M∑
m=1

192α ln

(
4T

δ

)
2(dz+1)m +

8

2M
T

≤ 192α ln

(
4T

δ

)
2(dz+1)(M+1) − 2dz+1

2dz+1 − 1
+

8

2M
T

≤ 384α ln

(
4T

δ

)
2(dz+1)M +

8

2M
T,

where the second term bound the total regret after finishing the epoch M . Note we could take M

as any integer here, even if the epoch M doesn’t exist, our bound still works. By taking M as the

closest integer to the value
(
ln
(

T
48α ln(4T/δ)

)
/ [(dz + 2) ln (2)]

)
. It holds that

RegretT (l) ≲ T
dz+1
dz+2 ln (T/δ)

1
dz+2 , ∀l ∈ [l∗].

Therefore, it holds that with probability at least 1− 3δ/4 ≥ 1− δ,

RegretT =

l∗∑
l=1

RegretT (l) ≲ T
dz+1
dz+2 ln (T/δ)

1
dz+2 · log2(T ) = Õ(T

dz+1
dz+2 ).

On the other hand, if the corruption budget C > ln (4T/δ), then not all the layers could tolerate

the unknown total budget level C. We denote l0 as the minimum index of the layer that is resilient
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to C as defined in Eqn. A.5. Therefore, we could use the above argument to similarly deduce that:

l∗∑
l=l0

RegretT (l) ≲ T
dz+1
dz+2 ln (T/δ)

1
dz+2 · log2(T ) = Õ(T

dz+1
dz+2 ).(A.10)

For the first (l0 − 1) layers that are vulnerable to attacks, we could control their regret by using

the cross-layer region elimination idea. Specifically, it holds that vl0 ≤ BC, then based on Corol-

lary A.2.1, we know that with probability at least 1 − δ/4, we select one time of layer l0 at most

every BC log(4T/δ) times of the first (l0−1) non-robust layers. Since the active regions in a lower-

index layer are always a subset of the active regions for the layer with a higher index according

to our cross-layer elimination rule in Algorithm 2. We know when the layer l0 stays at the epoch

m, any arm played in the layer 1, 2, . . . , l0 would at most incurs a regret 16/2m. Therefore, when

the layer l0 stays in epoch m, we have probability at least 1− 3δ/4− δ/4 = 1− δ, the total regret

incurred from the first l0 layers altogether could be bounded as

BC log(4T/δ)× α2dzm × 6 ln(4T/δ) · 4m × 16/2m = 192BCα ln(4T/δ)22(dz+1)m.

Conclusively, it holds that

l0∑
l=1

RegretT (l) ≤
M∑
m=1

192BCα ln

(
4T

δ

)2

2(dz+1)m +
8

2M
T

≤ 192BCα ln

(
4T

δ

)2 2(dz+1)(M+1) − 2dz+1

2dz+1 − 1
+

8

2M
T

≤ 384BCα ln

(
4T

δ

)2

2(dz+1)M +
8

2M
T,

for arbitrary M . Similarly, then we can simply take M as the closest positive integer to the value(
ln

(
T

48αBC ln(4T/δ)

)
/ [(dz + 2) ln (2)]

)
,

and we have that

l0∑
l=1

RegretT (l) ≲ T
dz+1
dz+2

(
BC ln (T/δ)2

) 1
dz+2

.(A.11)

Combine the results from Eqn. A.10 and Eqn. A.11, with probability at least 1− δ, it holds that

RegretT = Õ
(
T

dz+1
dz+2

(
B

1
dz+2C

1
dz+2 + 1

))
= Õ

(
T

dz+1
dz+2

(
C

1
dz+2 + 1

))
.
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And this completes our proof. □

A.3. Analysis of Theorem 2.4.6

A.3.1. Useful Lemmas.

Lemma A.3.0.1. (Part of Theorem 3.2 and 5.3 in Pacchiano et al. (2020)) If the regret of the

optimal base algorithm could be bounded by U∗(T, δ) = O(c(δ)Tα) for some function c : R→ R and

constant α ∈ [1/2, 1), the regret of EXP.P and CORRAL with smoothing transformation as the

master algorithms are shown in Table A.1:

Table A.1. Table for Lemma A.3.0.1

Known α, Unknown c(δ)

EXP3.P Õ
(
T

1
2−α c(δ)

)
CORRAL Õ

(
Tαc(δ)

1
α

)

The proof of this Lemma involves lots of technical details and is presented in Pacchiano et al. (2020)

elaborately. And hence we would omit the proof here.

A.3.2. Proof of Theorem 2.4.6.

Proof. The proof of our Theorem 2.4.6 is based on the above Lemma A.3.0.1. According to

Theorem 2.4.1, with probability at least 1/δ, the regret bound of our Algorithm 1 could be bounded

as

RegretT = Õ
(
T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
= Õ

(
T

dz+1
dz+2 + C

1
dz+2T

dz+1
dz+2

)
.

Due to the fact that dz is upper bounded by d and C = O(T ), it further holds that

RegretT = Õ
((
C

1
dz+2 + 1

)
T

dz+1
dz+2

)
= Õ

((
C

1
d+2 + 1

)
T

d+1
d+2

)
.

Therefore, by taking α = d+1
d+2 (known) and c(δ) =

(
C

1
d+2 + 1

)
(unknown) and plugging them into

Lemma A.3.0.1, we have that

E(RegretT ) =


Õ
(
(C

1
d+2 + 1)T

d+2
d+3

)
EXP3.P,

Õ
(
(C

1
d+1 + 1)T

d+1
d+2

)
CORRAL.

And this concludes our proof. □
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A.4. Analysis of Theorem 2.4.7

Under the assumption that the diameter of X is at most 1, we could also assume that µ(x) ∈

[0, 1], ∀x ∈ X due to the Lipschitzness of µ(·) w.l.o.g. in this section.

A.4.1. Useful Lemmas.

Lemma A.4.0.1. In Algorithm 10, for any batch i ∈
[⌈

T
H

⌉]
, the sum of stochastic rewards could be

bounded as ∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≤ 2H +

√
2H log(

12T

Hδ
)

simultaneously with probability at least 1− δ/3.

Proof. For arbitrary batch index i ∈
[⌈

T
H

⌉]
, it holds that

P

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≥ 2H +

√
2H log(

12T

Hδ
)


=P

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

µ(xt) + ct(xt) + ηt

∣∣∣∣∣∣ ≥ 2H +

√
2H log(

12T

Hδ
)


≤P

 min{iH,T}∑
t=(i−1)H+1

|µ(xt)|+
min{iH,T}∑
t=(i−1)H+1

|ct(xt)|+

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

ηt

∣∣∣∣∣∣ ≥ 2H +

√
2H log(

12T

Hδ
)


≤P

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

ηt

∣∣∣∣∣∣ ≥
√
2H log(

12T

Hδ
)

 (i)

≤ H

6T
δ.

The inequality (i) comes from the fact that
∑iH

t=(i−1)H+1 ηt is sub-Gaussian with parameter H.

Therefore, by taking a union bound on all
⌈
T
H

⌉
batches, it holds that

P

∀i ∈ ⌈ T
H

⌉
:

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≤ 2H +

√
2H log(

12T

Hδ
)

 ≥ 1− δ

3
.

And this concludes the proof of Lemma A.4.0.1. □

A.4.2. Proof of Theorem 2.4.7.

Proof. We are ready to prove Theorem 2.4.7 now. Since we have ⌈log2(T )⌉ base algorithms

where the i-th base algorithm is our Robust Zooming Algorithm (Algorithm 1) with tolerance level
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2i, we can denote the base algorithm set as W = {2i}⌈log2(T )⌉i=1 in terms of their tolerance levels. For

any round t ∈ [T ], let wt denote the base algorithm chosen from W . And denote xt(w), w ∈ W

as the arm pulled if the base algorithm w is chosen in the beginning of its batch. In other words,

we have xt = xt(wt). Denote Ci as the total budget of corruptions in the i-th batch and hence

C =
∑⌈T/H⌉

i=1 Ci, where recall that C is the unknown total budget of corruptions. And we also

write C∗ = maxiCi as the maximum budget in a single batch. Let w∗ be the element in W such

that C∗ ≤ w∗ < 2C∗. Therefore, we could decompose the cumulative regret into the following two

quantities:

RegretT =
T∑
t=1

(µ(x∗)− µ(xt(w∗)))︸ ︷︷ ︸
Quantity (I)

+

T∑
t=1

(µ(xt(w∗))− µ(xt(wt)))︸ ︷︷ ︸
Quantity (II)

(A.12)

And it suffices to bound these two quantities respectively. We know the Quantity (I) could be

further represented as

T∑
t=1

(µ(x∗)− µ(xt(w∗))) =

⌈ T
H ⌉∑
i=1

min{iH,T}∑
t=(i−1)H+1

(µ(x∗)− µ(xt(w∗))) .

Here we will use the results from Theorem 2.4.1. Note by setting the probability rate as δ/3 in

Algorithm 1, we can prove that we have a clean process with probability at least 1 − δ/3 (line 5

in Algorithm 10). Although we run the Algorithm 1 here in a batch fashion and the total rounds

is T , we can still easily show that with probability at least 1− δ/3 we have a clean process for all

batches. This is because the proof of Lemma A.1.1.1 only relies on taking a union bound over all

rounds T where whether a restart is proceeded doesn’t matter at all. According to Theorem 2.4.1

and the choice of w∗, the cumulative regret of each batch could be upper bounded by the order of

Õ

(
H

dz+1
dz+2 + C

1
dz+1
∗ H

dz
dz+1

)
= Õ

(
H

dz+1
dz+2 + C

1
d+1
∗ H

d
d+1

)
,

since C∗ ≤ H naturally holds by definition. Therefore, it holds that

Quantity (I) = Õ

(⌈
T

H

⌉(
H

dz+1
dz+2 + C

1
d+1
∗ H

d
d+1

))
= Õ

(
TH

−1
dz+2 + TC

1
d+1
∗ H

−1
d+1

)
,(A.13)
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with probability at least 1 − δ/3. For Quantity (II), according to Lemma A.4.0.1, for any batch

i ∈
[⌈

T
H

⌉]
the sum of stochastic rewards could be bounded by∣∣∣∣∣∣

min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≤ 2H +

√
2H log

(
12T

Hδ

)

simultaneously with probability at least 1− δ/3. We denote the event Ω as

Ω =

∀i ∈
⌈
T

H

⌉
:

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≤ 2H +

√
2H log

(
12T

Hδ

) ,

and it holds that P (Ω) ≥ 1−δ/3. And under the event Ω, from Theorem 6.3 in Auer et al. (2002b),

we know with probability at least 1− δ/3, it holds that

Quantity (II) = Õ

(√
H2

T

H

)
= Õ

(√
TH

)
.(A.14)

Specifically, in the statement of Theorem 6.3 (Auer et al., 2002b), we have K = ⌈log2(T )⌉, δ =

δ/3, T = ⌈ TH ⌉ here. And we multiply the regret bound in Theorem 6.3 (Auer et al., 2002b)

by

(
2H +

√
2H log(12THδ )

)
as well since the original EXP3.P algorithm requires the magnitude of

rewards not exceeding 1. Conclusively, by combining the results from Eqn. A.13 and Eqn. A.14 and

taking a union bound on the probability rates, with probability at least 1− δ/3− δ/3− δ/3 = 1− δ,

we have that

RegretT = Õ

(
TH

−1
dz+2 + TC

1
d+1
∗ H

−1
d+1 +

√
TH

)
.

By taking H = T
d+2
d+4 and using the fact that dz ≤ d, it holds that

RegretT = Õ

(
T

d+3
d+4 + C

1
d+1
∗ T

d2+4d+2
(d+1)(d+4)

)
= Õ

(
T

d+3
d+4 + C

1
d+1
∗ T

d+2
d+3

)
= Õ

(
T

d+3
d+4 + C

1
d+1T

d+2
d+3

)
,

with probability at least 1− δ. □

A.5. Additional Algorithms

A.5.1. BoB Robust Zooming Algorithm. Due to the space limit, we defer the pseudocode

of BoB Robust Zooming algorithm here in Algorithm 10. We can observe that the top layer is an

EXP3.P algorithm, which chooses the corruption level used for Robust Zooming algorithm in each
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Algorithm 10 BoB Robust Zooming Algorithm

Input: Arm metric space (X , D), time horizon T , probability rate δ, batch size H.

1: Budget set for base algorithms I = {2i}Ni=1, N = ⌈log2(T )⌉, α = 2
√
ln (3NTδ ), γ =

min

{
3
5 , 2

√
3N ln (N)

5T

}
, weight wi = 1, i ∈ [N ], cumulative sum s = 0.

2: for t = 1 to T do
3: if t ∈ {kH + 1 : k ∈ N} then
4: For i = 1, . . . , N set

pi = (1− γ) wi∑N
j=1wj

+
γ

N
.

5: Choose the base algorithm index i′ randomly with probability {pi}Ni=1.

6: Refresh the chosen Robust Zooming algorithm (Algorithm 1 with C = 2i
′
) with active

arm set J = {}, active space Xact = X and probability rate δ/3.

7: Run the chosen Robust Zooming algorithm and receive the reward yt.
8: Update the chosen Robust Zooming algorithm according to Algorithm 1 and set s = s+ yt.
9: if t ∈ {kH : k ∈ N+} then

10: Let s = s/

[
pi′

(
2H +

√
2H log(12THδ )

)]
.

11: Update EXP3.P component for index i′: wi′ = wi′ exp
(

γ
3N

(
s+ α

pi′
√
NT

))
.

batch adaptively. For each batch, we run our Robust Zooming algorithm with the chosen corruption

level from the top layer, and use the accumulative rewards collected in each batch to update the

components of EXP3.P (i.e. line 10 of Algorithm 10). Note we normalize the cumulative reward by

dividing it with (2H+
√

2H log(12THδ )), and this is because that we could prove that the magnitude of

the cumulative reward at each batch would be at most (2H+
√
2H log(12THδ )) with high probability

as shown in Lemma A.4.0.1. And the EXP3.P algorithm (Auer et al., 2002b) requires the magnitude

of reward should at most be 1 with our chosen values of α and γ. The regret bound of Algorithm

10 is given in Theorem 2.4.7 of our main paper.

A.6. Discussion on Lower Bounds

We now propose Theorem 2.4.2 and Theorem 2.4.5 with their detailed proof in Section A.6.1 and

Section A.6.2 respectively, where we provide a pair of lower bounds for the strong adversary and

the weak adversary.

A.6.1. Lower Bound for Strong Adversaries. We repeat our Theorem 2.4.2 for reference

here and then provide a detailed proof as follows:
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Theorem 2.4.2 Under the strong adversary with corruption budget C, for any zooming dimension

dz ∈ Z+, there exists an instance such that any algorithm (even is aware of C) must suffer from

the regret of order Ω
(
C

1
dz+1T

dz
dz+1

)
with probability at least 0.5.

Proof. Here we consider the metric space ([0, 1)d, l∞). For arbitrary ϵ ∈ (0, 12), we can equally

divide the space [0, 1]d into 1/ϵd small l∞ balls whose diameters are equal to ϵ by discretizing each

axis. (W.l.o.g we assume 1 is divisible by ϵ for simplicity since otherwise we could take ⌊1/ϵd⌋

instead.) For example, if d = 2 and ϵ = 1
2 , then we can divide the space into 22 = 4 l∞ balls:

[0, 0.5)2, [0, 0.5) × [0.5, 1), [0.5, 1) × [0, 0.5), [0.5, 1)2. We denote these balls as {Ai}1/ϵ
d

i=1 , [0, 1)
d =

∪1/ϵ
d

i=1 Ai and their centers as {ci}1/ϵ
d

i=1 . (e.g. the center of [0, 0.5)2 is (0.25, 0.25).) Subsequently, we

could define a set of functions {fi(·)}1/ϵ
d

i=1 as

fi(x) =


ϵ
2 − ∥x− ci∥∞, x ∈ Ai;

0, x /∈ Ai.

We can easily verify that fi(·) is a 1-Lipschitz function. For the zooming dimension, if ϵ is of

constant scale, then the zooming dimension will become 0. However, in our analysis here, we would

let ϵ rely on T and be sufficiently small so that the zooming dimension is d. If the underlying

expected reward function is fk(·) and there is no random noise, consider the strong adversary that

shifts the reward of the arm down to whenever the pulled arm is in Ak and doesn’t attack the

reward otherwise. This attack could be done for roughly ⌊C/ϵ⌋ times. Intuitively, the learner can

do no better than pull each arm in [0, 1]d uniformly. This implies that roughly the learner should

do ⌊C/ϵ⌋⌊1/ϵd⌋ rounds of uniform exploration before the attack budget C is used up, where the

learner pulls arms outside Ak for approximately ⌊C/ϵ⌋ · ⌊(1− ϵd)/ϵd⌋ times. Take ϵ =
(
C
T

) 1
d+1 , we

know that roughly the learner should do ⌊C/ϵ⌋⌊1/ϵd⌋ = T rounds of uniform exploration, and the

cumulative regret is at least⌊
C

ϵ

⌋
·
⌊
(1− ϵd)
ϵd

⌋
· ϵ = Θ

(
C

1
d+1T

d
d+1

)
= Θ

(
C

1
dz+1T

dz
dz+1

)
.

For a more rigorous argument, note that for the k-th instance fk(·), the adversary could maliciously

replace the reward with 0 until the arm in Ak is pulled at least ⌊C/ϵ⌋ times. After ⌊C/ϵ⌋⌊1/2ϵd⌋

rounds, for any algorithm even with the information of value C, there must be at least ⌊1/(2ϵd)⌋

balls among {Ai}1/ϵ
d

i=1 that have been pulled for at most ⌊C/ϵ⌋ times. As a consequence, when we
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choose the problem instance k among these ⌊1/(2ϵd)⌋ balls and set ϵ =
(
C
T

) 1
d+1 , then we know that

the regret of order

ϵ ·
⌊
C

ϵ

⌋
·
(⌊

1

2ϵd

⌋
− 1

)
= Θ

(
C

1
dz+1T

dz
dz+1

)
is unavoidable. This implies that the regret could be no worse than Ω(C

1
dz+1T

dz
dz+1 ) under the

strong adversary with probability 0.5. □

For the stochastic Lipschitz bandit problem, based on Slivkins (2011) we know for any algorithm

there exists one problem instance such that the expected regret is at least

inf
r0∈(0,1)

r0T + C log(T )
∑

r=2−i:i∈N,r≥r0

Nz(r)

r

 ,

whereNz(r) is the zooming number. And hence the corruption-free lower boundO
(
ln(T )

1
dz+2T

dz+1
dz+2

)
is optimal in terms of the zooming dimension dz. Combining this result with our Theorem 2.4.2, we

can conclude that for any algorithm, there exists a corrupted bandit instance where the algorithm

must incur Ω
(
max

{
ln(T )

1
dz+2T

dz+1
dz+2 , C

1
dz+1T

dz
dz+1

})
cumulative regret, which coincides with the

order of regret for our Robust Zooming algorithm. Conclusively, our algorithm obtains the optimal

order of regret under the strong adversary.

We then restate our Theorem 2.4.3 for reference and then provide a detailed proof:

Theorem 2.4.3 For any algorithm, when there is no corruption, we denote R0
T as the upper

bound of cumulative regret in T rounds under our problem setting described in Section 2.3, i.e.

RegretT ≤ R0
T with high probability, and it holds that R0

T = o(T ). Then under the strong adversary

and unknown attacking budget C, there exists a problem instance on which this algorithm will incur

linear regret Ω(T ) with probability at least 0.5, if C = Ω(R0
T /4

dz) = Ω(R0
T ).

Proof. For the case that dz = 0, we consider the metric space ([0, 1], l2) and define the Lipschitz

function f1(·) as □

f1(x) =


0.25− |x− 0.25|, x ∈ [0, 0.5];

0, x ∈ (0.5, 1].

,
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and we assume there is no random noise and no adversarial corruption. (We call this instance I0.)

For any algorithm with E(RegretT ) ≤ R0
T when there is no adversarial corruption, we know that

E(# iterations playing arms in (0.5, 1])× 0.25 ≤ E(RegretT ) ≤ R0
T ,

and hence E(# iterations playing arms in (0.5, 1]) ≤ 4R0
T . By Markov inequality, with probability

at least 0.5, the number of iterations that play arms in (0.5, 1] is no more than 8R0
T .

Next, we define a new problem setting in the same metric space as:

f2(x) =


0.25− |x− 0.25|, x ∈ [0, 0.5];

x− 0.5, x ∈ (0.5, 1].

.

And under the setting of f2(·) there is a malicious strong adversary with budget C = 4R0
T to attack

using the following strategy: whenever the arm in (0.5, 1] is selected and the corruption budget has

not been used up, the adversary moves the reward to 0. We call this instance I1. Therefore, before

the budget is used up, each selection of arm in (0.5, 1] returns a reward 0, and hence the agent can

never tell the difference between I0 and I1 and would follow the same strategy under I0 until the

total corruption level reaches C = 4R0
T and then the adversary stops to contaminate the rewards.

And this requires at least C/0.5 = 2C = 8R0
T rounds in which the agent chooses arms in (0.5, 1].

Therefore, with probability of at least 0.5, the regret in T rounds is at least (T − 8R0
T )/4 = Ω(T ).

For dz > 0, we use the metric space ([0, 1]d, ∥ · ∥∞) with d = ⌈2dz⌉. We first partition the d-

dimensional cube [0, 1]d into 2d sub-cubes with side length 0.5, i.e. equally divide the cube [0, 1]d

into 0.5-radius l∞ balls whose diameters are equal to 0.5 by discretizing each axis. We denote these

balls as Ai
2d
i=1 and the center of these balls as ci

2d
i=1, e.g. c1 = [0.25]d. And we denote the vertex of

each ball that matches the vertexes of [0, 1]d as vi
2d
i=1, e.g. v1 = [0]d. Subsequently, we could define

the function f1(·) as

f1(x) =


4

−d
d−dz − ∥x− c1∥

d
d−dz∞ , x ∈ A1;

0, x /∈ A1.

and we assume there is no random noise and no adversarial corruption. (We call this instance I0.)

Since the regret of the algorithm under no corruption satisfies that E(RegretT ) ≤ R0
T , and we know
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that pulling any arm outside A1 will incur a single regret of 4
−d

d−dz , and hence we have that

E(# iterations playing arms not in A1) ≤ R0
T · 4

−d
d−dz .

Then by the pigeonhole principle, there exists a sub-ball 2 ≤ i ≤ 2d such that the expected number

of iterations to pull arms in Ai is no more than R0
T · 4

−d
d−dz /(2d − 1). Without loss of generality,

we assume i = 2, where c2 = [0.75, 0.25, . . . , 0.25] and v2 = [1, 0, . . . , 0]. Similarly by using Markov

Inequality, with probability at least 0.5, the number of iterations that play arms in A2 is no more

than 2R0
T · 4

−d
d−dz /(2d − 1).

Next, we define a new problem setting in the same metric space as:

f2(x) =


4

−d
d−dz − ∥x− c1∥

d
d−dz∞ , x ∈ A1;

2
−d

d−dz − ∥x− v2∥
d

d−dz∞ , x ∈ A2;

0, x /∈ A1 ∪A2.

.

And under the setting of f2(·) there is a malicious strong adversary with budget C = 2R0
T ·

2
−d

d−dz /(2d − 1) = Θ(R0
T /2

d) to attack the rewards. (Note 1 ≤ d/(d− dz) ≤ 2). Specifically, the

adversary uses the following strategy: whenever the arm in A2 is selected and the corruption budget

has not been used up, the adversary moves the reward to 0. We call this instance I1. Therefore,

before the budget is used up, each selection of arm in A2 returns a reward 0, and hence the agent

can never tell the difference between I0 and I1 and would follow the same strategy under I0 until the

total corruption level reaches C = 2R0
T ·2

−d
d−dz /(2d−1), and then the adversary stops to contaminate

the rewards. And this requires at least C/2
−d

d−dz = 2R0
T · 4

−d
d−dz /(2d − 1) rounds in which the agent

chooses arms in A2. Therefore, with probability of at least 0.5, the regret in T rounds is at least(
T −

24
−d

d−dzR0
T

2d − 1

)
×
(
2

−d
d−dz − 4

−d
d−dz

)
≥ 3

16

(
T −

32R0
T

2d − 1

)
= Ω(T ).

□

A.6.2. Lower Bound for Weak Adversaries. Recall Theorem 2.4.5 in our main paper:

Theorem 2.4.5 Under the weak adversary with corruption budget C, for any zooming dimension

dz, there exists an instance such that any algorithm (even is aware of C) must suffer from the regret

of order Ω(C) with probability at least 0.5.
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Proof. We can modify the argument of the previous subsection A.6.1 to validate Theo-

rem 2.4.5. If dz = 0, we could simply use the metric space ([0, 1), l2) and the reward function

µ1(x) =


1
2 − |x−

1
4 |, x ∈ [0, 0.5);

0, x ∈ [0.5, 1).

µ2(x) =


0, x ∈ [0, 0.5);

1
2 − |x−

3
4 |, x ∈ [0.5, 1).

We can easily verify that the zooming dimension dz = 0 holds. Assume there is no random noise,

and at each iteration the weak adversary pushes the reward everywhere in [0, 1) to 0, which would

use a 0.5 budget. Therefore, this attack could last for the first ⌊2C⌋ rounds, when the agent would

just receive a 0 reward regardless of the pulled arm. For any algorithm, it would at least spend for

⌊C⌋ rounds on either [0, 0.5) or [0.5, 1) with probability at least 0.5. By considering the above two

reward functions, we know that it would incur Ω(C) regret with probability at least 0.5.

For dz > 0, we set d = ⌈2dz⌉ and consider the metric space ([0, 1)d, l∞). Similarly, we can equally

divide the space [0, 1]d into 1/2 small l∞ balls whose diameters are equal to 1/2 by discretizing

each axis. We denote these balls as {Ai}2
d

i=1, [0, 1)
d = ∪2di=1Ai and their centers as {ci}2

d

i=1. (e.g. the

center of [0, 0.5)2 is (0.25, 0.25).) Subsequently, we could define a set of functions {fi(·)}1/2
d

i=1 as

µi(x) =


4

−d
d−dz − ∥x− ci∥

d
d−dz∞ , x ∈ Ai;

0, x /∈ Ai.

We can easily verify that the zooming dimension of any instance is dz. Assume there is no random

noise, and at each iteration, the weak adversary pushes the reward everywhere in [0, 1) to 0, which

would use a 4
−d

d−dz budget. Therefore, this attack could last for the first ⌊4
d

d−dz C⌋ rounds, when

the agent would just receive a 0 reward regardless of the pulled arm. After ⌊4
dz

d−dz C⌋ rounds, for

any algorithm even with the information of value C, there must be at least ⌊2d−1⌋ balls among

{Ai}2
d

i=1 that have been pulled for at most ⌊2(
2d

d−dz
−d)C⌋ = Θ(C) times. As a consequence, as for

the problem instance k among these ⌊2d−1⌋ balls, the regret incurred Ω(C). Similarly, this means

that any algorithm must incur Ω(C) regret with probability 0.5. □

A.7. Additional Experimental Details

Note in our main paper we assume that σ = 1, and our pseudocodes of Algorithms are based on this

assumption. When we know a better upper bound for σ, we could easily modify the components
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in each algorithm based on σ. For example, we could modify the confidence radius of any active

arm x in Algorithm 1 as

r(x) = σ

√
4 ln (T ) + 2 ln (2/δ)

n(x)
+

C

n(x)
.

Next, we exhibit the setup of algorithms involved in our experiments as follows:

• Zooming algorithm (Kleinberg et al., 2019): We use the same setting for stochastic Lipschitz

bandit as in Kleinberg et al. (2019), and set the radius for each arm as:

r(x) = σ

√
4 ln (T ) + 2 ln (2/δ)

n(x)
.

• RMEL (ours): We use the same parameter setting for RMEL as shown in our Algorithm 2.

And based on the experimental results in Figure 2.1, this method apparently works best under

different kinds of attacks and reward functions.

• BoB Robust Zooming algorithm (ours): We use the same parameter setting with σ for BoB

Robust Zooming algorithm as shown in Algorithm 10 without restarting the algorithm after each

batch since we found that restarting will sometimes abandon useful information empirically. This

BoB-based approach also works well according to Figure 2.1.

The numerical results of final cumulative regrets in our simulations in Section 2.5 (Figure 2.1) are

displayed in Table A.2.

Note our RMEL (Algorithm 2) is designed to defend against the weak adversary in the theoretical

analysis, and hence to be consistent, we also consider the weak adversary for both types of attacks

under the same experimental setting and three levels of corrupted budgets. Recall that in the

previous experiments in Section 2.5, the adversary will contaminate the stochastic rewards only if

the pulled action is in the specific region (Oracle: benign arm, Garcelon: targeted arm region),

and otherwise the adversary will not spend its budget. And hence it is a strong adversary whose

action relies on the current arm. To adapt these two attacks into a weak-adversary version, we

could simply inject both sorts of attacks at each round based on their principles at each round:

the Oracle will uniformly push the expected rewards of all “good arms” below the expected reward

of the worst arm with an additional margin of 0.1 with probability 0.5 at the very beginning of

each round. And the Garcelon will modify the expected rewards of all arms outside the targeted

region into a random Gaussian noise N(0, 0.01) with probability 0.5 ahead of the agent’s action.

95



Consequently, adversaries may consume the corruption budget at each round regardless of the

pulled arm, and we expect that they will run out of their total budget in fewer iterations than the

strong adversary does. We use the same experimental settings as in Section 2.5, and the results

are exhibited in Table A.3.

From Table A.3, we can see the experimental results under the weak adversary are consistent with

those under the strong adversary. The state-of-the-art Zooming algorithm is evidently vulnerable to

the corruptions, while our proposed algorithms, especially RMEL, could yield robust performance

across multiple settings consistently. We can also observe that compared with the strong adversary,

the weak adversary is less malicious than expected.

