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The Association of Amyloid Plaque Count with a Decrease in the Complexity  
of the BOLD Signal  Observed  in  Alzheimer’s  Disease 

Lindsay Conner 

 

Abstract 

Alzheimer’s   disease   (AD)   is   a   prevalent   degenerative disease that is both 

idiopathic and highly debilitating, calling for early detection and intervention before 

extensive irreversible brain damage occurs. Here, a novel functional complexity 

measure based on information theory was applied to mark a disease-related 

reduction in stochastic low frequency (0.01-0.08 Hz) BOLD signal fluctuations at 

rest. As AD progresses, BOLD signal complexity is expected to decrease in affected 

regions, alongside an overall increase in brain amyloid burden. 

In this study, a retrospective analysis was performed on 18F-AV-45 PET and 

rs-fMRI data from 65 subjects (30 males, 35 females; mean age ± SD: 74 ± 7.4 years), 

across four clinical groups (Control, Early Mild Cognitive Impairment (EMCI), MCI, 

and AD). The regional BOLD signal complexity measures, or transient information 

(TI) values, were determined from the change in uncertainty of BOLD pattern 

prediction over time (i.e. block entropy growth rate).  

The main findings in this study included an expected regional reduction in 

functional complexity with increasing amyloid burden, as well as an unexpected, 

albeit non-significant, global increase in functional complexity with increased 

amyloid burden and disease progression. One third (27 out of 82) of the cortical and 

subcortical grey matter regions presented a significant (>90% CI) effect of brain 

amyloid load on BOLD signal complexity, including regions associated with disease-
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related! dysfunction! in! memory,! language! processing,! attention,! behavior,!

somatosensory! functions,! and!motor! functions.!With! disease! diagnosis! taken! into!

account,!only!the!EMCI!group!indicated!a!decrease!in!global!BOLD!signal!complexity!

with!increased!brain!amyloid!load.!

Analysis! of! rsEBOLD! signal! complexity! has! the! potential! to! provide! a!more!

accurate!representation!of!disease!state! than!current!amyloid!plaque!or!structural!

measures,!as!well!as!identify!the!regions!altered!by!disease!pathology.!Based!on!the!

reduced! signal! complexity! reported! in! regions! previously! linked! to! disease!

pathology! (precuneus/posterior! cingulate,! lateral! temporal! lobe,! and! frontal!

regions),! further! study! of! this! novel!metric! is! advised.!With! validation,! the! BOLD!

complexity! analysis!metric! can! be! attuned! to! use! as! a! cognitive! biomarker! in! the!

clinical!setting,!potentially! improving!disease!diagnosis,!treatment!monitoring,!and!

evaluation!of!future!treatment!options.! !
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Introduction 

 

Resting-State Functional MRI (rs-fMRI) & BOLD Signals 

The resting brain contains a wealth of information on brain activity, as 

measurable through analysis of the synchronized oxygen-metabolism changes 

between functionally connected regions (Fox & Raichle 2007; Logothetis 2008; 

Biswal 1995).  Resting-state functional magnetic resonance imaging (rs-fMRI) has 

been used to analyze functional network connectivity without some of the 

difficulties faced by task-based fMRI techniques, including a priori assumptions of 

the paradigm-disease relationship, low inter-subject reliability and intra-subject 

variability, external factors affecting attention to the task at hand, and lengthy scan 

times due to task repetitions, which are potentially altered by cognitive deficits 

(Fleisher 2009; Ances 2008; Logothetis 2004). The brain consumes 20% of the 

body’s  energy,  yet  task-based activation only accounts for approximately 5% of the 

energy use, leading to the belief that brain activity is best represented at resting 

state (Clark 1999; Fox & Raichle 2007). 

The basis of resting-state fMRI measurements is the quantification of the 

blood-oxygen level dependent (BOLD) signal. Neuronal activation results in 

increased blood flow to participating regions, causing a change in concentration of 

oxygenated (diamagnetic, negative magnetic susceptibility) and deoxygenated 

hemoglobin (paramagnetic, positive magnetic susceptibility) (Raichle & Mintun 

2006). Due to the opposing magnetic susceptibilities, distortion of the magnetic field 

and subsequent fMRI image contrast occurs (Fox & Raichle 2007; Ogawa 1990).  
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Since resting-state BOLD signals are believed to indirectly represent neural 

activity, they carry potential for use as a measure of disease-associated loss of 

cognitive function. The components of resting-state BOLD signals include 

spontaneous metabolic and neuronal fluctuations, physiological noise (cardiac and 

respiratory pulses), and thermal noise from the scanner (Liu C 2012; Raichle & 

Mintun 2006). Of these, the contrast between metabolic and neuronal spontaneous 

low frequency fluctuations (0.01-0.08 Hz) reflects the functional connectivity 

between structurally unconnected brain regions (Fox & Raichle 2007; Wang 2007). 

 

Conventional Analysis of rs-fMRI BOLD Signals 

 Conventionally, resting-state fMRI data has been analyzed using correlations 

to infer functional connectivity within brain networks.  Although this approach has 

been highly informative, the use of correlations rests on the fundamental 

assumption that BOLD fluctuations are caused by deterministic (i.e. predictable) 

processes, aside from small corruptions due to random noise (Fox & Raichle 2007; 

Raichle & Mintun 2006; Biswal 1995). This, however, seems highly restrictive given 

the current knowledge of how the brain functions.  A more general view is that the 

BOLD fluctuations are caused by stochastic processes, implying that the patterns of 

BOLD fluctuations are irregular and to some degree unpredictable (Nierhaus 2012; 

Hu & Shi 2006).  The overall objective of this study is to quantify the degree of 

irregularity in BOLD fluctuation patterns with the expectation that this approach 

provides new insight into normal and pathological brain activity, given that 
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stochastic processes are the underpinning of brain function (Nierhaus 2012; 

Stevens 2009; Hu & Shi 2006; Liu C 2012).  

