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Abstract

An evolutionary-based definition and classification of target evaluation units (EUs) is presented 

for the 14th round of the Critical Assessment of Structure Prediction (CASP14). CASP14 

targets included 84 experimental models submitted by various structure groups (designated T1024­

T1101). Targets were split into EUs based on the domain organization of available templates and 

performance of server groups. Several targets required splitting (19 out of 25 multidomain targets) 

due in part to observed conformation changes. All in all, 96 CASP14 EUs were defined and 

assigned to tertiary structure assessment categories (Topology based FM or High Accuracy based 

TBM-easy and TBM-hard) considering their evolutionary relationship to existing ECOD fold 

space: 24 family level, 50 distant homologs (H-group), 12 analogs (X-group), and 10 new folds. 

Principal component analysis and heatmap visualization of sequence and structure similarity to 

known templates, as well as performance of servers highlighted trends in CASP14 target difficulty. 

The assigned evolutionary levels (i.e. H-groups) and assessment classes (i.e. FM) displayed 

overlapping clusters of EUs. Many viral targets diverged considerably from their template 

homologs and thus were more difficult for prediction than other homology-related targets. On 

the other hand, some targets did not have sequence-identifiable templates, but were predicted 

better than expected due to relatively simple arrangements of secondary structure elements. An 

apparent improvement in overall server performance in CASP14 further complicated traditional 

classification, which ultimately assigned EUs into high accuracy modeling (27 TBM-easy and 31 

TBM-hard), topology (23 FM) or both (15 FM/TBM).
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1 INTRODUCTION

The Critical Assessment of Protein Structure Prediction (CASP) was envisioned as a 

large-scale experiment to establish current state-of-the-art methods in predicting protein 

structure from sequence1. In the experiment, prediction groups are provided the amino 

acid sequences of target structures whose experimental coordinates are not yet public. 

Independent assessment teams then evaluate models provided by the prediction groups by 

comparing them to the experimental structures. The tertiary structure prediction assessors 

in CASP14 concentrated on two broad categories of targets: high accuracy modeling and 

topology. The high accuracy modeling category, which was formerly known as template­

based modeling or TBM, requires structure models of sufficient accuracy to evaluate the 

detailed placement of all atoms with respect to the target. The topology category, which was 

formerly free modeling or FM, addresses the more general placement of secondary structure 

elements (SSEs) in prediction models of lower quality. Some targets consist of multiple 

domains with different level of similarity to existing proteins. As such, CASP targets require 

1) splitting into Evaluation Units (EUs) and 2) classification into the assessment categories 

for tertiary structure prediction evaluation.

Traditionally, assessment of CASP targets has been based on domains defined in the context 

of existing folds that can serve as structure templates for modeling 2–4. Furthermore, the 

evolutionary relationships between target domains and templates have influenced modeling 

difficulty5,6. As such, knowledge of sequence-structure relationships catalogued in the 

Evolutionary Classification of Protein Domains database (ECOD7) provides a solid basis for 

defining and classifying target domains. Although definitions can vary, domains essentially 

represent compact structural units that fold independently and act as building blocks 

for evolution8–10. Domains can be mobile, and their relative orientation in multidomain 

structures can differ. Thus, accurate assessment of model quality by many of the rigid 

protein structure comparison methods used in CASP automated evaluation11 has frequently 

required multidomain targets to be split into their constituent subunits and treated as 

independent EUs12. However, the recent progress in CASP performance, the availability of 

superposition independent scores (e.g. LDDT13, CAD-score14 or SphereGrinder15), and the 

increasing availability of multidomain templates is changing the requirements for splitting 

targets into EUs16–18.

The experimental structure community contributed 84 targets for assessment in CASP14, 

which were designated as T1024-T1101. Some of the targets belonged to multimeric 

complex structures and were indicated with a subunit suffix (i.e. “s1” in T1066s1). Fourteen 

of the targets were cancelled for various reasons: one was an unverified structure (T1098), 

one had a template with 100% sequence identity (T1072s2), nine had no structure provided 

in time for the evaluation (T1051, T1059, T1063, T1066s1 and s2, T1069s1 and s2, T1071, 
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T1075) and 3 were only a single helix (T1048, T1062 and T1072s1). Two targets (T1077 

and T1088) were assessed separately alongside the NMR-assisted predictions. Four targets 

were easier than others for tertiary structure prediction and thus were a-priori designated 

as “server only”. This report describes domain-based splitting of the remaining targets into 

EUs, and classification of those EUs into assessment classes for evaluation by high accuracy 

modeling (TBM-easy and TBM-hard) and topology (FM). A few EUs were assigned to both 

assessment categories (FM/TBM overlap).

2 METHODS

2.1 Definition of Evaluation Units

The Prediction Center preprocessed coordinate files obtained from experimentalists using 

similar methods as in previous rounds11. For certain NMR targets having loose ensembles 

of models (i.e. T1027 and T1029), regions with high flexibility (Cα-Cα deviation of more 

than 3.5Å between the same residues in different models) were excluded from the target. 

Target domains were defined initially by the Prediction Center using DomainParser219 

and Ddomain20 packages. Automatic domains parsed by these programs were inspected 

manually, considering several criteria for establishing boundaries. The criteria included 

globular compactness of secondary structure elements, existence of internal duplications, 

maintenance of sequence continuity, and establishment of sequence-structure relationships 

to known folds (from HHpred21 alignments and LGA22 superpositions provided by the 

Prediction Center).

We evaluated the suitability of defined domains for the purpose of assessment using 

submitted models. Grishin plots12 provided comparisons of model performance (measured 

by GDT_TS23) for individual and combined domains. Domains were merged if performance 

on their combined subunits was comparable to individual subunits and if templates exist 

with similar domain compositions. Domains were split into separate EUs if performance 

on individual domains exceeded that on combined domains. For some templates with 

non-trivial domain organization, the process of defining domains and testing for splits 

was iteratively repeated with alternately defined boundaries. Decisions to split targets into 

EUs were also influenced by the existence of conformational changes. When multiple 

homologous templates existed for a target (see Evolutionary section below), the potential for 

conformational change was assessed using pairwise superpositions of all related templates 

(DaliLite Server24) and by examining corresponding literature. Those targets with alternate 

domain conformations were split into individual EUs. One large target (T1044) was pre-split 

into smaller targets (T1031, T1033, T1035, T1037, T1039, T1040, T1041, T1042, and 

T1043) prior to the modeling exercise. The pre-evaluation splits of T1044 were based on the 

same criteria as listed above, as well as suggestions from the experimentalist.

