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ABSTRACT

A method is presented for the analysis of orthotropic folded
plate structures with eccentric stiffeners. The development is
based on the derivation of a finite strip stiffness which couples
the plate bending and the in plane action due to the eccentricity
of the ribs, Harmonic analysis is utilized in conjunction with the
direct stiffness method providing a very efficient computer program
which can handle a variety of different loadings. At present the
program is restricted to the analysis of prismatic folded plate

structures which are simply supported at the two end diaphragms,
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LIST OF SYMBOLS

A list of often used symbols and their general meaning is sum-~

marized below, The notation distinguishes matrices which are denoted

by straight brackets from vectors which are indicated by braces,

Latin Letters

BW

[c]

c ,C ,C ,G

KX xy vy Xy
[D],, [D],
Yy, oMy, o™y

DOF

Half span length of finite strip
Area of finite strip

Area of x, y stiffeners

Half width of finite strip

Width of finite strip

Half band width

Elastic orthotropic plane stress material law with
principal axes of orthotropy along x, v coordinates

Components of [C]

Material law relating stress resultants of plate
and rib system to the strains and curvatures

Submatrices of [D]
Number of degrees of freedom

Eccentricity of the centroid of x, y ribs to the
mid surface of plate

Elastic moduli in x, y direction for plane stress
material

Elastic moduli for x, y ribs

Body force; In two dimensional elasticity-surface
loads

Nodal intensities of surface loads
Components of {f}

Shear moduli for plate and rib



Y, w

TR o

. vy

J, T

k

e}

[X]

(koo ds Do 1o [k, ]
[k]

[K]

L

{m}

M, M, M =M
x' Uy Xy yX
{m}

M, M, M %M
x7 Ty’ Txy yx
MULSTR

MULTPL

MUPDI

n

N

{n}

vi

Rigidity of eccentric x, y stiffeners with
closed cell cross-section which couples the
twisting moment with the shear strain in
the plate

Moment of inertia of x, v ribs about midsurface
of plate

Torsional rigidity of %, v ribs
Constant = n7/

Stiffness of finite strip in local x, v, =z
coordinates

Submatrices of [k]

Stiffness of finite strip in global X, Vv, Z
coordinates

Structural stiffness matrix; Assembly matrix
Span length of finite strip
Moment stress resultants (symmetric)

Components of {M}

Moment stress resultants (a-symmetric)

Components of {M}

Finite strip computer program for the analysis of
orthotropic folded plates which are simply sup-
ported

Folded plate computer program for the analysis of
isotropic folded plates which are simply supported

Folded plate computer program for the analysis of
isotropic folded plates with interior diaphragms
and supports

Numher of harmonics

Number of harmonics times degrees of freedom =
n*POF

In plane stress resultants



vii
Components of {N}

Surface loads; In two dimensional elasticity-joint
loads

Nodal intensities of joint loads

Components of {p}

Global nodal displacements in ¥, Y, Z direction

Components of {I}

Global nodal loads in X, Y, Z direction

Components of {R}

Consistent nodal loads in local x, y, z direction

Components of {S}

Consistent nodal loads in global X, Y, Z direction

Components of {g}

Spacing of %, v ribs

Static moment of x, y ribs about midsurface of
plate

Displacement field

Components of midsurface displacements

Approximation of displacement field

Components of {v}

Nodal displacement vector in local x, y, z direction

Components of {V}

Nodal displacement vector in global X, ¥, 7
direction

Components of {V}



vili

X, v, Z Right handed local coordinates for finite strip
g, § Normalized local coordinates < 1
;i Normalized joint coordinate = % 1
X, Y, Z Right handed global coordinates for folded plate

structure

Greek Letters

o, B x-distances from origin defining location of
partial loading

& Normalized width of partial ioading

{e} Strain vector

€X, ey, ny Components of {6}

{%} Curvature vector

MX’ MY, MXY Components of {%}

[@V] Functional approximation of displacement field
@u’ @V, @W Components of [@V]

[Wf] Functional approximation of strip surface loads
wu’ Wv, Ww Components of [wf]

[wp] Functional approximation of joint loads

wu’ ¢v, ww Components of pr]

T1(u) Total potential energy

TT{v) Approximation of total potential energy

{G} Stress vector

G%, Gy, Txy Components of {U}

f x-distance to centroid of partial loading
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1.  INTRODUCTION

1.1 Objective

The objective of this investigation was the development of =
general method of analysis for prismatic box girder bridges made up
of orthotropic plates having closely spaced sccentric stiffeners or
ribs, The study was restricted to the elastic analysis of bridges
simply supported at the two ends, Ultimate goal of the investigation
was the extension of the general computer programs MULTPL and MUPDY
developed for the analysis of prismatic box girder bridges with iso-

tropic plates to the case cited above,

1.2 General Remarks

In recent years bridges having cellular box girder cross-sections
of various types have been proposed and used as economic and aesthetic
solutions for the over-crossings, under-crossings, separation struc-—
tures and viaducts found in today's mod%h highway system, The very
large torsional rigidity of the box girder's closed cellular section
provides structural efficiency, while its broad unbroken soffit, viewed
from beneath, provides a pleasing appearance,

In California, the most widely used cellular type bridge is the
reinforced or vrestressed concrete box girder bridge, Fig, 1, which has
a typical cross~section consisting of a top and bottom slab intercon-
nected monolithically by vertical or sloping webs to form a cellular
or box-like structure, Another type of cellular bridge is the com-
posite steel-concrete box girder bridge, Fig, Z, This bridge consists
of a concrete deck acting integrally with cellular steel boxes, The

individual steel boxes are spaced uniformly over the width of the
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FIG. I TYPICAL CROSS-SECTIONS OF REINFORCED OR PRESTRESSED
CONCRETE BOX GIRDER BRIDGES

CONCRETE DECK N~\\

X T

STEEL WEB PLATE STEEL BOTTOM PLATE

a) WITHOUT STIFFENERS

{ J
TRANSVERSE STIFFENERS ;LONGITUDINAL STIFFENERS

b) WITH ECCENTRIC STIFFENERS

FIG. 2 TYPICAL CROSS-SECTIONS OF COMPOSITE STEEL-CONCRE TE
BOX GIRDER BRIDGES
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bridge. Each box consists of two narrow top flange plates welded to
inciined web plates and a wide bottom flange plate connecting the two
webs to form a steel box, In many cases eccentric transverse and
longitudinal stiffeners are added to the web and bottom flange plates,

-1

sridges, orthotropic steel deck bridge systems,

s

For long span
Fig. 3, have been used successfully in a number of cases, The bridge
deck, stiffened by closed or open ribs and supported by transverse
fioor beams spaced at regular intervals longitudinally, is carried by
one or more large steel box girder sections in which the web and bottom
flange plates alsoc have eccentric transverse and longitudinal stiff-
eners welded to them,

The accurate determination of internal stresses, forces, moments,
and displacement in any of these box givder bridges requires the analy~
sis of a highly indeterminate structure, Because of the complexity of

these analyses, they must be programmed for solution by a digital com-

puter to be of practical use,

1.3 Previous Studies

The present report is the fourth in connection with a continuing
research program on box girder bridges at the University of California,

The first two reports [1, 2] dealt with the development of
methods of analvsis and general computer programs for the determination
of internal forces, moments and displacements in simple and continuous
multicelled box girder bridges made up of isctropic plates,

The third report [3] had the objective of studying wheel load
distribution in concrete box girder bridges subjected to standard de-

sign truck loadings, A large number of cases were studied using the
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computer programs described in the first two reports [1, 2. Based
on these studies, improved design methods were presented for deter-
mining wheel load distribution in these bridges [37].

The present study extends the work previously done for box girvder
bridges with isotropic plates to bridges with orthotropic plates having
closely spaced eccentric stiffeners or ribs.

No attempt will be made here to review the extensive literature
on orthotropic plate bridges, Much of the theory for orthotropic
plates used in this report is based on a formulation presented by
Clifton, Chang, and Au [4], Extensive discussions and lists of ref-
erences on orthotropic plate bridges may be found in the publications
prepared by Wolchuk [9] and by Troitsky [10],

In the present investigation, a direct stiffness solution similar
to the harmonic analysis of folded plate theory [1, 2] is utilized in
combination with a finite strip method for determining the plate ele~
ment stiffnesses and consistent loadings. The finite strip method,
which is a special form of the finite element method, has been des-

cribed by Cheung [5, 6, 7] and by Powell [87.

1.4 Scope of Present Investigation

This investigation 1is concerned with the elastic analysis of
prismatic box girder bridges made up of orthotropic plates having
closely spaced eccentric stiffeners or ribs., Multicelled structures,
simply supported at the two ends are considered,

In the present study a direct stiffness solution for box girder
bridges using a folded plate harmonic analysis is utilized., This

approach, briefly reviewed in Chapter 2, is the same as that used for



bridges with isotropic plates previously reported [1, 27, The key
step in such a solution is the development of the stiffness matrix for
the individual plates which make up the bridge cross-section, For
isotropic plates this can be done directly using classical thin plate
pending theory for loads normal to the plate (slab action) and two-
dimensional plane stress theory for loads in the plane of the plate
(membrane action)., TIn the present case of orthotropic plates with
eccentric ribs, the direct approach becomes too complex so that an al-
ternative approach known as the finite strip method is used to develop
the stiffness matrix and the corresbonding consistent loadings for in-
dividual plates, This method, which is discussed in Chapter 3, may be
thought of as a special form of the finite element method, 1t idealizes
each plate by an assemblage of finite strips spanning in the longitudi-
nal direction, Selected displacement patterns varying as harmonics
longitudinally and as polynomials in the transverse direction repre—
sent the behavior of each strip in the total structure. As for all
finite element methods, the finite strip method must be considered an
approximate method in which the accuracy of the results obtained is
dependent on the discretization used and the displacement patterns
selected,

Once the stiffness matrix and the corresponding consistent load-
ings for individual strips have been derived, they may be used in the
direct stiffness solution, which treats the structure as an assemblage
of individual strips interconnected along the longitudinal joints,

The development of general computer programs for box girder bridges
made up of orthotropic plates with eccentric ribs follows the programs

MULTPL and MUPDI which were developed for bridges with isotropic plates



[1, 2]. The new computer program named MULSTR is described in
Chapter 4, and Appendices A and B contain both the input specifica~
tions and the FORTRAN IV listing for this program,

In order to check out the program developed several examples
are considered in Chapter 5, In Examples 1 and 2, single isotropic
plates under in-plane and normal loadings are analyzed, In Example
3, a general folded plate system consisting of several interconnected
isotropic plates is studied, A horizontal plate with four eccentric
vertical ribs is considered in Example 4., Results obtained by the
finite strip method using the program MULSTR for Examples 1, 2, 3 and
4 are compared with those obtained by the elasticity method of folded
plate theory using thevprogram MULTPL. In Examples 5, 6 and 7, an
orthotropic deck bridge example taken from a paper by Clifton, Chang
and Au [4] is analyzed and the results are compared, Finally in
Example 8, several cases of a single cell box are studied in which
various amounts of transverse and longitudinal eccentric stiffeners
are used., Results are compared and the effects of the stiffeners

are briefly discussed,



2, ANALYSIS OF MULTICHELL BOX GIRDER BRIDGES

2.1 General

A structure wmav be thought of as an assemblage of structural
elements interconnected at joints or nodes. The size, type, and
structural properties of the individual elements are dependent on the
analytical model selected to idealize the actual structure, The prob-
lem to be solved in any structural analysis problem may be stated
simply: given, a structure with known geometry, material properties,
loading and boundary conditions; find the displacement of the joints
and the internal forces in each of the structural elements., When such
problems are solved with the aid of a digital cowputer, a direct
stiffness method of solution is commonly employed, This method has been
described in detail in previous reports [1,2] and consists of the fol-
lowing béﬁie steps,

1. Derive the element stiffness k for each element in a local

coordinate system,

2, Transform the element stiffrnesses to a global coordinate

system,

3. Assemble the structure stiffness K for the entire structure

by properly adding the element stiffnesses,

4. Determine the load vector R.

5, BSolve the equilibrium eguation R = Ky for the joint

displacements r,
6, Compute the internal forces S in each element using

the displacements r found in step 5,
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2.2 Previous Analystical Models and Methods

For a box girder bridge a number of anzlytical models may be
selected to idealize the structure, Three analytical models and
methods of solution for prismatic bridges made up of isotropic plate
elements have been discussed in detail in [27] and will be briefly
reviewed here,

The first approach i1s the folded plate method which is restricted
to bridges simply supported at the two ends, These end boundary con-
ditions permit the use of a harmonic analysis utilizing Fourier series

in the longitudinal direction. The basic structural element Fig, 4

v *

is a single plate having a width equal to the distance between longitu-
dinal joints and a length equal to the overall length of the bridge,
Element stiffnesses are determined by the elasticity method in which
classical thin plate bending theory is used for loads normal to the
plane of the plate (slab action) and two dimensional plane stress theory
is used for loads in the plane of the plate (membrane action),

The second approach is the finite segment method which can be
applied to bridges with arbitrary boundary conditions at the two ends,
The basic structural element, Fig. 5, is a finite segment which is
formed by dividing each plate element into z finite number of segments
longitudinally. These finite segments each have a width eqgual to the
transverse distance between the longitudinal joints, Nedal points are
located at the widpoints of the four sides of the finite segments.

Each finite segment has 14 degrees of displacement freedom and 14 cor-
responding forces., The relation between these forces and displacements
are determined using elementary beam theory for in plane loads and
transverse one way slab action for leads normal to the plane of the

plate,



FIG. 5 FINITE SEGMENT ANALYTICAL MODEL
%

FIG.6 FINITE ELEMENT ANALYTICAL MODEL
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The third approach is the finite element method which can be
applied to bridges with arbitrary boundary conditions, The basic
structural element, Fig, 6, is formed by dividing each plate element
transversely as well as longitudinally into an assemblage of smaller
rectangular finite elements. The size, thickness and material proper-
ties of these rectangular finite elements can be varied as desired
throughout the structure, The rectangular finite element used for
priswatic box girder bridges [2] has nodes at the four corners only,
Each node has 6 degrees of freedom making a total of 24 for each
finite element. Element stiffnesses are determined using the principle
of virtual work,

Yor bridges simply supported at the two ends composed of iso-
tropic plates the folded plate method is greatly superior to the other
two methods because it is an exact method of analvsis and it requires
the least amount of computer ftime and storage for a solution., Two
general purpose computer programs MULTPL and MUPDI [1,2] have been
developed using the folded plate method,

For bridges simply supported at the two ends, composed of ortho-
tropic plates with eccentric ribs, the elasticity theory used to
develop the element stiffnesses in the folded plate method becomes
too complex and therefore a finite strip method is adopted for this

purpose,

2,3 Finite Strip Method

In this method sach plate is divided into a number of longitadi-
nal finite strips, Fig. 7. The properties within each strip are taken

as constant, however transverse variations in the properties of a
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" GLOBAL
COORDINATES

FIG. 7 FINITE STRIP ANALYTICAL MODEL

DIFFERENTIAL
ELEMENT

FIG.8 DIMENSIONS AND LOCAL COORDINATE SYSTEM
FOR FINITE STRIP (3)

FIG.9 POSITIVE DIRECTIONS OF INTERNAL FORCES
ACTING ON A DIFFERENTIAL ELEMENT IN
A FINITE STRIP
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plate may be approximated by assigning different properties to each

strip making up the plate., The stiffness matrix for each finite

strip is derived in the same manner as that used in the finite element

nethod, However, advantage is taken of the simple support conditions

o~ T T T A e e o vy D e ok o @ e ey [ T
at the two ends of the strip. A harmonic analysis can be used

uch

i

that all displacements, loadings, internal forces, etc,, Figs. 8 and
9, can be expressed as harmonics of a Fourier series, Displacement
functions varying as harmonics longitudinally and as polynomials trans-
versely are used in deriving the stiffness matrix and the consistent
loadings for each strip, Using this approach the nodal point forces

S and the displacements V for each harmonic are as shown in Fig, 10a,
vach nodal point has four degrees of displacement freedom and four
corresponding forces, Once the element stiffness matrix k relating

5 to V has been derived, the direct stiffness method may be used to
obtain the resulting displacements for each harmonic, The final solu-
tions are obtained by summing the resuits for all of the harmonics used
to represent the load, The sign convention and global coordinate
systems for forces and displacements, which were used in developing

the computer programs MULTPL and MUPDI, are also chosen in the present

study. They are illustrated in Figs, 10b and 11,
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3, FINITE STRIP ANALYSIS OF ORTHOTROPIC
PLATE FELEMENTS WITH ECCENTRIC RIBS

3.1 General

Each finite strip is assumed to be made up of a deck-plate with
closely spaced eccentric ribs or stiffeners in the longitudinal and
transverse directions, For simplicity the combined plate-rib systenm
is oiten referred to simply as an orthotropic plate. The properties
of the orthotropic plate are assumed to be constant over the
entire strip.

The two basic types of eccentric ribs used are designated as
torsionally soft ribs and torsionally stiff ribs (Figs. 12 and 13),
The former consists of open slender sections that have little tor-
sional resistance, whereas the latter includes open sections or closed
box sections with considerable torsional resistance, A reference
plane, z = 0, is selected at the mid-depth of the deck plate, and sll
internal forces and moments (stress-resultants) shown in Figs., 12 and
13 are taken with reference to this plane., The basic theory for ortho-
tropic plates with either torsionally soft or torsionally stiff eccen-
tric ribs loaded normal to their own plane has been presented by Clif-
ton, Chang and Au [4]. This theory will be used and extended to in-
clude loads in the plane of the plate in the development of the element
stiffness matrix and the consistent loadings for the finite strip
analysis to be presented in this chapter,

The following assumptions are made for orthotropic plates with

torsionally soft eccentric ribs,
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FIG 13 TYPICAL ELEMENT OF TORSIONALLY STIFF ORTHOTROPIC PLATE
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1., External loads are normal to or in the plane of the middle
surface of the deck plate,

2. The orthotropic plate acts as a monolithic unit, therefore
there is no relative movement betwsen the deck plate and
the ribs,

3, The deck plate is homogeneous, elastic, of constant thickness
and has orthotropic properties in the longitudinal x, and
transverse y direction,

4, The ribs in each direction are homogeneous, elastic, and
isotropic and may have arbitrary cross—sections, that are
repetitive and equally spaced in each dirvection, The spacing
of the ribs is small in relation to the span length,

5. In the case of torsionally soft orthotropic plates, it is
further assumed that the ribs consist of open sections
which cannot resist torsion.

6, Plane sections initially perpendicular to the middle sur-
face of the deck plate remain plane and perpendicular to
the middle surface during slab bending,

7. Deflections ave small in relation to the thickness of the
orthotropic plate,

For orthotropic plates with torsionally stiff eccentric ribs the

assumptions are used except for the following modifications:

i. The deformation caused by the torsional warping is small,

50 that the assumption of plane sections remaining plane

during bending may still be used,
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jsv]

The angle of twist per unit length of the closed box sec-

tion is the same as that of the middle surface of the plate,

3. The torsional stiffness of a closed box section may be esti-
mated by neglecting any restraint due to the warping of the
cross—section,

4. The thickness of the rib forming a closed box section is con-

stant and small compared to its length,

3,2 Kinematics

Displacements and deformations are assumed small, therefore,

e << 1, woo=w Y =Y = 0 and z' = z, as illustrated in Fig. 14,
Z A 0 X2 vz

W= WO
au aw ,
W= g (:"},5> s S (3.1)
0
v — v s (é:z’) ow
s I Bz o = Vg T % 3y

in which the subscript 0 indicates gquantities at the midsurface of
the deck plate, z = 0.

The linearized strain displacement relationships are

. _%u
5 7 Bx
3v .
e . 2V (3, 2)
N oy
y . ou, v

xy - 5; o
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Plate curvatures are defined as

o

% aX2
2

2 -2 (3,3)
ay
dw

xy ~ dxdy

Substituting Egs, (3.1) and (3,3) into (3.,2)

0
€ =& + z N
X X %
0 .
€ =& + z H {3,4)
Yy y ¥y
0
Y =Y + 2z M
xy Xy

or in matrix form

{e} = {ao} +z {1} (3.42)
where

€0 M

X x
fe }=4¢° and {n} ={n (3.5)
0 | y y

v° o

X xy

3.3 Constitutive Relationships

An orthotropic material law, with principal axes of orthotropy
parallel to the x and v axes, describes the linearly elastic plane

stress behavior of the deck plate in each finite strip

o C C 0 €

X KK Xy X
ol = C C 0 € (3.6)
v yx vy v
T ] 0 G Y

Xy P . Xy P Xy
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or simply

{g}p = [“]p {s} (3.63
where it is assumed that
. o.T
[Cp] = [Cp] (3.7)
and
E E
X A
C = C =
1o~ ’ 1 - v v
xx XY VX vy XYy VX
(3,8)
E v . E vx
c.=¢_ = e — = e yv
Y y Xy ¥x Xy VX
which requires
E v =K v (3.9

vxv is defined as the ratio of the strain in the x direction to
that in the y direction due to a uni-axial stress in the y-direction,
Vyx has a similar definition, only interchanging x and y. For an

isotropic material

E = B = B
X y
(3,10)
W = Y =V
Xy VX
Soft eccentric ribs are subjected to a uniaxial state of
stress and are assumed to have zero torsional stiffness. The
rib stresses in the x and y direction are computed by simple
beam theory with v and Txy = 0 and are related to the strains as
follows
o E 0 0 g
x x x
a =10 E 0 g (3,110
y ¥ y
T 0 0 0
Y, R LRy



21

or simply

{s}R = [C]y {el (3.11a)

3.4 Force-Displacement Relationships for Torsionally Soft Ribs

In the case of torsionally soft ribs the torsionally rigidity
of the ribs is assumed to be zero, The stress resultants for the
combined plate-rib system are shown in Fig., 12, These quantities
are taken with reference to the middle surface of the plate,

z = 0, and may be subdivided in the following sets of membrane

forces and slab moments:

N M
X X
Np= 4N Mi =<M (3.12)
= qn ) ={m
N M
Xy xy
Note that for the present case N = N and M = M . Let
XY VX Xy VK
z = distance from middle surface of the plate
5 = gpacing of adjacent ribs

=y
i

rib area excluding deck plate
h = plate thickness

Yor the membrane forces

h/2

(N} = F {d]p dz + %F {G}R dz

~h/2 A/s
n/2
= r [cl, ({EO} + z{nDdz + f [el, ({go} + z{nhHaz

w

-h/2 A/5
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Note that

h// 2
fad
f zdz = 0 J zdz # 0
~h/2 A/s

therefore

. MN o
Ny = | D £ f " : :
v} = (o], {egd + (03, ey} + {#h (3.13)
For the slab moments
h/
{mM} = Lr {c:"}P zdz + f {a‘:}R zdz
~h/2 Al s
h/2
- e, e v 2 s [ te1, le b+ 2% i
: - P 0 i 0 '
~h/2 A/s
oM M ¢ A -
{M} = 071" {«} + 7" e} + D (3.14)
P K 0
or combining Eqs, (3.13) and (3,145
Nj /o 0 " pM €,
= 1 & (3.15)
M O DM P DMN DM M
N
Ndte that DXN = DRM couples the membrane and bending action,