Another remark is that the adversarial settings used in our experiments may not be consistent with

the assumption that |ct(x)| ≤ 1, while we find that (1). by modifying the original attacks and

restricting the attack volume to be at most one with truncation, we can get a very similar result

as shown in Table A.2 and Table A.3. (2). actually we can change the assumption to |ct(x)| ≤ u

where u is an arbitrary positive constant for the theoretical analysis.
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Triangle reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 366.58 366.58

3000 10883.51 10660.17
4500 11153.78 11487.59

RMEL
0 512.46 512.46

3000 921.95 504.78
4500 928.27 1542.17

BoB Robust Zooming
0 461.16 461.16

3000 495.06 531.37
4500 1323.97 736.85

Sine reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 315.94 315.94

3000 5289.65 3174.26
4500 5720.30 3174.29

RMEL
0 289.86 289.86

3000 442.66 289.29
4500 862.90 332.71

BoB Robust Zooming
0 435.44 435.44

3000 414.54 746.96
4500 1887.35 1148.09

Two dim reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 3248.54 3248.54

3000 8730.73 8149.79
4500 9496.83 13672.00

RMEL
0 2589.32 2589.32

3000 5660.10 2590.77
4500 6265.09 2872.64

BoB Robust Zooming
0 3831.94 3831.94

3000 6310.29 4217.74
4500 6932.09 4380.19

Table A.2. Numerical values of final cumulative regrets of different algorithms
under the experimental settings used in Figure 2.1 in Section 2.5 (strong adversaries).
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Triangle reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 366.58 366.58

3000 10861.72 10660.18
4500 10862.75 10661.99

RMEL
0 512.46 512.46

3000 624.29 620.96
4500 623.50 634.59

BoB Robust Zooming
0 461.16 461.16

3000 545.27 561.77
4500 552.66 569.51

Sine reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 315.94 315.94

3000 5178.81 2636.73
4500 5186.28 2799.22

RMEL
0 289.86 289.86

3000 280.62 277.22
4500 284.94 288.06

BoB Robust Zooming
0 435.44 435.44

3000 450.21 439.08
4500 461.13 456.36

Two dim reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 3248.54 3248.54

3000 6380.37 6517.29
4500 6991.41 6854.05

RMEL
0 2589.32 2589.32

3000 3198.06 2940.93
4500 4231.88 4067.16

BoB Robust Zooming
0 3831.94 3831.94

3000 4019.08 3335.67
4500 4901.20 4054.05

Table A.3. Numerical values of final cumulative regrets of different algorithms
under the experimental settings introduced in Appendix A.7 (weak adversaries).
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APPENDIX B

Appendix for Chapter 3

B.1. Supportive Experimental Details

B.1.1. Simulations on the Optimal Hyperparameter Value in Grid Search. To fur-

ther validate the necessity of dynamic hyperparameter tuning, we conduct a simulation for UCB

algorithms LinUCB, UCB-GLM, GLOC and TS algorithms LinTS, GLM-TSL with a grid search

of exploration parameter in {0.1, 0.5, 1, 1.5, 2, . . . , 10} and then report the best parameter value

under different settings. Specifically, we set d = 10, T = 8000,K = 60, 120, and choose arm xt,a

and θ∗ randomly in {x : ∥x∥ ≤ 1}. Rewards are simulated from N(x⊤t,aθ
∗, 0.5) for LinUCB, LinTS,

and from Bernoulli(1/(1 + exp (−x⊤t,aθ∗))) for UCB-GLM, GLOC and GLM-TSL. The results are

displayed in Table B.1, where we can see that the optimal hyperparameter values are distinct and

far from the theoretical ones under different algorithms or settings. Moreover, the theoretical op-

timal exploration rate should be identical under different values of K for most algorithms shown

here, but in practice the best hyperparameter to use depends on K, which also contradicts with

the theoretical result.

Bandit type Linear bandit Generalized linear bandit

Algorithm LinUCB LinTS UCB-GLM GLOC GLM-TSL

K = 60 2.5 1 1.5 4.5 1.5
K = 120 3 1.5 2.5 5 2

Table B.1. The optimal exploration parameter value in grid search for LinUCB,
LinTS, UCB-GLM, GLOC and GLM-TSL based on average cumulative regret of 5
repeated simulations.

B.1.2. Simulations to Validate the Lipschitzness of Hyperparameter Configuration.

We also conduct another simulation to show it is reasonable and fair to assume the expected re-

ward is an almost-stationary Lipschitz function w.r.t. hyperparameter values. Specifically, we

set d = 6, T = 3000,K = 60, and for each time we run LinUCB and LinTS by using our CDT
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framework, but also obtain the results by choosing the exploration hyperparameter in the set

{0.3, 0.45, 0.6, . . . , 8.85, 9} respectively. For the first 200 rounds we use the random selection for

sufficient exploration, and hence we omit the results for the first 200 rounds. After the warming-up

period, we divide the rest of iterations into 140 groups uniformly, where each group contains 20

consecutive iterations. Then we calculate the mean of the obtained reward of each hyperparameter

value in the adjacent 20 rounds, and centralize the mean reward across different hyperparameters

in each group (we call it group mean reward). Afterward, we can calculate the mean and standard

deviation of the group mean reward for different hyperparameter values across all groups. The

results are shown in Figure B.1, where we can see the group mean reward can be decently repre-

sented by a stationary Lipschitz continuous function w.r.t hyperparameter values. Conclusively, we

could formulate the hyperparameter optimization problem as a stationary Lipschitz bandit after

sufficient exploration in the long run. And in the very beginning we can safely believe there is

also only finite number of change points. This fact firmly authenticates our problem setting and

assumptions.

0 1 3 5
Iterations

0.04

0.02

0.00

0.02

0.04

0.06

Ce
nt

ra
liz

ed
 m

ea
n 

re
gr

et

1.5

Simulations for LinUCB

0 1 3 5
Iterations

0.04

0.02

0.00

0.02

0.04

0.06

Ce
nt

ra
liz

ed
 m

ea
n 

re
gr

et

1.05

Simulations for LinTS

Figure B.1. Average cumulative regret and its standard deviation of group mean
reward for different hyperparameter values across all groups.

B.1.3. Simulations for Algorithm 3. We also conduct empirical studies to evaluate our

proposed Zooming TS algorithm with Restarts (Algorithm 3) in practice. Here we generate the

dataset under the switching environment, and abruptly change the underlying mean function for

several times within the time horizon T . The methods used for comparison as well as the simulation

setting are elaborated as follows:
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Methods. We compare our Algorithm 3 (we call it Zooming TS-R for abbreviation) with two

contenders: (1) Zooming algorithm (Kleinberg et al., 2019): this algorithm is designed for the

static Lipschitz bandit, and would fail in theory under the switching environment; (2) Oracle: we

assume this algorithm knows the exact time for all switching points, and would renew the Zooming

algorithm when reaching a new stationary environment. Although this algorithm could naturally

perform well, but it is infeasible in reality. Therefore, we would just use Oracle as a skyline here,

and a direct comparison between Oracle and our Algorithm 3 is inappropriate.

Settings. Assume the set of arm is [0, 1]. The unknown mean function ft(x) is chosen from two

classes of reward functions with different smoothness around their maximum:

(1) {0.9− 0.9|x− a|, x ∈ [0, 1] : a = 0.05, 0.25, 0.45, 0.70, 0.95} (triangle function);

(2)
{

2
3π sin

(
3π
2 (x− a+ 1

3)
)
, x ∈ [0, 1] : a = 0.05, 0.25, 0.45, 0.70, 0.95

}
.

We set T = 90, 000 and c(T ) = 3, and choose the location of changing points at random in the very

beginning. The random noise is generated according to N(0, 0.1). The value of epoch size H is set

as suggested by our theory H = 10⌈(T/c(T ))3/4⌉. For each class of reward functions, we run the

simulations for 20 times and report the average cumulative regret as well as the standard deviation

for each contender in Figure B.2. (The change points are fixed for each repetition to make the

average value meaningful.)

Figure B.2 shows the performance comparisons of three different methods under the switching

environment measured by the average cumulative regret. We can see that Oracle is undoubtedly the

best since it knows the exact times for all change points and hence restart our Zooming TS algorithm

accordingly. The traditional Zooming algorithm ranks the last w.r.t both mean and standard

deviation since it doesn’t take the non-stationarity issue into account at all, and would definitely

fail when the environment changes. This fact also coincides with our expectations precisely. Our

proposed algorithm has an obvious advantage over the traditional Zooming algorithm when the

change points exist, and we can see that our algorithm could adapt to the environment change

quickly and smoothly.

B.1.4. Additional Details and Results for Section 3.5.

B.1.4.1. Baselines with A Large Candidate Set. To further make a fair comparison and validate

the high superiority of our proposed CDT framework over the existing OP, TL (or Syndicated) which

relies on a user-defined hyperparameter candidate set, we explore whether CDT will consistently
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outperform if baselines are running with a large tuning set. Here we replace the original tuning set

C1 = {0.1, 1, 2, 3, 4, 5} with a finer set C2 = {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. And

the new results are shown in the following Table B.2 (original results in Section 3.5 are in gray).

Candidate Set C1 C2
Algorithm Setting TL/Syndicated OP TL/Syndicated OP

Simulations 343.14 383.62 356.23 389.91
LinUCB

Movielens 346.16 390.10 359.10 408.67
Simulations 828.41 869.30 874.34 925.29

LinTS
Movielens 519.09 666.35 516.62 667.77
Simulations 271.45 350.85 298.68 367.97

UCB-GLM
Movielens 381.00 397.58 406.29 412.62
Simulations 433.27 445.43 448.21 458.71

GLM-TSL
Movielens 446.74 678.91 458.23 718.46
Simulations 510.03 568.81 530.29 567.10

Laplace-TS
Movielens 949.51 1063.92 958.10 1009.23
Simulations 406.28 417.30 414.82 427.05

GLOC
Movielens 571.36 513.90 568.91 520.72
Simulations 448.29 551.63 458.09 557.04

SGD-TS
Movielens 1016.72 1084.13 1038.94 1073.91

Table B.2. Cumulative regrets of baselines under different hyperparameter tuning
sets.

Therefore, we can observe that the performance overall becomes worse under C2 compared with

the original C1. In other words, adding lots of elements to the tuning set will not help improve the

performance of existing algorithms. We believe this is because the theoretical regret bound of TL

(Syndicated) also depends on the number of candidates k in terms of
√
k (Ding et al., 2022b). There

is no theoretical guarantee for OP. After introducing so many redundant values in the candidate

set, the TL (Syndicated) and OP algorithms would get disturbed and waste lots of concentration

on those unnecessary candidates.

In conclusion, we believe the existing algorithms relying on user-tuned candidate sets would perform

well if the size of the candidate set is reasonable and the candidate set contains some value very

close to the optimal hyperparameter value. However, in practice, finding the unknown optimal

hyperparameter value is a black-box problem, and it’s impossible to construct a candidate set

satisfying the above requirements at the beginning. If we discretize the interval finely, then the

large size of the candidate set would hurt the performance as well. On the other hand, our proposed
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CDT could adaptively “zoom in” on the regions containing this optimal hyperparameter value

automatically, without the need of pre-specifying a “good” set of hyperparameters. And CDT

could always yield robust results according to the extensive experiments we did in Section 3.5.

On the other hand, these results also imply an interesting fact. Note it is doable to first discretize

the continuous space and then implement an algorithm with discrete candidate sets, such as Syndi-

cated (Ding et al., 2022b). However, we observe that finely discretizing the hyperparameter space

will significantly hurt the practical performance and hence is wasteful and inefficient. Intuitively, it

is inefficient to place lots of “probes” in other regions that do not contain the optimal point, and we

should place probes in more promising regions via adaptive discretization methodology. In theory,

the uniform discretization idea will lead to regret bound of order T
d+1
d+2 with covering dimension

d and the zooming idea will incur T
dz+1
dz+2 regret with zooming dimension dz, and we know dz ≤ d

and dz could be significantly smaller than d under various cases. Therefore, we believe the same

phenomena will occur in the non-stationary Lipschitz bandits and also our hyperparameter tuning

framework as well.

B.1.4.2. Ablation Study on the Choice of T1 and T2. For T1, we set it to T
2/(p+3) where p stands

for the number of hyperparameters according to Theorem 3.4.2. Specifically, for LinUCB, LinTS,

UCB-GLM, GLM-TSL and Laplace-TS, we choose it to be 118. For GLOC and SGD-TS, we set it

as 45. Here we also rerun our experiments in Section 3.5 with T1 = 0 (no warm-up) since we believe

a long warm-up period will abandon lots of useful information, and then we report the results after

this change:

We can observe that the results are almost identical from Table B.3. For T2, Theorem 3.4.2 suggests

that T2 = O
(
T (p+2)/(p+3)

)
. In our original experiments, we choose T2 = 3T (p+2)/(p+3). To take

an ablation study on T2 we take T2 = kT (p+2)/(p+3) for k = 1, 2, 3 in each experiment, and to see

whether our CDT framework is robust to the choice of k.

According to Table B.4, we can observe that overall k = 2 and k = 3 perform better than k = 1.

We believe it is because, in the long run, the optimal hyperparameter would tend to be stable, and

hence some restarts are unnecessary and inefficient. Note by choosing k = 1 our proposed CDT

still outperforms the existing TL and OP tuning algorithms overall. For k = 2 and k = 3, we can

observe that their performances are comparable, which implies that the choice of k is quite robust

in practice. We believe it is due to the fact that our proposed Zooming TS algorithm could always
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Algorithm Setting T1 = 0 T1 = T 2/(p+3)

LinUCB
Simulation 298.28 303.14
Movielens 313.29 307.19

LinTS
Simulation 677.03 669.45
Movielens 343.18 340.85

UCB-GLM
Simulation 299.74 300.54
Movielens 314.41 311.72

GLM-TSL
Simulation 339.49 333.07
Movielens 428.82 432.47

Laplace-TS
Simulation 520.29 520.35
Movielens 903.16 900.10

GLOC
Simulation 414.70 418.05
Movielens 455.39 461.78

SGD-TS
Simulation 430.05 425.98
Movielens 843.91 838.06

Table B.3. Ablation study on the role of T1 in our CDT framework.

Algorithm Setting k = 1 k = 2 k = 3
Simulation 328.28 300.62 298.28

LinUCB
Movielens 310.06 303.10 313.29
Simulation 717.77 670.90 677.03

LinTS
Movielens 360.12 352.19 343.18
Simulation 314.01 316.95 299.74

UCB-GLM
Movielens 347.92 325.58 314.41
Simulation 320.21 331.43 339.49

GLM-TSL
Movielens 439.98 428.91 428.82
Simulation 565.15 540.61 520.29

Laplace-TS
Movielens 948.10 891.91 903.16
Simulation 417.05 414.70 415.05

GLOC
Movielens 441.85 455.39 462.24
Simulation 450.14 430.05 414.57

SGD-TS
Movielens 852.98 843.91 830.35

Table B.4. Ablation study on the role of T2 in our CDT framework.

adaptively approximate the optimal point. Although it is unknown which one is better in practice

under different cases, our comprehensive simulations show that choosing either one in practice will

work well and outperform all the existing methods. In conclusion, these results suggest that we

have a universal way to set the values of T1 and T2 according to the theoretical bounds, and we do

not need to tune them for each particular dataset. In other words, the performance of our CDT

tuning framework is robust to the choice of T1, T2 under different scenarios.
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B.2. Supportive Remarks

Remark B.2.1. (Justifications on assumptions) We further explain the motivations of the Lips-

chitzness and piecewise stationarity assumptions of the expected reward function for hyperparam-

eter tuning of bandit algorithms.

For Lipschitzness, we get the motivation of our formulation shown in Eqn. 3.3 and Eqn. 3.4 from

the hyperparameter tuning work on the offline machine learning algorithms. Specifically, Bayesian

optimization is widely considered as the state-of-the-art and most popular hyperparameter tuning

method, which assumes that the underlying function is sampled from a Gaussian process in the

given space. By selecting a value x in the space and obtaining the corresponding reward, Bayesian

optimization could update its estimation of the underlying function, especially in the neighbor

of x sequentially. And it also relies on a user-defined kernel function, whose selection is also

purely empirical and lacks theoretical support. In our work, we use a similar idea as Bayesian

optimization: close hyperparameters tend to yield similar values with other conditions fixed. And

this natural extension motivates the Lipschitz assumption made in our paper. Therefore, it is fair to

make a similar and analogous assumption (close hyperparameters yield similar results given other

conditions fixed) for the hyperparameter tuning of bandit algorithms in our work. We validate this

assumption using a suite of simulations in Appendix B.1.

For the piecewise stationarity, as we mention in Section 3.3, it is inappropriate to assume the strict

stationarity of the bandit algorithm performance under the same hyperparameter value setting

across time T . As an example, for most UCB and TS-based bandit algorithms (e.g. LinUCB,

LinTS, UCB-GLM, GLM-UCB, GLM-TSL, etc.), the exploration degree of an arm is a multiplier

of the exploration rate and the uncertainty of an arm. In the beginning, a moderate value of

the exploration rate may lead to a large exploration degree for the arm since the uncertainty is

large. On the contrary, in the long run, a moderate value of exploration rate will lead to a minor

exploration degree for the arm since its value has been well estimated with small uncertainty.

Therefore, a fixed hyperparameter setting may suggest different results across different stages of

time, and hence it is unreasonable to expect the strong stationarity of the hyperparameter tuning

for bandit algorithms at all time steps. On the other hand, it would be very inefficient to assume

a completely non-stationary environment as in Ding et al. (2022b) which uses EXP3. In very close

time steps, we could anticipate that the same hyperparameter setting would yield a very similar
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result in expectation since the uncertainty of any arm would be close. And using a non-stationary

environment will totally waste this information and hence is inefficient. Therefore, it is very well

motivated to use a partial non-stationarity assumption that lies in the middle ground between the

above two extremes. Note our proposed tuning method yields very promising results in extensive

experiments under our formulations. And the stationary environment can be regarded as a special

case of our switching environment setting where the functions in between all change points are the

same.

Finally, we will explain why it is excessively difficult to present theoretical validation regarding

these assumptions in our paper. As we mentioned, our formulation is motivated by Bayesian

optimization, arguably the most popular method for hyperparameter tuning for offline machine

learning algorithms. And we use a similar idea: similar hyperparameters tend to yield similar

values while other conditions are fixed. However, people could hardly provide any theory backing

for the analogous assumption of Bayesian optimization for any offline machine learning algorithms

(e.g. regression, classification), and hyperparameter tuning is widely considered as a black-box

problem for offline machine learning algorithms. Not to mention that the theoretical analysis of

hyperparameter tuning for any bandit algorithm is much more challenging than that of offline ma-

chine learning algorithms since historical observations along with hyperparameter values will affect

the online selection simultaneously for the bandit algorithms, and we can use different hyperpa-

rameters in different rounds for bandit algorithms. Conclusively, our formulation is natural and

well-motivated.

B.3. Detailed Proof on the Zooming Dimension

In the beginning, we would reload some notations for simplicity. Here we could omit the time

subscript (or superscript) t since the following result could be identically proved for each round t.

Assume the Lipschitz function f is defined on Rpc , and v∗ := argmaxv∈A f(v) denotes the maximal

point (w.l.o.g. assume it’s unique), and ∆(v) = f(v∗) − f(v) is the “badness” of the arm v. We

then naturally denote Ar as the r-optimal region at the scale r ∈ (0, 1], i.e. Ar = {v ∈ A : r/2 <

∆(v) ≤ r}. The r-zooming number could be denoted as Nz(r). And the zooming dimension could

be naturally denoted as pz. Note that by the Assouad’s embedding theorem, any compact doubling

metric space (A,Dist(·, ·)) can be embedded into the Euclidean space with some type of metric.
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Therefore, for all compact doubling metric spaces with cover dimension pc, it is sufficient to study

on the metric space ([0, 1]pc , ∥·∥l) for some l ∈ (0,+∞] instead.

We will rigorously prove the following two facts regarding the r-zooming number Nz(r) of (A, f)

for arbitrary compact set A ⊆ Rpc and Lipschitz function f(·) defined on A:

• 0 ≤ pz ≤ pc.

• The zooming dimension could be much smaller than pc under some mild conditions. For example,

if the payoff function f is greater than ∥v∗ − v∥β in scale in a (non-trivial) neighborhood of v∗ for

some β ≥ 1, i.e. f(v∗)− f(v) ≥ C(∥v∗ − v∥β) as ∥v∗ − v∥ ≤ r for some C > 0 and r = Θ(1), then

it holds that pz ≤ (1− 1/β)pc. Note β = 2 when we have f(·) is C2-smooth and strongly concave

in a neighborhood of v∗, which subsequently implies that pz ≤ pc/2.

Proof. Due to the compactness of A, it suffices to prove the results when A = [0, 1]pc . By the

definition of the zooming dimension pz, it naturally holds that pz ≥ 0. On the other side, since the

space A is a closed and bounded set in Rpc , we assume the radius of A is no more than S, which

consequently implies that the r/16-covering number of A is at most the order of(
S
r
16

)pc
= (16S)pc · r−pc .

Since we know Ar ⊆ A, it holds that pz ≤ p. Secondly, if the payoff function f is locally greater

than ∥v∗ − v∥β in scale for some β ≥ 1, i.e. f(v∗)− f(v) ≥ C(∥v∗ − v∥β), then there exists C ∈ R

and δ > 0 such that as long as C ∥v − v∗∥β ≤ δ we have f(v∗) − f(v) ≥ C ∥v − v∗∥β. Therefore,

for 0 < r < δ, it holds that,

{v : r ≥ f(v∗)− f(v) > r/2} ⊆ {v : C ∥v − v∗∥β ≤ r} =

{
v : ∥v − v∗∥ ≤

( r
C

) 1
β

}

It holds that the r-covering number of the Euclidean ball with center v∗ and radius (r/c)(1/β) is of

the order of ( rC ) 1
β

r
16

pc

=

(
16

C
1
β

)pc
· r−(1− 1

β
)pc

which explicitly implies that pz ≤ (1− 1/β)pc. □
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Figure B.2. Cumulative regret plots of Zooming TS-R, Zooming and Oracle algo-
rithms under the switching environment.
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B.4. Intuition of our Thompson Sampling update

Intuitively, we consider a Gaussian likelihood function and Gaussian conjugate prior to design our

Thompson Sampling version of zooming algorithm, and here we would ignore the clipping step for

explanation. Suppose the likelihood of reward ỹt at time t, given the mean of reward I(vt) for our

pulled arm vt, follows a Gaussian distribution N(I(vt), s
2
0). Then, if the prior of I(vt) at time t is

given by N(f̂t(vt), s
2
0/nt(vt)), we could easily compute the posterior distribution at time t+ 1,

P (I(vt)|ỹt) ∝ P (ỹt|I(vt))P (I(vt)),

as N(f̂t+1(vt), s
2
0/nt+1(vt)). We can see this result coincides with our design in Algorithm 3 and

its proof is as follows:

Proof.

P (I(vt)|ỹt) ∝ P (ỹt|I(vt))P (I(vt))

∝ exp

{
− 1

2s20
[(I(vt)− ỹt)2 + nt(vt)(I(vt)− ft(vt))2]

}
∝ exp

{
− 1

2s20
[(nt(vt) + 1)I(vt)

2 − 2(ỹt + nt(vt)ft(vt))I(vt)]

}
∝ exp

{
−nt+1(vt)

2s20

[
I(vt)

2 − 2
(ỹt + nt(vt)ft(vt))

nt+1(vt)
I(vt)

]}
∝ exp

{
−nt+1(vt)

2s20
(I(vt)− ft+1(vt))

2

}
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Therefore, the posterior distribution of I(vt) at time t+ 1 is N(ft+1(vt), s
2
0

1
nt+1(vt)

). □

This gives us an intuitive explanation why our Zooming TS algorithm works well when we ignore

the clipped distribution step. And we have stated that this clipping step is inevitable in Lipschitz

bandit setting in our main paper since (1) we’d like to avoid underestimation of good active arms,

i.e. avoid the case when their posterior samples are too small. (2) We could at most adaptively

zoom in the regions which contains v∗ instead of exactly detecting v∗, and this inevitable loss

could be mitigated by setting a lower bound for TS posterior samples. Note that although the

intuition of our Zooming TS algorithm comes from the case where contextual bandit rewards follow

a Gaussian distribution, we also prove that our algorithm can achieve a decent regret bound under

the switching environment and the optimal instance-dependent regret bound under the stationary

Lipschitz bandit setting.

B.5. Proof of Theorem 3.4.1

B.5.1. Stationary Environment Case. To prove Theorem 3.4.1, we will first focus on the

stationary case, where ft := f, ∀t ∈ [T ]. When the environment is stationary, we could omit the

subscript (or superscript) t in some notations as in Section B.3 for simplicity: Assume the Lipschitz

function is f , and v∗ := argmaxv∈A f(v) denotes the maximal point (w.l.o.g. assume it’s unique),

and ∆(v) = f(v∗) − f(v) is the “badness” of the arm v. We then naturally denote Ar as the

r-optimal region at the scale r ∈ (0, 1], i.e. Ar = {v ∈ A : r/2 < ∆(v) ≤ r}. The r-zooming

number could be denoted as Nz(r). And the zooming dimension could be naturally denoted as pz.

Note we could omit the subscript (or superscript) t for the notations just mentioned above since

all these values would be fixed through all rounds under the stationary environment.

B.5.1.1. Useful Lemmas and Corollaries. Recall that f̂t(v) is the average observed reward for

arm v ∈ A by time t. And we call all the observations (pulled arms and observed rewards) over T

total rounds as a process.

Definition B.5.1. We call it a clean process, if for each time t ∈ [T ] and each strategy v ∈ A that

has been played at least once at any time t, we have |f̂t(v)− f(v)| ≤ rt(v).

Lemma B.5.1.1. The probability that, a process is clean, is at least 1− 1/T .
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Proof. Fix some arm v. Recall that each time an algorithm plays arm v, the reward is

sampled IID from some distribution Pv. Define random variables Uv,s for 1 ≤ s ≤ T as follows:

for s ≤ nT (v), Uv,s is the reward from the s-th time arm v is played, and for s > nT (v) it is an

independent sample from Pv. For each k ≤ T we can apply Chernoff bounds to {Uv,s : 1 ≤ s ≤ k}

and obtain that:

P

(∣∣∣∣∣1k
k∑
s=1

Uv,s − f(v)

∣∣∣∣∣ ≥
√

13τ20 lnT

2k

)
≤ 2 · exp

(
− k

2τ20

13τ20 lnT

2k

)

= 2 exp

(
13

4
lnT

)
= 2T−3.25 ≤ T−3,(B.1)

since we can trivially assume that T ≥ 16. Let N be the number of arms activated all over rounds T ;

note that N ≤ T . Define X-valued random variables {xi}Ti=1 as follows: xj is the min(j,N)-th arm

activated by time T . For any x ∈ A and j ≤ T , the event {x = xj} is independent of the random

variables {Ux,s}: the former event depends only on payoffs observed before x is activated, while

the latter set of random variables has no dependence on payoffs of arms other than x. Therefore,

Eqn. (B.1) is still valid if we replace the probability on the left side with conditional probability,

conditioned on the event {x = xj}. Taking the union bound over all k ≤ T , it follows that:

P (∀t ≤ T, |f(v)− f̂t(v)| ≤ rt(v) |xj = v) ≥ 1− T−2, ∀v ∈ A, j ∈ [T ],

Integrating over all arms v we get

P (∀t ≤ T, |f(xj)− f̂t(xj)| ≤ rt(xj)) ≥ 1− T−2, ∀j ∈ [T ].

Finally, we take the union bound over all j ≤ T , and it holds that,

P (∀t ≤ T, j ≤ T, |f(xj)− f̂t(xj)| ≤ rt(xj)) ≥ 1− T−1,

and this obviously implies the result. □

Lemma B.5.1.2. If it is a clean process, then B(v, rt(v)) could never be eliminated from Algorithm

3 for any t ∈ [T ] and arm v that is active at round t, given that v∗ ∈ B(v, rt(v)).
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Proof. Recall that from Algorithm 3, at round t the ball B(u, rt(u)) would be permanently

removed if we have for some active arm v s.t.

f̂t(v)− rt(v) > f̂t(u) + 2rt(u).

If we have that v∗ = argmaxx∈A f(x) ∈ B(u, rt(u)), then it holds that

f̂t(u) + 2rt(u) ≥ f(u) + rt(u) ≥ f(u) + Dist(u, v∗) ≥ f(v∗),

where the first inequality is due to the clean process and the last one comes from the fact that f

is a Lipschitz function. On the other hand, we have that for any active arm v,

f(v) ≥ f̂t(v)− rt(v), f(v∗) ≥ f(v).

Therefore, it holds that

f̂t(v)− rt(v) ≤ f̂t(u) + 2rt(u).

And this inequality concludes our proof. □

Lemma B.5.1.3. If it is a clean process, then for any time t and any active strategy v that has

been played at least once before time t we have ∆(v) ≤ 5E[rt(v)]. Furthermore, it holds that

E(nt(v)) ≤ O(ln (T )/∆(v)2).

Proof. Let St be the set of all arms that are active at time t. Suppose an arm vt is played at

time t and was previously played at least twice before time t. Firstly, We would claim that

f(v∗) ≤ It(vt) ≤ f(vt) + 3rt(vt)

holds uniformly for all t with probability at least 1− δ, which directly implies that ∆(vt) ≤ 3rt(vt)

with high probability uniformly. First we show that It(vt) ≥ f(v∗). Indeed, recall that all arms

are covered at time t, so there exists an active arm v∗t that covers v∗, meaning that v∗ is contained

in the confidence ball of v∗t . And based on Lemma B.5.1.2 the confidence ball containing v∗ could

never be eliminated at round t when it’s a clean process. Recall Zt,v is the i.i.d. standard normal

random variable used for any arm v in round t (Eqn. (3.6)). Since arm vt was chosen over v∗t , we
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have It(vt) ≥ It(v∗t ). Since this is a clean process, it follows that

It(v
∗
t ) = f̂t(v

∗
t ) + s0

√
1

nt(v∗t )
Zt,v∗t ≥ f(v

∗
t ) + s0

√
1

nt(v∗t )
Zt,v∗t − rt(v

∗
t )(B.2)

Furthermore, according to the Lipschitz property we have

f(v∗t ) ≥ f(v∗)−Dist(v∗t , v
∗) ≥ f(v∗)− rt(v∗t ).(B.3)

Combine Eqn. (B.2) and (B.3), we have

It(vt) ≥ It(v∗t ) ≥ f(v∗) + s0

√
1

nt(v∗t )
Zt,v∗t − 2rt(v

∗
t )

= f(v∗) +

√
52πτ20 ln (T )

nt(v∗t )

(
Zt,v∗t −

1√
2π

)
≥ f(v∗),(B.4)

where we get the last inequality since we truncate the random variable Zt,v∗t by the lower bound

1/
√
2π according to the definition. On the other hand, we have

It(vt) ≤ f(vt) + rt(vt) + s0

√
1

nt(vt)
Zt,vt = f(vt) +

(
1 + 2

√
2πZt,vt

)
rt(vt)(B.5)

Therefore, by combining Eqn. (B.4) and (B.5) we have that

∆(vt) ≤
(
1 + 2

√
2πZt,vt

)
rt(vt).(B.6)

And we know that Zt,: is defined as Zt,: = max{1/
√
2π, Z̃t,:} where Z̃t,: is IID drawn from standard

normal distribution. In other words, Zt,vt follows a clipped normal distribution with the following

PDF:

f(x) =


ϕ(x) + (1− Φ(x))δ

(
x− 1√

2π

)
, x ≥ 1√

2π
;

0, x < 1√
2π
;

Here ϕ(·) and Φ(·) denote the PDF and CDF of standard normal distribution. And we have

E(Zt,vt) ≤
1√
2π

+

∫ +∞

1√
2π

xϕ(x)dx ≤ 1√
2π

+
1√
2π
e−

1
4π ≤

√
2

π

By taking expectation on Eqn. (B.6), we have ∆(vt) ≤ 5E(rt(vt)). Next, we would show that

E(nt(vt)) ≤ O(ln (T ))/∆(vt)
2. Based on Eqn. (B.5) and the definition of rt(·), we could deduce
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that √
nt(vt) ≤

√
13

2
τ20 ln (T )(1 + 2

√
2πZt,vt)

1

∆(vt)
,

which thus implies that

nt(vt) ≤
13

2
τ20 ln (T )(1 + 2

√
2πZt,vt)

2 1

∆(vt)2
= O(ln (T ))(1 + 2

√
2πZt,vt)

2 1

∆(vt)2
.(B.7)

By simple calculation, we could show that

E(Z2
t,vt) ≤

1

2π
+

∫ +∞

1√
2π

x2ϕ(x)dx ≤ 1

π
+

1

2
≤ 1

⇒ E
[
(1 + 2

√
2πZt,vt)

2
]
≤ 1 + 4

√
2π

√
2

π
+ 8π < +∞.

