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h 2005. A

epted by Phys. Rev. D.A nu
leon in a tiny boxPaulo F. Bedaque�Lawren
e-Berkeley Laboratory, Berkeley, CA 94720, USAHarald W. Grie�hammeryInstitut f�ur Theoretis
he Physik (T39), Te
hnis
he Universit�at M�un
hen, D-85747 Gar
hing, GermanyGautam RupakzLos Alamos National Laboratory, Los Alamos, NM 87545, USAWe use Chiral Perturbation Theory to 
ompute the nu
leon mass-shift due to �nite volume andtemperature e�e
ts. Our results are valid up to next-to-leading order in the \�-r�egime" (mL �m� � 1) as well as in the \p-r�egime" (mL � m� � 1). Based on the two leading orders, wedis
uss the 
onvergen
e of the expansion as a fun
tion of the latti
e size and quark masses. Thisresult 
an be used to extrapolate latti
e results obtained from latti
e sizes smaller than the pion
loud, avoiding the numeri
al simulation of physi
s under theoreti
al 
ontrol. An extra
tion of thelow-energy 
oeÆ
ient 
3 of the 
hiral Lagrangean from latti
e simulations at small volumes and a\magi
" ratio � = 1:22262L might be possible.Latti
e QCD simulations are ne
essarily performed in �nite boxes. Finite-size e�e
ts are 
ontrolled by the parametermL, where L is the latti
e size and m the mass of the lightest parti
le, in QCD, the pion. Physi
al results 
an beobtained in the limit mL� 1. As the pion masses a
hieved in simulations approa
h the physi
al value it be
omesharder to ful�ll this 
ondition. However, most of the 
on�gurations in large latti
es des
ribe pions traveling at largedistan
es of the order of L. Sin
e the physi
s of these soft-pions is strongly 
onstrained by 
hiral symmetry, strongtheoreti
al 
ontrol over them makes their numeri
al simulation unne
essary. One 
an thus obtain physi
al results bysimulating in smaller latti
es and using Chiral Perturbation Theory (�PT) or some other relevant e�e
tive theory toin
lude the soft-pion physi
s 
ut o� by the box size and extrapolate the results to the in�nite volume limit. Anotherway to des
ribe the same pro
edure gives added insight: The low-energy physi
s in the in�nite and �nite volume aredes
ribed by the same e�e
tive theory with the same low-energy 
onstants, sin
e the values of these 
onstantsen
apsulate short-distan
e physi
s that is not modi�ed by �nite-volume e�e
ts. The 
omparison of �nite volumelatti
e results with the e�e
tive theory predi
tion allows one therefore to determine the value of some of the lowenergy 
onstants. Those, in turn, 
an be used to determine physi
al observables in the in�nite-volume limit.This general pro
edure has been 
arried out in the r�egime mL� 1, where standard �PT 
an be applied, to avariety of one nu
leon observables, see e.g. [1℄. However, it is for mL � 1 (in the so-
alled �-r�egime [2℄) that theprogramme des
ribed above is fully realized. For su
h small boxes, most of the pion 
loud surrounding a baryon isex
luded, and we are left with a bare nu
leon. There are some modi�
ations to the usual �PT power 
ounting inthis r�egime. The �rst and obvious one is that the momenta are quantized in units of 2�=L. More importantly, thepion zero mode 
u
tuations are not suppressed, be
ome non-perturbative and need to be treated exa
tly [2℄. Theyredu
e the value of the 
hiral 
ondensate and make the 
hiral 
ondensate disappear altogether in the 
hiral limit.This is to be expe
ted sin
e there is no 
hiral symmetry breaking at �nite volumes. Re
ently, the �-r�egime in themeson se
tor and its relevan
e to latti
e QCD have been assessed in a number of papers [3℄. In the present work, weextend the idea to the one-baryon se
tor. Convergen
e in the baryoni
 se
tor is typi
ally worse than in the mesoni
se
tor, as it re
eives 
ontributions at every order in p=(4�f), unlike the meson se
tor 
ase where the expansionparameter is (p=(4�f))2. We address this issue by 
omparing the sizes of leading and next-to-leading order
ontributions in a 
al
ulation of the nu
leon mass.� pfbedaque�lbl.govy hgrie�ph.tum.dez grupak�lanl.gov