By performing the necessary integrations in Egs. (3,13) and
(3.14), explicit expressions may be derived, The symbols used are

defined as follows:

, A" = rib area of x, y ribs, see shaded area Fig, 18

s, s = spacing of x, y ribs

y

7 *
s 8Y = static moment of rib areas A, A7 about middle surface

: -3 ) P : S # y s 33 .
I, I = Moment of inertia of rib areas A, A’ about middle surface



With the above definitions, the elements of the D matrixz of

o
i

g, (3.15) are defined as follows:

coNo N .
- * | -
D D, 0 (h ¢+ = ) h © Y
s o A KX g?ﬁ ! Y ‘i
_ ‘ FeA
=D D G . h C (h C + -} 0 (3.16)
21 22 v 3 Y |
e
0 0 D 0 l 0 ln G
= ! |
M S M. LML
(071 = (D], + (D1,
s 3 ;
"h Cxx X X I hj ny {
D D O - .
44 a5 35—+ % ) | 12 P
—— e s TJV_WMM_.WW e
3 3 .
h C h C Y
-I'p. b 0 = —YE ( A4 —y | o jsam
54 755 12 j[ 12 Y
| thj ny
0 ) { - ]
B 0 I)Gi 0 ’ ) i 5
NM ~. NM.
D = (e,
b, 0 0 R I 0 b o
S - ,m_,..,,_wmw“ﬂkmn
_ +m Y oY
= {0 D o] = 0 | s /s | 0 (3,18)
25 e B
0 0 0 0 | 0 | O
Note that for torsionally soft ribs the coupling matrix is
symmetric:
MW WM T WM
D = (D7) =D (3.19
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The final force displacement relationships can be written

€
0 0 (3,20)
"

{ i

where Egqs. (3.2) and (3,3) define the strains and curvatures in terms

of the primary field variables, the displacements,

3.5 Force-Displacement Relationships for Torsionally Stiff Ribs

The stress resultants for this case are shown in Fig. 13, The
torsionally stiff ribs may have either an open or closed section, Fig,
15, In general, the rib properties differ in the x and y direction
and thus M # M in Eq. (2.12), while as before N = N because

Xy VX VE VX
thin ribs do not affect the shear stress resultants,

The torsional rigidities of the x, ¥y ribs about their shear cen-

x y

ter will bhe defined as J and J Using a strength of materials

approach as proposed in [4], these quantities can be expressed in

terms of the rib properties, illustrated in Fig. 15. For an open
section
1 3
J = = bc G 3.21
3 be R ( )

For a closed section
4!«\‘3 h t
J = —a 2 g (3,22)

5 h + 8.t R
a b a

in which A 1is the total area enclosed within the perimeter center-

2
line of the cell., For closed rib sections, an additional contribution
to the twisting moment MXv arises due to the combined action of the

shear force along the middie surface of the plate and the constant

shear flow induced in the cell, The following coupling term H is
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derived in [4] and can be defined in terms of the closed rib proper-

ties by

Note that in deriving H in reference [4], its contribution to the
twisting moment i not accompanied by twisting of the closed rib,
The twisting moments can be defined separately in terms of the

assocliated kinematic and material quantities

%
M % 0 \a (D6 6t ~---~JXX ) 0O 2
Xy S | Xy 2&3 Y
- + (3,24)
v Y
J
M 0 L YX 0 (D66 e ZMX
yx s y QSY y

For a simple description of the energy density in Egq. (3.38) one
can compact Mxy and Myx in order to retain a square (6 X 86) matrix
D defining the constitution of the orthotropic plate, The contribution
to the twisting moment, Eg, (3,23), is based on purely statical con-
siderations, Since no kinematic deformation accompanies this force
quantity, its contribution to the energy can be omitted similar to the
shear strain energy in simple beam theory, There remains only the tor-
sional rigidity of the ribs given by either Eq. (3,21) or (3.22) to be
accounted for in the energy consideration for torsionally stiff ribs,
This is done simply by modification of the coefficient D66 in

Eq. (3.17) to

— X y
5 (J° + J7)

66 = Y6 T 2 (3,25)

in which J° and J° are obtained from either Eq. (3,21) or (3.22),
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The final force displacement relationships for torsionally stiff ribs
have the same form as those for torsionally soft ribs, (see Eq.

(3.20), the only difference being the definition of D66‘

3.6 Principle of Minimum Potential Energy

The principle of minimum potential energy will be used to derive
the element stiffness and consistent loadings for a typical finite
strip, The total potential energy tmM(u) for a finite strip is equal
to the sum of the strain energy stored in the strip and the potential
energy of the external loads acting on the strip and may be written in

matrix form for a general three~dimensional system as follows:

mu) = JF G{e}Trey {e) - (£3T(u)) av —j {p37T {u_} aa (3.26)
v A

The potential energy mT{(u) is expresged in terms of the primary field
variable, the displacement u only, The strain field € is derived by
the strain displacement relationships from u, and C describes the
linearly elastic properties of the material, The body forces f and
the surface loads p are associated to the conjugate displacements u and
us while V and A denote the volume and surface area respectively, For
plate type structures subjected to membrane and slab action, the three
dimensional~problem may be reduced to a two-dimensional boundary value
problem utilizing the assumptions given earlier which are those of the
Poisson—Kirchoff'theory for plates, For this theory it is assumed that
ez, sz and sz do not contribute to the strain energy.,

The first variation, 6m(u) = 0, of Eq., (3.26) yields as the Euler
equation, the.differential equations of equilibrium in a form similar

to that in [4], and as natural boundary conditions it gives the force
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boundary conditions, Because closed form solutions for these differ-
entiai equations are complex, an approximate solution, based on a
discretization of the structure, ﬁay be obtained by taking the first
variation of the discretized potential energy in Eq. (3.26). 1In this
approximate approach, one obtains a discrete number of equilibrium
equations relating nodal point or generalized forces to nodal point or
generalized displacements, Two discretization schemes may be adopted,

(a) Finite Element Method - sz discretization using polynomial

expansions for the description of the displacement field
in the x and y direction in each element,

(b) Finite Strip Method - a discretization in which advantage

is taken of the boundary conditions at the twd ends of a
finite strip such that the displacement field can be des-
c;ibed by trigonometric functions or harmonics of a
Fourier series in the longitudinal x-direction and by
polynomials in the transverse y-direction.

In comparing (b) to (a), if the end boundary conditions are such
that the finite strip method can be applied, the computational effort
to solve the discrete set of equilibrium equations is vastly reduced,
This is because for -each harmonic, the number of nodal points and the
band width of the equations to be solved are greatly decreased, A
disadvantage of (b) compared to (a) is that roundoff errors in the
computer impose é limit on the minimum width-length ratio of the strip
used in the solution, and thus a decreasing mesh size (only the strip
width decreases) will not necessarily give better answers if roundoff

errors become large, Reasonable width-length ratios for each strip
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can ggnerally be adopted to overcome this disadvantage,

In the rest of this chapter the finite strip method will be
used for the discretization of Eq. (3.26). The element stiffness,
consistent loadings, and stresses in the plate and rib for a typi;'

cal finite strip will be derived.

3.7 Development of Element Stiffness for Finite Strip

3.7.1 Assumed Displacement Field

The assumed displacement field v for a typical finite strip can
be expressed in terms of the eight nodal point displacements V, shown

in Fig. 10 and also summarized in Fig. 16:

@ .
= $ v 3,27
)= ) 1 W 3. 20)
n=1
in which the subscript n indicates the harmonic under consideration and
. S . . . . th
% are the shape or interpolation functions, Considering a typical n

harmonic and dropping the subscript n,

{v} = re 1 {vi (3.28)
3x1  3x8 8x1

or expanding into components

(u-}
u & . 0 0 0 1
ulL
< Vi 3 '
v = 0 @vi 0 0 (3. 28a)
Yy
w 0 0 wi @ei .
S

The assumed interpolation functions ¢ are shown in Fig, 17 and may

be expressed in terms of the normalized coordinates X = x/a and
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; = y/b of Fig, 16 as follows

31

- nmx
P =2 @ sy, y) cos =
® - - = . nIXx
vi o+ Yy y) sin =
_ (3.29)
— - —3 . nmx
éwi =% (2 + 3yi y v, ¥ ) sin 5

b - - - -2 3 .
@ei =7 (- y. Yy +y. ¥ +y) sin

in which §i = * 1, depending on whether node 1 or 2 is subjected to a

unit displacement with i = 1,2,

3.7.2 Strain Field

Denoting differentiation by (,) one can express the displace-

ment gradients in terms of normalized coordinates

’x T ox

0 = Su
'y oy

v o= OV _
'x | Ox

v v
'y T dy

and the curvatures

1 du

a O%

1 du

(3.30)

o T (3.31)
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Considering a typical nth harmonic, the strains may be expressed ih

terms of the nodal point displacements:

{e} = 1] {v] (3.32)

§ or expanding using Eqs., (3.4), (3.30) and (3,31)
| :

| (e} = {e)} + 2 (n)
|
€ u, w,
| X b4 XX
u, W
— N - i
Gy = V,y Z W’yy [Tej v |tz [T%] 6 (3.33)
i i
Y u, +v, w,
Xy y X Xy
B 7]
11 0
Yy
{eo] = |0 Ty (3.34)
A
i
31 T32
- €
| E N
g 11 T2
W
! H o=
| {nl T, Toy (3. 35)
f 8.
| 1"
| T T
_31 S&M

The elements of the T matrices may be evaluated explicitly by
substituting Eq. (3.28) into (3.33) and performing the necessary

differentiations,

nTx

nit —_— - .
[Tej. T, =-35; A+ y; ¥) sin =
T = Zi cos Eﬂg
31 7 2b 2
T = Zl sin Eﬂg (3.36)
22 7 2p )

- - nrx
T32 = a + Yy y) cos 5



[Tn]:

11

21

T

T
12

T22

T32

31

2 2 : -
nT —_ S . nmnx
= (2 +3y, vy -y,y) sin —/
i i 2
16a
_ 3 ;‘ ; sin ﬁ'ﬂ;(—
2b2 i 2
~~--‘?‘-EI-T—T(" -y —2) cos Eﬂg
8ab yl yl v 2
nzﬂzb — — —1 -3 . nix
= (-y, =y +y,y +y) sin =~
2 i i 2
16a
1 - - . nTx
=~ 25 (yi + 3y) sin 5
nt P — nrx
= " (-1 + Zyiy + 3y ) cos -

invwhich'§i = £ 1 for the edges i =

3,7.3 Stress Field

Considering a typical nth

harmonic,

1, 2 respectively.
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(3.37)

the stress resultants of

Eq. (3.20) may be expressed in terms of the nodal point displacements

by substituting Eq,.

. or subdividing

HE
M \hDMN DM M
i i
DN DNM T
_DMN : DM G
u
N i
(8} = 07 7,3
i

3X1

) = o™ 1,7

3X1

N DNM €

3X3 3x4 4X1
u,

1
Vi

3X3  3x4 4x1

(3.33) into (3.20),

Y
u,
0 *
€ v,
: i
Tn wl
e,
i

w

NM i
+ [D7] [T%] ei
3X3 3X4 4X1

W,
+ ('] [T, ] 0,

3X3 3X4 4X1

(3.20)

(3.38)

(3.39)

(3.40)
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3,.7,4 Evaluation of Finite Strip Stiffness Matrix

The discretized form of the total potential energy for a typi-

cal finite strip can now be expréssed as follo@s:
rw =) ) ] @ 7T I® g rr (V) -
nomo A | (3.41)
- T e, T regl, (e aa - [T e 1T 7 (ed, as)
]

in which n and m are harmonic numbers, The body and surface forces
are described through the interpolation functions ¢ using a Fourier
expansion in the x direction and a polynomial exﬁansion in the y-direc-
tion and by their nodal intensity vectors {f} and {p}. Equation (3,41)
is of quadratic form in the generalized coordinates V. These are the
nodal amplitudes of the displacement components, which vary as har-
monics in the x-direction,

When the integrations of Eq. (3,41) are performed the ortho-
gonality of the trigonometric functions is preserved since the inte-

grands appear only in the form

2 ' 2 _

F sin LS sin mTx dx or J cos nrx cos nx dx
J 2 2 2 2

0 0

both of which equal zero for n # m and equal 1 for n = m, Therefore,
in Eq. (3.41) only a single summation over n is necessary and the
subscript m may bé dropped, This orthogonality is a very important
property. Instead of having to solve a single set of N X N equations,
where N is the number of degrees of freedom (DOF) times the number of
harmonics (n), it is only necessary to solve n independent sets of

DOF X BW equations, each set of which has a very narrow band width (BW),
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Since the solution of the equations is proportional to the square of
the band width the computational effort is reduced by the factor n2
In essence, the orthogonallty permits the ana1y51s to be carried
out for all of the loading components of each particular harmonic in-
dependently, The final results are obtained by summing the results
for all n harmonics used to represent the load. Once the solution
technique, which involves extensive computations, has been developed
for a single harmonic it can be reused for any harmonic and thus the
approach is well suited to the application of the digital computer,
Taking the first variation of the total potential mT(v) the solu-
tion of &6m(¥) = O yields an upper bound for the discretized energy

m(v) to the true minimum mT(u) because of the positive definite nature

2

of the stiffness matrix 6 m(v) > 0 ., The discrete set of equili-
brium equations is obtained from 6ﬂ(v)‘= O:

n

)l wyry, 0 aa - e 1T re1 () aa

n n n Vo £, n
1 A A :
(3.42)

T
[t e ) e
Vi, Pqn n
s
. . th . . ;
Dropping the subscript n of the n~ harmonic the stiffness matrix [k]
and the consistent nodal point forces {S} are defined from Eq. (3.42)

as follows:

(k] =J [T]T [D] [T] dA (3.43)
A
{s] =f re,1° 1v,] {r} dA-+f re.1" 4,7 (o} ds (3.44)

A s
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The element stiffness matrix [k] for a finite strip can be
obtained by explicitly performing the integration indicated in
Eq. '(3.43) using the previously éerived expreséions for [D] given in
Egs. (3.15), (3.16), (3.17), (3.18), (3.25) and for [T] in Egs. (3.33),
(3.34), (3.35), (3.36), (3.37). Positive directions of nodal point
forces and corresponding displacements are given in Figs., 10 and 16,

The ordering of the element stiffness matrix is as follows:

e~ = = oy o R
Ul J Uy
I
k k
Uy ce : en Yo
A 4x4 : 4x4 v,
v, | v,
-—r=l-——-t+t--- <— —¢ (3.45)
Ql | wl
1 & |
Qz ne | kmn w2
M 4x4 | 4x4 9
1 , 1
|
M 6
. 2 L i J L 2)

Values for each term in the element stiffness matrix are given on
the following pages in which kn = nﬂ/L; B = 2b and L = 2a are defined
in Fig. 16 and values of D are given in Egs, (3,16), (3.17), (3.18),

(3,25),
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3.8 Consistent Loadings

The consistent nodal point forces {S} of Eq. (3.44) are force
quantities which provide the same energy as the body forces f and
surface forces p in going through the chosen displacement patterns
corresponding to unit values of each of the corresponding nodal point
displacements, {V}.

e .. _th

Considering first, only body forces f(x,y) for a typical n

harmonic

{s) =f [67° [v,] {2} aa (3.49)

A
8X1 8X3 3X6 6X1

in which wf are the interpolation functions defining the distribution
of the body forces throughout the finite strip for unit values of the
load vector {f} whose components are the load intensities at each

nodal joint of the finite strip under consideration.

v, 0 0] .
. ’ u

[bel=fo b, of; (£} =42 (3.50)
.O 0 ww Ty

The shape functions | approximate the functional variation in the x
and yv direction of each body force component, They are determined by
a standard Fourier analysis in the longitudinal x-direction and are
assumed to vary linearly in the y-direction, Thus, for a longitudinal
load variation f(x) from x = @ to x = B with a linear variation in the

- th
y direction the interpolation functions § are for the n harmonic
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B -
f f (x) cos —— dx
i = ¢ cos Eﬂg L a+y, v
Yy = 2 ~ 2 2 Vi ¥
j c052 LA S
2
0
B -
— . nTx —
f ff(x) sin ) dx _
o . nTxX 1 -
wv = 5 - sin = 5 A +y, ¥ (3.51)
. nTx
f sin 5 dx
0
g -
f £ (x) sin XX 4%
w 2 ‘ _
o . nTix 1 — =
Ww = 5 - sin — 2 (1 + Y4 v)
J sin2 Egi dx
0

For a uniform load over the entire longitudinal span the load inter-
polation functions reduce to

4

nﬂ; 1
wu = o5 cos — 5 (1 + Vs y)
4 . nmx 1 -~
WV = —-sin = 3 1 + Yy y) (3.52)
4 . nix 1 -
Yy = arsin 5 5 @ +y, ¥

With the displacement shape functions of Eq. (3,28) the consistent
load vector {S} can be easily determined for various load distributions
by performing the appropriate integrations in Eq. (3.49),
The consistent loads for the following four body forces cases
are listed in Eq. (3,54) for unit intensities of load components

in the y and z directions, 1In all cases the loads are assumed to be
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uniformly distributed across the width of the strip:
1) Uniform load distribution over the entire finite strip
2) Uniform load over the total Strip width and over a partial
length at an arbitrary longitudinal position.
3) Uniform line load across the width of the strip at midspan,
4) Uniform line load across the width of the strip at an arbi-
trary longitudinal poéition.
Define by E = §/a the X distance from the origin to the centroid of
the distributed body force and by § = /a the length of the partial
loading in the x direction, The following factors modify the uniform
load distribution of the basic case (1) to any one of the othér 1load

cases treated:

C. =1
1
. nmE . nmd
C2 = sin 5 sin 7
n-1
ntr 2
Cs =31 (-1) n=1,3,5
ntt nné (3.53)
C4 = EE sin ~——=
_ nTe, nmd
C5 cos —EL cos —Z—
nTT nm€
C = 2L ©°° 3

Exactly the same proceaure applies to the determination of consistent
surface loads which are line loads along a longitudinal joint of the
finite strip, Thé'conSistent loads for the same four load cases as in
the case of body forces are listed in Eq, (3.55) for unit intensities
of load components in the x, y and z direction and for a transverse

joint moment M& along joint 1,
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3.9 Direct Stiffness Method

This procedure is recapitulated only briefly since it has been
described extensively in [1,2],

The individual strip stiffness matrices for the nth harmonic are
transformed into the global coordinate system and are then added into
the appropriate places of the global assembly matrix [K], Similarly
the global load vector [R] is formed by combining all consistent
load contributions of the nth harmonic., After imposing the geometric
boundary conditions the resulting system of equations is solved by
direct Gauss elimination for the unknown nodal displacements of the

th .
n harmonic:

[k] {r} = {R} (3.56)

The structural stiffness matrix [K] is of the size (DOF X BW) where
the total number of degrees of freedom DOF equals four times the
number of joints in the structure, and the band width BW equals four’
times the sum of maximum nodal Jjoint diffefence of any finite strip

in the structure plus one. Hence, in comparison to any finite element
scheme the computational effort is{vastly reduced even if Eq. (3,56)
is solved n-times, where n is the total number of harmonics considered
necessary for the Fourier expansion of the loading, Using the solu-~-
tion of Eg. (3.56) for the unknown nodal displacements the displace-
ment variation is obtained within each finite strip by Eq. (3.28).

The contribution of each harmonic is accumulated to yield the final

displacement field, Eq., (3,27).

3.10 Determination of Internal Forces

The internal forces are evaluated by accumulation of each

harmonic contribution to a specific stress resultant similar to the
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displacement field. Three cases can be distinguished depending on
which portions of the material law are used for the determination of
the internal forces: One can ob?ain the stresé resultantsvof the
combined plate-~rib system, of the plate system alone and of the rib
system alone. In order to capture the difference in the twisting
moments MXy + M&x of a plate-rib system with torsionally stiff ribs,
it is necessary to modify the moment-displacement relationships of

Eq. (3.40) by treating M%y and Myx individually, Pfeviously the

following was obtained

u .
1
N NM ,
- DMN y Te O vy (3.38)

M D D o T w
[0 i

6.

L

Redefine the moment relationships in the following way:

W) - 5 1 4 - {5
L L

4X1 4X3 3X4 4x1 4X3 3X4 4X1

where
(v )
X
_ J M
M =<4 73 (3.57)
M
Xy
M
| vx ]
S 0 0
. . 0 eV /87 0
[D] =([D Iz = X (3.58)
0 0 7 /s
0 0 v /sY
. -
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=M. M M
[D"] = [D1, + [D' 1, o

- 3 3 -1
h C X, X h ' C
( XX I"E ) ( xy> 0
+
12 X 12
s .
.hBC h3C ‘IyEy '
(....zzs) (2, ) 0 (3.59)
12 12 y
s
= 3
h ny 7
0 0 T2 + %
2s
3
) h ny Jy
0 0 12 o m—
= 287 J

3.10.1 Internal Forces in the Combined Plate~Rib System

The plate and rib contributions are contained in the material

law. The contribution of the nth harmonic to the combined stress re-

sultants are now expressed in terms of the nodal displacements by

u,
. i
{N} DN DNM Te 0 v. (3.60)
= 1 B
M N pM 0 T
M i
6.
i

3.10.2 Internal Forces in the Plate System Alone

Only the plate contributions are retained in the material law.

The contribution of the nth harmonic to the plate stress resultants are

Us
X N p™M| T, O v
_ 3.6
IM{ MN M w (3.61)

]
w)
o]
(]
,_]
i i
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3.10.3 Internal Forces in the Rib System Alone

Only the rib contributions are retained in the material law,
Either the smeared or the local contributions of the nth harmonic
to the rib stress resultants are obtained by including or excluding

the rib spacing in the material law

i
N DN DNM T€ 0 v,
lMl i Y M ; (3.62)
R |D ) 0 T Y
R " 6

3.10.4 Fiber Normal Stresses in Plate or Ribs

Once the internal forces in the deck plateialone are known

from Eq. (3.61), the fiber stresses in plate may be found as follows:

N 12°M
o = () + (=),

N 19 M (3.63)
(6y)P = <7¥)P * (“’";%‘5>P

In a similar manner)with the internal forces
being known from Eq. (3.62))the fiber stresses in the ribs may be

found as follows:

N M
(@), = < XA: )R + ( X ix Z>R

N sy M sy 4 .60
(Cy)R = < y,Ay )R + <—L;5,———>R

3.11 Interpretation and Significance of Results Obtained

When interpreting the results obtained from the analysis, one

should keep in mind the assumptions made in developing the analytical
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model., In essence the deck plate with discréte eccentric ribs was
replaced by an equivalent combined plate-rib system in which the ribs
were assumed to be spread uniformly across the width of the finite
strip, With this type of assumption one cannot}expect the analysis
to yield accurate values for localized plate momenfs and torques be-
tween ribs or for 1ocalizéd deflections due to concentrated loads
between ribs, On the other hand the analysis should yield accurate
values for displacements along rib lines, for fiber stresses in plate
and ribé along rib lines, and most important for the magnitude and
distribution of internal forces in the combined pléte—rib systen,
These latter results can be utilized in design to check the overall

adequacy of a typical repeating width of the deck-rib section,.
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4, COMPUTER PROGRAM "MULSTR'"

4,1 General

A general computer program has been written to perform the finite
strip analysis described in Chapter 3, The program, entitled MULSTR;
was written in FORTRAN IV language for the CDC 6400 computer, Modern
features, such as dynamic storage éllocatiOn and an automatic field
length reduction, are incorporated to adjust the required storage to
the data under consideration, Detailed descriptions of the input, out-
put, sign conventions and restrictions of this program are given in
Appendix A, The listing of the source program is presented in

Appendix B,

4.2 Input, Output

A brief description of the program is given below,
a) Input Data

1., Geometry of the structure and its idealization in terms of
the span, number of strips, jéints and the number of har-
monics considered for the Fourier representation of the
loading.

