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Abstract

Computational genomics studies of genetic adaptation in different

environmental and organismal contexts

by

Jay Wook Joong Kim

This dissertation presents a study of global patterns in the distribution

of acquired resistance genes in 352 draft genomes of E. coli samples from two US

West Coast hospitals. A nondeterministic clustering of genomes based on their

resistance gene composition identifies two highly successful gene combinations in-

volving β-lactamase and aminoglycoside acetyltransferase genes that largely explain

the distribution of ESBL, gentamicin, and tobramycin resistance in these samples.

We name these two parallel adaptive solutions “Complementarity Groups 1 and 2”

(CG1 and CG2) because we observe functional diversification of genes within these

groups, driven by mutual antagonism between genes exhibiting similar resistance

profiles. Mutual antagonism extending across groups drives parallel adaptive tra-

jectories. In 761 completely assembled genomes from NCBI, representing a broader

range of geographical and ecological sources, we confirm: (1) the prevalence of CG1

and CG2; (2) establish that mutual antagonism is a generalized feature of acquired

resistance genes with overlapping function; (3) and verify that the observed gene-to-

gene associations correspond to physical linkages. We also find that configurations

placing gene pairs in high proximity and on the same strand tend to be more suc-

cessful. We propose a model that explains these observations, constraining evolution

through a combination of physical linkage and mutual antagonism in the context of

generalized panmixia. Looking at the genomic context for antibiotic resistance genes

in NCBI761, we find mosaic plasmids (with replicons belonging to different incom-

patibility groups), a complex network of linkages between replicons and resistance

(dominated by IncF), and significant gene flow to the chromosome, particularly for

ESBLs.

Also, I describe a deep mutational scanning approach for directed evolution

of proteins, and the generation of TEM β-lactamase mutant libraries using this ap-

proach. Each mutant library captures alternate sequence subspaces in the evolution

of extended-spectrum resistance (a gain-of-function), and are generated by leverag-

ing negative epistasis between their respective starting points for directed evolution.
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In the future the dataset generated by this approach will enable the study of higher

order mutational interactions in the evolution of extended-spectrum resistance.

In addition, two other studies are presented: (1) A comparison of the re-

peat landscapes in the genomes of 8 ant species highlights the role of transposable

element clusters (TE islands) in facilitating the adaptation of an invasive species

to new habitats. (2) A comparison of the genomes of three marine Planctomycetes

inhabiting the blade of the red alga, Porphyra umbilicalis. These three OTUs repre-

sent three different genera, and contain large expansions of specific gene families and

horizontally acquired genes, which appear to augment their metabolic repertoire for

accessing macropolymers in the cell walls of algae, and their mechanisms for stress

responses that likely help adaptation to the intertidal zone.
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Chapter 1

Mechanisms constraining the

acquired multidrug resistance

landscape in E. coli

1.1 Introduction

The rise of multidrug resistance (MDR) in bacteria poses a serious threat to

public health, as multidrug-resistant infection is linked to extended hospitalization

and mortality [1–4]. A better understanding of how MDR arises and spreads could

be of great assistance in informing strategies to control it.

Our study focuses on extraintestinal pathogenic E. coli (ExPEC), which

are particularly effective at acquiring new resistance genes [5,6]. E. coli infection is

an important threat to human health because of its frequent implication in oppor-

tunistic infections, causing urinary tract infections, sepsis and wound infections [7,8].

The evolution of MDR represents a complex process leading to the accumu-

lation of resistance factors in a single bacterial strain [9]. Genetic resistance factors

include chromosomal mutations that modify drug target sites, genes encoding drug-

inactivating enzymes, and genes encoding multidrug efflux pumps that can export

multiple types of antibiotics across bacterial cytoplasmic membranes. Resistance

factors can occur in the core genome or in the peripheral genome, which includes

extrachromosomal elements and sections of the chromosome that contain a high pro-

portion of mobile elements. Resistance factors in the core genome are more aligned

with vertical transmission, while acquired resistance genes in the peripheral genome

are primarily encoded in plasmids and can be highly mobile.
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The evolution of MDR, especially within the peripheral genome, is facil-

itated by various mobile genetic elements (MGEs) [10] including transposons and

integrons. These elements provide both the means for bacteria to acquire resistance

genes from a shared environmental pool [11–13] and to increase genetic diversity

by generating different gene combinations (reviewed in [14, 15]). Horizontal gene

transfer (HGT) plays a critical role in extending the genetic diversity available by

facilitating gene flow across different strains and even across different microorgan-

isms [16,17] and explains how virtually identical plasmids can be found in unrelated

bacterial strains [18,19].

The acquired resistance genes most frequently found in E. coli genomes

include genes encoding aminoglycoside-modifying enzymes (AMEs), extended-

spectrum β-lactamases (ESBLs) and carbapenemases. AMEs can be subdivided into

three groups based on their catalytic reaction, namely acetyltransferases (AACs),

adenyltransferases (ANTs) or phosphotransferases (APHs) [20]. ESBLs include the

CTX-M and CMY groups primarily, and the TEMs, and SHVs [21]. Carbapenemase

groups include the NDMs, IMPs, KPCs, VIMs and some OXAs [5].

These genes frequently cluster in large multi-resistance regions (MRRs)

[15, 22]. The evolution of MDR is thought to involve a process called genetic capi-

talism, wherein the presence of acquired antibiotic resistance genes in a given strain

facilitates the acquisition of resistance to additional antibiotics [11,23]. According to

this model, antibiotic resistance genes increase their frequency in the gene pool ver-

tically (through clonal expansion) and horizontally (largely through conjugational

transfer on plasmids). This increased representation in the gene pool improves access

to other antibiotic resistance genes for recombination, thus facilitating the generation

of larger, more successful gene combinations. The role of recombination is evidenced

by the consistent identification of modules of a few genes arranged in the same way

and with the same boundaries in different contexts [15,22,24].

Genetic capitalism is facilitated by co-selection, a process where one an-

tibiotic indirectly selects for genes conferring resistance to different antibiotics [23].

In MRRs, co-selection is driven by the physical linkage between resistance genes and

its efficiency is inversely proportional to the distance between resistance genes. An-

other mechanism involved in adaptation is mutual antagonism. This mechanism has

been extensively studied in model systems involving a single protein such as TEM-1

or phosphoglycerate kinase [25, 26], where it generally involves some incompatibil-

ity between key adaptive mutations. In these model systems, mutual antagonisms

that arise early during adaptation constrains evolutionary trajectories further down-
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stream, a process known as contingency [27].

Here we turned to whole genome sequencing to investigate the contribution

of physical linkage and mutual antagonism between resistance genes to the evolution

of MDR in the peripheral genome. Previous comparative genomics studies that pro-

vide a comprehensive view of the multidrug “resistome” have already reported some

frequent gene combinations [7, 28–32], but the overall landscape of these adaptive

solutions as well as the role of gene-to-gene interactions in their evolution have not

been systematically investigated.

We conducted a case study of 352 clinical isolates of ExPEC from two hos-

pitals on the U.S. West Coast focused on genes contributing to resistance against

aminoglycosides and β-lactams, two antibiotic classes frequently used to treat enter-

obacterial infection [6,33,34]. We identified two highly successful gene combinations

that largely explain the distribution of aminoglycoside and β-lactam resistance in

the clinical populations we investigated. We also identified antagonistic interactions

between genes with similar resistance profiles. These findings were verified against

761 completed E. coli genomes from the NCBI database and we used these fully as-

sembled genomes to investigate the proximity between these genes and the fluidity

in their linkage.

Based on these observations, we propose a model that explains the evolu-

tion and adaptive success of a restricted number of gene combinations. Our model

includes a significant role for both physical linkage and mutual antagonism. As

part of the model, we propose a process of stochastic fine-tuning by recombination

and selection that would lead to the observed trend toward high proximity and co-

strandedness between antibiotic resistance genes within adaptive solutions. Looking

at the physical linkage between replicons, we confirm extensive replicon mosaicism

between IncF replicons and also find mosaicism involving other replicon types. This

replicon mosaicism could broaden the compatibility range of the plasmids involved,

potentially accelerating the process of MDR adaptation. Individual resistance genes

were typically linked to a variety of replicons, although IncF plasmids were particu-

larly central. We also observed significant gene flow to the chromosome, especially

for ESBL genes.
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1.2 Results and Discussion

1.2.1 Description of whole-genome datasets

Three independent, non-overlapping whole-genome datasets including 1113

E. coli genomes were used to support the analyses and conclusions in this study:

UW233, DHMMC119, and NCBI761. A summary of the composition of the three

datasets is provided in Table 1.1.

The UW233 dataset contained 233 ExPEC draft genomes from a published

study conducted at the University of Washington [8], representing the unbiased

sampling of the clinical strains isolated in a hospital, from patients suffering from

sepsis between 2008 and 2013, or from urinary tract infections between 2011 and

2012. This group of samples had a relatively low incidence of ESBL resistance (19.6%

of isolates with antibiotic sensitivity data). The DHMMC119 dataset contained 119

draft genomes that we sequenced from a collection of ExPEC isolates from the

Dignity Health Mercy Medical Center in Merced, CA, USA. This collection was

deliberately enriched for strains exhibiting ESBL resistance (61.6%, of isolates with

susceptibility data) and supplemented the low incidence of MDR in UW233 (see

Methods).

For statistical analysis, we merged the UW233 and DHMMC119 datasets

into USWest352. These genomes were accompanied by clinical data, including re-

sults from antibiotic susceptibility testing against a panel of antibiotics, with some

differences in panel composition between the two. The antibiotics that we focus on

in this study, and their classification are shown in Table 1.2. USWest352 strains

displayed 32.3% incidence of ESBL resistance, 26.8% incidence of aminoglycoside

resistance, and 47.9% incidence of FQN resistance. Thus, USWest352 provided an

adequate representation for statistical analysis on the distribution of resistance mark-

ers across two hospitals in the U.S. West Coast despite not representing a random

sampling of the clinical population.
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Table 1.1: Summary of five whole-genome datasets used in this study.

Dataset Size Source
Assembly

Status
Antibiotic

susceptibility
Sampling

enrichment
Total MLSTs % MLST composition (Top 5)

UW233 233 University of Washington draft available none 75
ST131 (15.5%), ST95 (11.6%), ST73 (9.4%)

ST127 (6.4%), ST69 (5.2%)

DHMMC119 119
Dignity Health

Mercy Medical Center
draft available ESBL 22

ST131 (58.0%), ST648 (10.9%), ST44 (5.0%)
ST38 (4.2%), ST405 (3.4%)

USWest352 352 UW233, DHMMC119 draft available ESBL 84
ST131 (29.8%), ST95 (8.0%), ST73 (6.3%)

ST127 (4.8%), ST69 (3.7%)

NCBI761 761 NCBI complete not available none 200
ST10 (10.9%), ST131 (7.4%), ST11 (6.4%)

unknown (5.9%), ST167 (2.5%)

The NCBI761 dataset included all 761 completely assembled, non-synthetic

E. coli genomes available in the NCBI database on April 3, 2019. These genomic

sequences provided an independent dataset for verifying and framing our findings in

a larger context outside of the two hospitals. In addition, these completed assem-

blies enabled the determination of physical linkages between resistance genes. On

the other hand, NCBI761 was not accompanied by clinical data, excluding it from

genotype-to-phenotype association studies.

1.2.2 Genes contributing to resistance in USWest352

Antibiotic resistance genes in the USWest352 and NCBI761 were identified

using a custom annotation pipeline, based on BLAST searches against the ResFinder

sequence databases [31] (see Methods).

A numerical summary of the resistance genes identified in USWest352 can

be found in Table 1.3. In USWest352, our annotation pipeline identified 34 different

resistance genes, with genes encoding AMEs (14 genes) or β-lactamases (14 genes)

accounting for 99% of the 855 complete open reading frame (ORF) hits identified.
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Table 1.2: Antibiotics considered in this study.

Antibiotic Abbreviation Class

Ampicillin AMP 3rd-gen penicillin (β-lactam)
Cefazolin CFZ 1st-gen cephalosporin (β-lactam)
Ceftazidime CAZ 3rd-gen cephalosporin (β-lactam)
Ceftriaxone CRO 3rd-gen cephalosporin (β-lactam)
Cefepime FEP 4th-gen cephalosporin (β-lactam)
Gentamicin GEN aminoglycoside
Tobramycin TOB aminoglycoside
Ciprofloxacin CIP 2nd-gen fluoroquinolone
Levofloxacin LVX 2nd-gen fluoroquinolone

To quantify the effect of these genes on aminoglycoside and β-lactam re-

sistance in USWest352, we performed association studies using logistic regression.

In microbial association studies, datasets containing a population structure that

reflects the selection of the phenotype of interest, particularly if this phenotype is

under strong selection, can produce a high number of false positives [35]. To identify

causative associations to resistance with confidence, we used an approach inspired

by recent microbial genome-wide association studies that takes population structure

into account [36, 37]. We designed regressors that capture genetic variance corre-

sponding to the population structure, using multidimensional scaling (MDS) (see

Methods). Using these as the only regressors in our predictive model allowed us to

estimate the contribution of population structure to resistance.

Results from our logistic regression analysis are summarized in Table 1.4.

We measured the predictive accuracy of our model using the area under the curve

(AUC) metric, which is a value between 0.5 and 1.0. An AUC of 0.5 denotes a

predictive accuracy no better than random, and 1.0 denotes perfect accuracy. We

took the mean AUC value across 5000 bootstrap iterations and all drugs belong-

ing to a specific class. We looked at the correspondence between FQN resistance

(CIP/LVX) and population structure, and found a high correspondence between

the two (mean AUC: 0.87). Including four FQN resistance mutations that inhibit

the binding of topoisomerase inhibitors [38, 39] increased predictive accuracy only

moderately (mean AUC: 0.94), confirming that FQN resistance exhibits a strong

alignment with population structure. In the case of aminoglycoside resistance, the

correspondence with population structure was considerably lower (mean AUC: 0.63),

consistent with a predominantly peripheral genome location. The correspondence

between β-lactam resistance and population structure was higher, however, with a

mean AUC of 0.79. This suggests that vertical transmission comprises a larger com-

ponent of the total transmission of β-lactamases, perhaps because of integration of
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Table 1.3: Genes known to confer resistance against aminoglycosides, β-lactams
and fluoroquinolones found in 352 ExPEC genome assemblies (USWest352).

Aminoglycoside

Gene name Gene/Enzyme class Complete ORFs Genomes containing gene

aph(3”)-Ib AME: O-Phosphotransferase 106 100
aadA5 AME: O-Adenyltransferase 99 99
aph(6)-Id AME: O-Phosphotransferase 101 96
aac(6’)-Ib-cr AME: N-Acetyltransferase 62 62
aac(3)-IId AME: N-Acetyltransferase 37 37
aac(3)-IIa AME: N-Acetyltransferase 27 27
aadA24 AME: O-Adenyltransferase 18 14
aadA1 AME: O-Adenyltransferase 16 12
aph(3’)-Ia AME: O-Phosphotransferase 14 13
aadA2b AME: O-Adenyltransferase 10 9
aadA1b AME: O-Adenyltransferase 2 2
aadA16 AME: O-Adenyltransferase 2 2
ant(2”)-Ia AME: O-Adenyltransferase 2 2
aac(3)-VIa AME: N-Acetyltransferase 1 1
rmtE 16S rRNA Methyltransferase 1 1

β-lactam

Gene name Gene/Enzyme class Complete ORFs Genomes containing gene

blaTEM-1A CTX-M β-lactamase 157 140
blaCTX-M-15 CTX-M β-lactamase 79 78
blaOXA-1 OXA β-lactamase 66 66
blaCTX-M-14b CTX-M β-lactamase 18 18
blaCTX-M-27 CTX-M β-lactamase 7 7
blaCMY-2 AmpC β-lactamase 7 4
blaCTX-M-55 CTX-M β-lactamase 3 3
blaTEM-12 TEM β-lactamase 3 3
blaTEM-19 TEM β-lactamase 2 2
blaCTX-M-1 CTX-M β-lactamase 2 2
blaCTX-M-65 CTX-M β-lactamase 2 2
blaCTX-M-104 CTX-M β-lactamase 1 1
blaCARB-2 CARB β-lactamase 1 1
blaCARB-11 CARB β-lactamase 1 1

Fluoroquinolone

Gene name Gene/Enzyme class Complete ORFs Genomes containing gene

qnrB6 PMQR 2 2
qnrB19 PMQR 2 2
qnrS2 PMQR 2 2
qepA1 PMQR 1 1
qepA4 PMQR 1 1
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β-lactamases into the chromosome.

Adding the set of resistance markers identified by our annotation pipeline

(a total of 34 genes and 4 point mutations) as regressors to the model substantially

increased the accuracy for aminoglycosides (mean AUC: 0.92) and for β-lactams

(mean AUC: 0.91). For the 3rd/4th-generation cephalosporins, which have been

introduced in the clinic more recently than AMP and CFZ, the predictive accuracy

was even higher (mean AUC: 0.96). These observations suggest that the resistance

genes identified by our annotation pipeline contribute significantly to aminoglycoside

and β-lactam resistance.

We identified three genes as major contributors to resistance against the

aminoglycosides based on the magnitude of the decrease in predictive accuracy fol-

lowing their removal from the model. The three genes are aac(3)-IIa (GEN re-

sistance), aac(3)-IId (GEN/TOB resistance), and aac(6’)-Ib-cr (GEN/TOB resis-

tance). A high correspondence between resistance and genome-based predictions

including these three genes has been previously reported in E. coli and K. pneumo-

niae [29] and in porcine Enterobacteriaceae [31], although these earlier studies did

not control for population structure.

We performed conjugation assays to show that these genes are sufficient

to confer resistance in a näıve genetic background. Our experimental results were

largely consistent with the conclusions of our logistic regression analysis. The excep-

tion was the association between the aac(3)-II genes and TOB resistance, where our

regression analysis showed a causal relationship, while the conjugation experiments

failed to transfer resistance along with the gene. This discordance may result from

differences in specific genetic background. Also, it has been reported previously that

the AAC(3)-II enzymes only confer intermediate resistance against TOB in ST131

strains [40]. In the case of aac(3)-IIa, our regression analysis also failed to predict a

causal relationship because aac(3)-IIa was always in the presence of another TOB

resistance gene, aac(6’)-Ib-cr.

We identified six genes as major contributors to resistance against 3rd/4th-

generation cephalosporins: blaCTX-M-14b, blaCTX-M-15, blaCTX-M-27, blaCTX-

M-55, blaTEM-12 and blaCMY-2. These are all known to confer ESBL resistance

[41].
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Table 1.4: Contribution of population structure to resistance and predic-

tive value of 38 resistance markers.

Antibiotic
mean AUC

(permuted response variable)
mean AUC

(population structure regressors only)
mean AUC

(population structure and resistance markers)

Gentamicin 0.49 0.68 0.92
Tobramycin 0.50 0.59 0.92
Ampicillin 0.50 0.78 0.84
Cefazolin 0.50 0.77 0.84
Ceftazidime 0.50 0.82 0.96
Ceftriaxone 0.50 0.73 0.93
Cefepime 0.50 0.84 0.97
Ciprofloxacin 0.50 0.87 0.94
Levofloxacin 0.51 0.87 0.94

1.2.3 Exploratory factor analysis reveals two adaptive pathways of

multidrug resistance

In order to identify global patterns in the distribution of acquired resistance

genes identified by our annotation pipeline in USWest352, we performed exploratory

factor analysis. This analysis combined multidimensional scaling (MDS) with un-

supervised classification to produce a nondeterministic clustering of genomes based

on their resistance gene composition. Visualization of these clusters along principal

components representing the largest explained variance of gene composition allowed

identification of the most successful adaptive solutions (see Methods).

We generated an input distance matrix for this analysis that contained

measures of dissimilarity between each pairing of genomes’ resistance gene composi-

tion. We then projected the matrix onto three principal components (PC1, PC2 and

PC3). Sample genomes containing an identical set of resistance genes were collapsed

(i.e. one representative was chosen), leaving 87 genomes with unique combinations

of resistance genes, each combination representing a different evolutionary outcome.

In effect, this minimizes the impact of clonal expansion in the analysis. For increased

accuracy, the relative positions of genomes in the final output were calculated based

on how their projected positions clustered over 3418 bootstrap replicates (see Meth-

ods). The distribution of gene combinations along PC1, PC2 and PC3 is shown in

Figure 1.1.

Variance along PC1 was attributable to the presence of two APH genes

that are known to confer STR resistance, aph(3”)-Ib and aph(6)-Id (Figure 1.1

a). We found that 94% of the 87 genomes had one of two configurations, containing

neither or both genes. Inspection of the assembled contigs containing these two genes

showed that this high association between aph(3”)-Ib and aph(6)-Id resulted from

close physical linkage, occurring inside an IS240-type insertion element and with
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Figure 1.1: Clustering of genomes based on their composition of acquired an-
tibiotic resistance genes. (a-f) MDS plots show the relatedness of 352 ExPEC genomes
based on their composition of acquired resistance genes. The clustering of genomes is shown
across three principal components PC1, PC2 and PC3: (a,b) across PC1 and PC2, (c-f)
across PC2 and PC3. Colors indicate the presence of specific resistance genes, chosen based
on their frequency of occurrence and distribution pattern: (a) streptomycin resistance genes,
(2) both aph(3”)-Ib and aph(6)-Id, (1) one of aph(3”)-Ib or aph(6)-Id, (0) neither; (b,c) rel-
ative frequency of CG1 genes and CG2 genes; (d-f) mutual exclusion between specific CG1
(navy) and CG2 (orange) gene pairs with overlapping resistance profiles; in some cases both
genes are present (purple) or neither (grey). (g) Two highly successful gene combinations,
CG1 and CG2, represent adaptive solutions evolved in the presence of selective pressures by
multiple antibiotics. The degrees of association (Jaccard index) between pairs of genes are
provided along dotted lines.

overlapping ORFs. These two genes likely encode a single transcriptional unit, and

are part of a STR resistance operon, based on previous reports [42]. Given the high

representation of this two-gene combination (in 40% of 87 combinations), it was not
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surprising that their presence or absence comprised the largest portion of variance

in the USWest352. On the other hand, aadA5, which also occurred frequently (in

45% of 87 combinations) did not cluster with aph(3”)-Ib and aph(6)-Id (data not

shown). Together, these two results support the idea that the MDS projection along

PC1 captured a highly prevalent gene interaction (specifically linkage between two

genes) as opposed to an arbitrary representation of variance weighted solely by the

gene frequency, validating our approach.

PC2 and PC3 resolved two gene groups to which genomes could be assigned

based on the presence of seven resistance genes (Figure 1.1 b and Figure 1.1

c). Genomes assigned to the first group included some combination of aac(3)-IIa,

aac(6’)-Ib-cr, blaOXA-1 and blaCTX-M-15, while genomes assigned to the second

group included some combination of aac(3)-IId, blaTEM-1A and blaCTX-M-14b.

Figure 1g shows the degree of co-occurrence of gene pairs in CG1 and CG2, using

the Jaccard index (JI) [43]. Of the 87 unique combinations, 62% could be assigned

unambiguously to one of the two groups, while only 15% did not contain any of these

seven genes, so these two groups explain a large portion of the variance as well.

Looking at resistance profiles, we found that the combined resistance pro-

file for each group of genes represents a largely complementary set of phenotypes

(Figure 1.1 g), with individual resistance genes within each group being largely

non-redundant in function. We therefore named these two groups Complementarity

Groups 1 and 2 (CG1, CG2). Comparing CG1 and CG2, we also noted that each

group exhibits a combined resistance profile that overlaps for six antibiotics fre-

quently used in the clinic that have a strong signal in our logistic regression: AMP,

CAZ, CRO, FEP, GEN, and TOB. This suggests that the two groups represent two

distinct adaptive solutions driven by overlapping resistance profiles.

1.2.4 Pervasive antagonisms drive the segregation of CG1 and CG2

Assuming a similar selection, the evolution of parallel trajectories means

that genes with similar resistance profiles are mostly found in separated clusters

across PC2-PC3 space (Figure 1.1 d-f). The two strongest examples are aac(3)-IIa

and aac(3)-IId, which provided resistance against the same antibiotics (GEN/TOB),

and never co-occurred (Figure 1.1 d). The genes blaCTX-M-14b and blaCTX-M-

15 provided a second example, both of which confer ESBL resistance and occurred

together only in 2% of the 87 combinations (Figure 1.1 f). We hypothesized that

the striking segregation across these two groups of genes may be driven by mutual
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antagonism arising from functional overlaps between groups. Meanwhile we also

hypothesized that close physical linkage would help preserve associations between

genes of the same complementarity group.

1.2.5 Phylogenetic distribution of CG1 and CG2 genes

We generated a phylogenetic distribution of gene combinations correspond-

ing to CG1 and CG2 using a neighbor-joining tree based on 537,420 polymorphic

sites across the genomes of USWest352 (Figure 1.2).

Gene combinations representing CG1 and CG2 were widely distributed

across MLSTs (10 and 14 different MLSTs, respectively). Within individual MLSTs,

CG gene representation was highly heterogeneous. For instance, in ST131, the

numbers of CG1 and CG2 genes occurring in a genome ranged from 0 to 4 and 0 to

2, respectively and in ST648, CG2 is found as the full three-gene combination and

in two different two-gene configurations (blaTEM-1A with aac(3)-IId, and blaTEM-

1A with blaCTX-M-14b). Taken together, the weak linkages between some of the

pairs, the ubiquitous distribution of CG1 and CG2 genes across MLSTs, and the

overall heterogeneity within individual MLSTs, highlight the large degree of genomic

plasticity involved in the evolution of MDR. This pattern of pervasive horizontal

transfer and recombination is consistent with previous studies of genomic variation

in prokaryotes [16,17].

The high variability of CG1 and CG2 representation within individual ML-

STs (including epidemic ones such as ST131) also implies that the success of epidemic

strains is unlikely to be primarily driven by the acquisition of a particular combi-

nation of drug resistance genes. Indeed, in the UW233 dataset, which represents

the unbiased sampling of the clinical strains isolated in a hospital, the majority of

clonally expanded MLSTs (e.g., ST73, ST95, ST127) remained susceptible to most

antibiotics. Further supporting this conclusion, previous literature showing that for

a number of pathogens including ExPEC, only a fraction of strains with identical

drug resistance phenotypes are successful, leading to the hypothesis that additional

selective advantages are likely involved [44,45].