To  deal  with  stochastic  processes  whose  attributes  are  “hidden,”  in  the  sense 

that there is no a priori model for the temporal patterns, the framework of 

computational mechanics, a branch of information theory, was introduced 

(Crutchfield and Feldman, 2001; Crutchfield and Young, 1989). Here, we apply ideas 

from computational mechanics and corresponding measures of complex non-linear 

dynamics to characterize resting-state stochastic BOLD patterns. Specifically, this 

study aims to quantify the complexity of stochastic BOLD patterns based on how 

quickly pattern configurations can be identified.  

 

Complexity Analysis of BOLD Signal Fluctuations 

 The proposed BOLD signal fluctuation complexity analysis metric will serve 

to measure the changes in cognitive activity in the selected brain regions and 

irregularities in functional connectivity between those regions, in an effort to 

identify functional changes in disease state. In these terms, complexity represents 

the integrity and efficiency of information processing in a system (Nakagawa 2013), 

and is quantified by the amount of time that it takes to identify (i.e. reduce 

uncertainty) the stochastic BOLD signal pattern.  According to these terms, random 

as well as regular patterns exhibit a low degree of complexity in contrast to any less 

random or less regular pattern. Healthy brains should display complex time series 

distributed throughout multiple brain regions, with a contrasting increased 
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localization and reduced complexity in a diseased brain (Nakagawa 2013; Liu Y 

2012).  

The signal analysis process uses information theory, based on the previously 

mentioned concept of computational mechanics, to measure the evolution of 

stochastic systems over time (i.e. the gain in information over time) (Schreiber 

2000). Since BOLD rs-fMRI signals are made up of irregular inhomogeneous and 

non-stationary fluctuations (i.e. not task specific), a measure of entropy can be used 

to represent the degree of randomness in the system (Hu & Shi 2006). Specifically, 

the growth rate  of  the  system’s  evolution  can  be quantified by block entropy, which 

quantifies the change of uncertainty of predicting the signal pattern over time (Hu & 

Shi 2006). A completely random (unpredictable) or periodic (predictable) system 

would have a fast rate of information generation (high entropy, patterns are easy to 

recognize), as opposed to a more complex system (more uncertainty, slower rate, 

low entropy, patterns are difficult to recognize) (Liu Y 2013; Hu & Shi 2006). In the 

case of more complex patterns, the average number of observations needed to 

reduce uncertainty is increased. The resulting measure of the combined block 

entropy and average number of observations (i.e. average block entropy growth 

rate) is known as a transient information value, or TI. Periodic or random systems 

have a TI value close to zero, whereas complex stochastic BOLD fluctuation patterns 

will have increased TI values (Liu Y 2013). Accordingly, brain regions that process 

high amounts of information (governed by processes that are highly complex) 

should exhibit high TI values in comparison to regions that process low amounts of 

information.  
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Alzheimer’s  Disease  

Alzheimer’s  disease  is  the  predominant form of age-related dementia today, 

causing progressive degeneration of cognitive function. The primary pathology 

observed during the course of the disease consists of accumulation of beta amyloid 

plaques, tau-mediated neuronal injury (neurofibrillary tangles), and cortical and 

hippocampal atrophy (Jack 2010).  The observed structural changes are thought to 

be accompanied by functional disconnection between primary networks, ultimately 

resulting in loss of cognitive abilities and disruption of daily functions. Regions of 

the Default Mode Network (DMN) and Medial Temporal Lobe (MTL) system have 

been shown to suffer from metabolic and functional disconnections, specifically in 

the hippocampus, precuneus, posterior cingulate cortex, lateral temporal lobe, and 

frontal lobe (Sperling 2009, Camus 2012; Greicius 2004; Das 2013). Structural 

changes are noted primarily in the hippocampal region, entorhinal cortex, medial 

temporal lobe, lateral temporal lobe, and frontal lobe areas (Kim 2013; Dickerson 

2008).  

Current efforts split the research focus between identifying early disease 

signs in hopes of earlier diagnosis and creating viable treatment options for use 

once the disease mechanisms are better understood. Irregularities in functional and 

structural connectivity between brain regions are believed to be the cause of some 

of   the   cognitive   deficits   observed   in   Alzheimer’s   patients,   affecting   working  

memory, episodic memory, and attention function (Delbeuck 2003; Gomez-Isla & 

Hyman 1997). A common method of visualizing and measuring the loss of 

connections is by structural imaging (MRI, CT, PET, etc.), but most discernible 
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structural changes are thought to occur after the disease has progressed and caused 

irreversible damage to the brain. Identifying early functional changes can lead to the 

detection of asymptomatic or   prodromal   Alzheimer’s   disease   (AD),   which   is  

considered as a form of Mild Cognitive Impairment (MCI) (Camus 2012).  