2.2 Determining Evolutionary Relationships of Targets to Known Templates

Target relationships to known structures were assigned using similar concepts as in the 

classification hierarchy of the Evolutionary Classification of structure Domains (ECOD) 

database 7,25,26. We assigned each target domain to its evolutionary position in known 

structure space (prior to the target’s release date) according to ECOD level (summarized 
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in Table 1). For family level assignments, target sequences were submitted as queries to 

NCBI CD-Search27 against the conserved domain database28 with default parameters. We 

consider templates to be related by family level if their sequence identifies the same top 

family as the template sequence. For both complete and EU-split target sequences, HMM 

profiles were built using HHblits29 (2 iterations, E-value=1E-3) against UniRef30 database30 

(version 2020.06). The resulting profiles were used to identify structure templates (PDB70 

profiles updated weekly from http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/

hhsuite_dbs/) using HHsearch runs at the Prediction Center on the next day after the 

target closing date. . Additionally, a modified MSA generation method using PSI-BLAST 

against the nr70 was used to build search profiles for queries against the PDB70 database 

on the HHpred server31 (various dates, depending on the target closing date). When the 

topology of any of the identified sequence-based templates matched that of the target 

structure (matching topology is consistent with known ECOD relationships7,25,26, and is not 

in the same family) and the sequence-based and structure-based alignments matched, we 

consider these templates as homologous (H-group level relationship). To aid in homology 

and topology level assignments, top structure-based templates from the PDB were identified 

using structure coordinates of complete targets and split EUs using LGA22, Dalilite24, 

and RUPEE32. Structure-based templates without significant sequence relationship or other 

evidence for homology were considered as topology level matches (ECOD X-group). 

Targets lacking reasonable topology relationships to known structures were considered as 

new.

To calculate the distribution of CASP targets among ECOD architectures, observed 

frequencies for CASP13 and CASP14 target domains were divided by expected frequencies 

based on the ECOD domain counts (database version 277). ECOD domains were made 

non-redundant at the family level by keeping a single representative from each assigned 

family ID (14,251 total non-redundant domains). Expected frequencies were calculated 

by dividing the non-redundant domain counts in each architecture by the total number of 

non-redundant domains, and observed frequencies were calculated by dividing the number 

of target domains in each architecture by the total number of target domains in CASP13 and 

CASP14.

2.3 Combining Prediction Center Metrics to Classify Targets

The Prediction Center provides a number of metrics that can be used to help classify 

templates11. We chose the same metrics as in previous rounds of CASP5,16 to assign 

CASP14 target EUs to evaluation categories. The sequence-structure relationship of EUs to 

known folds (measured by the average of HHscore and LGA_S of targets to top templates) 

was compared to the top20 server performance (average server model 1 GDT_TS) in a 

scatter plot. The HHscore (product of the alignment coverage of the query and the HHsearch 

probability5) was calculated for all top-ranked templates identified by any of the search 

methods described above. We considered the template with the highest HHscore (among all 

methods) as the top sequence-based template for classification and combined this score with 

the top-scoring structure template (by LGA_S22), regardless of the template’s relationship to 

the target.
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For non-trivial assignments, we clustered EUs using principal component analysis and 

heatmaps from the ClustVis web tool33 using the three measures from the scatterplot 

(HHscore, LGA_S, and top 20 server performance) and a number of additional measures 

described below that were developed to assess target difficulty. To avoid scaling the 

measures, we chose scores that could be calculated as percentages (from 0 to 100), 

which match the scaling of the classification plot metrics. For those servers that declared 

“PARENT” templates for some targets and no templates for others, we calculated the 

percentage of declared templates (%parentTBM) for each target by summing up the 

number of all models with a declared template and dividing by the total number of 

models for all selected server groups. The number of effective sequences for each target 

(Neff%Max) was calculated based on the entropy of the MSA used for HHpred searches 

(Neff header in HHpred results files). To calculate the percentage, we divided the Neff by 

the theoretical maximum entropy of 2031. Finally, we included two scores from Dalilite: 

coverage (DaliCvg) calculated as the length of the alignment divided by the number of target 

residues and the DaliZ score (Dali%Max) expressed as a percentage of the maximum (from 

DaliZ target self-score). Data was preprocessed using the Singular Value Decomposition 

(SVD) with imputation option in ClustVis33 to replace missing values with no scaling. Rows 

were centered for Principal Component Analysis (PCA) and prediction ellipses were drawn 

around the clustered features that represent 0.95 probability a new observation from the 

same group will fall inside. Heatmap rows were clustered using correlation distance and 

Ward linkage, and columns were clustered using Euclidean distance and Ward linkage. To 

help classify target EUs near difficulty category boundaries in the traditional classification 

plot, we considered the following features in PCA and heatmap: preliminary classification 

based on the traditional plot (FM, FM/TBM, TBM-hard, and TBM-easy), evolutionary 

relationship to known structures (Family, H-group, X-group, and New) and taxonomy 

(Virus, Archaea, Bacteria, and Eukaryota).

3 RESULTS AND DISCUSSION

3.1 Domain-Based Definition of Evaluation Units

For domain-based establishment of EUs in CASP14, we considered similar criteria 

for domain definition as in previous rounds of CASP (i.e. domain parser results, 

internal duplications, sequence continuity, and sequence/structure relationships). For 

defined multidomain targets, the decision to split into EUs was based on performance 

comparisons in Grishin plots as well as on the presence of flexible templates with alternate 

conformations. Domains in previous CASPs often crossed assessment categories2,5,6,12,16 

due to evolutionary mechanisms that favor their recombination into new functional units 10. 

Such domain mobility posed a problem for classification of CASP14 targets into evaluation 

categories. For example, the V. cholera effector MavQ target (T1053) included two domains 

with different evolutionary relationships (Figure 1A). Sequence-based templates existed for 

the N-terminal protein kinase-like domain. Yet, the C-terminal helical bundle was unique, 

with templates that were related only by structure. Accordingly, the Grishin plot (Figure 

1B) supported splitting the target domains into independent EUs (T1053-D1 and T1053-D2). 

In contrast, the first two domains from the Salmonella phage epsilon15 tail spike protein 

(Figure 1C, T1052) existed in the same orientation in sequence-related templates (for 
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example the tails pike from Salmonella phage Det7, 6f7d), and the Grishin plot supported 

merging the two domains into a single EU (Figure 1D). Thus, for this target the domain 

count and the EU count differed.

Defining the domain boundaries was difficult for a multidomain target (T1061) representing 

E. coil phage tail (Figure 1E). Automatic domain parsing programs were inconsistent, and 

their results produced sequence discontinuous domains that tended not to reflect evolution. 