CG1 and CG2 genes appeared to be highly concentrated in certain MLSTs

across the phylogeny (e.g., ST10, ST44, ST131, ST405 and ST648), and in some

cases appeared to be expanded uniformly in smaller monophyletic clades (Figure

1.2). These observations suggest that clonal expansion contributes to the dissemi-

nation of drug resistance to some degree, as previously reported for blaCTX-M-15
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Figure 1.2: Phylogeny of 352 ExPEC isolates obtained from two hospitals on
the U.S. West Coast. Phylogenetic relationships among 352 isolates are represented as
a neighbor-joining tree, computed based on pairwise comparisons of 537,420 genomic SNPs.
The Circos diagram surrounding the phylogeny indicates, for each phylogenetic taxa, its
MLST and phylotype classifications, the presence of selected resistance markers and the
presence of an IncF plasmid replicon. Circular panels, from the innermost to outermost,
represent the following. Panel 1, MLST: ST10 (purple), ST38 (olive), ST44, (navy), ST69
(green), ST73 (maroon), ST95 (black), ST127 (lime), ST131 (red), ST393 (teal), ST405
(blue), ST648 (cyan). Panel 2, phylotype: A (orange), B1 (purple), B2 (light blue), C
(dark blue), D (dark grey), E (light red), F (green), U (yellow). Panel 3 (outlined in blue),
fluoroquinolone resistance mutation GyrA-S83X. Panels 4-8 (outlined in yellow), CG1 genes:
blaOXA-1, aac(6’)-Ib-cr, blaCTX-M-15, and aac(3)-IIa, respectively. Panels 9-11 (outlined
in orange), CG2 genes: blaTEM-1A, blaCTX-M-14b and aac(3)-IId, respectively. Panel 12
(outlined in grey), the presence of any IncF replicon. *Outgroup: Klebsiella pneumoniae
**Reference genome: E. coli EC958

in ST131 and ST405 [30, 46, 47]. Note that FQN resistance mutations in gyrA are

often associated with these expansions, a pattern that appears more generally across

MDR pathogens [45]
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Despite the contribution of clonal expansion, the high genomic plasticity

suggests the divergence of sublineages bearing CG1 and CG2 genes by clonal ex-

pansion should only make limited contributions to the observed segregation between

CG1 and CG2 genes (Figure 1.1 and Figure 1.2). This is more so, because these

strains come from only two geographically proximal hospitals, and thus the sublin-

eages likely had access to each other. Indeed, we find instances of MLSTs where

both CGs are present (ST10, ST131, ST617 and ST648), showing that the strains

had access to both evolutionary solutions.

Regional differences in the distribution of CG1 versus CG2-bearing samples

between the two hospitals are not major contributors to the observed segregation

either, since the segregation is present even when samples from each hospital are

considered independently (not shown).

1.2.6 Determining the co-selection landscape of USWest352 using

a random distribution model

The statistical significance of our observations was established using a ran-

dom distribution model. We reasoned that, given enough gene flow, for two given

resistance genes the probability of co-occurrence should be determined by their indi-

vidual empirical frequencies in the dataset. In this model, we interpreted overrepre-

sentation as indicative of positive co-selection, and underrepresentation as evidence

of mutual antagonism.

In our model we included the ten most frequent resistance genes: aadA5,

aph(3”)-Ib, aph(6)-Id, and all seven CG1 and CG2 genes. We measured co-

occurrence between each pairing using the Jaccard index (JI) [43] and detected

significant associations by permutation test. To adjust for multiple comparisons, we

used a significance level α of 0.05 (see Methods).

To see whether geographically proximal strains have access to both solu-

tions, and to confirm that when both solutions co-exist, they remain mutually antag-

onistic, we represented significant associations for USWest352 (Figure 1.3 a). To

minimize the effect of population structure, we also restricted our analysis to strains

belonging to a homogenous phylogenetic context: strain ST131 (n=161, Figure 1.3

b). Finally, to see whether these observations could be generalized to a variety of

regional contexts, we extended our analysis to the NCBI761 dataset (Figure 1.3 c).

Overall, our permutation tests supported the presence of extensive co-

selection between gene pairs within CG1 and CG2 and of mutual antagonism across
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Figure 1.3: Positive and negative co-selection predicted between CG1 and CG2
genes. Pairwise associations between the ten most frequently occurring acquired resistance
genes in the USWest352 dataset, predicted against a random distribution model for the
following datasets: (a) USWest352, (b) 161 genomes belonging to the ST131 (gathered from
USWest352 and NCBI761), and (c) NCBI761. Significant positive associations are indicated
by dark grey links between nodes, while significant negative associations are indicated by
red hashed links. Non-significant associations are shown as light grey links. Significance was
determined by controlling for the false discovery rate at a significance level α of 0.05. Nodes
representing genes are colored to represent their resistance profile: GEN (light blue), TOB
(blue), amikacin (alice blue), penicillins (yellow), oxacillins (orange), 3rd/4th-generation
cephalosporins (salmon), STR (white), spectinomycin (grey). Full resistance profiles for
CG1 and CG2 genes are provided in figure 1g.

gene pairs in different subnetworks. This was true for a single, epidemic strain

(ST131) and in a variety of epidemiological and geographical contexts. Addition-

ally, in CG2 we found strong support for co-selection between blaTEM-1A and the

STR resistance genes aph(3”)-Ib and aph(6)-Id. On the other hand, we found that

positive association patterns for aadA5 were more inconsistent.
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1.2.7 Mutual antagonism between resistance genes with similar

functions

To confirm a possible connection between mutual antagonism and func-

tional redundancy, we determined the degree of association within groups of genes

that have similar resistance profiles. We assigned 108 different resistance genes

identified in NCBI761 to 13 functional groups and measured underrepresentation

of gene co-occurrence within each functional group against our random distribution

model. Gene-to-group assignments for specific genes are provided in Table 1.5, and

rationale for their assignments are provided in the Methods.

P-values indicating significance for underrepresentation of within-group co-

occurrence are shown in Table 5. Gene co-occurrence was underrepresented in 8

groups: Groups 1, 2, 5 (AMEs), 7, 8, 10, 12 (β-lactamases), and 13 (PMQRs),

with significance assessed at 95% over 1000 genome permutations. Group 3 had a

p-value close to the 95% threshold (94.6%). Two groups of genes (Groups 6 and

9) showed non-significant p-values despite not having any instances of within-group

co-occurrence, but this was likely due to insufficient sample size. Other exceptions

were Groups 4 and 11, both of which include two genes co-mobilized in insertion

elements. In the case of Group 4, the two genes are aph(3”)-Ib and aph(6)-Id.

Being part of an operon, overrepresentation of their co-occurrence against random

distribution was expected. In Group 11, most of the observed co-occurrences (6 of

7) involved blaOXA-1 and other OXA-type genes, some of which (4 out of 7) confer

resistance to carbapenems, which could explain their co-occurrence with blaOXA-

1. In addition, blaOXA-1 was physically linked to aac(6’)-Ib-cr inside an IS240-

type insertion element, and thus it could have been passively co-selected through

a aac(6’)-Ib-cr -driven selection. Finally, by generating permutations of the gene-

to-group assignments we confirmed that our significant p-values were not skewed

by group size or attributable to multiple comparisons (grand-p-value=0.000; see

Methods).

Overall, our random distribution model confirmed widespread mutual an-

tagonism between genes in the same functional group when sample sizes were suffi-

cient. The only exceptions we found correspond to two resistance genes that are very

tightly linked and co-mobilized in an MGE, or when two genes shared an operon,

potentially requiring both units for high level resistance.
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Table 1.5: Negative co-selection within functional groups.

Group Class grouping Functional grouping Genes Sample Size P-value

1 AAC(3) +GEN, +TOB, -AMK aac(3)-IIa, aac(3)-IId, aac(3)-IV 1, aac(3)-Ia, aac(3)-VIa, ant(2”)-Ia2 112 0.001

2 AAC(6’) +TOB, +AMK, -GEN aac(6’)-33, aac(6’)-Ian, aac(6’)-Ib, aac(6’)-Ib-cr, aac(6’)-Ib3, aac(6’)-Il 74 0.010

3 ANT +STR, +SPC aadA1, aadA13, aadA16, aadA2, aadA22, aadA23, aadA24, aadA2b, aadA3, aadA5 255 0.054

4 APH(3”), APH(6) +STR, -SPC aph(3”)-Ib, aph(6)-Id 365 1.000

5 APH(3’) +KAN, +NEO, +PRM aph(3’)-IIa, aph(3’)-Ia, aph(3’)-VI, aph(3’)-VIa, aph(3’)-VIb 88 0.007

6 16S RMT +GEN, +TOB, +AMK armA, rmtB and rmtC 19 0.533

7
CMY

(Class C)
+carbapenems

+ESBL
blaCMY-111, blaCMY-16, blaCMY-2, blaCMY-23, blaCMY-34
blaCMY-4, blaCMY-42, blaCMY-44, blaCMY-new, blaCMY-6

52 0.010

8
CTX-M

(Class A)
+ESBL

blaCTX-M-123, blaCTX-M-14b, blaCTX-M-15, blaCTX-M-199, blaCTX-M-2, blaCTX-M-24
blaCTX-M-27, blaCTX-M-3, blaCTX-M-55, blaCTX-M-64, blaCTX-M-65

135 0.000

9
KPC

(Class A)
+carbapenems blaKPC-2, blaKPC-3 3, blaKPC-4 29 0.245

10
NDM

(Class B)
+carbapenems

+all β-lactam, except ATM
blaNDM-1, blaNDM-21, blaNDM-4, blaNDM-5, blaNDM-6, blaNDM-7, blaNDM-9 61 0.001

11
OXA

(Class D)
+oxacillins

some carbapenemases4
blaOXA-1, blaOXA-10, blaOXA-163, blaOXA-181, blaOXA-2, blaOXA-4, blaOXA-48, blaOXA-9 77 0.296

12
TEM

(Class A)
+penicillins only
(99% of group)

blaTEM-116, blaTEM-135, blaTEM-156, blaTEM-176, blaTEM-1A, blaTEM-20
blaTEM-210, blaTEM-215, blaTEM-26, blaTEM-30, blaTEM-32, blaTEM-57

200 0.000

13 PMQR +CIP, +LVX qepA1, qepA4, qnrA1, qnrB10, qnrB4, qnrB52, qnrB6, qnrB9, qnrE1, qnrS1, qnrS2, qnrVC4 54 0.044

1 Has broad substrate specificity range that includes GEN, TOB, AMK and apramycin.

2 Does not encode an AAC(3) enzyme, but has similar resistance profile, e.g., confers resistance against GEN and TOB, but not AMK.

3 Reported to confer resistance against cefoxitin, a cephamycin.

4 blaOXA-48, blaOXA-163 and blaOXA-181 additionally confer carbapenem resistance.
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1.2.8 CG1 and CG2 genes can be found together in conjugative

plasmids

Co-selection is facilitated by close physical association between the relevant

pairs of genes. We checked this hypothesis experimentally by conjugation of strains

bearing CG1 and CG2 genes. For CG1, in one USWest352 isolate we mapped all

four CG1 genes to an IncF, conjugation-competent plasmid, confirming their physi-

cal linkage in this instance. We then used a primer-walking strategy to determine the

relative proximity and orientation of the four genes in several USWest352 isolates.

In two isolates (U90, U95), we found an IS240-type insertion element containing

aac(6’)-Ib-cr and blaOXA-1 located approximately 1.2 kb upstream of aac(3)-IIa,

and in three isolates (U2, U46, U90) blaCTX-M-15 was nearly adjacent and up-

stream of aac(6’)-Ib-cr. For CG2, we mapped all three CG2 genes to a conjugative

plasmid in one isolate, again showing that all the genes can be physically linked in

the same extrachromosomal element.

1.2.9 Physical linkage map of acquired antibiotic resistance for

NCBI761

We used complete genomic assemblies of NCBI761 to verify the associa-

tions of co-selection detected in our random distribution model as physical linkages.

These complete assemblies also allowed the identification of other gene associations

including genes for which we don’t have phenotypic data.

The degree of physical linkage between gene pairs where each constituent

gene is present more than ten times in NCBI761 was estimated using JI (Figure 1.4).

Overall, the physical linkage profile for CG1 and CG2 gene pairs is highly consistent

with the degree of positive co-selection predicted using our random distribution

model.

We detected three pairs of genes with very tight physical linkage, only one

of which is specific to CG1: aac(6’)-Ib-cr and blaOXA-1 (JI: 0.82). The second pair

is aph(3”)-Ib and aph(6)-Id (JI: 0.95), which we found to be more closely associated

with CG2 than CG1. These two genes, which have been reported to encode a single

transcriptional unit as part of a STR resistance operon [42], are co-oriented with

overlapping ORFs and could together provide high-level STR resistance. Finally,

the third gene pair exhibiting tight genetic linkage includes oqxA and oqxB (JI:

0.9), which encode two subunits of the RND family efflux pump often found as an

operon [48].
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Figure 1.4: Physical linkage landscape of 761 E. coli genomes from NCBI. The
heatmap represents a physical linkage landscape, or the degree of co-occurrence in the
same plasmid or chromosome, between all pairings of aminoglycoside, β-lactam and flu-
oroquinolone resistance genes identified among 761 complete E. coli genomes from NCBI.
Genes with ten or more occurrences across the dataset were included in the heatmap. The
degree of co-occurrence between two genes was measured using the Jaccard index. The
dendrogram above the heatmap, generated using kmeans, shows the clustering of genes ac-
cording to their physical linkage profiles. The number of times each gene was found in the
dataset is shown to the right. The legend below the heatmap shows the heatmap colors
corresponding to Jaccard indices ranging from 0.0 to 1.0.

This analysis also detected another less frequent (n=17) gene combination

whose gene composition is consistent with our definition of a complementarity group.

We named this combination CG3; it includes aph(4)-Ia, which according to the

literature confers hygB resistance [49], aac(3)-IV, which protects against GEN, TOB,

and AMK [50] and blaCTX-M-14, which is an ESBL [41]. Within this CG, we see
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again a clear functional diversification, as well as mutual antagonism with genes

present in other CGs (Figure 1.5).
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Figure 1.5: Configurations of CG1, CG2 and CG3. A few selected configurations for
CG1, CG2 and CG3 are shown.

1.2.10 Multiple configurations between CG1 and CG2 gene pairs

MRRs represent complex adaptive solutions. CG1, CG2, and CG3 can be

understood as successful adaptive solutions comprising the portions of MRRs that

encode the set of resistances attributable to these respective CGs.

The order of genes and distances separating genes in CG1, CG2 and CG3

are mapped in Figure 1.6 a, for all occurrences in NCBI761. These CGs, and more

specifically, any given set of resistance genes in the NCBI761, can be found in a

plurality of configurations, as defined by gene order, proximity and co-strandedness.
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Figure 1.6: Physical linkage configurations for adaptive solutions: proximity
and co-strandedness of genes. (a) Diagrams representing different configurations (order
and proximity) of the genes comprising CG1, CG2 or CG3, found in NCBI761. For each
sample genome represented across the y-axis, genes that occur within 20,000 bps of each
other are plotted with connecting lines, while genes that are farther apart than 20,000 bps
and unlinked genes that occur on different molecules are plotted on a separate panel to the
right. (b) A plot comparing the success of different configurations (proximity) of the same
pair of resistance genes. The Success Index (SI) represented by the y-axis indicates, for each
configuration of a given pair of genes, its proportional representation in NCBI761. Gene
pairs that are physically linked in at least 10 genomes in NCBI761 are plotted. (c) Density
plotted versus distance between resistance genes: gene-pair configurations are grouped solely
based on co-strandedness (occurring on same or opposite strands), and without considering
specific genes. Gene pairs that occur on the same or opposite strands are represented on
two separate density plots.

For instance, blaTEM-1A and aac(3)-IId of CG2 are found in 38 different
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configurations with distances between the two genes ranging widely from 995 to

17,154 bp. Any two CG1 genes can also display considerable variation in proximity,

and can occur on the same or opposite strands. Although much less prevalent, CG3

also displays multiple configurations, in the linkage of blaCTX-M-14b to the other

two CG3 genes.

Notably, the associations between genes within CG1 and CG2 are preserved

across large distances, and even when there is no physical linkage between the genes.

However, there is a clear trend favoring stability of association for configurations

placing genes in high proximity. Two patterns emerge, more generally, across all

108 resistance genes identified in NCBI761. If we define success as the number of

times the configuration is seen in the dataset (as an indicator of representation in

that population), configurations that place a given pair of genes in higher proximity

tend to be more successful (Figure 1.6 b). Additionally when two genes are in

high proximity, configurations that place them on the same strand tend to be more

successful (Figure 1.6 c).

Taken together, these directional trends observed across many co-existing

configurations of the three CGs and other gene combinations suggest a gradual

evolution, or fine-tuning of adaptive solutions, towards high proximity and co-

strandedness for acquired resistance genes under selection. Further, given our pre-

vious findings of mutual antagonism, this fine-tuning process appears to favor gene

combinations without significant overlaps in resistance profiles.

1.2.11 CG features portray success, consistent with the genetic cap-

italism model

Based on the observations in this study, we propose three features of suc-

cessful gene combinations found as part of CGs. (1. Diversification) The member

genes tend not to overlap in function, conferring resistance against different an-

tibiotics, thereby presumably decreasing the per-resistance fitness costs associated

with transcription, translation and plasmid upkeep in a process analogous to the

evolution of operons [51]. The antagonisms driving this diversification could result

from enzymatic competition for the same substrate [reference in review], and from

recombination between highly similar sequences [52]. (2. Co-transferability) The

member genes tend to occur close to one another, thus increasing the probability

of co-transfer during recombination. Genes found close together inside immediately

flanking insertion sequences stood out as having the highest co-transferability, lead-
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ing to high evolutionary stability. (3. Co-strandedness) Orientation of member genes

on the same strand likely increases transcriptional efficiency, as it is frequently seen

in operons [51]. Location in the leading strand would have the added advantage of

decreasing the incidence of deleterious mutations by avoiding a collision between the

transcription and the replication machineries [53].

These three features underlie the progressive growth of CGs, and are con-

sistent with the positive feedback loop proposed by genetic capitalism [22].

1.2.12 Proposed roles of mutual antagonism and genetic linkage

during evolution of MDR

The evolution of MDR appears to involve three elements: (1) positive

selection by the relevant antibiotics; (2) positive co-selection between resistance

genes, amplified by proximity in the genome; and (3) mutual antagonism across genes

with overlapping functions, both within and across adaptive solutions in parallel

trajectories.

We propose that mutual antagonism within adaptive solutions leads to

functional diversification by disfavoring gene combinations that contain genes with

redundant functions. Across adaptive solutions, we propose that mutual antagonism

underlies the contingent evolution of discrete gene combinations i.e. it constrains

future evolutionary trajectories, leading discrete adaptive solutions along separate

pathways [27]. Evolutionary contingency was originally demonstrated in the context

of genetic adaptation of model proteins [25,54–58], where specific antagonistic inter-

actions between pairs of mutations have a strong “founder effect”, leading to distinct

evolutionary trajectories [25,26,55]. We propose that in MDR evolution, mutual an-

tagonism drives alternate trajectories by disfavoring the acquisition of functionally

related genes. This mechanism is supported by the observation that occasional in-

stances of co-occurrence between genes with large overlaps in function seem to be

transient. For instance, in USWest352, only one strain carried both blaCTX-M-14b

and blaCTX-M-15, and another had two copies of blaCTX-M-15.

In protein evolution, strong antagonisms between adaptive mutations can

arise from physical constraints imposed by protein structure, for example because

two antagonistic mutations alter the active site in incompatible ways [25,26]. In the

context of MDR evolution, by contrast, antagonism is inherently weaker because

it arises indirectly between different resistance elements, possibly from increased

fitness costs, competition for substrate [reference in review], or gene loss by recom-

23



bination [52]. Also in MDR evolution, when the functional overlap is incomplete,

mutual antagonism can be partially offset through additional selections by antibi-

otics that do not effectively overlap as substrates. This can be seen in the case

of blaCTX-M-14b and blaCTX-M-55, which co-occur more frequently than other

blaCTX-M pairs (JI: 0.114), and which can be found physically linked unlike other

blaCTX-M pairs. Both genes have ESBL activity but only blaCTX-M-55 confers

aztreonam resistance [59]. Another example is blaCTX-M-15 and blaOXA-1 ; both

are penicillinases, but blaOXA-1 also confers oxacillinase activity and resistance to

β−-lactamase inhibitors, while blaCTX-M-15 confers ESBL resistance (JI: 0.624).

On the aminoglycoside side, both aac(3)-IIa and aac(6’)-Ib-cr share resistance to

TOB, but aac(3)-IIa also confers GEN resistance, whereas aac(6’)-Ib-cr also confers

resistance to AMK and to FQNs.

Another difference between genetic adaptation in single proteins and MDR

evolution is that genetic linkage and co-strandedness between pairs of genes repre-

sent additional evolutionary constraints. In MDR evolution, the stable acquisition

of combinations of resistance genes depends on their co-transferability, which is a

function of physical distance and/or of direct co-mobilization within MGEs (for in-

stance, within the innermost set of insertion elements). This predicts a trend toward

a reduction in the distance between the genes in each group, as combinations involv-

ing gene configurations closer to each other will be more efficiently transferred and

thus more successful over time. This idea is additionally supported by the diversity

of configurations observed for CG1, CG2, and CG3 (Figure 1.6 a) and by the ob-

servation that configurations placing the genes in high proximity and on the same

strand tend to be more successful (Figure 1.6 b and Figure 1.6 c).

1.2.13 Proposed model for the evolution of hypothetical CG

In this work, we defined CGs as groups of functionally complementary genes

conferring resistance to multiple classes of antibiotics that are consistently linked in

the population. CGs can be included in MRRs representing more complex adaptive

solutions.

Associations between acquired resistance genes can be understood as fluid

linkages maintained via the selective pressures imposed by consistent antibiotic us-

age, and for which, the fluidity is driven by stochastic recombination events. Figure

1.7 illustrates how a hypothetical CG could arise.

The initial generation of successful adaptive solutions is portrayed in Fig-
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Figure 1.7: Model for evolution of acquired multidrug resistance. Our proposed
model for the generation of hypothetical CGs is illustrated in three parts. (a) The generation
of successful adaptive solutions characterized by high diversification, high co-transferability
and co-strandedness (co-strandedness not shown). (b) The establishment of parallel evolu-
tionary trajectories, and restriction of future additions by direct and indirect mutual antag-
onism across adaptive solutions. (c) The effects of success-driven dissemination of adaptive
solutions: accumulation of additional resistance genes in successful adaptive solutions, and
progression along parallel trajectories.

ure 1.7 a. The capture of individual resistance genes in MGEs represents a precursor

to multidrug resistance. Diverse gene combinations arise from stochastic interactions

between individual resistance genes. For a given pairing between two genes, the de-

gree of stability is a function of proximity, which increases co-transferability and

decreases the chance of becoming disassociated during future recombination events.

Under selection, stability of that pairing is also determined by mutual antagonism
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and this antagonism drives the functional diversification of the associations. An

initial stable pairing represents an adaptive solution.

Over time, solutions that involve genes with less overlap in function, higher

co-transferability, and a higher degree of co-strandedness will have a selective advan-

tage and become the preferred configurations. Thus, there appears to be a process

of fine-tuning of adaptive solutions by recombination and selection. This process is

gradual, so at any given time we can see multiple intermediates within the popula-

tion that may not exhibit all of these properties (putative intermediates for CG1,

CG2 and CG3 shown in Figure 1.6 a).

The establishment of successful adaptive solutions limits future evolution-

ary trajectories because new gene acquisition is restricted by mutual antagonism

with genes already part of the solution, based on functional overlap (direct mutual

antagonism in Figure 1.7 b). Due to physical linkage, this mutual antagonism

can also restrict the acquisition of new genes that do not have functional overlap

(indirect mutual antagonism in Figure 1.7 b). Overall, the establishment of suc-

cessful adaptive solutions leads to distinct evolutionary trajectories and decreases

the genetic diversity available for future, more complex trajectories.

Finally, the ongoing dissemination of successful adaptive solutions by clonal

expansion and HGT can further restrict evolutionary trajectories (Figure 1.7 c).

The increased representation of successful solutions in the gene pool resulting from

their dissemination facilitates the acquisition of additional genes by creating more

opportunities for recombination with different genes (genetic capitalism). As a re-

sult, resistance genes tend to accumulate in successful solutions, favoring progression

along existing parallel trajectories, while disfavoring both the realignment of existing

trajectories and the emergence of alternate trajectories that are less successful.

The dissemination of successful adaptive solutions is not limited by geo-

graphical distance, as suggested by the widespread presence of CG1 and CG2 gene

combinations across the two hospitals and across the various worldwide sampling lo-

cations represented in NCBI761 Figure 1.8. This is consistent with previous studies

that showed geographical distances do not strongly influence the distribution of in-

dividual genes in the microbial gene pool [13,60].

Given this generalized panmixia of antibiotic resistance genes and of adap-

tive solutions that we observe, it is still unclear why some successful ExPEC lineages

(e.g., ST73, ST95, ST127) remain mostly susceptible to antibiotics frequently used

in the clinic (e.g., GEN, TOB, extended-spectrum β-lactams), despite their geo-

graphic co-localization in the two US West Coast hospitals with a second set of
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Figure 1.8: Number of genomes containing CG1 and CG2 gene combinations in
DHMMC119, UW233 and NCBI761.

lineages (e.g., ST10, ST44, ST131, ST405 and ST648) that display a high degree of

multidrug resistance. This partitioning of ExPEC lineages does not correlate with

vertical transmission or with localization of infection (sepsis, UTI, etc.).

These two sets of lineages may represent niche specializations, as seen more

generally in studies of spatial variation in microbial diversity of free-living microor-

ganisms [61]. The acquisition of multidrug resistance via the accumulation of re-

sistance genes in the peripheral genome could be seen as an adaptation of lineages

that thrive in nosocomial environments. Indeed, there is some evidence that sug-

gests three of these highly multidrug resistant ExPEC lineages (ST131, ST405 and

ST648) are better suited for nosocomial environments; they are frequently implicated

in nosocomial infections and often harbor a similar subset of acquired virulence fac-

tors [62, 63]. Susceptible lineages on the other hand could have large reservoirs in

the environment; this would decrease their exposure to antibiotics relative to their

total population.

1.2.14 Landscape of MDR association with plasmid replicons

To contextualize the evolution of CGs, and more generally the evolution of

acquired MDR, from the perspective of plasmid evolution, we visualized the flow of

acquired resistance genes within the gene pool in NCBI761 by generating a network

representing physical linkages between resistance genes, and between resistance genes

and plasmid replicons (Figure 1.9 a).

IncF replicons (IncFIA, IncFIB, IncFIC and IncFrepb) constituted central
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nodes in the network (based on degree centrality metric), together comprising a

large component of the total gene pool (44% of the 1802 ORFs corresponding to

acquired resistance genes). IncF replicons showed a dense interconnectivity within

the network, indicative of their frequent co-occurrence on the same plasmid. The

combinatorial diversity of IncF plasmid replicons is well known and may help op-

timize replication for vertical versus horizontal transmission, and likely promotes

compatibility among IncF plasmids [64,65].