2., Dimensions and material properties of each strip which is
made up of a deck plate and possible eccentric rib
stiffeners.

3. Nodalljoint array including magnitudes and locations of
surface loads,

4. Displacement and force boundary conditions along the

longitudinal joints,
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5. Magnitudes and locations of additional concentrated
joint loads,

6, Desired locations for final results in output,

b) Output Data

1. The echo of the input data is printed as a check,

2. Resulting global joinf displacements are given at speci-
fied locations along the span,

3. For each strip all internal forces and displacements are
printed for each transverse section specified across the
plate width and at the x~-coordinates aiong the plate

length,

4,3 Limitation Regarding Application

Since the required storage is allocated in}accordance to the data
there are no restrictions on the maximum number of strips, joints,
material properties or harmonics considered. The use of the automatié
field length reduction program RFL and LWA’written in COMPASS language
enables one to determine the variable storage requirements and to re-
serve automatically the amount of storage needed for the particular
problem analyzed, In Appendix A expressions are given for the hand
calculation of the required field length during execution,

Since the finite strip analysis provides stiffness matrices for
each harmonic which have a very narrow band Qidth there is no need to
use an out of core solver, Hence, a direct in core band solver is
utilized to solve the set of equations taking advantage of symmetry
and the band structure. If one has access to computers with a very

limited core storage only}resort can be taken to a band solver which
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divides the set of equations into blocks using ‘peripheral units, such
as tapes or disks.

It should be emphasized again that during the development of the
eccentrically stiffened strip stiffness the rib properties are assumed
to be uniformly distributed or ''smeared" over the strip. Hence one
cannot expect that this method provides valuable informatioq regarding
the local behavior of the plating between ribs, Different examples in
the next chapter will illustrate that this smearing of closely spaced
ribs yields excellent results of the overall behavior while structures
with widely spaced beams exhibit the limitations of this method., A
study was made if an eccentrically stiffened strip could degenerate to
a discrete beam spanning in the longitudinal direction, The best re-

sults were obtained by assuming an orthotropic material law for the

plate with fictitious zero stiffness in the direction of the stiffener and

with the actual material properties in the transverse direction, The
rib properties of the strip were those of the actual beam about its
top fiber which was assumed to lie at the midsurface of the strip
plate, The results of this investigation are not recorded in this
report, An analogous type of idealization was used for the eccentri-
cally stiffened plate of example 4 where the discrete beams were
approximated by finite strips of the same width, Unfortunately, this
attempt to capture the local effects of discrete longitudinal girders
did not improve the results obtained from the standard smearing

procedure,
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5, EXAMPLES

5,1 General Remarks

Several examples of gradually increasing complexity have been
chosen to illustrate the application of the computer program MULSTR
based on the finite strip method. Whenever possible, the results
obtained are compared with values obtained by other independent
solutions,

Examples 1 and 2 deal with a single isotropic plate subjected
to edge loads or a distributed surface load, These results can be
compared directly with those obtained by the folded plate method using
the MULTPL program which may be considered "exact’ for the purpose of
comparison,

Example 3 is taken from the: paper by DeFries-Skene and
Scordelis [11]. It deals with the analysis of a prismatic folded
plate structure consisting of a number of isotropic plate components.
This structure is simply supported at two ends and is subjected to
joint loads uniformly distributed in the longitudinal direction.‘ For
this case also the results can be compared to those obtained using
MULTPL,

Example 4 consists of a deck-plate with eccentric open ribs in
one direction only which is subjected to edge or distributed surface
loads, For this case also the results can be compared to those ob-
tained using MULTPL,

Examples 5, 6, and 7 are taken from the paper by Clifton, Chang
and Au [4] and involve a deck plate with eccentric ribs in two direc-

tions, These examples cannot be solved using MULTPL, however results
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can be compared with the exact solution given in [4],

Example.S consists of a single cell box subjected to symmetrié
and antisymmetric concentrated loads at midspan, Several cases are
solved: (a) no ribs; (b) longitudinal riﬁs only; (c¢) transverse ribs
only; and (d) both longitudinal and transverse ribs., Results from
the first case are compared with those obtained by MULTPL and the
other cases are used to discuss the effect of rib stiffness on the

behavior of the structure,

5,2 Isotropic Plate Structures

5,2,1 Example 1 - Single Plate Under Edge Loads (Fig, li)

The single isotropic plate shown in Fig, 18 is analyzed by
MULSTR using one (FS-1) and then four (FS-4) finite strips to repre-
sent the entire width of the plate, Results are compared in Table 1
with those obtained by the folded plate method (FP) using MULTPL,
The edge loads at pointl"a” consist of two concentrated midspan loads
of 1 kip, one transverse and one in the plane of the plate.

For FS-4, values at each point were obtained by averaging the
values at the edges of the two finite strips on either side of the
joint, Values of u, v, w, Nx’ Mx and Mxy obtained for both,

FS-1 and FS-4, agree very well with those of FP, The use of a finer
mesh in FS-4 as compared to FS-1 results in an imprerment of the
agreement of the values of Ny’ ny and My with those found by
FP, Observe that the values of Ny violate considerably the zero
force boundary conditions along the free edge due to the effect of

Poisson's ratio, Values at the center of each strip are more meaning-

ful to represent the.distribution of the Ny quantity.
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1k a

b

Table 1. COMPARISON OF RESULTS FOR EXAMPLE 1 (FIG. 18)
1| y(£t)— 0 2.5 5.0 7.5 | 10.0
QUANTITY METHOD
x(ft)‘ a b c d e
u s FP 0 8,15 | 4.05 0 -4,07 | -8.17
(ft. X 107°) FS-1 0 7.96| 3,98 0 -3.99| -7.98
FS~-4 0 8.14| 4.04 0 -4.06| ~8.16
v N
FP 50 -5,58 | -5.,57 | -5.57 | -5.57 | ~5.56
(ft. x 10™%) FS-1 50 -5.44 | -5,44 | =5,43 | -5,43 | ~5.43
FS-4 50 -5.56 | =5.56 | ~5.56 | =5.55 | -5.,54
W PP 50 5.53| 5.48 | 5.43| 5.39| 5,36
(ft. X 1072) FS-1 50 5.54| 5.48| 5.43| 5.39| 5.36
FS-4 50 5.54| 5.48 | 5.43| 5.39| 5.36
Nx FP 50 -1.,57 | -0.71 | o0.,02| o0.72]| 1.47
(/ft, X 10°) FS-1 50 -1.47| -0.73| 0.00| 0.73| 1.46
FS-4 50 -1.55| -0.69| 0.02| 0.72| 1.47
Ny, FP 50 -1,96 | -1,46 | 0,77 | 0,23 | 0.00
(k/ft x 10~1 FS-1 50 ~-2,92 | -1,82| ~0.72| 0.38| 1.48
FS-4 50 ~2,31] -1,31}| -0.77| -0.34| 0.46
Nxy FP 0 0,00 -5,32| -7.37 | -5.58 | 0.00
(k/ft. X 1072) FS-1 0 -4.59| -4,72 | -4.85| ~4.98 | -5,11
FS-4 0 -2.40| -4.91| -6.84 | -5.03 | -2.,93
M | TP 50 2,71 | 2,53 | 2.42| 2.35| 2,31
(k-ft/ft. X 10 °) Fs-1 50 2.70| 2.53| 2.42| 2.35| 2.30
FS-4 50 2,71 2.53| 2.42| 2.35| 2.31
My FP 50 0,00 | -7.21 | -7,63 | -5.16 | 0,00
(k-ft/ft, X 1072) Fs-1 50 -5.98| -6.43| -6.03 | ~5.01 | -3.61
FS-4 50 -1.03| -7.72| -7.81 | -5.36 | -0.26
N ‘
Xy FP 0 -1.52| -1,39 | -1.24 | -1.,08 | -0, 92
(x-ft/ft, x 10~1) Fs-1 0 -1.52| -1.38] -1.24| -1.08| -0.92
FS-4 0 ~1.52| -1.39| -1.24| -1.08| -0.92
1. FP = Folded plate method - MULTPL computer program
FS = Finite strip method - MULSTR computer program
n = 19 -harmonics
, |1k
2. Loading: . —spesspemmme—p——




5,2,2 Example 2 -~ SinglevIsotropic Plate Under Uniform Dead Load
(Fig. 19

The single isotropic plate shown in Fig. 19 is analyzed by
MULSTR using one (FS-1) and then four (FS-4) finite strips to repre~
sent the entire width of the plate, Results are compared in Table 2
with those obtained by the folded plate method (FP) using MULTPL,
The loading consists of a uniform dead load of 1,414 ksf acting over
the entire plate, which is inclined 45° with the horizontal, This
loading then produces both membrane and slab action in the plate,
For FS-4, values at each point were obtained by averaging the
values at the edges of the two finite strips on either side of the
joint, Values of u, v, w, Nx’ and M%y obtained for both,FS-1 and

FS-4 agree very well with those of FP, The use of a finer mesh in
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FS-4 as compared to FS-1 results in an improvement of the agreement of

the values of ny and My with those fqund by FP, Values of Ny
obtained by both ¥S-4 and ¥S-1 compare very poorly with FP values at
the free eages due to the effect of Poisson's ratio, Again only the
values at the center of each strip are a meaningful representation

of the Ny quantity,

5,2,3 Example 3 - Prismatic Folded Plate Structure Under Uniform
Joint Loads (Fig. 20)

The folded plate structure from Reference [11] consists of
three isotropic plates which aré joined at the longitudihal joints
"b” and "c" and is symmetrical about joint "d," Each individual plate
has a span of L = 30 feet and is simply supported at the end dia-

phragms, The structure is subjected to line loads uniformly dis-

tributed in the direction of the longitudinal joints,
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Table 2. COMPARISON OF RESULTS FOR EXAMPLE 2 (FIG. 19)
1|yEt)—= 0 2,5 5,0 7.5 110.0
QUANTITY METHOD
x(ft) | a b c d e
u FP 0 -5,46 |-2,71 0 2.71 | 5.46
-2 FS-1 0 -5,31 |~2.66 0 2.66 | 5.31
t. X 10
(ft. X ) FS~4 0 -5,43 |-2.69 0 2,69 5,43
v FP 50 3:47 | 3,47 | 3.47| 3.47| 3.47
- FS-1 50 3.38 | 3.38 | 3.38| 3.38| 3.38
. 10-1 . . . . .
(ft. X ) FS-4 50 3.45 | 3.45 | 3.45| 3.45| 3.45
w FP 50 3.40 | 3.40 | 3.40] 3.40 | 3.40
et. x 101y FS~1 50 3.40 | 3,39 | 3.39| 3.39| 3.39
' FS-4 50 3.40 | 3.40 | 3,40 3.40 ] 3.40
Ny FP | 50 7,52 | 3.74 0 ~3,74 | -7,52
FS-1 50 7.50 | 3.75 0 ~3.75 | -7,50
k/ft., X 102 : . : ’
(/1 ) FS-4 50 7.54 | 3.73 0 -3,73 | -7.54
Ny FP 50 0,00 | 9.22 0 -9,20 | 0,00
- FS-1 50 1120, 562 0 =562, (+1120.
k/ft, x 1071 ’
&/ ) FS-4 50 294, 3,20 0 -3.70 | -294,
Nyy FP 0 0.00 | 5.51 | 7.30| 5.51| 0,00
1 Fs-1 0 4.90 | 4.90 | 4.90| 4.90| 4,90
» 0"
(k/ft. X 10%) FS-4 0 2.92 | 4.46 | 6.75| 4.46 | 2.92
M, FP 50 1.25 | 1.25 | 1.25| 1.25] 1.25
3 FS-1 50 1.25 | 1.25 | 1.25] 1.25]| 1.25
- 0
(k-ft/ft. X 10%) FS-4 50 1.25 | 1.25 | 1.25| 1.25] 1.25
My FP 50 0,00 2.43 3.25| 2.43| 0,00
(k-ft/ft, X 10°) FS~1 50 2.35 | 2,14 | 2.07| 2.14| 2.35
’ : FS~-4 50 0.15 | 2,59 | 3.40| 2.59| 0.15
Myy FP 0 -3.02 [~1,48 0 1.48 | 3.02
1 FSwi 0 -3.00 |~1.50 0 1.50 | 3.00
k- t, 1
(e=ft/ft. X 109} 1oy 0 ~3,02 |-1.47 | o0 1,44 | 2.92
1. Fp - = Folded mlate method:; MYLTPL
FS~1 = Finite strip method; 1 strip for total width; MULSTR
FS-4 Finite strip method; 4 strips for total width; MULSTR

=
R |

2. Loading:

19 harménics

1,414 ksf
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The structure is analyzed by MULSTR using two finite strips to
idealize the vertical plate and three finite strips for each slopiﬁg
plate., The results are compared pictorially in Fig. 21 with those
obtained by the folded plate method using MULTPL, The values at each
point are either averaged values at the edges of two finite strips or
are output at the center of each finite strip. Observe the excellent
agreement of all quantities, but especially of the transverse quanti-

ties Ny and My if the center values in each strip are used,

5.2,4 Example 4 - Plate With Eccentric Open Ribs in One
Direction Only, Torsionally Stiff (Fig, 22)

The system shown in Fig, 22 is ahalyzed for the loading cases

of Fig. 26 using three different approaches,

First, it is analyzed by MULTPL (FP) using the nodal point layout
shown in Fig. 23, Centerline dimensiéns are used to establish the
two element types, which are a rib element [1] and a deck plate ele-
ment [27], Modulus of elasticity E = 30,000 ksf and v = 0,15 are
assumed for all elements.‘

Second, it is analyzed by MULSTR using‘lo finite strips (FS-10)
with the nodal point layout shown in Fig. 24, Here the overall
width dimension of the deck is used and two element types occur, Ele-—
ment type [1] consists of a plate plus rib combination, in which the
plate has a cross-section of 0,50 X 0,50 ft, and the rib has a cross-
section of 0,50 X 2,25 ft, Note that the rib area extends to the
mid-surface of the plate, thus overlapping a portion of the deck plate,
As mentioned in Chapter 4, extensive numerical studies have indicated
this assumption for the rib area yields the best results if the

following orthotropic material properties are used for the plate:
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Ex = 900 ksf and Ey = 30,000 ksf while vxy =V = 0, The |
longitudinal rib has an elastic modulus: of Ex = 30,000 ksf,. Elemént
type [2] consists only of the isotropic deck plate and has a cross—
section of 1,67 X 0,50 ft, with EX = Ey =’30,000 ksf and v = 0,15,
Torsional stiffness of the ribs was included,

Third, it is analyzed by MULSTR using 6 finite strips (FS-6)
with the nodal point layout shown in Fig, 25, The overall width is
taken from center to center of the outside ribs, thus giving a slighfly
smaller width than that used in FS-10, All elements are assumed to
have the same width of 1.67 ft, Exterior element type [1] consistsvof
the deck plate with a full thickness rib distributed over the width
of the strip, and interior element type [2] consists of the deck plate
with a half-thickness rib distributed over the width of the strip.,
Torsional stiffness of the ribs was included,

It is evident frombthe above description that in cases where only
a few ribs exist, such as is true here, a variety of assumptions can
be made, The example chosen is a severe test of MULSTR since the
theory is predicated on there being a Iargé number of closely spéced
ribs in the systqm rather than a few isolated ones,

Results for u, v, w, Gx at the plate mid-surface, and O%
at the bottom fiber of the ribs are given in Tables 3A through 3E
for the loading cases shown in Fig, 26, Results for 1oéds normal to
the deck)examples 4A and 4B,obtained by MULSTR compare favorably
with those found by MULTPL, Results for loads parallel to the plane
of the deck, 4C and 4D, and for an edge moment, 4E, compare less

favorably due to the reason cited above,
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Table 3A. COMPARISON OF RESULTS FOR EXAMPLE 4A (FIG. 26)
1 y (ft)— 3,33 6.66 10,00
QUANTITY METHOD
x (1) §
u FP 0 1.49 1.48 1.48 1,49
(ft: X 10°) FS~10 0 1.52 1,47 1.47 1.52
’ FS-6 0 1.48 1.47 1.47 1.48
v FP 50 3.28 1.09 -1.09 ~3.,28
(£t. X 10—2) FS-10 50 3.25 1.07 ~1.07 ~-3.25
FS~6 50 3.30 1.09 -1.09 ~3.30
w FP 50 8.71 8.70 8.70 8.71
(£t. X 10%) FS-10 50 8.69 8.69 8.69 8.69
FS-6 50 8.67 8.66 8.66 8.67
Plate o0, FP 50 -1.34 -1.33 -1,33 ~1.34
at mid surf, FS~10 50 -1.36 ~-1.32 ~1.32 -1.36
(ksf X 109) FS-6 50 -1.33 ~1.33 -1.33 -1.33
Rib oy FpP 50 4.29 4.29 4.29 4,29
at bot. fiber FS-10 50 4.28 4.30 4.30 4,28
(ksf X 103) FS-6 50 4.29 4.28 4,28 4,28
Fp = Folded plate method, MULTPL, see Fig. 23
FS-10 = Finite strip method, MULSTR, see Fig. 24
FS-6 = Finite strip method, MULSTR, see Fig. 25
n = 19 harmonics
Loading:
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Table 3B. COMPARISON OF RESULTS FOR EXAMPLE 4B (FIG. 26)
1 y (£1)—> 3.33 6.66 10.00
QUANTITY METHOD
X(ft)l b
FP 0 3,01 2.48 1.96 1.45
v FS-10 0 3.21 2.52 1.89 1.31
(ft. x 107%) FS-6 0 2,92 2.45 1.98 1.51
FP 50 -5,96 -6.01 =6,04 -6.06
v FS-10 50 -6.36 -6.41 -6.44 ~6.46
(ft, X 10~2) FS-6 50 -5,47 -5,53 -5,56 ~5,58
FP 50 1.85 1.54 1.24 .95
w FS-10 50 1,93 1.56 1.21 .87
(ft, x 109) FS-6 50 1,86 1.53 1.23 .94
Plate Oy FP 50 ~5,00 ~-3.06 -2.,00 ~1,02
at mid surf,. FS~10 50 -5.76 -3,06 -1.92 - .86
(ks x 101 FS-6 50 -4.84 -3.02 -2.02 ~1,06
Rib oy FP 50 13.57 9.19 6.71 4,91
at bot, fiber FS-10 50 14.19 9.30 6.50 4,48
(kst x 101 FS-6 50 16.77 9,06 5.55 4.68
l. FP = Folded plate method, MULTPL, see Fig. 23
FS-10 = Finite strip method, MULSTR, see Fig. 24
FS-6 = Finite strip method, MULSTR, see Fig. 25
n = 49 harmonics

2, Loading:

k

L
[

:

a |




COMPARISON OF RESULTS. FOR EXAMPLE 4C (FIG. 26)

65

Table 3C.
1 y (£1)=> 0 3.33 6.66 10.00
QUANTITY METHOD
x (1) ¢ a b c d
u FP 0 1.11 .36 - .37 -1,11
FS-10 0 1.00 .32 - .32 -1,00
(ft. x 10~2) FS-6 0 1.25 .41 - .41 -1.25
v FP 50 -7.93 -7.88 -7.86 -7.85
FS-10 50 -7.30 -7.25 -7.22 -7,21
(ft., X 10-2) FS-6 50 ~8,88 -8,84 -8.82 -8, 80
w FP 50 5.96 1.94 -2.,07 -6.06
_ . FS-10 50 6.37 2.06 -2,20 ~6,46
(ft. x 1072) FS-6 50 5,47 1.78 -1.92 -5.58
Plate q, FP 50 ~-18.08 -4,04 4,60 14.00
at mid surf. FS-10 50 ~15,34 42,74 4,00 13,44
(ksf X 109) FS~6 50 -19,80 ~-4,42 5.02 15,72
Rib oy FP 50 -5.66 -2,11 1.87 6.39
at bot., fiber FS-10 50 -4,35 -1.48 1.04 5,12
(ksf X 10°) FS-6 50 -8.07 -2,92 2.43 8.50
1 FpP = Folded plate method, MULTPL, see Fig.
FS-10 = Finite strip method, MULSTR, see Fig.
FS~6 = Finite strip method, MULSTR, see Fig.
n = 49 harmonics

2, Loading:

2 —

N s




66

Table 3D. COMPARISON OF RESULTS FOR EXAMPLE 4D (FIG. 26)
1 y (£ t)—> 3.33 6.66 10.00
QUANTITY METHOD
x(ft) 4§ b d
u Fp 0 -7.89 ~3,97 -1.03 1,886
i . -3 FS~10 0 -9, 88 -3.89 -0,901 1.98
(£t, %1079 FS-6 0 ~8.51 | -4.12 | -0.85 2.40
v FP 50 2.21 2,21 2.22 2,22
-9 FS-10 50 2.08 2,09 2.09 2,009
(ft. x 107 FS-6 50 2,50 2,50 2,51 2.51
W FpP 50 -6.01 -4.97 ~3.93 ~2.90
o ") FS-10 50 -6.59 -5,25 -3,92 -2,59
(£t. x 107%) FS-6 50 -5.,84 -4, 90 -4,43 ~-3.49
Plate ¢ FP 50 4.10 2,44 0.80 -0.86
at mid surf. FS-10 50 4,28 2.50 0.74 -1.,02
(ksf x 10°) FS-6 50 4.48 2,56 0.68 -1.24
Rib o, FP 50 1.42 -0.03 -1.51 -2.,99
at bot. fiber FS-10 50 1,47 -0.01 -1.52 -3.05
(ksf X 10°%) FS~6 50 1.86 0.11 ~-1.65 ~3.41
1 FP = Folded plate method, MULTPL, see Fig. 23
FS-10 = Finite strip method, MULSTR, see Fig. 24
FS-6 = Finite strip method, MULSTR, see Fig. 25
n = 49 harmonics

2., Loading:

o,




FOR EXAMPLE 4E (FIG. 26)
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Table 3E. COMPARISON OF RESULTS
1 ¥ (ft)— 0 3.33 6.66 10.00
QUANTITY METHOD
x (£t) ¥ a b c d
u FP 0 -1,57 -0,53 0.50 1.54
_ -3 FS~10 0 -1,66 -0,56 0.53 1.65
(ft. x 1077) FS-6 0 ~-1.,42 -0.48 0.46 1.40
v FP 50 1.19 1.20 1.20 1.19
-2 FS~10 50 1.11 1.11 1.11 1,11
(ft. x 10 FS-6 50 1.11 1.10 1.10 1.10
w FP 50 0.95 0.26 -0,31 -0,85
-1y FS-10 50 0,98 0.26 -0,32 0,87
(ft. x 10 FS—-6 50 1,01 0.28 -0,31 -0, 87
Plate o FP 50 ~5,56 -0.32 1.04 2,82
at mid surf. FS~10 50 ~-9.04 -0.28 1.02 2,76
{ksf X 1I0°) FS-6 50 -6.32 -0.48 1,02 2,74
Rib oy FP 50 13.37 -3.,08 -2,19 -5,12
at bot. fiber FS-10 50 10.90 -2,38 -3.01 -4,89
(ks X 10°) FS-6 50 67.94 -1.34 ~-2,39 -5.46
1. FP = Folded plate method, MULTPL, see Fig. 23
FS-10 = Finite strip method, MULSTR, see Fig. 24
FS-6 = Finite strip method, MULSTR, see Fig. 25
n = 49 harmonics

2, Loading:

1k

]

LJ
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5,3 Orthotropic Deck Bridge (Fig, 27)

An isotropic deck plate with three different arrangements of
closely spaced eccentric ribs is analyzed and compared with the
analytical results of Reference [4]. Thié aeck which is simply sup-
ported on all four edges is illustrdted in Fig, 27. The boupdary cond i~
tions allow the’application of the trigonometric expansion of MULSTR
in either the x—‘or the y-direction, Thug, two types of analyses
are performed to find the solution:

First, 95 harmonics are used to describe the trigonometric
variation in the x-direction, while the width of the plate is ideal-
ized by 20 finite strips.

