
UC Irvine
UC Irvine Previously Published Works

Title
Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi-
informed insights into schizophrenia.

Permalink
https://escholarship.org/uc/item/8hm6m9t3

Journal
Human Brain Mapping, 44(17)

Authors
Geenjaar, Eloy
Lewis, Noah
Fedorov, Alex
et al.

Publication Date
2023-12-01

DOI
10.1002/hbm.26479
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8hm6m9t3
https://escholarship.org/uc/item/8hm6m9t3#author
https://escholarship.org
http://www.cdlib.org/


R E S E A R CH A R T I C L E

Chromatic fusion: Generative multimodal neuroimaging data
fusion provides multi-informed insights into schizophrenia

Eloy P.T. Geenjaar1,2 | Noah L. Lewis2,3 | Alex Fedorov1,2 | Lei Wu2 |

Judith M. Ford4,5 | Adrian Preda6 | Sergey M. Plis2,7 | Vince D. Calhoun1,2,3,7,8

1School of Electrical and Computer

Engineering, Georgia Institute of Technology,

Atlanta, Georgia, USA

2Tri-Institutional Center for Translational

Research in Neuroimaging and Data Science

(TReNDS), Georgia State, Georgia Tech,

Emory, Atlanta, Georgia, USA

3School of Computational Science and

Engineering, Georgia Institute of Technology,

Atlanta, Georgia, USA

4San Francisco Veterans Affairs Medical

Center, San Francisco, California, USA

5Department of Psychiatry and Behavioral

Sciences, University of California San

Francisco, San Francisco, California, USA

6Department of Psychiatry and Human

Behavior, University of California Irvine, Irvine,

California, USA

7Department of Computer Science, Georgia

State University, Atlanta, Georgia, USA

8Department of Psychology, Georgia State

University, Atlanta, Georgia, USA

Correspondence

Eloy P.T. Geenjaar, School of Electrical and

Computer Engineering, Georgia Institute of

Technology, Atlanta, GA, USA.

Email: egeenjaar@gatech.edu

Funding information

National Science Foundation, Grant/Award

Number: 2112455; National Institutes of

Health, Grant/Award Number: R01EB006841;

Georgia Tech/Emory NIH/NIBIB Training

Program, Grant/Award Number:

T32EB025816

Abstract

This work proposes a novel generative multimodal approach to jointly analyze multi-

modal data while linking the multimodal information to colors. We apply our pro-

posed framework, which disentangles multimodal data into private and shared sets of

features from pairs of structural (sMRI), functional (sFNC and ICA), and diffusion MRI

data (FA maps). With our approach, we find that heterogeneity in schizophrenia is

potentially a function of modality pairs. Results show (1) schizophrenia is highly mul-

timodal and includes changes in specific networks, (2) non-linear relationships with

schizophrenia are observed when interpolating among shared latent dimensions, and

(3) we observe a decrease in the modularity of functional connectivity and decreased

visual-sensorimotor connectivity for schizophrenia patients for the FA-sFNC and

sMRI-sFNC modality pairs, respectively. Additionally, our results generally indicate

decreased fractional corpus callosum anisotropy, and decreased spatial ICA map and

voxel-based morphometry strength in the superior frontal lobe as found in the FA-

sFNC, sMRI-FA, and sMRI-ICA modality pair clusters. In sum, we introduce a power-

ful new multimodal neuroimaging framework designed to provide a rich and intuitive

understanding of the data which we hope challenges the reader to think differently

about how modalities interact.

K E YWORD S

deep learning, multimodal fusion, static functional connectivity, structural/functional/diffusion
magnetic resonance imaging, variational autoencoders, visualization

1 | INTRODUCTION

The acquisition of neuroimaging data often consists of various modali-

ties, such as structural, functional, and diffusion magnetic resonance

imaging data. Access to a wide range of complementary modalities is

necessary to deeply understand the relationship between (functional/

structural) brain patterns and demographic/neuropsychiatric variables

(Calhoun & Sui, 2016). For example, unimodal studies may show that
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brain activity and structure are both linked to the same neuropsychi-

atric variable. This, however, does not allow us to draw the conclusion

that both modalities (linearly or nonlinearly) covary together. In fact,

combining modalities may have an even stronger link to the neuropsy-

chiatric variable under study (Liu et al., 2015). Understanding the

covariation pattern of two modalities and how that covariation relates

to neuropsychiatric variables also allows us to dig deeper into the

latent mechanism that underlies both the divergence in behavioral

and neuroimaging measures. When covariation in divergent brain

activity and structure are linked to the same brain region, the effects

may be localized. However, when covariation indicates different brain

regions for each modality, there may be a more complex mechanism

underlying their effect on the neuropsychiatric variable. Importantly,

jointly estimating the multimodal relationships can allow the modali-

ties to inform one another, yielding information that is richer than a

unimodal analysis. A rich understanding of these patterns will lead to

complementary quantitative visualizations or measures that have the

potential to help clinicians make decisions about diagnosis and treat-

ment plans. Further, access to quantitative visualizations will ulti-

mately be important to help practitioners facilitate the delivery of

personalized medicine (Bhugra et al., 2017).

Multimodal neuroimaging is thus a critical aspect of studying the

brain and aims to incorporate each modality as a piece of the puzzle

to obtain a complete picture of the brain. Just as with pieces of a land-

scape puzzle, modalities have exclusive or private features (e.g., the

picture of a specific tree or house printed on the puzzle piece) and

shared features (e.g., the neighborhood that emerges only when

pieces are combined). By thinking of features from a variety of neuro-

imaging modality pairs as private and shared, they become more inter-

pretable and also allow us to learn more structured features from the

modalities. We exploit the more conceptual interpretability of private

and shared features in our framework, since we now have three

dimensions along which subjects can differ, two sets of private fea-

tures (one for each modality), and one set of shared features. We use

the likeliness of the three sets of features in the dataset to compare

subjects to each other. This is visualized in our framework as a color

for each subject, based on the three feature sets, which correspond to

red, green, and blue. Thus allowing us to map each subject's multi-

modal feature sets to a color with a higher intensity for unlikely fea-

ture sets, and a low intensity for likely feature sets compared to the

rest of the data. However, what features are shared and what features

are private between pairs of neuroimaging modalities is not known

apriori. We therefore utilize recent deep learning work that has

started to develop neural networks to extract private and shared fea-

tures from pairs of modalities (Lee & Pavlovic, 2021; Shi et al., 2019).

Specifically, our multimodal neuroimaging model leverages and

extends the disentangled multimodal variational autoencoder

(DMVAE) (Lee & Pavlovic, 2021) as a building block. The goal of our

work is to learn low-dimensional features from multimodal datasets in

such a way that we can understand how the interactions among the

modalities in each dataset relate to schizophrenia. We chose to use an

approach that models two modalities as having private and shared

features because it induces a structure in our low-dimensional repre-

sentation that both constrains the solution space of our algorithm and

is interpretable. Furthermore, we can map the features in the repre-

sentation back into the modality's original space, which makes these

representations more interpretable. We expect that explicitly model-

ing shared features between modalities with a non-linear method

leads to interesting features potentially related to schizophrenia.