Replicons belonging to a variety of incompatibility groups showed consider-

able connectivity, including the following groups: IncAC, IncF, IncHI2, IncI1, IncK,

IncN, and IncP. The presence of plasmids with mosaic replicons implies that the

two parental (single replicon) plasmids would have had to be in the same host si-

multaneously long enough to allow recombination to occur [24]. Some groups stood

out for being largely independent (IncBO, IncLM, oricolE), with no linkages to

other replicon types, while still retaining linkages with resistance genes. The net-

work also included a group of plasmids designated “Unknown”, that did not contain

identifiable replicons, and which were also largely independent. The presence of

independent replicon types that tend not to participate in mosaicism suggests the

presence of ecological or biological barriers.

Individual resistance genes tend to be linked to multiple replicons. There

was a group of genes frequently linked to IncF replicons, but the degrees of link-

age varied widely, ranging from 90% for aadA5 to 27% for blaCTX-M-14, with

the remaining being linked to non-IncF plasmids or integrated in the chromosome

(Figure 1.9 b). This group of IncF-associated genes involved resistance to a va-

riety of antibiotic classes, consistent with previous reports of completely sequenced

IncF plasmids [65], and included all CG1 and CG2 genes. Other genes, however, are

hardly associated with IncF replicons. Examples include OXA β-lactamases other

than blaOXA-1, genes encoding the CMY β-lactamases, and NDM β-lactamases

(with the exception of blaNDM-4 ).

In USWest352, we also found that CG1 and CG2 genes were largely linked

with IncF plasmids, by monitoring the co-transfer of carbenicillin resistance and spe-

cific replicons following conjugation (see Methods). Among 68 conjugation-proficient

plasmids bearing CG1 or CG2 genes, 97.3% had an IncF replicon. For the non-

conjugative strains, we were unable to accurately ascribe CG1 or CG2 genes to

specific replicons because our genomic assemblies were incomplete.

Overall, IncF plasmids, defined as plasmids containing at least one IncF

replicon, appear to play a central role in the generation of adaptive solutions for

28



oricolE_CP003113.1 

oricolE_CP023375.1 oricolE_CP000798.1 

oricolE_CP026572.2 

oricolE_CP018981.1 

oricolE_CP006639.1 
oricolE_CP010118.1 

oricolE_CP018968.1 
oricolE_CP029120.1 

oricolE_FM180570.1 

IncI1_CP032264.1 

IncI1_CP021693.1 
IncI1_CP023362.1 

IncI1_CP024854.1 

IncI1_CP015996.1 

IncI1_CP018975.1 

IncI1_CP023382.1 
IncI1_CP023900.1 IncI1_CP029110.1 IncI1_CP032888.1 

IncI1_CP035721.1 

IncI1_CP023356.1 

IncI1_CP023957.1 
IncI1_CP027127.1 

IncI1_CP024822.1 

IncI1_CP021533.1 

IncI1_CP010142.1 
IncI1_CP027535.1 

IncI1_CP018110.1 IncI1_CP023370.1 
IncI1_CP010233.1 

IncI1_AP019190.1 
IncI1_CP025751.1 

IncI1_CP019905.1 

IncI1_CP018116.1 IncI1_CP027395.1 

IncI1_CP018122.1 

IncI1_CP030921.1 
IncI1_CP018625.1 
IncI1_CP031656.1 

oricolE

Unknown_CP026401.1 
Unknown_CP019054.1 

Unknown_CP026204.1 

Unknown_CP010155.1 Unknown_CP018951.1 Unknown_CP025845.1 Unknown_CP010164.1 Unknown_CP024818.1 Unknown_CP003112.1 Unknown_CP029688.1 

Unknown_CP034957.1 
Unknown_CP026205.1 

Unknown_CP021738.1 
Unknown_CP026476.1 Unknown_CP031138.1 Unknown_CP024828.1 Unknown_CP018108.1 Unknown_CP021692.1 Unknown_CP032994.1 Unknown_CP027332.1 Unknown_CP019010.1 Unknown_CP024806.1 

Unknown_CP018120.1 

Unknown_CP035315.1 
Unknown_CP034591.1 

Unknown_CP021842.1 
Unknown_CP034398.1 Unknown_CP034744.1 Unknown_CP035489.1 

Unknown_CP036206.1 

Unknown_CP021534.1 Unknown_CP021538.1 Unknown_CP033093.1 Unknown_CP015078.1 
Unknown_CP030285.1 

Unknown_CP019073.1 

Unknown_CP023897.1 

Unknown_CP034965.1 
Unknown_CP036179.1 

Unknown_CP024833.1 
Unknown_CP018944.1 

Unknown_CP028577.1 
Unknown_CP034786.1 Unknown_CP033399.1 
Unknown_CP032424.1 

Unknown_CP019052.1 Unknown_CP023380.1 
Unknown_CP018126.1 

Unknown_CP036205.1 
Unknown_CP025252.1 

Unknown_CP018949.1 

Unknown_CP023360.1 

Unknown_CP036204.1 Unknown_CP032889.1 

Unknown_CP035316.1 
Unknown_CP031550.1 
Unknown_HE610900.2 

Unknown_CP018114.1 
Unknown_CP018961.1 

Unknown_CP026577.2 Unknown_CP036181.1 

Unknown_CP029116.1 Unknown_CP031110.1 
Unknown_CP034403.1 
Unknown_CP034788.1 

Unknown_CP035125.1 

Unknown_LR130553.1 

aac(3)-IVant(2'')-Ia
qnrB52rmtC

IncAC
IncP

IncP_CP015833.1 

aac(6')-Ian
aph(3')-VIa

blaCTX-M-64

IncP_CP028168.1 

blaNDM-1aadA16blaCMY-6
aac(6')-33

aadA5blaCTX-M-55blaOXA-10
aadA2b
aph(4)-Ia

blaCMY-2

aadA3
aac(3)-IIaaadA24aac(6')-Ib3rmtBblaNDM-5aph(3')-VIaac(6')-Ib-cr

IncY_CP010146.1 

IncI1
IncY_CP026200.1 

IncY_CP010131.1 
IncY_CP032890.1 

IncY_CP010154.1 IncY_CP017632.1 
IncY_CP021734.1 

IncHI2_CP022165.1 
IncHI2_CP015833.1 

IncHI2_CP032993.1 
IncHI2_CP034788.1 
IncHI2_CP025402.1 

IncY_CP025944.3 
IncHI2_CP033636.1 

IncHI2_CP024143.1 

IncHI2_CP027202.2 
IncHI2_CP030940.1 

IncHI2_CP036178.1 

IncHI2_CP021209.1 
IncHI2_CP023143.1 

IncHI2_CP011062.1 
IncHI2_CP019559.1 IncHI2_CP019214.2 

IncHI2_CP034390.1 
IncHI2_CP034785.1 IncHI2_CP022735.1 IncI1_CP003290.1 IncI1_CP021208.1 IncI1_CP029367.1 

IncI1_CP023534.1 IncI1_CP021841.1 IncI1_CP018104.1 IncI1_CP023365.1 
IncI1_CP021845.1 

IncI1_CP012627.1 IncI1_CP027135.1 IncI1_CP021882.1 IncI1_CP025709.1 
IncI1_CP028168.1 

IncI1_CP021739.1 
IncI1_CP018993.1 IncI1_CP023385.1 IncI1_CP023376.1 IncI1_CP029975.1 IncI1_CP034963.1 

IncHI1

IncHI2
IncHI1_CP029690.1 

IncR

IncHI1_AP010961.1 

IncU

IncR_CP032988.1 

blaSHV-12blaCTX-M-27

blaOXA-48blaCTX-M-3
aph(6)-IdblaKPC-3

aadA1blaCMY-newblaCTX-M-123

IncU_CP018968.1 
IncU_CP018999.1 

IncFIB-salm

IncY_CP021681.1 

IncY

IncY_CP033095.1 

blaTEM-30blaNDM-6blaOXA-163aadA13

IncFII-kleb_CP021881.1 
IncN_CP032988.1 

IncR_CP018117.1 
IncR_CP024857.1 

IncR_CP024133.1 

IncN_CP018123.1 
IncN_CP018963.1 
IncN_CP027202.2 

IncN_CP018117.1 
IncR_CP018989.1 

IncR_CP025944.3 

IncN_CP019214.2 
IncN_CP018111.1 

IncN_CP021734.1 
IncN_CP019017.1 
IncN_CP020059.1 IncN_CP017632.1 

IncN_CP010154.1 
IncN_LT838197.1 

IncN_CP024857.1 

IncFII-kleb_CP018989.1 

IncHI1_CP033094.1 
IncR_CP010149.1 IncR_CP018111.1 IncN

IncFII-kleb_CP018992.1 IncR_CP010174.1 
IncR_CP031295.1 

IncHI2_CP017632.1 
IncN_CP024143.1 

IncHI2_DQ517526.1 

IncHI2_CP026492.1 

IncFIB-salm_CP020059.1 

IncHI2_CP026642.1 

IncN_CP034788.1 
IncN_CP026642.1 

IncN_CP018959.1 
IncN_CP032239.1 
IncN_CP018977.1 IncN_CP021881.1 IncN_CP020119.1 

IncN_CP033379.1 

IncFIInew oqxA
qnrB10

IncFII-kleb_CP014669.1 IncFII-klebIncFIAIncFII-kleb_CP035124.1 

IncU_CP019001.1 

IncR_CP018123.1 IncN_CP024153.1 
IncN_CP006642.1 
IncN_CP011062.1 
IncN_CP029244.1 IncR_CP019017.1 IncR_CP021881.1 

IncN_CP036178.1 IncN_CP025944.3 

IncN_CP034789.1 
IncN_CP031109.1 

IncN_CP028486.1 

IncR_CP018105.1 

blaIMP-14aac(3)-Ia
blaCMY-42
blaOXA-4qnrVC4

blaTEM-135
blaNDM-7

aadA2
aac(2')-IIablaFOX-6blaOXA-9blaTEM-190

blaTEM-26blaTEM-1AblaCMY-16aph(3'')-Ibaac(3)-VIaaac(6')-Il
blaCMY-111blaTEM-210

qnrA1blaCTX-M-14baph(3')-VIboqxBblaCTX-M-65blaCTX-M-24blaOXA-2
blaTEM-116
blaCTX-M-199blaCTX-M-2blaKPC-2aac(6')-IbblaDHA-1blaCTX-M-15 IncLMaadA22aph(3')-IablaOXA-1

blaTEM-156blaNDM-4

blaCARB-2blaVEB-5aadA23blaVIM-1
blaCMY-4

blaNDM-9qnrB9qnrB6
blaOXA-181blaTEM-57

blaIMP-27blaCMY-23
qepA4blaNDM-21

qnrB4qepA1
armA

blaTEM-20blaKPC-4blaCMY-34blaTEM-32

blaCMY-44
aac(3)-IIdqnrS2blaIMP-4aph(3')-IIa

qnrE1qnrS1blaTEM-215

Chr_CP027355.1 Chr_CP021202.1 
Chr_CP007592.1 Chr_CP023535.1 Chr_CP032879.1 

Chr_CP029741.1 Chr_CP019029.1 
Chr_CP001396.1 
Chr_CP026473.1 

Chr_CP007390.1 Chr_CP010116.1 
Chr_CP018115.1 Chr_CP020933.1 Chr_CP024855.1 

Chr_CP029111.1 
Chr_CP031653.1 Chr_AP017617.1 

Chr_CP018948.1 
Chr_CP024801.1 Chr_CP019961.1 

Chr_CP003301.1 
Chr_CP027134.1 

Chr_CP028483.1 

Chr_CP016625.1 
Chr_CP022229.2 Chr_CP022086.2 Chr_CP021722.1 Chr_CP033884.1 

Chr_CP011061.1 Chr_CP023853.1 
Chr_CP014348.1 Chr_CP010315.1 Chr_CP013025.1 

Chr_CP024815.1 Chr_CP025716.1 Chr_CP034389.1 Chr_CP033850.1 
Chr_CP006698.1 Chr_CP011331.1 Chr_CP012380.1 Chr_CP015831.1 Chr_CP014269.1 

Chr_CP025573.1 
Chr_CP027701.1 Chr_CP034958.1 Chr_CP009166.1 

Chr_HF572917.2 Chr_CP015241.1 
Chr_LR130562.1 Chr_CP036177.1 Chr_CP024821.1 

Chr_CP015842.1 Chr_CP018109.1 Chr_CP020025.1 Chr_LT838200.1 

Chr_LR130532.1 Chr_CP010143.1 Chr_HG941718.1 Chr_CP032989.1 Chr_CP024134.1 Chr_CP027205.2 Chr_CP028589.1 Chr_CP023383.1 Chr_LT838196.1 
Chr_CP020835.1 

Chr_CP027126.1 
Chr_CP024830.1 

Chr_CP034399.1 
Chr_CP019051.1 

Chr_CP033401.1 
Chr_CP021535.1 

Chr_CP036245.1 

IncK_CP024230.1 
IncK_CP024226.1 

IncK_AP018797.1 

IncK_CP016548.1 

IncK_CP027383.1 IncK_CP027600.1 IncK_AP017613.1 

IncK_CP013024.1 IncK_AP018803.1 

IncK_CP033883.1 

IncAC_CP007137.1 

IncAC_CP010373.2 
IncAC_CP031549.1 IncAC_CP029743.1 
IncAC_CP021936.1 

IncAC_CP015835.1 

IncAC_HQ023862.1 

IncP_AP018803.1 IncP_CP013024.1 

IncP_AP017613.1 
IncP_CP027600.1 

IncK
IncP_CP027383.1 

IncP_CP029181.1 IncP_CP019074.1 

IncAC_CP026405.1 

IncP_CP020057.1 

IncP_CP032516.1 

IncP_AP018797.1 

IncAC_CP032238.1 

IncP_CP033632.1 

IncAC_CP031297.1 

IncAC_CP019053.1 
IncAC_CP021206.1 IncAC_CP006029.1 

IncAC_CP029123.1 

IncAC_CP021536.1 
IncAC_CP019001.1 

IncAC_CP031106.1 

IncAC_CP031610.1 

IncAC_CP026207.1 IncAC_CP018956.1 
IncAC_CP024824.1 
IncAC_CP020056.1 

IncAC_CP020049.1 
IncAC_CP015139.1 

IncAC_CP021719.1 

IncAC_CP029118.1 

Chr_CP021207.1 Chr_CP029180.1 Chr_CP016182.2 Chr_CP025401.1 Chr_CP009789.1 Chr_CP032892.1 
Chr_CP007391.1 Chr_CP024826.1 Chr_CP029242.1 Chr_CP030331.1 
Chr_LR134214.1 

Chr_CP015912.1 Chr_CP014272.1 Chr_CP020048.1 
Chr_CP014316.1 

Chr_CP006632.1 
Chr_CP032992.1 
Chr_CP032201.1 Chr_FN554766.1 

Chr_CP021844.1 

Chr_CP018979.1 
Chr_CP018241.1 
Chr_CP009859.1 

Chr_CP033762.1 
Chr_CP019213.2 Chr_CP016546.1 Chr_CP034404.1 Chr_CP026491.1 

Chr_CP015846.1 Chr_CP010439.1 
Chr_CP019903.1 

Chr_CP019944.1 Chr_AP017620.1 
Chr_CP003297.1 

Chr_CP012112.1 
Chr_CP018991.1 Chr_CP008697.1 
Chr_CP010150.1 
Chr_CP023673.1 

Chr_CP003289.1 Chr_CP010172.1 
Chr_CP032204.1 

Chr_CP027394.1 Chr_CP032265.1 Chr_CP023531.1 
Chr_CP010137.1 Chr_CP018103.1 Chr_CP015843.2 

Chr_CP023820.1 Chr_LT594504.1 Chr_CP018121.1 
Chr_CP031833.1 Chr_CP029687.1 Chr_CP013835.1 

Chr_CP009644.1 
Chr_CP026723.1 Chr_CP007265.1 Chr_CP013483.1 Chr_CP021840.1 

Chr_CP027430.1 

Chr_CP033635.1 

Chr

Chr_CP015832.1 
Chr_CP016358.1 Chr_CP006784.1 Chr_CP032667.1 

Chr_CP018976.1 

Chr_CP025268.1 
Chr_CP031293.1 
Chr_LR130555.1 

Unknown_CP024825.1 

IncBO_CP023387.1 

Unknown_CP026578.2 

IncBO_CP032260.1 

Unknown_CP021682.1 Unknown_CP027138.1 

IncBO_CP026855.1 

IncLM_CP018974.1 
IncLM_CP031235.1 

IncLM_CP015075.2 

IncLM_CP031216.1 

IncLM_CP033880.1 IncBO

IncLM_CP015071.1 

IncLM_CP031322.1 

IncLM_LT838202.1 

Unknown_CP017222.1 
Unknown_CP021720.1 Unknown_CP021846.1 Unknown_CP026727.1 Unknown_CP027204.2 Unknown_CP021177.1 

Unknown_CP024247.1 Unknown_CP029245.1 
Unknown_CP010168.1 Unknown_CP029182.1 Unknown_CP020060.1 Unknown_CP025948.1 UnknownUnknown_CP028705.1 

IncFIInew_CP023378.1 
IncFIInew_CP023845.1 IncFIInew_CP029575.1 

IncFIInew_CP024856.1 IncFIInew_CP024852.1 
IncFIInew_CP024816.1 

IncFIInew_CP029107.1 

IncFIInew_CP035124.1 

IncFIInew_CP025708.1 IncFIInew_CP029368.1 
IncFIInew_CP024860.1 IncFIInew_CP031233.1 IncFIInew_CP019001.1 IncFIInew_CP018990.1 

IncFIInew_CP031295.1 

IncFrepbIncFrepb_CP032205.1 
IncFrepb_CP008715.1 IncFrepb_CP023845.1 IncFrepb_CP010138.1 IncFrepb_CP021210.1 IncFrepb_CP024816.1 IncFrepb_CP013186.1 IncFrepb_CP013833.1 IncFrepb_CP024831.1 IncFrepb_CP019014.1 IncFrepb_CP024250.1 IncFrepb_CP031233.1 IncFrepb_CP029580.1 IncFrepb_CP032262.1 IncFrepb_CP035314.1 IncFrepb_CP018969.1 

IncFrepb_HG941719.1 
IncFrepb_CP035468.1 IncFrepb_CP024140.1 IncFrepb_CP024718.1 IncFrepb_CP035478.1 IncFrepb_LR130556.1 

IncFIInew_CP015160.1 
IncFIInew_CP029978.1 

IncFIC
IncFIInew_CP024831.1 

IncFIB_CP022610.1 IncFIInew_CP023835.1 

IncFIInew_CP019028.1 

IncFIInew_CP027703.1 
IncFIInew_CP021733.1 

IncFIInew_CP010372.1 

IncFIInew_CP032425.1 

IncFIB_CP023827.1 IncFIB_CP015086.1 
IncFIB_AP017618.1 

IncFIB_CP012626.1 
IncFIB_AP017621.1 
IncFIB_CP009860.1 

IncFIB_CP015914.1 IncFIB_CP024140.1 
IncFIB_CP024721.1 IncFIB_CP027119.1 IncFIB_CP016498.1 IncFIB_CP015140.1 
IncFIB_CP031137.1 IncFIB_CP021871.1 

IncFIB_CP031233.1 IncFIB_CP014498.1 IncFIB_CP033251.1 

IncFIB_CP024816.1 IncFIB_CP029368.1 IncFIB_CP018994.1 IncFIB_CP024827.1 IncFIB_CP032516.1 IncFIB_CP021536.1 IncFIB_CP021733.1 IncFIB_CP028484.1 IncFIB_CP012636.1 IncFIB_CP024860.1 IncFIB_CP015077.1 IncFIB_CP023845.1 IncFIB_CP035468.1 

IncFIB_CP024805.1 

IncFIB_CP018207.1 IncFIB_CP033400.1 
IncFIB_CP023062.1 IncFIB_CP013832.1 IncFIB_CP018960.1 IncFIB_CP034590.1 
IncFIB_CP029978.1 IncFIB_CP018998.1 
IncFIB_CP014489.1 IncFIB_CP010149.1 IncFIB_CP025708.1 IncFIB_CP023854.1 IncFIB_LR130556.1 IncFIB_CP035124.1 IncFIB_CP023835.1 

IncFIB_CP024133.1 IncFIB_CP000971.1 
IncFIB_CP019074.1 
IncFIB_CP021690.1 IncFIB_CP033761.1 

IncFIB_CP030770.1 IncFIB_CP022227.2 IncFIB_CP013186.1 IncFIB_CP029107.1 IncFIB_CP028587.1 IncFIB_CP023903.1 IncFIB_CP035517.1 

IncFIB_CP018982.1 
IncFIB_CP010141.1 IncFIB_CP024852.1 IncFIB_CP018990.1 

IncFIA_CP023850.1 IncFIA_CP023835.1 IncFIA_CP021180.1 IncFIA_CP034956.1 IncFIA_CP008715.1 IncFIA_CP034396.1 IncFIA_LR130556.1 
IncFIA_CP027119.1 

IncFIA_CP018954.1 IncFIA_CP023845.1 
IncFIA_CP018969.1 

IncFIA_CP018960.1 IncFIA_CP024144.1 
IncFIA_CP030112.1 

IncFIA_CP035517.1 
IncFIA_CP015086.1 IncFIA_CP024856.1 

IncFIA_CP021737.1 IncFIA_CP033094.1 IncFIA_CP023827.1 IncFIA_CP028484.1 
IncFIA_CP035468.1 

IncN_CP022157.1 IncN_CP029493.1 
IncN_CP018105.1 

IncN_CP017633.1 
IncN_CP019026.1 

IncN_CP019006.1 

IncN_CP010243.1 
IncN_CP018945.1 

IncN_CP026492.1 
IncN_CP030335.1 

IncFIA_CP018105.1 
IncFIA_CP018989.1 IncFIA_CP019009.1 

IncFIA_CP022226.2 
IncFIA_CP024153.1 IncFIA_CP034401.1 

IncN_CP010149.1 
IncN_CP009862.1 

IncN_CP032991.1 

IncN_CP033094.1 IncN_CP025710.1 
IncN_CP029748.1 
IncN_CP035314.1 IncN_CP010174.1 

IncN_CP029368.1 IncN_CP036180.1 

IncFIA_CP021937.1 

IncFIA_CP015077.1 IncFIA_CP018123.1 IncFIA_CP013833.1 IncFIA_HG941719.1 

IncFIA_CP014321.1 
IncFIA_CP026474.1 

IncFIA_CP025626.1 
IncFIA_CP006789.1 IncFIA_CP028587.1 IncFIA_CP018978.1 IncFIA_CP023378.1 IncFIA_CP009860.1 IncFIA_CP027130.1 IncFIA_CP022227.2 

IncFIA_CP022166.1 
IncFIA_CP019014.1 IncFIA_CP031233.1 

IncFIA_CP024863.1 IncFIA_CP027537.1 IncFIA_CP024805.1 
IncFIA_CP018998.1 

IncFIA_CP028588.1 
IncFIA_CP032878.1 
IncFIA_CP013836.1 IncFIA_CP021871.1 IncFIA_CP024130.1 
IncFIA_CP033400.1 

IncFIB_CP023378.1 
IncFIB_CP034956.1 

IncFIB_CP032425.1 
IncFIB_CP029243.1 IncFIB_CP029748.1 IncFIB_CP031295.1 

IncFIB_CP025329.1 IncFIB_CP028576.1 
IncFIB_LT906556.1 

IncFIB_CP027135.1 
IncFIB_CP024856.1 IncFIB_CP027703.1 IncFIB_CP021289.1 IncFIB_CP023816.1 
IncFIB_CP013027.1 

IncFIA_CP027703.1 IncFIA_CP018117.1 IncFIA_CP024816.1 IncFIA_CP018111.1 
IncFIA_CP031137.1 IncFIA_CP028576.1 IncFIA_CP019076.1 IncFIA_CP029575.1 IncFIA_CP025708.1 IncFIA_CP022610.1 

IncFIA_CP013657.1 
IncFIA_CP032258.1 

IncFIA_CP018982.1 
IncFIA_CP024721.1 

IncFIA_CP035478.1 

IncFIC_CP030329.1 IncFIC_CP015914.1 
IncFIC_AP010955.1 IncFIC_CP029575.1 IncFIC_CP027536.1 IncFIC_CP023959.1 IncFIC_CP032877.1 

IncFIC_CP018964.1 

IncFIC_CP023845.1 IncFIC_CP021204.1 

IncFIC_CP021880.1 
IncFIC_CP028576.1 
IncFIC_CP021737.1 

IncFIC_CP022610.1 
IncFIC_CP022166.1 IncFIC_CP019076.1 IncFIC_CP014320.1 

IncFIC_CP029113.1 
IncFIC_CP021289.1 IncFIC_CP016498.1 IncFIC_CP027703.1 

IncFIC_CP029748.1 IncFIC_CP025626.1 IncFIC_CP017221.1 IncFIC_CP032991.1 

IncFIC_CP035124.1 
IncFIC_CP036180.1 

IncFIC_CP006635.1 
IncFIC_CP028587.1 

IncFIC_CP011418.1 
IncFIC_CP019028.1 
IncFIC_CP031233.1 

IncFIC_CP029107.1 
IncFIC_CP022227.2 IncFIC_CP027130.1 

IncFIC_CP010149.1 IncFIC_CP024856.1 IncFIC_CP023835.1 IncFIC_CP018990.1 
IncFIC_CP029368.1 
IncFIC_CP035314.1 

IncFIC_CP026576.2 IncFIC_CP013027.1 
IncFIC_CP015160.1 IncFIC_CP025329.1 

IncFIC_CP024888.1 
IncFIC_CP027554.1 IncFIC_CP021733.1 IncFIC_CP023378.1 
IncFIC_CP024831.1 

IncFIC_CP032262.1 
IncFIC_CP024827.1 

IncFIC_AP018799.1 IncFIC_CP020057.1 
IncFIC_CP020934.1 IncFIC_CP025949.1 IncFIC_CP030283.1 

IncFIC_CP029578.1 
IncFIC_CP015836.1 IncFIC_CP031295.1 

IncFIC_CP017633.1 
IncFIC_CP010141.1 

IncFIC_CP001856.1 
IncFIC_CP024852.1 IncFIC_CP032202.1 

IncFIC_CP019001.1 

IncFIC_CP024860.1 
IncFIC_CP023903.1 

IncFIC_CP021536.1 IncFIC_CP010372.1 

IncFIC_CP024816.1 
IncFIC_CP024823.1 IncFIC_CP029978.1 

IncFIC_CP032425.1 IncFIC_CP025708.1 

IncFIA_CP021690.1 IncFIA_CP010372.1 
IncFIA_CP019028.1 IncFIA_CP018990.1 

IncFIA_CP021204.1 

IncFIA_CP029690.1 

IncFIA_CP029368.1 
IncFIA_CP017221.1 

IncFIA_CP023816.1 IncFIA_CP021880.1 IncFIA_CP023145.1 IncFIA_CP029580.1 

IncFIA_CP020117.1 IncFIA_CP024718.1 
IncFIA_CP021536.1 
IncFIA_CP019001.1 IncFIA_CP010882.1 