Second, 15 harmonics are used to describe the trigonometric
variation in the y-direction, while the length of the plate is répre—
sented by 80 finite strips, The difference of the number of harmonics
considered originates in the change of rate of convergence caused by
the large difference in load distribution due to the different spans,

The structure is subjected to a 1 kip loading at the center of
the deck which is distributed uniformly ovér an area of 15 X 15 in,
Due to symmetry, only half of the structure_has to be analyzed‘using'
odd harmonics only, The following quantities at the center of the
plate are compared with the analytical results of Clifton, Chang, and
Au [47]: the transverse displacements w, the top fiber'stresses in
the deck plate, and the bottom fiber‘stresses in the individual ribs,

Three different types of closely spaced eccentric ribs are considered:

5,3,1 Example 5 - Open Rib System, Torsionally Soft

The proportions of the ribs are illustrated on top of Fig, 28,

The open rib sections are spaced 12 in, on center in both directions,
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The torsional rigidity of the stiffness is not considered, Table 44
presents a comparison of the finite strip results using harmonic ex-

pansions in the x- or in the y-direction with the exact results ob-

‘tained from Reference [4], The agreement is excellent.

5,3,2 Example 6 ~ Open Rib System, Torsionally Stiff

The proportions of the ribs are illustrated in the middle of
Fig., 28, The open ribs are spaced 12 in, on center in both directions,
The torsional rigidity of the open sections is included, Table 4B pre-
sents a comparison of the finite strip results using harmonic expan-
sions in the x- or in the y-direction with the exact results obtained

from Reference [4]. Again the agreement is excellent,

5,3.3 Example 7 - Closed Rib System, Torsionally Stiff

The properties of the ribs are illustrated at the bottom of Fig,
28, The closed ribs in the y-direction are spaced>24 in, on center
while the open ribs in the longitudinal x-direction are spaced 12 in,
on center, The torsional rigidity of both the oﬁen and the closed
sections are considered, Table 4C presents a comparison of the finite
strip results using harmonic expansions either in the x- or in the y-
direction with the exact results obtained from Reference [4]. Again
the agreement is excellent even for the case where the harmonics are
expanded in the longitudinal x-direction along which the structure is
much more flexible than in the traﬁsverse y-direction which has a

considerably shorter span and much larger stiffeners,

5,3.4 Comparison of Results

These examples ihdicate again that the stress resultants in.

the direction of the harmonic expansion are considerably better than
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/l k LOAD ON 15"xI5" SQUARE
o > - - Z{ - - ] —ex

(1) PLATE MATERIAL E=30,000ksi; ¥=0.30
(2) RiB MATERIAL E=30000ksi; G=15000 ksi

FIG. 27 PLAN DIMENSIONS AND LOADING FOR
EXAMPLES 5,6,7

EXAMPLE 5
375" 375"
_ i i
41875" 4‘ b, 1 ]
.25 "
"F— 9.1875 25"
X - RIBS
_L_______ Y- RIBS
375" EXAMPLE 6
{1 iy |
60 25" T.
12.0
X~ RIBS js
Y-RIBS
Oll
. EXAMPLE 7
A7 - 75

% i TI %
6.0" q;:zg " '—L
.F—;—— RIBS L
l L | Y- RIBS

FIG.28 RIBS IN X AND Y DIRECTIONS FOR EXAMPLES 5,6,7
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FS M-10

i

formulation

Table 4, COMPARISON OF RESULTS AT CENTER
FOR EXAMPLES 5, 6, 7 (FIG. 27)
- ,
1 : oM
METHOD OF ANALYSIS w P : ps
(in) o g g g
X y X v
in| CLIFTON, CHANG ,00451 ~163, -230, 1059, 1092,
S« & AU [4]
o] .
g & ps M-10 00456 ~163, -228, 1076, 1116,
=B
FS M-40 ,00449 -~160, -232,, 1117, 1090,
| CLIFTON, CHANG || 4,0y -71.6 -123, 414, 273,
0 & AU [4]
v : ' ‘
[£3]
o 2 s m-10 ,00110 ~73.0 ~125, 444, 204,
=5
FS M-40 .00108 -70.8 ~128., 459, 286,
| CLIFTON, CHANG | 5009 -53,0 1990 294, 211,
@ » & AU [4]
=
= =2 FS M-10 . 00081 -49,9 ~94,9 292, 214,
=5
FS M-40 .00080 -49,1 ~98.6 304, 211,
1, CLIFTON, CHANG & AU [4] = Exact solution of orthotropic plate

Finite strip method; Mesh: harmonic expansion in the

longitudinal x-direction with 10 strips 1dealiz1ng the

half width (Fig, 27) - program MULSTR.

i}

FS M~-40

Finite strip method; Mesh: harmonic expansion in the

transverse y-direction with 40 strips idealizing the

half length (Fig. 27) - program MULSTR,
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those in the direction of the polynomial expansion, This fact be-
comes obvious if one recalls that the trigonometric expansion does
satisfy the force boundary conditions at the simple supports in addi-
tion to the displacement boundary conditions,

"The results obtaiped from the examples 6 and 7 illustrate the
beneficial effect of the large torsional rigidity of the closed ribs
in comparison to the open ribs.  Recall that the effective moments of
inertia are identical for both types of stiffeners, only the tor-
sional rigidities differ., The use of closed ribs reduces the center
deflections by 20% while the top fiber stresses in the plate and the

bottom fiber stresses of the ribs decrease by 20% to 30%,
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5,4 Orthotropic Box Girder

A single cell box with differenf arrangements of eccentric stiff-
eners is analyzed., TFor the case of no stiffenefs the results can be
compared with the exact ones obtained from folded plate analysis,

The effect of eccentric - ribs on the structural response is studied
by cases of only longitudinal x—, only transverse y~-, or both longi-

tudinal x- and transverse y-stiffeners,

5,4,1 Example 8 - Single Cell Box With and Without Eccentric Stiffeners

The overall dimensions of the single cell box are given in Fig,
29, The structure is subjected to two symmetric or antisymmetric
loadings at midspan and is simply supported at two opposite ends,
Nineteen harmonics are chosen to describe the trigonometric variation
in the longitudinal x~direction, Taking‘advantage of symmetry only the
odd harmonics need to be used, The deck plates of the single celi box
are idealized by 5 finite strips while the web plates are representéd
by 3 finite strips, seé Fig, 30, Four arrangements of stiffeners are
chosen to study their effect on the structural response of the single
cell box:

1) The case of no stiffeners, illuétrated in Fig. 32 at the left,
allows one to assess the accuracy of the finite strip results by com-
paring them with the exact results obtained from folded plate analysis,
All plate components have isotropic material properties, The deck
plates are 1,5 in, thick while the web plates are 0,75 in,, exhibit-
ing very little bending stiffness,

2) The case of longitudinal x-stiffeners, illustrated in Fig. 32

at the right, increases considerably the inertia moment of the section-
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"Analysis of Orthotropic Folded Plates with Eccentric Stiffeners"

K. J. Willam and A. C. Scordelis, Structural Engineering and Struce
tural Mechanics Report No. SESM T0-2, U.C. Berkeley, February 197Q.

(1) Owing to an error in the input data, the cross-section of the structure
actually analyzed in example 8 on page 73 is as shown below in Figure 1,

instead of Figure 2 as included.in the report.

I

0 T O TN O OO 1O O I |

ABlag, ‘
a7 ErRME R

Vg

RIRENRN

O O O Y

| R O O O YOO PR A

Figgre X1 , Figure 2

Y

As explained at the top of page A6 of the report, the eccentricity of the
rid is positive if it lies in the p@sitive z-direction of the local strip

coordinates (see Figure 3 below).

L

© &ﬁ«_«. 4’;)}( K”}z’ )
Lo

<

stiffener ribs with positive
eccentricity

2z
Figure 3

In the original anslysis given in the report, wrong signs were input for the SMX,
| SMY, ERX and ERY in the strip type cards for the webs (page AS, paragraph 4.5 of
the input description given in weport), therefore resulting in the cross-section
‘shown in Figure 1 above. |
(2) Also in the report, on page A5, sﬁfip type cards, third card, the following

corrections should be made:

"Col. b1 to 50" should read "Col. 21 to 30"
"Col. 51 to 60" should read "Col., 31 to LO™
"Col., 61 to TOV should read "Col. 41 to 50"

"Col., T1 to 80" should read "Col. 51 to 60"
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L = 100’

ﬁ (1) PLATE MATERIAL E=30,000ksi , ¥v= Q.30
(2) RIB MATERIAL E= 30,000hsi ; G= 15,000 ksi

FIG.29 DATA FOR EXAMPLE 8
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FIG. 30 EXAMPLE 8- FINITE STRIP IDEALIZATION OF
CROSS-SECTION (FS—-5-3)
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FIG. 31 EXAMPLE 8- LOCATION OF QUTPUT QUANTITIES
AT CROSS - SECTION
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| |1.5" ¢
’ 0.75" s ]
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|

JUA

FIG. 32 EXAMPLE 8 — ISOTROPIC CASE AND CASE
OF X- STIFFENERS ONLY

Y - STIFFENERS X+Y STIFFENERS

]

)

FIG.33 EXAMPLE 8 — CASE OF Y-STIFFENERS AND
CASE OF X+Y STIFFENERS

-
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FIG. 34 EXAMPLE 8 — DIMENSIONS OF ECCENTRIC RIBS
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without changing the transverse plate stiffness or the overall tor-

sional rigidity, The ribs which are spaced 6 in, on center are
iliustrated in Fig. 34, Their torsional rigidity is neglected,

3) The case of transverse stiffeners, illustrated in Fig. 33 at
the left demonstrates that the torsional rigidity of the box section
is of minor importance if compared with the effect of transverse ribs
which reduce sharply cross sectional distortions, The ribs which are
spaced 6 in, on center, are illustrated in Fig., 34, Their torsional
rigidity is neglected,

4) The case of transverse and longitudinal stiffeners, illus-
trated"in Fig. 33 at the right, clearly combines the effects of both
types of ribs described in 2) and 3), Their proportions are illus-

trated in Fig, 34, All of them are spaced 6 in, on center and

their torsional rigidity is neglected,

5.4,2 Comparison of Results

Tables 5A, 5B and 5C present a comparison of the vertical de-
flections, axial stress resultants NX and transverse moments M_ for
the different arrangements of longitudinal and transverse stiffeners
described in the previous section, Note that stress resultants and
moments are those of the combined rib plate system, The locations of
output which are positioned at the center of each strip except at the
corners of the box section are illustrated in Fig, 31 at the left,
These midspan values are given for both load cases, symmetric bending
and antisymmetric torsion,

A comparison of the results for the isotropic box without stiff-

eners illustrates the excellent agreement between the exact folded
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plate analysis with the finite strip method., All values exhibit a

- relative error of less than 1% even underneath the loading except

for the transverse moments which are more sensitive due to their
small size, Note that the displacemenfs for the case of anti-
symmetrical loading are about one half of those compared with the
case found fof the case of symmetrical loading,

Table 5A indicates that longitudinal x~stiffeners reduce con-
siderably the vertical displacements for the case of symmetrical
loading but do not alter the displacements significantly under anti-
symmetric loading. Transverse y=-stiffeners do not change the struc-
tural response under symmetrical loading but reduce sharply the ver-—
tical displacements undér antisymmetrical loading,

Table 5B verifies that the longitudinal stress resultants Nx
vield the same statical moment for all cases under symmetric load-
ing. The x-stiffeners increase the 1ongitudina1 stress reéultants
slightly but still satisfy statics within 2%,

Table 5C compares the transverse moment distribution M& whicht
varies greatly for the different cases of stiffeners and loadings.
In the symmetric load case the y-stiffeners vastly increase the M
moments, while for no y-stiffeners the My moments are negligible,
Obviously, in the caée of antisymmetric loading the transverse
moments are much larger resisting distortions of the cross section

and increase with the amount of transverse stiffeners,
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6, CONCLUSIONS

A method, ideally suited for computer application, was presented
for the analysis of orthotropic folded plates with eccentric stiff-
eners, The computer program MULSTR, déveloped in this investigation,
is restricted to the analysis of prismatic structures which are
simply supporﬁed at two end diaphragms.

The derivation of the finite strip stiffness forms the basis for
the harmonic analysis of these structures, Additional coupling of
the in plane and plate bending action is provided in the case eccentric
stiffeners are present, These rib properties are assumed to be dis-
tributed uniformly over the strip éfea. The exact theory fdr eccen~
trically stiffened plateé does not lend itself to the analytical
derivation of the stiffness properties, Hence, the approximate finite
strip method 1is utilized representing the displacement field by
trigonometric expansions in the longitudinal direction and by poly-
nomial expansions in the transverse direction, The loading 1is ex-
pressed in terms of a Fourier series decoupling the load-displacement
relationship of different harmonics due to orthogonality of the trigo-
nometric functions.  Hence, the total assembly matrix consists of
stiffness matrices with very narrow bandwidths which are isolated for
each harmonic, The computer program MULSTR takes advantage of these
propefties similar to the computer program MULTPL which was developed
earlier for the analysis of isotropic folded plates [17, If requires
very little computational effort reducing the analysis of these com-
plex structures to the trivial task of preparing input data,

The accuracy and efficiency of this program was tested on a

variety of examples, The results of the finite strip analysis of
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isotropic plates, isotropic sheets, isotropic folded plates and
eccentrically stiffened plate structures were compared with exact

solution:

In addition a single cell box was analyzed to study
its structural response using varying amounts of longitudinal and
transverse stiffeners,.

All these examples indicate that the finite strip method pro-
vides a very efficient tool to determine the overall behavior and
the internal forces and moments in a combined plate-rib system,
However, localized plate bending stresses between ribs in the actual
structure cannot be predicted due to the assumption used in the
analysis that the ribs are spread uniformly across the width of
the finite strip,

At present, it is contemplated that the program will be'extended
to the analysis of multispan folded platé structures with eccentric
stiffeners, A further improvement of the in plane strip behavior
could be attained by incorporating an additional node at the cen-
troid without affecting the connectivity of the strip, Furthermore,
a numerical integration scheme could be chosen to determine the
étiffness coefficients for strips with variable thickness in the

transverse direction,
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Al

Department of Civil Engineering

Berkeley, California Division of Structural Engineering
February 1970 and Structural Mechanics

CDC 6400 Computer Program for the Analysis of Orthotropic

Folded Plates with Eccentric Stiffeners

1.0 IDENTIFICATION

1.1

Program Name: MULSTR ~ Computer program for the analysis of
simply supported orthotropic folded plates with eccentric
ribs by the finite strip method,

Programmed by: Kaspar Willam, Junior Research Specialist,

Faculty Investigator: A, C, Séordelis, Professor of Civil
Engineering,

References: :

a) Willam, K, J. and Scordelis, A, C.,, "Analysis of
Orthotropic Folded Plates with Eccentric Stiffeners,"
Structures and Materials Research Report, Division of
Structural Engineering and Structural Mechanics,
Department of Civil Engineering, University of California,
Berkeley, SESM 70-2, February 1970,

b) Scordelis, A, C,, "Analysis of Simply Supported Box
Girder Bridges,” Structures and Materials Research Report,
Division of Structural Engineering and Structural Mechanics,
Department of Civil Engineering, University of California,
Berkeley, SESM 66-17, October 1966,

2,0 GENERAL DESCRIPTION

2,1

Nature of Program: This program is capable of analyzing
orthotropic folded plates with eccentric stiffeners which
are prismatic and simply supported by diaphragms at the

two ends, These structures can be subjected to a variety

-of surface loads, joint loads and concentrated loads, Each

plate component of the folded plate structure is idealized
by a number of finite strips which are interconnected along
the longitudinal joints by four degrees of freedom, Each
finite strip consists of an orthotropic plate with eccen-
tric stiffeners and exhibits in plane and flexural stiff-
ness, The properties of longitudinal and transverse ribs
are distributed uniformly over the area of each strip and
are accounted for in the analysis,

The input data is so arranged that only the properties
of a typical cross-section need to be specified, All final
nodal displacements and internal forces within each finite
strip are printed out at points selected by the user,
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Definitions:

Finite S8trip - a rectangular plate component whose location
is defined by its two longitudinal joints 1 & 2, The strip is
assumed to be simply supported by the diaphragms at the two
ends as illustrated in Fig. Al,

Joint - a longitudinal line of junction interconnecting two
or more finite strips.

Finite Strip Type ~ defined by the geometry which is des-
cribed in terms of the horizontal and vertical projections,
the thickness and possible rib dimensions and by the material
properties which are defined by an elastic orthotropic
material law for the plate and an elastic isotropic material
law for the stiffeners,

Sign Conventions: These are given in Figs, Al to A8,
Reference is made to two right hand coordinate systems, The
global structural system X, Y, Z defines the positive
directions of external loads, joint displacements and the
horizontal and vertical projections of a finite strip. The
local strip system X, v, 2z defines the orientation of the
element for the interpretation of the positive directions of
internal forces and strip displacements, '

Method of Solution: The solution is based on a standard
harmonic analysis as described in reference cited in 1,4,b,
The finite strip method is utilized to derive the stiffness
matrix of a strip with eccentric ribs for the harmonic under
consideration, These individual strip contributions are
assembled with the help of the direct stiffness method to
obtain a complete solution, A detailed description of the
method of solution can be found in the reference cited in
1.4.a.

General Capabilities and Restrictions:

a) The program is restricted to the analysis of eccentri-
cally stiffened folded plate structures simply supported

‘at the two end diaphragms,

b) The material and rib properties must be distributed
uniformly over the area of a finite strip,

¢) The smearing of the rib properties provides an excellent
insight into the overall response but cannot yield informa-
tion on the local stress distribution of the plating
between ribs,
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d) ©No restrictions to the number of strips, joints, etc,,
are imposed since the program features a dynamic storage
allocation coupled with an automatic field length reduc-
tion to optimize automatically the storage requirements,
An explicit formula for the hand calculation of the re-
quired field length is given at the end of this appendix,

e) Restrictions as to the maximum number of strip types,
intermediate printouts and output locations are given under

the input data,

f) Only one load case can be treated in each problem,

g) The program contains an option for the integration of

stress resultants to obtain a check of the gross moment
about the neutral axis of a particular cross-section,
Moreover, the moments of each individual girder, assembled
from a specified number of strips, are given to provide
some information on the overall load distribution,

3.0 PROGRAM STRUCTURE

3.1

Computer System and Language: This program is written for
a CDC 6400 computer in FORTRAN IV language,

Program Decks: The progfam MULSTR contains the following
decks which need not be in sequence since no overlay
system is used:

PROGRAM MULSTR
SUBROUTINE  STIFF

SUBROUTINE  FORCE

SUBROUTINE  STRIP

SUBROUTINE  BANSOL

SUBROUTINE  PINVAL

SUBROUTINE  OPRINT

SUBROUTINE  MOMPER

SUBROUTINE  ADDMOM

SUBROUTINE FL (in COMPASS language)

The purpose of subroutine FL is twofold, It re-
trieves the last word address of the program during
execution if called CALL IWA(N) or it resets the field
length dynamically if called CALL RFL (N), This pro-
gram is not a standard FORTRAN IV capability but its
equivalent should be available at any computer center,
Otherwise a fixed amount of storage has to be calculated
by hand, as shown at the end of this appendix, and has
to be reserved in the area of blank COMMON,

Tapes Used: Tape Unit 1 is used for temperary storage of
the joint displacements for each harmonic,
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4,0 INPUT SPECIFICATIONS
The input data is key punched on cards as specified below, The
sequential order of the input cards must be strictly adhered
to and consistent units must be used throughout a problem.

4,1 Title Card (12A46)

Col, 1 to 72 - TITLE (12), title of the problem to be
' printed with output for identification

4.2 Control Card (¥10,0, 714, 1112)

Col. 1 to 10 -~ SPAN, span length
Col. 11 to 14 - NPL, number of types of finite strips,
maxXimum 50
Col, 15 to 18 - NEL, number of elements
Col, 19 to 22 - NJT, number of joints
Col., 23 to 26 - NXP, number of points along x-axis at
. which results are desired
§ Col, 27 to 30 - MHARM, maximum Fourier series limit
Col, 31 to 34 -~ NCHECK, check on odd or even harmonics
+ 1 to work on odd harmonics only (symmetry)
0 to include all harmonics
- 1 to include even harmonics only (anti-
symmetry) ‘
Col., 35 to 38 - NXBAND, estimate of bandwidth equalling the
{(maximum difference of joint numbers in any
strip + 1) # 4, This estimate is checked
| internally and reset if necessary.
| Col, 39 to 40 ~ INTPRT, number of harmonics for which inter-
mediate results are desired, maximum 20,
| Col. 41 to 42 - NSURL, number of partial surface loads
| ) Col, 43 to 44 ~ NCONL, number of partial joint loads
Col. 45 to 46 - LA, option for output of fiber stresses
; Col, 47 to 48 ~ LB, option for output of internal forces in
| combined rib-plate system
J Col, 49 to 50 ~ LC, option for output of internal forces
in plate alone
Col. 51 to 52 -~ LD, option for output of internal forces
in smeared ribs alone,
Col, 53 to 54 - LE, option for output of internal strip
displacements
Col. 55 to 56 - MCHECK, moment integration option
Col. 57 to 58 - NOXMP, number of sections at which moment
: integration is desired (subset of NXP)
Col, 59 to 60 - NGIR, number of girders considered in
moment integration
Selection of option: 0 - option is not calculated and Ouﬁput\
1 - option is calculated and output
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4,3 X-Coordinate Card (10F7.3)

XP(1I) - x-coordinates at which results are desired,

Intermediate Result Card (20I4)

INTP(I) - harmonic numbers at which results to be output,
Omitted if no intermediate result desired, subset of MHARM.