http://arxiv.org/abs/hep-lat/0407009


2We 
onsider one nu
leon in a small box of size � � L3 for 2�=(4�f) <� �; L <� 2�=m, the \�-r�egime". L is the size ofthe spatial dire
tions, � the temporal extend of the box, namely the inverse temperature. In this r�egime, �PT isvalid, ex
ept that the relative 
ounting between p and m is 
hanged. Instead of the usual 
ounting1=L; 1=� � m � p (p-
ounting), we use 1=L; 1=� � mq � pm � �, hen
e the name \�-r�egime" [2℄. For small boxes,the �rst non-zero pion mode has a momentum p = 2�=L >� �, so we in
lude the �(1232) as expli
it degree offreedom, 
ounting, in the �-r�egime, � � m � �2.THE � EXPANSION IN THE BARYON SECTORLow-energy properties (Q � 1=L; 1=�) of the system are des
ribed by the e�e
tive Eu
lidean LagrangeanL = L� + LN + L�;L� = f2TrA�A� � Bf22 Tr(�yRM�L + �yLMy�R) + � � � ;LN = N yD0N � gAN y~� � ~AN +N y[� ~D22M + gA2M f~� � ~D;A0g � 2B
1Tr(�yRM�L + �yLMy�R)+4(
2 � g2A8M )A20 + 4
3A�A� � (
4 + 14M )2i�ijkAiAj�k + � � �)℄N;L� = ��yiA(D0 +�� ~D22M )�iA + gN��yiA(wAi N +H:
:) + � � � ; (1)where we list only the terms pertinent to our 
al
ulation. The pion de
ay 
onstant is f = 92:4 MeV, �L; �R areSU (2) matri
es parameterizing the 
hiral SUL(2)� SUR(2) group and M = diag(mq ;mq) is the quark mass matrixin the isospin limit (the pre
ise 
onventions used 
an be found in Appendix A). The values of the other low-energy
onstants will be given when we dis
uss our results. The Goldstone bosons belong to the 
oset spa
e[SUL(2)� SUR(2)℄=SUL+R(2), and we are free to 
hoose an arbitrary member to be the representative of ea
h 
oset(\�x the gauge"). Instead of the usual 
hoi
e �L = �yR = � = e i���2f , we use the 
hoi
e made in ba
kground �eld
al
ulations �L = u0e i���2f ;�R = uy0e� i���2f ; (2)where u0 is a spa
e-time independent �eld and �(x) does not 
ontain zero-modes:�(x) = Xn� 6=(0;~0)�n ei 2�n0� t+i 2�~nL �~x: (3)The rationale to separate zero- and non-zero modes is that, as we will see below, the zero modes obey a di�erentpower 
ounting from the non-zero ones at small volumes where 
hiral symmetry is partially restored.The ba
kground �eld u0 only appears in those terms of the a
tion whi
h in
lude quark masses. This 
an be easilyseen by noti
ing that a non-trivial ba
kground u0 
orresponds to a 
hiral rotation of the va
uum one expandsaround. In the absen
e of quark masses, all su
h va
ua are equivalent, so the physi
s of the Goldstone bosons is thesame. The terms whi
h do however depend on the quark masses are in the isospin limit withReTr(A) = 12Tr(A +Ay): �mqBf2ReTr(u20e i���f )� 4mqB
1N yReTr(u20e i���f )N: (4)At leading order, m2 = 2Bmq is the pion mass in the in�nite volume limit.We 
an now estimate the di�erent terms of the Lagrangean. The typi
al 
u
tuations of the non-zero modes �(x) areof the order �(x) � � sin
e, for larger values of �(x), the kineti
 term is mu
h larger than one and suppresses their
ontribution to the path integral (we 
an estimate the size of the kineti
 term as 1=�4 
oming from the volumeintegral, �2 from the two derivatives and �2 from the pion �elds). A similar argument implies N � �3=2. However, asobserved by Gasser and Leutwyler [2℄, the zero-mode u0 is of order �0. We 
an 
on
lude that by noti
ing that the
oeÆ
ient of the �rst term of Eq.(4) is of order � m2f2�L3 � �0. Be
ause the zero-mode is not suppressed, it has tobe treated exa
tly. This is related to the restoration of 
hiral symmetry at �nite temperatures and volumes. In



3small boxes the zero-mode 
u
tuates over the whole group manifold, in 
ontradistin
tion to the in�nite volume limitin whi
h the zero-mode makes only small 
u
tuations around a preferred va
uum dire
tion. As shown in [2℄ theintegration over the zero-mode 
an be performed as follows. The part of the partition fun
tion whi
h 
ontains u0
an be written asZ[N;�℄ = Z [Du0℄ exp �Z d4x�m2f22 + 2m2
1N y(x)N (x)��ReTr(u20)�1� �22f2�+ 1f2ReTr(u2i�A�A) + � � ���� Z [Du0℄ esReTr(u20)�1 +ReTr(u20)�2m2
1 Z d4x N yN �1� �22f2�� m24 Z d4x �2��� X(s) exp[�X 0(s)2X(s) Z d4x ��4m2
1N y(x)N (x)�1� �22f2�+ m22 �2�℄ (5)where we dropped higher orders in the pion-�elds, s = Bf2mq�L3 = m2f2�L3=2 andX(s) = ZSU(2)[Du20℄ esReTr(u20) = I1(2s)s ; (6)with I1(x) a modi�ed Bessel fun
tion. The integration over the zero-mode performed above renormalizes thenu
leon mass (adding a term proportional to 
1 of order �4 to it) and the pion mass (by a term of order �0), as wellas the non-derivative 
ouplings: M ! M � 4m2
1 X 0(�L3m2f2=2)2X(�L3m2f2=2) ;m2 ! m2e� = 2mqB| {z }m2 X 0(�L3m2f2=2)2X(�L3m2f2=2) : (7)The e�e
tive pion mass is shown in Fig. 1. In the limit s!1, one retrieves with X 0(1)=(2X(1)) = 1, thewell-known in�nite-volume results. Noti
e that the shift of the nu
leon and pion masses due to the zero modes
FIG. 1: The e�e
tive pion mass me� as fun
tion of �L3m2f2=2, Eq. (7).
omes just from quen
hing the 
hiral 
ondensate in the �nite volume:h0 j�qqj0i�;Lh0 j�qqj0i = X 0(s)2X(s) : (8)The total partition fun
tion of the system is �nally to the order 
onsideredZ = Z [DN ℄ [D�℄ e�S0 Z[N;�℄; (9)with S0 the part of the a
tion (1) whi
h is independent of zero-modes.