Currently, AD can only be confirmed through histopathology by performing a 

biopsy or autopsy. The classification of disease state as reported by ADNI in this 

study was determined through clinical criteria (McKhann 1984), based on the 

Clinician’s   interpretation   of   various   factors   including family-, self-, or clinician-

reported memory concern, level of day-to-day functionality, stability of medication 

use, presence of other diseases, and results on cognitive assessment tests: Memory 

Function Weschler Memory Scale (WMS), Mini-Mental State Exam (MMSE), and 

Clinical Dementia Rating (CDR).  

By the current disease diagnosis criteria, Controls are defined as healthy 

subjects who are non-depressed, non-MCI, and non-demented, with stable use of 

allowable medications and without a reported memory concern. Early MCI (EMCI) 

subjects demonstrate a slight decrease in any one cognitive test score (1 to 1.5 

standard deviations below control mean on any cognitive domain), have a reported 

memory concern, but have a non-AD diagnosis for cognition and functionality. MCI 

subjects display AD cognitive deficiency symptoms to a lower degree and are at a 

greater risk of developing AD, as well as score 1 to 1.5 standard deviations below 

control mean performance on the memory domain, score lower than EMCI subjects, 

and have a reported memory concern, but still cannot be diagnosed with AD due to 

maintained levels of cognition and functionality. In AD patients, cognitive 
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impairment is sufficiently great, such that there is interference with daily function 

and low memory function test scores (McKhann 1984). 

 

Current Study 

This study implements the BOLD signal fluctuation complexity analysis 

technique developed by Dr. Yinan Liu from the Center for Imaging of 

Neurodegenerative Diseases (CIND) at the VA Medical Center and University of 

California, San Francisco (Liu Y 2013). The focus of this research is to use 

information theory to show that the BOLD signal fluctuation patterns are 

predictable, and determine to what extent these measures represent Alzheimer’s  

disease state. 

The function-based complexity analysis method will be compared to the pre-

existing structural analysis method of brain amyloid plaque count from Positron 

Emission Tomography (PET) 18F-AV-45 (Florbetapir) uptake, in order to test the 

novel biomarker’s   effectiveness, limitations, and the possible association with 

harmful amounts of brain amyloid plaque. The Gold Standard for comparison of 

both markers is the clinical diagnosis (Healthy Controls, EMCI, MCI, and AD) 

reported by the  Alzheimer’s  Disease  Neuroimaging  Initiative (ADNI) database, from 

where all of the study data was retrieved (http://adni.loni.ucla.edu).   

In this retrospective, multicenter, cross-sectional study, I expect to observe 

both a global and a selective regional (i.e. regions affected by disease progression) 

reduction in BOLD signal fluctuation pattern complexity in the presence of brain 
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amyloid, without regard to clinical diagnosis. I also expect to detect a reduction in 

BOLD signal complexity with disease progression and increased amyloid plaque.  

 

Materials and Methods 

 

Participants 

 Subjects for this study were selected from the ADNI database conditional of 

the availability of at least one rs-fMRI scan and PET 18F-AV-45 (Florbetapir) brain 

amyloid data. All ADNI data passes strict quality control (QC) criteria for admission 

into the database. For further QC, the chosen subjects were assessed for adequate 

population spread and group matching characteristics (based on age, group size, 

gender distribution, cognitive testing (ADAS-Cog score), PET and fMRI scan time-lag, 

and SUVr & CSF biomarker trends), as well as multiple scan QC steps during pre-

processing.  

At the time of the study, complete data was available from the sixty-five 

subjects, comprised of 30 males and 35 females between 58 and 90 years old (mean 

age ± SD: 74 ± 7.4 years; Table 1). Data consisted of one set of PET-amyloid data 

(Screening) and one to four rs-fMRI scans (Screening, 3 months, 6 months, 1 year). 

Subjects were distributed across four groups by clinical diagnosis: 15 healthy 

controls (Control), 28 Early Mild Cognitive Impairment (EMCI), 17 Mild Cognitive 

Impairment (MCI), and 5 Alzheimer’s   disease (AD). The uneven distribution was 

based on availability of data, but can also be attributed to the prevalence of EMCI 
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and MCI diagnoses as opposed to progressed AD, which is more difficult to 

confidently diagnose.  

The primary scope of this project is to provide a predictive metric for 

asymptomatic  developing  Alzheimer’s  disease,  so  analyzing  changes  in  early disease 

state (EMCI & MCI) will be instrumental in determining functional changes before 

irreversible disease progression. Diagnostic groups displayed an overlap in SUVr 

ranges without clear cutoffs, since brain amyloid load varies between individuals, 

but the expected increase in brain amyloid with disease progression is present. The 

ranges are higher than SUVr values reported in the literature, but the relationship 

with disease remains consistent (Camus 2012; Fleisher 2009).  
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Image Acquisition 

 All scans used in this study were acquired by ADNI-participating institutions, 

followed ADNI-regulated protocols, and passed the ADNI QC process. Scan 

parameters and protocols were obtained from the ADNI website (http://www.adni-

info.org/Scientists/ADNIStudyProcedures).  