After revisiting Eqn. (B.7), we can show that E(nt(vt)) ≤ O(ln (T ))/∆(vt)
2. Now suppose arm v is

only played once at time t, then rt(v) > 1 and thus the lemma naturally holds. Otherwise, let s be

the last time arm v has been played according to the selection rule, where we have rt(v) = rs(v),

and then based on Eqn. (B.5) it holds that

It(v) ≤ f(v) +
(
1 + 2

√
2πZs,v

)
rt(v).

And then we could show that ∆(v) ≤ 5E(rt(v)). By using an identical argument as before, we

could show that E(nt(v)) ≤ O(ln (T ))/∆(v)2. □

Lemma B.5.1.4. Let X1, . . . , Xn be independent σ2-sub-Gaussian random variables. Then for every

t > 0,

P

(
max
1,≤,n

Xi ≥
√

2σ2(ln (T ) + t)

)
≤ e−t.

Proof. Let u =
√
2σ2(ln (n) + t), we have

P

(
max
1,≤,n

Xi ≥ u
)

= P (∃i,Xi ≥ u) ≤
n∑
i=1

P (Xi ≥ u) ≤ ne−
u2

2σ2 = e−t.

□

B.5.1.2. Proof of Theorem 3.4.1 under stationary environment.

Proof. By Lemma B.5.1.1 we know that it is a clean process with probability at least 1− 1
T .

In other words, denote the event Ω := {clean process}, and then we have that P (Ω) ≥ 1− 1
T . And

113



according to Lemma B.5.1.2 we’re aware that the active confidence balls containing the best arm

can’t be removed in a clean process. Remember that we use ST as the set of all arms that are

active in the end, and denote

Bi,T =

{
v ∈ ST : 2i ≤ 1

∆(v)
< 2i+1

}
, where ST =

+∞⋃
i=0

Bi,T ,

where i ≥ 0. Then, under the event Ω, by using Corollary B.5.1.3 we have E(nT (v)|Ω) ≤

O(lnT )/∆(v)2, and hence it holds that

∑
v∈Bi,T

∆(v)E(nT (v)|Ω) ≤ O(lnT )
∑
v∈Bi,t

1

∆(v)
≤ O(lnT ) · 2i|Bi,t|

Denote ri = 2−i, we have

∑
v∈Bi,T

∆(v)E(nT (v)|Ω) ≤ O(lnT ) · 1
ri
|Bi,t|

Next, we would show that for any active arms u, v we have

Dist(u, v) >
1

4
√
2π ln (T )

min{∆(u),∆(v)}(B.8)

with probability at least 1− 1
T . W.l.o.g assume u has been activated before v. Let s be the time when

v has been activated. Then by the philosophy of our algorithm we have that Dist(u, v) > rs(v).

Then according to Eqn. (B.6) in the proof Lemma B.5.1.3, it holds that rs(v) ≥ 1
2
√
2πZ

∆(v) for

some random variable Z following the clipped standard normal distribution. Define the event

Υ = {Zt,vt < 2
√
ln (T ) for all t ∈ [T ]}, then based on Lemma B.5.1.4 we have P (Υ) ≥ 1− 1

T . Then

under the event Υ, we have rs(v) ≥ 1

4
√

2π ln (T )
∆(v), which then implies that Eqn. (B.8) holds

under Υ. Since for arbitrary x, y ∈ Bi,T we have

ri
2
< ∆(x) ≤ ri,

ri
2
< ∆(y) ≤ ri,

which implies that under the event Υ

Dist(x, y) >
1

4
√

2π ln (T )
min{∆(x),∆(y)} > ri

8
√

2π ln (T )
.
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Therefore, x and y should belong to different sets of (ri/8
√

2π ln (T ))-diameter-covering. It follows

that |Bi,T | ≤ Nz(ri/8
√
2π ln (T )) ≤ O(ln(T )p)crpzi ≤ Õ(crpzi ). Recall Nz(r) is defined as the

minimal number of balls of radius no more than r required to cover Ar. As a result, under the

events Ω and Υ, it holds that

∑
v∈Bi,T

∆(v)E(nT (v) |Ω ∩Υ) ≤ O(lnT ) · 1
ri
Nz(ri)(B.9)

Therefore, based on Eqn. (B.9), we have

RL(T ) =
∑
v∈ST

∆(v)E(nT (v))

= P (Ω ∩Υ)
∑
v∈ST

∆(v)E(nT (v) |Ω ∩Υ) + P (Ωc ∪Υc)
∑
v∈ST

∆(v)E(nT (v) |Ωc ∪Υc)

≤
∑

v∈ST :∆(v)≤ρ

∆(v)E(nT (v) |Ω ∩Υ) +
∑

v∈ST :∆(v)>ρ

∆(v)E(nT (v) |Ω ∩Υ) +
2

T
· T

≤ ρT +
∑

i<log2(
1
ρ
)

1

ri
Õ(cr−pzi ) + 2

≤ ρT + Õ(1)
∑

i<log2(
1
ρ
)

1

ri
cr−pzi + 2

≤ ρT + Õ(1)

⌊log1/2 2ρ⌋∑
k=0

c2k(pz+1) + 2

≤ ρT + Õ(1) · 2 · 2⌊log1/2 2ρ⌋(pZ+1) + 2

≤ ρT + Õ(1)

(
1

2ρ

)pz+1

+ 2

By choosing ρ in the scale of

ρ = Õ

(
1

T

) 1
pz+2

,

it holds that

RL(T ) = Õ

(
T
pz+1
pz+2

)
.
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B.5.2. Switching (Non-stationary) Environment Case. Since there are c(T ) change

points for the environment Lipschitz functions ft(·), i.e.

T−1∑
t=1

1[∃m ∈ A : ft(m) ̸= ft+1(m)] = c(T ).

Given the length of epochs as H, we would have ⌈T/H⌉ epochs overall. And we know that among

these ⌈T/H⌉ different epochs, at most c(T ) of them contain the change points. For the rest of

epochs that are free of change points, the cumulative regret could be bounded by the result we just

deduced for the stationary case above. And the cumulative regret in any epoch with stationary

environment could be bounded as H(pz,∗+1)/(pz,∗+2). Specifically, we could partition the T rounds

into m = ⌈T/H⌉ epochs:

[T1 + 1, T ] = [ω0 = T1 + 1, ω1) ∪ [ω1, ω2) ∪ · · · ∪ [ωm−1, ωm = T + 1),

where ωi+1 = ωi+H for i = 0, . . . ,m−2. Denote all the change points as T1 ≤ ρ1 < · · · < ρc(T ) ≤ T ,

and then define

Ω = {∪[ωi, ωi+1) : ρj ∈ [ωi, ωi+1),∃j = 1, . . . c; i = 0, . . . ,m− 1}.

Then it holds that |Ω| ≤ Hc(T ). Therefore, it holds that

RL(T ) ≤ Õ

(
Hc(T ) +

(
T

H
+ 1

)
H

pz,∗+1
pz,∗+2

)
≤ Õ

(
Hc(T ) +

T

H
·H

pz,∗+1
pz,∗+2

)
,

where the first part bound the regret of non-stationary epochs and the second part bound that of

stationary ones. By taking H = (T/c(T ))(pz,∗+2)/(pz,∗+3), it holds that

RL(T ) ≤ Õ

(
T
pz,∗+2
pz,∗+3 c(T )

1
pz,∗+3

)
.

And this concludes our proof for Theorem 3.4.1. □

B.6. Algorithm 3 with unknown c(T ) and pz,∗

B.6.1. Introduction of Algorithm 11. When both the number of change points c(T ) over

the total time horizon T and the zooming dimension pz,∗ are unknown, we could adapt the BOB

idea used in Cheung et al. (2019); Zhao et al. (2020) to choose the optimal epoch size H based on

116



the EXP3 meta algorithm. In the following, we first describe how to use the EXP3 algorithm to

choose the epoch size dynamically even if c(T ) and pz,∗ are unknown. Then we present the regret

analysis in Theorem B.6.1 and its proof.

Figure B.3. An illustration of Zooming TS algorithm with double restarts when
c(T ) is agnostic.

Although the zooming dimension pz,∗ is unknown, it holds that pz,∗ ≤ pc, and hence we could simply

use the upper bound of pz,∗ (denoted as pu) as pc instead (recall pc is the covering dimension). Note

that the upper bound pz,∗ could be more specific when we have some prior knowledge of the reward

Lipschitz function f(·): for example, as we mentioned in Appendix B.3, if the function f(·) is known

to be C2−smooth and strongly concave in a neighborhood of its maximum defined in Rpc , it holds

that pz,∗ ≤ pc/2 and then we could use pu = pc/2 as the upper bound. Note that we also use the

BOB mechanism in the CDT framework for hyperparameter tuning in Algorithm 4, where we treat

the zooming TS algorithm with Restarts as the meta algorithm to select the hyperparameter setting

in the upper layer, and then use the selected configuration for the bandit algorithm in the lower layer.

However, here we would use BOB mechanism differently: we firstly divide the total horizon T into

several epochs of the same length H0 (named top epoch), where in each top epoch we would restart

the Algorithm 3. And in the i−th top epoch the restarting length Hi (named bottom epoch) of

Algorithm 3 could be chosen from the set J = {Ji := ⌈k⌉ : k ≥ 1, k = H0/2
i−1, i = 1, 2, . . . }, where

the chosen bottom epoch size could be adaptively tuned by using EXP3 as the meta algorithm.

Here we restart the zooming TS algorithm from two perspectives, where we first restart the zooming

TS algorithm with Restarts (Algorithm 3) in each top epoch of some fixed length H0, and then for

each top epoch the restarting length Hi for Algorithm 3 would be tuned on the fly based on the
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previous observations (Cheung et al., 2019). Therefore, we would name this method Zooming TS

algorithm with Double Restarts.

As for how to choose the bottom epoch size Hi in each top epoch of length H0, we implement

a two-layer framework: In the upper layer, we use the adversarial MAB algorithm EXP3 to pull

the candidate from J = {Ji}. And then in the lower layer we use it as the bottom epoch size for

Algorithm 3. When a top epoch ends, we would update the components in EXP3 based on the

rewards witnessed in this top epoch. The illustration of this double restarted strategy is depicted

in Figure B.3. And the detailed procedure is shown in Algorithm 11.

Theorem B.6.1. By using the (top) epoch size as H0 = ⌈T (pu+2)/(pu+4)⌉, the expected total regret of

our Zooming TS algorithm with Double Restarts (Algorithm 11) under the switching environment

over time T could be bounded as

RL(T ) ≤ Õ
(
T
pu+2
pu+3 ·max

{
c(T )

1
pu+3 , T

1
(pu+3)(pu+4)

})
.

Specifically, it holds that

RL(T ) ≤


T
pu+2
pu+3 c(T )

1
pu+3 , c(T ) ≥ T

1
pu+4 ,

T
pu+3
pu+4 , c(T ) < T

1
pu+4 ,

where pu ≤ pc is the upper bound of pz,∗.

Therefore, we observe that if c(T ) is large enough, we could obtain the same regret bound as in

Theorem 3.4.1 given pz,∗.

B.6.2. Proof of Theorem B.6.1.

Proof. The proof of Theorem B.6.1 relies on the recent usage of the BOB framework that

was firstly introduced in Cheung et al. (2019) and then widely used in various bandit-based model

selection work (Ding et al., 2022a; Zhao et al., 2020). To be consistent we would use the notations

in Algorithm 11 in this proof, and we would also recall these notations here for readers’ convenience:

for the i-th bottom epoch, we assume the candidate Hji is pulled from the set J in the beginning,

where ji is the index of the pulled candidate. At round t, given the current bottom epoch length

Hji for some i, we pull the arm vt(Hji) ∈ A and then collect the stochastic reward Yt. We also

define ci(T ) as the number of change points during each top epoch, and hence it naturally holds that
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∑⌈T/H0⌉
i=1 ci(T ) = c(T ). Given these notations, the expected cumulative regret could be decomposed

into the following two parts:

RL(T ) = E

[
T∑
t=1

ft(v
∗
t )− ft(vt)

]
= E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(v
∗
t )− ft(vt(Hji))


= E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(v
∗
t )− ft(vt(H∗))


︸ ︷︷ ︸

Quantity (I)

+ E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(vt(H
∗))− ft(vt(Hji))


︸ ︷︷ ︸

Quantity (II)

,(B.10)

where H∗ could be any restarting period in J , and we expect it could approximate the optimal

choice Hopt = (T/c(T ))(pu+2)/(pu+3) in Theorem 3.4.1. (Here we replace pz,∗ by pu in Theorem

3.4.1 since the underlying pz,∗ is mostly unspecified in reality.) According to the proof of Theorem

3.4.1 in Appendix B.7, the Quantity (I) could be bounded as:

E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(v
∗
t )− ft(vt(H∗))

 ≤ ⌈T/H0⌉∑
i=1

H∗ci(T ) +
H0

H∗ (H
∗)
pu+2
pu+4

= H∗c(T ) + T (H∗)
− 1
pu+2

However, it is clear that each candidate in J could at most be the length of top epoch size H0,

which we set to be ⌈T (pu+2)/(pu+4)⌉, and hence it would be more challenging if the optimal choice

Hopt = (T/c(T ))(pu+2)/(pu+3) is larger than H0. To deal with this issue, we bound the expected

cumulative regret in two different cases separately:

(1) If Hopt = (T/c(T ))(pu+2)/(pu+3) ≤ H0, which is equivalent to

(
T

c(T )

)pu+2
pu+3

≤ H0 ⇔
(

T

c(T )

)pu+2
pu+3

≤ T
pu+2
pu+4 ⇔ c(T ) ≥ T

1
pu+4 ,
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Algorithm 11 Zooming TS algorithm with Double Restarts

Input: Time horizon T , space A, upper bound pu ≤ pc.
1: the (top) epoch size H0 = ⌈T (pu+2)/(pu+4)⌉, N = ⌈log2(H0)⌉+ 1, J = {Hi = ⌈H0/2

i−1⌉}Ni=1.
2: Initialize the exponential weights wj(1) = 1 for j = 1, . . . , |J |.
3: Initialize the exploration parameter for the EXP3 algorithm as α = min

{
1,
√

|J | log(|J |)
(e−1)⌈T/H0⌉

}
.

4: for i = 1 to ⌈T/H0⌉ do
5: Update probability distribution for selecting candidates in J based on EXP3 as:

pj(i) =
α

|J |
+ (1− α) wj(i)∑|J |

k=1wk(i)
, j = 1, . . . , |J |.

6: Pull ji from {1, 2, . . . , |J |} according to the probability distribution {pj(i)}|J |j=1.

7: Run Zooming TS algorithm with Restarts using the (bottom) epoch size Hji for t = (i −
1)H0 + 1 to min{T, iH0}, and collect the pulled arm vt(Hji) and reward Yt at each iteration.

8: Update components in EXP3: rj(i) = 0 for all j ̸= ji; rj(i) =
∑min{T,iH0}

k=(i−1)H0+1 Yk/pj(i) if

j = ji, and then

wj(i+ 1) = wj(i) exp

(
α

|J |
rj(i)

)
, j = 1, . . . , |J |.

then we know that there exists some H+ ∈ J such that H+ ≤ (T/c(T ))(pu+2)/(pu+3) ≤ 2H+. By

setting H∗ = H+, the Quantity (I) could be bounded as:

Quantity (I) = Õ

(
H+c(T ) + T (H∗)

− 1
pu+2

)
= Õ

(
Hoptc(T ) + T (Hopt)

− 1
pu+2

)
= Õ

(
T
pu+2
pu+3 c(T )

1
pu+3

)
.

For the Quantity (II), we could bound it based on the results in Auer et al. (2002b). Specifically,

from Corollary 3.2 in Auer et al. (2002b), the expected cumulative regret of EXP3 could be upper

bounded by 2Q
√

(e− 1)LK ln(K), where Q is the maximum absolute sum of rewards in any epoch,

L is the number of rounds and K is the number of arms. Under our setting, we can set Q = H0, L =

⌈T/H0⌉ and K = |J | = O(ln(H0)). So we could bound Quantity (II) as:

E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(vt(H
∗))− ft(vt(Hji))

 ≤ 2
√
e− 1H0

√
T

H0
|J | ln(|J |) = Õ(

√
TH0)

= Õ

(
T
pu+3
pu+4

)
= Õ

(
T
pu+2
pu+3T

1
(pu+3)(pu+4)

)
= Õ

(
T
pu+2
pu+3 c(T )

1
pu+3

)
,(B.11)

where we have the last equality since we assume that c(T ) ≥ T 1/(pu+4). Therefore, we have finished

the proof for this case. (2) If Hopt = (T/c(T ))(pu+2)/(pu+3) > H0, which is equivalent to
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(
T

c(T )

)pu+2
pu+3

> H0 ⇔
(

T

c(T )

)pu+2
pu+3

> T
pu+2
pu+4 ⇔ c(T ) < T

1
pu+4 ,

then we know that Hopt is greater than all candidates in J , which means that we could not bound

the Quantity (I) based on the previous argument. By simply using H∗ = H0, it holds that

Quantity (I) = Õ

(
H0c(T ) + T ·H

− 1
pu+2

0

)
= Õ

(
T
pu+3
pu+4

)
.

For Quantity (II), based on Eqn. (B.11), we have

Quantity (II) = Õ

(
T
pu+3
pu+4

)
.

Combining the case (1) and (2), it holds that

RL(T ) ≤


T
pu+2
pu+3 c(T )

1
pu+3 , c(T ) ≥ T

1
pu+4 ,

T
pu+3
pu+4 , c(T ) < T

1
pu+4 .

And this concludes our proof. □

B.7. Analysis of Theorem 3.4.2

B.7.1. Additional Lemma.

Lemma B.7.1. (Proposition 1 in Li et al. (2017)) Define Vn+1 =
∑n

t=1XtX
T
t , where Xt is drawn

IID from some distribution in unit ball Bd. Furthermore, let Σ := E[XtX
T
t ] be the second moment

matrix, let B, δ2 > 0 be two positive constants. Then there exists positive, universal constants C1

and C2 such that λmin(Vn+1) ≥ B with probability at least 1− δ2, as long as

n ≥

(
C1

√
d+ C2

√
log(1/δ2)

λmin(Σ)

)2

+
2B

λmin(Σ)
.

Lemma B.7.2. (Theorem 2 in Abbasi-Yadkori et al. (2011)) For any δ < 1, under our problem

setting in Section 3.3, it holds that for all t > 0,∥∥∥θ̂t − θ∗∥∥∥
Vt
≤ βt(δ),

∀x ∈ Rd, |x⊤(θ̂t − θ∗)| ≤ ∥x∥v−1
t
βt(δ),
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with probability at least 1− δ, where

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS.

In this subsection we denote α∗(δ) := βT (δ).

Lemma B.7.3. (Filippi et al. (2010)) Let λ > 0, and {xi}ti=1 be a sequence in Rd with ∥xi∥ ≤ 1,

then we have

t∑
s=1

∥xs∥2V −1
s
≤ 2 log

(
det(Vt+1)

det(λI)

)
≤ 2d log

(
1 +

t

λ

)
,

t∑
s=1

∥xs∥V −1
s
≤

√√√√T

(
t∑

s=1

∥xs∥2V −1
s

)
≤

√
2dt log

(
1 +

t

λ

)
.

Lemma B.7.4. (Agrawal & Goyal (2013)) For a Gaussian random variable Z with mean m and

variance σ2, for any z ≥ 1,

P (|Z −m| ≥ zσ) ≤ 1√
πz
e−z

2/2.

Lemma B.7.5 (Adapted from Lemma B.7.2). For any δ < 1, under our problem setting in Section

3.3 with the regularization hyper-parameter λ ∈ [λmin, λmax] (λmin > 0), it holds that for all t > 0,∥∥∥θ̂t − θ∗∥∥∥
Vt
≤ βt(δ),

∀x ∈ Rd, |x⊤(θ̂t − θ∗)| ≤ ∥x∥V −1
t
βt(δ),

with probability at least 1− δ, where

βt(δ) = σ

√
log

(
(λmin + t)d

δ2λdmin

)
+
√
λmaxS.

Proof. The proof of this Lemma is trivial given Lemma B.7.2. For any λ ∈ [λmin, λmax],

according to Lemma B.7.2 it holds that, for all t > 0,∥∥∥θ̂t − θ∗∥∥∥
Vt
≤ βt(δ),

∀x ∈ Rd, |x⊤(θ̂t − θ∗)| ≤ ∥x∥V −1
t
βt(δ),
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with probability at least 1− δ, where

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS ≤ σ

√
log

(
(λmin + t)d

δ2λdmin

)
+
√
λmaxS.

□

B.7.2. Proof of Theorem 3.4.2. Recall the partition of the cumulative regret as:

R(T ) = E

[
T1∑
t=1

(
µ(x⊤t,∗θ

∗)− µ(xt⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (A)

+E

 T∑
t=T1+1

(
µ(x⊤t,∗θ

∗)− µ(xt(α∗(t)|F∗
t )

⊤θ∗)
)

︸ ︷︷ ︸
Quantity (B)

+ E

 T∑
t=T1+1

(µ
(
xt(α

∗(t)|F∗
t )

⊤θ∗)−µ(xt(α∗(t)|Ft)⊤θ∗)
)

︸ ︷︷ ︸
Quantity (C)

+ E

 T∑
t=T1+1

(µ
(
xt(α

∗(t)|Ft)⊤θ∗)−µ(xt(α(it)|Ft)⊤θ∗)
)

︸ ︷︷ ︸
Quantity (D)

.

For Quantity (A), it could be easily bounded by the length of warming up period as:

E

[
T1∑
t=1

(
µ(x⊤t,∗θ

∗)− µ(xt⊤θ∗)
)]
≤ T1 = O

(
T

2
p+3

)
≤ O

(
T
p+2
p+3

)
.(B.12)

For Quantity (B), it depicts the cumulative regret of the contextual bandit algorithm that runs

with the theoretical optimal hyperparameter α∗(t) all the time. Therefore, if we implement any

state-of-the-arm contextual generalized linear bandit algorithms (e.g. Filippi et al. (2010); Li et al.

(2010; 2017)), it holds that

E

 T∑
t=T1+1

(
µ(x⊤t,∗θ

∗)− µ(xt(α∗(t)|F∗
t )

⊤θ∗)
) ≤ Õ(

√
T − T1) = Õ(

√
T ).(B.13)

For Quantity (C), it represents the cumulative difference of regret under the theoretical optimal

hyperparameter combination α∗(t) with two lines of history Ft and F∗
t . Note for most GLB

algorithms, the most significant hyperparameter is the exploration rate, which directly affect the
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decision-making process. Regarding the regularization hyperparameter λ, it is used to make Vt

invertible and hence would be set to 1 in practice. And in the long run it would not be influential.

Moreover, there is commonly no theoretical optimal value for λ, and it could be set to an arbitrary

constant in order to obtain the Õ(
√
T ) bound of regret. For theoretical proof, this hyperparameter

(λ) is also not significant: for example, if the search interval for λ is [λmin, λmax], then we can easily

modify the Lemma B.7.3 as:

t∑
s=1

∥xs∥2V −1
s
≤ 2 log

(
det(Vt+1)

det(λI)

)
≤ 2d log

(
1 +

t

λmin

)
,

t∑
s=1

∥xs∥V −1
s
≤

√√√√T

(
t∑

s=1

∥xs∥2V −1
s

)
≤

√
2dt log

(
1 +

t

λmin

)
.

We will offer a more detailed explanation to this fact in the following proof of bounding Quantity

(C). Furthermore, other parameters such as the stepsize in a loop of gradient descent will not

be crucial either since the final result would be similar after the convergence criterion is met.

Therefore, w.l.o.g we would only assume there is only one exploration rate hyperparameter here

to bound Quantity (C). Recall that α(t) is the combination of all hyperparameters, and hence we

could denote this exploration rate hyperparameter as α(t) in this part since there is no more other

hyperparameter. Here we would use LinUCB and LinTS for the detailed proof, and note that

regret bound of all other UCB and TS algorithms could be similarly deduced. We first reload some

notations: recall we denote Vt = λI+
∑t−1

i=1 xix
⊤
i , θ̂t = V −1

t

∑t−1
i=1 xiyi where xt is the arm we pulled

at round t by using our tuned hyperparameter α(it) and the history based on our framework all

the time. And we denote

Xt = argmax
x∈Xt

x⊤θ̂t + α∗(t) ∥x∥V −1
t

Similarly, we denote Ṽt = λI +
∑t−1

i=1 X̃iX̃
⊤
i , θ̃t = Ṽ −1

t

∑t−1
i=1 X̃iỹi, where X̃t is the arm we pulled by

using the theoretical optimal hyperparameter α∗(t) under the history of always using {α∗(s)}t−1
s=1,

and ỹt is the corresponding payoff we observe at round t. Therefore, it holds that,

X̃t = argmax
x∈Xt

x⊤θ̃t + α∗(t) ∥x∥Ṽ −1
t
.
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By using these new definitions, the Quantity (C) could be formulated as:

E

 T∑
t=T1+1

(µ
(
xt(α

∗(t)|F∗
t )

⊤θ∗)− µ(xt(α∗(t)|Ft)⊤θ∗)
)

︸ ︷︷ ︸
Quantity (C)

= E

 T∑
t=T1+1

µ(X̃⊤
t θ

∗)− µ(X⊤
t θ

∗)



For LinUCB, since the Lemma B.7.2 holds for any sequence (x1, . . . , xt), and hence we have that

with probability at least 1− δ, ∥∥∥θ̂ − θ∥∥∥
Vt
≤ βt(δ) ≤ α∗(T, δ),(B.14)

where

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS = α∗(t).

And we will omit δ for simplicity. For LinUCB, we have that

X⊤
t θ̂t + α∗(t) ∥Xt∥V −1

t
≥ X̃⊤

t θ̂t + α∗(t)
∥∥∥X̃t

∥∥∥
V −1
t

≥ X̃⊤
t θ

∗ + α∗(t)
∥∥∥X̃t

∥∥∥
V −1
t

+ X̃⊤
t (θ̂t − θ∗) ≥ X̃⊤

t θ
∗.

Therefore, it holds that

X⊤
t θ

∗ + α∗(t) ∥Xt∥V −1
t

+X⊤
t (θ̂t − θ∗) ≥ X̃⊤

t θ
∗

X⊤
t θ

∗ + 2α∗(t) ∥Xt∥V −1
t
≥ X̃⊤

t θ
∗,

which implies that

(X̃t −Xt)
⊤θ∗ ≤ 2α∗(T ) ∥Xt∥V −1

t
.

By Lemma B.7.3 and choosing T1 = T 2/(p+3), it holds that,

T∑
t=T1+1

∥Xt∥V −1
t
≤

T∑
t=T1+1

∥Xt∥
√
λmin(Vt) = O(T × T−1/(p+3)) = O(T (p+2)/(p+3)).

And then it holds that,

T∑
t=T1+1

(
X̃T
t θ −Xtθ

)
= Õ

α∗(T )
T∑

t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

 = Õ(T (p+2)/(p+3)).(B.15)
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Note βt(δ) contain the regularizer parameter λ, and it’s often set to some constant (e.g. 1) in

practice. If we tune λ in the search interval [λmin, λmax], then we can still have the identical bound

as in Eqn. (B.14) by using the fact that

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS ≤ σ

√
log

(
(λmin + t)d

δ2λdmin

)
+
√
λmaxS.

This result is deduced in our Lemma B.7.5, which implies that tuning the regularizer hyperparam-

eter would not affect the order of final regret bound in Eqn. (B.15). Therefore, as we mentioned

earlier, we could only consider the exploration rate as the unique hyperparameter for theoretical

analysis.

For LinTS, we have that

X⊤
t θ̂t + α∗(T ) ∥Xt∥V −1

t
Zt ≥ X̃⊤

t θ̂t + α∗(T )
∥∥∥X̃t

∥∥∥
V −1
t

Z̃t

≥ X̃⊤
t θ

∗ + α∗(T )
∥∥∥X̃t

∥∥∥
V −1
t

Z̃t + X̃⊤
t (θ̂t − θ∗)

≥ X̃⊤
t θ

∗ + α∗(T )
∥∥∥X̃t

∥∥∥
V −1
t

Z̃t +
∥∥∥X̃t

∥∥∥
V −1
t

∥∥∥θ̂t − θ∗∥∥∥
Vt

≥ X̃⊤
t θ + (α∗(T )Z̃t − α∗(T ))

∥∥∥X̃t

∥∥∥
V −1
t

,

where Zt and Zt,∗ are IID normal random variables, ∀t. And then we could deduce that

X⊤
t θ

∗ + α∗(T ) ∥Xt∥V −1
t
Zt +X⊤

t (θ̂t − θ∗) ≥ X̃⊤
t θ + (α∗(T )Z̃t − α∗(T ))

∥∥∥X̃t

∥∥∥
V −1
t

X⊤
t θ

∗ + α∗(T ) ∥Xt∥V −1
t
Zt + α∗(T ) ∥Xt∥V −1

t
≥ X̃⊤

t θ + (α∗(T )Z̃t − α∗(T ))
∥∥∥X̃t

∥∥∥
V −1
t

(X̃t −Xt)
⊤θ∗ ≤ (α∗(T )− α∗(T )Z̃t)

∥∥∥X̃t

∥∥∥
V −1
t

+ (α∗(T ) + α∗(T )Zt) ∥Xt∥V −1
t

:= Kt

where Kt is normal random variable with

E(Kt) ≤ 2α(T )T−1/(p+3), SD(Kt) ≤
√
2α∗T−1/(p+3).