By reducing the number of features and increasing the interpret-

ability of sets of features, we can actually analyze these features more

deeply because they are constrained in dimensionality. This allows us

to consider subjects on our new constrained spectrum, which we do

by assigning colors to each subject based on the three sets of features

as mentioned previously. Moving toward multi-dimensional (continu-

ous) measures to understand psychiatric disorders is important

because binary labels can be misleading. For example, schizophrenia

often co-occurs with other mental disorders (Upthegrove et al., 2017).

Additionally, there is significant intra-diagnostic heterogeneity for

schizophrenia, and the lines between other severe mental disorders

remain blurred. Thus, representing neuroimaging features on a con-

strained multi-dimensional spectrum is important to understand indi-

vidual brain differences, and predict risk (Sui et al., 2020). Integrating

multiple modalities and viewing subjects on a spectrum is consistent

with the trans-diagnostic NIMH research domain criteria (RDoC) ini-

tiative (Sanislow et al., 2019).

In this work, we propose a new framework to analyze spectrum

psychiatric disorders through a powerful multimodal representation

learning framework. Specifically, we disentangle private and shared

features from a pair of modalities and characterize schizophrenia

patients from the perspective of these distinct features. Given their

variational inference framework, variational autoencoders enforce a

certain prior during training. In our case, we use a zero-mean normal

distribution, which allows us to naturally interpret encoded modalities

further from this prior than others to be more irregular in the dataset.

Based on the three distinct types of features; the private features

from the first and second modalities, and their shared features, we

can assign a color to a subject based on how irregular each of these

types of features are for that specific subject. To make this more

robust, instead of assigning the color to each subject, we first find

clusters in the low-dimensional space and assign a color to each clus-

ter. We then use the colors of the clusters to assign colors to the full

spectrum of the space. Given that there are three sets of features, we

use a red-green-blue (RGB) color model to assign a color to each clus-

ter, where red and blue represent irregularity in the sets of private

features from the first and second modalities, respectively. Green rep-

resents irregularity in their shared set of features. We call this frame-

work of creating a low-dimensional multimodal color spectrum along

which subjects vary: chromatic fusion. Assigning colors allows us to

draw inferences about the dataset quickly, and increases visual

interpretability.

In our analyses, we use all potential pairs of four modalities; spa-

tial ICA maps, static functional connectivity (sFNC), fractional anisot-

ropy maps (FA), and voxel-based morphometry (sMRI). Although

sFNC and spatial ICA maps are derived from the same modality,

namely functional magnetic resonance imaging (fMRI), we refer to

them as different modalities in this manuscript for brevity. Our goal is

to both introduce a new way of thinking about combining modalities,

GEENJAAR ET AL. 5829



namely in terms of colors related to private and shared features, and

visualizing how those combinations of modalities uniquely highlight

subgroups and thus the heterogeneity of psychiatric spectrum disor-

ders, such as schizophrenia. Specifically, for each modality pair, we

highlight the upper quartile (7 out of 27) of naturally arising

schizophrenia-enriched clusters; clusters with a large number of

schizophrenia subjects, whether those clusters capture the same sub-

jects across modality pairs, and what patterns in the data these clus-

ters represent. Additionally, we look at representative shared features

our model finds and how they relate to schizophrenia to highlight the

importance of explicitly disentangling shared features from private

features. We hypothesize that different modality pairs lead to distinct

patterns related to schizophrenia. We aim to find these patterns with-

out supervised labels and compare them across modality pairs. In fact,

we show that these naturally arising clusters are a function of which

modalities are paired. Our results imply that distinct combinations of

modalities are able to highlight different schizophrenia subgroups in

our dataset. This also indicates how heterogeneity in schizophrenia is

a function of the interactions between modalities. This means that dif-

ferent subgroups are distinct from the rest of the sample based on

which modalities are combined. Additionally, we show that some

shared features are significantly related to schizophrenia. These

shared features naturally arise from our model while training without

any supervision and we include analyses on the robustness of these

shared features across training folds. Generally, we find robust and

correlated shared features for each modality pair, and highlight two to

visualize unique and multimodal patterns significantly related

to schizophrenia.

1.1 | Previous work

In multimodal machine learning one of the main challenges is to learn

good representations (Baltrušaitis et al., 2018). Good representations

are essentially accurate and interpretable summaries of a data sample

at hand. An example of an impactful summary of neuroimaging data

are independent component analysis (ICA) spatial maps or functional

connectivity (Garrity et al., 2007; Hutchison et al., 2013). Our method

addresses this challenge and performs symmetric multimodal fusion.

As opposed to asymmetric fusion, where one modality constrains

another, we analyze two modalities concurrently in a symmetric

fusion model. Furthermore, we look at how the sub-elements of the

modalities are fused after training, and summarize (possibly nonlinear)

covariations in the data, instead of trying to find mechanistic relation-

ships between modalities. There are also important distinctions within

the field of multimodal data fusion itself (Calhoun & Sui, 2016).

Mainly, there are model-driven and data-driven approaches. Model-

driven approaches have the advantage of specifying apriori hypothe-

ses that can be tested, and that those hypotheses can be directional.

However, if any important hypotheses are missed, these methods can

make incorrect inferences. Data-driven approaches on the other hand

do not require the specification of a priori hypotheses. Our model falls

under data-driven multimodal fusion approaches. Lastly, there is a dis-

tinction between blind and semi-blind data-driven fusion approaches

(Calhoun & Sui, 2016). Semi-blind approaches, in contrast to blind

approaches, use some a priori knowledge to constrain the solution

space of the model, such as regularization. As discussed in the previ-

ous paragraph, by encouraging our model to find private and shared

features for two modalities, we constrain the solution space of the

model. Thus, our approach falls under the umbrella of unsupervised

semi-blind multimodal fusion approaches. Examples of other semi-

blind multimodal fusion approaches are joint ICA (Calhoun

et al., 2009), which assumes a shared loading parameter, multiset

canonical correlation analysis with reference + joint ICA (mCCAR

+ jICA) (Qi et al., 2017), which allows a behavioral reference to con-

strain the solution, independent vector analysis (IVA) (Kim et al., 2006;

Lee et al., 2008; Ma et al., 2014), which assumes an independent/

dependence structure to extract linked sources, and parallel ICA,

which optimizes jointly for independence within a modality, and linear

covariation between a subset of the sources. These multimodal fusion

approaches are complex and thus indicate there is a potential benefit

in leveraging the flexibility of deep learning models in the context of

multimodal fusion. Further, we want to move beyond the linear mixing

assumption by utilizing a non-linear autoencoder-based network, and

explicitly find private and shared features among pairs of modalities.