PET 

 The 18F-AV-45 uptake PET imaging protocol called for a 10 mCi (± 10%, 

without saline dilution) injection of Florbetapir via a 5-10 second intravenous bolus 

injection. The PET emission scan began 50 minutes post-injection and lasted for 20 

minutes of continuous scanning (four 5-minute frames). An attenuation correction 

scan was performed at 40 minutes post-injection for CT-PET scanners as a CT scan, 

and as a transmission scan post-emission scan for PET-only scanners. Images were 

reconstructed directly after acquisition to allow for an immediate rescan in the case 

of motion or artifacts. Scans underwent a single 3D iterative reconstruction (128 x 

128 grid, 256 mm FOV, 2 mm voxel size, 3.27 mm slice thickness) using filtered back 

projection and no smoothing filter. 

rs-fMRI 

For resting-state functional BOLD signal analysis, three MR scans were 

acquired on 3T Philips MR scanners (total scan time 7 minutes). First, a structural 

T1-weighted scan (TR 2300 ms, TE 3.37 ms, TI 950 ms; flip angle 7°, 1 x 1 x 1 mm3 

resolution) was acquired for anatomical labeling and segmentation, using a spoiled 

fast gradient echo sequence during inversion recovery (MP-RAGE or IR-SPGR). Next, 

a 3D T2-weighted scan (TR 3000 ms, TE 356 ms, echo train 109, 1 x 1 x 1 mm3 
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resolution) was acquired for co-registration of the rs-fMRI and structural T1-w 

scans, using variable flip angle turbo spin-echo sequencing. Finally, the rs-fMRI scan 

(TR 3000 ms, TE 30 ms, flip angle 80°, NEX 1, 140 time points, single echo, 48 slices, 

3.3 x 3.3 x 3.3 mm resolution) was acquired using a gradient-echo echo-planar 

imaging (GE-EPI) sequence.  

 

Image Processing 

The total cerebellum normalized Standardized Uptake Value ratio (SUVr) of 

18F-AV-45 from PET data was obtained directly from the ADNI database and used as 

a direct measure of brain amyloid load. The rs-fMRI raw images were obtained raw, 

and were processed and analyzed for the BOLD signal complexity analysis measure. 

As a global comparison, the primary analysis requires only one rs-fMRI scan, for 

which the scan acquired closest to the PET acquisition date (typically 1 month after 

the Screening fMRI acquisition) was selected. Future studies may implement a 

longitudinal comparison of complexity changes based on all available fMRI scans, 

but for this study, only the initial diagnosis and PET data was available for 

comparison.  

PET 

 The 18F-AV-45  PET  scans  were  processed  by  Dr.  William  Jagust’s laboratory 

of the Helen Wills Neuroscience Institute, of UC Berkeley and Lawrence Berkeley 

National Laboratory. The scans were processed with the FreeSurfer image analysis 

suite (http://surfer.nmr.mgh.harvard.edu/), using cutoff values derived from the 

data to determine regional and total Florbetapir SUV ratios. The regions of interest 
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reported for amyloid count included cortical grey matter uptake averages (frontal, 

cingulate, parietal, and temporal), as well as reference regions (brainstem, 

cerebellar grey matter, whole cerebellum), and the whole cerebellum normalized 

uptake. For the purposes of this study, the whole cerebellum normalized SUVr will 

represent the whole brain amyloid load.  

rs-fMRI 

The rs-fMRI series were downloaded in 4D NIfTI format from the ADNI 

database and then split into 3D slices for ease of processing. The pre-processing 

steps of the rs-fMRI scans implemented in this study are consistent with previously 

reported analysis methods (Chao-Gan & Yu-Feng 2010; Vergun 2013). Rs-fMRI 

image processing was performed using tools in the SPM8 software package 

(Wellcome Institute of Cognitive Neuroscience, London UK), MATLAB (The 

MathWorks, Inc., Massachusetts US), and R Project statistical analysis program 

(http://www.r-project.org/). 

First,   each   subject’s   selected   fMRI   scan  underwent removal of unnecessary 

leading data (20 out of 140 time points), followed by slice-timing correction, to 

offset the EPI sequence 3 second difference between acquisition of the first and last 

slices and to correct for gaps. Next, realignment of the time series was performed 

based on the estimation of misalignment and re-slicing to correct for subject motion. 

Spatial smoothing with an isotropic 8 mm Gaussian Kernel was applied to the 

output image to increase the signal-to-noise ratio (SNR). Next, the T1-weighted scan 

from FreeSurfer was co-registered to the fMRI scan with the parcelated T1 image as 

an intermediate, via nearest neighbor interpolation. The coregistered image then 
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undergoes a visual QC to verify alignment of coordinates between all image types. 

Following this, a bandpass frequency filter was applied to remove low-frequency 

noise (0.01 to 0.08 Hz), followed by linear detrending to remove signal changes 

from remaining physiologic noise.  

 After preparation of the rs-fMRI images, the complexity analysis method was 

applied to compare the BOLD signal fluctuation patterns, following the steps 

developed by Dr. Yinan Liu (2013), using the Flexmix and AnalyzeFMRI packages 

from the R Project statistical analysis program. Per subject, the complexity analysis 

code splits the fluctuations within each voxel into 20 bins (within the range of 20-

60, determined from the estimated relationship between regional TI values). Then, 

block entropy (H(L)), excess entropy (EE), and transient information (TI(L)) maps 

are created for the entire brain. The TI values from the TI(L) map, after 

segmentation into 82 FreeSurfer cortical and subcortical grey matter regions 

(Figure 1), serves as a measure of regional signal complexity for each subject. 

 

Statistical Analysis 

 The regional BOLD complexity scores (TI) and whole brain normalized 

(SUVr) values were evaluated to test the two hypotheses of this study. First, the 

global BOLD signal complexity was determined by averaging data from the 82 

cortical and subcortical grey matter regions, per subject. To assess the relationship 

between overall signal complexity and brain amyloid load, the global complexity 

values were then compared to the respective whole brain normalized SUVr, without 

regard of clinical group. To test the effect of brain amyloid on BOLD signal 
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complexity across clinical diagnosis group, the global SUVr and complexity values 

were separated by group and compared. 