4FIG. 2: Leading-order 
ontributions to the nu
leon mass.NUCLEON MASSThe shift in the nu
leon mass due to �nite volume e�e
ts is given at leading order [O(�3)℄ by the two one-loopdiagrams of Fig. 2. We �nd for the �rst diagram:M (3)a (�; L) = �3g2A4f2 1�L3 Xn� 6=0 i! + 2�n0� (2�~nL )2(2�n0� )2 + (2�~nL )2 +m2e�!!0�! �i3g2A4f2 A (� = 0;me�): (10)The se
ond diagram is M (3)b (�; L) = �4g2N�3f2 Xn� 6=0 i! + 2�n0� + i� (2�~nL )2(2�n0� )2 + (2�~nL )2 +m2e�!!0�! �i4g2N�3f2 A (�;me� ): (11)Be
ause mL;m�;�L and �� are all of order � in the � expansion, the m and � 
ontribution to these graphs are oforder O(�5), so that m (and with that of 
ourse me�) and � 
an be dropped from the expressions above.
FIG. 3: Next-to-leading order diagrams for the nu
leon mass. The square vertex represents a vertex suppressed by �, the 
rossa kineti
 energy insertion, and the 
ir
le the zero-mode mass 
ontribution. The dashed, full and double lines represent a pion,nu
leon and � propagator, respe
tively.The �rst truly spe
i�
 feature of the \�-r�egime" appears at order �4, be
ause the nu
leon mass re
eives 
ontributionsfrom the zero modes 
omputed above in Eq. (7) in addition to the graphs shown in Fig. 3. The �rst graph leads toM (4)a (�; L) = �3�
2 + 3
3f2 1�L3 Xn� 6=0 (2�n0� )2(2�n0� )2 + (2�~nL )2 +m2e� � 3
3f2 1�L3 Xn� 6=0 (2�~nL )2(2�n0� )2 + (2�~nL )2 +m2e�= �3�
2 + 3
3f2 C (me� )� 3
3f2 D (me� ); (12)with �
2 = 
2 � gA28M . The se
ond and �fth graph vanishes. The third one givesM (4)
 (�; L) = 3g2A8Mf2 1�L3 Xn� 6=0 i! + 2�n0� !2 (2�~nL )4(2�n0� )2 + (2�~nL )2 +m2e�



5= � 3g2A8Mf2 B(� = 0;me�): (13)The fourth graph is the non-perturbative 
ontribution 
omputed before in Eq. (7) asM (4)d (�; L) = �2m2
1X 0(m2f2�L3=2)X(m2f2�L3=2) ; (14)and the last one 
ontributes asM (4)f (�; L) = 2g2N�3Mf2 1�L3 Xn� 6=0 i! + 2�n0� + i�!2 (2�~nL )4(2�n0� )2 + (2�~nL )2 +m2e�= � 2g2N�3Mf2 B (�;me� ): (15)The fun
tions A ; B ; C and D are 
al
ulated in Appendix B. We redu
ed them to rapidly 
onverging sums fornon-zero values of me� and �, but no analyti
 form is available. A Mathemati
a notebook 
omputing thesefun
tions is available from the authors' website 1. In the � expansion, the 
ontributions 
oming from the �nite valuesof m and � appear only at order �5 in the loop diagrams, so we should take for these m = � = 0 at the order �4 weare working. In this 
ase, a simple form for the nu
leon mass-shift is available:ÆM (3+4) = 1f2L3 �3g2A8 + 2g2N�3 ��1� � (�=L)ML �� 3�
2f2L4 �� (�=L) � L��+ 3
3f2�L3 �2m2
1�X 0(m2f2�L3=2)X(m2f2�L3=2) � 2� ;(16)where 
0 = 1�2 X~j 6=0 1j4 � 1:675 ; � (x) = 
02 �X~j 6=0 2�je2�jx � 1 ; (17)with j = j~jj. The fun
tion � (x) is plotted in Fig. 4.
FIG. 4: �(�=L) as a fun
tion of the box asymmetry �=L.For not-so-small boxes satisfying mL � �� >� 1, the p expansion applies. The two leading orders in the expansion ofthe nu
leon mass in the p-r�egime are very similar to the ones in the �-r�egime. The di�eren
es are: i) leading andnext-to-leading order are swit
hed as the quark mass insertion proportional to 
1 is the leading (p2) order
ontribution while the diagrams in Fig. 2 are the next-to-leading (p3) 
ontribution (terms proportional to 
2; 
3 areeven higher, namely p4); and ii) the non-zero value of m and � should be kept in the diagrams. For this reason, ifwe keep the pion mass in our 
al
ulations, whi
h in the �-r�egime is a sub-leading (�5) e�e
t, our expressions will bevalid in both r�egimes and, in parti
ular, in the intermediate region (L; �) �= 1=m. This way, they also in
lude some,but not all O(�5) pie
es 2. Furthermore, sin
e the pion mass in the �-r�egime has a 
orre
tion of order �0 
oming fromthe integration over the zero-mode (Eq.(7)), we use me� in the one-loop diagrams.1 http://nta0.lbl.gov/~bedaque/index.html or http://ph.tum.de/~hgrie2 Our results are also valid in the limit � !1 as long as this limit is taken at �xedm. Ifm2� is kept �xed instead with s = m2�f2L3=2 �1, the mass term does not prevent the (~n = 0; n0 6= 0) modes to have large 
u
tuations and they be
ome non-perturbative. This is theÆ r�egime dis
ussed �rst in Ref. [4℄.