Consequently, we have

T∑
t=T1+1

(
X̃T
t θ −XT

t θ
)
≤

T∑
t=T1+1

Kt := K

E(K) = 2α∗(T )T (p+2)/(p+3) = Õ(T
p+2
p+3 ), SD(K) ≤

√
2α∗T

p+1
2p+6 = O(T

p+1
2p+6 ).
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Based on Lemma B.7.4, we have

P

 T∑
t=T1+1

(
X̃T
t θ −XT

t θ
)
≥ K > (2α∗ +

√
2)T

p+2
p+3

 ≤ 1

c
√
π
√
T
e−c

2T/2.(B.16)

This probability upper bound is minimal and negligible, which means the bound on its expected

value (Quantity (C)) could be easily deduced. Note we could use this procedure to bound the

regret for other UCB and TS bandit algorithms, since most of the proof for GLB algorithms are

closely related to the rate of
∑T

t=T1+1 ∥Xt∥V −1
t

and the consistency of θ̂t. In conclusion, we have

that Quantity (C) could be upper bounded by the order Õ(T
p+2
p+3 ).

For Quantity (D), which is the extra regret we paid for hyperparameter tuning in theory. Recall

we assume µ(xt(α|Ft)⊤θ∗) = gt(α) + ηFt,α for some time-dependent Lipschitz function gt. And

(ηFt,α−E[ηFt,α]) is IID sub-Gaussian with parameter τ2 where E[ηFt,α] depends on the history Ft.

Denote νFt,α = ηFt,α − E[ηFt,α] is the IID sub-Gaussian random variable with parameter τ2, then

we have that

yt = gt(α(it)) + νFt,α(it) + E[ηFt,α(it)] + ϵt

Since νFt,α(it), ϵt is IID sub-Gaussian random variable independent with Ft, we denote ϵ̃Ft,α(it) =

νFt,α(it) + ϵt as the IID sub-Gaussian noise with parameter τ2 + σ2. And then we have

yt = gt(α(it)) + E[ηFt,α(it)] + ϵ̃Ft,α(it), E(yt) = gt(α(it)) + E[ηFt,α(it)]

µ(xt(α|Ft)⊤θ∗) = gt(α) + E[ηFt,α].

For Quantity (D), recall it could be formulated as:

E

 T∑
t=T1+1

(µ
(
xt(α

∗(t)|Ft)⊤θ∗)− µ(xt(α(it)|Ft)⊤θ∗)
)

︸ ︷︷ ︸
Quantity (D)

.

Since both terms in Quantity (D) are based on the same line of history Ft at iteration t, and the

value of E[ηFt,α] only depends on the history filtration Ft but not the value of α. Therefore, it
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holds that

E

 T∑
t=T1+1

(µ
(
xt(α

∗(t)|Ft)⊤θ∗)− µ(xt(α(it)|Ft)⊤θ∗)
)

︸ ︷︷ ︸
Quantity (D)

=

T∑
t=T1+1

gt(α
∗(t))− E[gt(α(it))]

≤
T∑

t=T1+1

sup
α∈A

gt(α)− E[gt(α(it))].

Therefore, Quantity (D) could be regarded as the cumulative regret of a non-stationary Lipschitz

bandit and the noise is IID sub-Gaussian with parameter τ20 = (τ2+σ2). We assume that, under the

switching environment, the Lipschitz function gt(·) would be piecewise stationary and the number

of change points is of scale Õ(1). Therefore, Quantity (D) can be upper bounded the cumulative

regret of our Zooming TS algorithm with restarted strategy given c(T ) = Õ(1). By choosing

T2 = (T − T1)(p+2)/(p+3) = Θ(T (p+2)/(p+3)), and according to Theorem 3.4.1, it holds that,

T∑
t=T1+1

sup
α∈A

gt(α)− E[gt(α(it))] ≤ Õ
(
T
p+2
p+3

)
.(B.17)

By combining the results deduced in Eqn. (B.12), Eqn. (B.13), Eqn. (B.15) (or Eqn. (B.16))

and Eqn. (B.17), we finish the proof of Theorem 3.4.2 for linear bandits. For generalized linear

bandits, under the default and standard assumption in the generalized linear bandit literature that

the derivative of µ(·) could be upper bounded by some constant given |x| ≤ S, the regret could be

bounded by further multiplying a constant in the same order.

□
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APPENDIX C

Appendix for Chapter 4

C.1. Clarification about σ20

It is a common assumption that the random noise ηt in Eqn. (4.2) is a sub-Gaussian random

variable in GLM, and here we would briefly explain this assumption.

Lemma C.1.0.1. (Sub-Gaussian property for GLM residuals) For any generalized linear model with

a probability density function or probability mass function of the canonical form

f(Y = y; θ, ϕ) = exp

(
yθ − b(θ)

ϕ
+ c(y, ϕ)

)
,

where the function b(·) is Lipschitz with parameter kµ. Then we can conclude that the random

variable (Y − b′(θ)) = (Y − µ(θ)) satisfies sub-Gaussian property with parameter at most
√
ϕkµ.

Proof. We prove the Lemma C.1.0.1 based on its definition directly. For any t ∈ R, we have:

E
[
exp{t

(
Y − b′(θ)

)
}
]
=

∫ +∞

−∞
exp

{
t(y − b′(θ)) + yθ − b(θ)

ϕ
+ c(y, ϕ)

}
dy

=

∫ +∞

−∞
exp

{
(θ + ϕt)y − b(θ + ϕt)

ϕ
+ c(y, ϕ)

}
× exp

{
b(θ + ϕt)− b(θ)− ϕtb′(θ)

ϕ

}
dy

= exp

{
b(θ + ϕt)− b(θ)− ϕtb′(θ)

ϕ

}
(i)
= exp

{
t2ϕ b′′(θ + δϕt)

2

}
≤ exp

{
t2 ϕkµ

2

}
:= exp

{
t2 σ20
2

}
,

where the equality (i) is based on the remainder of Taylor expansion. □

This theorem tells us that it is a standard assumption that the noise ηt in Eqn. (4.2) is a sub-

Gaussian random variable. For instance, if we assume the inverse link function µ(·) is globally

Lipschitz with parameter kµ, we can simply take σ20 = kµϕ. And this assumption also widely holds

under a class of GLMs such as the most popular Logistic model.
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C.2. Proof of Theorem 4.4.1

C.2.1. Useful Lemmas.

Lemma C.2.0.1. (Sub-guassian moment bound) For sub-Gaussian random variable X with param-

eter σ2, i.e.

E(exp(sX)) ≤ exp

(
σ2s2

2

)
, ∀s ∈ R.

Then we have Var(X) = E(X2) ≤ 4σ2.

Proof. It holds that,

E(X2) =

∫ +∞

0
P (X2 > t) dt

=

∫ +∞

0
P (|X| >

√
t) dt

≤ 2

∫ +∞

0
exp (

−t2

4σ2
) dt

= 4σ2
∫ +∞

0
e−u du, u = t/(2σ2)

= 4σ2

□

Lemma C.2.0.2. (Generalized Stein’s Lemma, (Diaconis et al., 2004)) For a random variable X

with continously differentiable density function p : Rd → R, and any continuously differentiable

function f : Rd → R. If the expected values of both ∇f(X) and f(X) · S(X) regarding the density

p exist, then they are identical, i.e.

E[f(X) · S(X)] = E[∇f(X)].

This is a very famous result in the area of Stein’s method, and we would omit its proof.

Lemma C.2.0.3. (Minsker (2018)) Let Y1, . . . , Yn ∈ Rd1×d2 be a sequence of independent real random

matrices, and assume that

σ2n ≥ max

∥∥∥∥∥∥
n∑
j=1

E(YjY ⊤
j )

∥∥∥∥∥∥
op

,

∥∥∥∥∥∥
n∑
j=1

E(Y ⊤
j Yj)

∥∥∥∥∥∥
op

 .
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Then for any t ∈ R+ and ν ∈ R+, it holds that,

P

∥∥∥∥∥∥
n∑
j=1

ψ̃ν(Yj)−
n∑
j=1

E(Yj)

∥∥∥∥∥∥
op

≥ t
√
n

 ≤ 2(d1 + d2) exp

(
νt
√
n+

ν2σ2n
2

)

The detailed proof of this lemma is based on a series of work proposed in Minsker (2018). And we

would omit it here as well. Based on Lemma C.2.0.2 and C.2.0.3, we would propose the following

Lemma C.2.0.4 adapted from the work in Yang et al. (2017). And this Lemma serves as a crux for

the proof of Theorem 4.4.1.

Lemma C.2.0.4. L : Rd1×d2 → R is the loss function defined in Eqn. (4.6). Then by setting

t =

√
2(d1 + d2)M(4σ20 + S2

f ) log

(
2(d1 + d2)

δ

)
,

ν =
t

(4σ20 + Sf )M(d1 + d2)
√
T1

=

√√√√ 2 log
(
2(d1+d2)

δ

)
T1(d1 + d2)M(4σ20 + S2

f )
,

we have with probability at least 1− δ, it holds that

P

(
∥∇L(µ∗Θ∗)∥op ≥

2t√
T1

)
≤ δ,

where µ∗ = E[µ′(⟨X,Θ∗⟩)] ≥ cµ > 0.

Proof. Based on the definition of our loss function L(·) in Eqn. (4.6), we have that

∇xL(µ∗Θ∗) = 2µ∗Θ∗ − 2

T1

T1∑
i=1

ψ̃ν(y · S(x))

= 2E[µ′(⟨X1,Θ
∗⟩)]Θ∗ − 2

T1

T1∑
i=1

ψ̃ν(yi · S(Xi))

(i)
= 2E[µ(⟨X1,Θ

∗⟩)S(X1)]−
2

T1

T1∑
i=1

ψ̃ν(yi · S(Xi))

(ii)
= 2

[
E(Y1 · S(X1))−

1

T1

T1∑
i=1

ψ̃ν(yi · S(Xi))

]

where we have (i) due to the generalized Stein’s Lemma (Lemma C.2.0.2), and (ii) comes from the

fact that the random noise η1 = y1−µ(⟨X1,Θ
∗⟩) is zero-mean and independent with X1. Therefore,
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in order to implement the Lemma C.2.0.3, we can see that it suffices to get σ2 defined as:

σ2 = max

∥∥∥∥∥∥
n∑
j=1

E[y2jS(Xj)S(Xj)
⊤]

∥∥∥∥∥∥
op

,

∥∥∥∥∥∥
n∑
j=1

E[y2jS(Xj)
⊤S(Xj)]

∥∥∥∥∥∥
op

 .

It holds that,∥∥∥∥∥∥
T1∑
j=1

E[y2jS(Xj)S(Xj)
⊤]

∥∥∥∥∥∥
op

≤ T1 ×
∥∥∥E[y21S(X1)S(X1)

⊤]
∥∥∥
op

= T1 ×
∥∥∥E[(η1 + µ(⟨X1,Θ

∗⟩))2S(X1)S(X1)
⊤]
∥∥∥
op

= T1 ×
∥∥∥E[η21S(X1)S(X1)

⊤] + E[µ(⟨X1,Θ
∗⟩))2S(X1)S(X1)

⊤]
∥∥∥
op

= T1 ×
∥∥∥E(η21)E[S(X1)S(X1)

⊤] + E[µ(⟨X1,Θ
∗⟩))2S(X1)S(X1)

⊤]
∥∥∥
op

(i)

≤ T1 ×
∥∥∥4σ20 E[S(X1)S(X1)

⊤] + S2
f E[S(X1)S(X1)

⊤]
∥∥∥
op

= (4σ20 + S2
f )T1 ×

∥∥∥E[S(X1)S(X1)
⊤]
∥∥∥
op

where the inequality (i) comes from the fact that |µ(⟨X1,Θ
∗⟩)| ≤ Sf , and S(X1)S(X1)

⊤ is always

positive semidefinite. Next, without loss of generality we assume Xi are independent across rows,

since if Xi are independent across columns we can study the value of
∥∥E[S(X1)

⊤S(X1)]
∥∥
op

given the

fact that the largest singular values of S(X1)
⊤S(X1) and S(X1)S(X1)

⊤ are identical for arbitrary

X1. We know that E[S(X1)S(X1)
⊤] is always symmetric and positive semidefinite, and hence we

have for any u ∈ Rd1 with ∥u∥ = 1

u⊤E[S(X1)S(X1)
⊤]u = E[u⊤S(X1)S(X1)

⊤u] = E
[∥∥∥S(X1)

⊤u
∥∥∥2]

=

d2∑
j=1

E

( d1∑
i=1

Si,j(X1)ui

)2


=

d2∑
j=1

E

[
d1∑
i=1

Si,j(X1)
2u2i

]
≤ d2M,

and this result implies that
∥∥E[S(X1)S(X1)

⊤]
∥∥
op
≤ d2M ≤ (d1 + d2)M Therefore, we have that∥∥∥∥∥∥

T1∑
j=1

E[y2jS(Xj)S(Xj)
⊤]

∥∥∥∥∥∥
op

≤ (4σ20 + S2
f )(d1 + d2)T1M.
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And similarly, we can prove that∥∥∥∥∥∥
T1∑
j=1

E[y2jS(Xj)
⊤S(Xj)]

∥∥∥∥∥∥
op

≤ (4σ20 + S2
f )(d1 + d2)T1M.

Therefore, we can take σ2 = (4σ20 + S2
f )(d1 + d2)T1M consequently. By using Lemma C.2.0.3, we

have

P

(
∥∇L(µ∗Θ∗)∥op ≥

2t√
T1

)
≤ 2(d1 + d2) exp

(
−νt

√
T1 +

ν2(4σ20 + S2
f )M(d1 + d2)T1

2

)

By plugging the values of t and ν in Lemma C.2.0.4, we finish the proof. □

C.2.2. Proof of Theorem 4.4.1. Since the estimator Θ̂ minimizes the regularized loss func-

tion defined in Eqn. (4.6), we have

L(Θ̂) + λT1

∥∥∥Θ̂∥∥∥
nuc
≤ L(µ∗Θ∗) + λT1 ∥µ∗Θ∗∥nuc .

And due to the fact that L(·) is a quadratic function, we have the following expression based on

multivariate Taylor’s expansion:

L(Θ̂)− L(µ∗Θ∗) = ⟨∇L(µ∗Θ∗),Θ⟩+ 2 ∥Θ∥2F , where Θ = Θ̂− µ∗Θ∗.

By rearranging the above two results, we can deduce that

2 ∥Θ∥2F ≤ −⟨∇L(µ
∗Θ∗),Θ⟩+ λT1 ∥µ∗Θ∗∥nuc − λT1

∥∥∥Θ̂∥∥∥
nuc

(i)

≤ ∥∇L(µ∗Θ∗)∥op ∥Θ∥nuc + λT1 ∥µ∗Θ∗∥nuc − λT1
∥∥∥Θ̂∥∥∥

nuc
,(C.1)

where (i) comes from the duality between matrix operator norm and nuclear norm. Next, we

represent the saturated SVD of Θ∗ in the main paper as Θ∗ = UDV ⊤ where U ∈ Rd1×r and

V ∈ Rd2×r, and here we would work on its full version, i.e.

Θ∗ = (U,U⊥)

D 0

0 0

 (V, V⊥)
⊤ = (U,U⊥)D

∗(V, V⊥)
⊤,
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where we have U⊥ ∈ Rd1×(d1−r), D∗ ∈ Rd1×d2 and V⊥ ∈ Rd2×(d2−r). Furthermore, we define

Λ = (U,U⊥)
⊤Θ(V, V⊥) =

U⊤ΘV U⊤ΘV⊥

U⊤
⊥ΘV U⊤

⊥ΘV⊥

 = Λ1 + Λ2

where we write

Λ1 =

0 0

0 U⊤
⊥ΘV⊥

 , Λ2 =

U⊤ΘV U⊤ΘV⊥

U⊤
⊥ΘV 0


Afterwards, it holds that∥∥∥Θ̂∥∥∥

nuc
= ∥µ∗Θ∗ +Θ∥nuc =

∥∥∥(U,U⊥)(µ
∗D∗ + Λ)(V, V⊥)

⊤
∥∥∥
nuc

= ∥µ∗D∗ + Λ∥nuc + ∥µ
∗D∗ + Λ1 + Λ2∥nuc

≥ ∥µ∗D∗ + Λ1∥nuc − ∥Λ2∥nuc

= ∥µ∗D∥nuc + ∥Λ1∥nuc − ∥Λ2∥nuc

= ∥µ∗Θ∗∥nuc + ∥Λ1∥nuc − ∥Λ2∥nuc ,

which implies that

∥µ∗Θ∗∥nuc −
∥∥∥Θ̂∥∥∥

nuc
≤ ∥Λ2∥nuc − ∥Λ1∥nuc(C.2)

Combine Eqn. (C.1) and (C.2), we have that

2 ∥Θ∥2F ≤
(
∥∇L(µ∗Θ∗)∥op + λT1

)
∥Λ2∥nuc +

(
∥∇L(µ∗Θ∗)∥op − λT1

)
∥Λ1∥nuc

Then, we refer to the setting in our Lemma C.2.0.4, and we choose λ = 4t/
√
T1 where the value of

t is determined in Lemma C.2.0.4, i.e.

λT1 = 4

√
2(4σ20 + S2

f )M(d1 + d2) log(2(d1 + d2)/δ)

T1
,

we know that λT−1 ≥ 2 ∥∇L(µ∗Θ∗)∥op with probability at least 1− δ for any δ ∈ (0, 1). Therefore,

with probability at least 1− δ, we have

2 ∥Θ∥2F ≤
3

2
λT1 ∥Λ2∥nuc −

1

2
λT1 ∥Λ1∥nuc ≤

3

2
λT1 ∥Λ2∥nuc
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. Since we can easily verify that the rank of Λ2 is at most 2r, and by using Cauchy-Schwarz

Inequality we have that

2 ∥Θ∥2F ≤
3

2
λT1
√
2r ∥Λ2∥F ≤

3

2
λT1
√
2r ∥Λ∥F =

3

2
λT1
√
2r ∥Θ∥F ,

which implies that

∥Θ∥F ≤
3

4

√
2rλT1 = 6

√
(4σ20 + S2

f )M(d1 + d2)r log(
2(d1+d2)

δ )

T1
,

and it concludes our proof. □

C.3. Theorem C.3.1 and its analysis

C.3.1. Theorem C.3.1.

Theorem C.3.1. (Regret of LowGLM-UCB) Under Assumption 4.3.4 and 4.3.5, for any fixed

failure rate δ ∈ (0, 1), if we run the LowGLM-UCB algorithm with ρt(δ) = αt+T1(δ/2) and

λ⊥ ≍
cµS

2
0T

k log(1 +
cµS2

0T
kλ0

)
,

then the bound of regret for LowGLM-UCB (RegretT2) achieves Õ(k
√
T + TS⊥), with probability

at least 1− δ.

C.3.2. Proposition C.3.1 with its proof. We firstly present the following important Propo-

sition C.3.1 for obtaining the upper confidence bound.

Proposition C.3.1. For any δ, t such that δ ∈ (0, 1), t ≥ 2, and for βxt (δ) defined in Eqn. (4.11)

and (4.12), with probablity 1− δ, it holds that

|µ(x⊤θ∗)− µ(x⊤θ̂t)| ≤ βxt+T1(δ),(C.3)

simultaneously for all x ∈ R and all t ≥ 2.

C.3.2.1. Technical Lemmas.

Lemma C.3.1.1. (Adapted from Abbasi-Yadkori et al., 2011, Theorem 1) Let {Ft}∞t=0 be a filtration

and {xt}∞t=0 be an Rd-valued stochastic process adapted to Ft. Let {ηt}∞t=0 be a real-valued stochastic

135



process such that ηt is adapted to Ft and is conditionally σ0-sub-Gaussian for some σ0 > 0, i.e.

E[exp(ληt)|Ft] ≤ exp

(
λ2σ20
2

)
, ∀λ ∈ R.

Consider the martingale St =
∑t

k=1 ηkxk and the process Vt =
∑t

k=1 xkx
⊤
k +Λ when t ≥ 2. And Λ

is fixed and independent with sample random variables after time m. For any δ > 0, with probability

at least 1− δ, we have the following result simultaneously for all t ≥ m+ 1:

∥St∥V −1
t
≤ σ0

√
log(det(Vt))− log(δ2 det(Λ)).

We defer the proof for this lemma to Section C.3.2.3 since a lot of technical details are involved.

Lemma C.3.1.2. For any two symmetric positive definite matrix A,B ∈ Rp×p such that A ⪯ B, we

have AB−1A ⪯ A.

Proof. Since A ⪯ B and both of them are invertible matrices, we have B−1 ⪯ A−1 directly

based on positive definiteness property. Conjugate with A on both sides we can directly obtain

AB−1A ⪯ A. □

Lemma C.3.1.3. (Valko et al., 2014, Lemma 5) For any T ≥ 1, let VT+1 =
∑T

i=1 xix
⊤
i + Λ ∈ Rp

where Λ = diag{λ1, . . . , λp}. And we assume that ∥xi∥2 ≤ S. Then:

log
|VT+1|
|Λ|

≤ max
{ti}pi=1

p∑
i=1

log

(
1 +

S2ti
λi

)
,

where the maximum is taken over all possible positive real numbers {ti}pi=1 such that
∑p

i=1 ti = T

Proof. We aim to bound the determinant |VT+1| under the coordinate constrains ∥xi∥2 ≤ S.

Let’s denote

U(x1, . . . , xT ) = |Σ+

T∑
t=1

xtx
⊤
t |.
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Based on the property of the sum of rank-1 matrices (e.g. Valko et al., 2014, Lemma 4), we know

that the maximum of U(x1, . . . , xT ) is reached when all xt are aligned with the axes:

U(x1, . . . , xT ) = max
x1,...,xT ;

xt∈S·{e1,...,eN}

|Σ+
T∑
t=1

xtx
⊤
t | = max

t1,...,tNpositive integers;∑N
i=1 ti=T

|diag(λi + ti)|

≤ max
t1,...,tNpositive integers;∑N

i=1 ti=S
2T

N∏
i=1

(λi + S2ti).

□

C.3.2.2. Proof of Proposition C.3.1.

Proof. Recall our definition of gt(θ) and its gradient accordingly as

gt(θ) =

T1∑
i=1

µ(xs1,i
⊤θ)xs1,i +

t−1∑
k=1

µ(x⊤k θ)xk + Λθ,

∇θgt(θ) =
T1∑
i=1

µ′(xs1,i
⊤θ)xs1,ix

′
s1,i +

t−1∑
k=1

µ′(x⊤k θ)xkx
⊤
k + Λ

(i)

⪰ cµMt(cµ),(C.4)

where the relation (i) holds if θ ∈ Θ0. Based on Assumptions, we know the gradient ∇θgt(θ) is

continuous. Then the Fundamental Theorem of Calculus will imply that

gt(θ
∗)− gt(θ̂t) = Gt(θ

∗ − θ̂t),

where

Gt =

∫ 1

0
∇θgt(sθ∗ + (1− s)θ̂t) ds.

Since we assume that the inverse link function µ(·) is kµ−Lipshitz, and the matrix Gt is always

invertible due to the fact that at least we have Gt ⪰ Λ, we can obtain the following result. Notice

the inequality (i) comes from the fact that Gt ⪰ cµMt(cµ) and hence Mt(cµ)
−1/cµ ⪰ G−1

t .

|µ(x⊤θ∗)− µ(x⊤θ̂t)| ≤ kµ|x⊤(θ∗ − θ̂t)| = kµ|x⊤G−1
t (gt(θ

∗)− gt(θ̂t))|

≤ kµ ∥x∥G−1
t

∥∥∥gt(θ∗)− gt(θ̂t)∥∥∥
G−1

t

(i)

≤ kµ
cµ
∥x∥Mt(cµ)−1

∥∥∥gt(θ∗)− gt(θ̂t)∥∥∥
Mt(cµ)−1

.
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In addition, based on the definition of θ̂t in Equation (4.10), we have gt(θ̂t)−gt(θ∗) =
∑T1

k=1(ys1,k−

µ(x⊤s1,kθ
∗))xs1,k +

∑t−1
k=1(yk − µ(x⊤k θ∗))xk − Λθ∗ =

∑T1
k=1 ηs1,kxs1,k +

∑t−1
k=1 ηkxk − Λθ∗. Therefore,

|µ(x⊤θ∗)− µ(x⊤θ̂t)| ≤
kµ
cµ
∥x∥Mt(cµ)−1

∥∥∥gt(θ̂t)− gt(θ∗)∥∥∥
M−1

t (cµ)

≤ kµ
cµ
∥x∥Mt(cµ)−1

∥∥∥∥∥
T1∑
k=1

ηs1,kxs1,k +
t−1∑
k=1

ηkxk

∥∥∥∥∥
M−1

t (cµ)

+ ∥Λθ∗∥M−1
t (cµ)

 .(C.5)

Now, let’s use Lemma C.3.1.1 to bound the term
∥∥∥∑T1

k=1 ηs1,kxs1,k +
∑t−1

k=1 ηkxk

∥∥∥
M−1

t (cµ)
. If we

define the filtration Ft := {{xt, xt−1, ηt−1, . . . , x1, η1} ∪ {xs1,k, ηs1,k}
T1
k=1}, then for any δ ∈ (0, 1),

with probability 1− δ, it holds that for all t ≥ 2,∥∥∥∥∥
T1∑
k=1

ηs1,kxs1,k +

t−1∑
k=1

ηkxk

∥∥∥∥∥
M−1

t (cµ)

≤ σ0

√√√√log

(
|Mt(cµ)|
| Λcµ |

)
− 2 log(δ),

where based on Lemma C.3.1.3,

log

(
|Mt(cµ)|
| Λcµ |

)
≤ max

ti≥0,∑t
i=1 ti=t+T1

p∑
i=1

log

(
1 +

cµS
2
0ti
λi

)

≤ k log
(
1 +

cµS
2
0

kλ0
(t+ T1)

)
+ (d− k) log

(
1 +

cµS
2
0

(d− k)λ⊥
(t+ T1)

)
≤ k log

(
1 +

cµS
2
0

kλ0
(t+ T1)

)
+
cµS

2
0

λ⊥
(t+ T1).(C.6)

And next by Lemma C.3.1.2, we have

∥Λθ∗∥M−1
t (cµ)

= cµ

∥∥∥∥ Λcµ θ∗
∥∥∥∥
M−1

t (cµ)

≤ √cµ ∥θ∗∥Λ ≤
√
cµ(
√
λ0S0 +

√
λ⊥S⊥).(C.7)

Combine Equation (C.6) and (C.7) into Equation (C.5), we finish our proof. □

Since Equation (C.3) in Proposition C.3.1 holds simultaneously for all x ∈ R and t ≥ 1, the following

conclusion holds.

Corollary C.3.1. For any random variable z defined in R, we have the following holds

|µ(z⊤θ∗)− µ(z⊤θ̂t)| ≤ βzt+T1(δ),
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with probability at least 1 − δ. Furthermore, for any sequence of random variable {zt}Tt=2, with

probability 1− δ it holds that

|µ(z⊤t θ∗)− µ(z⊤t θ̂t)| ≤ β
zt
t+T1

(δ),

simultaneously for all t ≥ 1.

C.3.2.3. Proof of Lemma C.3.1.1. For the proof of Lemma C.3.1.1 we will need the following

two lemmas, and we will use the same notations as in Lemma C.3.1.1 in this section.

Lemma C.3.1.4. Let λ ∈ Rd be arbitrary and consider any t ≥ 0

Mλ
t = exp

(
t∑

s=1

[
ηs(λ

⊤xs)

σ0
− 1

2
(λ⊤xs)

2

])
.

Let τ be a stopping time with respect to the filtration {Ft}+∞
t=0 . Then Mλ

t is a.s. well defined and

E(Mλ
τ ) ≤ 1.

Proof. We claim that {Mλ
t } is a supermartingale. Let

Dλ
t = exp

(
ηs(λ

⊤xs)

σ0
− 1

2
(λ⊤xs)

2

)
Observe that by conditional σ0-sub-Gaussianity of ηt we have E[Dλ

t |Ft−1] ≤ 1. Clearly, Dλ
t and

Mλ
t is Ft-measurable. Moreover,

E[Mλ
t |Ft−1] = E[Mλ

1 · · ·Dλ
t−1D

λ
t |Ft−1] = Dλ

1 . . . D
λ
t−1E[Dλ

t |Ft−1] ≤Mλ
t−1,

which implies that Mλ
t is a supermartingale with its expected value upped bounded by 1. To show

thatMλ
t is well defined. By the convergence theorem for nonnegative supermartingales, limt→∞Mλ

t

is a.s. well-defined, which indicates thatMλ
τ is also well-defined for all τ ∈ N+∪{+∞}. By Fatou’s

Lemma, it holds that

E[Mλ
τ ] = E[lim inf

t→∞
Mλ

min{t,τ}] ≤ lim inf
t→∞

E[Mλ
min{t,τ}] ≤ 1.

□
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Lemma C.3.1.5. For any positive semi-definite matrix P ∈ Rd×d and positive definite matrix Q ∈

Rd×d, and any x, a ∈ Rd, it holds that

∥x− a∥2P + ∥x∥2Q =
∥∥x− (P +Q)−1Pa

∥∥2
P+Q

+ ∥a∥2P − ∥Pa∥
2
(P+Q)−1 .

This lemma could be easily proved based on elementary calculation and hence its proof would be

omitted here.

Lemma C.3.1.6. Let τ be a stopping time with τ > m on the filtration {Ft}∞t=0. Then for δ > 0,

with probability 1− δ,

||Sτ ||2V −1
τ
≤ 2σ20 log

(
det(Vτ )

1/2det(Λ)−1/2

δ

)
.

Proof. W.l.o.g., assume that σ0 = 1. Denote

Ṽt = Vt − Λ =
t∑

s=1

xsx
⊤
s , Mλ

t = exp

(
(λ⊤St)−

1

2
||λ||2

Ṽt

)
.