 

 

Figure 1. Anatomical map of selected FreeSurfer cortical and subcortical grey matter regions. For 
analysis, the aparc and aseg maps are combined to form a cortical and subcortical aparc+aseg map. 
Images adapted from Klein & Tourville 2012 and Strangman 2010. 

 

Next, to determine if certain brain regions were more altered than others, the 

regional relationship between complexity and total brain amyloid load was 

analyzed. Complexity scores (TI) from all subjects, regardless of clinical group, were 

evaluated with a linear mixed effects model that separated between and within 

subject variability across regions. In addition, variations in TI were covariate for age 

and presence of APOE4 alleles and referenced to the complexity of the bilateral 
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thalamus region. The effect of brain amyloid on signal complexity was shown to be 

significant in some regions, with negative correlations between TI scores and brain 

amyloid load (i.e. decreasing TI values as amyloid load increases). The strength of 

the association between the two factors was determined at the 90, 95, 98, and 99% 

confidence levels.  

 

Results and Discussion 

 

Global BOLD Signal Complexity and Brain Amyloid 

 For all subjects, without respect to clinical diagnosis, the global comparison 

of BOLD signal complexity (TI) and brain amyloid (SUVr) showed a non-significant 

trend toward increased signal complexity with higher amounts of brain amyloid 

load (Figure 2). The distribution of complexity scores is seen to focus around the 

low to medium range (10-30), and the SUVr values are distributed within the 0.95-

1.75 range.  Also, dense clusters are noted in the low to medium complexity, low to 

medium amyloid area. 

 

Regional BOLD Signal Complexity and Brain Amyloid 

 Twenty-seven out of the eighty-two selected cortical and subcortical grey 

matter regions were found to have a significant (>90% CI) effect of brain amyloid 

load on BOLD signal complexity (Table 2). Of the affected regions, the putamen, 

pallidum, caudate nucleus, anterior cingulate gyrus, and pars opercularis regions 
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showed the highest negative association (>99% CI) of signal complexity with brain 

amyloid.  

 

 

Figure 2. Comparison of the global BOLD signal complexity values (TI) to the total cerebellum 
normalized florbetapir uptake (SUVr). BOLD signal complexity is observed to increase slightly (<1%) 
with increasing brain amyloid. 

 

Diagnostic Group Comparison 

 With clinical diagnosis taken into account, the trends of the disease 

population were compared to that of the control population (Figure 3). The Control 

group shows a spread of complexity values widely distributed throughout the full 

SUVr range, with a cluster in the low to medium complexity, low amyloid range. The 

highest complexity values are also from the Control group. 
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Taken together, the disease groups display an even spread throughout the 

amyloid range, with higher density of subjects in the low to medium complexity 

range. In the EMCI group, complexity is seen to decrease with increased amyloid 

load (Figure 4), as predicted. In contrast, for the MCI group, there is an overall trend 

of rising complexity with an increase in amyloid load (Figure 5). Additionally, MCI 

subjects become less prevalent and more distributed in the high amyloid load 

region. With only 5 subjects, it is difficult to determine statistically whether the AD 

group shows a significant effect, but the subjects are noted in the high amyloid 

range, with medium to high complexity values.  

As expected, the group averages of total brain amyloid load increased with 

disease progression (Table 3). Surprisingly, the average global complexity values for 

the disease groups also increased with disease progression, whereas the Control 

group showed a large variation.  

 

 

Table 3 Diagnostic Group Comparison 
Group Avg TI Avg SUVr 
      
Control 24.9 ± 10.9 1.18 ± 0.25 
EMCI 20.8 ± 6.4 1.21 ± 0.23 
MCI 22.8 ± 7.9 1.20 ± 0.22 
AD 25.4 ± 8.8 1.47 ± 0.14 
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Figure 3. Comparison of global BOLD signal complexity values (TI) to total cerebellum normalized 
florbetapir uptake (SUVr) by clinical diagnosis. 

 

 

Figure 4. Comparison of global BOLD signal complexity values (TI) to total cerebellum normalized 
florbetapir uptake (SUVr) for Early Mild Cognitive Impairment group; showing a decrease in signal 
complexity with increasing brain amyloid. 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

0.8 1 1.2 1.4 1.6 1.8 

G
lo

b
al

 C
om

p
le

xi
ty

 (
T

I)
 

Total Cerebellum Normalized Amyloid (SUVr) 

Global Complexity vs. Brain Amyloid  
by Clinical Group 

Control 

EMCI 

MCI 

AD 

R² = 0.045 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

0.8 1 1.2 1.4 1.6 1.8 

G
lo

b
al

 C
om

p
le

xi
ty

 (
T

I)
 

Total Cerebellum Normalized Amyloid (SUVr) 

Global Complexity vs. Brain Amyloid 
EMCI Group 



 20 

 

Figure 5. Comparison of global BOLD signal complexity values (TI) to total cerebellum normalized 
florbetapir uptake (SUVr) for Mild Cognitive Impairment (MCI) group; showing an increase in signal 
complexity distribution with increased brain amyloid. 

 

Discussion of Main Findings 

 The main findings in this study were consistent with the hypothesized 

regional reduction in functional complexity with increasing amyloid burden, 

regardless of disease. However, global changes in functional complexity were not 

fully consistent with the expected relationship with increased amyloid burden, 

despite diagnostic group differences.  