Fortunately, sequence-related templates of pyocin R2 (6u5hC), which consisted of four 

domains in ECOD (Figure 1F, left), and a tenascin fibronectin type III domain (Figure 

1F, upper right), helped define a sequence insert that was unique to the target (Figure1E, 

gray). The unique insert identified templates with low structure scores (Figure 1F lower 

left, top LGA_S 21.2 to 2yc2B) due to numerous SSE decorations and deteriorated edge 

strands of its core jelly-roll fold. The decorated domain was inserted in between two 

intimately associated RIFT-related barrels (the second T1061-D1’ included two additional 

continuous domains), which resulted in a complex target domain organization (Figure 1E, 

lower schematic). We chose to merge the four domains into a single EU (T1061-D1), 

which shifted the target difficulty as measured by performance. The top performance 

on independent domains corresponding to the first RIFT-related domain (max GDT_TS 

88.0) and the remaining domains (T1061-D1’, max GDT_TS 89.6) was better than on the 

sequence discontinuous T1061-D1 EU (max GDT_TS 77.1).

Some CASP14 targets exemplified proteins that can adopt multiple conformations, such as 

the major facilitator superfamily (MFS) target T1024 (Figure 1G). MFS transporters move 

substrates across membranes using an alternating access model where the protein adopts 

inward and outward-facing conformations34. The conformational changes occur primarily 

between two duplicated domains of six core transmembrane helices (TMH), and templates 

existed for both the inward and outward-facing states (Figure 1H). Accurate modeling of 

the conformation tends to be difficult for such targets without additional information about 

ligands, chemical modifications, detergent composition for solubilization, or other criteria 

that stabilize one conformation over the other. As such, we split CASP14 targets into 

independent EUs when template homologs existed with alternate domain conformations. 

The performance scatter in the Grishin plot for T1024 (Figure 1I) highlighted two clouds, 

with one of the clouds shifted towards better performance on the merged domains. These 

two clouds roughly corresponded to the two conformation states of the target.

One unique component of CASP14 was a requirement for a large target structure to be 

pre-split into component domains prior to its release to predictors (due to an expectation 

of difficulty in acquiring targets during a global pandemic and large size of the target). 

The 2166-residue phage DNA-dependent RNA polymerase structure (T1044) was split 

into sequence fragments corresponding to 12 domains, nine of which were released for 

prediction as separate targets (T1031, T1033, T1035, T1037, T1039, T1040, T1041, 

T1042, and T1043). While similar fragments of larger proteins have often been used for 

X-ray crystallography and NMR, their successful structure determination would presumably 

require the fragments to fold into stable units. Unfortunately, the domains defined a priori 

for T1044 do not necessarily correspond to stable folding units that can exist independently. 

Although similar considerations were used to pre-define domains for T1044 as they were 
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for the remaining targets, the boundaries were not based on performance and could not be 

iteratively adjusted.

In summary, CASP14 consisted of a total of 84 targets. This number included both 

the whole multidomain target (T1044) and its nine pre-evaluation split domains (listed 

above). Of the remaining targets, 33 were considered as single domains and 25 were 

multidomain, ranging anywhere from 2 to 6 domains. Most of the multidomain targets 

were split into their component domains (15 targets were split into 37 EUs), while a 

smaller number were considered as single EUs that merged all the domains (6 targets). 

The four remaining multidomain targets had a combination of both combined and split 

domains, with a total of 17 domains that were split into 11 EUs. Given the number of 

multidomain targets with performance plots that suggested splitting, CASP14 introduced 

a new category of assessment to evaluate predictor performance on domain interactions 

([Inter-domain assessment, Schaeffer et al, this issue]). This new assessment evaluated inter­

domain interactions in a similar manner as the evaluation of multimeric targets. The chosen 

multidomain target subset excluded those targets that 1) were split due to conformation 

changes, 2) lacked interactions or 3) had interactions dictated by their oligomeric state.

3.2 Evolutionary relationships of targets to known folds

An essential component of defining target EUs and classifying them into assessment 

categories was understanding their relationship to fold space, as the nature of these 

relationships (in terms of sequence/structure similarity) has tended to correlate with target 

difficulty5,16. The distribution of CASP14 EUs among evolutionary levels (summarized 

in Table 1) changed from that of CASP13 (figure 2A). In CASP13 the most populated 

evolutionary group represented family-level similarity and included almost half of the 

dataset (46%), while in CASP14 this group included only quarter of targets, whereas 

the most populated group represented distantly related homology (H-group, 52% of the 

targets). This shift toward more distant template relationships forecasted an increase in 

CASP14 prediction difficulty. This difficulty was further elevated by a more challenging 

taxonomic distribution of CASP14 targets (Figure 2B), where a notable share of entries 

was of viral origin (44%). Given the evolutionary pressures of viral proteins to adapt to 

their hosts35, their classification in fold space as well as their structure prediction tends 

to be challenging. When compared to the family-level domain space of ECOD, complex 

structure architectures as well as duplicates/obligate multimers, which tended to be more 

difficult, were overrepresented in CASP14 (Figure 2C). On the contrary, architectures with 

more regular SSEs, such as a+b two layers or a/b barrels were under-represented or missing 

altogether. This representation is skewed when compared to the somewhat more regularly 

distributed CASP13 target domains.

CASP14 targets were assigned at the family level when they belonged to the same sequence 

group (defined by the conserved domain database28) as their template (24 EUs). Due to an 

increased similarity between family level target/template structures (average LGA_S 72.2), 

many of the multidomain targets were merged into single EUs (T1036s1, T1052, T1076, 

T1079, T1095 and T1099) at this level. However, some were split into their component 

domains due to the existence of templates with alternate conformations. The Bacteroides 
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ovatus response regulator (T1050) was assigned to the periplasmic ligand-binding sensor 

domain superfamily (COG3292). Hybrid two-component system sensor templates belonging 

to this superfamily adopted alternate conformations in the apo and ligand-bound state (PDB: 

4a2m and 4a2l 36). The N-terminal beta-propeller of one template rotated with respect 

to the adjacent beta-propeller and immunoglobulin-related domains of the other. Thus, 

high accuracy prediction of domain interactions for this target would require knowledge 

of the ligand, and the model quality in Grishin plots reflected the choice of template 

conformations (data not shown). Templates for the pilus tip adhesin PitA (T1091) also 

exhibited a conformation change, and the target was split into its four immunoglobulin­

related domains. Two of the four domains were recognized by sequence at the family 

level, and the others presumably evolved beyond sequence recognition (H-level). Several 

other family-level multidomain targets were split when their component domains belonged 

to different evolutionary categories (T1086, T1091, T1092, T1094 and T1101), while the 

domains from a thermophilic worm structure (T1101) represented a novel combination of a 

eukaryotic KH domain (H-group) and a LigT-related domain (pfam10469) with a potential 

conformation change (noted by the experimentalist).