IncFIA_CP032202.1 
IncFIA_AP010961.1 
IncFIA_CP013832.1 IncFIA_CP032425.1 IncFIA_LR130546.1 

IncFIA_CP018964.1 IncFIA_CP010881.1 IncFIA_CP023854.1 
IncFIA_CP032877.1 IncFIA_CP035124.1 IncFIA_CP024831.1 IncFIInew_CP021880.1 IncFIInew_CP028587.1 

IncFIInew_CP023903.1 IncFIInew_CP018964.1 IncFIInew_CP025329.1 

IncFIB
IncFIB_CP008715.1 IncFIB_CP032202.1 

IncFIInew_CP022227.2 IncFIInew_CP027130.1 IncFIInew_CP032877.1 

IncFIA_CP021733.1 IncFIA_CP024860.1 IncFIA_CP029978.1 IncFIA_CP029107.1 
IncFIA_CP029113.1 

IncFIA_CP014498.1 
IncFIA_CP015140.1 

IncFIA_CP023903.1 
IncFIA_CP033761.1 

IncFIB_CP029575.1 IncFIB_CP024718.1 IncFIB_CP023363.1 IncFIB_CP032877.1 IncFIB_CP001856.1 IncFIB_CP021880.1 IncFIB_CP018969.1 IncFIB_CP020934.1 IncFIB_CP029577.1 IncFIB_LR130565.1 
IncFIB_CP021204.1 
IncFIB_CP011418.1 
IncFIB_CP026579.1 

IncFIB_CP023552.1 

IncFIB_CP015160.1 IncFIB_CP032258.1 
IncFIB_CP034396.1 
IncFIB_CP010239.1 IncFIB_CP027485.1 IncFIB_CP029580.1 IncFIB_CP023145.1 IncFIB_CP027130.1 IncFIB_CP030112.1 

IncFIB_CP023821.1 IncFIB_CP027200.1 IncFIB_CP034401.1 

IncFIB_CP006635.1 
IncFIB_CP010372.1 IncFIB_CP024831.1 IncFIB_CP021180.1 

IncFIB_CP024863.1 IncFIB_CP010232.1 IncFIB_CP010882.1 IncFIB_CP034739.1 

IncFIB_CP017221.1 
IncFIB_CP019028.1 

IncFIB_CP026474.1 IncFIB_CP022166.1 IncFIB_CP035478.1 
IncFIC_CP024140.1 

IncFIB_CP010243.1 IncFIB_CP018964.1 IncFIB_CP019009.1 IncFIB_CP014493.1 IncFIB_CP009053.1 

IncFrepb_CP029578.1 
IncFrepb_CP025949.1 

IncFrepb_CP032991.1 
IncFrepb_CP027120.1 IncFrepb_CP021289.1 IncFrepb_CP029978.1 IncFrepb_CP019009.1 IncFrepb_CP034739.1 

IncFrepb_CP014489.1 IncFrepb_CP024888.1 IncFrepb_CP012626.1 
IncFrepb_CP011418.1 IncFrepb_CP010232.1 IncFrepb_CP021847.1 IncFrepb_CP029577.1 IncFrepb_CP036180.1 IncFrepb_CP021690.1 IncFrepb_CP027703.1 IncFrepb_CP013027.1 

IncFrepb_CP023903.1 IncFrepb_CP021180.1 IncFrepb_CP023895.1 IncFrepb_CP029243.1 
IncFrepb_CP026576.2 
IncFrepb_CP024721.1 

IncFrepb_CP027130.1 

IncFrepb_CP009053.1 

IncFrepb_CP014493.1 
IncFrepb_CP010141.1 
IncFrepb_CP026201.1 

IncFrepb_CP010372.1 IncFrepb_CP025253.1 IncFrepb_CP023552.1 
IncFrepb_CP024281.1 
IncFrepb_CP023733.1 IncFrepb_CP029113.1 

IncFrepb_CP006635.1 
IncFrepb_CP021733.1 IncFrepb_CP018973.1 IncFrepb_CP012632.1 

IncFrepb_CP019028.1 
IncFrepb_CP032258.1 

IncFrepb_AP017618.1 

IncFrepb_CP021204.1 IncFrepb_CP023062.1 IncFrepb_CP013836.1 
IncFrepb_CP027537.1 

IncFrepb_CP022610.1 IncFrepb_CP024133.1 
IncFrepb_CP023378.1 
IncFrepb_CP015914.1 IncFrepb_CP025708.1 
IncFrepb_CP024827.1 IncFrepb_CP000971.1 IncFrepb_CP025626.1 IncFrepb_CP031295.1 

IncFrepb_CP021203.1 IncFrepb_CP014320.1 IncFrepb_CP016498.1 IncFrepb_CP017221.1 
IncFrepb_CP021737.1 
IncFrepb_CP029974.1 IncFrepb_CP011135.1 IncFrepb_CP010239.1 IncFrepb_CP010149.1 IncFrepb_CP021871.1 IncFrepb_CP018978.1 IncFrepb_CP023821.1 IncFrepb_AP018811.1 IncFrepb_CP023828.1 IncFrepb_CP034592.1 IncFrepb_CP021536.1 IncFrepb_CP023351.1 IncFrepb_CP018964.1 IncFrepb_CP028484.1 IncFrepb_CP019076.1 IncFrepb_CP024823.1 IncFrepb_CP029748.1 IncFrepb_CP030329.1 IncFrepb_LR130554.1 IncFrepb_CP024157.1 IncFrepb_CP027200.1 IncFrepb_CP014498.1 IncFrepb_CP024852.1 IncFrepb_CP024652.2 

IncFrepb_CP021937.1 
IncFrepb_CP021684.1 

IncFrepb_CP009860.1 IncFrepb_CP029368.1 IncFrepb_CP030283.1 IncFrepb_CP028587.1 IncFrepb_CP023835.1 IncFrepb_CP013832.1 IncFrepb_AP017621.1 IncFrepb_CP022166.1 IncFrepb_LR130565.1 IncFrepb_CP032202.1 IncFrepb_CP024856.1 IncFrepb_CP020934.1 IncFrepb_CP034964.1 
IncFrepb_CP024864.1 

IncFrepb_CP028576.1 IncFrepb_AP010955.1 IncFrepb_CP015836.1 IncFrepb_CP022227.2 IncFrepb_CP035517.1 

IncFrepb_CP022732.1 IncFrepb_CP023959.1 
IncFrepb_AP018147.1 

IncFrepb_CP027385.1 IncFrepb_CP018994.1 IncFrepb_CP030770.1 IncFrepb_CP033761.1 IncFrepb_CP015077.1 
IncFrepb_CP031655.1 IncFrepb_CP027554.1 IncFrepb_CP032425.1 IncFrepb_CP025329.1 IncFrepb_LT906556.1 

IncFrepb_CP006789.1 IncFrepb_CP010882.1 IncFrepb_CP024136.1 IncFrepb_CP018982.1 
IncFrepb_CP023827.1 IncFrepb_CP020117.1 IncFrepb_AP018799.1 IncFrepb_CP032877.1 IncFrepb_CP017633.1 IncFrepb_CP026579.1 IncFrepb_CP010174.1 
IncFrepb_CP001856.1 IncFrepb_CP018990.1 IncFrepb_CP024860.1 

IncFrepb_CP015086.1 
IncFrepb_CP027536.1 

IncFrepb_CP011065.1 IncFrepb_CP015140.1 IncFrepb_CP020057.1 IncFrepb_CP012636.1 IncFrepb_CP027485.1 IncFrepb_CP019001.1 
IncFrepb_CP015160.1 

IncFrepb_CP029107.1 IncFrepb_CP021843.1 IncFrepb_LR130546.1 IncFrepb_CP021880.1 IncFrepb_CP023363.1 
IncFrepb_CP014321.1 IncFrepb_CP013657.1 IncFrepb_CP023850.1 IncFrepb_CP029575.1 IncFrepb_CP035124.1 

0%	
20%	
40%	
60%	
80%	
100%	

bla
CT
X-M

-15
	

bla
CT
X-M

-14
b	

bla
CM
Y-2
	

aa
c(3
)-II
a	

bla
CT
X-M

-55
	

ap
h(3
'')-
Ib	

ap
h(6
)-Id
	

aa
dA
24
	

ap
h(3
')-I
a	

bla
TE
M-
1A
	

bla
OX
A-1
	

bla
ND
M-
1	

aa
c(6
')-I
b-c
r	

qn
rS1
	

aa
c(3
)-II
d	

aa
dA
2b
	

aa
dA
5	

bla
ND
M-
5	
oq
xA
	
oq
xB
	

bla
TE
M-
57
	

%IncF	 %non-IncF	 %Chr	

(a)

(b)

Figure 1.9: Genetic information flow network for plasmid replicons and acquired
resistance genes. (a) The network depicts the complexity of gene flow across chromosomes
and plasmids containing various replicon types, in the NCBI761 dataset. Nodes in the net-
work represent genetic elements identified in NCBI761. In the periphery, plasmid replicons
(small red nodes) and chromosomes (small blue nodes) are connected to larger nodes repre-
senting their classification (turquoise nodes). Acquired antibiotic resistance genes (light blue
nodes) are positioned at the center of the network. Notable resistance genes are color-coded:
CG1 (orange), CG2 (violet), aph(3”)-Ib and aph(6)-Id (purple), aadA5 (black). Physical
linkages, or co-occurrence on the same molecule (chromosome or plasmid), are represented
as edges, and occur between acquired resistance genes (yellow edges) and between plasmid
replicons (blue edges), and between resistance genes and plasmid replicons (grey edges).
Turquoise nodes that represent the chromosomes or various plasmid replicon types are sized
based on the number of different resistance genes they are connected to i.e. degree central-
ity. In total, the network represent 1802 ORFs corresponding to aminoglycoside, β-lactam
and fluoroquinolone resistance genes identified in NCBI761, which are distributed across 380
plasmids and 141 chromosomes. Node positions were estimated based on their interconnec-
tivity to other nodes, using the edge-weighted, spring-embedded layout in Cytoscape. (b)
Distribution of acquired resistance genes across chromosomes and plasmids, with plasmids
divided into two categories, ones containing at least one IncF replicon, and ones without
IncF replicons.
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acquired MDR in E. coli. This is consistent with the distribution and properties

of these plasmids (widespread distribution, conjugation competency) [44,64], and is

also in agreement with previous reports pointing to IncF plasmids as critical for the

spread of resistance [64–66]. However, while central, the role of IncF plasmids as

vehicles of evolution and spread of drug resistance in E. coli is not exclusive.

The complexity of linkages between replicons and between replicons and

antibiotic resistance genes reinforces the idea that we are looking at intermediates

in an adaptive process driven by selection involving random recombination events.

The presence of mosaic plasmids with replicons belonging to different in-

compatibility groups suggests they are the product of recombination between dif-

ferent parental plasmids. To our knowledge, widespread mosaicism involving IncF

and non-IncF plasmids has not been reported before, with the exception of an IncF

plasmid previously reported to have IncI1 and IncN replicons [67]. The redundancy

in mechanisms of replication initiation that these plasmids have could broaden their

compatibility range, potentially accelerating the process of genetic adaptation (MDR

in this case). This was shown to be the case for IncF plasmids, where IncFII is free

to diverge when associated with IncFIA or IncFIB because it does not participate in

replication initiation when IncFIA or IncFIB is present. This drift can break down

compatibility barriers, and increase the chance of compatibility with incoming IncF

plasmids [64].

1.2.15 Capture of acquired resistance genes into the chromosome

In our analysis of NCBI761, we noted a large flow of acquired resistance

genes in chromosomal locations (on average 18.0% of 1802 ORFs), although some

genes were not found in the chromosome at all (Figure 1.9 b). Notably, three genes

contributing to 3rd-generation cephalosporin resistance including blaCTX-M-14b,

blaCTX-M-15 and blaCMY-2 were present in the chromosome in higher proportions

(38.7% to 42.5%) than any other resistance gene. This was true despite low degrees

of physical linkages between these three genes (Figure 1.4), indicating that these

represent three independent examples of frequent chromosomal integration by an

ESBL.

Consistent with this observation of NCBI761, we were unable to trans-

fer carbenicillin resistance by transformation in 83 non-conjugative isolates from

USWest352 containing CG1 or CG2 genes (Supplementary Material). This strongly

suggests a chromosomal location of β-lactamase genes in these isolates (not shown).
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These observations are also consistent with our linear regression analysis, with re-

sistance to β-lactams exhibiting higher correspondence to USWest352 population

structure (mean AUC: 0.79) than the aminoglycosides (mean AUC: 0.68), and higher

correspondence than would presumably be expected for genes primarily encoded in

plasmids.

Based on these observations, we extend to our model for MDR evolution

to include a component for chromosomal integration. While plasmids appear to

be the primary platform for generating adaptive solutions, the large observed gene

flow to the chromosome, including the individual transfer of most resistance genes

and co-transfer of gene combinations comprising adaptive solutions, highlights the

involvement of the chromosome in the evolution of acquired MDR. Potentially, chro-

mosomal copies of resistance genes serve as reservoirs for transfer into different plas-

mids, which would increase the capacity to generate different adaptive solutions.

Further, the large disparity in the degree of chromosomal integration for

individual resistance genes (0.0% to 42.5%) likely reflects differential selective pres-

sures between them, with stronger and consistent selective pressure (presumably

for the ESBLs in our datasets) favoring chromosomal integration. The selective

advantage may be linked to reducing the probability of gene loss because physical

linkages to other necessary genes on the bacterial chromosome provide more stable

transmission.

Alternatively, this disparity may also reflect differential gene mobility (as

in the degree of mobility conferred by specific MGEs associated with individual

genes [15]). However, it seems unlikely that highly recombinant MGEs alone could

account for the frequent integration of three unlinked ESBL genes, since this would

require the coincidental captures of three unlinked ESBL gene by the most highly

recombinant MGEs, against the odds that these MGEs stochastically captured other

resistance genes. A more parsimonious explanation is that selective pressures drive

chromosomal integration.

1.2.16 Concluding remarks

We have identified two groups of genes, CG1 and CG2, that largely explain

the distribution of ESBL, gentamicin, and tobramycin resistance, both in the entire

set of completed E. coli genomes in the NCBI database and in a single epidemic

strain: ST131. CG1 and CG2 appear to represent two different adaptive solutions

to similar drug selections. The strong β-lactamase representation in both CGs and
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the frequent integration of β-lactamases into the chromosome is likely driven by the

frequent use of these antibiotics in the clinic for treatment of E. coli infection [6,33,

34]. Selection for aminoglycoside resistance (the other class of antibiotic resistance

genes represented in CG groups) is likely driven by combination therapy of β-lactam

and aminoglycosides, which is prescribed for severe infections because the mechanism

of action of these two groups of antibiotics is different [68–70].

CGs can be included in MRRs representing more complex adaptive so-

lutions. They are surprisingly heterogeneous in their specific composition across

MLSTs and even within a given MLST. The linkage between the individual genes in

each group is highly variable as well. These two observations highlight the key role of

selection (as opposed to genetic linkage) in maintaining a diversity of arrangements

for each winning solution. We propose that over time, these arrangements tend to

converge on solutions that are highly diversified, with genes in close proximity to

each other, and sharing the same orientation.

We also found mutual antagonism across resistance genes with overlapping

substrates both within the three complementarity groups that we identified, across

them, and more generally across the NCBI761, constraining evolution. In combi-

nation with co-selection due to physical linkage, this mutual antagonism leads to

strong contingency effect that restricts evolutionary trajectories.

We confirm the central role of IncF plasmids in maintaining and spreading

antibiotic resistance and as a genetic platform for evolving MDR, but also find that

resistance genes, particularly blaCTX-M and blaCMY-2 β-lactamases, frequently

integrate into the chromosome. This suggests that vertical transmission through the

chromosome may facilitate the spread of resistance genes under consistent selective

pressure and that chromosomally integrated drug resistance genes may also serve as

a reservoir for transfer into plasmids.

We also present a linear regression model that predicts ESBL, gentam-

icin and tobramycin resistance with considerable accuracy (AUCs between 0.92 and

0.96). A high concordance between phenotypic and genome-based predictions of

antimicrobial susceptibilities has been reported before in the context of resistance

surveillance, although in these studies, population structure is not usually factored

in [32]. More recently, clinical studies are showing promising results [29]. Our re-

sults support the feasibility of routine genotypic prediction of bacterial antimicrobial

susceptibility, an approach that looks extremely promising but that is limited by the

complexity of mechanisms of antibiotic resistance [71] [72].

Specifically, two aspects of this work have important translational implica-
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tions: (1) they show that in the two hospitals that we studied population structure

has only a moderate impact on linear regression because of the high level of gene

flow for acquired resistance genes; this means that models that ignore population

structure may be substantially accurate, at least for surveillance purposes; (2) they

identify combinations of genes that dominate the resistance landscape, explaining

large portions of the existing genetic variation; further, these combinations appear

not to be restricted to a particular location. The observation reported here that the

evolution of complex combinations of acquired resistance genes is strongly restricted

is of direct relevance for point-of-care diagnostics. However, any genomics-based

predictive application to the clinic would need to meet very stringent sensitivity and

specificity standards.

1.3 Methods

1.3.1 Sample and data collection

Clinical samples were collected from patients with respiratory, blood

(wound), or urinary tract infections at Dignity Health Mercy Medical Center

(DHMMC) in Merced, California, between June 2013 and August 2015. The iso-

lates were tested for ESBL resistance using an automated rapid detection system

for pathogen identification and antibiotic sensitivity, Vitek 2 Version 06.01. Fol-

lowing identification, the samples were also tested for susceptibility against 16

antibiotics using broth micro-dilution minimum inhibitory concentration (MIC)

testing. The isolates were categorized according to their susceptibility: Resis-

tant (R), Intermediate (I), or Susceptible (S), based on the MIC Interpreta-

tion Guideline – CLSI M100-S26 (2015). The 16 antibiotics included 1 peni-

cillin: Ampicillin, 2 penicillin and inhibitor combinations: Ampicillin/Sulbactam,

Piperacillin/Tazobactam, 4 cephalosporins: Cefazolin, Ceftazidime, Ceftriaxone,

Cefepime, 2 carbapenems: Ertapenem, Imipenem, 3 aminoglycosides: Amikacin,

Gentamicin, Tobramycin, 2 FQNs: Ciprofloxacin, Levofloxacin, and Nitrofurantoin

and Trimetroprim/Sulfamethoxazole. For these antibiotics, the ratios of resistance

to susceptible samples that we collected are shown in Figure 1.10. Additionally,

we obtained 384 ExPEC genome assemblies from a previous study conducted at the

University of Washington (UW), downloaded from Genbank with accessions in the

range JSFQ00000000–JSST00000000.
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Figure 1.10: Antibiotic susceptibility of the USWest352 isolates. The number of
isolates with antibiotic susceptibility testing data is indicated as gray bars, and the propor-
tions of resistant isolates are indicated in blue.

1.3.2 Sequencing, quality control and assembly of ExPEC genomes

Genomic DNA was extracted from each DHMMC sample using the ZR-

96 Quick-gDNA Kit from Zymo Research. Whole-genome sequencing including

TruSeq DNA library preparation was performed at the University of California,

Davis Genome Center using Illumina’s MiSeq and HiSeq technologies, and at the

University of California, Berkeley using HiSeq. We obtained 24 MiSeq (2x250 bp)

and 110 HiSeq (2x250 bp) paired-end sequencing libraries corresponding to our

selected samples. Prior to assembly, Illumina sequencing adapters and low qual-

ity bases were trimmed from the sequencing reads using Trimmomatic v0.36 [?];

trimmed reads shorter than 36 bp were discarded. Library quality was also verified

using FastQC v0.11.5. De novo paired-end assembly was conducted for each MiSeq

and HiSeq library using SPAdes v3.5.0 [73] with read error correction by BWA-

spades. The spades.py wrapper script was used to select an appropriate k-mer size

for optimized assembly of each genome. The assemblies had 29x and 327x median
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coverage for MiSeq and HiSeq libraries, respectively. The median N50 across 22

MiSeq and 110 HiSeq library assemblies was 198 kb (median L50: 9) and 201 kb

(median L50: 8.5).

The resulting assemblies were scanned for contamination. Estimated

genome sizes for our libraries (median: 5.3 Mb) were generally within the range

of known ExPEC genomes. Several libraries appeared to contain multiple differ-

ent organisms based on estimated genome sizes (for instance, samples 328 and 357

were 8.2 Mb and 9.0 Mb, respectively), and based on the presence of 16S rDNA

genes corresponding to multiple different species; these assemblies were removed

from downstream analyses. We further assessed each DHMMC and UW assemblies

for completeness based on the presence of 143 protein-coding genes considered to

be essential for normal growth of E. coli MG1655 (Set A in Supplementary Ta-

ble 2 from [74]). To achieve consistent assembly qualities across the DHMMC and

UW datasets, we removed assemblies containing fewer than 126 full-length essential

genes.

1.3.3 Phylogenetic classification of strains

Phylogenetic classification of the 352 draft genome assemblies of

USWest352 and 761 completed genome assemblies of NCBI761 was performed using

three methods that provided varying levels of resolution: the EzClermont phylotyp-

ing method, the Achtman multi-locus sequence typing (MLST) method [72], and

based on nucleotide-level variation across whole-genomes. To estimate phylogenetic

relationships among the USWest352 genomes, an all-by-all pairwise distance matrix

was constructed, in which the genetic distance between each pairing of genomes was

estimated as the number of nucleotide positions varying between the two genomes.

Variant calling for each genome was performed using the nesoni consensus script

from the nesoni package. The distance matrix was generated using the nesoni nway

script from the nesoni package, specifying E. coli EC958 as the reference genome [75].

A neighbor-joining tree was constructed based on the distance matrix using Split-

sTree4 [76].

1.3.4 Gene model prediction and functional annotation

Gene model predictions were generated using Prodigal v2.6.2 [77], running

in metagenomic mode. Genes known to confer resistance against aminoglycosides,

β-lactams and FQNs were identified based on amino acid sequence homology (99%
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query coverage and greater than 90% sequence identity) to gene entries in the Res-

Finder database, using NCBI BLASTx and BLASTp [78]. The ResFinder database

provided high sequence diversity for a given resistance gene (i.e. sequence variants),

so that most hits were distinguishable at 100% query coverage and 100% sequence

identity. Full-length hits with less than 100% sequence identity were labeled with

nomenclature indicating specific amino acid substitutions e.g., G238S. Hits with less

than 99% query coverage, but higher than 90% sequence identity, were closely in-

spected for completeness. That is, short truncations (10 amino acids or less) at

the N-terminus were allowed if this resulted in a new start codon (Methionine or

Valine), while hits that appeared to contain larger deletions were considered to be

incomplete sequencing/assemblies or true truncations leading to loss of function.

Plasmid replication origins and associated incompatibility groups were an-

notated based on BLASTn hits (e-value: 10-50) against INC-DB [79], a plasmid

origin nucleotide sequence database. Genes encoding plasmid replication initiation

proteins, or replicases, and conjugative relaxases were detected using BLASTx and

BLASTp against the RIP-DB and REL-DB, respectively, using an e-value threshold

of 10-50.

1.3.5 Determination of resistance marker predictive values using

logistic regression models, and controls for the confounding

effects of population structure

The predictive values of resistance markers identified by our annotation

pipeline were determined using logistic regression models, similar to methods em-

ployed by recent microbial genome-wide association studies (GWAS).

Various confounding effects can arise from bacterial population structures

in association studies [35]. For one, the haploid inheritance of the bacterial chro-

mosome causes linkage disequilibrium on much larger regions than in humans, and

long-range linkage disequilibrium in bacterial genealogies can persist despite frequent

homologous recombination events. Also, clonal expansions can be driven by positive

selection of the phenotype of interest, resulting in a biased distribution of genetic

elements that cause the phenotype. These confounding effects can cause false posi-

tives for the identification of novel causal variants, or in our case, for assessing the

predictive value of causal genetic elements.

Recent bacterial GWAS have sought to develop new methods to counter

these confounding effects of population structure with some success. One approach
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involved capturing the genealogy represented in a dataset using principal component

analysis or multidimensional scaling, so that a subset of the resulting principal com-

ponents can be included as covariates for regression [36,80]. Another study showed

that modeling population-level effects directly using linear mixed models can greatly

increase statistical power for identification of antibiotic resistance markers [81].

Here, we employed the first approach: using multidimensional scaling to

capture the genealogical information present in our dataset of 352 E. coli genomes.

We selected a subset of principal components that captured the major structural

patterns in our dataset, and included them as the only regressors in our logistic

regression model to establish a baseline for the contribution of population structure

to resistance. Subsequently, we identified the contribution of resistance markers to

resistance beyond this baseline threshold. We performed classical multidimensional

scaling (cmdscale package in R) on the all-by-all (n×n, n = 352) nucleotide distance

matrix generated using the nesoni package as described in section 1.3.3.

It has been shown that the number of principal components required to

adequately capture the major structural patterns in a given dataset can vary de-

pending on the size of the dataset, and the represented diversity [36]. Including

fewer principal components increases sensitivity at the expense of specificity, while

including a larger number of components incurs loss of sensitivity, and risks the

causal genetic elements being represented in the regressors intended for population

structure control.

Two types of plots were used to estimate the optimal number of principal

components to retain k, that is specific to our dataset: (1) a stress plot which mea-

sures the strain generated by regressing the sample data points after dimensionality

reduction onto the original distance matrix (stress is measured as 1–R2), and (2) a

scree plot that maps the explained variance in the reduced dimensional space (i.e.

eigenvalues) against the number of dimensions (Figure 1.8). Based on a visual

inspection of these two plots, the first three principal components (k = 3) appeared

to represent a good trade-off between sensitivity and specificity. Our choice of k = 3

was supported by Catell’s scree test [82], and by a previous study that performed

GWAS on a dataset of similar size [36]. Thus we retained a set of control regressors

P = {P1, P2, ..., Pk} for k = 3.