Two recent studies (Hu et al., 2020; Peide et al., 2022), similar to

our approach, model multimodal data in terms of its private and

shared features. The authors in the former perform rigorous experi-

ments to find shared and common features using advanced coupled

matrix tensor factorization (ACMTF) to predict whether a task is being

performed in time windows of simultaneous electroencephalogram-

functional magnetic resonance imaging (EEG-fMRI) data. The work

extends previous tensor decomposition approaches that have been

successful at finding shared features between modalities and fusing

them (Silva et al., 2020; Sui et al., 2013). The latter of the two previ-

ously mentioned studies uses an autoencoder-based model to disen-

tangle the private and shared features but trains it using a supervised

signal to predict infant age. These methods differ from our work both

in their goal and approaches. For example, although (Hu et al., 2020)

uses a variational autoencoder as well, they train the model adversa-

rially with supervised signals. Our work is completely unsupervised

yet also results in common interpretable patterns in the dataset. In

addition, no work has to our knowledge exploited these multimodal

relationships to capture subgroups and visualized the continuum of

multimodal combinations as in our chromatic fusion approach.

Other ways of modeling multimodal neuroimaging data have been

proposed as well, two recent approaches involve graph neural net-

works (Ma et al., 2017; Zhang et al., 2020) to learn multimodal repre-

sentations from functional magnetic resonance imaging (fMRI) and

diffusion MRI (dMRI) data. Alternatively, previous studies have mod-

eled the interaction between fMRI data and structural MRI (sMRI)

data by aligning sMRI components with dynamic functional connectiv-

ity (Plis et al., 2018). Multimodal learning with sMRI and fMRI data

has also been explored using self-supervised learning (Fedorov,

Sylvain et al., 2021; Fedorov, Geenjaar et al., 2021), by minimizing the

divergence of representations from two different modalities. Our

work extends these studies by allowing new points to be visualized in

terms of their irregularity along the private and shared dimensions of
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the multimodal data and visualized to reveal novel multimodal

insights. For example, our results unify co-variations of fractional

anisotropy and voxel-based morphometry with increased visual–visual

and reduced visual-sensorimotor functional connecitivity, respec-

tively. Furthermore, our approach enables a new way of thinking

about modalities in terms of a chromatic framework, which we show

can provide additional insights and increase data transparency.

2 | MATERIALS AND METHODS

2.1 | Problem setting

Our goals are to (1) build a generative model that allows us to find pri-

vate and shared latent features for each modality, and (2) provide a

visual representation of the results to facilitate the discovery of addi-

tional insights into the relationship between modalities and neuropsy-

chiatric spectrum disorders. To do this, we use the identified sets of

features to estimate colors in the latent space and create a chromati-

cally fused color space to describe the dataset. The type of dataset

we study in this work X¼ xi
� �N

i¼1 consists of N subjects, with M

modalities per subject xi ¼ mi
j

n oM

j¼1
. In this work, we consider the case

for M¼2. One widespread generative model to tackle this problem is

the variational autoencoder (VAE) (Kingma & Welling, 2014), which

maximizes the log-likelihood of reconstructions in the dataset.

We learn the private and shared sets of features using a modified

variational autoencoder, as explained in this section. The data in this

problem is assumed to be sampled from an underlying, lower-

dimensional, distribution p zð Þ. We assume that the observed data for

the two modalities is sampled from the following conditional distribu-

tions, one for each modality p1θ mi
1jzi1

� �
and p2θ mi

2jzi2
� �

. Where mi
1 and

mi
2 are the two observed modality samples for subject i. Note that the

underlying distribution and these conditional distributions are

unknown, but we want to estimate them using the observed data. The

estimation of the marginal distributions for the two modalities is

intractable because of their form; p m1ð Þ¼ Ð
p z1ð Þp1θ m1jz1ð Þdz1) and

p m2ð Þ¼ Ð
p z2ð Þp2θ m2jz2ð Þdz2). The intractability of these marginal dis-

tributions also leads to the intractability of the following true poste-

rior densities: pθ z1jm1ð Þ¼ p1θ m1 jz1ð Þp z1ð Þ
p m1ð Þ and pθ z2jm2ð Þ¼ p2θ m2 jz2ð Þp z2ð Þ

p m2ð Þ . So

instead of estimating these distributions by optimizing over the true

posterior densities, the VAE approximates the posterior density for

both modalities using an encoder for each qjϕ zjjmj

� �
. This encoder

parameterizes a simpler distribution, in our case an axis-aligned

Gaussian distribution, than the true posterior. The approximate poste-

rior is variationally optimized to be close to this prior, with zero-mean

and diagonal unit covariance. By reparametrizing the conditional dis-

tributions, we obtain a variational lower bound on the marginal likeli-

hood of each data point mi
1,m

i
2 � xi. In the case of VAEs this lower

bound is called the evidence lower bound (ELBO) and a more in-depth

derivation can be found in Kingma and Welling (2014). In our case, we

can write the following equation for the ELBO:

ℒ θ,ϕ;mi
1,m

i
2

� �¼�DKL q1ϕ z1jmi
1

� � ��� p z1ð Þ
� �

þqϕ z1 jmi
1ð Þ logp1 mi

1jz1
� �	 


�DKL q2ϕ z2jmi
2

� � ��� p z2ð Þ
� �

þqϕ z2 jmi
2ð Þ logp2 mi

2jz2
� �	 
 ð1Þ

This objective function, however, does not account for the

interactions between modalities. It optimizes the ELBO for the

two modalities separately with two separate encoder-decoder

models for each modality. To model the shared features between

the two modalities, we model those interactions using a disen-

tangled multimodal VAE (DMVAE) (Lee & Pavlovic, 2021). A

visual depiction of the DMVAE is shown in Figure 1b. One of

the main conceptual ideas behind the DMVAE (Lee &

Pavlovic, 2021) and other multimodal models that have recently

gained traction (Shi et al., 2019) is the separation of the latent

space into private and shared features for each modality

(Baltrušaitis et al., 2018).

Conceptually, some of the features that are captured by different

modalities are mutually exclusive, while other features are shared

across modalities. The mutually exclusive features a modality captures

are generally referred to as its “private” features. For example,

T1-weighted structural MRI's (sMRI) can measure cortical thickness in

gray matter as its private features, whereas dMRI can act as an index

of axonal organization and coherence in white matter (Seitz

et al., 2018). These modalities, however, share features regarding

white matter. We want to ensure we explicitly model modalities this

way to disentangle both private and shared features. Throughout the

text, we will refer to the private features of subject i's first modality as

pri1, its shared features as shi , and the private features of its second

modality as pri2. The encoders will still parameterize Gaussian distribu-

tions, but their dimensions will be split into private and shared fea-

tures, see Figure 1b. Thus, we obtain two different shared features,

one for each modality, namely shi1 and shi2. To mix these two shared

feature sets during training, the authors propose to use a product of

experts (PoE) (Hinton, 1999). This allows us to obtain a closed form

solution for the variance σshi and mean μshi of the combined shared

distribution: 1
σ
shi
¼ 1

σ
shi
1

þ 1
σ
shi

2

and μshi ¼ σshi
1

σ
shi
1

μshi1
þ 1

σ
shi

2

μshi2

� �
. The pri-

vate and shared features can be expressed in terms of the encoder

q �ð Þ as follows: q1 pri1,sh
i
1jmi

1

� �
, q2 pri2,sh

i
2jmi

2

� �
, and p shijshi1,shi2

� �
.