CASP14 targets that were distantly related to their template homologs (H-group) tended 

to diverge significantly from their templates (average LGA_S 57.4). For example, the 

top-scoring structure template for a CrAss-like phage DNA-dependent RNA polymerase 

domain (T1041, defined as a pre-evaluation split) was from a distantly related homolog, 

RNAi polymerase from Neurospora crassa (Figure 2D). The T1041 domain included a 

relatively large helical extension not found in the RNAi polymerase or other existing folds. 

The extension, along with other diverging α-helices, resulted in a low structure similarity 

score for the target when compared to the top template (LGA_S 25.03). Similarly, a domain 

(T1096-D1) from one subunit of the bacillus phage AR9 DNA-directed RNA polymerase 

had a top structure template from a distantly related homolog, RNA polymerase sigma 

factor SigA from Thermus aquaticus (Figure 2E). The T1096-D1 target had a relatively 

large N-terminal extension and diverging α-helical orientations, which resulted in the lowest 

structure score (LGA_S 20.84) among the H-group EUs. Examples like these included novel 

SSE decorations that might be more difficult to model as a significant portion of their 

structure. Almost half of the H-group targets (23 EUs), like these two examples, were viral 

proteins that tended to evolve rapidly.

The X-group targets (12EUs, Figure 2A) were related to existing templates by topology, 

and lacked any other justification typically used to infer homology7. Most of the X-group 

target EUs adopted folds with common topologies that could have arisen multiple times 

in evolution: such as immunoglobulin-like β-sandwich, bromodomain-like helix bundle, 

or RIFT-related barrel. These targets lacked sequence evidence for homology and their 

structures had relatively low scores to top templates (average LGA_S 41.5). The remaining 

X-group target EUs exhibited simple topologies with few SSEs and high structure scores 

to fragments of unrelated targets (average LGA_S 82.1). For example, the anti-parallel 

helix pairs of T1083, T1084, and T1087 had varying degrees of histidine-rich sequence 

that resembled a DELD family protein Dld1 (PDB: 5los, HHprob 65 to T1087) with a 

monomeric histidine zipper of anti-parallel coiled-coils37. However, the targets lacked the 

DELD motif and formed four-helix bundles from dimers of antiparallel helix hairpins. This 
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arrangement prompted their placement in the alpha duplicates/obligate multimer architecture 

of ECOD, and the topology of dimers from T1087 and T1083 (T1084 was a mirror image) 

resembled that found in the ferritin/heme oxygenase (FHO) X-group of ECOD (where we 

placed the targets). The top structure templates for each of the three target hairpins are 

analogous helix pairs from unrelated bacterial hemolysins (LGA_S range from 84.8 to 92.9). 

Similarly, the simple three-helix bundle from T1046s1 identified a top partial structure 

template from an α-helical array (LGA_S 74.6 to 5utgA).

Finally, CASP14 targets included several new folds (10EUs, Figure2A). Four of these 

were from the pre-evaluation defined domains of CrAss-like phage DNA-dependent RNA 

polymerase (T1035, T1037, T1040, and T1042), which has since been described as having 

much of its structure in a “new region of fold space”38. While the overall SSE topology 

was unique in targets assigned to the new fold category, most could be assembled from 

analogous SSE arrangements existing in the PDB. The phage polymerase domain T1035 

adopted an array of five α-helices with mainly perpendicular orientations (Figure 2F). 

While no existing template included the same topology, the array could be assembled 

from multiple analogous structures. The T1035 helix H2-H4 could be represented by 

three helices in a repetitive α-hairpin from uncharacterized protein PF2048.1 (PDB: 

6e4jA1), and the helix H3-H5 could be represented by three helices from gamma-tubulin 

complex component 5 (PDB: 6l81A). Another new fold from the N-terminal domain in 

tomato spotted wilt tospovirus glycoprotein precursor (T1038-D1) adopted an a+b complex 

topology architecture (Figure 2G). The top structure template (3i48, LGA_S 40.5) belonged 

to a different a+b four layers architecture from Staphylococcus aureus beta toxin and is 

unrelated. The template SSEs from a central β-sheet in one of the layers corresponded to 

a β-sheet in the target formed by a three-stranded β-meander and an interacting β-hairpin. 

This target could also be separated into SSE arrangements existing in known structures.

3.3 Target Difficulty Highlighted by PCA and Heatmap Clustering of EUs

In the previous round of CASP, the top-performing state-of-the-art methods utilized 

deep learning techniques for predicting protein structures17,18,39. Such knowledge-based 

prediction methods relied on information gleaned from sequence and structure databases. 

Thus, combining scores that emulated the evolutionary relationships of targets to known 

folds helped to establish their difficulty. To achieve this task in CASP14, we chose several 

scores that represented sequence, structure, and performance components of the target EUs 

(see methods for score description). The scores were clustered as multivariate data, and 

principal component analysis was used to visualize the variance of target features, such as 

assigned ECOD classification level (Figure 3A) and potential tertiary structure prediction 

category (Figure 3B).

In terms of ECOD classification level (Figure 3A), target EUs that belonged to the same 

family as their template structures separated from new folds and analogous folds (X-group). 

The X-group EUs mainly overlapped with the New EUs, except for four targets with simple 

SSE arrangements (T1083, T1084, and T1087 with helix hairpins and T1046s1 with a 

small 3-helix bundle). CASP14 EUs with distant homology to their templates (H-group) 

overlapped with both the family-level and the new/X-group level targets. The viral targets 
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(diamonds in the figure) tended to shift to the left in the principal component representing 

most of the variance in the data (PC1, 69.1%). For example, the family-level viral target 

T1099 fell outside the confidence ellipse (95%) due to a unique insertion not found in 

the template. Similarly, while the viral targets T1096-D1 and T1041 (from Figure 2D 

and E) were homologous to their templates, their large insertions shifted their positions 

towards the X-group/New clusters. The bacterial target T1047s1 was also shifted towards 

the X-group/new EUs. T1047s1 adopted an unusual elongated fold that was largely based 

on oligomeric interactions. The distribution of EUs according to ECOD hierarchy suggested 

that a distinction should be made between easy (mainly family-level, TBM-easy) and hard 

(mainly H-group level, TBM-hard) EUs in high accuracy evaluation of template-based 

models.

As scores were selected to discriminate the tertiary structure prediction class, this feature 

(Figure 3B) displayed less overlap than the ECOD level feature (Figure 3A). The TBM­

easy and FM classes formed tighter clusters than the others and were well-separated 

in PC1. The wider distribution of the difficult to categorize TBM-hard and FM/TBM 

classes along the second component (PC2, 12.8%) was dictated by the X-group EUs 

with simple SSE arrangements. These simple SSE EUs overlapped with TBM-hard despite 

lacking significant sequence similarity to their templates. On the opposite side of the PC2 

variance, the TBM-hard target structures like T1067 or T1095 diverged from their sequence­

related templates. The family-level target T1067 belonged to the YkuD-like superfamily of 

transpeptidases/ carboxypeptidases together with its top template (6fj1C, LGA_S 50.65). 