Note by Lemma C.3.1.4, we naturally have that E[Mλ
t ] ≤ 1.

Since in round m+1, we get the diagonal positive definite matrix Λ with its elements independent

with samples after round m. Let z be a Gaussian random variable that is independent with other

random variables after round m with covariance Λ−1. Define

Mt = E[M z
t |F∞], t > m,

where F∞ is the tail σ-algebra of the filtration. Clearly, it holds that E[Mτ ] = E[E[M z
τ |z,F∞]] ≤

E[1] ≤ 1. Let f be the density of z and for a positive definite matrix P let c(P ) =
√
(2π)d/det(P ).

Then for t > m it holds that,

Mt =

∫
Rd

exp

(
(λ⊤St)−

1

2
||λ||2

Ṽt

)
f(λ)dλ

=
1

c(Λ)
exp

(
1

2
∥St∥2Ṽ −1

t

)∫
Rd

exp

(
−1

2

{∥∥∥λ− Ṽ −1
t St

∥∥∥2
Ṽt

+ ∥λ∥2Λ
})

dλ.

Based on Lemma C.3.1.5, it holds that∥∥∥λ− Ṽ −1
t St

∥∥∥2
Ṽt

+ ∥λ∥2Λ =
∥∥λ− V −1

t St
∥∥2
Vt

+
∥∥∥Ṽ −1

t St

∥∥∥2
Ṽt
− ∥St∥2V −1

t
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, and this implies that

Mt =
1

c(Λ)
exp

(
1

2
∥St∥2V −1

t

)∫
Rd

exp

(
−1

2

∥∥λ− V −1
t St

∥∥2
Vt

)
dλ

=

(
det(Λ)

det(Vt)

)1/2

exp

(
−1

2

∥∥λ− V −1
t St

∥∥2
Vt

)
.

Now, from E[Mτ ] ≤ 1, we have that for τ > m

P

(
∥Sτ∥2V −1

τ
> log

(
det(Vτ )

δ2det(Λ)

))
= P

 exp
(
1
2 ∥Sτ∥

2
V −1
τ

)
δ−1(det(Vτ )/det(Λ))1/2

> 1


≤ E

 exp
(
1
2 ∥Sτ∥

2
V −1
τ

)
δ−1(det(Vτ )/det(Λ))1/2

 ≤ E[Mτ ]δ ≤ δ.

□

Combining Lemma C.3.1.4-C.3.1.6. We now contruct a stopping time and define the bad event:

Bt(δ) :=

{
w : ∥St∥2V −1

t
> σ20 log

(
det(Vt)

δ2det(Λ)

)}
.

And we are interested in bounding the probability that ∪t>mBt(δ) happens. Define τ(w) = min{t >

m : w ∈ Bt(δ)}. Then τ is a stopping time and it holds that,

∪t>mBt(δ) = {w : τ(w) <∞}.

Then we have that

P [∪t>mBt(δ)] = P [m < τ <∞] = P

[
∥Sτ∥2V −1

τ
> σ20 log

(
det(Vτ )

δ2det(Λ)

)
, τ > m

]
≤ δ.

This concludes our proof of Lemma C.3.1.1.

C.3.3. Proposition C.3.2 with its proof. We denote the optimal action x∗ = argmaxx∈X0 µ(x
⊤θ∗).

Proposition C.3.2. For all δ ∈ (0, 1), with probability 1− δ, it holds that

µ(x∗⊤θ∗)− µ(x⊤t θ∗) ≤ 2βxtt+T1

(
δ

2

)
,

simultaneously for all t ∈ {2, 3, . . . , T2}.
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Proof. According to Corollary C.3.1, outside of the event of measure can be bounded by δ/2:

µ(x⊤t θ̂t)− µ(x⊤t θ∗) ≤ β
xt
t+T1

(
δ

2

)
for all t ∈ {2, 3, . . . , T2}.

Similarly, with probability at least 1− δ/2 it holds that

µ(x∗⊤θ∗)− µ(x∗⊤θ̂t) ≤ βx
∗
t+T1

(
δ

2

)
for all t ∈ {2, 3, . . . , T2}.

Besides, by the choice of xt in Algorithm 6

µ(x∗⊤θ̂t)− µ(x⊤t θ̂t) = µ(x∗⊤θ̂t) + βx
∗
t+T1

(
δ

2

)
− µ(x⊤t θ̂t)− βx

∗
t+T1

(
δ

2

)
≤ µ(x⊤t θ̂t) + βxtt+T1

(
δ

2

)
− µ(x⊤t θ̂t)− βx

∗
t+T1

(
δ

2

)
= βxtt+T1

(
δ

2

)
− βx∗t+T1

(
δ

2

)
.

By combining the former inequalities we finish our proof. □

C.3.4. Proof of Theorem C.3.1.

Proof. Based on Proposition C.3.2 we have

µ(x∗⊤θ∗)− µ(x⊤t θ∗) ≤ 2βxtt+T1

(
δ

2

)
= 2αt+T1

(
δ

2

)
∥xt∥M−1

t (cµ)
≤ 2αT

(
δ

2

)
∥xt∥M−1

t (cµ)
.

Since we know that µ(x∗⊤θ∗)−µ(x⊤θ∗) ≤ kµ(x∗⊤θ∗−x⊤θ∗) ≤ 2kµS
2
0 for all possible action x, and

we can safely expect that αT2(δ/2) > kµS
2
0 (at least by choosing σ0 = kµmax{S2

0 , 1}), then the

regret of Algorithm 6 can be bounded as

RegretT2 ≤ 2kµS
2
0 +

T2∑
t=2

min{µ(x∗⊤θ∗)− µ(x⊤t θ∗), 2kµS2
0}

≤ 2kµS
2
0 + 2αT

(
δ

2

) T2∑
t=2

min{∥xt∥M−1
t (cµ)

, 1}

(i)

≤ 2kµS
2
0 + 2αT

(
δ

2

)√
T2

√√√√ T2∑
t=2

min{∥xt∥2M−1
t (cµ)

, 1}.
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where the ineuqlity (i) comes from Cauchy-Schwarz inequality. And a commonly-used fact (e.g. Abbasi-

Yadkori et al. (2011), Lemma 11) yields that

t∑
i=2

min{∥xi∥2M−1
i (cµ)

, 1} ≤ 2 log

(
|Mt+1(cµ)|
|M2(cµ)|

)
≤ 2 log

(
|Mt+1(cµ)|
| Λcµ |

)

≤ k log
(
1 +

cµS
2
0

kλ0
(t+ T1)

)
+
cµS

2
0

λ⊥
(t+ T1).

Finally, by using the argument in Eqn. (C.6) and then plugging in the chosen value for λ⊥ =
cµS

2
0T

k log(1 +
cµS2

0T
kλ0

)
, we have

RegretT2 ≤ 2kµS
2
0+

2kµ
cµ

σ0
√
2k log

(
1 +

cµS2
0

kλ0
T

)
− 2 log

(
δ

2

)
+
√
cµ

√λ0S0 +
√√√√ cµS2

0T

k log
(
1 +

cµS2
0

kλ0
T
)S⊥




×
√
T2

√
4k log

(
1 +

cµS2
0

kλ0
T

)
,

which gives us the final bound in Theorem C.3.1. □

C.4. Consistency of θ̂newt in Algorithm 6

W.l.o.g. we assume that {θ : ∥θ − θ∗∥2 ≤ 1} ⊆ Θ∗, or otherwise we can modify the contraint of cµ

in Assumption 4.3.5 as cµ := inf{x∈X0,∥θ−θ∗∥2≤1} µ
′(x⊤θ) > 0. And we also assume that ∥x∥2 ≤ 1

for x ∈ X0.

Adapted from the proof of Theorem 1 in Li et al. (2017), defineG(θ) = g(θ)−g(θ∗) =
∑T1

i=1(µ(x
⊤
s1,i
θ)−

µ(s1, i
⊤θ∗))xs1,i +

∑n
i=1(µ(x

⊤
i θ) − µ(x⊤i θ∗))xi + Λ(θ − θ∗). W.l.o.g we suppose cµ ≤ 1 based on

argument in Appendix C.7. Then it holds that for any θ1, θ2 ∈ Rp

G(θ1)−G(θ2) =[
T1∑
i=1

(µ′(x⊤s1,iθ)− µ(s1, i
⊤θ∗))xs1,ix

⊤
s1,i +

n∑
i=1

(µ′(x⊤i θ)− µ(x⊤i θ∗))xix⊤i + Λ

]
(θ1 − θ2).

By denoting V =
∑T1

i=1 xs1,ix
⊤
s1,i

+
∑n

i=1 xix
⊤
i + Λ. We have

(θ1 − θ2)⊤(G(θ1)−G(θ2)) ≥ (θ1 − θ2)⊤(cµV )(θ1 − θ2) > 0
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Therefore, the rest of proof would be identical to that of Step 1 in the proof of Theorem 1 in Li

et al. (2017). Based on the step 1 in the proof of Theorem 1 in Li et al. (2017), we have

∥G(θ)∥2V −1 ≥ c2µλmin(V ) ∥θ − θ∗∥22 .

as long as ∥θ − θ∗∥2 ≤ 1. Then Lemma A of Chen et al. (1999) and Lemma 7 of Li et al. (2017)

suggest that we have

∥∥∥θ̂ − θ∗∥∥∥ ≤ 4σ

cµ

√
p+ log(1/δ)

σ2
≤ 1,

when λmin(V ) ≥ 16σ2[p + log(1/δ)]/c2µ for any δ > 0. Therefore, it suffices to show that the

condition λ1 ≥ 16σ2[p+ log(1/δ)]/c2µ for any δ > 0 holds with high probability (e.g. 1− δ), and we

utilize the Proposition 1 of Li et al. (2017), which is given as follows:

Proposition (Proposition 1 of Li et al. (2017)): Define Vn =
∑n

t=1 xtx
⊤
t (+Λ) where xi is drawn

iid from some distribution ν with suppost in the unit ball, Bd. Furthermore, let Σ = E(xtx⊤t ) be the

second moment matrix, and B and δ be two positive constants. Then, there exists positive universal

constants C1 and C2 such that λmin(Vn) ≥ B with probability at least 1− δ, as long as

n ≥

(
C1

√
d+ C2

√
log(1/δ)

λmin(Σ)

)2

+
2B

λmin(Σ)

Therefore, we can dedeuce that
∥∥∥θ̂t − θ∗∥∥∥

2
≤ 1 holds with probability at least 1 − δ as long as

T1 ≥ ((Ĉ1
√
p + Ĉ2

√
log(1/δ))/λ1)

2 + 2B/λ1 holds for some absolute constants Ĉ1, Ĉ2 with the

definition B := 16σ2(p+log(1/δ))/c2µ. Notice that this condition could easily hold if λ1 ≍ σ2 is not

diminutive in magnitude. Otherwise, we believe a tighter bound exists in that case, and we will

leave it as a future work.

We also present an intuitive explanation for this consistency result: Li et al. (2017) proved the

consistency of the MLE θ̂t without the regularizer. Regarding the penalty θ⊤Λθ, for the first k

entries of θ̂t the penalized parameter λ0 is small, and hence it will have mild effect after sufficient

warm-up rounds T1. For the remaining (p − k) elements suffering large penalty, the estimated

θ̂t,k+1:p would be ultra small in magnitude as desired since we argue that after the transformation

θ∗k+1:p will also be insignificant. This implies that
∥∥∥θ̂t,k+1:p − θ∗k+1:p

∥∥∥
2
is well contronlled. As a

result, the estimated θ̂t tends to be consistent.
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C.5. Analysis of Theorem 4.4.2

C.5.1. Proof of Theorem 4.4.2.

Proof. Let us define rt = maxX∈X µ(⟨X,Θ∗⟩)− µ(⟨Xt,Θ
∗⟩), the instantaneous regret at time

t. We can easily bound the regret for stage 1 as
∑T1

t=1 rt ≤ 2SfT1. For the second stage, we have a

bound according to Theorem C.3.1 (Theorem C.8.1):

T∑
t=T1+1

rt ≤ Õ(k
√
T +

√
λ0kT + TS⊥) ≤ Õ

(
k
√
T +

√
λ0kT + T

(d1 + d2)Mr

T1D2
rr

log

(
d1 + d2

δ

))
.

Therefore, the overall regret is:

T∑
t=1

rt ≤ Õ
(
2SfT1 + k

√
T +

√
λ0kT + T

(d1 + d2)Mr

T1D2
rr

log

(
d1 + d2

δ

))
.

After plugging the choice of T1 given in Theorem 4.4.2, it holds that

T∑
t=1

rt ≤ Õ

(
(

√
r(d1 + d2)M

Drr
+
√
λ0k + k)

√
T

)
≲ Õ

(
(

√
r(d1 + d2)M

Drr
+ k)
√
T

)

= Õ

(√
(d1 + d2)MrT

Drr

)
.

□

C.6. Details of Theorem 4.4.3

C.6.1. Proof of Theorem 4.4.3.

Proof. Here we will overload the notation a little bit. Under the new arm feature set and

parameter set after rotation, let X∗ be the best arm and Xt be the arm we pull at round t for

stage 2. And we denote xt,sub be the vectorization of Xt after removing the last p − k covariates,

and similarly define x∗sub and θ∗sub as the subtracted version of vec(X∗) and vec(Θ∗) respectively.

We use rt = µ(⟨X∗,Θ∗⟩)− µ(⟨Xt,Θ
∗⟩) as the instantaneous regret at round t for stage 2. Then it
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holds that, for t ∈ [T2]

rt = µ(⟨X∗,Θ∗⟩)− µ(x∗sub⊤θ∗sub) + µ(x∗sub
⊤θ∗sub)− µ(x⊤t,subθ∗sub) + µ(x⊤t,subθ

∗
sub)− µ(⟨Xt,Θ

∗⟩)

≤ kµ|⟨X∗,Θ∗⟩ − x∗sub⊤θ∗sub|+ kµ|⟨Xt,Θ
∗⟩ − x⊤t,subθ∗sub|+ µ(x∗sub

⊤θ∗sub)− µ(x⊤t,subθ∗sub)

≤ kµ(
∥∥∥Û⊤

⊥X
∗V̂⊥

∥∥∥
F
+
∥∥∥Û⊤

⊥XtV̂⊥

∥∥∥
F
)
∥∥∥Û⊤

⊥UDV
⊤V̂⊥

∥∥∥
F
+ µ(x∗sub

⊤θ∗sub)− µ(x⊤t,subθ∗sub)

≤ 2kµS0
d1d2r

T1D2
rr

log

(
d1 + d2

δ

)
+ µ(x∗sub

⊤θ∗sub)− µ(x⊤t,subθ∗sub).

Therefore, the overall regret can be bounded as

2SfT1 +

T2∑
t=1

rt ≤ 2SfT1 + 2kµS0
d1d2r

D2
rrT1

T2 +

T2∑
t=1

µ(x∗sub
⊤θ∗sub)− µ(x⊤t,subθ∗sub).

Since efficient low dimensional generalized linear bandit algorithm can achieve regret Õ(ϵ
√
dT )

where ϵ is the misspecified rate, d is the dimension of parameter and T is the time horizon when

no sparsity (low-rank structure) presents in the model. After plugging our carefully chosen T1, the

regret is

2SfT1 + 2kµS0
(d1 + d2)Mr

T1D2
rr

log

(
d1 + d2

δ

)
T2 + Õ

(
(d1 + d2)Mr

T1D2
rr

√
(d1 + d2)rT2

)

= Õ

(
(

√
r3/2(d1 + d2)3/2M

Drr
+ k)
√
T

)
= Õ

(√
r3/2(d1 + d2)3/2M

Drr

√
T

)
.(C.8)

□

C.7. Explanation of Vt replacing Mt(cµ)

Technically we can always assume cµ ∈ (0, 1] since we can always choose cµ = 1 when it can take

values greater than 1. And when cµ ≤ 1 it holds that,

Mt(cµ) =
t−1∑
i=1

xix
⊤
i +

Λ

cµ
⪰

t−1∑
i=1

xix
⊤
i + Λ = Vt.

Therefore, we can easily keep the exactly identical outline of our proof of the bound of regret for

Algorithm 6 after replacing Mt(cµ) by Vt everywhere, and the result only change by a constant

factor of 1/
√
cµ, which would not be too large in most cases. However, in our algorithm and proof

we still use Mt(cµ) for a better theoretical bound.
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C.8. Additional Algorithms

C.8.1. PLowGLM-UCB. We could modify Algorithm 6 by only recomputing θ̂t and when-

ever |Mt(cµ)| increases by a constant factor C > 1 in scale, and consequently we only need to

solve the Eqn. (4.10) for O(log(T2)) times up to the horizon T2, which significantly alleviate the

computational complexity. The pseudo-code of PLowGLM-UCB is given in Algorithm 12.

Algorithm 12 PLowGLM-UCB

Input: T2, k,X0, the probability rate δ, penalization parameters (λ0, λ⊥), the constant C.

1: Initialize M1(cµ) =
∑T1

i=1 xs1,i x
⊤
s1,i

+ Λ/cµ.
2: for t ≥ 1 do
3: if |Mt(cµ)| > C|Mτ (cµ)| then
4: Estimate θ̂t according to (4.10).
5: τ = t
6: Choose arm xt = argmaxx∈X0{µ(x⊤θ̂τ ) + ρτ (δ) ∥x∥M−1

t (cµ)
}, receive yt.

7: Update Mt+1(cµ)←−Mt(cµ) + xtx
⊤
t .

Theorem C.8.1 shows the regret bound of PLowGLM-UCB under Assumption 4.3.4 and 4.3.5.

Theorem C.8.1. (Regret of PLowGLM-UCB) For any fixed failure rate δ ∈ (0, 1), if we run the

PLowGLM-UCB algorithm with ρt(δ) = αt+T1(δ/2) and

λ⊥ ≍
cµS

2
0T

k log(1 +
cµS2

0T
kλ0

)
.

Then the regret of PLowGLM-UCB (RegretT2) satisfies, with probability at least 1− δ

Õ(k
√
T2 +

√
λ0kT + TS⊥) ·

√
C= Õ(k

√
T + TS⊥) ·

√
C.

Similarly, for PLowUCB-GLM we can also prove that the regret bound increase at most by a

constant multiplier
√
C by using the same lemma and argument we show in the following Section

C.8.2. And we can get the bound of regret for PLowGLM-UCB in problem dependence case, and

the bound will be exactly the same as that we have shown in Theorem C.3.1 except a constant

multiplier
√
C.

C.8.2. Proof of Theorem C.8.1. We use similar sketch of proof for Theorem 5 in Abbasi-

Yadkori et al. (2011). First, we show the following lemma:
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Lemma C.8.1.1. (Abbasi-Yadkori et al. (2011), Lemma 12) Let A and B be two positive semi-

definite matrices such that A ⪯ B. Then, we have that

sup
x ̸=0

x⊤Ax

x⊤Bx
≤ |A|
|B|

.

Then we can outline the proof of Theorem C.8.1 as follows.

Proof. Let τt be the value of τ at step t in Algorithm C.8.1. By an argument similar to the

one used in proof of Theorem C.3.1, we deduce that for any x ∈ R and all t ≥ 2 simultaneously,

|µ(x⊤θ∗)− µ(x⊤θ̂τt)| ≤
kµ
cµ

∥∥∥gτt(θ∗)− gτt(θ̂τt)∥∥∥
M−1

τt (cµ)
∥x∥M−1

τt (cµ)

=
kµ
cµ

∥∥∥gτt(θ∗)− gτt(θ̂τt)∥∥∥
M−1

τt (cµ)

∥∥∥∥M− 1
2

τt (cµ)x

∥∥∥∥
2

≤ kµ
cµ

∥∥∥gτt(θ∗)− gτt(θ̂τt)∥∥∥
M−1

τt (cµ)

∥∥∥∥M− 1
2

t (cµ)x

∥∥∥∥
2

√
|M−1

τt (cµ)|
|M−1

t (cµ)|

≤ kµ
cµ

√
C
∥∥∥gτt(θ∗)− gτt(θ̂τt)∥∥∥

M−1
τt (cµ)

∥x∥M−1
t (cµ)

≤
√
Cβxt+T1(δ).

where the last inequality comes from the proof of Proposition C.3.1 similarly. The rest of the proof

will be mostly identical to that of Theorem C.3.1 and hence we would copy it here for completeness:

Based on Proposition C.3.2 we have

µ(x∗⊤θ∗)− µ(x⊤t θ∗) ≤ 2
√
Cβxtt+T1

(
δ

2

)
= 2
√
Cαt+T1

(
δ

2

)
∥xt∥M−1

t (cµ)

≤ 2
√
CαT

(
δ

2

)
∥xt∥M−1

t (cµ)
.

Since we have that αT2(δ/2) > kµS
2
0 , the Regret of Algorithm 12 can be bounded as

RegretT2 ≤ 2kµS
2
0 +

T2∑
t=2

min{µ(x∗⊤θ∗)− µ(x⊤t θ∗), 2kµS2
0}

≤ 2kµS
2
0 + 2

√
CαT

(
δ

2

) T2∑
t=2

min{∥xt∥M−1
t (cµ)

, 1}

≤ 2kµS
2
0 + 2

√
CαT

(
δ

2

)√
T2

√√√√ T2∑
t=2

min{∥xt∥2M−1
t (cµ)

, 1}.

148



Algorithm 13 Generalized Explore Subspace Then Transform (G-ESTT)

Input: Action set {Xt}, T, T1,D, the probability rate δ, parameters for stage 2: λ, λ⊥.

Stage 1: Subspace Estimation
1: Randomly choose Xt ∈ X according to D and record Xt, Yt for t = 1, . . . T1.

2: Obtain Θ̂ by solving the following equation:

Θ̂ = arg min
Θ∈Rd1×d2

1

T1

T1∑
i=1

{b(⟨Xi,Θ⟩)− yi⟨Xi,Θ⟩}+ λT1 ∥Θ∥nuc .

3: Obtain the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤ where Û and V̂ contains the first r left-singular

vectors and the first r right-singular vectors respectively.

Stage 2: Almost Low Rank Generalized Linear Bandit

4: Rotate the admissible parameter space: Θ ′ := [Û , Û⊥]
⊤Θ [V̂ , V̂⊥], and transform the parameter

set as:

Θ0 := {vec(Θ ′
1:r,1:r), vec(Θ

′
r+1:d1,1:r), vec(Θ

′
1:r,r+1:d2), vec(Θ

′
r+1:d1,r+1:d2)}.

5: for t ≥ T − T1 do
6: Rotate the arm feature set: X ′

t := [Û , Û⊥]
⊤Xt[V̂ , V̂⊥].

7: Define the vectorized arm set so that the last (d1 − r) · (d2 − r) components are almost
negligible:

X0,t := {vec(X ′
{1:r,1:r},t), vec(X

′
{r+1:d1,1:r},t), vec(X

′
{1:r,r+1:d2},t), vec(X

′
{r+1:d1,r+1:d2},t)}.

8: Invoke LowGLM-UCB (PLowGLM-UCB or LowUCB-GLM) with the arm set X0,t, the
parameter space Θ0, the low dimension k = (d1+d2)r−r2 and penalization parameter (λ0, λ⊥)
for one round. Update the matrix Mt(cµ) or Vt accordingly.

where the last ineuqlity comes from Cauchy-Schwarz inequality. Finally, by a self-normalized

martingale inequality ( Abbasi-Yadkori et al. (2011), Lemma 11) and and then plugging in the

chosen value for λ⊥ =
cµS

2
0T

k log(1 +
cµS2

0T
kλ0

)
, we have

RegretT2 ≤ 2kµS
2
0 +

2kµ
cµ

√
C

×

σ0
√

2k log

(
1 +

cµS2
0

kλ0
T

)
− 2 log

(
δ

2

)
+
√
cµ

√λ0S0 +
√√√√ cµS2

0T

k log
(
1 +

cµS2
0

kλ0
T
)S⊥




×
√
T2

√
4k log

(
1 +

cµS2
0

kλ0
T

)
,

which gives us the final bound in Theorem C.8.1. □

C.8.3. Algorithms for the Contextual Setting. To show algorithm G-ESTT and G-ESTS

for the contextual setting, where the arm set Xt = {Xi,t} may vary over time t = [T ], we would

firstly update some notations besides the ones we have defined in Section 4.4.2. We denote the
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Algorithm 14 Generalized Explore Subspace Then Subtract (G-ESTS)

Input: Action set {Xt}, T, T1,D, the probability rate δ, parameters for stage 2: λ, λ⊥.

Stage 1: Subspace Estimation
1: for t = 1 to T1 do
2: Pull arm Xt ∈ X according to the distribution D, observe payoff yt.

3: Obtain Θ̂ by solving the following equation:

Θ̂ = arg min
Θ∈Rd1×d2

1

T1

T1∑
i=1

{b(⟨Xi,Θ⟩)− yi⟨Xi,Θ⟩}+ λT1 ∥Θ∥nuc .

4: Obtain the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤ where Û and V̂ contains the first r left-singular

vectors and the first r right-singular vectors respectively.

Stage 2: Low Rank Generalized Linear Bandit

5: Rotate the admissible parameter space: Θ ′ := [Û , Û⊥]
⊤Θ [V̂ , V̂⊥], and transform the parameter

set as:

Θ0 := {vec(Θ ′
1:r,1:r), vec(Θ

′
r+1:d1,1:r), vec(Θ

′
1:r,r+1:d2), vec(Θ

′
r+1:d1,r+1:d2)}.

6: for t ≥ T − T1 do
7: Rotate the arm feature set: X ′

t := [Û , Û⊥]
⊤Xt[V̂ , V̂⊥].

8: Define the vectorized arm set so that the last (d1 − r) · (d2 − r) components are almost
negligible, and then drop the last (d1 − r) · (d2 − r) components:

X0,sub,t := {vec(X ′
{1:r,1:r},t), vec(X

′
{r+1:d1,1:r},t), vec(X

′
{1:r,r+1:d2},t)}.

9: Invoke any modern generalized linear (contextual) bandit algorithm with the arm set X0,sub,t,
the parameter space Θ0,sub, and the low dimension k = (d1 + d2)r − r2 for one round.

time-dependent action set Xt after rotation as:

X ′
t = [Û , Û⊥]

⊤X [V̂ , V̂⊥],

And we modify the notations of the vectorized arm set for G-ESTT and G-ESTS defined in Eqn.

(4.3), (4.13) accordingly for each iteration:

X0,t := {vec(X ′
{1:r,1:r},t), vec(X

′
{r+1:d1,1:r},t), vec(X

′
{1:r,r+1:d2},t), vec(X

′
{r+1:d1,r+1:d2},t)},

X0,sub,t := {vec(X ′
{1:r,1:r},t), vec(X

′
{r+1:d1,1:r},t), vec(X

′
{1:r,r+1:d2},t)}.

Details can be found in Algorithm 13 and 14.

C.9. Additional Experimental Details

C.9.1. Parameter Setup for Simulations. Here we present our parameter setting for al-

gorithms involved in our experiment in Section 4.5.

Basic setup: horizon T = 45000. For the case where d1 = d2 = 12 and r = 2 we extend the
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horizon until 75000 in figures to display the superiority of our proposed algorithms more clearly.

The 480 (1000) random matrices are sampled uniformly from d1d2-dimensional unit sphere.

LowESTR: (same setup as in Lu et al. (2021))

• failure rate: δ = 0.01, the standard deviation: σ = 0.01 and the steps of stage 1: T1 = 1800.

• penalization parameter in stage 1: λT1 = 0.01
√

1
T1
, and the gradient decent step size: 0.01.

• B = 1, B⊥ = σ2(d1+d2)3r
T1D2

r,r
, λ = 1, λ⊥ = T2

k log(1+T2/λ)
, grid search for

√
βt with multiplier in

{0.2, 1, 5}.

SGD-TS: (details in Ding et al. (2021))

• grid search for exploration rates in {0.1, 1, 10}.

• grid search for C in {1, 3, 5, 7}.

• grid search for initial step sizes in {0.01, 0.1, 1, 5, 10}.

G-ESTT: (LowGLM-UCB in Stage 2)

• failure rate: δ = 0.01, and the steps of stage 1: T1 = 1800.

• S0 = 1,Θ = {X ∈ Rd1×d2 : ∥X∥F ≤ 1} for the case r = 1, and S0 = 5,Θ = {X ∈ Rd1×d2 :

∥X∥F ≤ 5} for the case r = 2.

• penalization in solving Eqn. (4.6) with λT1 suggested in Theorem 4.4.1. (We believe that a

simple grid search near this value would be better.)

• pij set to be centered normal distribution with standard deviation 1/d in Stage 1. Specifically,

at each round we randomly select a matrix Xrand,t based on this {pij} elementwisely, and then

pull the arm that is closest to Xrand,t w.r.t. ∥·∥F among all candidates in the arm set.

• proximal gradient descent with backtracking line search solving Eqn. (4.6), step size set to 0.1.

• λ0 = 1, λ⊥ =
c2µS

2
0T2

k log

(
1+

cµS2
0T2

kλ0

) , S⊥ = d1d2r
T1D2

rr
log
(
d1+d2
δ

)
, grid search for exploration bonus with

multiplier in {0.2, 1, 5}.

G-ESTS: (SGD-TS in Stage 2)

• The steps of stage 1: T1 = 1800.

• penalization in solving Eqn. (4.6) with λT1 suggested in Theorem 4.4.1. (We believe that a

simple grid search near this value would be better.)
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Figure C.1. Plots of regret curves of algorithm G-ESTT, G-ESTS, SGD-TS and
LowESTR under four settings (1000 arms). (a): diagonal Θ∗ d1 = d2 = 10, r = 1;
(b): diagonal Θ∗ d1 = d2 = 12, r = 1; (c): non-diagonal Θ∗ d1 = d2 = 10, r = 2; (d):
non-diagonal Θ∗ d1 = d2 = 12, r = 2.

• pij set to be centered normal distribution with standard deviation 1/d in Stage 1. Specifically,

at each round we randomly select a matrix Xrand,t based on this {pij} elementwisely, and then

pull the arm that is closest to Xrand,t w.r.t. ∥·∥F among all candidates in the arm set.

• proximal gradient descent with backtracking line search solving Eqn. (4.6), step size set to 0.1.

• use the same setup for SGD-TS as we have listed.

C.9.2. Additonal experimental results. Here we display the regret curves of algorithms

under four settings with 1000 arms in Figure C.1, where our proposed G-ESTS and G-ESTT also

dominate other methods regarding both accuracy and computation.