The new objective function then consists of 6 reconstruction and

5 KL-divergence terms. mi
1 pri1

ℒDMVAE θ,ϕ;mi
1,m

i
2

� �

¼�DKL q1 pri1jmi
1

� � ��� p zð Þ
� �

þ λ1q1 pri1,sh
i
1 jm1ð Þ logp1 mi

1jpri1,shi
1

� �h i

�DKL q1 shi
1jmi

1

� � ��� p zð Þ
� �

þλ1q1 pri1 jmi
1ð Þ,p shi jshi1,shi2ð Þ logp1 mi

1jpri1,shi
� �h i

�DKL q2 pri2jmi
2

� � ��� p zð Þ
� �

þλ2q2 pri2,sh
i
2 jmi

2ð Þ logp2 mi
2jpri2,shi2

� �h i

�DKL q2 shi
2jmi

2

� � ��� p zð Þ
� �

þλ2q2 pri2 jmi
2ð Þ,p shi jshi1,shi2ð Þ logp2 mi

2jpri2,shi
� �h i

�DKL p shijshi
1,sh

i
2

� � ��� p zð Þ
� �

þλ1q1 pri1 jmi
1ð Þ,q2 shi2 jmi

2ð ÞÞ logp1 mi
1jpri1,shi

2

� �h i

þλ2q2 pri2 jmi
2ð Þ,q1 shi1 jmi

1ð ÞÞ logp2 mi
2jpri2,shi

1

� �h i

ð2Þ
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where p zð Þ is the diagonal Gaussian prior, λ1 and λ2 are weighting fac-

tors for the reconstruction of each modality, and the last two recon-

struction factors are cross-generation factors that use a sample from

the prior of their own private features and a sample from the shared

features of the other modality for the cross-reconstruction. Once the

model has been trained using this objective function, the shared fea-

tures of the first modality sh1 and the second modality sh2 should

have converged toward joint shared features sh. Thus, we are left

with three separate feature sets; the private features of the first

modality pr1, the private features of the second modality pr2, and the

shared features sh. Each subject can be represented as a point in each

of these feature sets, this is pictorially represented in Figure 2a. Note

that each point, in this case, refers to a normal distribution parameter-

ized by the respective encoder of each modality. The exact implemen-

tation of the encoder and decoder for each modality is shown in

Figure 1a.

2.2 | Multi-dimensional clustering

After training the model with the objective function in Equation 2, the

three feature sets (pri1, sh
i , and pri2) are concatenated together to

form one large embedding vector:

embeddingi ¼ pri1 shi pri2
h i

Each subject is represented by its embedding vector, which we

use to cluster subjects and assign colors to the clusters. Since each

subject is represented by a multivariate normal distribution, we take

its most likely value, the mean, to cluster the subjects. The clusters

are then found using K-Means++ clustering in the three feature sets

These three feature sets together span a multi-dimensional latent

space. A visualization of the clustering is shown in Figure 2b. To

understand the relationship among feature sets and subjects we

determine the color of each cluster based on their L2-norm. The first

private feature set pr1 is red, the shared feature set sh green, and the

second private feature set pr2 is blue. The value for red, blue, and

green is determined by the cluster's L2-norm for each feature set,

divided by the maximum L2-norm in that feature set. The norm cap-

tures how uncommon a feature is along that specific dimension. We

can interpret the norm this way because the neural network is trained

by minimizing the KL-divergence between each training subject and

the prior during training (see Equation 2). Therefore, high KL-

divergence is penalized and the model will try to incur KL-divergence

penalties as infrequently as possible. A mean further away from 0 (the

mean of the prior), will thus incur a penalty during training. The model

will try to ensure a high KL-divergence along a certain latent dimen-

sion in the feature sets is thus as uncommon as possible. It only uses a

high KL-divergence if it aids in the reconstruction error (the other

term in the objective function). If not, the magnitude of the KL-

divergence would have been optimized to be lower, meaning the sub-

ject's mean deviates less from zero. After assigning a color to each

cluster, we call the clusters together with their assigned colors meta-

chromatic patterns (MCPs). The “redness” of a given MCP can be

interpreted as patterns that have uncommon private features for the

first modality. This same interpretation can be applied to the “green-
ness” and “blueness” of each MCP. After the decoding process, we

can define the full latent space in terms of chromatically fused colors,

where subjects are samples from this chromatic space. The colors of

each individual subject are determined with a probabilistic assignment

F IGURE 1 The neural network architecture used for each of the modalities. The left part of this diagram shows the architecture of the
encoders and decoders used in this work, and the right part shows the high-level structure of the DMVAE and a visual example of how it extracts
the colors of a subject's modalities into its base colors.
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to each cluster. This probabilistic assignment is one over the L2 dis-

tance to the fourth power between the subject and each cluster, nor-

malized to sum to one. These probabilities are then multiplied by the

colors assigned to each MCP. This is pictorially shown in Figure 2c,d.

We select the number of MCPs for each modality pair based on the

elbow criterion, and show this selection process in Appendix B.

2.3 | Robustness of the multidimensional MCPs

To assess the robustness of the clusters, the dataset is split into

10 stratified folds. Each fold is used as a test set once, and the remain-

ing 9 folds are used to create a training and validation set. The valida-

tion set is a random 10% stratified subset of those remaining 9 folds.

Validation set subjects are not used to train on, but the objective func-

tion (Equation 2) is evaluated on the validation set to ensure the model

is not overfitting on the training set. The model with the lowest loss on

the validation set is used to cluster the whole dataset. Thus, each clus-

ter occurs 10 times, with different training, validation, and test sets.

We then decode all subjects in our dataset to identify

schizophrenia-enriched MCPs in the latent space. In essence, we are

trying to establish the robustness of certain subjects being grouped

together with respect to changes in the training distribution. To match

MCPs across training folds, we take the MCP in the first fold, fold

0. This fold is also used for further visualizations in subsequent sec-

tions (see Section 3). The subjects that are assigned to each MCP in

fold 0 are then compared to the subjects assigned to each MCP

obtained from training and then clustering on the other 9 folds. The

overlap between MCPs in fold 0 and the other folds can be expressed

as the percentage of subjects that are assigned to both MCPs. We use

the overlap as the weight in a linear assignment problem and solve

the assignment of MCPs in fold k, k≠0 to MCPs in fold 0 using the

Hungarian algorithm (Kuhn, 1955; Kuhn, 1956). The average

percentage of overlap across all the MCPs that were assigned to each

MCP in fold 0 indicates the robustness of that MCP with respect to

shifts in the training distribution.

The MCPs across the folds are then used to assess specific brain

signatures for schizophrenia subjects. By calculating the average per-

centage of schizophrenia subjects assigned to an MCP across folds,

we can understand potential relationships between chromatic colors

and subpopulations in the dataset. Given that the model is equipped

with a decoder, we can decode schizophrenia-enriched chromatic

clusters in the latent space to brain space, and compare them in brain

space. The specific hue of the color, as mentioned previously, is a

measure of irregularity in terms of the private feature sets and the

modalities' shared feature set. The chromatic colors and interpolations

between them are thus a visual and informative measure of specific

subpopulations in the dataset.