The antibiotic resistance markers identified by our annotation pipeline rep-

resented a second set of regressors, M , in our model. These included a total of

l = 38 regressors corresponding to 34 acquired aminoglycoside, β-lactam and fluoro-

quinolone resistance genes occurring in at least one of the 352 genomes, and also 4
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Figure 1.11: Stress and scree plots. The two plots were used to estimate an ideal

number of principal components to retain as population structure control regressors. (a)

Stress plot shows the strain generated from regressing the distance between sample data

points after dimensionality reduction to the original set of distances. (b) Scree plot maps

the explained variance against the number of dimensions. The dotted redline indicates the

number of statistically significant factors (k = 3), as determined by Catell’s test.

mutations in chromosomal Topoisomerase IV genes known to confer fluoroquinolone

resistance. The presence or absence of marker j ∈ {aac(3)-IIa, aac(3)-IId, aac(3)-

VIa, aac(6’)-Ib-cr, aadA1, aadA16, aadA1b, aadA2b, aadA5, ant(2”)-Ia, aph(3”)-

Ib, aph(3’)-Ia, aph(6)-Id, rmtE, blaCARB-11, blaCARB-2, blaCMY-2, blaCTX-

M-1, blaCTX-M-104, blaCTX-M-14b, blaCTX-M-15, blaCTX-M-27, blaCTX-M-

55, blaCTX-M-65, blaOXA-1, blaTEM-12, blaTEM-19, blaTEM-1A, qepA4, qnrA1,

qnrB19, qnrB6, qnrS2, gyrA-S83X, gyrA-D87X, parC -S80X, parC -E84X} in the ith

genome is denoted as mi,j ∈ {0, 1} for i ∈ {1, ..., n} and j ∈ {1, ..., l}.
Finally, the R, I and S resistance phenotypes were modeled as a binary

response variable yi,d ∈ {0, 1} for logistic regression, with both R (high-level resis-

tance) and I (intermediate resistance) being assigned a value of 1, for the set of drugs

d ∈ {AMP, CAZ, CIP, CRO, CFZ, FEP, GEN, LVX, TOB}.
Logistic regression was performed in three different modes: (mode 1) for

establishing the baseline contribution of population structure to resistance (X =

[P(n×k)]), (mode 2) for estimating the increase in predictive accuracy conferred by

the set of resistance markers (X = [P(n×k) M(n×l)] ), and (mode 3) for confirming

that the resistance markers alone were sufficient to achieve high prediction accuracy

without the population control regressors (X = [M(n×l)]). The predictive accuracy

of a given markers j was estimated based on the magnitude of decrease in predictive

accuracy conferred by the removal of marker j from the model in mode 2.
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Penalized logistic regression was performed as implemented in the glmnet

package for R [83]. The objective function is provided here as reference (Eq. 1.1).

min
(β0,β)∈Rp+1

−

[
n∑
i=1

yi,d· (β0 + xTi,dβ)− log (1 + e(β0+x
T
i,dβ))

]
+ λ

[
(1− α)||β||22/2 + α||β||1

]
(1.1)

In Eq. 1.1, β and β0 are the learned coefficients and intercepts, respectively, and

xi denotes the binary presence or absence of markers in sample genome i. The glm-

net package estimates a quadratic approximation to the negative log-likelihood, and

performs gradient descent to solve the resulting least squares problem. A wrapper

script was written to execute the cv.glmnet function using five-fold cross validation,

and with elastic net regularization (α = 0.5), to prevent degenerate behavior charac-

teristic of logistic regression and to deal with possible multicollinearity. In glmnet,

the amount of regularization used is controlled by the λ parameter, which is learned

at each execution of cv.glmnet. As a heuristic, λ returning the minimum mean cross-

validated error after cross validation was chosen at each execution of cv.glmnet. To

further discourage overfitting, cv.glmnet was executed on 5000 bootstrap replicates,

sampling 80% of the 352 genomes at each bootstrap iteration, while the remaining

20% was used for validation.

1.3.6 Exploratory factor analysis using a bootstrapped MDS pro-

cedure

To identify global patterns in the distribution of acquired resistance genes

identified by our annotation pipeline in USWest352, we performed exploratory factor

analysis using multidimensional scaling (MDS).

MDS is a popular method for information visualization with wide appli-

cations. However, in standard applications, MDS outcomes are provided without

statistical support, and thus can be misleading. Some studies have proposed statis-

tical interpretations of MDS outcomes based on bootstrap sampling, by generating

confidence intervals for the projected data coordinates [84].

Here, we implemented MDS using a bootstrapping procedure to improve

the accuracy and reproducibility of the final MDS outcome. Bootstrapping was

performed by randomly selecting 80% of the genomes without replacement. For each

bootstrap replicate, we performed unsupervised classification of the MDS outcome,

based on the distribution of projected data coordinates in Euclidean space. A final

MDS outcome was generated using a distance matrix P that provided the pair-wise

probabilities of two given genomes being placed in different clusters. For genomes i
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and j (i 6= j), the probability of being placed in different clusters was calculated as

pij = 1− gij/hij , where gij represents the number of times that i and j were placed

in the same cluster, and hij represents the number of times that both i and j were

selected in the same bootstrap replicate.

Classical MDS was implemented using the cmdscale package for R, which

requires a distance matrix as input. The Jaccard distance (Eq. 1.2) was used to

model the dissimilarity in resistance gene composition between two given genomes,

based on the presence or absence of 34 aminoglycoside, β-lactam and fluoroquinolone

resistance genes identified by our annotation pipeline.

Jaccard Dist. = 1− |A ∩B|
|A ∪B|

(1.2)

In Eq. 1.2, A represents the set of resistance genes present in genome i, and B

represents the set of resistance genes present in genome j.

Unsupervised classification was performed using the mclust package for R

[45], which uses gaussian mixtures to model data clusters with parameter estimation

by expectation maximization. For each bootstrap replicate, the optimal number of

clusters k was approximated using the Bayesian Information Criterion (BIC). The

k with the highest BIC was chosen from the range k = 1 to k = 20.

1.3.7 Significance testing for gene co-occurrence using a random

distribution model

We identified gene co-occurrences that are significantly overrepresented or

underrepresented in USWest352, CLONAL161 and NCBI761, by performing signif-

icance testing against a random distribution model.

The model was constructed as follows. Given a dataset S containing n

genomes, the collection of ORF hits corresponding to resistance genes found in

S can be represented as a gene pool G, so that the composition of P reflects the

empirical frequencies of individual genes represented in S. Additionally, each genome

i ∈ {1, . . . , n} can be assigned a genome size ti equivalent to the number of ORF

hits it contributes to G. To obtain a permuted genome pi, we randomly sampled ti

genes from G without replacement. A full set of n permuted genomes corresponding

to dataset S is represented by P ∈ {p1, p2, . . . , pn}.
We assessed the significance of co-occurrence for gene pairs using an empir-

ical p-value calculated as shown in (Eq. 1.3), against the two-tailed null hypotheses

shown in (Eq. 1.4).
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p-value = 1− No. of timesH0 is rejected

No. of permuted datasets
(1.3)

H0 : cu,v(S) = cu,v(P ) (1.4)

In Eq. 1.4, cu,v(S) denotes the observed co-occurrence of genes u and v in dataset S,

and cu,v(P ) denotes their co-occurrence in a permuted dataset P . The co-occurrence

of genes u and v was measured using the Jaccard index (Eq. 1.5).

cu,v(X) = 1− |Xu ∩Xv|
|Xu ∪Xv|

(1.5)

In Eq. 1.5, Xu is the set of genomes from dataset X that contain gene u, and Xv

is the set of genomes from dataset X that contain gene v.

P-values for overrepresentation and underrepresentation of co-occurrence

were generated using 5000 permuted datasets, and were adjusted for multiple com-

parisons using the false discovery rate at a significance level of α = 0.05.

1.3.8 Modified significance test to detect negative co-selection

within gene groups

We performed a modified version of the significance test to detect negative

co-selection within groups of genes with similar functions. The 108 genes found

in NCBI761 were assigned to k = 13 functional groups. The number of ORF hits

corresponding to each functional group (sample size) is provided in Table 1.5. The

gene-to-group assignments for specific genes are provided at the end of this section.

The modified null hypothesis is provided below.

H0 : mj(S) ≥ mj(P ) (1.6)

In Eq. 1.6, mj(S) and mj(P ) denote the number of genomes in datasets S and P ,

respectively, that contain two or more genes from functional group j ∈ {1, . . . , k}. P-

values were generated for the 13 functional groups against the modified null hypoth-

esis using 1000 permuted datasets, and assessed at a significance level of α = 0.05.

We conducted an additional test to verify that we had captured meaning-

ful gene-to-group assignments, and that our set of p-values corresponding to the 13

functional groups was not obtained by chance of random assignment. The modified

significance test was performed an additional 1000 rounds, generating 1000 sets of

p-values, and during which we randomly permuted the gene-to-group assignments

for the 13 functional groups. Each round was supported by 1000 datasets con-

taining permuted gene co-occurrences. We calculated a grand-p-value to assess the
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significance of our original set of p-values obtained with the “true” gene-to-group

assignments (Eq. 1.7), against the null hypothesis shown in (Eq. 1.8).

p-value = 1− No. of timesH0 is rejected forkgroups

No. of gene-to-group assignment permutation rounds
(1.7)

H0 : p-valuetruej ≥ p-valuepermj (1.8)

In Eq. 1.8, p-valuetruej and p-valuepermj represent the p-values obtained from the

“true” gene-to-group assignments and permuted assignments, respectively, for func-

tional group j ∈ {1, . . . , k}.

1.3.9 NCBI761 functional gene group assignments

The gene-to-group assignments for 108 different aminoglycoside, β-lactam

and fluoroquinolone resistance genes identified in NCBI761 are provided below.

These 108 genes were collected from 1802 distinct genetic loci, and corresponded

to full-length ORF hits.

Genes encoding AMEs were divided among five functional groups based on

their known resistance spectrums, while the 16S rRNA methyltransferase genes were

placed in a separate group.

Group 1 included aac(3)-IIa, aac(3)-IId, aac(3)-IV, aac(3)-Ia, aac(3)-VIa

and ant(2”)-Ia, most of which encode 3-N-acetyltransferases that confer resistance

against GEN and TOB, but not AMK [85]. Several of the members (aac(3)-IIa,

aac(3)-IId and aac(3)-VIa) appear to have lower activity against TOB than to

GEN [86], while aac(3)-Ia does not confer TOB resistance [85]. Notably, aac(3)-

IV has a broad resistance spectrum against aminoglycosides including GEN, TOB,

AMK and apramycin [50], and did not fit well into Group 1 or Group 2. We included

aac(3)-IV in Group1 based on its high resistance against GEN, and based no its

method of catalysis i.e. it encodes an 3-N-acetyltransferase. On the other hand,

ant(2”)-Ia does not encode an N-3-acetyltransferases, but was assigned to Group 1

because it confers resistance against GEN and TOB, but not AMK [87].

Group 2 included aac(6’)-33, aac(6’)-Ian, aac(6’)-Ib, aac(6’)-Ib-cr,

aac(6’)-Ib3 and aac(6’)-Il, which encode type I 6’-N-acetyltrasnferases that con-

fer resistance against TOB and AMK, but not GEN [57].

Group 3 included aadA1, aadA13, aadA16, aadA2, aadA22, aadA23,

aadA24, aadA2b, aadA3, aadA5, which encode ANT(3”)-Ia variants that confer

resistance against STR and SPC, but not GEN, TOB or AMK [20,57].
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Group 4 included aph(3”)-Ib and aph(6)-Id, which are also called strA and

strB, respectively, confer STR resistance only. These two genes have been found

closely linked in a wide range of species [10,85], and within a STR resistance operon

in Shigella flexneri [88].

Group 5 included aph(3’)-IIa, aph(3’)-Ia, aph(3’)-VI, aph(3’)-VIa and

aph(3’)-VIb, which encode 3’-O-phosphotransferases that confer resistance against

kanamycin, neomycin and pradimicin but not GEN, TOB, STR or SPC [85].

Group 6 included three genes encoding 16S rRNA methyltransferases,

armA, rmtB and rmtC.

Genes encoding β-lactamases were divided into five groups, approximately

based on function. We found that classification of the β-lactamases by sub-

class/family (e.g., the CMYs, CTX-Ms, KPCs, NDMs, OXAs and TEMs) provided

adequate distinction based on resistance spectrum, focusing on resistance against

the cephamycins, 3rd/4th-generation cephalosporins, aztreonam and the carbapen-

ems. Some exceptions, if known, are stated in the following.

Group 7 included blaCMY-2, blaCMY-4, blaCMY-6, blaCMY-16, blaCMY-

24, blaCMY-34, blaCMY-42, blaCMY-44, blaCMY-111 and blaCMY-new, which are

plasmid-borne AmpC β-lactamases that confer resistance against 3rd-generation

cephalosporins, some cephamycins, and meropenem. It has been reported that

blaCMY-2 has the capability of acquiring resistance against the 4th-generation

cephalosporin cefepime through mutation [89].

Group 8 included blaCTX-M-2, blaCTX-M-3, blaCTX-M-14b, blaCTX-

M-15, blaCTX-M-24, blaCTX-M-27, blaCTX-M-55, blaCTX-M-64, blaCTX-M-65,

blaCTX-M-123, blaCTX-M-199, which generally confer ESBL resistance and re-

sistance against aztreonam, but do not confer resistance against carbapenems or

cephamycins. Notably, blaCTX-M-14b is reported to have poor activity against

CAZ and aztreonam [90].

Group 9 included blaKPC-2, blaKPC-3, blaKPC-4, which mainly con-

fers carbapenem resistance, and resistance against penicillins and first genera-

tion cephalosporins. Members of this group can confer resistance against some

cephamycins e.g., cefoxitin for blaKPC-3 [28, 91,92].

Group 10 included blaNDM-1, blaNDM-4, blaNDM-5, blaNDM-6, blaNDM-

7, blaNDM-9, and blaNDM-21, which are carbapenemases that can confer resistance

against virtually all β-lactams except for aztreonam. Additionally, blaNDM-1 has

low catalytic efficiency against CAZ [7].

Group 11 included blaOXA-1, blaOXA-2, blaOXA-4, blaOXA-9, blaOXA-
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10, blaOXA-48, blaOXA-163, blaOXA-181, which all confer resistance against peni-

cillins and oxacillins. However, blaOXA-48, blaOXA-163 and blaOXA-181 addition-

ally confer resistance against carbapenems [93], and comprise a significant minority.

Thus this group is functionally heterogeneous in this regard. Other OXA variants

that confer ESBL resistance has been found in P. areuginosa, but we did not find

any of these in NCBI761 [93].

Group 12 included blaTEM-1A, blaTEM-20, blaTEM-26, blaTEM-30,

blaTEM-32, blaTEM-57, blaTEM-116, blaTEM-135, blaTEM-156, blaTEM-176,

blaTEM-210, blaTEM-215. Most members of this group confer resistance against

penicillins and narrow spectrum cephalosporins except blaTEM-1A, which only con-

fers resistance against penicillins. The variants blaTEM-20 and blaTEM-26 also

confer ESBL resistance, but are found in only two genomes in NCBI761.

Group 13 was comprised of 12 PMQR genes (qpepA1, qpepA4, qnrA1,

qnrB4, qnrB6, qnrB9, qnrB10, qnrE1, qnrS1, qnrS2 and qnrVC4 ), which confer

plasmid-mediated resistance against fluoroquinolones.

Some genes encoding AMEs and β-lactamases that were placed in addi-

tional groups were removed from this analysis due to low sample size. This included

the AME genes aac(2’)-IIa and aph(4)-Ia, which confer resistance against kasug-

amycin and hygramycin, respectively, and the IMP, VEB and VIM carbapenemases.

1.3.10 Detection of the transferability of resistance genes by con-

jugation assays

Horizontal transferability of resistance genes belonging to CG1 and CG2

was detected by conjugation assays using E. coli LMB100 (donated by Dr. Luis

Mota-Bravo) as the recipient strain. The assay was performed on 146 ExPEC isolates

(39 from UW233 and 107 from DHMMC119).

Transconjugants were selected on MacConkey agar plates supplemented

with carbenicillin (100 µg/ml) and rifampicin (100 µg/ml) and subsequently char-

acterized. Transferred plasmids were classified according to their incompatibility

group using the classic PCR-based replicon typing method (Carattoli et al. 2005)

(Table A). Plasmids from donors and transconjugants were visualized by pulsed-

field gel electrophoresis (PFGE) with S1 nuclease (Thermo Fisher Scientific) diges-

tion, and plasmid sizes were estimated by comparing the MidRange I PFG Marker

(New England Biolabs) through the least squares method (Statgraphics 18 software).

The receptor E. coli LMB100 was used as a negative control in PFGE experiments
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(plasmid-free strain).

1.3.11 Determination of phenotypic specificity of AMEs

To investigate the phenotypic specificity of three AMEs (aac(3)-IIa, aac(3)-

IIa and aac(6’)-Ib-cr), we tested isolates harboring these genes for susceptibility to

TOB and GEN using the disk diffusion method (disks containing 10 µg of antibi-

otic). Results were interpreted as specified by the Clinical and Laboratory Standards

Institute guidelines.
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Chapter 2

Deep mutational scanning of

TEM β-lactamase for

visualization of alternate

sequence spaces of

extended-spectrum resistance
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and Dr. Manel Camps for contributing significantly to my training in the wet-lab.

2.2 Introduction

Antibiotic resistance is now a worldwide epidemic, causing extended hos-

pitalization and treatment failures for a range of common bacterial infections [1-4].

Resistance is primarily caused by bacterial enzymes that interact directly with antibi-

otic drug molecules, rendering them ineffective. For instance, β-lactamases, which

comprise one of the largest families of such enzymes, confer resistance via lysis of
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the β-lactam ring, a core structure necessary for activity for β-lactam antibiotics

(e.g., penicillins, cephalosporins, monobactams, and carbapenems). Resistance to

β-lactam antibiotics has steadily risen since the introduction of penicillin to hos-

pitals in 1942. Presently, thousands of β-lactamase variants have been discovered,

arising in bacteria through co-evolution between enzyme and substrate (i.e. variants

arise from natural mutative processes and the ones with increased activity against

specific antibiotics are selected), which is driven by antibiotic exposure. This type

of selection more generally applies to many genetic resistance factors and serves as

a tailoring process by which resistance enzymes become structurally fitted to have

increased activity against specific antibiotics.

Indeed, human action is the predominant force driving both the evolution

of resistance and spread of multidrug resistant bacteria [5]. The epidemic is fueled

by routine antibiotic uses for human/animal health and food production, and is

further intensified by irresponsible uses by patients, uninformed and/or incentivized

prescriptions by healthcare providers and misdiagnosis.

Thus, recent research has produced a range of potential alternative treat-

ment methods for bacterial infections. Many investigative efforts have moved away

from using antibiotics altogether with immunological therapies, probiotics, and ionic

liquids that disrupt bacterial biofilm [6]. Other approaches aim to enhance bacterial

susceptibility to existing antibiotics. One such method involves engineering viruses

with gene silencing mechanisms for eliminating antibiotic resistance genes [7].

Some methods leverage knowledge of evolutionary mutation pathways to

inform antibiotic treatment strategies. In essence, better strategies for slowing or

limiting the evolution of resistance can be inferred by studying how resistance arises

at the molecular level in antibiotic resistance genes. For example, widely employed

antibiotic selection and cycling [8, 9] strategies can be designed rationally, rather

than relying on commonly practiced ”trial and error” strategies, which are more

likely to lead to resistance proliferation. Also, knowledge of evolutionary pathways

can facilitate the design of novel antibiotics with desired specificities [10].

Evolutionary pathway studies involve characterizing the effects of multiple

mutations in drug target proteins such as β-lactamases. Multiple mutations often

participate in epistatic interactions (i.e. have non-additive phenotypic effects), which

are shaped by biophysical constrains of protein structure. An improved understand-

ing of how epistasis impacts the translation of genotype to phenotype would enable

better treatment strategies and more rational methods for drug design.

During the experimental or clinical evolution of antibiotic resistance sim-
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ilar mutational patterns can emerge independently (i.e. in different patients or

experimental cultures treated with the same drugs). Information on the impact

of individual or multiple mutations can be inferred by observing similar patterns

across large sequencing datasets. However, this is often not a simple task. For one,

epistatic interactions are derived from a high-dimensional mechanistic framework

(i.e. epistasis is intimately tied to protein structure), which are inherently difficult

to describe in low-dimensional settings (i.e. 2- or 3-dimensions). Also, random mu-

tational processes introduce noise to sequencing data. For these reasons methods

detecting mutation patterns should be robust to noise, or have preprocessing steps

for filtering noise and/or reducing data dimensionality. Finally, large datasets are

usually required for sufficient statistical power.

Datasets for parallel evolution studies are most efficiently obtained through

next-generation sequencing (NGS), for which samples are generally obtained in one

of two ways: clinically through the routine sampling of drug treated patients, or ex-

perimentally through directed evolution. One emerging application of NGS involves

deep sequencing of randomly mutated proteins (amplicon sequencing), subjected to

antibiotic selection in bacteria. Such deep mutational scanning studies provide an as-

sessment of the fitness effects of all possible or likely amino acid substitutions across

a stretch of protein [11]. Deep mutational scanning can shed light on β-lactamase

fitness landscapes, help anticipate evolutionary trajectories, and accelerate the dis-

covery of new resistance conferring mutations.

Here, we perform directed evolution of the TEM β-lactamase under 3rd-

generation cephalosporin selection using a deep mutational scanning (DMS) ap-

proach, with the aim of exploring new protein sequence subspaces of extended-

spectrum resistance that have not been reported previously.

The directed evolution of wild-type TEM-1 under cefotaxime selection is

expected to result in a sequence subspace that largely converges around substitu-

tion G238S, which confers high-level extended-spectrum resistance, and has been

observed widely in clinical and environmental isolates, both independently and in

epistasis with other resistance-augmenting mutations.

To provide access to multiple distinct sequence subspaces, we initiate di-

rected evolution from multiple different starting points (using different parental al-

leles) and reduce the likeliness of convergence between these lineages by leveraging

negative epistasis between their initial trajectories.

We describe here, three deliverables: (1) TEM β-lactamase mutant se-

quence libraries evolved from three independent parental alleles, which can be stud-
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ied further to gain a deeper understanding of how negative epistasis impacts protein

sequence space divergence under positive selection in a gain-of-function setting, (2)

new previously unreported alleles that confer extended-spectrum resistance, and (3)

a high-throughput deep mutational scanning procedure used to generate these mu-

tant libraries. We confirm that the sequence landscape contained in our directed

evolution libraries spans across multiple distinct protein sequence subspaces, and

we verify extended-spectrum resistance for select mutant alleles from each sequence

subspace, by reconstructing individual mutant alleles via site-directed mutagenesis

and assessing their ability to confer cefotaxime resistance to an E. coli host.

2.3 Methods

We evolved three independent lineages from parental allele sequences rep-

resenting different starting points in the evolution of TEM-1. The three parental

alleles corresponded to the wild-type TEM-1 β-lactamase, and two variants con-

taining single amino acid substitutions, R164H and A237T. Both of these single

amino acid substitutions have been found to confer a gain-of-function phenotype as

shown by decreased susceptibility against cefotaxime, and also have been shown to

be incompatible with the G238S substitution which generally dominates the gain-

of-function landscape accessible via directed evolution of TEM-1 under cefotaxime

selection.

We performed directed evolution of each parental allele using a deep mu-

tational scanning approach. Our approach can be outlined in three steps. First,

random mutagenesis is performed via error-prone PCR on a given parental allele, re-

sulting in a mutant sequence library. Second, sequence variants encoding resistance-

conferring protein isoforms are selected by expressing individual variants from the

mutant sequence library in a susceptible E. coli strain grown under cefotaxime se-

lection. Third, long-read amplicon sequencing is performed on the mutant sequence

library, both before and after selection, to quantify the relative fitness gain conferred

by individual sequence variants under selection.

2.3.1 Generation of plasmid constructs containing parental alleles

A gene containing the wild-type sequence of TEM-1 β-lactamase was ini-

tially obtained from the commercially available plasmid pGFPuv. The R164H and

A237T alleles were generated by inducing single amino acid substitutions on the

wild-type gene by site-directed mutagenesis.
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Each parental allele sequence was cloned into a custom plasmid vector pG-

PSori for storage and phenotype testing. The pGPSori vector is a high-copy plasmid

derived from the commercially available pGPS3 vector. This customized vector has

an additional multiple cloning site directly downstream of the replication origin, and

a Kanamycin resistance marker that can be used as a secondary selective marker for

cloning, so as not to affect the ratio of β-lactamase variants in the mutant libraries.

Also in pGPSori, the original β-lactamase gene present in pGPS3 is inactivated by

truncation.

Each parental allele was inserted into the multiple cloning site downstream

of the replication origin in pGPSori, resulting in three parental plasmid constructs

named pGPSori-TEM1, pGPSori-TEM1-R164H, and pGPSori-TEM1-A237T.

2.3.2 Random mutagenesis of parental alleles

Each parental allele sequence was mutated by error-prone PCR (epPCR),

using the GeneMorph II Random Mutagenesis Kit from Agilent. We designed the ep-

PCR primers for amplification of a 983 kb region of pGPSori containing the parental

allele sequence. This region included flanking restriction sites, KpnI and NspI, to

be used for cloning. An additional 100-200 base-pairs outside the restriction sites

on both ends were included in the amplified region to facilitate size selection of the

epPCR amplicon for cloning. The total size of the amplified region was 1273 kb.

The mutation rate of epPCR can be adjusted using the amount of template

DNA included in a given PCR reaction. The average number of mutations induced

on the amplified DNA segment is inversely proportional to the amount of template

DNA included. The GeneMorph II User’s Manual offers some guidelines on control-

ling the mutation rate by adjusting the amount of template DNA; however, these

guidelines only provide rough approximations.

We performed several diagnostic rounds of epPCR to determine the exper-

imental conditions required to achieve our desired mutation rate (2 to 3 mutations

across the target gene and 4 to 5 mutations across the amplicon). We varied the

amount of template DNA in individual epPCR reactions from 600 ng to 900 ng, and

counted the number of nucleotide substitutions observed across the length of the

target gene (from the start to stop codon) after sequencing. We determined that

700 ng most closely approximates the desired mutation rate.

Error-prone PCR was performed in individual 50 µl reactions, including

700 ng of template DNA (a given parental pGPSori construct), 1 µL of 40 mM
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dNTPs, 0.5 µL primer mix (250 ng/µL for each primer), 1 µL of the mutazyme, 5

µL 10x buffer and nuclease-free water. A thermocycler run was executed using the

parameters recommended in the GeneMorph II User’s Manual.

2.3.3 Preparation of plasmid-borne TEM β-lactamase mutant li-

braries

We generated a plasmid-borne TEM β-lactamase mutant library corre-

sponding to each parental allele by cloning each set of epPCR amplicons into high-

copy expression vectors. Our cloning target vector was a version of pGPSori-TEM-1

called pLA230.2, which encoded a TEM-1 protein that had been inactivated by

truncation.

The epPCR amplicons were purified using the Nucleospin PCR clean-up

protocol from Macherey-Nagel, then digested alongside pLA230.2 with the Kpn1-HF

and Nsp1 restriction enzymes from New England Biolabs. Double restriction digests

were performed in 50 uL of reaction volume with 1000 ng of DNA (insert or vector),

1 µL each of Kpn1-HF and Nsp1, 5 µL of 10x CutSmart buffer and nuclease-free

water. Following the restriction digests, insert and vector DNA were size-selected

and purified on a 0.8% agarose gel. Insert and vector DNA was extracted from the

agarose gel matrix using the Macherey-Nagel gel-extraction kit.

Ligation was performed using the Anza T4 Ligase Master Mix. Digested

insert and vector DNA were combined in a 2:1 ratio based on molecular weight.

Ligation reactions were set up on ice with 5 µL of Anza Master Mix and nuclease-

free water in 20 µL reaction volumes. The reactions were removed from ice and

incubated at room temperature for 15 minutes to allow for the ligation to take place.