Strip Type Cards

Three cards for each type of finite strips.
First card - properties of plate (I10, 7F10,0)

Col. 1 to 10
Col, 11 to 20
Col. 21 to 30
Col, 31 to 40
Col, 41 to 50

Col. 51 to 60

Col, 61 to 70

Col, 71 to 80

Second card

Col, 1 to 10
Col, 11 to 20
Col, 21 to 30
Col, 31 to 40
Col, 41 to 50

Col. 51 to 60

Col, 61 to 70
Col, 71 to 80

Third card
Col., 1 to 10

Col, 11 to 20
Col, 41 to 50

Col, 51 to 60

Col, 61 to 70

i

I, type number

H(I), horizontal projection of strip

Vv(I), vertical projection of strip

TH(I); thickness of plate

EPX(I), plate modulus of elasticity in
the x-direction

EPY(I), plate modulus of elasticity in
the y-direction

GP(I), plate shear modulus

FNU(I), plate Poisson's ratio equals vV , the

ratio of the x-strain to the y-strain due
to a uniaxial stress in the y-direction
smeared rib properties (per unit width of strip%
left blank if no stiffeners (8F10,0) '

ARX(I), area of x-stiffeners

ARY(1), area of y-stiffeners

SMX(I), first moment of x-stiffeners about
the midsurface of the plate

SMY(I), first moment of y-stiffeners about
the midsurface of the plate .

TMX(I), second moment of x-stiffeners about
the midsurface of the plate

TMY(I), second moment of y-stiffeners about
the midsurface of the plate

AJX(I), torsional rigidity of x-stiffeners

AJY(I), torsional rigidity of y-stiffeners

.Both AJX and AJY must have the shear modulus incorporated

material properties of ribs, left blank
if no stiffeners (8F10,0)
ERX(I), modulus of elasticity for x-ribs
ERY(I), modulus of elasticity for y-ribs
DX (I), distance from plate midsurface to
fiber of x~rib at which stress is
desired (positive in local z-direction)
DY(I), distance from plate midsurface to
fiber of y-rib at which stress is
desired (positive in local z-direction)
HX (I), additional rigidity coupling the
twisting moment Mk with the shear strain
for x-ribs having a closed cross-section
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71 to 80 - HY (I), additional rigidity coupling the
twisting moment Myx with the shear strain
for y-ribs having a closed cross—section

Note that both the first moments of inertia, SMX and

and the distances to the rib fibers, DX and DY, can

a positive or negative sign depending on the eccentri-

of the rib, The eccentricity is positive if it lies

in the positive z~direction of the local strip coordinates,

Fig,

It is recommended to use the shaded areas of
A9 for the definition of the rib properties,

All rib properties are those of the equivalent distributed
(smeared) rib structure per unit width,

Hence, they must in-

corporate the spacing between adjacent ribs,

Strip Array Cards (5I4, 3F10.0) - one card for each

finite strip. Uniform loads given below exist over entire
strip area, '

Col,
Col,
Col,
Col,

Col,

Col.

Col,

1l to 4 - I, strip number
5 to 8 - NPL(I), 1 joint number
9 to 12 - NP2(I), 2 joint number
13 to 16:~ KPL(I), type of strip used
17 to 20 - NSEC(I), number of transverse sections .
for internal forces and displacement
output, maximum 4, if NSEC = O no
internal forces or displacements will
be output
31 to 30 - DL(I), dead load, force in vertical Z-
, direction per unit surface area
31 to 40 - HL(I), uniform horizontal load, force per
unit vertical projected area
41 to 50 - VL(I), uniform vertical load, force per
unit horizontal projected area

Joint Cards (I10, 4F10,0, 412) -~ one card for each joint,

Col,
Col.

Col,

Col,

Col,

Col,

Col,

1 to 10 - I, joint number
11 to 20 - AJFOR (1,I), applied horizontal joint force
' or displacement

21 to 30 - AJFOR (2,I), applied vertical joint force
or displacement ;

31 to 40 - AJFOR (3,I), applied joint moment or rota-
tion

41 to 50 - AJFOR (4,I), applied longitudinal joint
force or displacement

52 - LCASE (1,I), index for horizontal force
or displacement, (can be 0,1,2 or 3)

54 - LCASE (2,I), index for vertical force or

displacement, (can be 0,1, or 3)
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Col, 56 - LCASE (3,I), index for moment or rotation,

(can be 0,1,2, or 3)

0 - .for given zero force

1 - for uniformly distributed force, input
uniform force/unit length for AJFOR

2 - for concentrated force at midspan,
input total force for AJFOR

3 - for given zero displacement

Col. 58 - LCASE (4,I), index for longitudinal force

or displacement, (can be 0,2, or 3)

0 ~ for given zero force .

2 -~ for prestress P at each end, input
total force at one end for AJFOR,
positive away from midspan

3 - for given zero displacement

Partial Surface Load Cards

Surface load cards (I10, 4F10,0) - one card for each partial
surface load. No cards required if NSURL = 0, Loads given
below are uniform over plate width and have a length egual
to that given under SURDEL, (P equals the total load, V and H
equal the vertical and horizontal strip projections),
Col, 1 to 10 - LEL, strip number
Col. 11 to 20 - SURHL, horizontal load, P/V-area, P/V-length
. if transverse line load is applied '
Col, 21 to 30 - SURVL, vertical load, P/H-area, P/H-length
if transverse line load is applied :
Col. 31 to 40 - SURXI, location from left support to
; center of distributed length
Col, 41 to 50 - SURDEL, distributed length in x-direction,
for line load equals zero
If SURDEL # 0, input SURHL and SURVL as
force/unit area
If SURDEL = 0, input SURHL and SURVL as
force/unit width

Partial Joint Load Cards

Joint load cards (I10, 6F10,0) - one card for each partial

"joint-load, No cards required if NCONL = O, More than one

location along a joint may be loaded, but each location re-
quires a separate card,

Col. 1 to 10 - LJT, joint number

Col, 11 to 20 - CONHL, total horizontal force

Col, 21 to 30 ~ CONVL, total wertical force

Col, 31 to 40 CONM, total moment

Col, 41 to 50 CONS, total longitudinal force P (Note - it
must be balanced by one ~P somewhere along
the same joint)
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Col, 51 to 60 - CONXI, location from left support to center

of load

Col, 61 to. 70 -~ CONDEL, distributed length in x~direction

(=0 for concentrated load)

4.10 Girder Moment Integration Data

X-Section Card (1OF7,3) - X(I), subset of XP(I)

Next cards (3I4, 3F10,0) - one card for each finite strip

Col, 1
Col, 5

Col, 9

Col, 13

Col, 23

Col, 33

to
to

to

to

to

to

4
8

12

22

32

42

i

I, stripvnumber
NGIEL (I,1), girder which joint 1 of strip I
belongs to.

NGIEL (I,2), girder which joint 2 of strip I
belongs to, leave blank if contribution only
to girder of NGIEL (I,1).

DNA1(I), vertical distanee from neutral axis’
to joint 1, downward is positive,

DNA2(I), vertical distance from neutral axis
to joint 2, downward is positive

XDIV(I), horizontal distance from node 1
to the dividing line if the finite strip
belongs to two girders,

The sdme set of data cards are repeated for the next problem,

Two blank cards are added at the end of the data deck to
terminate execution,

OUTPUT DESCRIPTION

First, the input data is printed for an echo check, The final

results consist of the joint displacement in the global coordi-
nate direction and the internal forces and displacements in
the local strip coordinates at locations specified by the user,

Options cited in Paragraph 4.2 may be used to select desired output,

5,1 Input Check Printout: The complete input data is properly

labeled and printed out for an echo check,

5,2 Final Joint Displacements: The four displacement components

in the global coordinates r,, r,, rg, rg are printed
successively for each joint at x-coordinates specified in

input,

5.3 Internal Forces:

The stress resultants N N and

x! Ty ny

the moment resultants M., My, Mxy’ Myx are printed out

at specified locations of each finite strip, All these
internal forces of each finite strip are given for the
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combined: rib-plate, the plate alone and the ribs alone with
the rib properties assumed to be smeared, The output of
the results for the combined system and for the rib system
is omitted if the smedred area of respective ribs equals
zero. Moreover, the fiber stresses in the ribs are given at
the midsurface and at a specified distance from the mid-
surface of the plate. This distance can differ from the x-
and y-ribs and is positive in the positive z-direction of
the local strip coordinate system, Furthermore, the out-
side fiber stresses of the plate are glven at the same
locations,

5.4 BStrip Displacements: The local strip deflections u, v, w
are printed at the same locations specified by the user,

5.5 Moment Integration: The girder moments are determined by
numerical integration of the stress resultants and moments
providing an excellent insight into the load distribution,

5.6 Execution Time: The execution time for the solution of
the problem is printed out in seconds with the number of
degrees of freedom, number of harmonics and the band width,

REMARKS

a) Select joint numbering so as to minimize band width, which

b)

is a function of the maximum absolute difference between
joint numbers for any finite strip.

The execution time can be estimated by the formula below:

T = *N*BW? 4+ B*NEL

with
o ~ 0,000033
B~ 0,25
T - the total time in seconds for a CDC 6400 computer
using the FUN compiler
N - four times the number of joints times the number of

harmonics considered ‘
BW - the half band width equaling four times the maximum
difference of joint numbers at one finite strip plus one

NEL- total number of finite strips

o =~ a coefficient which depends on the efficiency of the
equation solver
B =~ a coefficient which depends on the efficiency of the

program determining the internal forces and displacements,
- To determine B it was assumed that NSEC(I) = 2, MHARM = 25
and - INTPRT a O ‘

This estimate is based on th% execution times obtained from a
limited number of runs, Hence, it has to be treated with cautilon,
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The storage requirement for a specific problem is deter-
mined and allocated automatically within the program, The
following formula is useful to determine the required
field length in case it is impossible to retrieve the last
word address of the program and to reset the fleld length
durihg execution, This estimate is based on experience
with a CDC 8400 computer using the FUN compiler,

8T = FIX + VAR

where ST is the maximum storage required for a specific
problem, FIX is the fixed storage area used by each set
of data and VAR is the variable storage area which depends
on the problem being solved, There are two subroutines,
STIFF and FORCE, which require a minimum storage area for.
their blank COMMON; the larger determines the size of WAR,

for STIFF:

“VAR. = 7 NEL + NXP (2 MM + 4 NJT + 1) 4+ 4 NJT +
+ (3 + NXBAND) + 72 NPL + 5 NSURL + 7 NCONL
for FORCE: \ ,
VAR = 9 NEL + MM (120 + 2 NXP) + 153 NXP +
+ NOXMP (2 + 3 NGIR) + 120.
and . ,
FIX = 12,000 words '

with the following definitions

NPL . = number of strip types
NEL - number of strips
NXP = number of sections
NJT - pumber of joints
MM ~ number of harmonics considered
NSURL -~ pumber of surface loads
NCONL - number of joint loads
NXBARND - band width »
NOXMP -~ number of sections at which moment integration
required ‘
NGIR - number of girders considered for moment

integration
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a) OPEN SECTION

b) CLOSED SECTION

FIG.AS9 DIMENSIONS FOR RIGIDITY OF TORSIONALLY STIFF RIBS
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APPENDIX B

FORTRAN IV Listing of
Computer Program MULSTR

Considerable time, effort and expense have gone into the de-
velopment of this computer program., It is obvious that it
should be used only under the conditions and assumptions for
which it was developed. These are described in the report,
Although the program has been extensively tested by the
authors, no warranty is made regarding the accuracy and re-
liability of the program and no responsibility is assumed

by the authors or the sponsors of this research project,
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PROGRAM MULSTR (INPUT,OULTPUT,TAPEL} MUL S

C MUL S
G el S ol dole o e oofi o ot o oo ool ol o o o ool ool o e ok sl ofe o e o o o ol ol e ool ot ok o ol ol kol R ok ks R MU L S
C FINITE STRIP PROGRAM FOR THE ANALYSIS OF ECCENTRICALLY MULS
C STIFFENED FOLODEC PLATES WHICH ARE SIFMPLY SUPPORTED. MUL S
€ HUL S
C PROGRAMMED CN THE COC 6400 BY KASPAR Jo WILLAM MULS
C UNIVERSITY OF CALIFORNTIA, BERKELEY, FEBRUARY 1970 MUL 5
sl o e o oo oo o ol sk ol ol S o ool ok o sl o o ok o e o ke ook ol o o o ok o ol o sk o oo o e skl R ok ol ol e ks ol MU L S
¢ MUL S
COMMON AL1) MULS
COMMON / SETUP / SPANJNPLaNEL ¢gNJToNXP ¢ MHARM ¢NCHECK s MM, NXBAND, MULS

L INTPRT yMCHECK ;NSURL s NCOUNLoMX sPI o NL oN2, (T 51 dy 1L, MULS

# LAGLBLC, LD, LE, INTP{ 21} (NOXMP,NGIR MUL S
DIMENSION TITLE(L12) MULS
LOGICAL EVEN MULS

C MULS
G READ AND PRINT COCNTRCL INFORMATION MUL S
C MUL S
NFL = 0 MUL S

101 CALL SECOND {70} MULS
CALL LWA [NNN} MUL S

READ 10, (VITVLE(I),I=15129 MULS

READ 12y SPANGNPL NEL NJToNXP, NHARM,NCH&CKQNXBANDyINTPRT,NSUR{g MULS

* NCONL LAy LBy LC LDy LE; MCHECK s NOX¥PyNGIR MUL S

IF (SPAN.EQ.0.0}) GG TO $99 MULS

PRINT 15 MUL S

PRINT 11, AVITLE(IL},(I=1,12) MULS

PRINT 17 MULS

PRINT 16¢SPAN NPLoNEL sNJTyNXPoMHARM NCHECK, NXBAND  INTPRT ;NSURL MUL S

* NCONL s LAGLByLC LD, LEy MCHECK NCXFP,NGIR MUL S
PRINT 18 MUL S
[F{MHARM~ {MHARM/ 2% 2}10C,11C,100C MUL S

100 EVEN=.FALSE, MULS
GO TO 112 MULS

110 EVEN=L.TRUE. MULS
112 IF (NCHECK} 103,1C5,104 MULS
103 PRINT 13 MUL S
IF{EVENIGC TO 105 MUL S

120 MHARM=MHARM-1 MULS
PRINT 45, VHARM MUL S

GO YO 105 MULS

104 PRINT 14 MUL S
IF{EVENIGC TO 120 MUL S

105 MM=MHARM/2+1 MULS
IF(NCHECK.EQo.Q)MM=MHARM MULS

C MULS
C DETERMINE REQUIRED SYGRAGE FCOR STIFF SUBROUTINE MUL S
C MUL S
N4 = 4ENJT ) MUL'S

MX = N4 MULS

L1 =1 MULS

L2 = L1 + NEL MULS

L3 = L2 + NEL MUL S

Le = L3 + NEL MUL S

L5 = L4 + NEL MUL S



OO0

L6

Ly

L8

LS

L10
L1l
L2
L13
Ll4
L15
L1é
Liv
L1i8
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30

NA

N10O
N12
N13
N14
N15
N1leé
N17
N18
N19
N20
N21
N21
N22
N23
N2 4
N25
N26
N27
N28
N29
N30
N31
N32
N33
N34
N35

L L I O T I | R T (O R T T TN 2 O T

L L L O L | (T TR T P TR S 'O VR T A

LS

Leé

L7

L8

LS

L10
L1l
L12
L13
L14
L15
L16
L17
L1i8
L19
L20
L21
L22
L23
L24
L25
L26
La7
L28
L29

L I I I I T T S S S S A I S

5%NXP
L8

N9

N10O
N12
N13
N1lé4
N15
N16
N17
N18
N19
N20
N20
NZ21
N22
N23
N24
N25
N26
N27
NZ28
NZ9
N30
N31
N32
N33
N34

L i S o e S O v S S S

NXP
MMEN X P
MMEN X P
NSURL
NSURL
NSURL
NSURL
NSURL
NCONL
NCCNL
NCONL
NCCNL
NCONL
NCONL
NCCNL
NEL
NEL
NEL

N4

N4
N4RNXP
6 4%NPL
BENPL
N4
N4*NXBAND

DETERMINE REQUIRED STCRAGE FOR FORCE SUBROUTINE

NXP
NXP
8%15
N A
NA
NA
N A
NA
NA

MULS
MULS
MULS
MUL S
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MUL S
MULS
MULS
MUL'S
MULS
MULS
MULS
MULS
MULS
MUL S
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MUL S
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MUL S
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS

107
108
109
110
111
112
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OO

[N aNe]

220

200

10
i1
12
13
14

N36 = N35 + NA MULS
N37 = N36 + NA MULS
N38 = N37 ¢ NA ' MULS
N39 = N38 + NA MULS
N4O = N39 + NA ) MULS
N4l = N4O + NA . MULS
N42 = N4l ¢ BEMM%15 MULS
N&3 = N42 + 2%NEL MUL S
N44 = N43 + NEL MULS
N5 = N44 + NEL MULS
N6 = N45 + NEL MULS
N4T = N4b6 + NOXMP MULS
N&48 = N&7 + NOXMP MULS
N9 = N48 + NUXMPANGIR MUL S
NSO = N49 + NCOXMPENGIR MULS
N51 = N50 + NOXMP®ENGIR MUL S
: . MULS

RESET FIELELENGTH MUL S
MUL S

NNM = NNN+L30 MULS
NNP = NNN+N42 MULS
IF {MCHECK.NE-O) NNP=NNN#NE1 MULS
IF INNP.GT.NNM} NNM=NNP MULS
IF (NNM.GT.{NFL~100C) sAND.ANM.LT.NFL} GO TO 200 MULS
NFL = NNM MULS
IF {NFL.LT.1400008}) GO TO 220 MULS
PRINT 500, NFL MULS
GO TO 999 MULS
CALL RFL {NFL} MULS
MULS

CALL SECOND (T} MULS

CALL STIFF (A(LL)sA(L2)oALL3)sA{LA)sAILS ) A(LO) JALLT) JALLB)ALLI)sMULS
* ACLIO) »ALLLIL) s ACLLI2) oA(LI3) ,ALL14) A(LLIS)Y ALLL6Y A(L17) ,A{LLB),MULS
* ACLL9) o ALL200,A0L21) pA(L22) sA(L23) 4A{L23),A(L24) JA{L24) sA(L25)4MULS
* ALL26) sALL2T) o A(L28) sALL28),A(L29) sA(L29),A(L23) 9N4, MMy NNM) MULS

CALL SECOMND (T2) MULS

CALL FORCE [(A{LLI},ALL2)5ALL3),ALLA) ALILS ) AILOY JATLT)A{LSB)AIND),MULS

* AINIO) yA{N1O¥-,AINL2)sA{NL2) yAINLZ) JAINI3 ), AINLI4) ;AINLS) ;AINLOI,MULS
* AINLT) o AINL8B) 3 AINLT) s A(N20D s AIN21) s AIN22)oAIN23) yAIN24) AIN25)4MULS
* AINZ26) s AIN2T) ,AIN28B);AIN29} 3 AIN30) yA(N3L1)A{N32) yAIN33),A(N34},MULS
* A(N35) s A(N3E) s AIN3T)AIN3B) yAIN39) JAIN4O) ,AINSGL) JAINSG2) JAUNSG3) s MULS
* AIN44) s AINAGSY AIN46) s AINGT) 9 AINGB) s AINGT) JAINS0) s NXPy MMy NDXMP) MULS
CALL SECOND (T3) MULS

TA = 72 - T1 MULS

B = 73 - 712 MUL S

7€ = 73 - 710 MUL'S

PRINT 3005 TA,TBs7C MULS

PRINT 400y MXgNXBAND,MM MULS

MUL S

FORMAT STATEMENTS MULS

MULS

FORMAT (12A6) MULS

FORMAT {1K1,12A6) MUL S

FORMAT (F1l0.3, 714y, 1112) MULS

FORMAT (41HOCALCULATIONS SKIP ALL 0ODD FOULRIER SERIES) MULS

FORMAT {42HOCALCULATIONS SKIP ALL EVEN FCURIER SERIES) MUL S

B3

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168



15 FORMAT (1+1)

16 FORMAT (/// 39SF
40H
40H
40H
40H
40K
4CH
40H
40H
40H
40H
40H
40H
40H
40H
40H
4 (OH
40H
40H
17 FORMAY (/77 30k

LA 2B BE- 2R -2 S -2 B 3R I BE-3E B 3 X 1

SPAN LENGT}. P OLH OO VO PO OBOO HOODE OGO PO
NUMBER UF PLATE TYPES e 200098 60 SO Q0 Ve
NUMBER OF F[NITE STRXPS DOQ DO SO Q0D B OO
NUMBER OF LONGITUDINAL JCINTS cssso0se
NUMBER OF X~-LOCATIONS FOR OUTPUT ceosae
MAXIMUM HARMONIC CONSIDERED csosescca
TYPE OF HARMONICS (EVEN, ALL, ODD} ..
BANDWIDTH ={MAX JOINT DIFF + 1)%4 ...
NUMBER OF INTERMEDIATE RESULTS sso0ces
NUMBER OF PARTIAL SURFACE LOADS seese
NUMBER OF PARTIAL JOIMNT LOADS svovevvooe
OUTPUT STRESSES IN PLATE AND RIBS «s.
OUTPUT INT FORCES IN COMB PLATE RIB .
OUTPUT INT FORCES IN PLATE ALONE ceso
QUTPUT INT FORCES IN RIB ALONE ssss00s
OUTPUT STRIP DISPLACEMENTS csvccoscon
GIRDER MOMENT INTEGRAYION INCLUDED .
NUMBER CF SECTIONS FOR MOMENT INTEGRAT
NUMBER COF GIRDERS AT CROSS SECTION ..
DATA CONTROL INFORMATICN }

45 FORMAT (35H0 NUMBER OF HARMONICS SET EQUAL TO 14}

18 FORMAT (/ 20X,
* 20X,

300 FORMAY (/// 15#

25H ZERO CENOTES FALSE. /
25H ONE DENOTES oTRUE, /7)
TIMING STIFF F10.4/

F10.