2.4 | Understanding heterogeneity in
schizophrenia-enriched MCPs

The MCPs we identify capture distinct relationships among each of

the modality pairs, but as we hypothesize (Section 1), we expect dif-

ferent modality pairs to partially capture distinct schizophrenia

patients. Thus, after clustering the multi-dimensional latent space for

each of the modality pairs, assigning meta-chromatic colors to each of

the clusters, and calculating the robustness and percentage of schizo-

phrenia subjects in each MCP, we perform a cross-modality pair anal-

ysis. For this analysis, we select schizophrenia-enriched MCPs, at least

one for each modality pair, and calculate the percentage of overlap

between schizophrenia patients in different clusters, across folds.

Once we obtain the percentage of overlap among schizophrenia-

enriched MCPs across modality pairs, we visualize the average per-

centage of unique subjects in an MCP.

F IGURE 2 The chromatic
fusion framework. This figure
shows the steps in the complete
chromatic fusion algorithm. The
top left shows the latent space
that is obtained by training a
DMVAE. The top right diagram
shows the K-means clustering
algorithm that is applied to the

means of the distributions
obtained by the encoder of the
DMVAE. Left bottom: the
representation of subjects as
colors using each meta-chromatic
pattern. Right bottom: the final
chromatically fused latent space.

GEENJAAR ET AL. 5833



2.5 | The importance of the shared features

One important aspect of the model we use is the fact it can capture

non-linear co-variations between the two modalities in a modality

pair. To qualify the assumption that capture shared features between

modalities is essential to understanding complex mental disorders, we

visualize shared latent dimensions for two different modality pairs.

Additionally, to quantify the importance of the shared features we

analyze their stability and correlation to schizophrenia subjects for

each of the latent dimensions in a modality pair's shared features. The

results and in-depth analysis are provided in Appendix C. We select

an interesting latent dimension from two different modality pairs and

show the interpolation from the schizophrenia-enriched part of the

latent dimension to the control-enriched part of the latent dimension.

Given that the shared features span multiple dimensions, we encode

the whole dataset into those dimensions and then calculate the corre-

lation between that dimension and schizophrenia. Since there are no

guarantees that a model finds the same latent dimension across each

training fold, we only consider latent dimensions that have an average

correlation of over 0.7 across folds, see Appendix C.

2.6 | Cross-reconstruction

Another way to evaluate the shared features is to quantify how well

modalities can be cross-reconstructed from other modalities using the

shared features. We can use the shared features of the modality that

is present plus the prior of the missing modality to create a cross-

reconstruction. The modality that is present for a subject, say modality

1, first encodes the data to create a representation that is split into its

private features pr1, and shared features sh1. The latter is optimized

during training to be similar to the shared features of modality two

sh2. The private features of the second modality are then sampled

from the prior pðm2Þ. To reconstruct the missing modality, the shared

features of modality one sh1 are concatenated with the private fea-

tures sampled from the prior pðm2Þ and passed to the decoder. The

decoder then reconstructs the sample in the modality's original space.

Note that the prior in this case is the one we trained the DMVAE

with, which is a zero-mean unit Gaussian distribution.

A complete overview of all the steps we perform in our proposed

framework is shown in Figure 3.

2.7 | Data

2.7.1 | Acquisition and demographics

The main dataset used in this work is the function bioinformatic

research network (fBIRN) phase III data, a schizophrenia dataset

(Keator et al., 2016), and the demographics of individuals with each

modality pair are described in Table 1. The schizophrenia patients and

controls were matched based on age, gender, handedness, and race

distributions. Some subjects do not pass the quality assessment of

either of the modalities, which means there may be fewer subjects for

certain modality pairs. We take the largest number of subjects

for each modality pair, such that we maximize the size of the dataset.

Interesting in this context is that our method can also generate miss-

ing modalities, providing a way to alleviate this issue in the future.

The dataset itself consists of scans collected at seven consortium

sites (University of Minnesota, University of Iowa, University of New

Mexico, University of North Carolina, University of California Los

Angeles, University of California Irvine, and University of California

F IGURE 3 The order of analysis steps used in our chromatic fusion framework. This figure depicts the complete workflow of the analyses we
perform in our framework and how they coincide. We start at the top with the modality pairs and work our way down to MCPs, and after that
meta-MCPs.
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San Francisco). Each consortium records diagnosis, age at the time of

the scan, gender, illness duration, symptom scores, and current medi-

cation, when available. Furthermore, the inclusion criteria were that

participants are between 18 and 65 years of age, and their schizo-

phrenia diagnosis was confirmed by trained raters using the Struc-

tured Clinical Interview for DSM-IV (SCID) (First et al., 2002). All

participants with a schizophrenia diagnosis were on a stable dose of

antipsychotic medication either typical, atypical, or a combination for

at least 2 months. Each participant with a schizophrenia diagnosis was

clinically stable at the time of the scan. The control subjects were

excluded based on current or past psychiatric illness based on the

SCID assessment or in case a first-degree relative had an Axis-I psy-

chotic disorder. Written informed consent was obtained from all study

participants under protocols approved by the Institutional Review

Boards at each consortium site.

2.7.2 | Preprocessing

We use structural MRI (sMRI), spatial ICA maps, and static functional

network connectivity (sFNC) obtained through preprocessing with

NeuroMark (Du et al., 2020). The sMRI volumes are preprocessed to

voxel-based morphometry (VBM), whereas the spatial ICA maps and

sFNC are both obtained by performing ICA on rs-fMRI data using the

NeuroMark template. NeuroMark, using the NeuroMark_fMRI_1.0

template (template is released in the GIFT software at http://

trendscenter.org/software/gift performs group ICA to extract 53 ICA

components from the rs-fMRI signal and calculates the correlation

between each to obtain the sFNC. For the spatial ICA components,

we selected eight networks a priori to use in our model to reduce

computational complexity, but use all 53 for the sFNC. Each spatial

ICA component is used as a channel in a 3-dimensional convolutional

neural network. Thus, handling more spatial ICA components requires

more channels, and more complex training dynamics. The components

we use for the spatial ICA components are the supplementary motor

area, thalamus, middle inferior frontal gyrus, right inferior frontal

gyrus, middle temporal gyrus, precentral gyrus, and inferior

frontal gyrus. To obtain the voxel-based morphometry from sMRI

data, the data are first processed with SPM 12 in a Matlab 2016 envi-

ronment. The data are then further processed by segmenting it into

modulated gray matter volumes (GMV) and smoothing those segmen-

tations with a 6 mm FWHM Gaussian kernel.

For the FA maps, the diffusion-MRI (dMRI) scans were acquired

on seven 3T Siemens Tim Trio System scanners and one 3T GE Dis-

covery MR750 scanner at multiple sites. The scanning protocols are

described in Keator et al. (2016)). The dMRI processing was then per-

formed using FSL (www.fmrib.ox.ac.uk/fsl) and ANTs (Avants

et al., 2009). The dMRI volumes were first corrected for eddy current

distortions and head movement using the eddy (FSL 6.0) with

advanced motion-induced signal dropout detection and replacement

(Andersson & Sotiropoulos, 2016). Fractional anisotropy (FA) maps

were then calculated from the diffusion tensor using dtifit (FSL). FA

maps were normalized to the Montreal Neurologic Insititute (MNI)

spaced FA template with a nonlinear registration by ANTs. Images

with excessive motion, signal dropout, or noise were excluded from

further analysis (Caprihan et al., 2011; Wu et al., 2015).