http://ph.tum.de/~hgrie


6EUCLIDEAN TIME AND THE CORRECT ANALYTIC CONTINUATIONThere is a subtlety in 
omputing the nu
leon mass using the 
ombination of the �nite-temperature imaginary timeand heavy baryon formalisms we used. To see that, 
onsider the derivation of the heavy baryon Lagrangean. Onestarts from the relativisti
 nu
leon �eld  and performs a �eld rede�nition whi
h reads in Eu
lidean spa
e (�; ~r) = e�M� (N (�; ~r) +H(�; ~r)); (18)where M is the heavy nu
leon mass and N and H are the nu
leon and (anti)-nu
leon �elds satisfying
0N = N; 
0H = �H. An \on-shell"  �eld has a fast variation with time (�0 �M ), while an \on-shell" Nsatis�es �0N � 0. The Lagrangean in terms of these new variables is� (�0
0 +M ) ! N y(�0 + � � �)N +Hy(�0 � 2M + � � �)H + � � � : (19)The \heavy" �eld H 
an then be integrated out and we are left with the usual heavy baryon Lagrangean. Noti
ethat the anti-periodi
 boundary 
ondition in the time dire
tion for the relativisti
 �eld implies a di�erent boundary
ondition for the heavy-nu
leon �eld (�; ~r) = � (0; ~r)) N (�; ~r) = �e�MN (0; ~r): (20)Therefore, the �eld N has the Fourier de
ompositionN (�; ~r) =Xn0 e�i(�(2n0+1)� +iM)�N (n0; ~r) : (21)The 
orrelators of the �eld N are de�ned only at shifted values of (imaginary) frequen
y, namely at! = �(2n+ 1)=� + iM .Consider now, as an example, the 
omputation of the �rst diagram in Fig. 2. For simpli
ity, we 
onsider the in�nitespatial volume limit. As shown in Appendix C, the sum over n 
an be performed resulting up to 
onstants inG(!) = 1�Xn Z d3k(2�)3~k2 i2�n� + ! + i� 1(2�n� )2 + !2k= Z dk4(2�)4 1k0 + ! + i� ~k2k20 + !2k � i Z dk3(2�)3 ~k2(! + i�)2 + !2k 1e�(��i!) � 1+ Z dk3(2�)3 ~k2(! + i�)2 + !2k ! + i�!k 1e�!k � 1 : (22)where ! is the external energy and !2k = ~k2 +m2. We now substitute ! from above into the se
ond term,1e�(��i!) � 1 = � 1e�(M+�) + 1 � 0; (23)leading to the 
orre
t statisti
s for fermioni
 ensembles. Physi
ally, that we negle
t these 
u
tuations just mirrorsthe fa
t that �nite-temperature 
u
tuations of heavy parti
les are mu
h smaller than those of light ones fortemperatures �M � 1 at whi
h the heavy-baryon formalism applies. Therefore, we drop this term and arrive atG(!) = Z dk4(2�)4 1k0 + ! + i� ~k2k20 + !2k + Z dk3(2�)3 ~k2(! + i�)2 + !2k ! + i�!k 1e�!k � 1 : (24)The nu
leon propagator at any value of the external energy (in
luding real values) 
an be obtained from theexpression above by analyti
ally 
ontinuing in !. In parti
ular, the value determining the mass is obtained for ! = 0.Clearly, this pro
edure seems arbitrary for two reasons. First, it seems to depend on the order between setting ! to! = �(2n+ 1)=� + iM and analyti
ally 
ontinuing to ! = 0. Se
ond, the knowledge of the propagator at dis
retevalues of the frequen
y is not, in general, enough to determine the propagator on the whole 
omplex plane. One
ould, for instan
e, have maintained e�i�! instead of substituting it by �e�M and using e�2�in = 1. Fortunately,the analyti
 
ontinuation is unique for fun
tions vanishing at in�nity at least like 1=j!j [5℄, as in the 
ase at hand.Still, to 
on�rm that we have pi
ked the 
orre
t analyti
 
ontinuation, we repeat this 
al
ulation in Appendix Cwithout using the heavy baryon formalism in another method to 
ompute �nite-temperature 
orre
tions whi
h doesnot require an analyti
 
ontinuation to the real axis, namely the \real time formalism".