C.9.3. Comparison between G-ESTT and G-ESTS. In this section we compare the per-

formance of our two frameworks G-ESTT and G-ESTS, and it is obvious that both these two

proposed methods work better than the existing LowESTR and state-of-the-art generalized linear
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bandit algorithms under our problem setting based on Figure 4.1 and C.1. Notice that G-ESTT

and G-ESTS perform similarly well under the scenario r = 1 (G-ESTS is slightly better). However,

for the case r = 2, we find that G-ESTT achieve less cumulative regret than G-ESTS does. We

believe it is because that, on the one hand, G-ESTS depends more on the precision of estimate Θ̂,

which becomes more challenging for the case r = 2. On the other hand, for G-ESTS how to reuse

the random-selected actions in stage 1 is also tricky, and we will leave it as a future work. There-

fore, G-ESTT (with LowUCB-GLM) quickly takes the lead in the very beginning of stage 2 since

LowUCB-GLM can yield a consistent estimator early in stage 2 by reclaiming the randomly-chosen

actions.

However, we find that G-ESTS is incredibly faster than other methods (including G-ESTT) as it

only spends about one tenth of the running time of LowESTR until convergence as shown in Table

4.1. Notice that G-ESTT with LowUCB-GLM is a little bit slower since it utilizes more samples for

estimation in each iteration for better performance. Moreover, we conduct another simulation for

the case r = 2, d1 = d2 = 12 where we additionally choose T1 = 3200, and the results are displayed

in Figure C.2 after 100 times repeated simulations. We observe that by appropriately enlarging the

length of stage 1 (T1), G-ESTS would perform better in the long run as we expect, since a more

accurate estimation of Θ∗ could be obtained. Therefore, we can conclude our proposed G-ESTS

could perform prominently with parsimonious computation by mildly tuning the length of stage 1

(T1).
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Figure C.2. Plots of regret curves of algorithm G-ESES the scenario d1 = d2 =
12, r = 2 under T1 = 1800 and T1 = 3200 (a): fixed 480 arms; (b): fixed 1000 arms.
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Table C.1. Comparison between our proposed Stein’s lemma-based method and
the log-likelihood maximization method for low-rank matrix subspace estimation.

Case Low-rank detection method Regret Transformed error

Figure 4.1(a)
Stein’s lemma-based method G-ESTT:723.27, G-ESTS:510.80 0.086
Log-likelihood maximization G-ESTT:724.96, G-ESTS:515.25 0.089

Figure 4.1(c)
Stein’s lemma-based method G-ESTT:1088.26, G-ESTS:1106.71 0.542
Log-likelihood maximization G-ESTT:1136.54, G-ESTS:1198.39 0.583

C.9.4. Comparison with other matrix subspace detection methods. To pre-check the

efficiency of our Stein’s lemma-based method for subspace estimation, we also tried the nuclear-

norm regularized log-likelihood maximization with its details introduced in the following Appendix

C.9. Particularly, we could solve the regularized negative log-likelihood minimization problem with

nuclear norm penalty as shown in Eqn. (C.9).

Specifically, we consider the two cases of our simulations: 480 arms, d =10, r =1 (Figure 4.1(a)

case) and 480 arms, d =10, r =2 (Figure 4.1(c) case). We used the same setting as described in

Appendix C.9 above (T1=1800, T=45000), and implemented proximal gradient descent with the

backtracking line search for optimization. The average regret cumulative regret along with the

average transformed error
∥∥∥θ∗(k+1):p

∥∥∥
2
defined in Eqn. (4.8) are reported in Table C.1.

Therefore, we can see that our low-rank matrix detection method outperforms the regularized log-

likelihood maximization method, especially when the underlying parameter matrix is complicated

(Figure 4.1(c) case). This is also consistent with our theoretical analysis, as we will show in the

following Appendix C.10 that the theoretical bound of loss
∥∥∥Θ̂−Θ∗

∥∥∥2
F
is of order d3r/T1 using the

regularized log-likelihood maximization method, which is worse than the convergence rate of our

proposed method in Theorem 4.4.1.

C.10. Bonus: Matrix Estimation with Restricted Strong Convexity

C.10.1. Methodology. As we have mentioned in our main paper, we can achieve a decent

matrix recovery rate regarding the Frobenius norm by using generalized first-order Stein’s Lemma

on Eqn. (4.6). For the completeness of our work, we also approach the matrix estimation problem

by using the restricted strong convexity theory alternatively to see whether we could get the same

covergence rate O(
√
d1 + d2)3r/T1) in GLM as in the linear case under the stronger assumptions

of sub-Gaussian property. Specifically, we use the regularized negative log-likelihood minimization
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with nuclear norm penalty for the loss function in stage 1, and consequently we are able to get the

same bound as in the linear case. Notice that this work is also non-trivial since constructing the

restricted strong convexity for the generalized linear low-rank matrix estimation requires us to use

a truncation argument and a peeling technique (Raskutti et al., 2010), which is completely different

that used in simple linear case (Lu et al., 2021). Therefore, to facilitate further study in this area

and for the completeness of our work, we would present the detailed proof here in the following as

a bonus. Loss function: we consider the following well-defined regularized negative log-likelihood

minimization problem with nuclear norm penalty in stage 1:

Θ̂ = arg min
Θ∈Rd1×d2

LT1(Θ) + λT1 ∥Θ∥nuc , where

LT1(Θ) =
1

T1

T1∑
i=1

{b(⟨Xi,Θ⟩)− yi⟨Xi,Θ⟩},(C.9)

Note the problem defined in Eqn. (C.9) is convex and hence can be easily solved by gradient-based

algorithms. (Boyd et al., 2004; Kingma & Ba, 2014; Wang et al., 2023) Next, we first present

different assumptions with notations reloaded:

Assumption C.10.1. There exists a sampling distribution D over X with covariance matrix of

vec(X) as Σ ∈ Rd1d2×d1d2 , such that λmin(Σ) = λ1 and vec(X) is sub-Gaussian with parameter

σ = λ2 such that λ1/λ
2
2 can be absolutely bounded.

Assumption C.10.2. The norm of true parameter Θ∗ and feature matrices in X is bounded: there

exists S ∈ R+ such that for all arms X ∈ X , ∥X∥F , ∥Θ∗∥F ≤ S; ∥X∥op , ∥Θ∗∥op ≤ S2 (S2 ≤ S).

Assumption C.10.3. The inverse link function µ(·) is continuously differentiable, Lipschitz with

constant kµ. cµ ≥ infΘ∈Θ ,X∈X µ
′(⟨X,Θ⟩) > 0 and cµ ≥ inf{|x|<(S+2)σc2} µ

′(x) > 0 for some constant

c2.

Here we could safely choose σ = 1/
√
d1d2 (Lu et al., 2021) as default. Without loss of generality,

we can assume that c−σ
2 ≤ {λ1, λ22} ≤ c+σ2 for some absolute constant c−, c+ for the simplicity of

following theoretical analysis. Assumption C.10.1 implies that if X is sampled from the distribution
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D, then for any ∆ ∈ Rd1×d2 satisfying ∥∆∥F ≤ 1, we have:

E[⟨X,∆⟩2] = vec(∆)⊤Σvec(∆) ≥ λ1 ≥ c− σ2 := α;(C.10)

E[⟨X,∆⟩4] ≤ 16λ42 ≤ 16c2+ σ
4 := β.(C.11)

C.10.2. Theorem.

Theorem C.10.4. (Bounds for GLM via another loss function in Eqn. (C.9)) For any low-rank

generalized linear model with samples X1 . . . , XT1 drawn from X according to D in Assumption

C.10.1, and Assumption C.10.2, C.10.3 hold. Then the optimal solution to the nuclear norm

regularization problem (C.9) with λT1 = Ω(σ
√
(d− log(δ))/T1) would satisfy:∥∥∥Θ̂−Θ∗

∥∥∥2
F
≍ d

T1 σ2
r ≍ d3r

T1
,(C.12)

with probability at least 1− δ given the condition d r ≲ σ2T1 and (1 + σ)2d r ≲ T1 hold.

To prove this theorem, roughly speaking we firstly deduce the restricted strong convexity condition

for our optimization problem with high probability, and then extend some previous results on the

oracle inequality of estimation error.

C.10.3. Restricted Strong Convexity.

Definition C.10.5. (Restricted strong convexity (RSC), (Negahban et al., 2012)). Given the cost

function LT1(Θ) defined in (4.6) and X1, . . . , XT1 ∈ Rd1×d2, the first-order Taylor-series error is

defined as:

ET1(∆) := LT1(Θ
∗ +∆)− LT1(Θ∗)− ⟨∇LT1(Θ∗),∆⟩.

For a given norm ∥·∥ and regularizer Φ(·), the cost function satisfies a restricted strong convexity

(RSC) condition with radius R > 0, curvature κ > 0 and tolerance τ2 if

ET1(∆) ≥ κ

2
∥∆∥2F − τ

2
T1Φ

2(∆), for all ∥∆∥F ≤ R.

Theorem C.10.6. (RSC for GLM under distribution D). Consider any low-rank generalized linear

model with samples X1 . . . , XT1 drawn from X according to D in Assumption C.10.1, and Assump-

tion C.10.2 and C.10.3 hold. Then there exists constants c3, c4 such that with probability 1− δ, we
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have the RSC condition holds:

ET1(∆) ≥ c3σ2cµ ∥∆∥2F −(c4σ
2 + 2σ)

(√
d1
T1

+

√
d2
T1

)
cµ ∥∆∥2nuc for all ∥∆∥F ≤ 1(C.13)

with κ = c3σ
2cµ, τ

2
T1 = (c4σ

2+2σ)

(√
d1
T1

+

√
d2
T1

)
cµ, R = 1, ∥·∥ = ∥·∥F and Φ(·) = ∥·∥nuc

for T1 = O(log(log2(d)/δ)).

Remark C.10.1. The radius R in Theorem C.10.6 can be adapted to any finite positive constant

keeping the same proof outline. And the required sample size T1 only change in logarithmic power,

which can be easily satisfied.

C.10.3.1. Proof of Theorem C.10.6. To prove theorem C.10.6, we use a truncation argument

and the peeling technique (Raskutti et al., 2010; Wainwright, 2019):

Using the property of the remainder in the Taylor series, we have

ET1(∆) =
1

T1

T1∑
i=1

µ′ (⟨Xi,Θ
∗⟩+ t⟨Xi,∆⟩) ⟨Xi,∆⟩2,

for some t ∈ [0, 1]. Based on (C.10) and (C.11) we will set two truncation parameters K2
1 = 4β/α

and K2
2 = 4βS2/α for further use. For any ∥∆∥F = δ ∈ (0, 1], we set τ = K1δ and a trunction

function ϕτ (v) = v2 · I{|v|≤2τ}. Then we have:

ET1(∆) ≥ 1

T1

T1∑
i=1

µ′ (⟨Xi,Θ
∗⟩+ t⟨Xi,∆⟩)ϕτ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2}.

The right hand side would always be 0 if |⟨Xi,Θ
∗⟩ + t⟨Xi,∆⟩| > 2K1 + K2, which implies the

following result based on Assumption C.10.3:

ET1(∆) ≥ cµ
1

T1

T1∑
i=1

ϕτ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2}.

Therefore, it suffices to how that for all δ ∈ (0, 1] and for ∥∆∥F = δ, we have:

1

T1

T1∑
i=1

ϕτ(δ)(⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2} ≥ a1δ
2 − a2 ∥∆∥nuc δ,(C.14)

for some parameters a1 and a2 since the inequality ∥∆∥F ≤ ∥∆∥nuc always holds. Note the fact

that ϕτ(δ)(⟨Xi,∆⟩) = δ2ϕτ(1)(⟨Xi,∆/δ⟩), then for any ∥∆∥F = δ such that δ ∈ (0, 1], we can apply
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bound (C.14) to the rescaled unit-norm matrix ∆/δ to obtain:

1

T1

T1∑
i=1

ϕτ (1)(⟨Xi,∆/δ⟩)I{|⟨Xi,Θ∗⟩|≤K2} ≥ a1 − a2 ∥∆/δ∥nuc ,

which implies that it suffices to show (C.14) holds when δ = 1, i.e.

1

T1

T1∑
i=1

ϕτ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2} ≥ a1 − a2 ∥∆∥nuc , for all ∥∆∥F = 1.

Then we can construct another truncation function ϕ̃τ (v) with parameter at most 2τ = 2K1 as

ϕ̃τ (v) = v2I{|v|≤τ} + (v − 2τ)2I{τ<v≤2τ} + (v + 2τ)2I{−2τ≤v<−τ}.

Then it suffices to show that

1

T1

T1∑
i=1

ϕ̃τ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2} ≥ a1 − a2 ∥∆∥nuc , for all ∥∆∥F = 1.

And for a given radius r ≥ 1, define the random variable

ZT1(r) = sup
∥∆∥F=1,
∥∆∥nuc≤r

∣∣∣∣∣ 1T1
T1∑
i=1

ϕ̃τ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2} − E
(
ϕ̃τ (⟨X,∆⟩)I{|⟨X,Θ∗⟩|≤K2}

)∣∣∣∣∣ .
Firstly, we can prove that

E[ϕ̃τ (⟨X,∆⟩)I{|⟨X,Θ∗⟩|≤K2}] ≥
1

2
α,(C.15)

by using the chosen values for K1 and K2 to show that

E[ϕ̃τ (⟨X,∆⟩)] ≥
3

4
α, E[ϕ̃τ (⟨X,∆⟩)I{|⟨X,Θ∗⟩|>K2}] ≤

1

4
α.

Specifically, since we have

E[ϕ̃τ (⟨X,∆⟩)] ≥ E[⟨X,∆⟩2I{|⟨X,Θ∗⟩|≤τ}] ≥ α− E[⟨X,∆⟩2I{|⟨X,Θ∗⟩|>τ}]

And we can show that the last term is at most α/4 based on the Markov’s inequality and Cauchy-

Schwarz inequality:

E[⟨X,∆⟩2I{|⟨X,Θ∗⟩|>τ}] ≤
√

E[⟨X,∆⟩4]
√
P ([|⟨X,Θ∗⟩| > τ ]) ≤

√
β

√
β

τ4
≤ α

4
.
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And similarly we can prove that E[ϕ̃τ (⟨X,∆⟩)I{|⟨X,Θ∗⟩|>K2}] ≤ α/4. On the other hand, by our

choice τ = K1, the empirical process defining ZT1(r) is based on functions bounded in absolute

value by K2
1 . Thus, the functional Hoeffding inequality (Theorem 3.26 in Wainwright (2019))

implies that

P

(
ZT1(r) ≥ E(ZT1(r)) + σr

(√
d1
T1

+

√
d2
T1

)
+
α

4

)
≤

exp

−n
(
σr
(√

d1
T1

+
√

d2
T1

)
+ α

4

)2
4K4

1

 .(C.16)

To bound the expected value term E(ZT1(r)), we introduce an i.i.d sequance of Rademacher vari-

ables {εi}T1i=1 and then use the symmetrization argument:

E(ZT1(r)) = E

 sup
∥∆∥F=1,
∥∆∥nuc≤r

∣∣∣∣∣ 1T1
T1∑
i=1

ϕ̃τ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2} − E
(
ϕ̃τ (⟨X,∆⟩)I{|⟨X,Θ∗⟩|≤K2}

)∣∣∣∣∣


= E

 sup
∥∆∥F=1,
∥∆∥nuc≤r

∣∣∣∣∣ 1T1
T1∑
i=1

ϕ̃τ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2} − E

(
1

T1

T1∑
i=1

ϕ̃τ (⟨Yi,∆⟩)I{|⟨Yi,Θ∗⟩|≤K2}

)∣∣∣∣∣


≤ EXi,Yi

 sup
∥∆∥F=1,
∥∆∥nuc≤r

∣∣∣∣∣ 1T1
T1∑
i=1

ϕ̃τ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2} −
1

T1

T1∑
i=1

ϕ̃τ (⟨Yi,∆⟩)I{|⟨Yi,Θ∗⟩|≤K2}

∣∣∣∣∣


= EXi,Yi,εi

 sup
∥∆∥F=1,
∥∆∥nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

εi

(
ϕ̃τ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2} − ϕ̃τ (⟨Yi,∆⟩)I{|⟨Yi,Θ∗⟩|≤K2}

)∣∣∣∣∣


≤ 2EXi,εi

 sup
∥∆∥F=1,
∥∆∥nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

εiϕ̃τ (⟨Xi,∆⟩)I{|⟨Xi,Θ∗⟩|≤K2}

∣∣∣∣∣


(i)

≤ 8K1EXi,εi

 sup
∥∆∥F=1,
∥∆∥nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

εi⟨∆, Xi⟩

∣∣∣∣∣
 (ii)

≤ 8K1 r · EXi,εi

∥∥∥∥∥ 1

T1

T1∑
i=1

εiXi

∥∥∥∥∥
op

 ,
(C.17)
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where the inequality (i) comes from Rademacher contraction property and (ii) is by the duality

between matrix ∥·∥2 and ∥·∥nuc norms. Using the previous conclusion (Exercise 9.8 in Wainwright

(2019)), we have

EXi,εi

∥∥∥∥∥ 1

T1

T1∑
i=1

εiXi

∥∥∥∥∥
op

 ≤ σc5c+(√d1
T1

+

√
d2
T1

)
,(C.18)

where c5 is an independent absolute constant. Combine (C.16), (C.17) and (C.18), we have

P

(
ZT1(r) ≥ (8K1c5c+ + 1)σr

(√
d1
T1

+

√
d2
T1

)
+
α

4

)
≤ exp

−T1
(
σr
(√

d1
T1

+
√

d2
T1

)
+ α

4

)2
4K4

1

 .

(C.19)

According to (C.15) and (C.19), we prove the following conclusion for any fixed value of radium r:

P

 sup
∥∆∥F=1,
∥∆∥nuc≤r

ET1(∆) <
1

4
αcµ − (8K1c5c+ + 1)

(√
d1
T1

+

√
d2
T1

)
σcµr

 ≤

exp

−T1
(
σr
(√

d1
T1

+
√

d2
T1

)
+ α

4

)2
4K4

1

 .(C.20)

Since we have ∥∆∥F = 1, based on Cauchy-Schwarz inequality we have 1 ≤ ∥∆∥nuc ≤
√
d. To prove

the RSC we use a peeling argument to extend r to all possible values. Define the event:

E :=

{
There exists ∆ s.t. ∥∆∥F = 1, ET1(∆) <

1

4
αcµ − (16K1c5c+ + 2)

×

(√
d1
T1

+

√
d2
T1

)
σcµ ∥∆∥nuc

}
(C.21)

Vi := {2i−1 ≤ ∥∆∥nuc < 2i}, i = 1, . . . ,

⌈
1

2
log2(d)

⌉
+ 1.
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Then we can conclude that E ⊆
⋃⌈ 12 log2(d)⌉+1

i=1 (E ∩ Vi). And we can show the probability of each

partition event (E ∩ Vi) can be upper bounded by (C.20):

P (E ∩ Vi) =P

 sup
∥∆∥F=1,

2i−1≤∥∆∥nuc<2i

ET1(∆) <
1

4
αcµ − (16K1c5c+ + 2)

(√
d1
T1

+

√
d2
T1

)
σcµ ∥∆∥nuc



≤ P

 sup
∥∆∥F=1,

2i−1≤∥∆∥nuc<2i

ET1(∆) <
1

4
αcµ − (8K1c5c+ + 1)

(√
d1
T1

+

√
d2
T1

)
σcµ2

i



≤ exp

−T1
(
2iσ

(√
d1
T1

+
√

d2
T1

)
+ α

4

)2
4K4

1

 ,

which implies that

P (E) ≤ log2(d) exp

−T1
(
2σ
(√

d1
T1

+
√

d2
T1

)
+ α

4

)2
4K4

1

 .

We complete our proof of Theorem C.10.6 by noticing that the constants c3, c4 in (C.13) only

depend on the absolute constants c5, c+ and c− through our proof. □

C.10.4. Technical Lemmas.

Lemma C.10.6.1. (Bound for GLM with nuclear regualarization, (Negahban et al., 2012; Wain-

wright, 2019)) Consider the negative log-likelihood cost function LT1(·) defined in 4.6 and observa-

tions X1, . . . , XT1 satisfy a specific RSC condtion in Definition 1, such that

ET1(∆) ≥ κ

2
∥∆∥2F − τ

2
T1 ∥∆∥

2
nuc , for all ∥∆∥ ≤ 1.

Then under the “good” event: G(λT1) := {∥∇LT1(Θ∗)∥op ≤ λT1/2}, and the following two condi-

tions hold:

τ2T1r ≤
κ

128
, 4.5

λ2T1
κ2

r ≤ 1.

Then any optimal solution to Eqn. C.9 satisfies the bound∥∥∥Θ̂−Θ∗
∥∥∥2
F
≤ 4.5

λ2T1
κ2

r.(C.22)
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□

C.10.5. Proof of Theorem C.10.4. According to Theorem C.10.6, there exists two absolute

constants c3, c4 such that with probability at least 1− δ, we have the RSC condition holds:

ET1(∆) ≥ c3σ2cµ ∥∆∥2F − (c4σ
2 + 2σ)

(√
d1
T1

+

√
d2
T1

)
cµ ∥∆∥2nuc for all ∥∆∥F ≤ 1.

To implement Lemma 1, we would like to to figure out the value for regularization parameter λT1

such that the event G(λT1) can hold with high probability and simultaneously the bound in (C.22)

can be well controlled. The proof is by using the covering argument and Bernstein’s inequality to

bound the operator norm.

Let ξi = ⟨Xi,Θ
∗⟩, we have ∥∇LT1(Θ∗)∥op =

∥∥∥ 1
n

∑T1
i=1(b

′(ξi)− yi)Xi

∥∥∥
op
, and for all i ∈ [T1]

E[(b′(ξi)− yi)Xi] = E
[
Xi E[b′(ξi)− yi |Xi]

]
= 0.

Let Sd1 (Sd2) be the d1 (d2) dimensional Euclidean-norm unit sphere, and N d1 (N d2) be the 1/4

covering on Sd1 (Sd2) and Ξ(A) = sup
u∈N d1 ,
v∈N d2

u⊤Av for all A ∈ Rd1×d2 . By the proof of Lemma 1 in Fan

et al. (2019), we know that

∥A∥op ≤
16

7
Ξ(A).(C.23)

Besides, based on the properties of Orlicz-1 norm and Orlicz-2 norm, we have:∥∥∥(b′(ξi)− yi)u⊤Xiv
∥∥∥
ψ1

≤
∥∥(b′(ξi)− yi)∥∥ψ2

∥∥∥u⊤Xiv
∥∥∥
ψ2

≤ c6
√
kµλ2, for all u ∈ Sd1 , v ∈ Sd2 .

For some absolute constant c6 (e.g. c6 = 6). Then for any fixed u ∈ Sd1 , v ∈ Sd2 , by Berstein’s

inequality we have

P

(∣∣∣∣∣ 1T1
T1∑
i=1

(b′(ξi)− yi)u⊤Xiv

∣∣∣∣∣ > t

)
≤ 2 exp

[
−c7min

(
T1t

2

c26kµλ
2
2

,
T1t

c6
√
kµλ2

)]
.

Then by the combination over all the union bounds and relation (C.23) we can claim that

P

∥∥∥∥∥ 1

T1

T1∑
i=1

(b′(ξi)− yi)Xi

∥∥∥∥∥
op

>
16

7
t

 ≤ 2 7d1+d2 exp

[
−c7min

(
T1t

2

c26kµλ
2
2

,
T1t

c6
√
kµλ2

)]
.
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Then the event {∥∇LT1(Θ∗)∥2 ≥
16
7 t} holds with probability 1− δ if

t =
√
kµλ2max

√c6(d1 + d2) log(7) + c6 log(2/δ)

T1
,
c6(d1 + d2) log(7) + c6 log(2/δ)

T1


= Ω

√d1 + d2 − log(δ)

T1
σ

 .

Since we assume (d1 + d2) ≲ T1. By taking λT1 = 32
7 t ≍

√
d1+d2−log(δ)

T1
σ. We complete the proof of

Theorem C.10.4 and obtain the scale of the bound in (C.12) after plugging the chosen values of κ

and λT1 into (C.22). □

Notice that the loss function here shown in Eqn. (C.9) is also convex and hence could be solved

by a wide class of optimization methods (e.g. subgradient descent algorithm), and we have the

convergence rate of matrix estimation as

∥∥∥Θ̂−Θ∗
∥∥∥
F
= Õ

√d3r

T1

 .
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APPENDIX D

Appendix for Chapter 5

D.1. Remarks of Assumption 5.3.2

We will show that when a series of iid random matrices Xi
m
i=1 follows a sub-Gaussian distribution

with parameter σ ≍ 1√
d1d2

, then the scale of maxi∈[m] ∥Xi∥F can be bounded by some constant

up to some very small logarithmic terms. The results can be directly deduced from the following

Lemma:

Lemma D.1.0.1. If iid random matrices Xi
m
i=1 ∈ Rd1×d2 follows a sub-Gaussian distribution with

parameter σ, then with probability at least 1− δ it holds that:

∥Xi∥F ≤ 4σ
√
d1d2 + 2

√
2σ

√
ln (

m

δ
), ∀i ∈ [m].

Proof. Denote N 1
2
as the 1

2 -covering of the matrix space {X : ∥X∥F ≤ 1}, then it holds that

|N 1
2
| ≤ (1 + 1/0.5)d1d2 = 5d1d2 . And for ∥V ∥F ≤ 1 we define S(V ) as the closest point in N 1

2
such

that ∥V − S(V )∥F ≤
1
2 . Next, we can have that

∥Xi∥F = max
∥V ∥F=1

⟨V,Xi⟩ = max
∥V ∥F=1

⟨V − S(V ) + S(V ), Xi⟩ ≤ max
Z∈N 1

2

⟨Z,Xi⟩+ max
∥W∥F=

1
2

⟨W,Xi⟩

≤ max
Z∈N 1

2

⟨Z,Xi⟩+
1

2
max

∥W∥F=1
⟨W,Xi⟩,

which indicates that ∥Xi∥F ≤ 2maxZ∈N 1
2

⟨Z,Xi⟩. Therefore, it holds that for any t > 0

P (∥Xi∥F ≥ t) ≤ P

(
max
Z∈N 1

2

⟨Z,Xi⟩ ≥
1

2

)
≤ |N 1

2
| · exp

(
− t2

8σ2

)
≤ 5d1d2 · exp

(
− t2

8σ2

)
.

This fact indicates that

P

(
∥Xi∥F ≥ 2

√
2σ

√
ln

(
1

δ

)
+ 4σ

√
d1d2

)
≤ δ.
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Algorithm 15 Randomized LOTUS

Input: Arm set Xt, sampling distribution Dt, δ, T0, η, λ, {λi,⊥}+∞
i=1 .

Stage The history buffer index set H1 = {}, the exploration buffer index set H2 = {}.
1: Pull arm Xt ∈ Xt according to Dt and observe payoff yt. Then add (Xt, yt) into H1 and H2 for
t ≤ T0.

2: for i = 1, 2, . . . until the end of iterations do

3: Set the expected exploration length T1 = min

{[
d2+4δr1+δ

D2+2δ
rr

2i(1+δ)
] 1

1+3δ
, 2i
}
.

4: for t = |H1|+ 1 + |H1|+ 2i do
5: if Randomly sample from Bernoulli(T1/2

i) and get 1 then
6: Pull arm Xt ∈ Xt according to Dt and observe payoff yt. Then add (Xt, yt) into H1

and H2

7: else
8: Obtain the estimate Θ̂ based on Eqn. (5.3) with H2, where we set τi ≍(
|H2|/(d+ ln (2i+1/ϵ))

) 1
1+δ c

1
1+δ , λi ≍ σ

(
(d+ ln (2i+1/ϵ))/|H2|

) δ
1+δ c

1
1+δ .

9: Calculate the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤ where Û ∈ Rd1×r, V̂ ∈ Rd2×r.

10: For the next round, invoke LowTO with δ, [Û , Û⊥], [V̂ , V̂⊥], λ, λi,⊥,H1 and obtain the
updated H1.

Therefore, we have that

P

(
max
i∈[m]

∥Xi∥F < 2
√
2σ

√
ln

(
1

α

)
+ 4σ

√
d1d2

)
≥ (1− α)m = 1− δ, where α = 1− (1− δ)

1
m .

For any m > 1 and x ∈ [0, 1], based on the taylor series of the function f(x) = (1 − x)
1
m =

1− x
m −O(x2), it holds that 1− x

m > (1− x)
1
m . And this fact leads to the final result:

P

(
max
i∈[T ]
∥Xi∥F < 2

√
2σ

√
ln

(
T

δ

)
+ 4σ

√
d1d2

)
> 1− δ,

which indicates that maxi∈[T ] ∥Xi∥F can be uniformly bounded by a constant scale up to some

minimal error. □

In our case with σ ≍ 1√
d1d2

, with probability at least 1− δ it holds that

max
i∈[m]

∥Xi∥F ≲
2
√
2√

d1d2

√
ln
(m
δ

)
+ 4.

D.2. Alternative Version of LOTUS

As we mention in Subsection 5.4.2, we also have an alternative version of our LOTUS algorithm in a

more randomized manner. Specifically, at each batch, our original version illustrated in Algorithm 8

uses the static explore-then-exploit framework, where it first randomly samples some arms from
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Algorithm 16 LAMM Algorithm for the Solution to Eqn.(5.2)

Input: Initial Θ̂0, stopping threshold ϵ, α0, ψ, λ.

1: for i = 1, 2, . . . until
∥∥∥Θ̂i − Θ̂i−1

∥∥∥
F
≤ ϵ do

2: Initialize Θ̂i = Θ̂i−1, αi = max(α0, αi−1/ψ) and si = 0.

3: while F (Θ̂i; Θ̂i−1, αi) < L̂τ (Θ̂i) or si = 0 do

4: Θ̂i = S(Θ̂i−1 − α−1
i ∇L̂τ (Θ̂i−1), α

−1
i λ).

5: si = si + 1, αi = ψ · αi.

the distribution Dt in Assumption 5.3.1 and then exploits the recovered low-rank subspaces with

our LowTO method. However, we can mix these two exploration and exploitation steps in each

batch. Specifically, we can explore by the sampling distribution Dt with the probability of T i1/2
i at

each time t, otherwise we will conduct the subspace transformation and LowTO algorithm based

on the current Ht. The full pseudocode is presented in Algorithm 15. We can expect the same

order of regret as in Theorem 5.4.3 based on the fact that if we do a series of iid Bernoulli trials

with probability p for n times, then with a high probability the sum of success will be close to np

for large n up to some logarithmic terms.