The FA maps and the sMRI volumes have different sizes, but we

use the same convolutional architecture in the model for each.

Namely, the FA maps were sampled at 1 mm and the sMRI volumes

were sampled at 1.5 mm, so we resampled the FA maps to match the

sMRI sampling using Scipy (Virtanen et al., 2020). The spatial ICA

maps are sampled at 3 mm and cropped using a field-of-view (FOV),

hence we use a separate convolutional architecture to handle the spa-

tial ICA components, see Figure 1. We use ELUs (exponential linear

units) (Clevert et al., 2015) as activations, GroupNorm (group normali-

zation) (Wu & He, 2018) to stabilize the network and we add dropout

TABLE 1 Data sample demographics.

FA-sFNC sMRI-sFNC ICA-sFNC FA-ICA sMRI-FA sMRI-ICA

N subjects 278 311 310 277 278 310

Patients (%) 49.28 48.55 48.39 49.10 49.28 48.39

Female (%) 25.54 26.05 26.13 25.63 25.54 26.13

Female patient (%) 23.36 23.84 24.00 23.53 23.36 24.0

Avg Age 38 ± 11 38 ± 11 38 ± 11 38 ± 11 38 ± 11 38 ± 11

Avg P length 17 ± 12 17 ± 11 17 ± 11 17 ± 12 17 ± 12 17 ± 11

AP (%) 89.78 88.74 88.67 89.71 89.78 88.67

AD (%) 37.23 37.09 36.67 36.76 37.23 36.67

Avg AP length 15 ± 11 15 ± 11 15 ± 11 15 ± 11 15 ± 11 15 ± 11

PANSS positive 15.5 ± 5.0 15.3 ± 5.0 15.2 ± 4.8 15.4 ± 4.8 15.5 ± 5.0 15.2 ± 4.8

PANSS negative 14.5 ± 5.7 14.3 ± 5.6 14.2 ± 5.6 14.4 ± 5.7 14.5 ± 5.7 14.2 ± 5.6

PANSS composite �1.1 ± 6.5 �1.0 ± 6.3 �1.0 ± 6.3 �1.0 ± 6.5 �1.1 ± 6.5 �1.0 ± 6.3

Note: P in this table refers to psychosis, AP refers to anti-psychotic medication, and AD refers to anti-depressive medication. Thus, AP and AD in this table

refer to the percentage of patients taking anti-psychotic and anti-depressive medication, respectively. PANSS is a symptom scale for schizophrenia. We

show its positive, negative, and composite score.
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(Srivastava et al., 2014) after each layer to reduce overfitting. We also

calculate a group mask for the FA and sMRI maps, to determine which

voxels the model should reconstruct. We exclude values below 0.15

after rescaling between [0, 1] for the sMRI and FA data, and exclude

values with an absolute value below 0.15 for the spatial ICA maps.

Each of the modalities are z-scored based on the mean and standard

deviation in the full dataset.

2.8 | Experiments

Chromatic fusion is performed on every combination of voxel-based

morphometry (VBM), FA maps, static functional connectivity (sFNC),

and spatial ICA maps. The model is trained with the Adam optimizer

(Kingma & Ba, 2014) for 300 epochs with a learning rate of 1E�5. A

low learning rate is necessary to ensure stability during training. We

use 16 latent dimensions for both private feature sets, and 32 dimen-

sions for the shared features for each modality pair. After training a

separate model for each modality pair, we identify the MCPs accord-

ing to the algorithm described in Section 2.2 and evaluate the robust-

ness of each MCP. We visualize the embedding space for each of the

modality pairs, and then reconstruct a schizophrenia-enriched MCP in

the original space of the modalities for each modality pair. To under-

stand how each of the schizophrenia-enriched MCPs differ across

modality pairs, we look at their overlap. A final experiment evaluates

the performance of cross-reconstruction for each of the modality

pairs on the test folds. The cross-reconstruction is compared to a

reconstruction that has access to the private features of the modality

(upper bound) and a reconstruction that is created using only the prior

distribution (lower bound). To ensure reproducible results, we do not

sample from the latent distributions, but rather take their mean

because it is the most probable sample under a multivariate normal

distribution.

3 | RESULTS

3.1 | MCP analysis

To quantify whether an MCP potentially represents neuropsychiatric

and/or demographic factors we calculate the percentage of subjects

in an MCP that also belong to a stratum. These percentages for sex

and schizophrenia diagnosis are shown in Table 2.

The results in Table 2 show there is an interesting combination

between unstable MCPs and more stable MCPs with fairly high per-

centages of subgroups in the population. All modality pairs produce at

least one or two interesting MCPs, even if those MCPs are not as

robust. To test whether the MCP pairs were significant in terms of

the percentage of schizophrenia or female subjects captured by the

MCP, we performed significance analyses, see Appendix A. Since our

model captures non-linear relationships, we cannot simply regress out

site effects beforehand, which is why we chose to assess post hoc if

TABLE 2 The meta-chromatic
patterns for each modality pair.

MCPs FA-sFNC sMRI-sFNC ICA-sFNC FA-ICA sMRI-FA sMRI-ICA

0-R 72 ± 15 82 ± 8 93 ± 9 34±16 71 ± 17 52 ± 18

0-SZ 53 ± 5 72 ± 7 62 ± 4 53±11 29 ± 5 50 ± 11

0-F 28 ± 3 24 ± 5 24 ± 2 31±6 42 ± 6 24 ± 6

1-R 61 ± 15 90 ± 3 95 ± 3 63 ± 7 72 ± 15 49 ± 14

1-SZ 53 ± 13 26 ± 2 24 ± 2 73 ± 6 48 ± 7 47 ± 10

1-F 26 ± 5 23 ± 1 27 ± 1 25 ± 3 19 ± 6 21 ± 7

2-R 84 ± 6 77 ± 12 81 ± 7 41±16 88 ± 5 43 ± 14

2-SZ 27 ± 3 48 ± 9 75 ± 3 38±12 71 ± 2 67 ± 6

2-F 21 ± 1 31 ± 5 30 ± 1 27±3 18 ± 3 18 ± 7

3-R 74 ± 14 - 80 ± 20 82±11 72 ± 11 71 ± 13

3-SZ 73 ± 4 - 31 ± 9 37 ±8 55 ± 9 20 ± 4

3-F 28 ± 3 - 25 ± 1 12 ±3 22 ± 7 38 ± 3

4-R - - - 92 ± 9 - 63 ± 17

4-SZ - - - 83 ± 2 - 78 ± 5

4-F - - - 18 ± 2 - 15 ± 6

5-R - - - 50 ± 10 - 46 ± 18

5-SZ - - - 50 ± 7 - 44 ± 13

5-F - - - 31 ± 3 - 34 ± 7

Note: We show the percentage-wise robustness (-R), subjects who are female (-F), and subjects

diagnosed with schizophrenia (-SZ) for each MCP. The text of some schizophrenia-enriched MCPs

(percentage above 70%) is made bold. Each cell's color indicates the color of the corresponding MCP,

based on chromatic fusion. The color of each MCP is based on how far away from zero it is in the private

feature set for the first and second modality (red and blue), and the shared feature set (green).
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there were significant site effects for any of the MCPs with respect to

the percentage of schizophrenia patients in a cluster. To do this, we

calculated the standard deviation between the values shown in

Table 2, and the median percentage of schizophrenia patients in a

cluster over folds, and for each site. The standard deviation is less

than 5% for all MCPs, and often around 1%–2%. This indicates that

the percentage of patients in each MCP is generally stable across

sites.