7NUMERICAL EXAMPLES AND DISCUSSIONWe now present some numeri
al examples in order to explore the 
onvergen
e of the �-expansion and to dis
uss howit 
an be used in the one baryon se
tor. The leading order result depends on two low energy 
onstants gA = 1:267and gN�, as well as on the masses and mass splittings m, M and �, whose experimental values are reasonably wellknown. At next-to-leading order, the 
onstants 
1; 
2 and 
3 appear. They are determined experimentally throughthe analysis of pion-nu
leon s
attering. As they are most sensitive to the isos
alar part of the amplitude, wheredi�erent phase shift analyses disagree, large un
ertainties exist in their determination.When 
onsidering very low energy observables, as we are here, the in
lusion of the � as expli
it degree of freedom isoptional. Let us �rst dis
uss the 
ase where the � is in
luded. In this 
ase, a determination of the low energy
onstants was made by 
omparing 
al
ulations to the pion-nu
leon phase shift data [6℄. In this work, di�erent �tswere dis
ussed using two di�erent phase shift analyses, and also in
luding information about the �-term. The valuesof 
1 and 
3 are more stable among di�erent �ts, while 
2 varies mu
h more.Eq.(16) shows however that for a 
ertain value of the ratio �=L � 1:22262, � (1:22262) = 1=1:22262 and thedependen
e on 
2 disappears. Sin
e 
1 and gN� are mu
h better determined, one might use the mass-shifts measuredaround this ratio on the latti
e to determine 
3. The 
2-
ontribution is generi
ally negligible for �=L � [1 : : :1:7℄.In Fig. 5, we present results using the parameter set (�t 2y of Table 4 in [6℄) :gN� = 1:00� 0:08;
1 = �0:35� 0:09=GeV;
2 = �1:49� 0:67=GeV;
3 = 0:93� 0:87=GeV: (25)The errors quoted 
ome from the �t and under-estimate the un
ertainty in the 
onstants from higher-order
orre
tions. In the left panel of Fig. 5, we show the leading 
ontribution and its next-to-leading order 
orre
tion tothe mass shift 
omputed both using Eq.(16) and the full formula with �nite meff and �. The expansion inm=(4�f);�=(4�f) seems to 
onverge for the low-energy 
onstants 
i in the given range, ex
ept for those 
lose to theupper limit and for L smaller than about 1:5 fm, where one approa
hes the breakdown s
ale: L=(2�) � 1=(4�f).The right panel displays the total mass shift up to se
ond order for di�erent values of 
3 between the minimum andmaximum values suggested by Eq.(25). We noti
e that the 
an
ellation of the 
2-
ontribution for � = 1:22262Lworks very well even for non-zero pion masses, with its 
ontribution to the mass shift never ex
eeding 5 MeV evenfor m = 300 MeV.
FIG. 5: Left: Finite-volume mass-shift of the nu
leon in the theory with expli
it � degrees of freedom in MeV as fun
tion ofL [fm℄ with the 
entral values of the parameter set in Eq.(25). Leading order with full expansion (blue solid line); and usingm = � = 0 Eq.(16) (green dash-dotted). Next-to-leading order 
orre
tion in the full expansion (red dashed); and from Eq.(16)(green dotted). The gray zone shows the variation of the mass shift as 
3 varies in the range given in Eq.(25), with the upperlimit 
orresponding to 
3 = 1:8/GeV. Right: Total mass-shift at leading order (blue solid line) and at leading + next-to-leadingorder for 
3 = 0:06/GeV, 0:93/GeV and 1:8/GeV from top to bottom (red dashed). The parameters � = 1:22262L, m = 100MeV and � = 294 MeV are the same for both �gures.In a e�e
tive theory without expli
it �, its large rôle in the pion-nu
leon intera
tion is absorbed by the 
ouplings 
2and 
3. In fa
t, a simple tree level model of the � 
ontribution gives a 
ontribution of
2 = �
3 = g2A�=(2(�2 �m2)) � 4=GeV. These values are somewhat larger than what is expe
ted from naivedimensional analysis arguments and puts the quark mass expansion in 
he
k. The values suggested by di�erent �ts



8[7, 8, 9℄ roughly agree with the � saturation estimate. We show in Fig. 6, as an example, the mass shift 
omputedwith the 
entral values of the parameter set 
1 = �0:81� 0:15=GeV;
2 = 2:99� 0:77=GeV;
3 = �4:70� 0:95=GeV (26)advo
ated in [7℄, as well as for a somewhat smaller value of 
3 = �3:4/GeV found e.g. in the partial wave analysis ofnu
leon-nu
leon s
attering [8℄. The 
onvergen
e is obviously poor in either 
ase. While the 
ontributions from 
2and 
3 
an be made small for 
ertain ratios �=L, this 
an
ellation depends sensitively on the parti
ular values
hosen for 
2 and 
3 and is hen
e less useful for latti
e determinations. At the ratio �=L = 1:22262, the
2-
ontribution disappears as before, but it is already negligible at � = L. Indeed, a plot of the next-to-leading order
orre
tion with �=L = 1:22262 di�ers from Fig. 6 at most at the 5%-level.
FIG. 6: Example of the �nite-volume mass-shift of the nu
leon at leading order (solid line) and the next-to-leading order
orre
tion (dashed lines) in MeV as fun
tion of L [fm℄ in the theory without expli
it � degrees of freedom. The lower dashed
urve uses the 
entral values of the parameter set in Eq.(26), the lower one 
hanges only 
3 = �3:4/GeV following [8℄. Thepion mass is m = 100 MeV, and � = L. Dot-dashed (dotted): LO (NLO) for m = � = 0.One might wonder why the expansion in the �-regime is so sensitive on the low-energy 
onstants and 
onvergesbadly in the 
ase without �, while it is well behaved in the in�nite volume limit. This seems to arise be
ause 
2 and
3 appear only at third order in the p-expansion and are, 
onsequently, poorly determined. In the �-r�egime, they
ontribute already at se
ond order, so that the un
ertainty in their values is enhan
ed.CONCLUSIONSWe have 
omputed the nu
leon mass in a �nite box of size � � L3 satisfying 4�f � 2�=�; 2�=L� m (�-regime).Taking the value of the low energy 
onstants suggested by experiment, we �nd that the expansion seems to 
onvergefor the values of the low energy 
onstants allowed by �ts made to pion-nu
leon s
attering data, if the �(1232) istaken into a