T1067 had insertions with respect to the shared core fold, and the structure surrounding 

the active site diverged between the target and the template (Figure 3C, magenta). Target 

T1095 encompassed four domains that were treated as a single EU and showed alternate 

orientations of interacting SSEs with respect to the sequence-related template (Figure 3D, 

magenta). While T1095 clustered near the TBM-easy targets, the alternate SSE interactions 

preclude the target (and others near it) from being easy.

A heatmap visualization of the same data clustered the target EUs generally by class (Figure 

3E, columns), and the scores by type (Figure 3E, rows). The three sequence-related scores 

(%parentTBM, HHscore, and Neff%Max) separated from the three structure-related scores 

(Top LGA_S, Dali%Self and DaliCvg), while performance branched from the structure 

scores. TBM-easy and FM targets formed independent clusters on opposite sides of the 

tree, with a few exceptions (T1052-D2, T1052-D3, and T1055). T1052 had a RIFT-related 

domain inserted into the middle of a SGNH hydrolase. This difficult domain organization 

caused T1052-D2 to cluster with more difficult TBM-hard targets and T1052-D3 to cluster 

with more difficult FM targets. We ultimately chose to keep T1052-D2 together with the 

TBM easy targets due to the high sequence scores, while we chose to keep T1052-D3 as 

FM/TBM due to the relatively good performance. The other exception, T1055, included a 

HEH motif identified by sequence merged with a more distant Sec63 N-like domain lacking 

a sequence relationship. While the larger Sec63 N-like domain dictated its clustering with 

the FM targets, we included T1055 in FM/TBM due to the relatively good performance and 

the presence of the HEH.
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The TBM-hard and FM/TBM classes also tended to group separately, with an exception of 

one subgroup of 7 EUs designated as TBM-hard that clustered with the FM/TBM EUs. This 

subgroup included the previously discussed X-group targets with simple SSE arrangements 

(T1083, T1084, and T1087), and exhibited good structure and performance scores with low 

sequence scores. Interestingly, the additional FM/TBM structures in this group (T1046s2, 

T1047s2-D2 and T1070-D3 and T1085-D3) were all relatively small domains ( 57 to 141 

residues) with common SSE arrangements. They were placed near other small EUs (72–

75 residues) in the heatmap tree (T1046s1, T1038-D2 and T1082) and were classified 

as distant homologs despite low sequence scores. The T1085-D3 ARM repeat and the 

T1070-D3 agglutinin HPA-like domain diverged from domain duplications in their target 

structures. The phage holin lysis mediator (T1046s2) had significant structure similarity to 

profilin-like sensor domains. Finally, the simple SSE arrangement of the bacterial flagellar 

P-ring protein domain (T1047s2-D2, 83 residues) was assigned as a ring-building motif II 

domain in type III secretion system (T3SS) based on the evolutionary relationship between 

the flagellum and the T3SS[36], despite its top template belonging to an alternate ECOD 

X-group (3mmlH, Glucose permease domain IIB-like). Other single EU exceptions that 

clustered in the TBM-hard class and were ultimately considered as TBM/FM included a 

merged four domain EU T1061-D1 (Figure 1E), an EU T1080 whose conformation was 

dictated by oligomeric state, and an EU (T1053-D1) that had large insertions with respect to 

the template.

3.4 Performance Improvement Complicated Traditional EU Classification

The correlation of predictor performance with target difficulty as measured by sequence 

and structure distance to known templates has been used in past CASP rounds to reliably 

categorize target EUs into high accuracy modeling (formerly TBM) and topology (formerly 

FM) evaluation categories. For CASP14, a broadened scatter of target EU data suggested 

the boundaries between these categories have become increasingly blurred (Figure 4A). 

Several factors could have theoretically contributed to this lack of correspondence. To gain 

an understanding of the factors that contributed to the broadened scatter in CASP14, we 

split the traditional performance plot into its sequence (Figure 4B, left panel) and structure 

(Figure 4B, right panel) components, and we compared the scatter from each component to 

data from CASP13 (Figure 4C, left and right, respectively).

For the CASP14 sequence component, an increasing number of target EUs found themselves 

between homologs on the right (above ~60 HHscore) and analogs on the left (below ~20 

HHscore) when compared to CASP13 (Figure 4B and C, left panels). The tendency to 

keep multidomain targets whole, which could lower the HHscore coverage, as well as the 

over-abundance of viral targets (whose sequences diverge rapidly) shifted the sequence 

component of many EU homologs towards lower scores. On the other hand, many prediction 

methods incorporated large metagenomic sequence datasets such as BFD40 or MGnify41 

into their multiple sequence alignments, while our assignment of template difficulty was 

limited to publicly available sequences. This lack of information could have led to an 

overestimation of difficulty at the sequence level for some other target EUs, although it 

provided the basis for a fair comparison of target difficulty with CASP13. Though an 

a-posteriori analysis showed that larger databases did not help find substantially more 
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evolutionary related sequences in cases where searches versus public databases (e.g., 

Uniref30) returned an insignificant number of hits.

The structure component scatter of CASP14 EU data shifted notably towards higher average 

performance levels when compared to CASP13 (Figure 4B and C, right panels). While the 

average performance of the top20 servers rarely passed above the diagonal for target EUs 

in CASP13, half of the CASP14 target EUs mapped higher than that. This skew towards 

higher performance highlighted a potential breakthrough in CASP14 for many server 

prediction methods that do not rely on manual intervention for operation. Some of the server 

groups maintain publicly available webservers like I-Tasser42, trRosetta 43, MULTICOM44, 

Psipred45 or RaptorX46, highlighting the availability of state-of-the-art structure prediction 

methods for the community. Different components of CASP14 server performance were 

evaluated in the high accuracy modeling (M. Hartmann, A. Lupas et al, this issue) and 

topology (L. Kinch, N. Grishin et al, this issue) tertiary structure prediction evaluations.

CONCLUSIONS

Over the course of CASP assessments, the requirement for splitting targets into EUs has 

gradually changed. In the earlier rounds of CASP where most of the predictions had low 

scores and there were relatively fewer templates in the PDB, targets were routinely split into 

their component domains2,4,47. Some of these earlier splits were required for evaluation 

purposes. Rigid body structure comparison methods developed for the earliest CASP 

assessments have since been expanded with additional scores like LDDT13, CAD-score14 or 

SphereGrinder15 that could evaluate whole structure models when their domain orientations 

do not exactly follow that in targets. During CASP14 almost 175,000 structures existed 

in the PDB, representing a significant increase from the first CASP (~2800 structures). 