Every single modality pair also includes at least one MCP enriched

for schizophrenia vs controls (more than 70% schizophrenia patients in

the MCP), these MCPs are the upper quartile of schizophrenia-enriched

clusters and are highlighted as bold in Table 2. Importantly, most of

these schizophrenia-enriched clusters have low standard deviations

across folds, and are often also robust. For example, for the ICA-sFNC

pair, MCP 2 is highly robust (81%) with 75% schizophrenia subjects,

and is green, meaning the irregularities are especially large in the shared

features. For the FA-sFNC and sMRI-FA pairs, the most schizophrenia-

enriched MCPs (3, and 2, respectively) are red-ish (pink) and blue,

respectively. For the FA-sFNC pair, the FA maps are the first private

features, and for the sMRI-FA pair, the FA maps constitute the second

private features, so these MCPs both indicate irregularities in the FA

maps for the schizophrenia-enriched MCPs. On the other hand, for FA-

ICA and sMRI-ICA, cluster 4 contains irregularities in all feature sets, as

indicated by the white color. It is notable that none of the

schizophrenia-enriched MCPs are particularly skewed in terms of the

number of male/female subjects, compared to the percentage of female

subjects in the dataset, except for sMRI-FA MCP 0 (see Table 1).

The importance of the schizophrenia-enriched MCPs is also

apparent from the significance analysis in Appendix A. The significant

differences based on sex are often rather small or nonexistent, except

for the sMRI-FA modality pair. MCP 3 for the FA-sFNC pair contains

a corrected significant number of schizophrenia subjects compared to

MCPs 0 (p = 0.047), and 2 (p ≤ 0.005). For MCP 0 in the sMRI-sFNC

pair, all of the comparisons are highly significant compared to the

other clusters: MCP 1 (p < 0.0005) and MCP 2 (p < 0.0005). MCP 2 in

the ICA-sFNC pair contains a significant number of schizophrenia

compared to MCPs 1 (p < 0.0005) and 3 (p < 0.0005), but not 0. This

is because MCP 0 also contains a relatively large number of schizo-

phrenia subjects (62%), which is significant compared to MCPs

1 (p < 0.0005) and 3 (p < 0.0005). Both FA-ICA MCP 1 and 4 are

enriched for schizophrenia subjects, and are significant with respect

to clusters 2 (p < 0.0005 and p = 0.004) and 3 (p = 0.007 and

p = 0.019). The significance values for MCP 4 are lower due to fewer

subjects in MCP 4, but the MCP itself is robust across folds 93%, and

contains 84% schizophrenia subjects. For the sMRI-FA pair, MCP

2 contains a significant number of schizophrenia subjects compared

to cluster 0 (p < 0.0005). MCP 0 for this modality pair actually con-

tains a significantly small number of schizophrenia subjects compared

to all other MCPs: 1 (p < 0.001), 2 (p < 0.0005), and 3 (p < 0.0005).

For the sMRI-ICA pair, MCP 4 contains a significant number of schizo-

phrenia subjects compared to MCPs 0 (p = 0.018), 1 (p = 0.001),

3 (p < 0.0005), and 5 (p < 0.0005).

3.2 | Chromatic fusion space shapes

We visualize the embedding space for each modality pair in Figure 4.

The colors of the MCPs and subjects in the figure are based on the

L2-norm from a subject to its assigned cluster, as explained in

Section 2.2. To visualize the 64-dimensional subjects and clusters, the

mean of the distributions are visualized in a 2-dimensional space using

t-SNE (van der Maaten & Hinton, 2008). Namely, t-SNE is a com-

monly used method to visualize spaces in 2-dimensions.

Each modality pair clearly has unique color patterns and struc-

tures in the embedding space, shown in Figure 4. Furthermore, this

visualization highlights how MCPs roughly compare to each other

spatially in the embedded chromatic space. It is clear from this view

that MCP 4 in the FA-ICA is a small MCP with very irregular sub-

jects (white color), seemingly far away from the rest of the MCPs.

This leads to very dark colors for the other MCPs because their

irregularities are not as extreme as this MCP. In this case, we have

put the MCPs in the color wheel legend near the color that they are

closest to perceptually and numerically since the color wheel does

not contain dark colors. Additionally, for MCP 2 and MCP 1 the FA-

sFNC and sMRI-sFNC modality pairs, respectively, seem to be fur-

ther away from the other MCPs. Neither are schizophrenia-

enriched MCPs, but rather control-enriched MCPs. For the sMRI-

ICA modality pair, however, it is harder to make clear distinctions,

which is also reflected in the colors of the MCPs and how chro-

matic the space is. For this modality pair, most MCPs have similar

colors, and as a result, their subjects are also colored a reddish

green.

3.3 | Visualizing schizophrenia-enriched MCPs

To qualitatively understand what types of irregularities the main

schizophrenia-enriched MCPs represent, we have reconstructed

each MCP using the decoder in our model. Instead of using the MCP

center however, we take the schizophrenia patients assigned to each

schizophrenia-enriched MCP and reconstruct their average in the

latent space. This allows us to directly look at the average of

the schizophrenia subjects, without adding heterogeneity from con-

trol subjects. Figure 5 shows these reconstructions for each

modality pair.

The reconstructions of the MCPs in Figure 5 show interesting

patterns. Mainly, we observe differences between MCPs that have

the same modalities. For instance, the sMRI patterns in the

schizophrenia-enriched MCP for the sMRI-sFNC modality pair has

opposite directionality in some areas compared to the schizophrenia-

enriched sMRI-FA and sMRI-ICA pairs. A similar pattern of opposite

directionality occurs for the spatial ICA patterns for the ICA-sFNC

MCP, when compared with FA-ICA and sMRI-ICA. To test our

hypothesis that these MCPs capture different subgroups of schizo-

phrenia patients, we perform a heterogeneity analysis on the

schizophrenia-enriched MCPs.
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3.4 | Heterogeneity of schizophrenia as a function
of modality pair

The fact that different modality pairs lead to schizophrenia-enriched

clusters with different and sometimes even opposing modality-based

differences ties into our next results. Namely, how many schizophre-

nia subjects are distinctly captured by each of the schizophrenia-

enriched MCPs. For this analysis, we use all schizophrenia-enriched

MCPs (%SZ >70): FA-sFNC-MCP-3, sMRI-sFNC-MCP-0, ICA-sFNC-

MCP-2, FA-ICA-MCP-1, FA-ICA-MCP-4, sMRI-FA-MCP-2, and sMRI-

ICA-MCP-4. On average across folds, these clusters account for 67%

± 2 of all schizophrenia subjects in the dataset. The results in Figure 6

show the average percentage of schizophrenia subjects captured by

the row-wise MCP that are not captured by the column-wise MCP,

divided by the number of schizophrenia subjects in the row-wise

MCP. This is thus a metric of distinct schizophrenia subjects captured

by the row-wise MCP, and a higher percentage means the MCP cap-

tures a higher percentage of distinct schizophrenia subjects.