ount as expli
it degree of freedom. We noti
e that a parti
ular shape of the box (� � 1:22262L)eliminates the dependen
e on one of the low energy 
onstants (
2) and suggests determining the value of the mostpoorly known one (
3) by a �t to the nu
leon mass with a few di�erent box sizes. We also dis
ussed a subtle pointinvolving the 
ombined use of the imaginary time and heavy baryon formalisms.We 
lose with the remark that it may seem strange to 
ompute pion loops in small boxes of sizes � 1 fm4, sin
e themomentum of the �rst non-zero mode p � 1:2 GeV is well above the range of validity of Chiral Perturbation Theory.An alternative to our pro
edure that is not subje
t to this 
riti
ism would be to integrate out all modes but thezero-mode and obtain an e�e
tive theory whi
h is valid only for zero-momentum observables like the mass 
omputedhere. We point out, however, that in order to 
onne
t the low-energy 
onstants of this new theory with theparameters of the original 
hiral Lagrangean, one has to perform a mat
hing 
al
ulation that is equivalent to the
al
ulation presented in this paper.
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olle
t here the de�nitions used in the 
onstru
tion of the 
hiral Lagrangean. Elements of SUL(2)� SUR(2) areparameterized by (�L; �R). N is a spin and isospin doublet with its indi
es not shown expli
itly. �iA is aspin-isospin 3=2-�eld, where the ve
tor and isove
tor indi
es jA are expli
itly shown, besides the impli
it spin andisospin indi
es. In addition, it satis�es �i�iA = �A�iA = 0 so only 4 spin and 4 isospin entries are independent, asexpe
ted for (iso)spin 3=2 obje
ts. The 
hiral transformation rules are�L ! L�Lh�1;�R ! R�Rh�1;N ! hN;�iA ! 12Tr(h�1�Ah�B)| {z }OAB h�iB; (27)where OAB is an orthogonal matrix whi
h is determined by h via h�1�Ah = OAB�B, where h in turn depends on�(x); L and R. In addition, we de�ne some obje
ts with simple 
hiral transformation rulesV� = 12(�yR���R + �yL���L)! hV�h�1 + h��h�1;A� = i2(�yR���R � �yL���L)! hA�h�1;D�N = ��N + V�N ! hD�N;D��iA = ���iA + V��iA + i�ABCTr(�BV�)�iC !OABhD��iB;D�A� = ��A� + [V�;A�℄! hD�A�h�1;wA� = Tr(�AA�)!OABwB� ;wA�� = Tr(�AD�A�)!OABwB�� : (28)APPENDIX B: CALCULATION OF SUMSIn this appendix, we drop for 
larity the subs
ript of the e�e
tive pion mass me� and denote it by m. The LOdiagrams 
ontain then the sumA (�;m) = 1�L3 Xn� 6=0 1! + 2�n0� + i� (2�~nL )2(2�n0� )2 + (2�~nL )2 +m2= A 0(�;m) + A � (�;m); (29)where ! = 2�(k + 1=2)=� is a dis
rete external energy and k an integer. The ultraviolet divergen
e of A is identi
alto the one in the in�nite-volume diagram and 
an
els in the di�eren
e between �nite and in�nite volume masses.For this 
an
ellation to o

ur, it is important to use the same regulator in both 
al
ulations. In pra
ti
e, we shouldtherefore de�ne the sum above using dimensional regularization. A 0 and A � are the temperature independent and



10the �nite temperature parts:A 0 (�;m) = Z dk02� 1L3 X~n 1k0 + ! + i� (2�~nL )2k20 + (2�~nL )2 +m2 ;A � (�;m) = iL3 X~n �� i!!2n � (�� i!)2 (2�~nL )2!n 1e�!n � 1 � iL3 X~n (2�~nL )2!2n � (�� i!)2 1e�(��i!) � 1 ; (30)where !2n = 2�~nL 2 +m2. We used the formula1�Xn f(2�n� ) = Z 1�1 dz2�f(z) � iRes( f(z)ei�z � 1)jlowerplane + iRes( f(z)e�i�z � 1)jupperplane; (31)whi
h holds if f(z) has no poles on the real axis. We substitute 1=(e�(��i!) � 1) by �1=(e�(�+M) + 1) � 0 as inEq. (23). The zero-temperature part 
an be 
omputed with the help of the relation [10℄1L3 X~n (2�~nL )2m(2�~nL )2 + x2 = 1L3 Z d3k k2mk2 + x2 X~n Æ(~k � 2�~nL ) = Z d3k(2�)3 k2mk2 + x2 X~n Æ(~kL2� � ~n)| {z }P~j eiL~k�~j= Z d3k(2�)3 k2mk2 + x2 + Z d3k(2�)3 X~j 6=0 k2mk2 + x2 eiL~k�~j= Z d3k(2�)3 k2mk2 + x2 +X~j 6=0 12�2L Z 10 dkk(2m+1)k2 + x2 sin(jkL)j= Z d3k(2�)3 k2mk2 + x2 + ��x2�m4�L X~j 6=0 e�jxLj ; (32)where m is a positive integer. Applying this relation to A 0 yieldsÆA 0 = A 0 � A (� !1; L!1) = i�24�2LX~j 6=0 1j 1� Z 10 dk0k20 +m2k20 +�2 e�jLpk20+m2| {z }g(jL;m;�) : (33)Asymptoti
ally, the sum over j 
onverges be
auseg(jL;m;�) j!1! m5=2�3 r �2jLe�jmL + � � � ;g(jL; 0;�) j!1! 2j3L3�3 + � � � : (34)These asymptoti
 forms are also useful in the numeri
al evaluation of the sum over ~j.We also need A 0 evaluated at � = 0. We 
an obtain this limit noti
ing that the integral de�ning g(jL;m;�) isnearly infrared divergent when �! 0, and hen
e is dominated by small values of k0. The �! 0 limit ofg(jL;m;�) is given by g(jL;m;�) �!0�! 1� Z 10 dk0k20 +m2k20 +�2 e�jmL�jL k202m = �2 m2�2 e�jmL: (35)Using this result, ÆA 0 (� = 0;m) = im28�LX~j 6=0 e�jmLj : (36)