The regional relationship found in this study, as summarized in Table 2, best 

represents the effect of neurodegenerative amyloid plaque pathology on the 

cognitive processes. Various regions with structural or functional connections to 

regions   with   known   association   with   Alzheimer’s   disease   symptoms   (i.e.  

hippocampus, limbic system, basal ganglia, Medial Temporal Lobe, and Default 
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Mode Network) were identified. Cognitive and functional changes caused by Mild 

Cognitive   Impairment   and   Alzheimer’s   disease   damage   include   memory   loss,   the  

inability to process and form new memories, behavior changes, language issues, as 

well as loss of motor control, sensory perception, and control of bodily functions.   

In this study, reduced complexity was observed in many regions associated 

with these changes. Specifically, cognitive changes (i.e. memory dysfunction and 

language processing) can be linked to the effect observed in the entorhinal cortex, 

precuneus, caudate nucleus, superior & inferior frontal cortex, mid-frontal cortex, 

and temporal & parietal regions (Sperling 2009; Greicius 2004; Grahn 2008; 

Klingberg 2006; Greenlee 2007; Neufang 2011; Blaizot 2010; Koenigs 2009; 

Wolpert 1998; Penniello 1995; Scheff 2011). Attention and behavioral dysfunction 

can be attributed to the changes reported in the frontal and temporal regions, 

caudate nucleus, and anterior cingulate (Koechlin 2011; Neufang 2011; Van Hoesen 

2000; Blaizot 2010; Etkin 2011; Grahn 2008). In addition, somatosensory and 

sensorimotor alterations are connected to the changes in the orbitofrontal area, 

precentral & postcentral gyri, paracentral area, and basal ganglia region (Jong 2008; 

Van Hoesen 2000; Bonni 2013).  

The results of the global comparison of brain amyloid and BOLD signal 

complexity show a spread of mostly low to medium complexity values throughout 

the brain amyloid range. This spread most likely occurs due to the averaging of all 

selected brain regions, which includes both high activity regions and low activity 

regions. Another possible explanation is that the divergence in the relationship 

between BOLD signal complexity and amyloid load reflects compensatory 
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activations in some brain regions in response to compromised functions in other 

regions. To further explore this possibility, an evaluation of the regional complexity 

variations is warranted. The cluster of global complexity values in the low to 

medium range further supports the possibility of averaged effects. Also, a partial 

volume effect from white matter and CSF inclusion due to the use of large 

anatomical ROIs has potentially contributed to this problem. Studies involving the 

correction of partial volume effect will be necessary to determine the extent to 

which structural variations mimic changes in functional complexity. 

 When the global effect is separated by clinical diagnosis, some trends begin 

to become apparent. In terms of the brain amyloid and disease state relationship, 

the majority of subjects are distributed throughout the range, with a clustering of 

both control and disease-state subjects in the low to medium amyloid area. This 

supports the need for a more specific measure of disease detection and staging, as 

the variation between subjects does not appropriately represent dysfunction. The 

majority of AD subjects are found in the high amyloid range, and a cluster of Control 

subjects is present in the low amyloid range, which follows more closely with the 

expected trends.  In terms of BOLD signal complexity, the Control and EMCI subjects 

have the highest values, which supports the theory that BOLD signal complexity 

declines with increasing stages of cognitive impairment. The EMCI group, which is 

best represented in this study due to a higher sample size (43% of the selected 

sample), displays the expected decrease in overall signal complexity with the 

increase in brain amyloid.  
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Limitations and Future Studies 

The sensitivity of this study was constrained by the small sample size of 65 

subjects, which limits the ability to generalize regional changes to larger 

populations. However,  the  regional  effects  were  consistent  with  Alzheimer’s  disease  

pathology. Further studies should be implemented to test this metric, with larger 

sample sizes for all groups, specifically with better representation of subjects 

diagnosed  with  Alzheimer’s  disease.  

The previously mentioned limitation of partial volume effects (PVE) may 

have confounded variations in complexity, especially in subjects who also present 

brain atrophy. PVE corrections need to be developed for complexity measures in rs-

fMRI to exclude the possible resulting imitation of complexity changes.  

The use of averaged complexity values over large anatomical regions does 

not account for the heterogeneity of a functional measure of signal complexity 

within each region. To take this into account, voxel-wise analysis or histogram 

analysis can be used to define smaller and more homogenous regions. However, this 

correction method may come at a loss of statistical power due to the requirement to 

control for the rate of false positives from the increased number of tests.  

Due to the previously mentioned overlap of the large anatomical ROIs into 

white matter and CSF regions, complexity values can be underestimated or averaged 

out. To correct for this problem, partial volume correction can be performed, as well 

as filtering out voxels based on weighting of grey matter. Also, a comparison of 

fewer regions, selected based on a priori knowledge of disease pathology, can 

increase the specificity of the results to disease-related changes. Also, the regions 
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would correspond better to the functional metric used in this study if they were 

defined by functional ROIs, such as Broadmann areas.  

Looking at a global measure in a cross-sectional study suffers from inter-

subject variability, resulting in averaged effects and variability that is not directly 

related to disease state. Global functional complexity changes would be better 

represented in a longitudinal study, where intra-subject variability can be tested to 

see changes with disease progression. 

To improve the transient information complexity measure, dynamic binning 

should be considered. The current method tested the effectiveness of the metric 

using a set 20-bin split of the voxels for each subject, whereas future methods could 

change the bin size for each subject. This would avoid having all of the values fall 

into the bottom few bins in low signal regions.  