{4/
14/
14/
14/
14/
14/
[4/
14/
14/
14y
14/
14/
[47
16/
[4/7
14/
14/
14}

* 15K TIMING FORCE F10.4/
* 15H TOTAL TIME F10.4)
400 FORMAT {(///30FK NUMBER OF DEGREES CF FREEDOM 4/
* 30H BANDWIDTH 147
* 30K NUMBER CF TERMS IN HARK ANAL 14}
500 FORMAT {// 44H MAX FIELDLENGTH OF 14CC0C CCTALS EXCEEDED
GO 70 101
999 STOP

END

3/

11077

MULS
MULS
MULS
MULS
MUL S
MUL S
MUL S
MULS
MULS
MULS
MULS
MUL S
MUL S
MUL S
MUL'S
MULS
MUL S
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MULS
MUL S
MULS
MULS
MULS
MULS
MUL S
MULS

B4

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
203



SUBROUTINE STIFF (NPLoNP2,KPLoNSECXP s SIMKXoCOSKXoLEL,SURHLsSURVL,STIF
* SURXI s SURDEL g LJT sCONKL y CONVL o CONMs CONS yCONXT,CONDEL HL VLo DL, STIF
* AJFOR AP, LCASE L INCoRJICISy SMALLK P, PTOTDISP+BIGK,EDP¢NPDIF, STIF

% Né o Mo NNM ) STIF

G STIF
€t e e oo oo oo s oo R ol o Rk Sk Rk R B R R Rk ok Rk R KR Rk R kR R R AR RS T F
C DATA IS INPUT AND PRINTED., STRUCTURAL STIFFNESS AND LOAD VECTORSYIF
C ARE FORMED FOR EACH FARMONIC AND THE SET OF EQUATIONS IS SOLVEDSTIF
G FOR THE UNKNOWN JOINT DISPLACEMENTS STIF
R I T I T T I D I I O T T g N B
C STIF
COMMON /7 SETUP / SPAN APLoANEL oRNJToNXP oMHRARM NCHECK s MMoNXBAND, STIF

& INTPRY yMCHECK s NSURL g NCONL MX oPToNL N2, 11 ,1Js1ILe STIF

*® LAsLByLC, LD LE,INTPL2L) NOXMP,NGIR STIF
COMMON / SPROP /7 H{S50),VISC) e THI{SC) PUTHIBSO) sEPXI{B0) EPYIS0} - STIF

# GPU{SO0 ), FNUL SO}, ARX{5CH s ARY{50) s SMXISB0) ¢SMY(B0), STIF

* TMX{S50) o THMY{50) AIXEB0) sAJYISO) ERXIB0) ERY{S03 STIF

* DX{50},DY{50) sHX{50) sHY (50} STIF
DIMENSION SERIES{ZH STIF
DIMENSION NPL{LY oNP2{L) oK PLELY yNSEC{L ) oHL{L) oVLI{L) DLULIoNPDIF{L1)}STIF

% LELELIpSURHLI L) o SURVLIL)oSURXI{L) »SURDEL(L} L JUT{1}, STIF

® CONFL{L) o CONVL{L)CONM{ L) CONS{L) ¢CONXI{L1),CONDELIL) STIF

& AJFORI4 1), AJPL L) oLCASEL4, L), LINDEL)sRUDISINGsL ) STIF

® SMALLK{B8:851)oP{8, 1) oPTCTLL)DISP{1)BIGKI{NG, L) ,EDP{L}), STIF

& XPLL1Y,SINKX{(ME,1),COSKX{MH, 1} STiF

C S5TIF
C EQUIVALENCED ARRAYS HAVING THE SAME FhA STIF
C {DL NPDIF}e (LCASE,LIND}, {(PTOT,DISP), (BIGK,EDP)y (AJFOR,AJPISTIF
C STIF
C READ ANDC PRINT INPUT DATA STIF
C STIF
PRINT1000 STIF

READ 1001, (XP{I)eI=1lgNXP) STIF
PRINTIO02y (XPLI)sI=loNXP) SYIF

IF (INTPRTLEQ.O0) GO TO 104 STIF

READ 1004y {INTPU{I)oI=1,INTPRT) STIF
PRINTI005, (INTP(I)oI=1INTPRT) STIF

104 [NTP(INTPRTfl) = 0 STIF
DO 106 N=1,3NPL STIF

REAL 1021y Tor{IdeVIIdoTHOI}LEPX{IIoEPYL 1) oGPL{TI ) FNULT) STIF

READ 1022y ARX{CI}sARYL I oSMXLIdoSMYL I o TMMUT) o TMYL T D AIXTTIYAUY(YISTIF

106 READ 1023, ERX{IJERY{IDOX{I)oDYLI)oHX{TIdgHY (I} STIF
PRINT1020 STIF
PRINTLI0255 {LoHII)e VI o TH{I)EPRITIEPY{I)sGPL{I}FNUII},TI=1,NPL) STIF
PRINTLI026 STIF
PRINTLI027s (1 ARX{I)pARY{U I o SMULT I SMY(Id) ,TMX{I) e TMY{T) pAJIX{]}, STIF

* AJY{E) s I= 1 NPL) STIF
PRINT1028 STIF
PRINT1029, {(ERX{IILERYUI)}OX{I DY{ L} oHX{I} HY{I}oI=1oNPL) STIF
PRINT1030 STIF

READ 1031, (I NPI{I)sNPZ{I}sKPL{IYNSECII}sDLLI)HLLTI VL), STIF

* i=1,NEL} STIF
PRINTI1032y (T oNPL{T}oNPZ{T ) KPLOLI Y NSEC{T) DLUT Y HLIT} VLI, STIF

* I=1oNEL} STIF
PRINTL060 STIF

DO 108 I=1,NJT STIF

jos]
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aNeNel [aNeXe]

OO

108

109

111

121

READ 1061y Ny [AJFCRIJoN)sJd=1e4dy {LCASE(IyNIJ=1,4)
DO 109 N=1,NJT

PRINT10624 No{AJFOR(J NIoLCASEdSs N} 9J=104)

IF {NSURL.EQ.C) GO T0O 110

PRINT1050, NSURL

STIF
STIF
STIF
STIF
STIF

READ 1051, {(LEL(I}sSURHLETIoSURVLI{I},SURXICI) sSURDEL{I) sI=1,NSURL)STIF
PRINT1052¢ (LELEID,SURKLET}SURVL{IY SURXI(I) ¢SURDELLI) sI=1,NSURL)STIF

IF {NCONL.EQ.O} GO 70O 111
PRINT1040+ NCCNL
READ 1041, (LJT(I),CONRLCIYCONVL{I)oCONM{T)}sCONSTI1,CONXI(I},

# CONDELA{ 1), I=1,NCONL}

PRINT1042s {LJT(I)oCONFLIT)},CONVLIT) CONB{I),CONSLT) CONXTITS,
* CONDEL (1), I=1,NCONL}

CONTINUE

INITIALIZATION

PI = 3.14159265358879
MA = MXENXP

00 121 I=1,MA
RIDIS(I) = 0.0

DETERMINE PLATEWIDTH ANGC SET H=H/PwTH, V=V/PWTH

DG 125 I=1,NPL
PUTHIL)=SCRT{H{ I )% 2¢V (I )%x%2)
HOI)=H{1}/PWTHLI)

125 VIDI=VLL}/PWTEHLT)

MODIFY SURFACE LOADS ANC CHECK FOR MAXIMUM BANDWIDTH

NBAND = O

DO 130 I=1,NEL

J=KPLLI}

VLT =vL{T3%ABRS{H{J)}+CLLT)
HLET =HL T *ABS{VIUN)
ZL=VLIT xR ( g} +HLLI )RV L)
YL=VLAT AV {J)-tL(T1)%HTJ)
Vi (i=ZL

HLIT)=YL

NPODIF{I) = NP2LI)-NPL(T}
K=TABS{NPCIF{I})

IF {(NBAND-K} 126512741217

126 NBAND = K
127 NPL{I)=NPL{I)}*4~4
130 NP2{1i=NP2{1})*4~-4

MAXJTC = NBAND

NBAND = NBAND*4+4

NDIF = NXBAND - NBAND

IF (NDIF.GE.O) GO TC 129
NNP = TABS{NDIF}*MX

NNM = NNM ¢ NNP

CALL RFEL{ANM)

PRINT 201C, NXBAND,NBANC

2010 FORMAT (// 30F ERROR IN INPUT OF BANDWIDTH /775X,

* 30+ SPECIFIED BANDWIDTH [5/5X%,

STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
SYIF
STIF
STIF
STIF
SYIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF

112



OO0

OO

[eRaNel

[aReXe!

SO0

&

129
132

133

135
136

137

138

140
141
142
143

144

145

150

30+ CORRECTEL BANDWIDTH I5)
NXBAND = NBAND

MOCIFY PARTIAL SURFACE LOADS

IF {NSURL) 13%,135,132

DO 133 I=1.NSURL

K=LEL{I)

J=KPL{K)

SURVLIT )=SURVL{I}*ABS{H(J})
SURHL{I)=SURHL{I)*ABS(V{J)}
ZL=SURVLUTI#H{JI+SURHL{ T %V J)
YL=SURVLIII#*V{JI-SURHL{I}=2H{J)
SURVLII)=2L

SURHL(I)=YL

MODIFY LCASE (LIND) MATRIX AND PRESTRESS FORCES

DO 136 I=],MX
LINDEI}=LIND{I)+1

DO 138 [=1,NJT

IF (LCASE(4,1)-3) 128,127,138
LCASE(4, [ }=LCASE(4,1)+2
AJFORU4, 1 )=AJFOR{4, 1)%4,/SPAN
CONTINUE

INITIATE CYCLE FOR EACH HARMCNIC

REWIND 1

MA=0 .

IF (NCHECK) 140,141,142
N1=2

GO TO 143

Ni=1

N2=1

GO TG 144

N1l=1

N2=2

DO 700 NN=N1,MHARM,N2
MXB = MX®NXBANC

DO 145 I=1,MXB
BIGK(I) = 0.0

INITIALIZE BIGK MATRIX

FN=NN
FK=FN®PI/SPAN
MA=MA+1

DETERMINE HARMONIC AND FOQURIER MULTIPLIERS

DO 150 I=1,NXP
XX=FKeXPL1}
SINKX{MA, [3=SIN{XX})
COSKXI{MA, I}=CCS{XX})

STIF
STIF
STIF
STIF
3TIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STiF
STIF
STIF
STIF
STIF

B7

113
iie
118
116
117
il8
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
l46
145
146
147
148
149
150
151
152
153
154
15%
156
157
158
159
160
161
162
163
164
165
166
167
168



SO0 OO

OO0

OO

152

155

201

202

203

205

206
210

215
211

220

221
222

FSTRP=0,.5#%SPAN

N3={=1)%%NN

IF (N3) 152,155,155

SERIES{1lI=4./{FN%PI} * FSTRP
SERIES(2)=2./SFANR{-1o }ax{ {(NN*3)/2) * FSTRP

STRIP STIFFNESS IS CETERMINED FOR EACH STRIP TYPE
CALL STRIP (FKySMALLK,P,NPL)
ASSEMBLE STRUCTURAL STIFFNESS MATRIX BIGK

DO 210 L=1,NEL

K=KPLI{L)

M=NPL{L)

N=NP2{L}

DO 201 I=1+4

[I=M+]

[Jd=N+1]

IK=1+4

DO 201 4B=1,4

J=J8 -~ I + 1
BIGK(IIoJI=BICK{TIToJI+SMALLK({T 9JB,K])
BIGKAIJsJ)=BICK{IJsJI+SMALLK({IK, JB+4,K]}
IF (NPDIFI{L)) 205,202,2C2

IK=N-M=-4

DO 203 I=1,4

II=Me1]

DO 203 J=5,8

Id = IK+ 3 -1 +1

BIGK{IT, TJ)=BIGK{II,IJ)+SMALLK(T,Jd,K)}
GO TOQ 210

ITK=M-N

N=N=-&

DO 206 I=5,8

1i=N+1

DO 206 J=1l.4

IJ = IK + 4 -1+ 5
BIGK{II,IJ)=BICK{IL I JI+SMALLK{ T,y oK)}
CONTINUE

COMPUTE ANC ASSEMBLE JCINT FCRCES FGR UNIFORM SURFACE LOADS

DO 215 I=1,MX
PTOT(1)=0.0

IF (N3) 211,2215221
DO 220 L=1yNEL
K=KPL{L)}

CALL FIXFCR (H{K)sVIKIoFLIL) s VLIL)sNPLIL Y oNP2 UL} 9Py NPLyPTOT sMX, K}

CCMPUTE ANC ASSEMBLE JCINT FCRCES FCR PARTIAL SURFACE LOADS

IF {(NSURL) 231,231,222
DO 230 1I=1,NSURL
L=LEL{D)

K=KPL (L)}

STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
SYIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF

STIF

STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
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170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
i91
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
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223

224
225

230

231
232

233
234
235

236
238

239
240

241
242

243

244

245

250

251

IF {(SURDELC(IL)) 223,2244+223
C=SIN{FKXSURXT{I))I*SIN(FK&SURDEL(I)/2.}

GO TO 225

C=SIN(FK*SURXI{I))I*FK/2,

EQH=SURHL (I 1%C

EQV=SURVLII}*C

CALL FIXFCR (H(K)yVIK); EQHIEQVINPLIIL) oNP2U{L} P o NPLyPTOT ¢MX K}

CETERMINE INPUT JOINT LCADS ANC ASSEMBLE INTO LOUAD VECTOR

IF (N2} 222,236,239

DO 238 [=14MX

K=LINC(I}

GO TO (232,234+235+238,23€),K
PTOT{I}=~PTOTLI)

GO TC 238

PTOTL{I)=AJP{T }*SERIES(L1}-PTOT(I)
GO 10 238
PTOTUILI=AJP{I)*SERIES(2}-PTOT(I)
GO TC 238
PTOTLI)=AJPLIV*FSTRP-PTCT(I)
CONTINUE

GO TO 241

DO 240 I=1,MX

PTOTII)=—PTCT( 1}

ADC CCNCENTRATED JOIANT LGOADS

IF {NCCNL)Y 251,251,242

DO 250 I=1¢NCCNL

J=LIT{I¥*4—4

C=FK:CONXTI(I)

IF (CONDEL{I)) 244,244+243
XX=FK*CCNCEL{I}/2.

EQH=2o/ {XX(SPAN)®*SIN(XX)
EQS=EQH*CCS{CI*FSTRP
EQH=EQHXSIN(C)*FSTRP

GO TC 245

XX=2,/SPAN

EQH=XX*SIN{CI*FSTRP
EQS=XX*COS{C)*FSTRP
PTOT(J+1)=PTOT(J+1)+EQR*CONHL )
PTOT{(J+21=PTOT(J42)+EQH*CONVL {1}
PTOT{J+3)=PTOT{J+3)+EQrH*CCAM(IT)
PTOT(J+431=PTOT(J+4)+EQSH*CONSLI)

IMPOSE DISPLACEMENT BCUNDARY CCNDITIGNS

DD 260 J=1,NJT

DO 260 =144

IF {(LCASE(I+J).NEs4) GG TC 2¢C
IL = (J-11%4 ¢ |

D0 253 L=1,AXBAND

BIGK(ILsL) = 0,0

IJd = IL-L+1

IF (1J,LE.0) CGC TO 253

STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
SYIF
STIF
STIF
STIF
STIF

B9

225
226
227
228
229
230
231
232
233
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235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
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273
274
275
276
277
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279
280
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253

260

500

505
510

600

700

710

720

BIGK{IJsyL} = C.0
CONTINUE
PTCT{IL)I=0.0
CONTINUE

STIF
STIF
STIF
STIF
STIF

SCLVE SYSTEM OF EQUATIONS FOR UNKNCWN GLOBAL JOINT OISPLACEMENTSTIF

CALL BANSCL (MX NXBAND,MX,BIGK;PTQT,0) >

ACCUMULATE GLOBAL JCINY DISPLACEMENTS AT SPECIFIED POINTS

DO 510 Il=1¢NXP

C=CCSKX{MA, 11}

S=SINKX(Ma, 1)

DG 510 L=4,MX,4

[=L-3

J=L-1

DO 505 K=1,J

RJDISIK LII=RICIS{K,IT)+DISP{K)*S
RIDISEL IT)=RICIS(L,IT}+DISP{L}*C

DETERMINE LCCAL EDGE DISPLACEMENTS FOR EACH STRIP AND STORE
ON TAPE 1

N=0

00 600 L=1,NEL

K=KPL{L)

I=NP1 (L)

J=RP2(L)

C=H{K)

S=V{K)

EDP({N+1)= CISP(I+3)

EDP{N+2)= DISP(J+3)

EDPIN+3)= S*CISP(I+11+C%DISP({I+2)
EDOP(N+4)= S%DISP{J+1})+C*DISP{J+2)
EDPIN+S5j=~DISP({1+4)
EDP(N+6)=-0ISP{J+4)
EOPIN#7)=-C*DISP{I+1)+S*DISP(I+2)
EDPIN4B8)=—CkDISP(J+1)+S%DISP(J4+2)
N=N+8

WRITE (1) {ECP(TI),I=14N)}

CONTINUE

END FILE 1

PRINT RESULTING GLOBAL JCINT DISPLACEMENTS

DC 710 I=1,AJT

J=4x]

LINC(UY=T

LINDCJ-11)=1]
LINC(J=-2)=1
LINC(4-3)=1

[F (NXP-7) 72C,720,721
I I=NXP

It=1

CTie
25 ar

STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
SYIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
STIF
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311
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GO 70 730 STIF

721 I1=7 STIF
IJ=NXP STIF
IL=(NXP~L}/7 + 1 STIF

730 PRINT 40 STIF
CALL PIAVAL (LINDyRJIDIS MXsNXPoXP oMXoIlsldelblol) STIF
PRINT 41 STIF
CALL PINVAL (LINDoRJIDISoMUNXP o XPoMX,y I1,1ds L4210 STIF
PRINT 42 STIF
CALL PINVAL (LINDoRUIDIS MX NXP o XPoMXy ILoTdsTIL o3} STIF
PRINT 43 STIF

CALL PIAVAL {LINDsRIDISoMXNUP g XP oM, IT51J,1IL 44} STIF
STIF

FORMAT STATEMENTS FCR INPUT AND ECKC STIF

STIF

27 FORMAT (I110,4F10.0,412) STIF
28 FORMAT {39HLINPUT LOADS OR DISPLACEMENTS AT JOINTS//86H JOINT STIF

% HORIZONTAL IH VERTICAL Iv ROTATIONAL IM LONGITSTIF
*UDINAL IS} STIF

29 FORMAY (1£44{E17.6,13)) 5TIF
30 FORMAT {(//37H IHoIVsIMsIS = 0 FOR GIVEN ZERQ FORCE/44H STIF

* 1 FOR UNIF. DISTRIBUTEC FORCE/B81H 2 MEANS CONC. FSTIF
#0ORCE AT MICSPAN FOR [H, IV, IM AND PRESTRESS FUR IS/44H SYIF

* 3 FCR GIVEN ZERO DISPLACEMENT) STIF

40 FORMAT {14H1FINAL RESULTS/Z6H2FINAL JOINT DISPLACEMENTS///7/10X%X425HS5TIF
* HORIZONTAL DISPLACEMENTS) STIF

41 FORMAT (///7/10X+23K VERTICAL DISPLACENENTS) STIF
42 FORMAT {(///710Xs10H ROTATIONS} ) STIF
43 FORMAT (//7//10X,27+ LONCITUDINAL DISPLACENMENTS) STIF
46 FORMAT (A6) STIF
1000 FORMAT (////746+ PRINT RESULTYS AT CROSS-SECTIONS OF X EQUAL TO //) STIF
1001 FORMAT (10F7.3) STIF
1002 FORMAT {1CF12.2) STIF
1004 FORMAT (2014} STIF
1005 FORMAT (//740Ft PRINT INTERMECIATE RESULTS AT HARMONICS//2015) STIF
1020 FORMAT (132H1 STR TYPE H-PRCJ. v-PROJ, THISTIF
®CKNESS E~-MOLC EPX E~-MOD EPY G—-MOD GP STIF
*¥POISS—-R VXY /) STIF
1021 FORMAT {11C,7F10,.3) STIF
1022 FORMAT (8F10,.3) STIF
1023 FORMAT ({6F10.3) STIF
1025 FORMAT {I18,2E1B8.5,E16.5,3E18,54F13,3) STIF
1026 FORMAT (/// 45+ SMEARED MATERIAL PROPERTIES OF STIFFENERS /7 STIF
* 125H STR TYPE X—AREA Y—AREA X—-FMOM Y-FSTIF
*MOM X-SMCM Y~-SMCM X-T1CRS R Y-TORS R ISTIF
1027 FORMAT (I7,3X92F14.3,4F13.3,2E15,5) STIF
1028 FORMAT (/// 10Ckr E-MOD ERX E~-¥CD ERY BOY X-DIS STIF
* BOT Y-CIS CLOSEC x-RIB CLOSED Y-RIB } STIF
1029 FORMAT {E13.5,E16.5,F14:3,F17.3,8X%:E13.5,E18,.5) S5TIF
1030 FORMAT (66H1 FELE I J PL NSEC DL UNIF HL STIF
* UNIF VL/) STIF
1031 FORMAT ({514,3F10.0}) STIF
1032 FORMAT (51643F12.3) STIF
1040 FORMAT (38HINUMBER OF CONCENTRATED JOINT LOADS = [3//102H JOINT STIF
* H-LOAD V-LCACD MOMENT LONG. FORCE STIF

* LCCATICN LOAD WIDTH/) STIF

Bl1
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354
355
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360
361
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363
364
365
366
367
368
369
370
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1041 FORMAY (110,6F10.0)

1042 FORMAT (16,6E16.6)

1050 FORMAT (3SHINUMBER OF PARTIAL SURFACE LOACS = I137/770H ELE
* H-LOAC v-LOAD LOCATION LOAD WIDTH)

1051 FORMAT {[110+4F10.0}

1052 FORMAT {1654E16.6})

1060 FORMAT (39HLINPUT LCADS OR DISPLACEMENTS AT JOINTS //788H JOINT
* HORIZONTAL IH VERTICAL Iy ROTATIONAL IM
#GITUDINAL IS )

1061 FORMAT (110,4F10.C,412)
1062 FORMAT (16,4(E17.6,13))

RETURN
END

STIF
STIF
STIF
STIF
STIF
STIF
SYIF

LONSTIF

STIF
STIF
STIF
STIF
STIF
STIFf
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SUBROUTINE

FORCE (NPLlsNP2,KPLyNSECs XP ¢ SINKXsCOSKX3SKX,CKX,DI,DIS, FORC

* XAy XAA XNy XNP ¢ XNRyYNg YNPoYNRy XYNy XMy XFP ) XMR; YMy YMP 3 YMR, XYC oY XC o FORC

* XYMy XYR

s YXRyXBP g XBRyYBP s YBR o XTP o XTRyYIPs YTR,UDy VD, WD, Do NGIEL,y FORC

* XDIVsDNALsCNAZ2 s X, MOPTyGIRMOM,TENS sCOMP oNX, MH, NOP} FORC

FORC

C
C o s e e oo o e ool o ool o ofe o o o ode e ool e e ok e ok ool ool ok o ol e ok 3 o o o ol el o e o ok e o ol ol ok ook okl ok FORC