This increase in experimentally determined structures has expanded the known fold space, 

providing novel arrangements of SSEs that may be useful for prediction methods. Similarly, 

progress in experimental structure determination methods like cryo-EM has led to an ever­

increasing number of larger and more complete protein structures. In fact, the growing 

number of existing multidomain templates precluded the requirement for some domain 

splits (e.g. T1052 in Figure 1C). The increasing PDB structure count has also provided 

paradigms for conformation change in superfamilies, as observed in several CASP14 targets, 

including T1024 (Figure 1G), T1050, and T1091, among others. For high accuracy modeling 

of these targets, information about ligands or other criteria would need to be considered 

and may need to become a component of future CASP experiments. Given the lack of 

such information in CASP14, targets with indications of conformational change (seen as 

performance clouds in the Grishin plots, where overall performance improved on individual 

domains) were split. While overall performance improved after these straightforward 

domain splits, this strategy did not necessarily account for all conformation change of such 

structures.

The progress in prediction method performance over time has also contributed to a changing 

requirement for splitting targets into domains. In fact, the substantial progress in state­

of-the-art deep learning methods from the previous CASP1318 called for a suggestion 

to cease splitting targets into EUs for the topology category39. At the same time, an 
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inadvertent omission of splitting a target with a conformational change led to a noted 

performance outlier in the CASP13 high accuracy modeling category17. For this round of 

CASP, sets of high-performing models existed that did not follow the general trend of 

the remaining predictions that performed better on split domains (see Figure 1B). Such 

remarkable performance skewed the Grishin plots for many multidomain CASP14 targets, 

and we tended to merge domains for this round that would previously have been split (i.e. 

novel insertions or extensions to known folds in Figure 2D&E). This tendency to keep 

multidomain targets as single EUs shifted the overall model accuracy lower and increased 

the target difficulty for CASP14 (shifts to the left in Figure 4B with respect to Figure 4C). 

In future rounds of CASP, the requirements for splitting targets into EUs are likely to follow 

the same progressive dichotomy.

Maintaining similar target evaluation strategies across CASP rounds allows a fair 

comparison from one round to the next and provides a consistent sense of target difficulty. 

However, given the current advancements of structure prediction methods, the increased 

scatter observed for CASP14 EU data in the traditional classification plot (Figure 4A) 

will likely continue in the future. With metagenomics advancements in the age of next­

generation sequencing, both the size and diversity of sequence datasets are increasing 

rapidly48–50. This data explosion requires advanced bioinformatics tools and databases, 

some of which are utilized in structure prediction methods40,41 but not in evaluation 

of target difficulty. Including these tools in future CASP target classification strategies 

would probably provide a better sense of target difficulty. Similarly, advances in structure 

determination methods like cryo-EM are providing structures that are not limited by their 

ability to crystalize. Categories of proteins like those that span the membrane, exist as 

dynamic macromolecular complexes or form fibrous assemblies are beginning to dominate 

newly released structures. Thus, a more complete picture of structure space is emerging that 

includes non-domain sequence not easily classified in traditional evolutionary terms. Given 

these technology advancements, the ability of state-of-the-art deep learning methods to 

detect increasingly distant relationships between sequence and structure datasets will likely 

exceed the ability of experts to classify structures using traditional evolutionary concepts. 

As such, placing future CASP targets into evaluation categories should shift towards a 

performance-centric strategy where high accuracy modeling assessment simply applies to 

targets with high performance, while topology assessment applies to low performance 

targets.
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Figure 1. Domain Based Definition of Evaluation Units.
A) Simple domain organization for Target T1053 (primary sequence schematic below), 

which has an N-terminal protein kinase-like domain (blue) and a unique C-terminal helical 

bundle (red). B) T1053 Grishin plot demonstrates higher modeling accuracy of individual 

domains (Y-axis) when compared to whole target (X-axis), and thus suggests splitting 

domains. C) Target T1052-D1 includes two domains (schematic below). D) T1052-D1 

Grishin plot suggests merging domains (the data regression line running close to the 

diagonal). E) Complex domain organization of T1061 (schematic below): T1061-D1 (blue) 

has a unique insert (T1061-D2, gray) followed by T1061-D3 (red). F) T1061 sequence 

templates: left Pyocin R2 (blue), upper right Fibronectin type III (red). Lower right: 

structure template (gray). G) The MFS transporter T1024 has 12 TMH formed by an internal 

duplication of two 6TMH domains (colored blue and red, primary sequence schematic 

below). H) MFS templates adopt outward-facing (3wdo, upper panel) and inward-facing 
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(4j05, lower panel) conformations by changing the relative orientation of the two domains. 

I) Shifted clouds of combined domain performance in the T1024 Grishin plot reflect model 

choice of alternate conformations.
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Figure 2. Target Relationships to Known Folds.
A) Pie chart distribution of CASP14 EUs (upper) among ECOD evolutionary categories 

is compared to CASP13 (lower). B) Bar chart depicts counts of CASP14 EUs in 

taxonomic groups split into ECOD evolutionary categories. C) Observed ECOD architecture 

(labeled) frequencies of target domains from CASP14 (blue) and CASP13 (orange) are 

overrepresented (above 1) and underrepresented (below 1) as compared to expected 

frequencies of all ECOD family-level domains. The number of observed CASP14 domains 

are indicated to the outside of the bar. D) CrAss-like phage polymerase domain (T1041, 

upper) includes large extension (gray) to the core set of SSEs (colored in rainbow from 

N- to C- terminus) that are present in the closest homolog from RNAi polymerase (PDB: 

2j7nA, lower, white inserts). E) Bacillus phage polymerase subunit domain (T1096-D1, 

upper) is compared to top structure template homolog (PDB:3les, lower), colored as above. 