Ligated clones were rescued from the ligation reaction by chemical transformation

into Top10 E. coli hosts, with selection of transformants on LB agar supplemented

with 50 µg/ml Kanamycin.

Transformants putatively containing ligated vectors were suspended in LB

via plate-washing with 2mL LB. Plasmid DNA was extracted using the PureYield

Midiprep Kit from Promega.

The sequence diversity of the resulting plasmid-borne mutant libraries is

limited by the efficiency of the cloning. We followed several best practices to maxi-

mize the efficiency of cloning. (1) The cloning process is conducted using only high

quality DNA, both in purity and concentration (greater than 300 ng/µl). (2) The

UV exposure during gel size selection of restriction fragments was limited to less
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than one minute, to minimize the potential for DNA damage and sticky-end degra-

dation. (3) A best insert-to-vector ratio was chosen by observing the cloning output

from a range of ratios. (4) Digested insert and vector are ligated immediately, or

within 48 hours of the restriction digest to minimize sticky-end degradation. (5) The

Anza T4 ligase is kept on ice prior to the 15 minute incubation period, or stored at

-20 at all times. Pre-chill any apparatus as necessary. (6) All of the DNA from a

given ligation reaction is immediately transformed into E. coli hosts. (7) Determine

a protocol to maximize transformation efficiency, and total transformation output.

In addition, we included a second amplification step in the cloning proce-

dure as a time and cost-saving measure. We performed high-fidelity amplification

of the epPCR amplicons using the Phusion DNA polymerase, and proceeded with

cloning using the Phusion amplicons. Using this method, the sequence diversity gen-

erated by a single epPCR run can be captured more efficiently during cloning. In

essence, the lower ratio of sequence diversity to DNA mass in the Phusion amplicons

is sufficient for delivering the maximum sequence diversity that can be captured by

a single cloning run producing around 500 to 2000 unique plasmid-borne mutant

sequences. Also, the higher DNA mass resulting from Phusion amplification enables

parallelization of the cloning procedure. Phusion PCR reactions contained 12.5 µL

of Phusion Master Mix, 1.25 µL each of 10 uM forward and reverse primers (designed

to amplify the entire epPCR product), 10 ng of epPCR product and nuclease-free

water to achieve 25 µL reaction volume.

2.3.4 Enrichment for catalytically active protein isoforms

Prior to selection with cefotaxime, we first performed a preliminary se-

lection to enrich our mutant libraries for sequence variants encoding catalytically

active β-lactamases. This pre-selection was performed using a low dosage of car-

benicillin to enforce a weak selection for β-lactamase variants that have retained the

ability to cleave a 1st-generation cephalosporin. Since activity against 1st-generation

cephalosporins is a structural prerequisite for extended-spectrum activity, the set of

variants selected in this manner should include variants that have gained the abil-

ity to cleave extended-spectrum β-lactams. By performing this pre-selection step,

we increase the throughput of relevant sequence diversity for the subsequent selec-

tion and sequencing steps. We also remove any undigested cloning target vectors

(pLA203.2) that may have remained after size selection.

Pre-selection was performed by expressing the mutant libraries in Top10 E.
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coli hosts. Plasmid DNA from each mutant library was transformed into chemically

competent Top10 cells, and plated on LB agar supplemented with 33 µg/ml car-

benicillin. Plasmid DNA was extracted from transformant colonies remaining after

overnight growth, using the PureYield Midiprep Kit from Promega.

2.3.5 Selection with cefotaxime in E. coli hosts

Each mutant library (corresponding to one of three parental alleles: wild-

type TEM-1, R164H, or A237T) was subjected to selection with cefotaxime in E. coli

hosts, at dosages that provided 90% killing of the hosts. As a control, the R164H

and A237T libraries were additionally selected at dosages registering a minimum

noticeable killing to first verify that our dosages were in an appropriate range to

impact the sequence diversity (spectrum of mutants generated) of selected mutants.

Cefotaxime selection was performed using the same general procedure as the pre-

selection step.

In total, we generated 8 plasmid-borne mutant libraries for sequencing,

with names corresponding to the corresponding parental plasmids: (1) unselected

pGPSori-TEM-1, (2) unselected pGPSori-TEM-1-R164H, (3) unselected pGPSori-

TEM-1-A237T, (4) high dosage selection pGPSori-TEM-1, (5) high dosage selection

pGPSori-TEM-1-R164H, (6) high dosage selection pGPSori-TEM-1-A237T, (7) low

dosage selection pGPSori-TEM-1-R164H, (8) low dosage selection pGPSori-TEM-1-

A237T.

We performed a preliminary round of sequencing of these eight libraries to

verify that we had successfully obtained the desired mutation load from error-prone

PCR, and the had captured adequate sequence diversity at each level of selection.

Sanger sequencing was performed to amplify the β-lactamase encoding regions in 16

randomly chosen mutants from each library.

2.3.6 Long-read amplicon sequencing

Long-read amplicon sequencing was performed using the PacBio Sequel II

system, via a sequencing service provided by GeneWiz LLC.

Amplicons from each library were generated by PCR using the high-fidelity

Phusion polymerase, with 6-nucleotide inline barcodes added as forward primer over-

hangs. To achieve base balance across the 8 barcodes, we selected 8 of the barcodes

from Illumina’s standard 6nt barcode sequences. PCR products containing bar-

coded amplicons from each library were purified using the PCR clean-up kit from
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Macherey-Nagel, and mixed in equimolar ratios in a single 1.5mL Eppendorf tube.

Prior to PacBio sequencing library preparation, AMPure bead clean-up was

performed prior to reduce the presence of potential contaminants and to reconstruct

damaged amplicon DNA.
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Chapter 3

Transposable element islands in

the inbred invasive ant

Cardiocondyla obscurior

facilitate adaptation to novel

environments

3.1 Foreword and Acknowledgements

This chapter describes collaborative work that was published in Nature

Communications in 2014 (Schrader, L. et al. Transposable element islands facilitate

adaptation to novel environments in an invasive species. Nat. Commun. 5:5495 doi:

10.1038/ncomms6495 (2014)). In the following, the main text of the manuscript

published in Nature Communications is provided with references to Supplementary

Information, which can be found at https://www.nature.com/articles/ncomms6495.

My main contribution to this work consists of a simple repeat and trans-

posable element (TE) detection pipeline that was used to annotate the repeat

landscape of eight ant genomes (Acromyrmex echinatior (Aech), Atta cephalotes

(Acep), Solenopsis invicta (Sinv), Linepithema humile (Lhum), Pogonomyrmex bar-

batus (Pbar), Harpegnathos saltator (Hsal), Camponotus floridanus (Cflo)), Cardio-

condyla obscurior (Cobs)) the parasitic wasp Nasonia vitripennis (Nvit) and the

honeybee Apis mellifera (Amel). The data obtained through this pipeline enabled

the discovery and study of TE islands in context of the invasive and inbreeding ant
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Cardiocondyla obscurior.

Here, I would like to thank and recognize the efforts of my co-authors,

especially Dr. Lukas Schrader and Dr. Jan Oettler, who spearheaded the project

and writing of the manuscript. They are the main contributors to this work. And

also Dr. Christopher D. Smith who advised me during the writing of the early

version of the TE detection pipeline used in this study.

3.2 Introduction

Depletion of genetic variation is detrimental to species evolution and adap-

tation [1]. Low genetic and phenotypic variation is common in founder populations,

where only one or a few genotypes are isolated from a source population. Under such

conditions, reduced effective population size (Ne) should decrease selection efficiency

and increase genetic drift, resulting in only weak selection against mildly deleterious

alleles which can thus accumulate [2]. These effects should be even stronger in in-

breeding species [3] and taxa with generally low Ne such as social insects [4]. Despite

these constraints on adaptive evolution, many inbred or selfing species thrive and

are able to invade novel habitats. This raises the question of how genetic variation

as the raw material for adaptation is generated in such systems.

Single-nucleotide substitutions are an important factor in adaptation [5]

and species diversification [6,7]. However, other structural and regulatory units, such

as transposable elements (TEs) and epigenetic modifications, may act as drivers in

adaptation and evolution [8]. TEs play a particularly vital role in genome evolution

[9] and recurringly generate adaptive phenotypes [10-13] primarily through (retro-

)transposition [14], and secondarily through ectopic recombination and aberrant

transposition [15].

The invasive, inbreeding ant Cardiocondyla obscurior (Fig. 1) provides a

suitable model to study how species adapt to novel habitats in spite of constraints

imposed by invasion history, life history or both. Originally from Southeast Asia,

C. obscurior has established populations in warm climates around the globe from

founder populations that presumably consisted of only one or a few inbred colonies,

each with a few reproductive queens and several dozen sterile workers. In this species,

related wingless males and females (queens) mate within the colony, after which

queens leave the colony with a group of workers to find a new nest nearby. While

greatly reducing the extent of gene flow between colonies, this behaviour enables

sexual reproduction within the same colony and allows single founder colonies to
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Figure 3.1: Two workers of C. obscurior and the remains of a fly. Hidden in small
cavities of plants, the inconspicuous colonies of this species are frequently introduced to new
habitats by global commerce. In spite of strong genetic bottlenecks, even single colonies
with few reproductive individuals suffice to establish stable populations.

rapidly colonize novel habitats. At the same time, the combination of prolonged

inbreeding with severe genetic bottlenecks strongly reduces Ne in this species. Under

such conditions, genetic drift is predicted to drastically deplete genetic variation,

thus leaving little for selection to act on.

Here we explore the genomes of C. obscurior from two invasive populations

(Brazil BR and Japan JP) to identify signatures of divergence on a genomic level

and to determine how the species can rapidly adapt to different habitats. We find

clear phenotypic differences between the populations and strong correlation between

accumulations of TEs (‘TE islands’) and genetic variation. Our results suggest

that TE islands might function as spring wells for genetic diversification in founder

populations of this invasive species. The distinct organization of TE islands, their

gene composition and their regulation by the genome adds compelling evidence for

the role of TEs as players in differentiation, adaptation and speciation.
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3.3 Results

3.3.1 Phenotypic differences between BR and JP lineages

Colonies from the two populations contained similar numbers of workers

(Mann–Whitney U-test=778.5, Z = −0.634, P=0.526; BR: median=28, quartiles

21.75 and 51.25, n=27 colonies; JP: median=29, quartiles 16 and 47, n=64), but

queen number was higher in Japan (Mann–Whitney U-test=501, Z = −3.084, P <

0.003; BR: 5 queens, quartiles 3, 8; JP: median=10, quartiles 4 and 19). Body sizes

of queens and workers from BR were significantly smaller than in JP individuals,

yet wingless males did not differ in any of the measured characters.

In ants, cuticular chemical compounds play a particular prominent role in

kin recognition, which is crucial for species integrity but on a deeper level also a

requirement for the maintenance of altruism [16]. Analysis of cuticular compound

extracts from BR and JP workers showed that compound composition differed signif-

icantly between the two lineages (multivariate analysis of variance: df=2, F=10.33,

R2=0.39, P¡0.001) and samples were classified correctly according to population of

origin in 83.3% of cases (Supplementary Table 1; Supplementary Fig. 1).

The lineages also differed in behaviour, with BR colonies being significantly

more aggressive towards both workers and queens from their own lineage, while

JP colonies more readily accepted JP workers and queens (PWorkers JP × JP

versus BR × BR = 0.000296, PQueens JP × JP versus BR × BR = 7.98e − 07,

Supplementary Fig. 2). Confronted with individuals from the other lineage, BR

colonies were as aggressive as in within-population encounters (PWorkers BR× JP
versus BR × BR = 0.39, PQueens BR × JP versus BR × BR = 0.94), while JP

colonies were again significantly less aggressive (PWorkers JP × BR versus BR ×
BR = 0.000131, PQueens BR × JP versus BR × BR = 1.23e − 07). Testing

discrimination against workers of another ant species, Wasmannia auropunctata,

evoked similarly high aggressive responses in both lineages, suggesting that the BR

and JP populations do not generally differ in their aggressive potential.

3.3.2 The C. obscurior genome is compact and rich in class I TEs

Using MSR-CA version 1.4, we produced a 187.5-Mb draft reference genome

based on paired-end sequencing of several hundred diploid females (454 Titanium

FLX sequencing) and a 200-bp library made from five haploid males (Illumina

HiSeq2000; Supplementary Table 2), all coming from a single Brazilian colony. Au-
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Figure 3.2: Assembly size in Mbp plotted against the relative proportion of
exons, introns and different repetitive elements. The analysed genomes show a neg-
ative correlation between relative exon but not intron content. Genome size is positively
correlated with relative short simple repeat but not class I and II TE content. A, S. invicta;
B, A. cephalotes; C, A. echinatior ; D, H. saltator ; E, C. floridanus; F, P. barbatus; G, L.
humile; H, C. obscurior.

tomatic gene annotation using MAKER version 2.20 (ref. 17) was supported by 454

RNAseq data of a normalized library made from a pool of all castes and develop-

mental stages. We filtered the assembly for prokaryotic scaffolds and reduced the

initial 11,084 scaffolds to 1,854 scaffolds, containing all gene models and a total of

94.8% (177.9 Mb) of the assembled sequence. The genome can be accessed under

antgenomes.org/ and hymenopteragenome.org.

The final gene set contains 17,552 genes, of which 9,552 genes have a known

protein domain as detected by IPRScan (www.ebi.ac.uk/interpro/), and falls within

the range of recent estimates for eight other sequenced ant species [18-26]. Of all

genes, 72.5% have an annotation edit distance of less than 0.5, which is consistent

with a well-annotated genome [27] (Supplementary Table 3).

The C. obscurior genome is the smallest so far sequenced ant genome [18-

26]. Although there is no physical genome size estimate for C. obscurior, assembled

sequences and physical estimates are tightly correlated in seven ant genomes (LM in

R: R2=0.73, F1, 5=13.7, P=0.014, from [28]), suggesting that C. obscurior has the

smallest genome reported so far for an ant species [29]. Overall, the draft genome

size of the analysed sequenced ants is negatively correlated to relative exon content

(GLM in R: df = 6, F = 150.55, P < 0.001) but not to relative intron content

(df = 5, F = 0.65, P = 0.460; Fig. 2), indicative of stabilizing selection on coding

sequence. In contrast, intron size distribution is diverse between ant genomes and

is not correlated with genome size (Supplementary Fig. 3; Supplementary Table 4).

We used a custom pipeline (see Supplementary Information) to identify

simple repeats, class I retrotransposons and class II DNA transposons in C. obscu-

rior, seven ant genomes (Acromyrmex echinatior (Aech), Atta cephalotes (Acep),

Solenopsis invicta (Sinv), Linepithema humile (Lhum), Pogonomyrmex barbatus
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(Pbar), Harpegnathos saltator (Hsal), Camponotus floridanus (Cflo)), the parasitic

wasp Nasonia vitripennis (Nvit) and the honeybee Apis mellifera (Amel). Across

the analysed ants, genome size is significantly correlated with relative simple repeat

content (lm, R2=0.66, F=11.83, P=0.014; Fig. 2) but not with class I and class II

TE content. However, it appears that the larger genomes contain more relative class

II sequence. Relative class I retrotransposon content was highest in C. obscurior

(7.6 Mb, 4.31%, Supplementary Fig. 4) and in particular, many class I non-LTR

retrotransposons (for example, 14 types of LINEs) and several types of LTR trans-

posons (Ngaro, Gypsy, DIRS and ERV2), TIR elements (for example, hAT, MuDR,

P) and Helitrons are more abundant in C. obscurior (Supplementary Table 5).

3.3.3 Genomic signatures of an inbred lifestyle

On the basis of TE content calculations for 1 and 200 kb sliding windows,

we identified 18 isolated ‘TE islands’ located in ‘LDR’ (low-density regions) in the C.

obscurior genome. These TE islands were defined as containing TE accumulations in

the 95-100% quantile within scaffolds over 200 kb (87 scaffolds, representing 96.02%

or 170.8 Mb of the assembly). In total, TE islands cover 12.78 Mb of sequence

(7.18% of total sequence) and range between 0.19 and 1.46 Mb in size. The TE

islands contain 27.54% (4.92 Mb) of the assembly-wide TE sequence (17.87 Mb),

6.6% of all genes (1,160), and have reduced exon content (TE islands 87.0 exon bp

kb-1, LDRs 124.5 exon bp kb-1). Note that some larger scaffolds contain more than

one TE island.

Retroelements of the superfamilies BEL/Pao, DIRS, LOA/Loa, Ngaro,

R1/R2 and RTE as well as DNA transposons of the superfamilies Academ, Kolobok-

Hydra, Maverick, Merlin, on and TcMar-Mariner/-Tc1 populate TE islands with

significantly higher copy numbers than other elements (Fisher’s exact test, false dis-

covery rate < 0.05, Fig. 3, Supplementary Table 6). Furthermore, both class I and

class II elements show a length polymorphism, with elements in TE islands being

significantly longer compared with elements in LDRs (U-tests, W = 109089018,

P < 2e − 16 for class I and W = 152340067, P < 2e − 16 for class II, Fig. 4a,

Supplementary Fig. 5).

We also assessed the genome-wide TE distributions for seven published

ant genomes, Amel v4.5 and Nvit v2.0 (Fig. 5). The smaller ant genomes (Pbar,

Lhum and Cflo) and Amel are similar in TE sequence distribution. In contrast, the

larger genomes (Aech, Acep, Sinv and Hsal) are more variable, have higher median
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Figure 3.3: The proportion of bases annotated in TE islands in C. obscurior
against the log-scaled total base count in TE islands for each TE superfamily.
Point size is relative to the copy number of the respective element found in TE islands
(orange) and in LDRs (blue). Red circles indicate superfamilies with significantly higher
frequency in TE islands than other superfamilies. Superfamilies with a significantly higher
base count in TE islands are denoted by a red asterisk. e1: Percentage of the genome
contained in TE islands (7.18%), e2: median across all types of TEs (13.89%).

TE content and a much broader and tailed TE frequency distribution with longer

stretches of high or low TE content. The genome of C. obscurior is distinct from

the other ant genomes, with low TE content in LDRs but exceptional clustering

with high TE densities in TE islands. The genome of the inbred wasp N. vitripennis

contains regions with up to 60% TE content that are surrounded by LDRs containing

much less TE sequence ( 10%), resembling the pattern observed in C. obscurior.

3.3.4 TE islands diverge faster than LDRs in the two populations

We mapped 140 Gb of genomic DNA Illumina reads ( 60 × coverage

for each population) from pools of 30 (BR) and 26 (JP) male pupae, respectively,

against the reference genome (BWA; bio-bwa.sourceforge.net) and analysed the local

coverage ratio to detect genetic divergence. Deviations from the mean coverage ratio
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Figure 3.4: Quantitative measures on the divergence of TE islands and LDRs. (a)
Length polymorphism for Class I and Class II TEs in LDRs (blue) and TE islands (orange).
U-tests, nLDR=54,950, nTE=6,466 for class I and nLDR=59,054, nTE=6,813 for class II.
(b) Deviations from the median coverage ratio calculated for 1 kb windows in LDRs (blue)
and TE islands (orange). U-test, nLDR=157,296; nTE=12,165. (c) Log2-scaled density
plots of the coverage for all homozygous (solid black lines) and heterozygous SNV (dotted
red lines) calls divided by the median coverage (orange, calls within TE islands; blue, calls
in LDRs). Coverage at homozygous calls is not different from the median overall coverage,
neither in TE islands nor in LDRs. The shift for heterozygous SNV calls within TE islands
shows that most calls result from diverging duplicated loci. The bimodal distribution for
heterozygous calls in other genomic regions suggests two distinct populations of SNV calls,
that is, true heterozygous loci (first peak) and diverging sequence in duplicated loci (second
peak). (d) Bit scores for genes in LDRs (blue) and TE islands (orange) retrieved by BLASTx
against annotated proteins from seven ant genomes. U-test, nLDR=12,065; nTE=902. (e)
Rates of non-synonymous substitutions (calculated as dN/(dN+dS)) in LDR (blue) and TE
island genes (orange). U-test, nLDR=6,806; nTE=423. (f) Exon-wide CpG o/e values were
plotted against the expression rank from 0 (least expressed) to 100 (most expressed) genes
for LDRs (blue) and TE islands (orange). (g) Calculated ratios (BR/JP) for exon CpG o/e
values in LDRs (blue) and TE islands (orange). F-test, nLDR = 16, 379; nTE = 1, 159.
(***P < 0.0001, boxplots show the median, interquartile ranges (IQR) and 1.5 IQR.).

(Fig. 6) are in part caused by sequence deletions, insertions and duplications [30].

Such variations are particularly frequent in TE islands (Figs 4b and 6), suggesting

accelerated divergence within islands (median deviation from mean coverage ratio:
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0.288 in TE Islands, 0.163 in LDRs; U-test, W = 640300902; P < 2e− 16).

Figure 3.5: Frequency and distribution (insert plots) of TE content in 200 kb
windows. Frequency plots: dashed lines denote median TE content. Distribution plots:
different proportions of total draft genome sequence were analysed (in %), depending on
assembly quality. Scaffolds are sorted by size, small upward tick marks indicate scaffold
boundaries. For C. obscurior, regions defined as TE islands are coloured in orange. For S.
invicta, scaffolds mapping to a non-recombining chromosomal inversion [73] are shown in
black. For A. mellifera, scaffolds were sorted according to linkage group.

We retrieved SNV (single-nucleotide variants) calls using consensus calls

from samtools (samtools.sourceforge.net) and the GATK (broadinstitute.org/gatk/).

Although TE islands only comprise 7.18% of the genome, they combine 15.59%

(86,236 of 553,052) of all SNV calls. Given that we sequenced haploid males from

highly inbred lineages, heterozygous SNVs should be rare. A large fraction of het-

erozygous SNVs in both lineages are within TE islands (62.95% of 62,879 in BR,

50.52% of 98,353 in JP), while rates of homozygous calls (Fig. 6) are not increased

(11.88% of 16,277 in BR, 6.91% of 445,316 in JP). High numbers of false positive

heterozygous SNVs calls can arise in duplicated regions that collapsed into a sin-

gle locus due to misassemblies [31]. Accordingly, such SNVs can be identified by a

twofold increase in coverage and in fact mark diverging duplicated loci within the

same lineage (Fig. 4c).

Genes in TE islands should also show signatures of accelerated divergence

from orthologues if overall sequence evolution is increased in these regions. Indeed,
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BLASTp searches against seven ant proteomes produced significantly lower bit scores

for genes within TE islands when compared with genes in LDRs (Fig. 4d, U-test,

W = 120460260, P < 2e−16). In accordance, SNV annotation revealed higher rates

of non-synonymous substitutions between the BR and JP lineage in TE island genes

(Fig. 4e, U-test, W = 923754, P < 2e− 16). Surprisingly, however, on average, TE

island genes contained less synonymous SNVs than LDR genes (LDR 0.67 kb-1, TE

island 0.42 kb-1, U-test, W = 10743397, P < 2e− 16).

Figure 3.6: Genomic divergence and subgenomic structure of the 12 largest
C. obscurior genome scaffolds (including all 18 TE islands). High TE content in
TE islands correlates with deviations from the average coverage ratio, very high absolute
coverage in both lineages and high numbers of SNV calls. First track: relative TE (blue
and orange within TE islands) and exon content (green) per 200 kb. Second track: coverage
ratio BR/JP (blue and orange within TE islands). Third track: absolute coverage for BR
(top) and JP (bottom). Fourth track: heterozygous SNV calls per kb in BR (top) and JP
(bottom) relative to the reference genome. Fifth track: homozygous SNV calls per kb in
BR (top) and JP (bottom) relative to the reference genome. Black lines on x axes indicate
localization of TE islands.

3.3.5 Copy number variation within and between TE islands

We inspected 512 candidate loci (155 in TE islands) of 1 kb length by plot-

ting the coverage of each lineage relative to SNVs, genes, and TEs at the respective

position, to find genes potentially affected by deletion or copy number variation
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events and compiled a list of 89 candidate genes (Supplementary Table 7). Experi-

mental proof-of-principle was conducted by PCR and Sanger sequencing for two dele-

tion candidates (Cobs 13563 and Cobs 01070) and by real-time quantitative PCR for

four duplication candidates (Cobs 13806, Cobs 17872, Cobs 13486, and Cobs 16853)

(Supplementary Fig. 7). A majority of these genes are located in TE islands (61.8%)

and 34 genes show at least weak expression in BR individuals in RNAseq data (see

below). The affected genes play roles in processes that may be crucial during in-

vasion of novel habitats, such as chemical perception, learning and insecticide re-

sistance. In particular, four different odorant/gustatory receptor genes show signs

of either multiple exon (Cobs 05921, Cobs 13418, Cobs 14265) or whole-gene du-

plication (Cobs 17892). A gene likely involved in olfactory learning, Cobs 13711, a

homologue to pst [32], also shows signs of duplication. Three genes homologous to

fatty acid synthase (FAS) genes, a key step in cuticular odour production, contain

partial deletions (Cobs 16510, Cobs 14262) or duplications (Cobs 15866). Further-

more, we found differences in genes associated with insecticide response (Cobs 00487,

a homologue of nAChRα6 (FBgn0032151) (ref. [33]) and Cobs 17834, coding for a

homologue to Cyp4c1 (EFN70878.1) (ref. [34]). Other key genes affected are associ-

ated with circadian rhythm (Cobs 17789, homologue to per (FBgn0003068)), caste

determination (Cobs 01070, with homology to Mrjp1 (gi406090) (ref. [35]), develop-

ment (Cobs 17755, coding for a homologue of VgR (Q6X0I2.1) (ref. [36]) and aging

(Cobs 14758, with homology to Mth2 (FBgn0045637) (ref. [37]).

De novo assembly of 23M Illumina paired-end reads from the JP lineage

that could not be mapped to the BR reference genome resulted in 17 contigs after fil-

tering with highly significant BLASTx hits against proteins of other ants, suggesting

that these conserved sequences were lost in the BR lineage instead of being gained in

the JP lineage. According to functional annotation, among others these contigs code

for homologues involved in development (Vitellogenin-like (XP 003689693)) [38],

cellular trafficking (Sorting nexin-25 (EGI65030)) [39], immune response (Protein

Toll (EGI66069)) [38] and neuronal organization (Peripheral-type benzodiazepine

receptor-associated protein 1 (EFN68490)) [40] (Supplementary Table 8).

3.3.6 Gene composition and regulation of TE islands

Increased TE activity may incur costs to fitness by disrupting gene function.

A two-tailed Gene Ontology (GO) enrichment analysis revealed that 59 GO terms

associated with conserved processes (for example, cytoskeleton organization, ATP
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binding, organ morphogenesis) are under-represented in TE islands, while 18 GO

terms are enriched (Supplementary Tables 9 and 10). Four of the over-represented

terms relate to olfactory receptors (ORs; GO:0004984, GO:0005549, GO:0050911,

GO:0007187) and two terms relate to FAS genes (GO:0005835, GO:0016297). The

remaining 12 terms most likely relate to TE-derived genes.