INTERNAL FORCES AND CISPLACEMENTS ARE DETERMINED FOR EACH STRIPFORC

C
C AND ARE ACCUMULATED FOR ALL HARMONICS. INTERNAL FORCES FOR THE FORC
C CCMBINEC PLATE RIB SYSTEM, THE PLATE SYSTEM ALONE AND THE RIB FORC
C SYSTEM ALONE CAN BE CUTPUT. MOREOVER, THE TOP AND BOTTOM FIBERFORC
C STRESSES SEPARATED FCR PLATES AND RIBS CAN BE PRINTED AT FORC
C POINTS SELECTED BY THE USER FORC
e e ook o eode ik o ok e ol ool e o ok ol oo o ok o e ok ok ok e o ok ok s o o ol ool e ok o e o ol o ol ol ok ok ok ke kR F R C
C FORC
CCMMON / SETUP / SPANyNPLNEL oNJToNXPoMHARMyNCHECK ¢ MM, NXBAND, FORC
* INTPRT yMCHECK s NSURL sNCONLyMXoPIyNLgN2, 11 ,IJ,ILs FORC
* LAsLBsLC,LD-LEsINTP{21) ;NOXMPyNGIR FORC
COMMON /7 SPROP / HE50),VI5C), THIS5C) yPWTHI50) yEPX{50) EPY{50Q} FORC
* GP{50 )}, FNU{50} s ARX{5C) s ARYI50) (SMX{50) ,SMY{50), FORC
* TMXL{50) s TMY(50) s AJX(5C) ,AUY{ 50} ,ERX{50) ,ERY{50),; FORC
* DX{50),DY{50),HX{50} ,HY{50) FORC
DIMENSIGN NPI{1)sNP2LL}¢KPLULI4NSECTL)oHL{L) yVLLL) DLIY)COSKX{MH,FORC
* 1)y SINKX{MH, L) o CKX{1) o SKXEL) oDI(1)oDIS{8,1) s XN{NXp1}y XNPFORC
* (NXg1) g XNRINX LY o YNINX, 1) o YNPINXoL)  YNRINXy1) o XYN{NXs1),FORC
* XMINXo 1Yo XMPUINXy 1) o XMRINX; 1) YMINX, 1), YMP{NXL) s YMR{NX,1FORC
* PoXYCUNXy Lo YXCUNXo L) o XYMINX 1) oXYRINX31) s YXR{NX 1) 3XBP(FQORC
* NXy L) g XBRUNXy 1Y s YBPINX o1} g YBRUNX, L) o XTPINX 1) 4 XTR{NX;1¥,FORC
* YTPINXs 1) o YTRINXy L} oUDINXs1) s VDINXo 1) s WO{NX,1},D(851}, FORC
* NGIEL(2,1)y XCIV{1)sDNAL(L1)DNA2{L)yX{1),MOPT{L)} ,GIRMOM{ FORC
* NOP, 1) s TENS{NOP, 1) oCCMPINOP 1) o XP{ 1), XA{1),XAA(]) FORC
DIMENSION D11(3),D22033,D12¢3),D33(3),044(3),D55{3),D45(3),D56(3),F0RC
* D65(3),014(3),025(3),067(3),D76(3) FORC
DIMENSION FNX{3) s FNY{3) o FNXY(3),FMX{3) oFMYI3) sFMXY(3) 4FMYX{(3) FORC
C FORC
C EQUIVALENCEL VECTORS ASSIGNING THE SAME FWA FOR {DI,DIS) FORC
C FORC
LOGICAL SisS2 FORC
C FORC
C INPUT ANC ECHO OF GIRDER MOMENT DATA FORC
C FORC
IF (MCHECKL.EQ.0) GO TO 28 FORC
READ 100G, {X{I)yI=14NOXMP) FORC
READ 1004, (IyNGIEL(1y I} NGIEL{(2,13;DNAL{I) DNA2{T) XDIV(I}, FORC
* J=1,NEL) FORC
PRINT 1001 FORC
PRINT 1002 (X{I)sI=1,NCXMP}) FORC
PRINT 1005 FORC
PRINT 10065 (I4NGIEL{L1,I),NGIEL{2,1}+CNALLI)} DNA2(I),XDIVII}, FORC
* I=14NEL) FORC
DO 110 I=1,NCXNP FORC
DO 120 J=1yNXP FORC
[F (X{IVeNEXP{J}) GO TC 120C FORC
MOPT(I) = J FORC
GO 70O 110 FORC
FORC

120 CONTINUE
PRINT 1C1C

X1} FORC

k4
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230

25

30

31

35

36

38

40

MOPT(I) = O
CONTINUE

NEL
NEL
NEL
IF
NEL
NDI
REW
L o=
DO
REA
(B]8]
L=L
00
DK

INITIALIZE MOMENT INTEGRATICN ARRAYS

INC = 14

2 =0

1=NELZ2+]

(NEL1-NEL) 21,31,10C
2=MINOL{NELI+NELINC) NEL)

=NEL2*%8

INC 1

0

36 I=1,MM

D (1) (DI{J},ed=1,NDI)
35 J=NEL1sNELZ

+1

35 K=118

sL1=DISI{Ky J)

CONTINUE

NOI

FOR EACH FINITE STRIP

=NEL2-NEL1+1

DO 99 IE=NELL,NEL2

FN=
If

NSEC{IE)
(FN) 96,99, 38

NUMY=NSECIIE) +1

L

S1
SZ
IF
IF

NA
DO
XN{

U
B
TN
™

ion

KPL{IE)
«FALSE.
= LFALSE,
{ARX(L)sNE.O.0) S1l=.TRUE.
{ARY{L)NE-0.C) S2=,TRUE.

INITIALIZATICN
= 29%5%NXP

40 [=1,NA

Iy = 0.0

FORMATION OF MATERIAL LAW
CCMBINED PLATE RIB SYSTEM

FOR PLATE,

FNUTL)XSQRT(EPXILI/EPY{LY})

= PWTH(L)
= TH(L)
= TN*%3/12.0

DIFY = B/FN

£X
EY

EPX{LYI/11.0-U%%2)
EPY{L}/{1.0-U%k%2)

READ LCCAL JCOINT DISPLACEMENTS FROF TAPE 1

FCR RIB AND FOR

FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
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GO

49

51

D11{2) = TN%EX

D22(2) = TN*EY

D12(2) = TN®EX*FNU{L)
D33(2) = TN=GP{L}

D442} = TM¥EX

D55{(2) = TMxEY

D45{2) = THREX®FNU{L)
D56(2) = 2.085TMRCP{L)
D65{2) = L£56(2)

DL11{3) = ARX{LI®RERX{(L?
D22(3) = ARY(L)I®*ERY(L)
Desl{3) = TMXULI*ERX{L)
D55(3) = TMY(LI)}*ERY{L}
D56{(3) = AIX{L}

D65(3) = AJYIL)

D1l4(3) = SMX(L)®ERX(LY
D25(3) = SMY{LI®=ERY(L)
D6T(3) = EX(L)

D76(3}F = rY{L}

D1141) = Cll{2) + D11{3}
D22¢1) = C22(2) + D22{(3)
Dlaiiy = C12(2)

D33(1) = C33(2)

D44(1) = D44l2) + D443}
D55{1) = [55(2) ¢ D55(3)
D45{(1) = L45(2)

D56(1) = LS6(2) + [D56(3})
D65{1) = C65{2) + DéS{(3}
D14(1) = C14(3}

D25(1}) = C25(3)

D6T7{l) = [67(3)

D76(1) = LC76(3)

DI&4(2) = C.0

D25(2) = C.0

D6T7(2) = C.0

D76{2}) = C.0

D12(3) = 0.0

D33(3) = C.0

D45(3) = C,0

FOR EACH HARMONIC

N=0

KJK=1

DO 90 NN=RNl,MHARMyN2
N=N+1

N3={-1)%%NN

FM=NN

SCl=FM*xPI/SPAN
SC2=SC1%%2

SC3=SC1*x%3
I=NDI*{N-1)#{ IE-NEL1#1}
DISPL = D(l,1}
DISP2 = D(2,1)

DISP3 = D(3,1)

DISP4 = C(4,1Y

FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC

B15

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149
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52

82

84

DISPS
DISP6
DISp7
LDISPs8
DO 52
CKX{J

DE

DO 80
TJK=1
Fl=1ly
FI=FI
Y=B/2
B3
B2
v3
Y2
TA
T8
RA
RB
SA
$8
FUD
FVD
FWD

| T I (T 1R T T TR TR

[T}

DE

TAl
T81
RA1
RB1
SAL
sB1
RA2
RB2
SA2
582
RA3
RB3
SA3
SB3

#

L (O R T T I O [ TR TR TR 1

ST

FSX
FSY
FSXY
FKX
FKY
FKXY

U T N T R (O

IN

C{s,1)
Di6,1)
(7,13
C{8,1)
J=1,NXP
}=COSKX{NyJ)

W on i

TERMINATIOUN UF DISPLACEMENTS AT TRANSVERSE SECTIONS

[Y=1,NUMY
[Y=-1)1%{IY-NUMY)
-1
*DIFY
"’FI
B4 3
B 2
Yk¥x3
Yx*2
(0. 5%B+Y} /R
(0.5%B-Y)/B
(B3/4,04C.75%B2%Y-v3)%2,0/83
(B3/4,0-C.75%B2%Y+Y3)%2,0/B3
{~B3/8s0~Co25%B2%Y¢C, 5%BXY2+Y3) /B2
{ B3/8.0-0.25%B2%Y-0,5%B%Y24Y3)/R2
TA*CISPS ¢ TB*DISP6
TA*CISPT +« TB*DISPS
RAXCISP3 + RB*DISP4 + SA%DISPL + SBADISPZ

TERMINATION OF INTERNAL FORCES AT TRANSVERSE SECTIONS

l.0/8

-1.,0/8B
6.0%(-B2/4.,0+¢Y2)/8B13

-RA1
(B2/4.0~B%Y~3,0%YZ)}/R2
(B2/4.04B%Y-3,0%Y2}/B2
12.C%Y/RB3

-RA2
200%{=0.5%B-3,0%Y /B2
2.0%( Q0.5%B-3,0%Y)/B2
12.C/83

~RA3

~6.0/B2
SA3

RAINS ANC CUVATURES

~SCI*{TAXDISP5+TB*DISP6)
TAL*DISP7+TB1%DISPS8 :
TAL®DISP5+TB1I*DISPE+SCL#{ TAXDISPT+TB*DISPS)
SC2*(RA%XDISP3+RBADISP4+SA*DISP1+SB*DISP2)
RAZ%DISP3¢RR2¥DISP4+SA2%DISPL+SR24DISP2
SCL*={RAL*DISP3+RBLI*XDISP4+SAL*DISP1+SBLI%.DISP2)

TERNAL FCRCES

FORC
FORC
FORC
F0ORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC

B16

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
i91
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224



i
i
{

OO0

OO0

OO0

e RaXe!

123

70

75
80
200

202

DO 123 1A=1,3

D14{IA) *FKX
D2E(IA) *FKY

D14(IA)*FSX
D25 IA) #F SY

FNX(IA) = DLLUIAY®FSX ¢ D1Z2(IA)*FSY
FNY{IA) = D22(JA}®FSY + D12{IA)%FSX
FNXY{IA)= D33{IA}I*FSXY
FMX{IA) = D44(IA)*FKX ¢ D4GE(TA)*FKY
FMY{IA) = DO55(TAY*FKY + D45{IA}#¥FKX
FMXY{TA)= DS6{IA)*FKXY+ D6T({IA)%FSXY
FMYX{TA)= CO6S{IA}XFKXY+ DT6{IA)*FSXY
CONTINUE

ACCUMULATE INTERNAL STRIP DISPLACENMENTS
DO 75 I=14NXP
T1=SKX{I}
T2=CKX (1)
Uotl,IY) = UC{I,IY) + FUCxT2
VD{IsIY) = VO(I,IY) + FVLCxT1
WD{I,IY) = WO{I,1Y) + FWO%T1

ACCUMULATE INTERNAL STRIP MOMENTS
XM{L, LY} = XMUI,1Y) ¢ FMX{1)*T1
XMP{I,IY) = XMP{I,IY) + FMX{Z2}*T1l
XMR{I,IY) = XMRUI,IY) + FMX(3)=T1
YMUI, 1Y) = YMOI,IY} ¢ FMV{1)*T1
YMPLI, 1Y) = YMPLI,IY) + FMY(2)%T1
YMR{TI,IY) = YMR(I,IY) + FMY(3}%T]
XYC{I,sIY) = XYCUI, 1Y) + FMXY(L1}%T2
YXCLIo 1Y) = YXCUI,IY) ¢ FMYX{1)*T2
XYMOI,IY) = XYMUT,1Y) ¢ FMXY{2)#*T2
XYR{IZ1Y) = XYR{I,IY) + FMXY{3)%T2
YXR{T,IY) = YXR{I,IY) + FMYX(2)%T2

ACCUMULATE INTERNAL STRIP STRESS RESULTANTS

XN{L 1Y)

XNP(I,IY)
XNRUT, 1Y)
YN{T,IY)

YNPLI, 1Y)
YNR{I 1Y)
XYN{I+IY)

| T T T I {1

XN{Iy LY )
XNPUIs1Y)
XNR(TI,IY)
YN{T, DY)
YNP(IZIVY)
YNR{I,1Y)
XYN{I1Y)

4
+
+
+
+
3
+

FNX{LY*T1
FNX(2)*T1
FNX{3)*T1
FENY{1)%T1
FNY(2)%T1
FNY(33%T1
FNXY{1)1%*T2

ACCUMULATE RIB STRESSES

XTR{I, 1Y)}
XBR{I, 1Y)
YTROI,IY)
YBR{I,1Y)
CONTINUE
CONTINUE

[F{INTP{KJUK)LELC)

Moo i

XTR{I,1IY)
XBR{I,1IY)
YTR{I 1Y)
YBR{T,1Y)

+
+
4+
4+

FSXRERX(L}*T]

(ESX+FKX¥DXOL) PRERX{L)*TL

FSYXERY(L)*T1

(FSY#FKYXDY (L) I#ERY{L)*TL

Gd TC 204

TFINN-INTP{KJUK)I2C4,20€,2C2

KJK=KJK+1
GO TG 200

FORC
FORC
FORC
FORC
FORC
FORC
FGQRC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC

B17

225
226
227
228
229
230
231
232
233
234
235
236
237
238.
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
2179
280
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OO

OO

OO0

204

ot
N
-~

88
86

410

420

310

IFINNNE.¥HARNM)} GC TO 9C
DETERMINE FIBER STRESSES IN RIBS AND PLATES

DO 86 IY=1sNUNMY
DO 88 I=1yNXP

T v n ;.‘.Tr\l‘nvunlt
¥ Ve Jd¥IN®

T
AT 1 Lg il

XTP{l.IY} XNPLI,I Yi/TM
O5%TN%XMPL{I,IY)/TM

\
H
)

/
/TN

XBPL{I,IY) = XNPLI,IY +

YTP{IIVE = YNP{LI IYI/TN - O.S*TN*YMP{I,IY}/THM
YBPUIoIY) = YNP{I,IY)/TN % O.,5%TN*YMP(I,1IY)/TM
CONTINUE

CONTINUE

OQUTPUT OF INTERNAL FCRCES AND DISPLACEMENTS

I=NP1{IE}/4=+1
J=NP2(IE}/4+1
PRINT 10y IEeIyJsNN

DUTPUT OF FIBER STRESSES IN PLATES ANC RIBS

IF (LA.EQ.C) GC TO 31C

If (NDOT.S1) GO YO 410

PRINY 137

PRINT 114

CALL OPRINT (XTR NXP¢NUMYy XPoNUMY 1L ,1Jd, 1LY}
PRINT 116

CALL CPRINT {XBR AXPyNUMY  XPNUMY, I, 1J,1IL3
IF {.NOT.S2) GO VO 420

PRINT 138

PRINT 115

CALL CPRINT (YTR NXP NUEYy XPoNUMY,TT,1Td,1IL)
PRINT 117

CALL CPRINT (YBRyNXPyNUMY,; XPoNUMYoIT,0J,ILY
PRINT 136

PRINT- 114

CALL OPRINT {XTPyNXPyNUMY s XPyNUMYIi,s1Jd,1L)
PRINT 116

CALL CPRIANT (XBPoNXP o NUFMY s XPoNUMY,II,1Jd,1L)
PRINT 115

CALL OPRINT (YTPyNXPyNUMYy XPyNUMYII,1J,IL)
PRINT 117

CALL OPRINT [YBPyNXPyNUNMYy XPoNUMY,IT,1J,1IL}

FOR EACH STRIP

CUTPUT OF INTERNAL FORCES CF CCMBINED RIB PLATE SYSTEM

IF (LB.EQ.0) GC TC 32¢C

PRINT 132

PRINT 16

CALL OPRINT XN yNXPyNUMY  XPsNUMYIT,IJ, 1L}
PRINT 17

CALL CPRINY (YN oNXPyNUMY, XPoNUMY, I1,1dsIL)
PRINT 18

CALL OPRINT {(XYNyNXPyNUNMY, XPoNUMY,II,14,1L)
PRINT 11

CALL OPRINT (XM oNXPyNUNMYyXPoaNUMYII,1dyIL)

FORC
FORC

‘FORC

FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FDRC
FORC
FORC
FORC
FORLC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC

BiS8

281
282
283
284
285
286

3L ¥
£ 7

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
303
309

328
329

335
336
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[eNeNel

[aNeNe]

leN el

320

330

335

340

PRINT 12
CALL OPRINT (¥YM (AXPyNLFMY  XPoNUMY,IT,14,1L)
PRINT 13
CALL OPRIANT (XYCsNXPyNUMY ) XPoNUMY,IT,IJdo1IL)
PRINT 14
CALL GPRINT (YXCyNXPyNUNYy XPoNLMY,IT o 1doIL)

QUTPUT OF INTERNAL FCRCES OF PLATE SYSTEM ALONE

IF (LC.,EQ.O} GC TO 33¢C

PRINT 133

PRINT 16

CALL OPRINT {XNPyNXPyNUMYy XPoNUMY, I11J51L}
PRINY 17

CALL OPRINT (YNP AXP,NUMYs XPoNUMY IE,1JsIL)
PRINT 18

CALL OPRINT {XYNyNXP,NUMYy XPoNUMY, E1,Td,1IL)
PRINT 11

CALL OPRINT {XMPyNXPyNUNMY, XP,NUMY, LI 1JeIL)
PRINT 12

CALL CPRINT (YMP,NXPyNUMY, XPoNUMYII,1J51IL)
PRINT 13

CALL OPRINT {(XYMaNXPyNUMY; XPoNLMY,IT,1Jd,1IL)

GUTPUT OF INTERNAL FCRCES OF SMEAREC RIBS ALONE

If (LLC.EC.Q) CC TO 340

IF {.NOT.S1) CO TO 335

PRINT 134

PRINT 16

CALL OGPRINT {XNRsNXPoyNUFY, XP o NUMYIT,IJ,IL)
PRINT 11

CALL CPRINT (XMR NXP NUMYy XPyNUMY,IT,1d,1IL)
PRINT 13

CALL CPRINT {XYR AXP¢NUNYXPyNUMY, 1T 1d,1L)
IF {.NOT.S2} GO TO 340

PRINT 135

PRINT 17

CALL OPRINT (YNRyNXPyNUNMY, XPyNUFY LI, EJd,1L)
PRINT 12

CALL GPRINT {YMRGNXPaNUFYy XPoNUMY, TT,T1J,1L)
PRINT 14

CALL CPRINT {YXRyNXPyNUMYy XPyNUMYIT,1d,1IL)

QUTPUT COF INTERNAL STRIP DISPLACEMENTS

IF (LE.EC.0) CC TO 35¢C

PRINT 121

PRINT 19

CALL OPRINT (UL ¢NXPyNUMY  XPyNUMY IT s 1Js1IL)
PRINT 20

CALL CPRINT (VD oNXPyNUMY, XPyNUMY,IT,1d,11)
PRINT 21

CALL CPRINT (WL sNXPyNUMY, XPyNUMY,IT,1J,1I0)

DETERMINATICN CF GIROCER MCMENTS BY STRESS INTEGRATION

FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
F0RC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORL
FURC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC

" FORC

FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC

B19

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
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OO

OO0

350

&
90
99

100

540

520

10
*
*

IF (MCHECK.EQ.C) GO TO ¢C
IF (NN.NE.MHARM} CO TO SO

S = DNAL(IE}

C = DNA2(CIE)

HH = +(L}

vV o= V{L}

I = NGIEL(1,1E)
J = NGIEL{251E)

XX = XDIV(IE)

CALL MOMPER (XNyXMyBy TEsNUMY ;T 4JsSyCohH Ve XXsNXP X MOPT,
GIRMOMs; TENS,CCMP o NCXMP)

CONTINUE

CONTINUE

GO TC 30

DETERMINATICN OF GIRCER MCMENT PERCENTAGES

IF (MCHECK.LE.C) GO TO tCC
DO 510 I=1,NCXKP

o
p-d
I
(o)
°
o

Do
PB PB+GIRMOMI{TI,J)

pC PC+TENS(I,J)

PD PO+CCMP (T, U}

PRINT l4al, X{I)

IfF (PB.EQ.0L0) GG TOQ 51¢C

DO 520 J=1,NGIR

PE = GIRMCMI{I,J)/PB*100.0

PA = PA + PE

PRINT 142y JyCIRMOMALI +J)sPELTENS(IJ) CCMP{T,d)
PRINT 145,PB,PA,PC,PD

CONTINUE

[ IR IR S T R
F
O«
o ¢
i
-

-
z
o
—t
o)

FCRMAT STATEMENTS

FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
£ DORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC

FORMAT (76H1INTERNAL FCRCES PER UNIT LENGTH AND INTERNAL DISPLACEMFORC

ENTS FOR ELEMENT NOo. I4,17+ BETWEEN JOINTS I3,5H AND I3,6H

I4)

FORMAT (/// 10X,5H M{X))

FORMAT {/// 10X,5F M{Y})

FORMAT (//7 1CXy6H MIXY1})
FORMAT (///7 1GCX,6k M{YX}))
FORMAT (/77 10Xe5H N{X))

FORMAT (/// 1CX,5H N{Y}}

FORMAT (/// 1CXs6H NUXY)}
FORMAT {/// 10X,2E U}

FORMAT (/// 1CX,2H VI

FORMAT (/// 10Xs2H W)

FORMAT (//7/ 10X,15H SIGMA-X TOP
FORMAT (/// 10X,15H SIGNMA-Y TGP
FORMAT (/// 10Xs15H SIGMA-X BOT
FORMAT (///7 10X,15F SIGMA-Y BOT

——

FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FORC
FGORC

B20

393
394
395
396
397
398
359
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
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C

131 FORMAT (/// 35F DISPLACEMENTS CF MIDSURFACE } FORC
132 FORMAT (/// 49+ STRESS RESLLTANTS OF THE COMBINED RIB PLATE SYST }FORC
133 FORMAT (/// 35K STRESS RESULTANTS IN THE PLATE ) FORC
134 FORMAT {/// 38F STRESS RESULLTANTS IN SMEARED X-RIBS ) FORC
135 FORMAT {/// 38k STRESS RESULLTANTS IN SMEARED Y-RIBS ) FORC
136 FORMAT (/// 40F NORMAL FIBER STRESSES IN PLATE } FORC
137 FORMAT (/// 40t NORMAL FIBER STRESSES IN X-RIBS ¥ FORC
138 FORMAT (/// 4CF NORMAL FIBER STRESSES IN Y-RIBS ) FORC
141 FORMAT (58H2 GIRDER MOMENT AND AXIAL STRESS RESULTANTS AT SECTICN FORC
%= X= F8.2 /// 65H GIRCER NO MCMENT PERCENTAGE TENSION FORC