F) New fold in CrAss-like phage polymerase helical array domain (T1035, upper), with 

SSEs colored in rainbow, can be assembled from analogous SSE arrangements in : H2-H4 in 

repetitive alpha hairpin of unknown function (PDB: 6e4j, lower left) and H1-H3 in a helical 

subdomain from gamma-tubulin complex component 5 (PDB: 6l81, lower right). G) New 

fold in a+b complex topology domain from viral glycoprotein precursor (T1038-D1, upper), 
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with SSEs colored in rainbow, is compared to an unrelated a+b four layers domain from top 

the structure template (PDB: 3i48, lower), with corresponding SSEs colored similarly.
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Figure 3. Target Feature Clustering Informs Classification.
A) PCA clusters of ECOD classification level: Family (light blue), H-group (blue), X-group 

(green), and New (light green); symbols represent taxonomy: Archaea (circle), Bacteria 

(square), Eukaryota (triangle) and Virus (diamond) are based on seven scores: sequence 

relationship to template (HHscore), predictor declaration of parent template (%parentTBM), 

effective sequences (Neff%Max), performance of top 20 servers (performance), and 

structure relationship to template using LGA_S (TopLGA), DaliLite Z-scores (Dali%self), 

and DaliLite coverage (DaliCvg). Ellipses represent 95% confidence level. Some targets 

discussed in the text are labeled, omitting “T10” or “T1” prefix for brevity. B) PCA clusters 

of tertiary structure prediction class: TBM-easy (green), TBM-hard (purple), FM/TBM 

(blue), and FM (red); symbols represent level: Family (circle), H-group (square), X-group 

(diamond) and New (triangle) use the same scores and are labeled similarly. C) YkuD-like 

superfamily member T1067 (left) has insertions (white) with respect to the core fold 

(rainbow) present in the YkuD-like template (PDB: 6fj1C, right). Each have modifications 
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(magenta) surrounding the presumed active site (black stick, right). D) Four domain target 

T1095 (left) with a single EU has alternate conformations of SSEs (magenta) with respect 

to the sequence-related template (PDB: 6j9fC, right) with the same fold (rainbow cartoon). 

E) Heatmap depicts score range (0–100) using a diverging color scheme from blue to red. 

Scores (rows) are clustered using correlation distance and Ward linkage and Target EUs 

(columns) are clustered using Euclidean distance and Ward linkage. Target EU features of 

ECOD level and tertiary prediction class are colored in the columns above the heatmap 

according to the legend.
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Figure 4. Relationship of Target EU Difficulty with Performance.
A) CASP14 Target difficulty (X-axis) represented by the average of scores for the top 

template by sequence (HHscore ) and by structure (LGA_S) correlates with performance 

(Average GDT_TS scores for top20 server first models, Y axis) with a broad scatter. 

Target EUs are labeled, omitting the “T10” or “T1” prefix in the target number for brevity, 

and are colored according to four evaluation categories: high accuracy modeling (TBM­

easy), difficult high accuracy modeling (TBM-hard), topology (FM), and a questionable 

overlapping set (FM/TBM). B) CASP14 target difficulty separated into the sequence (left) 

and structure (right) components was compared to C) CASP13 target difficulty, colored as 

above. A line was drawn through normal (0,0 to 100,100) in the structure component plots 

(right).
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Table 1.

Evolutionary Assignment of CASP13 Targets among Existing Folds

Target EU Taxonomy Class ECOD Architecture ECOD Assignment (X-group/H-group) Level

T1024-D1 Bacteria TBM-easy alpha complex Major facilitator superfamily (MFS) transporter H-group

T1024-D2 Bacteria TBM-easy alpha complex Major facilitator superfamily (MFS) transporter H-group

T1025 Bacteria TBM-easy a/b 3-layered sandwich Rossmann-related Family

T1026 Virus TBM-hard beta sandwiches Nucleoplasmin-like/VP (viral coat and capsid proteins) H-group

T1027 Eukaryota FM alpha arrays na New

T1028 Bacteria TBM-easy a+b complex C-type lectin-like Family

T1029 Bacteria FM a+b two layers Type III secretory system chaperone-like New

T1030-D1 Bacteria TBM-hard alpha bundles Bacterial immunoglobulin/albumin-binding domains H-group

T1030-D2 Bacteria TBM-hard alpha bundles Bacterial immunoglobulin/albumin-binding domains H-group

T1031 Virus FM a+b two layers dsRBD-like X-group

T1032 Eukaryota TBM-hard a+b duplicates/obligate Smc hinge domain Family

T1033 Virus FM alpha arrays Enhancer of polycomb-like protein 1 (Epl1) N-domain X-group

T1034 Eukaryota TBM-easy beta complex Hedgehog/intein Family

T1035 Virus FM/TBM alpha arrays na New

beta complex Viral glycoprotein ectodomain-like

T1036s1 Virus TBM-easy beta barrels first barrel domain in viral glycoproteins Family

beta barrels Glycoprot B PH2

T1037 Virus FM a+b complex na New

T1038-D1 Virus FM a+b complex na New

T1038-D2 Virus FM/TBM beta sandwiches Immunoglobulin-related H-group

T1039 Virus FM alpha bundles Fatty acid responsive transcription factor FadR, C-domain X-group

T1040 Virus FM alpha arrays na New

T1041 Virus FM alpha complex RNAi polymerase helical domain H-group

T1042 Virus FM alpha arrays na New

T1043 Virus FM beta barrels cradle loop barrel X-group

T1045s1 Eukaryota TBM-easy a+b two layers UBC-like Family

T1045s2 Eukaryota TBM-hard a/b 3-layered sandwich HAD domain-related H-group

T1046s1 Virus FM/TBM alpha bundles Sigma2 domain-like X-group

T1046s2 Virus TBM-hard a+b three layers Sensor domain H-group

T1047s1 Bacteria FM beta barrels secretin domain H-group

T1047s2-D1 Bacteria FM/TBM beta barrels RIFT-related H-group

T1047s2-D2 Bacteria TBM-hard a+b two layers Ring-building motif II in type III secretion system H-group

T1047s2-D3 Bacteria FM/TBM a+b complex na New

T1049 Bacteria FM beta sandwiches Immunoglobulin-like beta-sandwich X-group

T1050-D1 Bacteria TBM-easy beta duplicates/obligate beta-propeller Family

T1050-D2 Bacteria TBM-easy beta duplicates/obligate beta-propeller Family

T1050-D3 Bacteria TBM-easy beta sandwiches Immunoglobulin-related Family

T1052-D1 Virus TBM-easy
beta duplicates/obligate Pectin lyase-like

Family
beta sandwiches Domain in virus attachment proteins
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Target EU Taxonomy Class ECOD Architecture ECOD Assignment (X-group/H-group) Level

T1052-D2 Virus TBM-easy a/b 3-layered sandwich SGNH hydrolase H-group

T1052-D3 Virus FM/TBM beta barrels RIFT-related H-group

T1053-D1 Bacteria FM/TBM a+b complex Protein kinase/SAICAR synthase/ATP-grasp H-group

T1053-D2 Bacteria FM/TBM alpha bundles Bromodomain-like X-group

T1054 Bacteria TBM-hard a+b two layers amino-terminal domain of OmpATb H-group

T1055 Virus FM/TBM
alpha arrays Sec63 N-terminal subdomain-like H-group

alpha array LEM/SAP HeH motif H-group

T1056 Virus TBM-hard a+b complex alpha/beta-Hammerhead/Barrel-sandwich hybrid Family

T1057 Bacteria TBM-easy a/b 3-layered sandwich Rossmann-related Family

T1058-D1 Bacteria FM/TBM alpha bundles Transmembrane heme-binding four-helical bundle H-group