Gene body CpG depletion as a result of increased CpG to TpG conversion

due to cytosine methylation is a measure for germline methylation (that is, epige-

netic regulation) in past generations. In TE island genes, the exon-wide median

observed/expected (o/e) CpG ratio is significantly lower than in other genes (t-test,

TE island genes: 1.05, LDR genes: 1.20, P < 1e − 16). However, both sets of

genes show strikingly different correlations of expression and o/e CpG values (Fig.

4f). For LDR genes, o/e CpG values are high in moderately expressed genes and

low in highly expressed genes. In contrast, in TE islands, weakly to moderately

expressed genes contain less CpG dinucleotides, while highly expressed genes have

higher o/e CpG values. To further identify traces of differential regulation of TE

islands, we compared the exon o/e CpG values between the lineages by calculating

BR/JP ratios for each exon’s o/e CpG values and found higher variance in BR/JP

ratios in TE islands than in LDRs (Fig. 4g, F-test, F = 0.136, P < 2e− 16, ratio of

variances=0.136).

Finally, to assess whether gene expression levels differed between LDRs

and TE islands, we generated 14 and 17 Gb transcriptomic RNAseq data of

seven queens and seven queen-destined larvae (third larval stage), respectively, from

the BR lineage. We estimated mean normalized expression values for each gene

using DESeq2, revealing that expression in TE islands was much lower than in

LDRs (median expression of all LDR genes=25.45; in TE islands: 0.49; U-test,

W = 14461310, P < 2e − 16). While larvae and adult queens did not differ in

the expression of LDR genes (median expression in queens=21.16; in larvae=23, 72;

U-test, W = 133301709, P = 0.221), TE island genes were more expressed in adult

queens (median expression in queens=0.84; in larvae=0; W = 1031038, P < 2e−16;

Fig. 7, see Supplementary Fig. 6 for details on differential expression between queen

and larvae).

3.4 Discussion

C. obscurior is a textbook example for successful biological invasion. Its

small size allows for interspecific avoidance, it can rapidly establish colonies in dis-
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Figure 3.7: Mean normalized expression in third instar queen larvae and mated
adult queens for all Cobs1.4 genes. Small triangles indicate genes with no expression
in queens (plotted below the x axis) or larvae (plotted left to the y axis). Ninety-five TE
island genes and 1,382 LDR genes were not expressed at all (orange, TE island genes; blue,
LDR genes).

turbed habitats, and multiple generations per year allow for fast adaptation. While

variation in CHCs and body size between the populations point to adaptations to

different environments, higher queen number in the JP lineage is likely correlated

with reduced intraspecific aggression.

The small genome of C. obscurior differs markedly from the other analysed

ant genomes in TE distribution and overabundance of several class I subclasses.

Importantly, the genome contains low frequencies of TEs in LDRs but well-defined

islands with high densities of TEs. In these islands, TEs are on average longer than

in LDRs, suggesting overall higher TE activity [41]. Differences in mutation rates

and sequence divergence between LDRs and TE islands reveal distinct evolutionary

dynamics acting within the C. obscurior genome. Moreover, in TE islands, key

genes are removed and the majority of genes is less expressed in larvae than adult

queens. The non-random distribution of TEs suggests that intragenomic differences

in selection efficiency against TEs may have further supported the formation of such

locally confined TE accumulations.

Inbreeding can facilitate the accumulation of TEs3 and repeated exposure

to stress induced by novel environmental conditions can further amplify TE pro-

liferation [42]. Small Ne is expected to increase the effects of genetic drift and in
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turn reduce selection efficiency against mildly deleterious mutations [2]. Under such

conditions, local accumulations of TEs might have formed in genomic regions under

relaxed selection. Similarly, a reduction in Ne in inbred Drosophila leads to a shift in

the equilibrium between TE proliferation and purifying selection against TEs, thus

allowing TEs to accumulate [43].

How can we explain extensive proliferation and diversification of TEs within

islands, but purifying selection against TEs in LDRs? Coalescent effective popula-

tion size of a genomic region is positively correlated with its recombination fre-

quency and thus the local efficiency of selection and mutation rate [11]. The initial

foundation of TE islands could hence be facilitated in genomic regions with low re-

combination frequency, providing a refugium of relaxed selection for TE insertions.

Indeed, elevated rates of non-synonymous substitutions suggest relaxed selection on

TE island genes. Increased frequency of DNA repair processes as a consequence

of higher DNA transposition frequencies in TE islands should lead to more errors

in DNA replication and double strand break repair [44] in comparison with LDRs.

Large-scale mutations on the other hand, such as exon or gene duplications/deletions

or gene shuffling, can directly be introduced during TE transposition [45]. TE is-

lands may frequently produce genetic novelty and eventually, by chance, but despite

high stochastic drift, adaptive phenotypes, corroborating the view of TEs as genetic

innovators.

The list of genes affected by duplications or deletions contains a number

of candidates that might be key to the divergence of the lineages. For example,

differences in homologues to genes involved in larval development (for example,

Mrjp1) might explain body-size differences. Two other candidates, Cobs 00487 and

Cobs 17834, show homology to genes that are involved in pesticide resistance against

Chlorpyrifos and Imidacloprid (nAChRα6) and Deltamethrin (Cyp4c) in different

invertebrate species [46-49]. Imidacloprid treatment of gall wasp infested Erythrina

variegate coral trees of the Japan habitat occurred at least once the year before

collection of the colonies in 2010 (personal communication S. Mikheyev). In the

Brazil habitat, Chlorpyrifos, Deltamethrin and the organophosphate Monocrotophos

have routinely been used over the last 10 years (personal communication J.H.C.

Delabie).

Furthermore, several within-island genes involved in the production

(FAS50) and perception (ORs) of chemical cues contained deletions or duplications

in one of the lineages. These results suggest that variation in FAS genes may be

responsible for diverging CHC profiles in C. obscurior [51], while variation in OR
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genes affects olfactory perception. Chemosensory neurons express highly sensitive

ORs52, which are particularly diverse [53] and under strong selection in ants [54].

Gene loss and duplication in the OR gene family has been significantly frequent

[55] and differences are assumed to be shaped by adaptive processes in response

to a species’ ecological niche [56,57]. Intriguingly, the diversification of OR genes

is thought to be largely caused by gene duplications and interchromosomal trans-

position [58], two mechanisms known to be by-products of TE activity. While the

distinct patterns of kin recognition and aggressive behaviour in the two lineages of

C. obscurior may in part be explained by TE-mediated variation in these genes, they

also suggest lineage-specific dynamics of the interaction of phenotype and genome

evolution. Reduced aggression between colonies in the JP lineage should promote

gene flow by exchange of reproductives and thus increase Ne, heterozygosity, and the

efficiency of sexual recombination, facilitating the spread of novel arising genotypes.

Our findings contrast the view of reduced aggression between colonies of invasive

ants [59], but so far it is unclear whether lineage-specific differences are caused by

variation in perception or downstream neuronal processes.

Mechanisms controlling TEs are as old as prokaryotes [9] and in fact most

TEs are epigenetically silenced [45,60], through either methylation, histone modifi-

cations [61] or RNAi [62]. Even though many genes in TE islands are expressed,

the overall expression is significantly lower than in LDRs. In line with previous

correlations on methylation and expression in eusocial insects [63,64], o/e CpG ra-

tios in C. obscurior LDR genes are negatively correlated with expression. However,

TE island genes do not follow this trend, in that they are weakly expressed while

having low o/e CpG rates. Proximity to TEs can increase gene body methylation

[65], which could explain stronger methylation of TE island genes and thus CpG

depletion. Also, relaxed selection in island genes should in general increase fixation

frequency of base mutations, including CpG to TpG conversions thus depleting CpG

content. Gene expression differences in TE island genes between larvae and adult

queens suggest stronger regulation of these potentially disruptive genes during the

sensitive developmental phase. Finally, key regulatory genes are under-represented

in TE islands. These gene set differences between TE islands and LDRs can either

be explained by selection processes, removing vital genes from linkage to TE islands

or by selective restriction of TE accumulations to genomic regions devoid of such

genes.

The current understanding of TE activity dynamics in genomes is that pe-

riods of relative dormancy are followed by bursts of activity, often induced by biotic
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and abiotic stress, such as exposure to novel habitats. Frequent TE transposition

during bursts leads to genomic rearrangements, thus producing new genetic variants

and eventually even promoting speciation [66-69]. TE dynamics can also be strongly

affected by mating system [3,70-72], and the life history of C. obscurior likely chal-

lenges the genomic integrity resulting in genomic regions with over 50% TE content.

In conclusion, TE dynamics in C. obscurior seem to have shifted from a serial to a

parallel mode, where a fraction of the genome is reshaped repeatedly in a continuous

burst of TE activity. Strikingly, the inbred parasitoid wasp N. vitripennis has sim-

ilar TE frequency patterns suggesting that similar life history strategies and their

consequences on Ne and drift can lead to convergent genomic organization. TEs rep-

resent a major force in evolution, contributing to the generation of genetic variation

especially in species confronted with hurdles like inbreeding or repeated bottlenecks.

They furthermore seem to play an important role in the rapid adaption of invasive

species to novel environments, making it particularly crucial to understand their

origin, function and regulation.

3.5 Methods

3.5.1 Organisms

Live colonies of C. obscurior were collected from aborted fruits on coconut

trees (Cocos nucifera) in Brazil (collected in 2009) and from bark cavities in coral

trees (Erythrina sp.) in Japan (collected in 2010). The colonies were transferred

to Regensburg and placed in plastered petri dishes. Food (honey-soaked shreds

of paper; Drosophila or small chunks of Periplaneta americana) and water were

provided every 3 days and colonies were kept in incubators under constant conditions

(12h 28◦ light / 12h 24◦ dark). All animal treatment guidelines applicable to ants

under international and German law have been followed. Collecting the colonies that

form the basis of the laboratory population used in this study was permitted by the

Brazilian Ministry of Science and Technology (RMX 004/02). No other permits were

required for this study.

3.5.2 De novo genome assembly

The reference genome is based on one colony that was kept under strict

inbreeding in the lab for four generations before extractions. Whole DNA was ex-

tracted with CTAB. We extracted DNA from 900 ants, which were pooled to be
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sequenced with 454 technology. Extracts of 5, 10 and 30 Brazilian males and 26

Japanese males, respectively, were used for Illumina libraries.

We generated 200 and 500 bp insert libraries with Illumina’s TruSeq DNA

sample preparation kits from 5 µg of total DNA. Quality control and library prepara-

tion were carried out by the KFB sequencing centre of the University Regensburg, se-

quencing runs were performed by Illumina (Hayward, USA) on a HiSeq2000. Quality

control, library preparation and sequencing of 8 and 20 kb long paired end libraries

(454, Roche) were carried out by Eurofins MWG Operon (Ebersberg, Germany).

Extracted DNA was fragmented into the appropriate fragment sizes (8 and 20 kb)

using the HydroShear DNA Shearing Device (GeneMachine). Further library prepa-

ration was performed according to ‘GS FLX Titanium Paired End Library Prep

20+8 kb Span Method Manual’ before sequencing on a GS FLX Titanium (Roche).

The de novo genome assembly was created with MSR-CA version 1.4 open

source assembler (University of Maryland genome assembly group). The MSR-CA

assembler combines a deBruijn graph strategy with the traditional Overlap-Layout-

Consensus employed by various assembly programmes for Sanger-based projects

(Arachne, PCAP, CABOG). The MSR-CA uses a modified version of CABOG ver-

sion 6.1 for contiging and scaffolding. The combined strategy allowed us to natively

combine the short 100 bp Illumina reads and longer 454 reads in a single assembly

without resorting to an approach that would require one to assemble each type of

data separately and then creating a combined assembly.

3.5.3 Mapping

For each lineage, we randomly sampled 140 M 100 bp reads from li-

braries generated from 26 (JP) and 30 (BR) male pupae. Raw reads were

parsed through quality filtration and adapter trimming (Trimmomatic v0.22, op-

tions: HEADCROP:7 LEADING:28 TRAILING:28 SLIDINGWINDOW:10:10) and

mapped against the BR reference genome with BWA (bio-bwa.sourceforge.net) and

Stampy v1.0.21.

3.5.4 Variant calling

SNV calling was carried out combining samtools (samtools.sourceforge.net)

and the GATK (www.broadinstitute.org/gatk/) retaining only those variants called

consistently by both tools. The final variant set of 553,052 SNVs and 67,987

InDels was stored in a single VCF file. SNVs were annotated with SNPeff
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(snpeff.sourceforge.net) to identify non-synonymous and synonymous substitutions.

3.5.5 Calculation of sliding windows

One kb windows of different stats (TEs, exons, SNPs, coverage) were cal-

culated for all scaffolds based on GFF, VCF and SAM files. For GFF and VCF files,

custom bash and perl scripts were used to calculated TE and exon bases per 1 kb,

and variant calls per 1 kb. Coverage per 1 kb was calculated from SAM files, using

samtools’ depth algorithm and custom bash and perl scripts. Subsequent processing,

calculating of 200 kb sliding windows and plotting of the data was performed with

R v3.0.0 (r-project.org).

3.5.6 Gene expression analysis with RNAseq

We extracted whole RNA with the RNeasy Plus Micro kit (Qiagen). Sin-

gle end Illumina libraries from amplified RNA (Ovation RNAseq system V2) were

generated following the manufacturers protocol (Ovation Rapid Multiplexsystem,

NuGEN). Sequencing on an Illumina HiSeq1000 at the in-house sequencing cen-

tre (KFB, Regensburg, Germany) generated 20M 100 bp reads per sample (Sup-

plementary Table 16). Raw reads were filtered for adapter contamination (cu-

tadapt), parsed through quality filtration (Trimmomatic v0.27, options: LEAD-

ING:10 TRAILING:10 SLIDING:4:10 MINLEN:15), and mapped against the refer-

ence genome using the tophat2 (v2.0.8) and bowtie2 (v2.1.0) package (–b2-sensitive

mode, mapping rate 50%). Gene expression analysis was carried out with DESeq2,

based on count tables produced with HTSeq against the Cobs1.4 MAKER annota-

tion (Supplementary Table 16). Genes were considered to be differentially expressed

at a false discovery rate < 0.05 and expression values are reported as untransformed

base means of read counts per treatment group, after correcting for library size

differences (‘size factor normalization’).
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Chapter 4

Genome Analysis of

Planctomycetes Inhabiting

Blades of the Red Alga

Porphyra umbilicalis
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P.um.1 cultures and DNA isolations.

4.2 Introduction

Marine macroalgae and bacteria have varied and complex interactions [1].

Remarkably, the red macroalga Delisea pulchra foils attack from a proteobacterium

by producing furanones that inhibit quorum-sensing molecules (N-acyl homoser-

ine lactones, AHLs) used for bacterial communication [2]. In contrast, swimming

zoospores of the green alga Ulva select settlement sites by sensing AHLs produced

by some bacteria [3]. For heterotrophic bacterial “farmers” [4], macroalgal cell walls

are a carbon-rich habitat, while bacterial symbionts may synthesize plant growth

regulators that stabilize macroalgal morphology [5–7] and provide the algae with

inorganic nutrients and vitamins e.g., [8]. Presently, only one symbiotic association

has been characterized in some detail i.e. [9].

Little is known as to why different bacteria colonize different algae, and

the nature of the complex and dynamic interactions between them [10]. Sympatric

macroalgae growing together can harbor substantially different proportions of bacte-

rial phyla. Phyletic effects on the bacterial composition can be larger than observed

seasonal or biogeographic impacts [11–13], suggesting that bacteria have selective

abilities to feed on different algal cell wall types. Cell wall composition varies among

the marine Chlorophyta [cellulose, xyloglucan, mannan, glucuronan, (1,3) β-glucan,

ulvan], Rhodophyta [cellulose, (1,4) β-D-mannan, (1,4) β-D-xylan, (1,3) β-D-xylan,

glucomannan, sulfated MLG, (1,3) (1,4) β-D-xylan, agars, porphyran, carrageenans]

and Phaeophyceae [cellulose, sulfated xylofucoglucuronan, (1,3) β-glucan, alginates

(polymannuronic acid, polyguluronic acid), homofucans] [14]. Moreover, within the

Rhodophyta, the cell walls in different phases of the life histories (e.g., gameto-

phyte/sporophyte) can show variations in their compositions [14–16].

Examination of the coding capacity of different bacteria for enzymes that

degrade cell wall moieties informs our understanding of microbial/macroalgal ecology

and evolution. Red algal cell walls are composed mostly of the sulfated polymers

porphyran, agar and/or carrageenan, in addition to some xylan and/or cellulose

microfibrils [14]. The biosynthesis and degradation of sulfated cell wall polysaccha-

rides of macrophytic algae requires several enzymes including glycoside hydrolases

(GHs), sulfatases and carbohydrate sulfotransferases. A range of such enzymes are

encoded on many marine bacterial genomes. Indeed, the marine bacterium Zobellia

galactanivorans (Bacteroidetes) has a genome encoding 130 GHs, 12 polysaccha-
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ride lyases and 71 sulfatases (Genoscope: G0L495), and is being developed as a

model for producing enzymes that function in bioconversion of algal polysaccha-

rides. This bacterium is associated with green algae [17,18], red algae [19], brown

algae [17] and dinoflagellates [20], and has been examined in detail for its ability to

synthesize enzymes capable of degrading sulfated galactans of the red macrophyte

Delesseria sanguinea, with specific characterizations of β-agarases [21–23], κ- and

ι-carrageenases [24,25] and porphyranases [26,27].

Recently, attention has focused on another macroalgal-associated bacterial

phylum, the Planctomycetes. These bacteria are usually a smaller proportion of

the macroalgal associated bacteria than Bacteroidetes or Proteobacteria, but may

account for 50% of the bacteria on some brown algae e.g., [28]. The Planctomycetes

are part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum

[29,30], including some genera that can synthesize a large number of hydrolytic en-

zymes [31,32]. They exhibit unusual features for bacteria, including division by bud-

ding, endocytosis with coated vesicles, a wall composed primarily of glutamine-rich

glycoproteins and extensive invaginations of the inner membrane [33–35]. Further,

many planctomycete genes are not organized into operons [31], and some encode

proteins more typically found in eukaryotes [36].

In a recent study [4], bacterial diversity on the blades of Porphyra

umbilicalis (Rhodophyta) was analyzed from wild plants and antibiotic-treated,

laboratory-cultures. Eight phyla were identified (Bacteroidetes, Proteobacteria,

Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-thermus, Firmicutes, and

the candidate division TM7), with the majority of sequences from both field and lab-

oratory material coming from the Bacteroidetes. The abundance of blade-associated

Planctomycetes was small on wild blades (0.03–1.1%), but enriched (4.06%,) when

P. umbilicalis strain P.um.1 [37] was treated with antibiotics that eliminate most

bacteria. Four planctomycete OTUs were enriched: Rhodopirellula baltica and three

undescribed planctomycetes. We have assembled the genomes of these three unde-

scribed planctomycetes and examine their phylogenetic affiliations, genome struc-

tures and functional potential.
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4.3 Methods

4.3.1 Sample collection

The P.um.1 isolate was collected at Schoodic Point, Maine (40◦20’1.68”

N; 68◦3’29.14”W) on April 3, 2008 [4,37,38]. Details regarding sample prepara-

tion are available in S1 Text. Scientific research and collecting permits authorizing

field studies pertaining to the P.um.1 isolate were obtained from the United States

Department of the Interior, National Park Service, Acadia National Park (permit

numbers: ACAD-2008, 2009, 2010, 2011-SCI-0004). These field studies did not

involve protected or endangered species.

4.3.2 Genome sequencing and assembly

The 454 sequencing was performed on standard (500–800 bp) and long dis-

tance (10 kb) paired-end, genomic libraries (S1 Text). The three largest scaffolds

(8.5, 7.3 and 3.8 Mbp) from a preliminary assembly with Newbler (v.2.3-PreRelease-

10/20/2009, Roche) were microbial based on sequence similarities in the NCBI (nr)

database. We performed additional Illumina sequencing to correct 454 homopoly-

mer errors in the three scaffolds and reassembled the 3.8 Mbp scaffold into a 4.9

Mbp scaffold because it appeared to be an incomplete genome based on its gene

complement (S1 Text). These three large scaffolds correspond to genomes of Planc-

tomycetes that we designated P1 (8.5 Mbp), P2 (7.3 Mbp) and P3 (4.9 Mbp).

4.3.3 Genome annotation

The three scaffolds were first annotated through the Joint Genome In-

stitute’s microbial annotation pipeline and deposited in the Integrated Microbial

Genomes (IMG) database (http://img.jgi.doe.gov/). Additional annotations were

conducted for genes of interest with missing functional annotations, protein-coding

gene families, repetitive DNA elements, transposable element (TE)-associated genes,

selenoproteins and selenocysteine utilization elements, and genomic islands. See S1

Text for additional information.

4.3.4 Phylogenetic analyses

An initial phylogeny based on 16S rDNA sequences for 25 bacterial species

was generated using RAxML [39] with the GTR-GAMMA model. A more robust
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phylogeny was built by sampling across multiple protein-coding loci [40] correspond-

ing to 39 single-copy genes encoding highly conserved proteins (S1 Table and S1

Text). Homologs for the 39 genes from each of the 23 genomes studied (S2 Table)

were aligned, trimmed and then concatenated adhering to a predetermined, random-

ized gene order. A maximum-likelihood (ML) phylogeny based on 8,725 amino acid

positions was inferred from 1000 bootstrap iterations using RAxML. All protein-

coding gene trees (see Results) were generated using a similar procedure (S1 Text).

4.3.5 Classification of sulfatases and carbohydrate active enzymes

Sulfatase subclasses were determined based on clades in ML phylogenies

of all sulfatase sequences for a given organism. Each resolvable clade was anno-

tated as iduronate-2-sulfatase, heparan-N-sulfatase, mucin-desulfating sulfatase or

choline sulfatase, based on BLASTp hits against UNIPROT TREMBL [41]. Unre-

solvable sulfatases were placed in the more general categories ‘arylsulfatase A’ and

‘galactosamine-N-acetyl-6-sulfatases’ (GALNS). We identified hydrolytic enzymes in

the Carbohydrate-Active enZYmes (CAZY) database (http://www.cazy.org) using

the CAZY Analysis Toolkit, which executes a BLASTp search against the CAZY

database. Hits to the genomes used for our analysis had e-values of < 10−10.

4.3.6 Identification of genes encoding selenoproteins and Sec inser-

tion and utilization elements

The Sec-insertion and utilization genes (selA, selB, selD, ybbB) were iden-

tified by sequence alignments (BLASTp) against known bacterial homologs. Genes

potentially encoding selenoproteins were identified on the basis of in-frame opal

(‘UGA’) stop codons, homology searches against known selenoproteins and the pres-

ence of SECIS elements. See S1 Text for additional information.

4.4 Results and Discussion

4.4.1 Genome assembly validation and phylogeny

The bacterial strains used here, including the three novel planctomycete

genomes recovered from the P.um.1 sequenced libraries are given in S2 Table. Prop-

erties of P1 (8.5 Mb), P2 (7.3 Mb) and P3 (4.9 Mb) are provided in Table 1 along

with tRNA gene predictions for 29 bacterial genomes, including 22 species from the

PVC superphylum, in S3 Table.
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For phylogenetic classification, we constructed a high resolution [40] ML

tree (Fig 1) based on 39 ‘core’ protein-coding genes (S1 Table). The three sequenced

genomes are part of a clade that includes the genera Blastopirellula, Pirellula and

Rhodopirellula. P3 is recovered as the most ancestral taxon in this clade, while P2

appears to be an undescribed OTU within the genus Rhodopirellula, and P1 shares a

direct common ancestor with the Rhodopirellula sub-clade. A ML tree based on 16S

rDNA (S1 Fig) indicates consistent phylogenetic positions for P1, P2 and P3. P1

and P3 represent new Planctomycetes’ genera based on 16S rDNA sequence analysis

(S4 Table).

4.4.2 Gene functions and gene family content

The P1, P2 and P3 genomes are non-syntenic with those of other sequenced

planctomycete genomes (S2 Fig), and previous work showed that gene content is

better preserved than synteny among the Planctomycetes [34]. Many planctomycete

genomes have extensive expansions of protein-coding gene families e.g., sulfatases

in Rhodopirellula [32]; this is also the case for P1, P2 and P3 (S5 Table). Within

the Planctomycetes, the percentage of genes belonging to gene families (2 or more)

ranged from 36% in P. mikurensis to 59% in S. acidiphila. Previous studies reported

a linear relationship between genome size and percentage of genes in families [42,43].

While most genomes that we analyzed followed this trend, there were several outliers

(S3 Fig). Some of the Rhodopirellula and P1 have low densities of gene families

despite their large genomes, while K. stuttgartiensis has high gene family density

for a small genome (S2 Text).
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Table 4.1: Properties of 9 bacterial genome assemblies including 8 Planc-

tomycetes and 1 marine Bacteroidetes. P1, P2 and P3 were sequenced from

a blade of Porphyra umbilicalis. Strains of R. baltica, P. mikurensis and Z. galac-

tanivorans (Bacteroidetes) were also present on the blade (based on 16S rDNA

analysis). P. staleyi, R. maiorica and B. marina are the closest known relatives of

P1, P2 and P3, respectively.

Highly represented gene families are summarized in S6 Table, with the full

list of families in S1 Data. The largest gene families encode response regulators

(RR), serine/threonine protein kinases (STPK), transporters (ABC), sigma factors,

sulfatases and solute-binding proteins with the 1559 domain of unknown function

(DUF1559), which appears exclusive to the PVC superphylum. While some gene

families are expanded throughout the Planctomycetes, others such as the sulfatases

are more specific to phylogenetic position and/or the type of habitat in which the

organism is found (e.g., relative number of sulfatase genes in marine vs. freshwater

vs. anammox Planctomycetes).

An investigation of the relationship between higher-level functional classi-

fication and gene family size across the 23 genomes studied shows relatively small

variations in the COG functional distribution of singleton genes when compared

to gene families with more than one member (Fig 2). The largest variation across

23 genomes is in the category ‘inorganic ion transport and metabolism’ (P), which

contains the sulfatases. The absolute distribution of COG domain hits for P1, P2

and P3 is shown in S4 Fig. More in-depth data on gene families and higher-level

functional classifications are in the S2 Text.
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Figure 4.1: Phylogeny of three novel planctomycetes and related species. The
phylogeny shown is based on concatenated protein-coding sequences of 39 highly conserved,
single-copy genes (see S1 Table). Consensus maximum likelihood trees from 1000 bootstrap
iterations are shown. Internal nodes are color-coded (indicated to the left of each tree) based
on bootstrap support values. Taxa are color-coded by the type of habitat from which they
were isolated: marine [blue], freshwater [orange], marine/brackish [purple], soil [green].