* CCMPRESSION /) FORC

143 FORMAT (169E16.63FSe2,2E16,.86) FORC
145 FORMAT {//6H TOTAL E16.6:F9.2,2E16,6) FORC
LO00 FORMAT (1CF7.3) FORC
1001 FORMAT (//// 50K]1 DETERMINE GIRDER MOMENTS AT SECTIONS X EQUAL YO FORC
* /) FORC
1002 FORMAT (1CFl2.2) FORC
1004 FORMAT (314,3F10.0) FORC
1005 FORMAT (//// 75t STRIP 1ST GIRDER 2ND GIRDER DNAL FORC
*® ONA2 XDIV /) FORC
1006 FORMAT {15,2113,3X,3F13,3) FORC
1010 FORMAT (///7/ 1éH X-SECTION COORD F7.2y 50H IS DISREGARDED SINCE IFQRC
*T 1S NCT CONTAINEC IN XP(I) ) FORC
FORC

500 RETURN FORC
END FORC

B21

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474



SUBROUTINE STRIP (FK,SM,P NP} STRI

C STRI
C*****************#**********#*************#**#**t******#***#t*****##t**sTR[
C FOR GIVEN FARMONIC ThE LOCAL STIFFNESS AND CONSISTENT LOAD STRI
C ARE CETERMINED FOR A FINITE STRIP WITH ECCENTRIC STIFFENERS STR1
C AND ARE TRANSFUORMED INTC GLOBAL COGRDINATES STRI
C****#*****************é*»m***iﬁi*#vvv*v*ivavvv*xvu*vttvvxvvtt*vv*#xtv!#b[Ri
C STRI
DIMENSICON SM{E€,84,1)sP{89s1)sSK{8,8),SKA(8,8) STRI
COMMON / SETUP / SPANsNPLyNEL o NITyNXP ¢MHARMyNCHECK o MMyNXBAND, STRI

%* INTPRTyMCHECK yNSURL s NCONLoMXsPIgNLoN2oI1,1JeiL, STRI

* LA,LB'LC,LD’LE’[NTP(ZL,1NDXMP'NG‘R STRI
COMMON / SPRCP / H{50)¢VIEC)sTHISC),PhTH(50) ;EPX{50) ,EPY(50), STRI

* GP{50) ¢ FNU(S0) s ARXIS5C)y ARY{50) , SMX{50) ,SMY{50), STRI

* TMX{503, TMY{5C) ,AUX(50) yASY{50) sERX{50) ERY(50), STRI

* DX{50)+:DY{50)sHX{50) ,HY{50) STRI

C STRI
C INITIALIZATION FOR GIVEN HARMONIC STRI
C STRI
PL = SPAN STRI

WPI = FK STRI

WPI2 = WPI%%x2 STRI

WPI3 = WPI*%3 STRI

WPIl4 = WPIkx4 STRI

C STRI
C FORMATION CF ORTHOTRCPIC MATERIAL LAW STRI
C FOR EACH FINITE STRIP TYPE STRI
C STRI
DO 100 L=1,NPL STRI

HD = H{L) STRI

VD = V{L) STRI

U = FNUILI*SGRTLEPXIL)I/EPYIL) ) STRI

TA = TH{L) : STRI

TB = TAx*3/12.C STRI

WI = PWTHI(L} STRI

EX = EPX{LI/{1.0-U%x%2) STR1

EY = EPY(LI/{1.0~U%*%2) - STRI

D1l = TA%EX + ARX{LI®ERX(L) STRI

D22 = TA%®EY + ARY({L)%®ERY{(L) STRI

D12 = TA*EX®FNU{L) STRI

D33 = TARCP(L) STRI

D44 = TB*®EX + TMX{L)I*ERX(L) STRI

D55 = TBXEY # TMY(LI%®ERY(L) STRI

D45 = TBREXAFNUIL) STRI

D66 = TB*GPIL}*4, + AJX(L)+AJYIL) STRI

Dl = SMX{LI®ERX(L) STRI

D25 = SMY(LIX*ERY(L} STRI

C STRI
C LCCAL STIFFNESS MATRIX FOR FINITE QTRIP Wl TH STRI
ol ECCENTRIC STIFFENERS STRI
C STRI
C STIFFNESS CF PLATE BENDING ACTION STRI
C STRI
SK{1lyl) = WPIA*PLAWI*%3%D44/21C.C + 2.C*PL*DS55/Wl + STRI

X WPT2%PLXWI/15.0%({2.0%L45+D6¢) STRI

SK(142) =-WPI4*xPLAWI*%2%D44/28C.C + PL#*DES/WI ~ STRI

B22
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OO0

C
C

X
SK{3,3}

X
SK(3,4)

X
SK(1,3)

SK{l,4)
X
SK{2y2)
SK{4,.4)
SK{2s4)
SK{2,3)

STIFF
ACTIO

AlS

Alé

Al7

A35

A36

SK(1,5)
SK{ls6)
SK(1,7)
SK{3,5)
SK{3,6)
SK{2;6)
SK{2,5)
SK{(1,8)
SK12,7)
SK{2,8})
SK{4,6)
SK{4,5)
SK{3,7)
SK13,8)
SK{4,7)
SK{4,8)

STIFF

SK{5,5})
SK{5,46)
SK{T7,7)
SK{7+8})
SK{5,7)
SK{5,8)
SK{6,6)
SK{8,8)
SK(6,8)
SK{64,7)
DO 220 1
DO 220 J
220 SK{(J,1I)

DETER

WPI2*PL*WI/6C 0k (2,0%L454D6¢€)
13.CRWPTGXPLAWIRL44/TC.C + E£.C*PLADSS/WI%*%3 +
3o0¥WPI2¥PL/ (5., 0%Wl )X (2.0%D45+D66)
=G OXWPT4XPLXW[*D44/140.,C + &, C*PL*DSS5/WI*%3 ¢
3o0%WPI2%PL/{SCHWI )% (2.0%D45+0D66)

11 C*WP I4*PLAXWI®%2%044/420,C + 3,0%PL*DS55/WI%*%2 +
WPI2*%PL/20.0%{12.0%045+066)
~13.C*WPLA*PL*nwI*%24D44/840,C + 3,0%PL%AD55/WIn%2 +
WPI2%PL/20,0%(2,C%D45+D66)

SK{1ls1)

SK(3,3)

SK{1s3)

SK{1ls4)

t H f

i

o oilon

NESS CF COUPLING BETWEEN IN PLANE AND PLATE BENDING
N CUE ECCENTRICITY OF STIFFENERS

==WPI2%PL*WI*%2%3]14/40,0
=—WPI3XPLXW[*%2%D14/60,0
==PL¥025/(2.0%%W 1)
==TO%WPI3*PL*¥WI*D14/4C.0C
==3. 0%WPI3*PLXWI%*D14/4C,C
ALS
Alé
AL7
A35
A36
-SK{1,5)
~SK{ls61}
SK{1,7)
=SK{1,7)
SK{2,7)
-SK{3,5)
‘SK(Byé’
0.0

L L | T O (T TR I [N TR

[N e Ne)
o Ne ke

NESS OF IN PLANE ACTION

WPIZ2*PL*WI*D11/6.,C + PL*D33/(2.C%WI)
WPI2%PL*WI*D11/12.0 — PL%¥D33/(2.0%WI)
PL¥D22/(2.0%WI) + WPIZ2¥PL*WI*D33/6.0
PL¥D22/(2.0%WI) -~ WPI2*%PL*WI%D33/12.0
WPI*PL/4,0%{012-033)
WPI*PL/4.0%x{(D12+032)

SK{5,5)

SK{7+7)

SK{5,7)

SK{5,8)

=18

=[,8

= SK(!,J)

L T S T T (I TR 1]

1

MINE CCONSISTANT LCAD VECTCRFOR UNIFORM

STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
STRI
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TRANSVERSE LOAC ZiL=1 AND IN PLANE LUOAC YL=1

P{LsL) = wWI¥®2/(6.,0%WPI]}
Pl2,L) =—P(1l,L)

PI3,L) = wWI/WPI

Pl4,L) =-P{3,L)

P{5,L}) = C.0

PlesL) = Ce0

PL{T7,L) =-WI/WPI

PIB,LY =—P(7,L)

TRANSFCRMATIUN OF

DO 10 I=1,8

SKA(Ts1)=~SK{Is3}%VD ~

SKA({I2)=-SK{1,3)%nD
SKA(113)= SK(I,I)
SKA{L,4)= SK(I45)
SKA(I,5)= SK{1,4)%VD

SKA{TI¢6)= SK{I,4)}*%HD -

SKA{I7)= SK({I,+2)
SKA(I,8)= SK{I,6)

DO 20 I=1,8

STRIP STIFFNESS INTC GLOBAL COORDINATES

SK{ Ty 7}*HD
SKUI7)%VD

SKI{I48)%HD
SK{I,8)*VD

SM{L1y[oL)==SKA(3, 1) *VD-SKA{T741)%KD
SM{2,T9L)==SKAL3,1)*HD+SKA(T,1)%VD

SM{3sI,0L)= SKALL,1)
SM{4,I,L)= SKA{5,1)

SM{S5,T,L)= SKA(4,T)*VD+SKA{8,1)%HD
SM{6sIsL)= SKAL4,TI%xHD-SKA(8,1)%VD

SM{7,I,L)= SKA{2,1}
SM{B8,sI4L)= SKA(&51)
CONTINUE

RETURN

END
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SUBROUTINE BANSOL (NNyMM NDIM,A,B KKK} BANS 1

C . BANS 2
C************************************ﬁ****#’(‘****************************BANS 3
C IN CORE BANC SOLVER BANS 4
C BANS 5
C NN NC OF EQUATIONS BANS 6
C MM HELFBANCWICTH + | BANS 7
C NDIM NC OF ROWS IN DIMENSICON STATEMENT OF A BANS 8
C A SHIFTEL FALFBAND GF SYMMETRIC POSITIVE DEF. COEFF MATRIX BANS 9
C RECUCEC MATRIX IS CVERWRITTEN BANS 10
C B VECTOR -  SOLUTICN VECTGR IS OVERWRITTEN BANS 11
C KKK = 0 REDUCTIUN OF A AND B AND BACKSUBSTITUTION BANS 12
C KKKeLE.1l RECUCTION CF A BANS 13
C KKKeGT o1 REDUCTION OF B ANC BACKSURSTITUTION BANS 14
C#*******************#****************#********#******#*****************BANS 15
C BANS 16
DIMENSICN AINCIM,1), B{1) BANS 17

C BANS 18
NR = NN - 1 BANS 19

IF (KKK.GT.1) GO TO 3C0 BANS 20

C BANS 21
C RECUCT ION CF BAND MATRIX A BANS 22
c BANS 23
DO 200 N = 1,ANR BANS 24

PIVOT = AN, 1) BANS 25

IF (PIVOT.EQ.C.Q) GO TC 20¢C BANS 26
M=N-1 BANS 27

MR = MINO {MM,AN-M} BANS 28

DO 190 L = 2,MR BANS 29

C = AINyLY/PTIVCT BANS 30

IF (C.EQ.Ces) €O TO 19C BANS 31

I = M+ L BANS 32

J =0 ) BANS 33

DO 180 K = L,MR BANS 34

Jo=J o+ 1 BANS 35

180 A(I.J) = A(Iyd) = CHA{N,K) BANS 36
A{N,L} = C BANS 37

190 CONTINUE BANS 38
200 CONTINUE BANS 139
IF (KKK.NE.Q) GG TQ 50C BANS 40

C BANS 41
C REDUCTION CF VECTOR B BANS 42
C BANS 43
300 DO 360 N = 14AR BANS 44
IF (AN, 1).EQ.0.0) GO TC 26C BANS 45
M=N-1 BANS 46

MR = MINO (MM,NA=-M) BANS 47

C = BIN) BANS 48

BIN) = C/A(N,1) BANS 49

DO 350 L = 24MR BANS 50

I = M + L BANS 51

350 B{I) = B{I) - A(IN,L)I%C BANS 52
360 CONTINUE BANS 53
I[F (A(NN,1).LE.O.C} GO 1D 3280 BANS 54

BANN} = B(NN)/A(NN, 1} BANS 55

C BANS 56
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BACKSUBSTITLTION

DO 400 K=2,NN

NN - K

Mo+l

= MINC (MM,K)
400 L = Z¢MR

= M + L

BIN) = BIN) — A(N,LI%=B(I)
RETURN

END
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| SUBROUTINE FIXFOR (HD,VCoYLoZLyNPIyNPJ4PM,PTOTyNyK) FIXF 1
i C FIXF 2
X C***********************************#***#***#*#******'4.!******************Fl)(F 3
1 C DETERMINATION AND ASSEMBLAGE CF JOINT FORCES INTO LOAD VECTQR FIXF 4
! (G e 3 % o 2 e e o ke e ok ok o e ofe ok ol kol ofe e ek ok Ak je i R0tk A %k akok ok o g e ok sk afe e ek ok ok ok ok ok ook R ok ok kg E [ X F 5
! C FIXF 6
i DIFMENSION P(8,M)},PTOTIN]) FIXF 7
‘ C FIXE 8
PTOTANPI+ 1) =PTOT(NPI+1)-VD%ZL*P{3,K)=-tD*YL%P{T,K) FIXF 9
PTOTINPI#2)=PTCTINPI+2)—HD*ZL*¥P{3,K)+VD*YL¥P{7,K) FIXF 10
PTOT{(NPI+3)=PTCT(NPI+3)+ZL%*P{1,K) FIXF 11
PTOTU(NPI+4)=PTCTINPI#4}+YL*P(5,K) FIXF 12
PTCTUNPJI+L)=PTCTINRI+L)+VDRIL*P (4 ,K)+EDRYLXP{8,K) FIXF 13
PTOTUNPJU+2i=PYCTINPI+2)#HD*ZL*P(4,K)-VD*YLXP{8,K) FIXF 14
PTOTINPJ+3)=PTCTANPI+3)+ZL*P(2,K) FIXF 15
PTOT(NPJ+#4)=PTCTINPJ#4)+YL*P{6,K) FIXF 16
RETURN FIXF 17

END FIXF 18




SUBROUTINE OPRINT (ApMyNoXoNYyK1,K2,NCYC) OPRI

c , OPRI
C******************#**************##*’0#*********************************OPRI
c PRINTING SUBROUTINE FOR MATRICES OF STRESS RESULTANTS QPRI
(;**********************************###*****#*##*********************##**OPRI
c OPRI
DIMENSION ALM N} X{MI,N1{Z3,N2(2) OPRI

¢ OPRI
1 FORMAT (16,1P7E16.7) OPRI

2 FORMAT (6BOSECT.,7(6H X =F10,3)/} OPRI
DATA NL(L)yN1{2)/1,8/ OPRI
N2{1)=K1 OPRI

N2 (2)=K2 0PR1

DO 10 K=1,NCYC OPRT
JI=NL(K) OPRI
J2=N21K) GPRI

PRINT 2, (X(I),1=d1,42) OPRI

DO 10 I=1,NY OPRI

10 PRINT L1, Tol8(Jy13,d=d1,J2) 0PRI
RETURN OPRI

END OPRI
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SUBROUTINE PINVAL (INDeDoMsNyXeMXyKL K2, NCYCyL) PINV

Co PINV
O sate s oo o s o K R SR e el ook o ke e s ool ook o Kok R o R ek ok ok % kR K R ROKRHOR RO R R Rk P T N
C PRINTING SUBROUTINE FOR GLOBAL JOINT CISPLACEMENTS PINV
s o e R o R O K e ke ok s R % KRR ok 3 ok ok o ok ok ok ek ok e KRR R R o Rk kR P T NV
c PINV
DIMENSION INDUM)Y DM NIy xIN) NI{Z3,N2{2) PINYV

c PINV
1 FORMAT (1€,1P7FE16.7) PINV

2 FORMAT (6FQJOINT, 7(6H X =F10.3)/) PINV
DATA NLL1}sN1(Z2)/1,8/ PINV
N2(l)=K1 PINV

N2 (2)=K2 PINV

DO 10 K=14NCYC PINV
J1=N1{K)} PINY
J2=N2(K} PINV

PRINT 2, (XUI),I=U1,d2) PINV

DO 10 I=LsMXs4 PINV

10 PRINT 1y IND(IIo(D(IsJ)yd=dl,d2} PINYV
RETURN PINV

END PINV
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SUBROUTINE MOMPER (XN XMWl sNYyNIsN2sDT sCJeH Ve XDIVeNXy X MOPT, MOMP

* GIRMCM, TENS ,COMP,NCP) MOMP

o ‘ MOMP
% sk o e el e 3k 3ol ook ot 3 e ok ko e i e o o ol ok ok e o ok ok ol e ook ok e b ol ok ol e ks ok o ool ok o ol o i ookl o el e M OM P
C SUMMATION CF STRIP CCNTRIBUTIONS TC THE MOMENTS OF GIDER MOMP
C N1 ANC N2 WHICH IT BELGNGS 10 MOMP
C ok ookl s ok ok R R koo sokokoR ok okok ok ok ok b ok kR Sk ok Rk ok ok Rk Rk kb ke Rk kR SR E MOMP
C MOMP
CCMMON / SETUP 7/ SPANSNPLyNEL oNJTNXPyFHARM/NCHECK s MM, NXBAND, MOMP

* INTPRT MCHECK ¢NSURL s NCONLyMX s PI4NA¢NBsII,IdyILy MOMP

* LAJLByLCyLDsLE,INTP{Z21) +NOXMP,NGIR MOM P
DIMENSION XNENX, L}y XM{NXy 1DoX(1),MOPT(1) sGIRMOMINOP 1), MaMP

% TENS{NOP, 1) CCMP{NCP,1) MOMP

C MOMP
NSC=NY-1 MOMP
SC=NSC MOMP
DEL=W/SC MOMP
DEV=(LJ=-D1}/SC MOMP
IF{DEV.EQ.0s) CO TOU 5 MOMP
XDIV=ABS(XCIV) MoMP
DEH=ABS (CEV%H/V) MOMP

GO TO 7 MOMP

5 DEH=DEL MOMP

7 DO 100 J=1,NCXMP MOM P
[T=MOPT(J) MOM P
IFIIT.EG.0) GG TO 100 MOMP

X1=DI MOMP
[F(N2,GT.C) GC TO 20 MOMP

c MOMP
c STRIP CONTRIBUTES ONLY 10 ONE GIRDER MOMP
c MOMP
DU 10 NN=1,NSC MoMP
X2=X1+DEV MOMP

CALL ADDMCM(J NLyX1yX2,CEL yDEFy XNCIToNN) 9 XNCIT,NN#11 4 MOMP

% XM{TT oNN) s XM{ITyNN+1) ¢GIRNCM, TENS ,COMP, NOP) MOMP

10 X1=X2 MOMP

GO TO 100 : MOMP

o MOMP
" STRIP CCNTRIRUTICN -TC FIRST OF THE TWC GIRDERS MOMP
¢ MOMP
20 NN=1 MOMP
HH=0, MOMP

30 HH=HH+DEF MOM P
IF{HH.GT.XDIV) GO TO 4cC MOMP
X2=X1+DEV MOMP

CALL ADDMCMIJsNLyX1oX24CELsDEFo XNCIToNN) s XNCIT,NN+1), MOMP

% XM{IT o NN) s XM{TToNN+1),GIRMCM, TENS ,COMP, NOP) MOMP
X1=X2 MOMP
NN=NN+1 MCMP

GO TO 30 MOMP

40 FA=(XCIV+LER-FF) /BEF MOMP
XL=FA%DEL MCMP
XH=FA®DEF MOMP
X2=X1+FA*CEV MOMP
XN2=XN{IT oNNY+FAR (XNCIT o NN+ L) =XN{ITyNA)) MoM P

XM2=XMUTIT NN} +FAR{XMIITNN4L)=-XM{ITHNN)) MOMP
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CALL ADOMUMA{JoNLsX1oX29XLa XEg XNCIToyNN) s XN2o XM{IToNN) s XM2,GIRMOM,
* TENS,CCMP,NCP)

STRIP CCONTRIBUTICN TC SECOND OF THE TwC GIRDERS

X3=X1+DEV
XL=DEL-XL
XH=DEF-Xt
CALL ADDMCMUJgN29X29X3 9 XL o XHo XN2o XNLTTHNN+1) o XM2 3 XMIITsNNeL)
* GIRMCM, TENS,COMPNGOP)
X1=X3
50 NN=NN+1
IF(NN.GT.NSC} GO TO 10C
X2=X1+DEV
CALL ADDMCMAUJoN2y X1 o X2 LEL JDEF o XNCIToNN) o XNTTIToNN#L) o XMUTTNND »
* XM{IT,NN+13oGIRMOM, TENS,CCMPyNOP)
X1l=X2
GO TO 50
100 CONTINUE
RETURN
END

MOMP
MOMP
MOM P
MOMP
MOMP
MOMP
MOMP
MOMP
MCOMP
MOMP
MOMP
MOMP
MOMP
MOMP
MOMP
MCMP
MOMP
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MOMP
MOMP
MOMP



SUBROUTINE ACCMCM (JoNg X1y X2 XLo Xbg XN13XN2y XML, XM2 ,GIRMOM ,TENS, ADDM

* COMP,NCP) ADDM

C ADDM
C************************************’0**********************************ADDM
C NUMERICAL INTEGRATICN CF CONTRIBITICN OF STRESS RESULTANTS ADDM
C TC THE MOMENT ADDM
(‘,**#**«#**#***********¥$****************#*********##***i******#***#****#*ADDM
C ADDM
COMMON / SETUP / SPANsNPLaNEL ¢yNJToNXP ¢ MHARM NCHECK y MMy NXBAND 5 ADDM

% INTPRTyMCHECK yNSURL ¢ NCONLyMX 3P T oNL N2, 11 51J, 1L, ADDM

* LAsLBoLCyLD,LE, INTPTZL1) ,NOXMP,NGIR ADDM
DIMENSION GIRMCM{NOP, 1} +TENS(NOPy1)+CCMPINOP,1) ADDM
Fl=o5%XNL*xXL ADDM

F2= o 5%XN2%XL ADDM
XM=(F1x{X24¢2%X1)+F2%{X1+2.%X2)) /3, ADDM
F=F1l+4F2 ADDM

XM= XM, 5% (XML #XMZ )%k XH ADDM
GIRMCM{JsNI=CIRMCM{J, NI +XM ADDM
IF(F.LT.0.,) GC TO 10 ADDM
TENS{JsNI=TENS(JsNJ}+F ADDM

GO 70 20 ADDM

10 COMP(JyN)I=COMPLIsNI+F ADDM

20 RETURN ADDM
END ADDM
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