11The expression above agrees with that of Ref. [1℄. The limit m! 0 is found by noti
ing that for small values of m,the sum is dominated by the large j terms, whi
h in turn 
an be approximated by an integralÆA 0 (� = 0;m) m!0�! im28�L4� Z 10 je�jmL m!0�! i2L3 : (37)The double limit �! 0;m! 0 
an also be obtained in the opposite order, and the result is the same:ÆA 0 (�;m = 0) = i4�2LX~j 6=0 1j� Z 10 dk0 k20k20 +�2 e�jLk0= i�24�2LX~j 6=0 1j � 1jL� � Ci(jL�) sin(jL�) + Si(jL�) 
os(jL�)� �2 
os(jL�)�| {z }g(jL;0;�)�!0! i�24�2L4� Z 10 djjg(jL; 0;�)| {z }�2L2�2 = i2L3 (38)The �nite-temperature part 
onverges very qui
kly:A � = iL3 X~n �!2n ��2 (2�~nL )2!n 1e�!n � 1�!0�! 0: (39)The se
ond sum we need is B (�;m) = 1�L3 Xn� 6=0 12�n0� + i�!2 (2�~nL )4(2�n0� )2 + (2�~nL )2 +m2 : (40)We use Eq.(31) to separate it into a temperature-independent (B0 ) and a temperature-dependent part (B� ). The�rst one is with Eq. (32)B0 = Z d4k(2�)4 1(k0 + i�)2 ~k4k20 + ~k2 +m2 + 1�2LX~j 6=0 1j Z dk02� 1(k0 + i�)2 Z 10 dk k5��k20 + k2 +m2 sin(jkL) ; (41)ÆB0 = B0 � B(� !1; L!1) = 14�2LX~j 6=0 1j Z 10 dk0 k20 ��2(k20 +�2)2 (k20 +m2)2e�jLpk20+m2| {z }�3h(jL;m;�) : (42)The sums over j 
onverge, given the asymptoti
 behaviorsh(jL;m;�) j!1�! p�m4(jL)3=2 e�jmL�3 (m + jL(�2 � 2m2));h(jL;m; 0) j!1�! � 12j5L5�5 + � � � : (43)Eq.(43) 
an be obtained from the integral representation above noti
ing that, for large j, the integral is dominatedby small values of k0. These relations show that the sum in Eq.(42) 
onverges (qui
kly).We also need the value of ÆB at � = 0, where h(j; L;m;�) is apparently infrared divergent, but this limit is a
tually�nite. It is most easily obtained by 
ontinuing the k0 integral to 1 + � dimensions and taking the �! 0 limit at theend, with Kn again a modi�ed Bessel fun
tion:ÆB0 (� = 0;m) = 14�2LX~j 6=0 1j 1Z0 d1+�k0 (k20 +m2)2k20 e�jLpk20+m2



12= m34�2LX~j 6=0 1j 1Z1 dx x5(x2 � 1) 3��2 e�jLmx= m34�2LX~j 6=0 1j �4�(jLm)4 1Z1 dx x(x2 � 1) 3��2 e�jLmx= m4�2L3 X~j 6=0 1j3 �(jLm � (jLm)3)K0(jLm) + 2(1 + (jLm)2)K1(jLm)� ; (44)We 
an further take the limit m! 0:ÆB0 (� = 0;m! 0) = 12�2L4 X~j 6=0 1j4 = 
02L4 : (45)To take the double limit in the opposite order leads { not surprisingly { to the same result:ÆB0(�;m = 0) = 14�2LX~j 6=0 1j Z 10 dk0k40 k20 ��2(k20 +�2)2 e�jLjk0j| {z }�3h(jL;0;�)= �38�2LX~j 6=0 1j �4� 6(jL�)2(jL�)3 + 2Ci(jL�) [jL�
os(jL�) + 4 sin(jL�)℄+ 2Si(jL�) [jL�sin(jL�)� 4 
os(jL�)℄35�!0�! 12�2L4 X~j 6=0 1j4 = 
02L4 : (46)After performing the 
orre
t analyti
 
ontinuation, the temperature-dependent part B� isB� = � 1L3 X~n !2n +�2(!2n ��2)2 (2�~nL )4!n 1e�!n � 1 : (47)Finally, we use similar steps for C and D :C (m) = 1�L3 Xn� 6=0 (2�n0=�)2(2�n0=�)2 + (2�~n=L)2 +m2= Z d4k(2�)4 k20k20 + ~k2 +m2 + m2(2�)2L2 X~j 6=0 K2(jmL)j2 � 1L3 X~n !ne�!n � 1 : (48)D (m) = 1�L3 Xn� 6=0 (2�~n=L)2(2�n0=�)2 + (2�~n=L)2 +m2= Z d4k(2�)4 ~k2k20 + ~k2 +m2 � m3(2�)2LX~j 6=0 1j �K1(jmL) + K2(jmL)jmL �+ 1L3 X~n (2�~nL )2!n 1e�!n � 1 ; (49)For m! 0, one has to be 
areful with the mode ~n = 0:C (m = 0) = 
02L4 � 1L4 X~n6=0 2�ne2� �Ln � 1 � 1�L3 = � (�=L)L4 � 1�L3D (m = 0) = � 
02L4 + 1L4 X~n6=0 2�ne2� �Ln � 1 = �� (�=L)L4 : (50)