For further assessment, the distinction between complexity changes due to 

increased randomness or synchrony should be tested, based on the distribution of 

eigenvalues throughout the time series. Presumably, observing a broader 

distribution will correlate to randomness of fluctuations, thereby specifying the TI 

metric further.   

 

Conclusion 

 

 Early  detection  of  Alzheimer’s  disease  is  paramount  for  effective  disease  

modifying intervention (once such treatment becomes available) before disease  

progression leads to irreversible brain damage. 
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The goal of this study follows the primary goal of   the   Alzheimer’s  Disease 

Neuroimaging Initiative: to identify a robust biomarker of the disease for accurate 

detection. The proposed measure of functional complexity serves this purpose by 

quantifying the reduction in stochastic BOLD signal patterns at rest, which is 

representative of cognitive changes. With validation, the BOLD complexity analysis 

metric can be implemented as a cognitive biomarker in the clinical setting, with 

potential uses varying from recognition of functional changes in diagnosis, 

monitoring of treatment and disease progression, as well as assessment of potential 

treatment options. 

The signal complexity analysis method then has the potential to be expanded 

to analyze changes that occur in other neurodegenerative diseases, (i.e. Parkinson’s  

disease), where a priori knowledge of functionally-altered areas can direct the 

identification of early changes. For diseases with unknown sources or patients with 

unknown diagnoses, this method may assist by searching for regional changes in 

functional activity then making connections to the disease state.  

Analysis of the resting-state BOLD signal complexity has the potential to 

provide a more accurate representation of disease state than current amyloid 

plaque or structural measures, as well as identifying the specific regions universally 

affected in the progression of AD. Current efforts focus on detecting early disease 

changes in the precuneus/posterior cingulate, lateral temporal lobe, and later 

changes in the frontal regions. Based on the effects seen in these regions using the 

BOLD signal complexity analysis measure, efforts to improve and further study this 

novel metric would be suitable. 



 26 

References: 

Ances BM, et al., 2008. Regional differences in the coupling of cerebral blood flow 

and oxygen metabolism changes in response to activation: implications for 

BOLD-fMRI. Neuroimage 4, 1510-1521. 

Biswal B, et al., 1995. Functional connectivity in the motor cortex of resting human 

brain using echo-planar MRI. Magnetic Resonance in Medicine 4, 537-541. 

Blaizot X, et al., 2010. The human parahippocampal region: I. Temporal pole 

cytoarchitectonic and MRI correlation. Cerebral Cortex 20, 2198-2212. 

Bonni S, et al., 2013. Altered parietal-motor   connections   in   Alzheimer’s   disease  

patients.  J  Alzheimer’s  Dis  33,  525-533. 

Camus V, et al., 2012. Using PET with 18F-AV-45 (florbetapir) to quantify brain 

amyloid load in a clinical environment. Eur J of Nuc Med and Mol Imaging 39, 

621-631. 

Chao-Gan Y & Yu-Feng   Z,   2010.   DPARSF:   a   MATLAB   toolbox   for   “pipeline”   data  

analysis of resting-state fMRI. Frontiers in Systems Neuroscience 4, 1-7. 

Clark DD & Sokoloff L, 1999. Basic Neurochemistry: Molecular, Cellular, and Medical 

Aspects. Philadelphia, Lippincott. 

Crutchfield JP & Feldman DP, 2001. Synchronizing to the environment: information-

theoretic constraints on agent learning. Advances in Complex Systems 4, 251-

264. 

Crutchfield JP & Young K, 1989. Inferring statistical complexity. Phys Rev Lett 63, 

105-108. 



 27 

Das SR, et al., 2013. Increased functional connectivity within Medial Temporal Lobe 

in Mild Cognitive Impairment. Hippocampus 23, 1-6. 

De Jong LW, et al., 2008. Strongly reduced volumes of putamen and thalamus in 

Alzheimer’s  disease: an MRI study. Brain 131, 3277-3285. 

Delbeuck   X,   Van   der   Linden   M,   Collete   F,   2003.   Alzheimer’s   disease   as   a  

disconnection syndrome? Neuropsychol Rev 13, 79-92. 

Dickerson BC, Sperling RA, 2008. Functional abnormalities of the medial temporal 

lobe memory system  in  mild  cognitive  impairment  and  Alzheimer’s  disease:  

Insights from functional MRI studies. Neuropsychologia 46, 1624-1635. 

Etkin A, Egner T, Kalisch R, 2011. Emotional processing in anterior cingulate and 

medial prefrontal cortex. Trends Cogn Sci 15, 85-93.  

Fleisher AS, Sherzai A, Taylor C, Langbaum JBS, Chen K, Buxton RB, 2009. Resting-

state BOLD networks versus task-associated functional MRI for 

distinguishing  Alzheimer’s  disease risk groups. Neuroimage 47, 1678-1690. 

Fox MD & Raichle ME, 2007. Spontaneous fluctuations in brain activity observed 

with functional magnetic resonance imaging. Nature 8, 700-710. 

Gomez-Isla T, Hyman BT, 1997. Connections and cognitive impairment in 

Alzheimer’s  disease. Connections, Cognition,  and  Alzheimer’s  Disease, Hyman 

BT, Duyckaerts C, Christen Y, (ed), Berlin: Springer, pp 149-166. 

Grahn JA, Parkinson JA, Owen AM, 2008. The cognitive functions of the caudate 

nucleus. Prog Neurobio 86, 141-155. 