4.4.3 The sulfatases

Sulfatase genes comprise one of the largest families in the Planctomycetes,

especially in the genus Rhodopirellula (Fig 3, S6 Table). Both sulfatases and GHs

are needed for degrading algal cell walls, allowing bacteria to access fixed carbon in

sulfated polysaccharides, which can make up in excess of 50% of the dry biomass of

macrophytic algae [14,44,45]. Sulfatases catalyze the hydrolysis of sulfate esters and

couple with sulfotransferases to facilitate both degradation and synthesis of com-

pounds containing esterified sulfate. The various sulfatases, including alkyl- and

arylsulfatases, can have distinct specificities, metabolizing sulfated carbohydrates,

proteins and lipids, as well as sulfated glycosaminoglycans and glycolipids [46–48]. A

diversity of carbohydrate sulfates can serve as sulfatase substrates, including polysac-

charides in cell walls of marine macrophytic algae [27,49,50].

Various sulfatase types are encoded on the planctomycete genomes. Count-

ing only “full-length” ORFs (encoding at least 350 amino acids and containing the

active site), there are 122 putative sulfatases in P1, 129 in P2 and only 20 in P3;

results for all 23 organisms in our analyses are given in Fig 3a. The active sites of
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Figure 4.2: Distribution of COG functional categories in paralogous gene fami-
lies. (a) Distribution across families containing only singletons, or with 2–5 members or 6+
members. Paralogous gene families were identified using a network-based approach (see S1
Text). (b) Definition of COG categories on the x-axis of (a) (and also in S4 Fig).

sulfatases are defined by the sequence C/S-X-P-S/X-R-X-X-X-L/X-T/X-G/X-R/X,

in which the cysteine is modified to a formylglycine. The various sulfatases are clas-

sified as iduronate-2-sulfatases, heparan-N-sulfatases, mucin-desulfating sulfatases,

GALNS sulfatases, with many in the more general arylsulfatase category. The num-

ber of full-length sulfatases in each category, determined by phylogenetic analyses,

is given in Fig 3b. Based on signal sequence predictions, 79, 91 and 10 sulfatases

from P1, P2 and P3, respectively, enter the secretory pathway, likely accessing their

substrates from the extracellular space. Enzymes involved in conversion of the sul-

fatase active site cysteine to a formyl-glycine [51] are also encoded on the P1, P2

and P3 genomes, with 7, 7 and 8 genes, respectively (S2 Text).

While the distribution of sulfatase genes on the P1, P2 and P3 genomes

appears to be largely random, some occur in clusters resembling operons (Fig 4).

In P1, P2 and P3 there are 10, 20 and 3 instances, respectively, where sulfatase

genes reside at adjacent positions on the genome, with a single pair in P1 (IMG:

2643311965, 2643311966) that shows relatively high amino acid sequence identity
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Figure 4.3: Sulfatase gene distribution and sub-classification in Planctomycetes
and related strains. (a) Number of sulfatase genes in various Planctomycetes and related
strains. Only sulfatase genes encoding the active site and at least 350 amino acid residues
were included. (b) Functional subclasses of sulfatases present in P1, P2, P3, R. baltica
and R. maiorica. For each organism, the total number of sulfatases (at least 350 residues)
is divided into the following subclasses: choline/iduronate-2-sulfatases, mucin-desulfating
sulfatases, heparan-N-sulfatases, and unclassified sulfatases including general arylsulfatases
and galactosamine N-acetyl-6-sulfate sulfatases.

(76%) and thus likely arose via a recent tandem duplication. The remaining adjacent

pairs are dissimilar (avg. BLASTp sequence identity for P1, 29.0±6.1; P2, 27.6±3.7;

P3, 26.7 ± 3.4) and have significantly higher sequence identity to putative PVC

orthologs than to each other (avg. BLASTp identity for P1, 64.0± 12.7; P2, 68.1±
10.6; P3, 51.2 ± 9.9). Also, potential orthologs encoding adjacent P1, P2 and P3

sulfatases are rarely adjacent on the genomes of other closely related Planctomycetes.

This suggests that most tandem arrangements of sulfatase genes in P1, P2 and P3

are the consequence of genomic rearrangements and/or HGT, rather than recent

tandem duplications. Interestingly, the likelihood of finding even a single pair of

adjacent sulfatase genes on the P1, P2 and P3 genomes is very small (permutation

test with 10,000 permutations, P1, p = 0.0; P2, p = 0.0; P3, p = 0.0) assuming
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Figure 4.4: Changing context of sulfatase genes in operons. (a) Changing genetic
context of individual sulfatase genes of a co-oriented P2 sulfatase gene cluster, resembling an
operon. Adjacent genes are joined by a black line, and all genes are color-coded by predicted
function as given on the right-hand side of the figure. P1 and R. rubra homologs for individ-
ual sulfatase genes in the P2 operon are shown. For each homolog, the immediate context of
adjacent, co-oriented genes within their respective genomes is also shown. Reciprocal best-
hit genes across organisms are connected by thick colored lines (gray, green, cyan). ORF
lengths and intergenic distances are not drawn to scale. (b) A heterophyletic gene cluster
resembling an operon in P3. Seven consecutive genes are color-coded by predicted function
as given on the right-hand side of the figure. The distribution of top 10 BLASTp hits across
various bacterial phyla is provided for each gene.

random genome rearrangements with no tandem duplications. This suggests that

functional associations (e.g., co-expression of adjacent genes working together to

degrade specific polysaccharides) could drive sulfatase gene clustering.

Interestingly, a gene containing two sulfatase domains is present in both

P1 (IMG: 2643314295) and P2 (IMG: 2643291516), likely resulting from the fusion
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of two unrelated, adjacent sulfatase genes. The two ancestral domains of this gene

appear to have different evolutionary origins; the protein encoded by the 5’ domain

most closely resembles ( 60% amino acid identity to P1 and P2 orthologs) an arylsul-

fatase A from the Verrucomicrobia bacterium SCGC AAA164-E04 (GI: 518992481),

while the protein encoded by the 3’ domain is most similar ( 50% amino acid identity

to P1 and P2 orthologs) to an iduronate-2-sulfatase/choline sulfatase of Saccharicri-

nis fermentans (GI: 763406655) in the Bacteroidetes. We estimate based on protein

length (¿600 amino acids) that there are 34 and 21 sulfatase genes on P1 and P2 that

encode multi-domain proteins, most often containing glycoside hydrolase and hypo-

thetical protein domains, but also including alginate lyase, esterase/lipase, laminin

G, and HEAT 2 repeat domains. Gene fusion appears to contribute to the evolution

of multi-domain sulfatase genes, potentially pairing sulfatases with various other

functions.

The expansion of the sulfatase gene family appears to be accompanied by

high rates of genomic rearrangement consistent with prior observations [34] that can

lead to innovation of protein function (e.g., domain swapping and gene fusion) as well

as the generation and modification of operons (Fig 4a). In P1, P2 and P3, co-oriented

gene clusters resembling operons are often heterophyletic (i.e. member genes with

different evolutionary backgrounds). One such P3 gene cluster is shown in Fig 4b, in

which member genes, including two sulfatase genes and an α-L-fucosidase gene, have

highly discordant BLASTp hit distributions (across NCBI nr); the closest hits for

individual members occur in the Bacteroidetes, Proteobacteria, Armatimonadetes

and the Planctomycetes. Furthermore, there appears to be a high turnover rate

of member genes within such clusters as evidenced by rearrangements of sulfatase

genes between various planctomycete OTUs, even within the same genera (Fig 4a).

Despite this high turnover rate, likely caused by random genomic rearrangements

and HGT, genes encoding polysaccharide degradation enzymes are often found in

clusters (e.g., adjacent sulfatase genes, Fig 4a and 4b). One possible explanation

is that diversification of operons can confer an adaptive advantage, and is therefore

selected.

4.4.4 Polysaccharide degrading enzymes

Sulfated polysaccharides like agars, carrageenans and porphyrans have high

proportions of galactose monomers within a polymeric hexose structure. The por-

phyran polymer, like agarose, has a backbone of repeating disaccharide units, but
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the disaccharide is a 3-linked β-D-galactosyl unit alternating with a 4-linked 3,6-

anhydro-α-L-galactose. Some of the monomeric units are sulfated at the C6 position

while others may be methylated [52]; this is not characteristic of agarose.

Based on P1, P2 and P3 genome sequences, these organisms can synthesize

a large number of GHs and polysaccharide lyases (PLs) that have the potential to

degrade both 1,3 and 1,4 hexose polymers. GH and PL subclasses that are abundant

or over-represented in at least one of the three planctomycete isolates are given in

Table 2, with descriptions of the subclasses in S7 Table. Many subclasses are also

represented in other Planctomycetes, in members of the larger PVC superphylum,

and in Z. galactanivorans. The distributions of genes across all CAZY families and

subclasses for the 23 genomes are provided in S2 Data.

Enzymes specifically involved in degradation of the Porphyra cell wall in-

clude the β-porphyranases in the GH16 subclass and the β-agarases that cleave β-1,4

glycosidic bonds (GH16, GH50, GH86, and GH118) [50]. Genes encoding members

of these GH subclasses are unevenly distributed throughout the Planctomycetes. Pu-

tative orthologs for GH16 β-porphyranase genes, porA-porE (proteins characterized

for Z. galactanivorans), are present in some characterized planctomycete genomes,

but none encode a full set. R. rubra and R. sallentina each contain 3 β-porphyranase

genes, one of which appears to be porD, while R. maiorica has only one ortholog. P3

and P. mikurensis each have one β-porphyranase gene, which clade with 72% node

support (S5a Fig), while P1 and P2 have no β-porphyranase gene. Genes encoding

GH16 β-agarases, such as those of Z. galactanivorans (agaA-agaD), are not present

in P1, P2 or P3. Within the Planctomycetes, these genes are only in R. sallentina

(1 gene) and P. mikurensis (2 genes); their phylogenetic placement in the context of

four Z. galactanivorans β-agarase genes is presented in S5a Fig. There are, however,

several Planctomycetes with GH50 and GH86 β-agarases, including P1, P2 and P3;

GH118 β-agarases are not present in P1, P2 or P3.

GH117 α-neoagarobiases may be keystone enzymes for cleaving α-1,3 gly-

cosidic linkages present in agarose [53]. Proteins of the GH43 subclass, which are

structurally related to the GH117s [53], includes galactosidases, xylanases, arabi-

nases and xylosidases, all of which would likely hydrolyze linkages in macroalgal cell

walls. Furthermore, GH43 and GH117 proteins appear to be distantly related to the

sulfatases based on the high incidence of GH43 and GH117 domain hits (BLASTp

e-value < 10−10) within sulfatases of P1, P2 and P3.
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Table 4.2: Cell wall degradation enzymes in planctomycetes and related

species. The number of BLASTp hits (e-value < 1e−10) is shown for selected GH

and PL domains, which are involved in the degradation of algal, fungal, and vascular

plant cell walls. The rows are ordered according to the phylogeny in Fig 1. Entries

for P1, P2 and P3 are bolded in cases where the number of members within a CAZY

category has a percent rank among all shown species that is greater than 75%.

The GH16 subclass includes genes encoding κ-carrageenases, which are

found in P1 (IMG: 2643316630), L. araneosa, Z. galactanivorans, and the

Rhodopirellula, including P2 (IMG: 2643292705). Genes putatively encoding ι-

carrageenases are present only in R. rubra while λ-carrageenases are found in R.

rubra and R. sallentina. While carrageenan is not present in Porphyra umbilicalis

or any other member of the Bangiophyceae, it is the main cell wall polysaccharide of

the red alga Chondrus crispus. In most areas of the North Atlantic, including Maine

where P.um.1 was collected (S6 Fig), P. umbilicalis is positioned only 1–2 vertical

meters from rich Chondrus beds.

Several of the investigated genomes also contain multiple genes encoding

enzymes that potentially degrade fucans and alginates in brown algal cell walls. For

instance, the GH29 (α-1,3/1,4-L-fucosidase) and GH95 (α-1,2-L-fucosidase) sub-

classes are highly expanded in 3 out of 6 members of Rhodopirellula, while the other

three genomes, including P2, only contain 1 or 2 genes for these proteins (Table
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2). The GH29 and GH95 subclasses have also expanded in P3, L. araneosa, and Z.

galactanivorans. P1 and P2 contain multiple genes encoding PL6, PL9 and PL14

alginate lyases, while P3 has only a single gene member in PL6.

Some GH subclasses are represented by either zero or low membership in

P1, P2 and P3. For example, P2 has no members in GH74, GH86 and GH118. There

can also be major differences in the number of members of specific GH subclasses in

the Planctomycetes [e.g., from 74 to 0 for GH43 and from 50 to 0 for GH117 (Table

2)]. Furthermore, 13 GH subclasses have maximum and minimum representations

across the 6 Rhodopirellula genomes that differ by 10 or more members.

Cell wall polysaccharides comprise the majority of dry biomass of marine

macroalgae, providing a rich carbon source for heterotrophic bacteria. Within me-

ters of each other in the rocky intertidal and shallow subtidal zones of the North

Atlantic shore are red algae with cell walls rich in carrageenan or agar rather than

porphyran, brown algal kelps (subtidal) and rockweeds (high to low intertidal) that

contain sulfated fucans and alginate, green macroalgae that have ulvans (sulfated

glucuronoxylorhamnogalactans) and, especially in brown and green macroalgae, con-

siderable cellulose [16]. It is unclear how much specificity there is in the cell-wall

digesting capability of macroalgal-associated bacteria, but genomic analyses of their

wall digesting capabilities may help explain their relative abundances on different

groups of marine algae. Furthermore, substrate availability also impacts expression

of the bacterial hydrolytic genes. When grown on the brown algal carbohydrate re-

serve laminarin, Z. galactanivorans expresses porA and porB, which encode enzymes

that cleave neoporphyranobiose (L6S-G) in agar polymers [50]. However, when Z.

galactanivorans is grown on a red alga with an agar-containing wall, the agaA, agaB,

agaC and agaD genes are expressed, while a porphyran substrate elicits expression

of agaA, agaB, agaC, porC and porE [50].

Variation in distribution of different GH categories among the three differ-

ent planctomycete isolates raises the possibility that these bacteria have preferred

niches [30] among the macroalgae. For example, P3 appears to be adapted to de-

grading brown algal cell walls based on the large number of fucosidases encoded

in its genome; these have low representation in P1 and P2 (Table 2). P1 and P2

both appear well-equipped to live on both green and red algal cell walls based on

their expanded arsenal of cellulases, arabinases, xylanases, agarases, porphyranases,

galactanases, and carrageenases; GH10 xylanases comprise one of the largest expan-

sions in P1 and P2 (Table 2).
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4.4.5 Horizontal gene transfer

Expansion of protein-coding gene families involving intra-chromosomal gene

duplications (IGD) and horizontal gene transfers (HGT) is a key component of

adaptive evolution. The relative impacts of IGD and HGT on bacterial evolution

have been debated [42,54], with likely different roles in niche adaptation for paralogs

acquired through IGD and xenologs acquired through HGT [55].

In general, definitive evidence for HGT is difficult to obtain; however, sup-

port can be acquired through various semi-quantitative metrics involving compar-

isons against “true” evolutionary lineages (as predicted in Fig 1). These metrics

include (1) high bootstrap support for heterophyletic clades except in cases of long-

branch attraction [56], and (2) markedly higher sequence identity to gene(s) in more

distantly related organisms than to orthologs in close relatives. Using such metrics,

we predict numerous instances of HGT between the Planctomycetes and other bac-

terial/archaeal phyla and also between different genera within the Planctomycetes.

Here we highlight cases of potential HGT in P1, P2 and P3 that appear to be

associated with niche adaptations.

HGT of genes encoding polysaccharide-degrading enzymes can reflect adap-

tation to colonizing specific macroalgae. For instance, P1 appears to have acquired

its ability to degrade κ-carrageenan from the Bacteroidetes; the P1 κ-carrageenase

protein (IMG: 2643316630) clades with Z. galactanivorans and C. drobachiensis

(98% node support) (S5b Fig), and is more similar in amino acid sequence to the

protein of Z. galactanivorans (63% identity over 95% length) than to the closest

planctomycete hit [R. europaea (GI: 460274492) at 44% identity]. Also, the phy-

logeny of eight α-L-fucosidases (GH29) in P3 is indicative of mixed evolutionary

origins (Fig 5a). Only one of the eight fucosidases is terminally claded to another

planctomycete (R. sallentina), while the others have their closest known relatives in

Bacteroidetes, Armatimonadetes, and Gemmatimonadetes. Finally, both P1 and P2

show expansions in the family of PL14 alginate polysaccharide lyases, where a pair

of P1 and P2 genes exhibits high amino acid sequence identity (74%), indicating a

strong possibility for HGT of these genes (Fig 5b). HGT from free-living marine

Bacteroidetes is known to have played a significant role in increasing degradative

capability of marine Proteobacteria for digesting alginates [50] and for introducing

genes encoding enzymes involved in alginate and porphyran digestion into human

gut Bacteroidetes [26,50].

Genes in the planctomycete genomes potentially involved in adaptation to
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Figure 4.5: Phylogenies of polysaccharide-degrading enzymes indicate host
adaptation. (a) Phylogeny of P3 α-L fucosidases (GH29). The genes included in the
phylogeny are top hits having more than 50% sequence identity at 80% query coverage that
were determined by BLASTp of each of the eight P3 fucosidases to the NCBI nr database
and to the genomes included in this study. (b) Phylogeny of PL6 and PL14 alginate lyases.
The genes included in the phylogeny are top hits having more than 50% sequence identity
at 80% query coverage that was determined by the BLASTp of each of the P1, P2 and
P3 alginate lyases to the NCBI nr database and to the genomes included in this study.
In both (a) and (b), genes are color-coded by organism as follows: Planctomycetes [blue],
Bacteroidetes [green], Proteobacteria [purple], Verrucomicrobia [red-orange], Armatimon-
adetes [magenta], Gemmatimonadetes [brown], unclassified [gray]. Node support is from
1000 bootstrap iterations.

environmental stress are those most likely acquired by HGT. Multi-drug efflux pumps

(pfam00873) are responsible for ejecting environmental and intracellular toxins such

as metabolites, dyes, detergents, bile salts and antibiotics from cells. In E. coli, mu-

tations in genes associated with TolC-dependent efflux systems cause up-regulation

of various stress responses in E. coli [57]. P1 and P2 both contain a gene for an

AcrB-type efflux pump, which is an inner membrane component of a TolC system.

These P1 and P2 genes (IMG: P1–2643312425, P2–2643289582) encode proteins

that are highly similar in sequence (83% identity over 99% of length) and do not

appear to have vertically transmitted homologs in other Planctomycetes including

Rhodopirellula, the genus to which P2 belongs (S7a Fig). The next closest match to

the P2 protein is encoded by R. maiorica, at 52% sequence identity. These observa-

tions could reflect recent HGT between P1 and P2, or sequence convergence driven

by purifying selection from shared environmental pressures reflecting variation in

substrate specificities.

Amino acid transporters can be part of cellular stress response mechanisms,

including those of the acid resistance system in E. coli [58], salt-stress induction of
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proline transporters in yeast [59], and the eukaryotic response to protein synthesis

inhibition by oxidative stress [60]. A highly conserved amino acid transporter in

P1 and P2 (66% amino acid identity over 99% of the length; IMG: P1–2643312291,

P2–2643289856), but not encoded on any of the other planctomycete genomes, dis-

plays homology to transporters encoded on the genomes of a few members of the

Bacteroidetes and Proteobacteria, and more broadly to various halophilic archaeal

genomes (S7b Fig); these findings suggest the occurrence of HGT from Archaea to

Bacteria, and then among a few bacterial phyla including the Planctomycetes. While

the physiological role of this transporter is not known, it may function in response

to frequent stresses in the intertidal zone, including high salinity and the absorption

of excess excitation energy.

Genomic islands (GI) are horizontally transmitted gene clusters, generally

mediated by transposable elements (TEs), that can facilitate adaptation to specific

environments by conferring a selective advantage to the recipient [61]. P1, P2 and

P3 contain putative GIs that span 4.2, 187.1 and 248.7 kbp, respectively. P3 has the

largest number of TE-associated genes (Table 1) and also contains the largest total

GI region (S8 Fig, S1 and S2 Texts). Functional predictions and the distributions

of P1, P2 and P3 genes occurring in GIs are available in S3 Data. Notably, one of

the P3 GH29 α-L-fucosidases (IMG: 2603749632) occurs in a GI. In addition, P1,

P2 and P3 and many other Planctomycetes contain degenerate tRNA gene clusters

with large numbers of partially degraded tRNAs, which are often acquired through

HGT and thus, may be dispensable to the carrier organism [62,63]. Perhaps the

most notable horizontal acquisition by the Planctomycetes is of a highly canonical

isoleucine tRNA gene (tRNA-UAU) that occurs as a single-copy within degenerate

tRNA gene clusters in several planctomycete genomes, including P1, P2 and P3.

Codon usage analysis suggests that tRNA-UAU facilitates the translation of more

recently acquired genes (such as genes in GIs), thereby increasing the rate at which

new protein functions are established (S2 Text).

4.4.6 Selenoproteins in P1 and P2

Adaptation to stress conditions has also been associated with selenopro-

teins, or enzymes containing selenocysteine (Sec) amino acid residues that gener-

ally confer increased catalytic efficiency compared to their sulfur-based, cysteine-

containing homologs [64–66]. Most known selenoproteins have redox functions [67],

and it has been suggested that the increased catalytic activities of selenoproteins
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Figure 4.6: Comparison of operons encoding genes required for selenocysteine
insertion and selenophosphate synthesis/utilization. For Proteobacteria, the two
operons shown generally represent conserved structures for the majority of Sec-encoding
and Sec-utilizing proteobacterial species. The Sec-insertion operon structure shown for P2
has not been found in other known genomes (NCBI), including P1. An additional gene is
shown that contains a transglut core domain (PFAM001841; likely to have cysteine protease
function in prokaryotes).

are most beneficial in extreme environments associated with high levels of oxida-

tive stress [68]. The largest known selenoproteome belongs to the harmful pelago-

phyte Aureococcus anophagefferens [69]. This picoplankton occurs in dense estuarine

blooms where a portion of the cells are exposed to high light, elevated temperatures

and osmotic stress [70]. Exposure to excessive light causes algae to produce reactive

oxygen species, which must be quickly detoxified to avoid cellular damage [71].

Selenocysteines are co-translationally inserted into proteins by the seleno-

some complex [72], which requires 4 dedicated selenocysteine-associated genes (S8

Table). P1 and P2 both contain full sets of genes required for Sec-insertion during

protein synthesis as well as genes for 2-selenouridine synthase (S8 Table), which im-

proves base-pair discrimination in select tRNAs. P2 has an operon-like arrangement

of these genes that is unusual in comparison to Sec-insertion operons in Proteobac-

teria (Fig 6), the phylum with the most known selenoproteomes (S2 Text); Sec-

insertion genes in P1 are not co-localized. Also, Sec-insertion genes of both P1 and

P2 appear to have mixed evolutionary origins (S2 Text). Two other planctomycetes,

G. obscuriglobus and I. pallida, contain full sets of genes required for Sec-insertion,

but neither of these genomes contain genes for 2-selenouridine synthase (S8 Table).

We did not find genetic evidence for selenocysteine usage in P3.

Genes encoding putative selenoproteins in P1 and P2 were identified as de-

scribed in the Methods, and are listed in S9 Table. In P1, a formate dehydrogenase

α subunit (fdhA) is one of six putative selenoproteins with antioxidant activity. In
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Figure 4.7: Horizontal gene transfer of selenoprotein genes reflects adaptation
to stress conditions. (a) Phylogeny of formate dehydrogenase α subunit (fdhA). Clos-
est non-redundant hits (BLASTp against NCBI nr) to the P1 selenoprotein sequence are
shown. (b) Phylogeny of formylmethanofuran dehydrogenase β subunit (fmdB). Closest
non-redundant hits to the P2 selenoprotein sequence are shown. Asterisk indicates a similar
formylmethanofuran dehydrogenase operon structure as in P2 (fmdD-fmdB-fmdA-fmdC ). In
both (a) and (b), genes are color-coded by organism as follows: Planctomycetes [blue], Pro-
teobacteria [purple], Acidobacteria [orange], Thermotogae [light blue], Firmicutes [black],
and Archaea [red], Synergistetes [cyan], unclassified [gray]. Sequences containing seleno-
cysteine are marked with [U] and cysteine-containing sequences are marked with [C]. Node
support is from 1000 bootstrap iterations.

Proteobacteria, fdhA is generally located near the Sec-insertion operon and may play

a role in maintaining the Sec-insertion and decoding traits in bacteria [73]. In P1,

the Sec-insertion genes and fdhA are not co-localized, but instead, fdhA forms an

operon with nuoEF, genes that encode NADH:ubiquinone dehydrogenase I chains

E and F (not selenoproteins). This P1 fdhA operon is well conserved (65% amino

acid identity) in the myxobacterium Plesiocystis pacifica SIR-1 (a proteobacterium

isolated from beach seagrass, Zostera sp.), but not in any other genome (in NCBI).

Phylogenetic analysis indicates that the fdhA gene was part of multiple HGT events

involving the Planctomycetes, including HGT between the P1 and P. pacifica lin-

eages (Fig 7a).

Fig 7b shows a phylogeny of formylmethanofuran dehydrogenase β subunit

(fmdB gene), which is encoded as a selenoprotein in P2, several Archaea, and two un-

classified bacteria; glycine-containing homologs occur in three other Planctomycetes:

G. obscuriglobus, S. paludicola, and Z. formosa. The closest match (71% amino acid

identity) to P2 fmdB is on a fosmid associated with an uncultured bacterium from

the freshwater lake, Lake Washington [74]. In P2 and the Lake Washington bac-

terium, fmdB is part of the fmdD-fmdB -fmdA-fmdC operon; this operon structure

also occurs in several Archaea as well as Candidatus Methylomirabilis oxyfera. Some
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organisms, including P2, contain both selenocysteine and cysteine-forms of fmdB.

In M. kandleri, these two forms are differentially expressed in response to selenium

availability [75].

4.5 Conclusion

This work has revealed numerous metabolic adaptations to the life style

of planctomycete colonists of macroalgae within the intertidal zone, including the

presence of large families of genes encoding sulfatases and hydrolases that degrade

polysaccharides, multidrug transporters, and selenoproteins. Many of the hydrolytic

enzymes allow P1, P2 and P3 to feed on the cell walls of the three major macroal-

gal groups (brown, green and red algae), but there are also suggestions of special-

ization for specific macroalgal hosts. Evidence for extensive HGT from the Bac-

teroidetes and Proteobacteria to the Planctomycetes emphasizes the intimate asso-

ciations among these groups of bacteria on the macroalgal thallus. The interactions

of the bacteria with each other, and with their associated macroalgae, are likely to

reflect important physiological interactions that allow for the successful cohabita-

tion of the bacteria and alga, and also offer the potential for genetic exchange that

continually tailors bacteria to changing environmental conditions and macroalgal

distributions.
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