13APPENDIX C: RELATIVISTIC CALCULATION, REAL TIME FORMALISM AND THE CORRECTANALYTIC CONTINUATIONIn order to verify our pro
edure to 
ompute the �nite temperature 
orre
tions of the nu
leon mass, we now repeatthe 
al
ulation of the simplest diagram by dispensing of the simpli�
ations due to the use of both the heavy-baryonand the imaginary time formalisms, followed by analyti
 
ontinuation to the real axis.The real-time �nite temperature formalism (RTF) is another way of (perturbatively) 
omputing �nite-temperature
orre
tions. As opposed to the more 
ommon imaginary-time formalism (ITF), it 
omputes 
orrelators dire
tly inreal time and 
ontinuous frequen
ies. The Feynman rules are very similar to the ones at zero temperature, ex
eptthat the propagators 
ontain an additional term des
ribing the in
uen
e of the thermal medium on the propagationof the parti
les 3. The pion propagator be
omesiD(k) = ik20 � ~k2 �m2 + i0 + 2�nB(jk0j)Æ(k20 � ~k2 �m2); (51)where nB(jk0j) = (e�jk0 j � 1)�1 is the bosoni
 distribution fun
tion. The fermion propagator isiS(p) = (ip�
� +M )� 1p20 � ~p2 �M2 + i0 � 2�nF (jp0j)Æ(p20 � ~p2 �M2)�p0!M+k0;~p!~k�= ik0 + i0 � 2�nF (jM + k0j)Æ(k0); (52)where nF (k0) = (ejk0j + 1)�1 is the Fermi distribution fun
tion. The physi
al origin of these extra terms is the Pauliblo
king (in the 
ase of fermions) or stimulated emission (in the boson 
ase) 
aused by the real, on-shell parti
lespresent in the medium. In the fermioni
 
ase, for instan
e, a state that is fully o

upied (nF = 1) reverts the sign ofthe \i�" pres
ription and the fermion 
an propagate as a hole. Noti
e that the number density of parti
les in theheavy baryon propagator is nF (jM + k0j) (as opposed to nF (jk0j)) and therefore exponentially small at alltemperatures �M � 1 where the e�e
tive theory applies. As an example, let us 
ompute the real part of the se
onddiagram in Fig. 2, for notational simpli
ity in the in�nite volume. Up to irrelevant 
onstants,iG(E) = Z d4k(2�)4~k2((E + k0)
0 � ~k � ~
 +M�)" ik20 � ~k2 �m2 + i0 + 2�nB(jk0j)Æ(k20 � ~k2 �m2)#" 1(E + k0)2 � ~k2 �M2� + i0 + 2i�nF (E + k0)Æ((E + k0)2 � ~k2 �M2�)# : (53)Using the relation 1x+ i0 = P �1x�� i�Æ(x); (54)where P stands for the prin
ipal value, the real part of G(!) isReG(!) = Z d3k(2�)3~k2 "1 + 2nB(!k)2!k  (E + !k)
0 � ~k � ~
 +M�(E + !k)2 � ~k2 �M2� + (E � !k)
0 � ~k � ~
 +M�(E � !k)2 � ~k2 �M2� !+1 � 2nF (q~k2 +M2�)2q~k2 +M2� ��iq~k2 +M2�
0 � i~k � ~
 +M���0� 1(�E +q~k2 +M2�)2 � !2k + 1(E +q~k2 +M2�)2 � !2k1A35E=M+!� Z d3k(2�)3 ~k2P � 1(�� !)2 � !2k��! ��2!k (1 + 2nB(!k)) + 1� 2nF (M +�� !)2 � : (55)3 In diagrams with more than one loop, the RTF rules are a little more involved.



14This last result 
an also be obtained dire
tly using the RTF with the heavy baryon propagator in Eq.(52).On the other hand, we 
ompute a related quantity, namely the Eu
lidean time Matsubara fun
tion G(!) de�ned fordis
rete imaginary values of E = �i�(2n + 1)=�, asReG(E) = 1� Z d3k(2�)3~k2�i(E + !n)
0 � i~k � ~
2 +M�(E + !n)2 + ~k2 +M2� 1!2n + !2k= Z d4k(2�)4~k2�i(E + k0)
0 � i~k � ~
2 +M�(E + k0)2 + ~k2 +M2� 1k20 + !2k� Z d3k(2�)3~k2nB(!k)2!k "�i(E + i!k)
0 � i~k � ~
2 +M�(E + i!k)2 + ~k2 +M2� + �i(E � i!k)
0 � i~k � ~
2 +M�(E � i!k)2 + ~k2 +M2� #� Z d3k(2�)3~k2 12q~k2 +M2� 24 iq~k2 +M2�
0 � i~k � ~
2 +M�(�E + iq~k2 +M2�)2 + !2 1e�p~k2+M2�+i�E � 1+ �iq~k2 +M2�
0 � i~k � ~
2 +M�(E + iq~k2 +M2�)2 + !2 1e�p~k2+M2��i�E � 135 (56)We now substitute again e�i�E by �1. The real part of G(E) is related to the Matsubara fun
tion G(!) by analyti

ontinuation: G(E) = �G(�iE + 0) [5℄ . The dire
t 
al
ulation of G(E) using the RTF and the indire
t one throughanalyti
 
ontinuation from the ITF agree, and they also reprodu
e in the limitM !1 the 
al
ulation using boththe ITF and the heavy baryon formalism dis
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