 



 28 

Greenlee JDW, et al., 2007. Functional connections within the human inferior frontal 

gyrus. J of Comparative Neurology 503, 550-559. 

Greicius MD, et al., 2004. Default-mode network activity distinguishes Alzheimer's 

disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci 

13, 4637-4642. 

Hu Z, Shi P. Complexity analysis of fMRI time sequences. In proceeding of: 

Proceedings of the International Conference on Image Processing, ICIP 2006, 

October 8-11, Atlanta, Georgia, USA. 

Jack  CR  Jr,  et  al.,  2010.  Hypothetical  model  of  dynamic  biomarkers  of  the  Alzheimer’s 

pathological cascade. Lancet Neurol 9, 119-128. 

Kim J, Kim YH, Lee JH, 2013. Hippocampus-precuneus functional connectivity as an 

early   sign  of  Alzheimer’s  disease:  A  preliminary   study   using   structural   and  

functional magnetic resonance imaging data. Brain Research 1495, 18-29. 

Klein A & Tourville J, 2012. 101 labeled brain images and a consistent human 

cortical labeling protocol. Front Neurosci 6, 1-12. 

Klingberg T, 2006. Development of a superior frontal-intraparietal network for 

visuo-spatial working memory. Neuropsychologia 44, 2171-2177. 

Koechlin E, 2011. Frontal pole function: what is specifically human? Trends in 

Cognitive Sciences 15, 241. 

Koenigs M, Barbey AK, Postle BR, Grafman J, 2009. Superior parietal cortex is critical 

for the manipulation of information in working memory. J Neuroscience 29, 

14980-14986. 



 29 

Liu C, et al., 2012. Complexity and synchronicity of resting state Blood Oxygenation 

Level-Dependent (BOLD) Functional MRI in normal aging and cognitive 

decline. J of Magn Reson Imaging , 1-10. 

Liu Y, Young K, Tosun D, Zhang Y, Schuff N, 2013. Mapping Degrees of Temporal 

Complexity in Resting-State BOLD Fluctuations. Unpublished manuscript. 

Logothetis NK & Wandell BA. 2004. Interpreting the BOLD signal. Annu. Rev. 

Physiol. 66:735-769. 

Logothetis NK, 2008. What we can do and what we cannot do with fMRI. Nature 453,  

869-878. 

McKhann   G,   et   al.,   1984.   Clinical   diagnosis   of   Alzheimer’s   disease:   Report   of   the  

NINCDS-ADRDA Work Group under the auspices of Department of Health 

and Human Services Task Force  on  Alzheimer’s  Disease.  Neurology  34,  939-

944. 

Nakagawa TT, Jirsa VK, Spiegler A, McIntosh AR, Deco G, 2013. Bottom up modeling 

of the connectome: Linking structure and function in the resting brain and 

their changes in aging. Neuroimage 89: 318-329. 

Neufang S, et al., 2011. Disconnection of frontal and parietal areas contributes to 

impaired   attention   in   very   early   Alzheimer’s   disease.   J   Alzheimers   Dis   25,  

309-321. 

Nierhaus T, Margulies D, Long X, Villringer A, 2012. fMRI for the assessment of 

functional connectivity. Neuroimaging - Methods, Peter Bright (Ed.), Rijeka, 

Croatia: InTech, pp. 29-46. 



 30 

Ogawa S, et al., 1990. Brain magnetic resonance imaging with contrast dependent on 

blood oxygenation. Proc Natl Acad Sci 24, 9868-9872. 

Penniello MJ, et al., 1995. A PET study of the functional neuroanatomy of writing 

impairment   in   Alzheimer’s   disease:   The   role   of   the   left   supramarginal   and  

left angular gyri. Brain 118, 697-706. 

Raichle ME & Mintun MA, 2006. Brain work and brain imaging. Annu Rev Neurosci 

29, 449-476. 

Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ, 2011. Synaptic loss in the 

inferior   temporal   gyrus   in   mild   cognitive   impairment   and   Alzheimer’s  

disease. J Alzheimers Dis 24, 547-557. 

Schreiber T, 2000. Measuring Information Transfer. The American Physical Society 

85, 461-465. 

Sperling RA, et al., 2009. Functional alterations in memory networks in early 

Alzheimer’s  disease.  Neuromol  Med  12,  27-43. 

Stevens WD, Buckner RI, Schacter L, 2009. Correlated low-frequency BOLD 

fluctuations in the resting human brain are modulated by recent experience 

in category-preferential visual regions. Cerebral Cortex 20, 1997-2006. 

Strangman GE, et al., 2010. Regional brain morphometry predicts memory 

rehabilitation outcome after traumatic brain injury. Front Hum Neurosci 4, 1-

11. 

Van Hoesen GW, Parvizi J, Chu CC, 2000. Orbitofrontal cortex pathology in 

Alzheimer’s  disease.  Cerebral  Cortex  10,  243-251. 



 31 

Vergun S, et al., 2013. Characterizing functional connectivity differences in aging 

adults using machine learning on resting state fMRI data. Frontiers in 

Computational Neuroscience 7, 1-20. 

Wang KM, et al., 2007. Altered functional connectivity in early Alzheimer's disease: a 

resting-state fMRI study. Hum Brain Mapp 10, 967-978. 

Wolpert DM, Goodbody SJ, Husain M, 1998. Maintaining internal representations: 

the role of the human superior parietal lobe. Nature Neuroscience 1, 529-

533. 

 



32