D.3. Details of the LAMM Algorithm

We implement the LAMM algorithm that was first proposed in Fan et al. (2018) and recently

extended to the matrix estimation setting (Yu et al., 2023) for the Huber-type estimator formulated

in Eqn. (5.2). Here we use the unified framework proposed in Yu et al. (2023), and for the sake of

completeness we will still present its details as follows:

LAMM is presented in Algorithm 16. The LAMM method is a very efficient and scalable algorithm

under high-dimensional datasets, and its first crux is establishing an isotropic quadratic function

that locally upper bounds the objective function L̂τ (Θ) at each iteration until convergence. Based

on the second-order Taylor expansion, given the previous estimate Θ̂t−1 at iteration t− 1, we can

define the quadratic function at iteration t as:

F (Θ; Θ̂t−1, αk) = L̂τ (Θ̂t−1) + ⟨∇L̂τ (Θ̂t−1),Θ− Θ̂t−1⟩+
αt
2

∥∥∥Θ− Θ̂t−1

∥∥∥2
F
,
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with some quadratic parameter αt > 0. This parameter needs to be sufficiently large as we illus-

trated above such that L̂τ (Θ̂t) ≤ F (Θ̂t; Θ̂t−1, αt) holds where

Θ̂t = arg min
Θ∈Rd1×d2

F (Θ; Θ̂t−1, αt) + λ ∥Θ∥nuc .

We will use an iterative increment approach on αt with some multiplier ψ > 1 to guarantee the

quadratic function F majorizes the objective function L̂ at each descent. This fact ensures the

descent of the objective function at each iteration with a closed-formed solution. Specifically, to

minimize the penalized isotropic quadratic function, we can deduce the solution in the following

ways: for k > 0, define the soft-thresholding operator on a diagonal matrix Σ = diag({σi}) as

S(Σ, k) = diag({max(σi − k, 0)}). For any general matrix Θ with its SVD decomposition as

Θ = UΣV ⊤, we write S(Θ, k) = US(Σ, k)V ⊤. Then the solution of Θ̂t can be represented as:

Θ̂t = S(Θ̂t−1 − α−1
t ∇L̂τ (Θ̂t−1), α

−1
t λ).

D.4. Analysis of Theorem 5.4.1

D.4.1. Preliminaries.

Lemma D.4.0.1. (Bernstein Inequality) Let X be a random variable with mean µ and variance σ2.

Assume we can find some b > 0 such that

E|X − µ|k ≤ 1

2
k!σ2bk−2, k = 3, 4, 5, . . .

Then it holds that

P (|X − µ| ≥ t) ≤ 2 exp

(
− t2

2(σ2 + bt)

)
, ∀t > 0.

Corollary D.4.1. (Adapted from Bernstein Inequality) Let X be a random variable with mean µ

and variance σ2. Assume we can find some b > 0 such that

E|X − µ|k ≤ 1

2
k!σ2bk−2, k = 3, 4, 5, . . .

Then it holds that

P
(
X − µ ≥

√
2tσ + 2bt

)
≤ exp (−t), ∀t > 0.
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Proof. Based on Lemma D.4.0.1, we have that for any t > 0

P
(
X − µ ≥

√
2tσ + 2bt

)
≤ exp

(
− (

√
2tσ + 2bt)2

2σ2 + 2b(
√
2tσ + 2bt)

)
≤ exp

(
−2σ2t+ 4b2t2 + 4

√
2bσt

3
2

2σ2 + 4σ2t+ 2
√
2bσ
√
t

)

≤ exp(−t).

□

Definition D.4.1. (Local Restricted Strong Convexity) For the empirical loss function L̂τ (·), we

can define the event of local restricted strong convexity E(s, l, κ) in terms of the radius parameter

s, l and the curvature parameter κ as

E(s, l, κ) =

{
inf

Θ∈M(Θ∗,s,l)

⟨∇L̂τ (Θ)−∇L̂τ (Θ∗),Θ−Θ∗⟩
∥Θ−Θ∗∥2F

≥ κ

}
,

whereM(Θ∗, s, l) =
{
Θ ∈ Rd1×d2 : ∥Θ−Θ∗∥F ≤ s, ∥Θ−Θ∗∥nuc ≤ l ∥Θ−Θ∗∥F

}
.

We assume d1 ≥ d2 without loss of generality, and denote ∆̂ := Θ̂−Θ∗ in the following argument.

To start with, we will show that our target
∥∥∥∆̂∥∥∥

F
can be bounded conditioned on the event E(s, l, κ)

and λ ≥ 2
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op
.

Theorem D.4.2. Conditioned on the event λ ≥ 2
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op

and the event E(s, l, κ) with s ≥

9
√
r λκ and l ≥ 4

√
2r, then we can deduce that∥∥∥∆̂∥∥∥

F
=
∥∥∥Θ̂−Θ∗

∥∥∥
F
≤ 9
√
r · λ

κ
.

Proof. We will prove Theorem D.4.2 by contradiction. Assume we have that λ ≥ 2
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op

and E(s, l, κ) holds with s ≥ 9
√
r λκ and l ≥ 4

√
2r, and we assume

∥∥∥∆̂∥∥∥
F
> 9
√
r · λκ holds. Define

Θ̃x = Θ∗ + x(Θ̂ − Θ∗) as a function of x ∈ [0, 1], then there exists some ζ ∈ (0, 1) such that

Θ̃ζ = Θ∗ + ζ(Θ̂−Θ∗) satisfying
∥∥∥Θ̃ζ −Θ∗

∥∥∥
F
= 9
√
r · λκ since

∥∥∥Θ̃x −Θ∗
∥∥∥
F
is a continuous function

in terms of x ∈ [0, 1]. Furthermore, we define Q(x) = L̂τ (Θ̃x)− L̂τ (Θ∗)−⟨∇L̂τ (Θ∗), Θ̃x−Θ∗⟩. Note

x ∈ [0, 1] → Q(x) can be easily shown as a convex function: first, we observe that Θ̃x is a linear

function of x, and the Huber loss function defined in Section 5.4.1 is convex (Huber, 1965), which

implies that L̂τ (Θ̃x) is convex. On the other hand, the inner product ⟨∇L̂τ (Θ∗), Θ̃x−Θ∗⟩ is bi-linear

and hence naturally convex as well. Therefore, we know that Q′(x) = ⟨∇L̂τ (Θ̃x)−∇L̂τ (Θ∗), Θ̂−Θ∗⟩
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is monotonically increasing. And it holds that

ζQ′(ζ) ≤ ζQ′(1) =⇒ ⟨∇L̂τ (Θ̃ζ)−∇L̂τ (Θ∗), Θ̃ζ −Θ∗⟩ ≤ ζ⟨∇L̂τ (Θ̂)−∇L̂τ (Θ∗), Θ̂−Θ∗⟩(D.1)

To bound the right-hand side of Eqn. (D.1), since Θ̂ is the solution to the convex optimization

problem in Eqn. (5.2), then we have the sub-gradient condition as:

⟨∇L̂τ (Θ̂) + λẐ, Θ̂−Θ∗⟩ ≤ 0, where Ẑ ∈ ∂
∥∥∥Θ̂∥∥∥

nuc
.

Due to the definition of the sub-gradient, it holds that ∥Θ∗∥nuc ≥ ∥Θ̂∥nuc + ⟨Ẑ,Θ∗ − Θ̂⟩. By

assuming λ ≥ 2
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op
, we can have that

⟨∇L̂τ (Θ̂)−∇L̂τ (Θ∗), Θ̂−Θ∗⟩ ≤ ⟨λẐ,Θ∗ − Θ̂⟩+ ⟨∇L̂τ (Θ∗),Θ∗ − Θ̂⟩

≤ λ
(
∥Θ∗∥nuc − ∥Θ̂∥nuc

)
+
λ

2

∥∥∥Θ∗ − Θ̂
∥∥∥
nuc
≤ 3λ

2

∥∥∥∆̂∥∥∥
nuc

To bound
∥∥∥∆̂∥∥∥

nuc
, we utilize the regular procedure (Negahban & Wainwright, 2011; Yu et al., 2023).

We restate the notation and define the reduced SVD of Θ∗ as Θ∗ = UΣV ⊤ with U ∈ Rd1×r and

V ∈ Rd2×r. Then we denote two sets as:

M =
{
Θ ∈ Rd1×d2 : row(Θ) ⊆ col(V ), col(Θ) ⊆ col(U)

}
,

M⊥
=
{
Θ ∈ Rd1×d2 : row(Θ) ⊆ col(V )⊥, col(Θ) ⊆ col(U)⊥

}
,

and hence M ⊆ M. Next we will show that ∥∆̂M⊥∥nuc ≤ 3∥∆̂M∥nuc in the following part. First,

since Θ̂ is the solution to the problem defined in Eqn.(5.2), we have that

L̂τ (Θ̂) + λ
∥∥∥Θ̂∥∥∥

nuc
≤ L̂τ (Θ∗) + λ ∥Θ∗∥nuc ⇐⇒ L̂τ (Θ̂)− L̂τ (Θ∗) ≤ λ

(
∥Θ∗∥nuc −

∥∥∥Θ̂∥∥∥
nuc

)
.

For the left-hand side, it holds that

L̂τ (Θ̂)− L̂τ (Θ∗) ≥ ⟨∇L̂τ (Θ∗), Θ̂−Θ∗⟩ ≥ −
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op

∥∥∥∆̂∥∥∥
nuc

≥ −
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op

(∥∥∥∆̂M

∥∥∥
nuc

+
∥∥∥∆̂M⊥

∥∥∥
nuc

)
≥ −λ

2

(∥∥∥∆̂M

∥∥∥
nuc

+
∥∥∥∆̂M⊥

∥∥∥
nuc

)
.(D.2)
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And for the right-hand side, we have that∥∥∥Θ̂∥∥∥
nuc

=
∥∥∥Θ∗ + ∆̂

∥∥∥
nuc

=
∥∥∥Θ∗

M + ∆̂M + ∆̂M⊥

∥∥∥
nuc
≥ ∥Θ∗

M∥nuc +
∥∥∥∆̂M⊥

∥∥∥
nuc
−
∥∥∥∆̂M

∥∥∥
nuc

,

and hence we have that

∥Θ∗∥nuc −
∥∥∥Θ̂∥∥∥

nuc
= ∥Θ∗

M∥nuc −
∥∥∥Θ̂∥∥∥

nuc
≤
∥∥∥∆̂M

∥∥∥
nuc
−
∥∥∥∆̂M⊥

∥∥∥
nuc

.(D.3)

Combining the results from Eqn. (D.2) and Eqn. (D.3), we can deduce that ∥∆̂M⊥∥nuc ≤ 3∥∆̂M∥nuc.

Next, since we have that rank(∆̂M) ≤ 2r, then based on Cauchy-Schwarz inequality it holds that∥∥∥∆̂∥∥∥
nuc
≤
∥∥∥∆̂M

∥∥∥
nuc

+
∥∥∥∆̂M⊥

∥∥∥
nuc
≤
∥∥∥∆̂M

∥∥∥
nuc

+
∥∥∥∆̂M⊥

∥∥∥
nuc
≤ 4

∥∥∥∆̂M

∥∥∥
nuc
≤ 4
√
2r
∥∥∥∆̂M

∥∥∥
F
≤ 4
√
2r
∥∥∥∆̂∥∥∥

F
.

Therefore, we can show that
∥∥∥Θ̃ζ −Θ∗

∥∥∥
nuc
≤ 4
√
2r
∥∥∥Θ̃ζ −Θ∗

∥∥∥
F
. And remember that we assume∥∥∥Θ̃ζ −Θ∗

∥∥∥
F
= 9
√
r · λκ . These facts indicate that Θ̃ζ ∈ M(Θ∗, s, l) with s ≥ 9

√
r λκ and l ≥ 4

√
2r.

Therefore, based on the local restricted strong convexity, we have

κζ
∥∥∥∆̂∥∥∥

F

∥∥∥Θ̃ζ −Θ∗
∥∥∥
F
= κ

∥∥∥Θ̃ζ −Θ∗
∥∥∥2
F
≤ ⟨∇L̂τ (Θ̃ζ)−∇L̂τ (Θ∗), Θ̃ζ −Θ∗⟩.

For the left-hand side, it holds that

κζ
∥∥∥∆̂∥∥∥

F

∥∥∥Θ̃ζ −Θ∗
∥∥∥
F
= κζ

∥∥∥∆̂∥∥∥
F
9
√
r
λ

κ
= ζλ

∥∥∥∆̂∥∥∥
F
9
√
r,

and for the right-handed side, based on Eqn. (D.1) we have that

⟨∇L̂τ (Θ̃ζ)−∇L̂τ (Θ∗), Θ̃ζ −Θ∗⟩ ≤ ζ⟨∇L̂τ (Θ̂)−∇L̂τ (Θ∗), Θ̂−Θ∗⟩

≤ η3λ
2

∥∥∥∆̂∥∥∥
nuc
≤ ζ6

√
2λ
√
r
∥∥∥∆̂∥∥∥

F

Consequently, we have 9 ≤ 6
√
2 that contradicts the fact, which means that∥∥∥∆̂∥∥∥

F
≤ 9
√
r · λ

κ
.

□

Next, we will show the event E(s, l, κ) and the event λ ≥ 2
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op

hold with high probability

individually. Specifically, we will first give an upper bound of
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op

in Theorem D.4.3 and

then present the event E(s, l, κ) holds with high probability in Theorem D.4.4.
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Theorem D.4.3. By taking τ = ( n
5d−ln(ϵ))

1
1+δ c

1
1+δ , then with probability at least 1− ϵ, it holds that

∥∥∥∇L̂τ (Θ∗)
∥∥∥
op
≤ (10 + 11

√
2)σ

(
n

5d− ln(ϵ)

) δ
1+δ

c
1

1+δ .

Proof. Define the zero-mean random matrix Γ = ∇L̂τ (Θ∗)− E∇L̂τ (Θ∗), then we have that∥∥∥∇L̂τ (Θ∗)
∥∥∥
op

=
∥∥∥∇L̂τ (Θ∗)− E∇L̂τ (Θ∗) + E∇L̂τ (Θ∗)

∥∥∥
op
≤ ∥Γ∥op +

∥∥∥E∇L̂τ (Θ∗)
∥∥∥
op
.

Therefore, we could control these two terms separately. Denote Sd−1 = {u ∈ Rd : ∥u∥2 = 1}. For

the second term, we have that

∇L̂τ (Θ∗) = − 1

n

n∑
i=1

l′τ (yi − ⟨Xi,Θ
∗⟩)Xi = −

1

n

n∑
i=1

l′τ (ηi)Xi.

Therefore, we can deduce that

∥∥∥E∇L̂τ (Θ∗)
∥∥∥
op

= sup
u∈Sd1−1,v∈Sd2−1

1

n

n∑
i=1

E
(
l′τ (ηi)u

⊤Xiv
)

= sup
u∈Sd1−1,v∈Sd2−1

1

n

n∑
i=1

E
(
E
(
l′τ (ηi)u

⊤Xiv|Fi
))

= sup
u∈Sd1−1,v∈Sd2−1

1

n

n∑
i=1

E
(
u⊤Xiv · E

(
l′τ (ηi)|Fi

))
By the expression of l′τ (·), we can deduce that

|E
(
l′τ (ηi)|Fi

)
| = |E

(
l′τ (ηi)− ηi|Fi

)
| ≤ E

(
|ηi|1+δ

τ δ

∣∣∣Fi) ≤ c

τ δ

And since u⊤Xiv is sub-Gaussian with the parameter σ2, we have E(|u⊤Xiv|) ≤
√
2σ2. Conclu-

sively, it holds that ∥∥∥E∇L̂τ (Θ∗)
∥∥∥
op
≤
√
2

τ δ
c · σ.(D.4)

To bound the operator norm of Γ, we use the regular covering technique: Let N d
1
4

be the 1/4

covering of Sd−1, then we claim that

∥Γ∥op ≤
5

2
max

u∈N d1
1
4

,v∈N d2
1
4

u⊤Γv.(D.5)
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To prove this result, for any u ∈ Sd1−1, v ∈ Sd2−1, we denote S(u) ∈ Rd1 (S(v) ∈ Rd2) as the

nearest neighbor of u (v) in Nd1
1
4

(N d2
1
4

) such that ∥u− S(u)∥2, ∥v − S(v)∥2 ≤ 1
4 . We take u, v such

that u⊤Γv = ∥Γ∥op. Therefore, it holds that

∥Γ∥op = u⊤Γv = S(u)⊤ΓS(v) + (u− S(u))⊤Γv + u⊤Γ(v − S(v)) + (u− S(u))⊤Γ(v − S(v))

≤ max
u∈N d1

1
4

,v∈N d2
1
4

u⊤Γv +
1

4
∥Γ∥op +

1

4
∥Γ∥op +

1

16
∥Γ∥op ≤ max

u∈N d1
1
4

,v∈N d2
1
4

u⊤Γv +
3

5
∥Γ∥op ,

which leads to Eqn. (D.5). And then it holds that

∥Γ∥op ≤
5

2
max

u∈N d1
1
4

,v∈N d2
1
4

1

n

n∑
i=1

[
E
(
l′τ (ηi)u

⊤Xiv
)
− l′τ (ηi)u⊤Xiv

]
.

To bound the right-hand side term, we aim to use a union bound of probability with Corollary D.4.1.

Since u⊤Xiv is sub-Gaussian with parameter σ for arbitrary u ∈ N d1
1
4

, v ∈ N d2
1
4

, then we have that

for k = 2, 3, . . .

E|u⊤Xiv|k =
∫ ∞

0
P
(
|u⊤Xiv|k > t

)
dt ≤ 2

∫ ∞

0
exp

(
− t2

2kσ2

)
dt ≤ 1

2
· k! · (

√
2σ)k.

The above results along with the fact that |l′τ (·)| ≤ τ can lead to the following inequality for

k = 2, 3, . . . :

E
∣∣∣ n∑
i=1

l′τ (ηi)u
⊤Xiv

∣∣∣k ≤ n · τk−1−δE
(
|l′τ (ηi)|1+δ|u⊤Xiv|k

)
≤ 1

2
· k! ·

(√
2στ

)k−2
· (2nσ2τ1−δc).

Based on Corollary D.4.1, it holds that

P

(
u⊤Γv ≥ 4

√
xσ2τ1−δc

1√
n
+ 4
√
2στ

x

n

)
≤ e−x.

By taking the union bound on all u ∈ N d1
1
4

, v ∈ N d2
1
4

and using the fact that 9d1+d2 ≤ e5d, it holds

that

P

∥Γ∥op ≥ 5

2
max

u∈N d1
1
4

,v∈N d2
1
4

u⊤Γv ≥ 10σ
√
c

√
5d− ln (ϵ)

n
τ

1−δ
2 + 10

√
2στ

5d− ln(ϵ)

n

 ≤ ϵ.(D.6)
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Combining the results in Eqn. (D.4) and Eqn. (D.6), we have that

P

(∥∥∥∇L̂τ (Θ∗)
∥∥∥
op
≥ 10σ

√
c

√
5d− ln (ϵ)

n
τ

1−δ
2 + 10

√
2στ · 5d− ln(ϵ)

n
+

√
2

τ δ
c · σ

)
≤ ϵ.

By taking τ =
(

n
5d−ln(ϵ)

) 1
1+δ · c

1
1+δ , we have that

P

(∥∥∥∇L̂τ (Θ∗)
∥∥∥
op
≤ (10 + 11

√
2)c

1
1+δ ·

(
5d− ln(ϵ)

n

) δ
1+δ

)
≥ 1− ϵ.

□

Theorem D.4.4. For any s, l > 0, if we take τ and n such that

τ ≥ max

{
32σ2s

√
1

cl
,

(
64σ2c

cl

) 1
1+δ

}

n ≥ max

{
8 ln (9)(d1 + d2),

(
225σ

√
ln(9)(d1 + d2)

τ l

scl

)2

,

(
48σ2

cl

√
−2 ln(ϵ)

)2

,− τ2

cls2
ln(ϵ)

}
.

Then with probability at least 1− ϵ, the local restricted strong convexity E(s, l, κ) holds with κ = cl
4 .

Proof. Given the values of s, l > 0, for the sake of simplicity we denote the event Φ as

Φ = M(Θ∗, s, l) =
{
Θ ∈ Rd1×d2 : ∥Θ−Θ∗∥F ≤ s, ∥Θ−Θ∗∥nuc ≤ l ∥Θ−Θ∗∥F

}
. Since the Huber

loss is convex and differentiable, we have

D(Θ) := ⟨∇L̂τ (Θ)−∇L̂τ (Θ∗),Θ−Θ∗⟩

=
1

n

n∑
i=1

(
l′τ (yi − ⟨Xi,Θ

∗⟩)− l′τ (yi − ⟨Xi,Θ⟩)
)
· ⟨Xi,Θ−Θ∗⟩

≥ 1

n

n∑
i=1

(
l′τ (yi − ⟨Xi,Θ

∗⟩)− l′τ (yi − ⟨Xi,Θ⟩)
)
· ⟨Xi,Θ−Θ∗⟩ · 1Ξi(Θ),

where the last inequality holds since Huber loss is convex, and Ξi(Θ) is defined as

Ξi(Θ) =
{
|ηi| ≤

τ

2

}
∩
{
|⟨Xi,Θ−Θ∗⟩| ≤ τ

2s
∥Θ−Θ∗∥F

}
.

Note whenever Θ ∈ Φ and Ξi(Θ) hold we have that

|yi − ⟨Xi,Θ⟩| ≤ |yi − ⟨Xi,Θ
∗⟩|+ τ

2s
· ∥Θ−Θ∗∥F ≤ τ.
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Since we have l′′τ (u) = 1 with |u| ≤ τ , it holds that

D(Θ) ≥ 1

n

n∑
i=1

⟨Xi,Θ−Θ∗⟩2 · 1Ξi(Θ).

Furthermore, we define the function ϕR(x) with some R > 0 as

ϕR(x) =



x2, if |x| ≤ R
2 ;

(x−R)2, if R2 < x ≤ R;

(x+R)2, if −R ≤ x < −R
2 ;

0, otherwise.

And we know ϕr(·) is R-Lipschitz continuous with the properties that

ϕαR(αx) = α2ϕR(x) ∀α > 0, and x2 · 1|x|≤R/2 ≤ ϕR(x) ≤ x2 · 1|x|≤R.

Then we can deduce that

D(Θ)

∥Θ−Θ∗∥2F
≥ 1

n

n∑
i=1

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

)2

· 1Ξi(Θ) ≥
1

n

n∑
i=1

ϕ τ
2s

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

)
· 1{|ηi|≤ τ

2
}

:=
1

n

n∑
i=1

βτ,s(Xi,Θ, ηi)

=
1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi)) +
1

n

n∑
i=1

βτ,s(Xi,Θ, ηi)−
1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi))

≥ 1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi))− sup
Θ∈Φ

∣∣∣∣∣ 1n
n∑
i=1

βτ,s(Xi,Θ, ηi)−
1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi))

∣∣∣∣∣
:= A1 −A2.

For simplicity we write ∆ = Θ−Θ∗ as a function of Θ. To lower bound the first term A1, we have

that for any i ∈ [n],

E (βτ,s(Xi,Θ, ηi)) ≥ E

[(
⟨Xi,∆⟩
∥∆∥F

)2

· 1{|⟨Xi,∆⟩|≤ τ
4s

∥∆∥F} · 1{|ηi|≤ τ
2
}

]

≥ E
(
⟨Xi,∆⟩
∥∆∥F

)2

− E

[(
⟨Xi,∆⟩
∥∆∥F

)2

· 1{|⟨Xi,∆⟩|> τ
4s

∥∆∥F}

]
− E

[(
⟨Xi,∆⟩
∥∆∥F

)2

· 1{|ηi|> τ
2
}

]

:= A11 −A12 −A13.
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Based on Assumption 5.3.1, we have A11 ≥ cl. Furthermore, it holds that

A12 ≤

√
E
(
⟨Xi,∆⟩
∥∆∥F

)4

·

√
E
(
⟨Xi,∆⟩
∥∆∥F

)4/( τ
4s

)4
≤ 256σ4 · s

2

τ2

A13 ≤
(
2

τ

)1+δ

E
(
⟨Xi,∆⟩
∥∆∥F

)2

· E|ηi|1+δ ≤
16

τ1+δ
σ2 · c.

By choosing that τ ≥ max

{
32σ2s

√
1
cl
,
(
64σ2c
cl

) 1
1+δ

}
, it holds that A12 ≤ cl

4 and A13 ≤ cl
4 , which

indicates that

E (βτ,s(Xi,Θ, ηi)) ≥
cl
2
, ∀i ∈ [n],

which implies that

A1 ≥
cl
2

(D.7)

Afterward, we’d like to upper-bound the term A12. Since we have that ∀i ∈ [n]

0 ≤ βτ,s(Xi,Θ, ηi) ≤
τ2

16s2
, E (βτ,s(Xi,Θ, ηi))

2 ≤ E
(
⟨Xi,∆⟩
∥∆∥F

)4

≤ 16σ4.

Then based on the Bousquet’s inequality (Bousquet, 2002), with probability at least 1− ϵ it holds

that

A2 ≤ EA2 +
√

EA2 ·
τ

2s

√
− ln(ϵ)

n
+ 4σ2

√
−2 ln(ϵ)

n
+

τ2

16s2
− ln(ϵ)

3n

≤ 2EA2 + 4σ2
√
−2 ln(ϵ)

n
++

τ2

16s2
−4 ln(ϵ)

3n
.

To bound the first term EA2, we use the regular Rademacher symmetrization argument by defining

a series of iid Rademacher random variables {ei} with X̃i, η̃i that are iid with Xi, ηi:

EA2 = E

[
sup
Θ∈Φ

∣∣∣∣∣ 1n
n∑
i=1

βτ,s(Xi,Θ, ηi)−
1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi))

∣∣∣∣∣
]

≤ E

[
sup
Θ∈Φ

∣∣∣∣∣
(
1

n

n∑
i=1

βτ,s(Xi,Θ, ηi)−
1

n

n∑
i=1

E
(
βτ,s(X̃i,Θ, η̃i)

))
ei

∣∣∣∣∣
]

≤ 2E

[
sup
Θ∈Φ

1

n

n∑
i=1

βτ,s(Xi,Θ, ηi)ei

]
.
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Denote the event c(l) :=
{
Θ ∈ Rd1×d2 : ∥Θ−Θ∗∥nuc ≤ l ∥Θ−Θ∗∥F

}
. Recall that we define as:

βτ,s(Xi,Θ, ηi) = ϕ τ
2s

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

)
· 1{|ηi|≤ τ

2
} = ϕ τ

2s

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

· 1{|ηi|≤ τ
2
}

)
.

Define c(t) = 2s
τ ϕ τ

2s
(t) and it is easy to show that c(·) is a 1-Lipschitz function. By using the

Talagrand’s concentration inequality (Wainwright, 2019), it holds that

EA2 ≤
τ

s
· E

[
sup

Θ∈c(l)

1

n

n∑
i=1

ei ·
2s

τ
· ϕ τ

2s

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

· 1{|ηi|≤ τ
2
}

)]
τ

s
· E

[
sup

Θ∈c(l)

1

n

n∑
i=1

ei ·
2s

τ
· ⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

· 1{|ηi|≤ τ
2
}

]

≤ τ

s
· E

 sup
Θ∈c(l)

1

n

∥∥∥∥∥
n∑
i=1

eiXi · 1{|ηi|≤ τ
2
}

∥∥∥∥∥
op

·
∥∥∥∥ Θ−Θ∗

∥Θ−Θ∗∥F

∥∥∥∥
nuc


≤ τ l

sn
· E

∥∥∥∥∥
n∑
i=1

eiXi · 1{|ηi|≤ τ
2
}

∥∥∥∥∥
op

.

By using the same technique in the proof of Theorem D.4.3, we can bound the operator norm by

using the covering argument. Denote N d
1
4

be the 1/4 covering of Sd−1, then it holds that

E

∥∥∥∥∥
n∑
i=1

eiXi · 1{|ηi|≤ τ
2
}

∥∥∥∥∥
op

≤ 5

2
· E

 max
u∈N d1

1
4

,v∈N d2
1
4

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2
}

 .
Note for any pair of u ∈ N d1

1
4

, v ∈ N d2
1
4

, we have that

E

(
n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2
}

)
= 0

E

(
n∑
i=1

|ei|k|u⊤Xiv|k · 1{|ηi|≤ τ
2
}

)
≤ E|u⊤Xiv|k ≤

1

2
· k! · (

√
2σ)k−2 · 2σ2, k = 2, 3, . . . .
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We can write the moment generating functionM(λ) of the random variable
∑n

i=1 ei·u⊤Xiv·1{|ηi|≤ τ
2
}

as:

M(λ) = E

[
exp

(
λ

n∑
i=1

ei · u⊤Xiv · 1{|ηi|≤ τ
2
}

)]
=

n∏
i=1

E
[
exp

(
λei · u⊤Xiv · 1{|ηi|≤ τ

2
}

)]

≤
n∏
i=1

[
1 +

λ2 · 2σ2

2
+
λ2 · 2σ2

2

( ∞∑
k=3

(|λ|
√
2σ)k−2

)]

=

n∏
i=1

[
1 +

2λ2σ2

2
· 1

1−
√
2σ|λ|

]

≤ exp

(
nλ2σ2

1

1−
√
2σ|λ|

)
, |λ| ≤ 1√

2σ
.

Therefore, it holds that for any s0 > 0

E

 max
u∈N d1

1
4

,v∈N d2
1
4

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2
}

 =
1

s0
E

[
ln

(
exp

(
s0 ·

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2
}

))]

≤ 1

s0
ln

E

 max
u∈N d1

1
4

,v∈N d2
1
4

exp

(
s0 ·

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2
}

)


≤ 1

s0
ln

(
9d1+d2E

[
exp

(
s0 ·

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2
}

)])

=
(d1 + d2) ln(9) + ns20σ

2 · 1
1−

√
2σ|s0|

s0
, ∀|s0| ≤

1√
2σ
.

By taking s0 =

√
(d1+d2) ln(9)

σ·
√
n

, and conditioned on n ≥ 8 ln(9)(d1 + d2), we have that

E

 max
u∈N d1

1
4

,v∈N d2
1
4

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2
}

 ≤ 3
√

ln(9) ·
√
n(d1 + d2) · σ.

And this fact implies that

EA2 ≤
15τσl

2s

√
ln(9)

√
d1 + d2
n

.