T1058-D2 Bacteria TBM-hard a+b two layers Cystatin/monellin H-group

T1060s2 Virus TBM-hard
beta barrels RIFT-related

H-group
beta barrels RIFT-related

T1060s3 Virus TBM-hard beta sandwiches N-terminal Ig-like domain in baseplate protein ORF48 H-group

beta barrels RIFT-related

T1061-D1 Virus FM/TBM

a+b complex N0 domain in phage tail proteins and secretins

H-groupbeta barrels RIFT-related

a+b complex C-terminal insertion domain in phage tail proteins

T1061-D2 Virus FM beta sandwiches jelly-roll X-group

T1061-D3 Virus TBM-easy beta sandwiches Immunoglobulin-related H-group

T1064 Virus FM beta sandwiches Immunoglobulin-related H-group

T1065s1 Bacteria TBM-hard a+b two layers RelE-like H-group

T1065s2 Bacteria FM/TBM a+b two layers na New

T1067 Bacteria TBM-hard beta complex L,D-transpeptidase catalytic domain-like Family

T1068-D1 Eukaryota TBM-hard alpha arrays Thymine dioxygenase JBP1 DNA-binding domain H-group

T1070-D1 Virus FM beta duplicates/obligate Phage tail fiber protein trimerization domain H-group

T1070-D2 Virus TBM-easy beta sandwiches gp9 N-terminal domain-related H-group

T1070-D3 Virus TBM-hard beta sandwiches Agglutinin HPA-like H-group

T1070-D4 Virus TBM-easy beta sandwiches Agglutinin HPA-like H-group

T1073 Bacteria TBM-easy alpha arrays HTH H-group

T1074 Bacteria FM beta barrels Lipocalins/Streptavidin X-group

T1076 Bacteria TBM-easy

a/b 3-layered sandwich Thiamin diphosphate-binding fold (THDP-binding)

a/b 3-layered sandwich Rossmann-related Family

a/b 3-layered sandwich Thiamin diphosphate-binding fold (THDP-binding)

T1078 Eukaryota TBM-hard beta barrels Allergen Alt a 1 H-group

T1079 Bacteria TBM-hard

a+b complex Lysozyme-like

Familyalpha arrays PGBD-like

beta complex L,D-transpeptidase catalytic domain-like

T1080 Bacteria FM/TBM beta duplicates/obligate Phage tail fiber protein trimerization domain H-group

T1082 Virus FM/TBM alpha arrays PABC(PABP) domain H-group

T1083 Bacteria TBM-hard alpha duplicates/obligate Ferritin/Heme oxygenase/4-helical cytokines X-group

T1084 Bacteria TBM-hard alpha duplicates/obligate Ferritin/Heme oxygenase/4-helical cytokines X-group
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Target EU Taxonomy Class ECOD Architecture ECOD Assignment (X-group/H-group) Level

T1085-D1 Bacteria TBM-hard alpha superhelices ARM repeat H-group

T1085-D2 Bacteria FM/TBM alpha superhelices ARM repeat H-group

T1085-D3 Bacteria TBM-hard alpha superhelices ARM repeat H-group

T1086-D1 Bacteria TBM-easy alpha superhelices ARM repeat Family

T1086-D2 Bacteria TBM-hard alpha superhelices ARM repeat H-group

T1087 Bacteria TBM-hard alpha duplicates/obligate Ferritin/Heme oxygenase/4-helical cytokines X-group

T1089 Bacteria TBM-easy beta duplicates/obligate beta-propeller Family

T1090 Eukaryota FM beta complex ETN0001 domain-like H-group

T1091-D1 Bacteria TBM-easy beta sandwiches Immunoglobulin-related H-group

T1091-D2 Bacteria TBM-easy beta sandwiches Immunoglobulin-related H-group

T1091-D3 Bacteria TBM-easy beta sandwiches Immunoglobulin-related Family

T1091-D4 Bacteria TBM-easy beta sandwiches Immunoglobulin-related Family

T1092-D1 Virus TBM-hard a+b complex N-terminal domain in RNA-polymerase beta-prime subunit H-group

T1092-D2 Virus TBM-easy beta barrels RIFT-related Family

T1093-D1 Virus FM a+b complex 1st helical domain in RNA-polymerase beta-prime subunit H-group

T1093-D2 Virus TBM-hard

a+b complex 2nd helical domain in RNA-polymerase beta-prime subunit

a+b two layers MoeA-I/ODC-C/Reverse ferredoxin-like domain in RNA­
pol H-group

T1093-D3 Virus FM a+b complex alpha/beta-Hammerhead/Barrel-sandwich hybrid H-group

T1094-D1 Virus TBM-hard a+b complex N-domain in beta subunit of DNA dependent RNA-pol Family

T1094-D2 Virus FM a+b complex insert domain in beta subunit of DNA dependent RNA-pol H-group

beta barrels RIFT-related

T1095 Virus TBM-hard

a+b complex alpha/beta-Hammerhead/Barrel-sandwich hybrid

a+b complex alpha/beta-Hammerhead/Barrel-sandwich hybrid

a+b complex C-domain in beta subunit of DNA dependent RNA-pol Family

T1096-D1 Virus FM alpha complex Sigma2 domain of RNA polymerase sigma factors H-group

T1096-D2 Virus FM alpha complex na New

T1099 Virus TBM-hard alpha arrays Hepatitis B viral capsid (hbcag) Family

T1100-D1 Archaea TBM-hard
extended segments NarQ transmembrane domain

H-group
alpha duplicates/obligate HAMP domain

T1100-D2 Archaea TBM-hard a+b three layers sensor domains H-group

T1101-D1 Eukaryota TBM-easy a+b two layers KH-domains H-group

T1101-D2 Eukaryota TBM-easy beta barrels LigT-related Family

Table 1. CASP14 target EU information. Taxonomic group, assessment class, and ECOD hierarchy: ECOD Architecture retains similar secondary 
structure compositions and geometric shapes, ECOD name assignment to X-groups that display similar topology but lack justification for 
homology, H-groups with homologous folds, or “na” for new folds, with hierarchy level in last column.

Proteins. Author manuscript; available in PMC 2022 December 01.


	Abstract
	INTRODUCTION
	METHODS
	Definition of Evaluation Units
	Determining Evolutionary Relationships of Targets to Known Templates
	Combining Prediction Center Metrics to Classify Targets

	RESULTS AND DISCUSSION
	Domain-Based Definition of Evaluation Units
	Evolutionary relationships of targets to known folds
	Target Difficulty Highlighted by PCA and Heatmap Clustering of EUs
	Performance Improvement Complicated Traditional EU Classification

	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.