Conclusively, with probability at least 1− ϵ we have that

A2 ≤
15τσl

s

√
ln(9)

√
d1 + d2
n

+ 4σ2
√
−2 ln(ϵ)

n
++

τ2

16s2
−4 ln(ϵ)

3n
.
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Therefore, by ensuring that

n ≥ max

{
8 ln (9)(d1 + d2),

(
225σ

√
ln(9)(d1 + d2)

τ l

scl

)2

,

(
48σ2

cl

√
−2 ln(ϵ)

)2

,− τ2

cls2
ln(ϵ)

}
,

we have

P
(
A2 ≤

cl
4

)
≥ 1− ϵ.(D.8)

Given the results shown in Eqn. (D.7) and Eqn. (D.8), we have that with probability at least 1− ϵ,

it holds that
⟨∇L̂τ (Θ)−∇L̂τ (Θ∗),Θ−Θ∗⟩

∥Θ−Θ∗∥2F
≥ cl

4
, ∀Θ ∈ Φ.

□

D.4.2. Proof of Theorem 5.4.1. Theorem 5.4.1 can be naturally proved based on the above

Theorem D.4.2, Theorem D.4.3 and Theorem D.4.4. Here we assume cl and σ are in constant scale

in general, and for the LowHTR problem with σ2 ≍ cl ≍ 1
d1d2

, our proof can be slightly modified

as we discuss later.

By taking λ ≍ σ
(
d−ln(ϵ)

n

) δ
1+δ

c
1

1+δ , and τ ≍
(

n
d−ln (ϵ)

) 1
1+δ

c
1

1+δ , we can guarantee that λ ≥ 2
∥∥∥∇L̂τ (Θ∗)

∥∥∥
op

with probability at least 1− ϵ from Theorem D.4.3. By choosing l ≍ 4
√
2r and s = τ

32σ2

√
cl, then

the conditions in Theorem D.4.2 can be satisfied as long as n ≳ (d − ln (ϵ))
√
rν3 where we de-

note ν = σ2

cl
. Furthermore, under the above setting, we know the local restricted strong convexity

E(s, l, cl/4) holds with probability at least 1−ϵ as long as the conditions in Theorem D.4.4 hold. By

reviewing the conditions of Theorem D.4.4, we know it suffices to have n ≳ d, ν2, drν3. Therefore,

with probability at least 1− 2ϵ, the final error bound in Theorem D.4.2 indicates that

∥∥∥Θ̂−Θ∗
∥∥∥
F
≲
σ

cl

(
d+ ln (1/ϵ)

n

) δ
1+δ

c
1

1+δ
√
r.

□

D.5. Proof of Theorem 5.4.2

We now prove the regret bound given in Theorem 5.4.2: We have ∥θ∗∥ ≤ S based on Section 5.3

and ∥θ∗k+1:p∥ ≤ S⊥ for some small S⊥. In the beginning, we have the transformed buffer set H′
1

of size H := |H′
1|, and we write the pair information (X, y) in H′

1 as {(xs,1, ys,1), . . . , (xs,H , ys,H)}.
178



And we denote (xe,t, ye,t) as the pair of pulled arm and corresponding stochastic payoff at round

t. To abuse the notation, at round t+1 we denote {(xi, yi)}t+Hi=1 as the pairs of observations in the

initial buffer set and obtained by the end of round t in order.

At the beginning of the round t+1, the currentM :=Mt can be written asMt =
∑H

i=1 xs,ix
⊤
s−i
∑t

j=1 xe,jx
⊤
e,j+

Λ, where Λ is a positive diagonal matrix with λ occupying the first k diagonal entries and λ⊥ the

next p − k entries. According to Algorithm 9, we denote Xt ∈ R(t+H)×p where each row of Xt

is the feature vector of the pulled arm (in the history buffer set or not). Assume t + H > p,

we denote its full SVD as Xt = UxΣxV
⊤
x with Ux ∈ R(t+H)×p and Vx ∈ Rp×p. We also write

Mt = Vx(Σ
2 + Λ)V ⊤

x ∈ Rp×p. And we further denote
u⊤1

u⊤2
...

u⊤p


=M

− 1
2

t X⊤
t = Vx(Σ

2
x + Λ)−

1
2 · ΣxU⊤

x ⪯ VxU⊤
x =


Vx,11 · · · Vx,1p
...

. . .
...

Vx,p1 · · · Vx,pp

 ·

U⊤
x,1

...

U⊤
x,p

 ∈ Rp×(t+H).

We first show that for all i ∈ [p],

∥ui∥2 ≤ ∥
p∑
j=1

VijUj∥2 =

√√√√ p∑
j=1

V 2
ij∥Uj∥22 = 1

∥ui∥1+δ ≤ (t+H)
1

1+δ
− 1

2 · ∥ui∥2 ≤ (t+H)
1−δ

2(1+δ) ,
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where the last inequality is deduced from the Cauchy-Schwarz inequality. With the formulation of

θ̂t in Algorithm 9 line 3, we have that

∥θ̂t − θ∗∥Mt =

∥∥∥∥∥∥∥∥∥M
− 1

2
t


u⊤1 ŷ1
...

u⊤p ŷp

−M−1
t X⊤

t Xtθ
∗ −M−1

t Λθ∗

∥∥∥∥∥∥∥∥∥
Mt

≤

∥∥∥∥∥∥∥∥∥M
− 1

2
t


u⊤1 ŷ1
...

u⊤p ŷp

−M− 1
2

t


u⊤1
...

u⊤p

Xtθ
∗

∥∥∥∥∥∥∥∥∥
Mt

+ ∥Λθ∗∥M−1
t

≤

∥∥∥∥∥∥∥∥∥


u⊤1 (ŷ1 −Xtθ

∗)
...

u⊤p (ŷp −Xtθ
∗)


∥∥∥∥∥∥∥∥∥
2

+ ∥θ∗∥Λ

≤

√√√√ p∑
i=1

(
u⊤i (ŷi −Xtθ∗)

)2
+
√
λ0S +

√
λ⊥S⊥.

To present a bound on the first term, we divide it into two separate parts.

u⊤i (ŷi −Xtθ
∗) =

t+H∑
j=1

ui,j(ŷi,j − E(yj |Fj−1))

=
t+H∑
j=1

ui,j

[
(ŷi,j − E(ŷi,j |Fj−1))− E(yj1{|ui,jyj |>bt}|Fj−1)

]

≤

∣∣∣∣∣∣
t+H∑
j=1

ui,j(ŷi,j − E(ŷi,j |Fj−1))

∣∣∣∣∣∣+
∣∣∣∣∣∣
t+H∑
j=1

ui,jE(yj1{|ui,jyj |>bt}|Fj−1)

∣∣∣∣∣∣ := A1 +A2

For the first term A1, based on Bernstein’ inequality for martingales (Seldin et al., 2012), for any

i ∈ [p] it holds that with probability at least 1− ϵ
p :

A1 ≤ 2bt ln

(
2p

ϵ

)
+

∣∣∣∣∣∣ 12bt
t+H∑
j=1

E
[
u2i,j (ŷi,j − E(ŷi,j |Fj−1))

2 |Fj−1

]∣∣∣∣∣∣
≤ 2bt ln

(
2p

ϵ

)
+
bt
2

∣∣∣∣∣∣
t+H∑
j=1

E

[(
ui,j (ŷi,j − E(ŷi,j |Fj−1))

bt

)2

|Fj−1

]∣∣∣∣∣∣ := 2bt ln

(
2p

ϵ

)
+
bt
2

∣∣∣∣∣∣
t+H∑
j=1

E [T |Fj−1]

∣∣∣∣∣∣ .
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Since we know that |T | ≤ 1 and hence E(T 2) ≤ E(|T |1+δ), and we can then deduce that

A1 ≤ 2bt ln

(
2p

ϵ

)
+
bt
2
·
∑t+H

j=1 |ui,j |1+δ · b
b1+δt

≤ 2bt ln

(
2p

ϵ

)
+

b

2bδt
(t+H)

1−δ
2 .

Therefore, we know that with probability at least 1 − ϵ the following result holds for all i ∈ [p]

simultaneously: ∣∣∣∣∣∣
t+H∑
j=1

ui,j(ŷi,j − E(ŷi,j |Fj−1))

∣∣∣∣∣∣ ≤ 2bt ln

(
2p

ϵ

)
+

b

2bδt
(t+H)

1−δ
2 .

For the term A2, with the help of Holder’s inequality, we have for all i ∈ [p]:

A2 ≤
t+H∑
j=1

E
(
|ui,jyj |1+δ

) 1
1+δ · E

(
1|ui,jyj |>bt

) δ
1+δ

≤
t+H∑
j=1

|ui,j | · b
1

1+δ · P (|ui,jyj | > bt)
δ

1+δ

≤
t+H∑
j=1

|ui,j | · b
1

1+δ ·

(
|ui,j |1+δb
b1+δt

)
≤ b

bδt
· (t+H)

1−δ
2 .

Therefore, by taking

bt =

 b

ln
(
2p
ϵ

)
 1

1+δ

· (t+H)
1−δ
2+2δ ,

we can deduce that with probability at least 1− ϵ the following result holds for all i ∈ [p] simulta-

neously:

u⊤i (ŷi −Xtθ
∗) ≤ 4b

1
1+δ

(
ln

(
2p

δ

)) δ
1+δ

· (t+H)
1−δ
2+2δ .

Therefore, with probability at least 1− ϵ it holds that

∥θ̂t − θ∗∥Mt ≤ 2
√
p · b

1
1+δ

(
ln

(
2p

δ

)) δ
1+δ

· (t+H)
1−δ
2+2δ := βt(ϵ).
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Denote the optimal arm at time t+1 as x∗e,t+1. Therefore, the instance regret at time t+1 can be

bounded by

x∗e,t+1
⊤θ∗−x⊤e,t+1θ

∗ = x∗e,t+1
⊤θ∗ − x∗e,t+1

⊤θ̂t + x∗e,t+1
⊤θ̂t − x⊤e,t+1θ̂t + x⊤e,t+1θ̂t − x⊤e,t+1θ

∗

≤ βt(ϵ)∥x∗e,t+1∥M−1
t

+ x⊤e,t+1θ̂t + βt(ϵ)∥xe,t+1∥M−1
t
− x⊤e,t+1θ̂t − ∥x∗e,t+1∥M−1

t
+ βt(ϵ)∥xe,t+1∥M−1

t

≤ min{S2, 2βt(ϵ)∥xe,t+1∥M−1
t
}.

Therefore, with probability at least 1− ϵ, it holds that

T∑
t=1

rt =
T∑
t=1

min{S2, 2βt

( ϵ
T

)
∥xe,t+1∥M−1

t
}

≤ 2βT

( ϵ
T

) T∑
t=1

min{ S2

βT
(
ϵ
T

) , ∥xe,t+1∥M−1
t
} ≤ 2βT

( ϵ
T

)
·
√
T ·

√√√√ T∑
t=1

min{∥xe,t+1∥2M−1
t

, 1}

We denote M̃T+1 =
∑T

t=1 xe,tx
⊤
e,t + Λ, and by Lemma 9 of Dani et al. (2008), it holds that√√√√ T∑

t=1

min{∥xe,t+1∥2M−1
t

, 1} ≤ 2 ln

(
det(M̃T+1)

det(Λ)

)

≤ 2k · ln
(
1 +

S2

kλ0
T

)
+ 2(p− k) ln

(
1 +

S2

(p− k)λ⊥
T

)
≤ 2k · ln

(
1 +

S2

kλ0
T

)
+

2S2

λ⊥
T ≤ 4k · ln

(
1 +

S2

kλ0
T

)
,

by taking that λ⊥ = S2T

k ln
(
1+ S2

kλ0
T
) . Therefore, with probability at least 1− ϵ, it holds that

R(T ) ≤ 2
√
T ·

√
4k · ln

(
1 +

S2

kλ0
T

)
·

[
2
√
p · b

1
1+δ

(
ln

(
2p

δ

)) δ
1+δ

· (T +H)
1−δ
2+2δ +

√
λ0S +

√
λ⊥S⊥

]

= Õ
(√

kp · T
1

1+δ +
√
kT + S⊥T

)
.

□

D.6. Proof of Eqn. (5.6)

Our argument is adapted from the proof of Theorem 3 in Jun et al. (2019), and we will still present

details here for completeness of our work. Furthermore, the proof of Theorem 5.4.4 in our work

still relies on the same Lemma.
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Lemma D.6.0.1. (Wedin’s sinΘ Theorem) Let the SVDs of matrices A and Ã be defined as follows:

(
U1 U2 U3

)⊤
A
(
V1 V2

)
=


Σ1 0

0 Σ2

0 0

 ,

(
Ũ1 Ũ2 Ũ3

)⊤
Ã
(
Ṽ1 Ṽ2

)
=


Σ̃1 0

0 Σ̃2

0 0

 .

Let R = AṼ1 − Ũ1Σ̃1 and S = A⊤Ũ1 − Ṽ1Σ̃1, and define U1⊥ = [U2 U3] and V1⊥ = [V2 V3]. Then

suppose there is a number q > 0 such that

min
i,j
|σi(Σ̃1)− σj(Σ2)| ≥ q, min

i
σi(Σ̃1) ≥ q,

Then it holds that √∥∥∥U⊤
1⊥Ũ1

∥∥∥2
F
+
∥∥∥V ⊤

1⊥Ṽ1

∥∥∥2
F
≤

√
∥R∥2F + ∥S∥2F

q
.

Based on Lemma D.6.0.1, we define A = Θ̂, U1 = Û ,Σ1 = D̂, V1 = V̂ , Ã = Θ∗, Ũ1 = U, Σ̃1 =

D, Ṽ1 = V, q = Drr. Therefore, according to Lemma D.6.0.1, we have that R = (Θ̂ − Θ∗)V̂ and

S = −(Θ̂−Θ∗)⊤U , and then it holds that

√
2
∥∥∥Û⊤

⊥U
∥∥∥
F

∥∥∥V̂ ⊤
⊥ V

∥∥∥
F
≤
√∥∥∥Û⊤

⊥U
∥∥∥2
F
+
∥∥∥V̂ ⊤

⊥ V
∥∥∥2
F
≤

√
∥R∥2F + ∥S∥2F

Drr
≤

√
2 ·
∥∥∥Θ̂−Θ∗

∥∥∥
F

Drr
.

And then by using the bound on
∥∥∥Θ̂−Θ∗

∥∥∥
F
we can deduce that

∥θ∗k+1:p∥2 =
∥∥∥Û⊤

⊥UDV
⊤V̂⊥

∥∥∥
F
≤
∥∥∥Û⊤

⊥U
∥∥∥
F

∥∥∥V̂ ⊤
⊥ V

∥∥∥
F
· ∥D∥op ≲

rσ2c
2

1+δ

c2lD
2
rr

(
d+ ln (1/ϵ)

|H2|

) 2δ
1+δ

.

□

D.7. Proof of Theorem 5.4.3

We now prove Theorem 5.4.3 in this section. We first bring up the result shown in Eqn. (5.3) again:

under Assumption 5.3.1, if we estimate Θ∗ based on the exploration set H2 of size H, then our
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estimator Θ̂ satisfies the following property:

∥θ∗k+1:p∥2 ≲
rd2c

2
1+δ

D2
rr

(
d+ ln (1/ϵ)

H

) 2δ
1+δ

,

under σ2 ≍ cl ≍ 1/(d1d2) with probability at least 1− ϵ. Our Algorithm 8 first randomly samples

arms for the first T1 rounds, and then for the rest of the time horizon it utilizes a doubling-trick-

based idea. Based on line 3 of Algorithm 8, when we have that

[
d2+4δr1+δ

D2+2δ
rr

2i(1+δ)
] 1

1+3δ

≥ 2i =⇒ i ≤

⌊
log2

(
d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

)⌋
:= L,

then in the first L batches, we will run out of time to do random exploration. Since we have that

2d
1+2δ

δ r
1+δ
2δ

D
1+δ
δ

rr

≥
L∑
j=1

2j = 2L+1 − 2 ≥ d
1+2δ

δ r
1+δ
2δ

D
1+δ
δ

rr

− 2,

we know before the batch L+ 1, we already repeat random sampling for Tinit rounds, with

T1 +
d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

− 2 ≤ Tinit ≤ T1 +
2d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

.

For the sake of simplicity in our proof, we assume that our algorithm terminates exactly at the end

of some batch, i.e. the M -th batch. And otherwise, our proof will be the same by using the index

of the last batch. In other words, it holds that

M∑
i=L+1

2i + Tinit = T ⇐⇒ 2M+1 = T + 2L+1 − Tinit.

Therefore, if we set ϵ as ϵ/2i+1 in both βt of Algorithm 9 and λ, τ in the matrix estimation for the

i-th batch, then based on Theorem 5.4.2, with probability at least 1− ϵ it holds that

R(T ) = Õ

(
Tinit +

M∑
i=L+1

[
C
(
2

1+δ
1+3δ

)i
+
√
d3r

(
2

1
1+δ

)i
+
√
dr2i

+2i · d
2+4δ
1+δ r

D2
rr

·

 1

Tinit +
∑i

j=L+1C
(
2

1+δ
1+3δ

)j


2δ
1+δ




= Õ

(
A1 +

M∑
i=L+1

(Ai,2 +Ai,3 +Ai,4 +Ai,5)

)
,
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with C =
(
d2+4δr1+δ

D2+2δ
rr

) 1
1+3δ

. For A1, it naturally holds that A1 ≲ Tinit. For Ai,2, we have that

M∑
i=L+1

Ai,2 ≲ C · 1

2
1+δ
1+3δ − 1

· T
1+δ
1+3δ .

For Ai,3, we have that

M∑
i=L+1

Ai,3 ≲
√
d3r

1

2
1

1+δ − 1
· (T − Tinit)

1
1+δ ≲

√
d3r · T

1
1+δ .

For Ai,3, it holds that

M∑
i=L+1

Ai,4 ≲
√
dr
√
2i ≲

√
dr · 1√

2− 1
· (T − Tinit)

1
2 ≲
√
drT .

And finally for Ai,5 we can show that

M∑
i=L+1

Ai,5 =
M∑

i=L+1

2i · d
2+4δ
1+δ r

D2
rr

·

 1

Tinit +
∑i

j=L+1C
(
2

1+δ
1+3δ

)j


2δ
1+δ

≲
M∑

i=L+1

2 · C ·


(
2

1+δ
2δ

)i
T1−2
C + d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr C

+
∑i

j=L+1

(
2

1+δ
1+3δ

)j


2δ
1+δ

≲ 2 · C ·
M∑
L+1


(
2

1+δ
1+3δ − 1

) 2δ
1+δ

2
(1+δ)(2δ)

(1+3δ)(1+δ)

· 2(
1+δ
1+3δ )i

 ≲ C · T
1+δ
1+3δ ,

given that

T1 ≥ 2− d
1+2δ

δ r
1+δ
2δ

D
1+δ
δ

rr

+

(
d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

) 1+δ
1+3δ

· 1

2
1+δ
1+3δ − 1

· C ≥ 2 +

(
2√
2− 1

)
· d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

.

Therefore, with the above condition on T1 satisfied, the following result holds with probability at

least 1− ϵ

R(T ) = Õ

d 2+4δ
1+3δ r

1+δ
1+3δ

D
2+2δ
1+3δ
rr

· T
1+δ
1+3δ + d

3
2 r

1
2T

1
1+δ

 .

□
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D.8. Proof of Theorem 5.4.4

The proof of Theorem 5.4.4 is adapted from that of Theorem 5.4.3 presented in the above Appen-

dix D.7. According to Li (1998), it holds that

|σi(Θ̂)− σi(Θ∗)| ≤
∥∥∥Θ̂−Θ∗

∥∥∥
F
, ∀i ∈ [d].

Denote H as the size of the exploration buffer set H2 at the end of the exploration phase for the

i−th batch, then according to Theorem 5.4.1 we know that

∥∥∥Θ̂−Θ∗
∥∥∥
F
≤ C1

σ
√
r

cl

(
d+ ln (2i+1/ϵ)

H

) δ
1+δ

· c
1

1+δ := E, C1 > 0,(D.9)

with probability at least 1− ϵ/2i+1. We define the useful rank r̂ as:

r̂ = min

{
i ∈ [d+ 1] : D̂ii ≤ C1

σ
√
i

cl

(
d+ ln (2i+1/ϵ)

H

) δ
1+δ

· c
1

1+δ := R(i)

}
− 1 ∧ 1,

We will first show that D̂(r+1)(r+1) ≤ R(r + 1) and hence r̂ ≤ r holds if we have Eqn. (D.9). This

is because that D̂(r+1)(r+1) ≤ E = R(r) < R(r + 1). Furthermore, we will illustrate that all the

subspaces we remove based on our estimated r̂ are sufficiently minimal. Specifically, we know that

D(r̂+1)(r̂+1) ≤ D̂(r̂+1)(r̂+1) + |D̂(r̂+1)(r̂+1) −D(r̂+1)(r̂+1)| ≤ R(r̂ + 1) + E ≤ 2R(r + 1).

To abuse the notation, we rewrite the SVD of Θ̂ and Θ∗ as

Θ̂ =
(
Û Ûr Û⊥

)
·


D̂r̂ 0 0

0 D̂r−r̂ 0

0 0 D̂0

 ·

V̂ ⊤

V̂ ⊤
r

V̂ ⊤
⊥



Θ∗ =
(
Ũ Ũr Ũ⊥

)
·


D̃r̂ 0 0

0 D̃r−r̂ 0

0 0 0

 ·

Ṽ ⊤

Ṽ ⊤
r

Ṽ ⊤
⊥

 .

And by making sure that H is sufficiently large such that R(r + 1) ≤ Drr/2, we have that

min |σi(Dr̂)− σj(Dr−r̂)| ≥
Drr

2
, minσi(Dr̂) ≥ Drr.
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In Lemma D.6.0.1, with A = Θ̂, U1 = Û , U1⊥ = [Ûr, Û⊥],Σ1 = D̂, V1 = V̂ , V1⊥ = [V̂r, V̂⊥], Ã =

Θ∗, Ũ1 = Ũ , Σ̃1 = D, Ṽ1 = Ṽ , q = Drr/2, we can show that

∥∥∥Û⊤
1⊥Ũ

∥∥∥
F

∥∥∥V̂ ⊤
1⊥Ṽ

∥∥∥
F
≤

4
∥∥∥Θ̂−Θ∗

∥∥∥2
F

D2
rr

.

After we do the same transformation in Algorithm 9, we know the effective dimension (denoted by

k̂) satisfies that k̂ = d1d2 − (d1 − r̂)(d2 − r̂) ≤ d1d2 − (d1 − r)(d2 − r) = k. And it holds that

∥θ∗
k̂+1:p

∥2 =

∥∥∥∥∥∥U⊤
1⊥

(
Ũ Ũr

)
·

Dr̂ 0

0 Dr−r̂

 ·
Ṽ ⊤

Ṽ ⊤
r

V1⊥

∥∥∥∥∥∥
F

=
∥∥∥U⊤

1⊥ŨDr̂Ṽ
⊤V1⊥ + U⊤

1⊥ŨrDr−r̂Ṽ
⊤
r V1⊥

∥∥∥
F

≤
∥∥∥U⊤

1⊥Ũ
∥∥∥
F

∥∥∥Ṽ ⊤V1⊥

∥∥∥
F
· ∥Dr̂∥op +

∥∥∥U⊤
1⊥Ũr

∥∥∥
F

∥∥∥Ṽ ⊤
r V1⊥

∥∥∥
F
· ∥Dr−r̂∥op

≤ ∥Θ∗∥op ·
4
∥∥∥Θ̂−Θ∗

∥∥∥2
F

D2
rr

+
√
r − r̂2 · 2R(r + 1)

Õ

(
rd2

D2
rr

(
d

H

) 2δ
1+δ

+ r
3
2d

(
d

H

) δ
1+δ

)
≍ Õ

(
r

3
2d

(
d

H

) δ
1+δ

)
.

Note the second term will be dominant for large H, s.t. H ≥ d
1+2δ

δ

r
1+δ
2δ D

2+2δ
δ

rr

.

By using T1 = min

{
d · 2

i(1+δ)
1+2δ , 2i

}
at each batch in line 3 of Algorithm 8, we can identically

prove Theorem 5.4.4 with the same procedure as the proof of Theorem 5.4.3. And the only slight

difference lies in the control of the term Ai,5. Therefore, we will omit the redundant details here.

□

D.9. Proof of Theorem 5.5.1

In this section, we will present a regret lower bound for the LowHTR. Our proof relies on the

following Lemma for the MAB with heavy-tailed rewards:

Lemma D.9.0.1. (Xue et al., 2020) For any multi-armed bandit algorithm B with T ≥ K ≥ 4 where

K is the number of arms, an arm a∗ ∈ {1, . . . ,K} is chosen uniformly at random, this arm pays

1/γ with probability p(a∗) = 2γ1+δ and the rest pays 1/γ with probability γ1+δ (2γ1+δ < 1). If

we set γ = (K/(T + 2K))
1

1+δ , and denote rt,a as the observed reward of arm a at round t under
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algorithm B, we have

E

[
T∑
t=1

rt,a∗ −
T∑
t=1

rt,at

]
≥ 1

8
T

1
1+δK

δ
1+δ .

Therefore, we can naturally consider the LowHTR problem with a finite and fixed arm set of size

K. For simplicity, we set d1 = d2 = d and set K = (d − 1)r ≥ 4. To adapt the results from

Lemma D.9.0.1, we make the reward function of an arm Xt,a ∈ Rd2 as

rt,a =


1
γ , with probability γ · ⟨Xt,a,Θ

∗⟩

0, with probability 1− γ · ⟨Xt,a,Θ
∗⟩
,

and then we only need to make ⟨Xt,a∗ ,Θ
∗⟩ = 2γδ and ⟨Xt,a,Θ

∗⟩ = γδ for any other arm a where

a∗ is uniformly chosen from [K].

The contextual matrices are designed in the following way. For the first column, the first r entries

are set to be

[√
1

r(r+1) ,
√

2
r(r+1) , . . . ,

√
r

r(r+1)

]
. And for the rest (d− 1)r entries in the first r rows,

we flatten them and set the i-th entry as 1√
2
for the i-th arm matrix. All the other elements in the

last (d−k) rows are set to null for all arm matrices. We can easily check that the Frobenious norm

of all arm matrices are bounded by 1.

Next, we consider the parameter matrix Θ∗ of rank r. For the first column, the first r entries are

set to be
[√

4
r(r+1)γ

δ,
√

8
r(r+1)γ

δ, . . . ,
√

4r
r(r+1)γ

δ
]
. And similarly for the rest (d− 1)r entries in the

first r rows, we flatten them and uniformly choose an index from [(d− 1)r], then the corresponding

entry is
√
2γδ and all the rest elements in Θ∗ are 0. The norm of Θ∗ can also be bounded with

large T . By using the feature matrices and the parameter matrix described above, we can recover

the scenario in Lemma D.9.0.1, and thus we have that

ER(T ) ≥ 1

8
T

1
1+δ (d− 1)

δ
1+δ r

δ
1+δ ≍ T

1
1+δ d

δ
1+δ r

δ
1+δ ≳ T

1
1+δ .

□
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Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gábor Lugosi. Bandits with heavy tail. IEEE Trans-

actions on Information Theory, 59(11):7711–7717, 2013.

Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.

Foundations of Computational mathematics, 9(6):717–772, 2009.

Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie. Nearly optimal adaptive procedure with

change detection for piecewise-stationary bandit. In The 22nd International Conference on Ar-

tificial Intelligence and Statistics, pp. 418–427. PMLR, 2019.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in neural

information processing systems, 24, 2011.

Kani Chen, Inchi Hu, Zhiliang Ying, et al. Strong consistency of maximum quasi-likelihood esti-

mators in generalized linear models with fixed and adaptive designs. Annals of Statistics, 27(4):

1155–1163, 1999.

Louis HY Chen, Larry Goldstein, and Qi-Man Shao. Normal approximation by Stein’s method.

Springer Science & Business Media, 2010.

Pin-Yu Chen and Cho-Jui Hsieh. Adversarial robustness for machine learning. Academic Press,

San Diego, CA, August 2022.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Learning to optimize under non-

stationarity. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.

1079–1087. PMLR, 2019.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International

Conference on Machine Learning, pp. 844–853. PMLR, 2017.

Wei Chu, Seung-Taek Park, Todd Beaupre, Nitin Motgi, Amit Phadke, Seinjuti Chakraborty,

and Joe Zachariah. A case study of behavior-driven conjoint analysis on yahoo! front page

today module. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 1097–1104, 2009.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff

functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

Rama Cont and Jean-Philipe Bouchaud. Herd behavior and aggregate fluctuations in financial

markets. Macroeconomic dynamics, 4(2):170–196, 2000.

191



Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit

feedback. pp. 355–366, 2008.

Persi Diaconis, Charles Stein, Susan Holmes, and Gesine Reinert. Use of exchangeable pairs in the

analysis of simulations. In Stein’s Method, pp. 1–25. Institute of Mathematical Statistics, 2004.

Qin Ding, Cho-Jui Hsieh, and James Sharpnack. An efficient algorithm for generalized linear

bandit: Online stochastic gradient descent and thompson sampling. In International Conference

on Artificial Intelligence and Statistics, pp. 1585–1593. PMLR, 2021.

Qin Ding, Cho-Jui Hsieh, and James Sharpnack. Robust stochastic linear contextual bandits under

adversarial attacks. In International Conference on Artificial Intelligence and Statistics, pp.

7111–7123. PMLR, 2022a.

Qin Ding, Yue Kang, Yi-Wei Liu, Thomas Chun Man Lee, Cho-Jui Hsieh, and James Sharpnack.

Syndicated bandits: A framework for auto tuning hyper-parameters in contextual bandit algo-

rithms. Advances in Neural Information Processing Systems, 35:1170–1181, 2022b.

Jianqing Fan, Han Liu, Qiang Sun, and Tong Zhang. I-lamm for sparse learning: Simultaneous

control of algorithmic complexity and statistical error. Annals of statistics, 46(2):814, 2018.

Jianqing Fan, Wenyan Gong, and Ziwei Zhu. Generalized high-dimensional trace regression via

nuclear norm regularization. Journal of econometrics, 212(1):177–202, 2019.

Jianqing Fan, Weichen Wang, and Ziwei Zhu. A shrinkage principle for heavy-tailed data: High-

dimensional robust low-rank matrix recovery. Annals of statistics, 49(3):1239, 2021.

Yasong Feng, Tianyu Wang, et al. Lipschitz bandits with batched feedback. Advances in Neural

Information Processing Systems, 35:19836–19848, 2022.
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