The most distinct aspect of Figure 6 is that FA-ICA MCP 4 is

almost entirely made up of unique subjects compared to all other

schizophrenia-enriched MCPs. This is a relatively small MCP, so it only

captures a highly distinct group of schizophrenia subjects. In fact, in

our analyses of the cognitive and symptom scores in Appendix D, we

show that this MCP corresponds to the highest average PANSS posi-

tive symptom scores compared to other clusters. Generally, many of

these MCPs contain distinct schizophrenia subjects when compared

with MCPs from other modalities. Many MCPs contain atleast 40%–

50% unique schizophrenia subjects compared to other MCPs. This

potentially indicates that heterogeneity, and what schizophrenia sub-

jects are highlighted, is a function of what modalities are paired.

3.5 | The importance of the shared features

We perform a more in-depth analysis of the robustness across folds

and correlation of each latent dimension in the shared features to

schizophrenia in Appendix C. Based on the most robust shared latent

dimensions, we select two latent dimensions to highlight how interpo-

lating from one end of the dimension to the other leads to covaria-

tions of the modality pair. For the following latent dimensions these

F IGURE 4 A 2D t-SNE plot of the embedding space for each of the modality pairs. This is a visualization of what the embeddings for each
subject look like, they have been chromatically colored according to our framework. The color wheels in the bottom left of each subfigure show
the location of MCPs on the color wheel in terms of their irregularities in the shared and private feature sets.
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interpolations are aligned with schizophrenia diagnoses and are

shown in Figure 7.

Figure 7 indicates that in the FA-sFNC pair, as we interpolate

from schizophrenia subjects to control subjects, we see an increase in

modularity and connectivity between the subcortical and sensorimo-

tor regions, and a decrease in self-connectivity for the visual regions.

This is coupled with higher fractional anisotropy in the cerebellum for

schizophrenia subjects that non-linearly interpolates into a decrease

in fractional anisotropy in a more anterior part of the cerebellum.

Since these are shared features, it is interesting that the interpolations

for both modalities follow a gradient for the cerebellum. For the

sMRI-sFNC pair, we almost see a split in the scatter plot at the bottom

F IGURE 5 The reconstruction of schizophrenia-enriched MCPs. The percentages next to the name of the MCP indicate the average
percentage of schizophrenia subjects in the cluster across folds. Note that the values for the color bar differ for each modality pair, this is to
ensure there is enough contrast to see differences in positive and negative changes.
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of Figure 7 (around the fourth panel from the left) between schizo-

phrenia patients with higher and lower general voxel-based morphom-

etry. Although the voxel-based morphometry in the cerebellum for

more schizophrenia-enriched patients interpolates to a decrease in

voxel-based morphometry and moves more anterior, the rest of the

brain moves from lower voxel-based morphometry to increased

voxel-based morphometry on the control-enriched side. This is

coupled with an increase in the modularity of the sFNC, but also an

increase in the connection between sensorimotor and visual regions

for control subjects.

3.6 | Cross-reconstruction

To evaluate the shared features with respect to how well it can help

reconstruct other modalities, we compare the performance of the

cross-reconstructions across all the modality pairs. The metric we use

to compare the cross-reconstruction with two baselines is the mean

squared error of the reconstruction. The difference is evaluated on

the test set and averaged across all 10 folds, and the results are

shown in Table 3. Cross-reconstruction is evaluated for two baselines.

The first baseline uses the mean of the prior (zero) to reconstruct the

“missing” modality. The second baseline is called normal and uses the

private and shared features for a modality to reconstruct it. The cross-

reconstruction uses the shared features of the other modality and the

mean of the prior (zero) for the private features to reconstruct the

“missing” modality.

Table 3 shows that the cross-reconstruction of modalities gener-

ally improves with the shared information. Although the results differ

in terms of the magnitude of the improvement, all of these shared fea-

tures have a fairly high KL-divergence, which indicates that they con-

tain information about both modalities. Thus, these results indicate

that the shared features generally help reconstruction, and sometimes

come close to knowing both the private and shared features of the

other modality. How much shared features help with reconstructions,

however, depends on the modality pair.

4 | DISCUSSION

In this work, we present an intuitive and flexible framework to facilitate

new insights into multimodal neuroimaging data. By representing infor-

mation from modalities as colors, we can intuitively visualize private

and shared feature sets for modality pairs. Our method identifies

schizophrenia-enriched clusters for each modality pair. The clusters are

assigned colors to indicate important meta-chromatic patterns (MCPs)

and define a chromatic space. Although these MCPs overlap across

modality pairs in terms of what subjects are captured by schizophrenia-

enriched MCPs, we find that different modality pairs highlight distinct

subgroups of schizophrenia subjects. Together with visualizations and

statistical results for the schizophrenia-enriched MCPs, and interpola-

tions of the shared dimensions for certain modality pairs, we show how

critical multi-modal analyses are to further our understanding of spec-

trum psychiatric disorders, such as schizophrenia.

F IGURE 6 The distinct percentage of
schizophrenia subjects each of the
schizophrenia-enriched MCPs uniquely
capture compared to each other. The
unique schizophrenia subjects in the row
MCP compared to the column MCP are
divided by the total number of
schizophrenia subjects in the row MCP.
Higher values correspond to a higher

percentage of unique schizophrenia
subjects captured by that row MCP
compared to the column MCP.
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Our analyses are centered around a framework that views the

contributions of modalities in modality pairs as colors. Especially as

we move to the inclusion of more modalities, the visualization, and

interpretation of combinations of modalities are more naturally done

by considering them as different colored lights that chromatically fuse

into a certain perspective on diseases or demographic variables. Fur-

thermore, to keep in line with the RDoC initiative, we propose a

framework that allows multiple modalities or units of analysis to be

included in a single framework that aims to study a mental disorder.

We refrain from predicting binary labels and only use unsupervised

methods to study schizophrenia. We find that the schizophrenia-

enriched MCPs capture more than 67% of the schizophrenia subjects

in our sample. This means that along either of the modality pairs,

these schizophrenia subjects show clear deviations from the rest of

the sample, which is subsequently captured in these schizophrenia-

enriched MCPs. To dive deeper into what these specific deviations

mean in the original space of the modality, we visualize the most

important schizophrenia-enriched MCP for each modality pair, reveal-

ing results that align with previous work, but also extend it in an inter-

esting, and understudied multimodal way.

F IGURE 7 Interpolations for two representative latent dimensions from schizophrenia-enriched to control-enriched. The two latent
dimensions are taken from the FA-sFNC, and sMRI-sFNC modality pairs, and show how the modalities change along the latent dimension, from a
more schizophrenia-enriched part of the latent dimension to a control-enriched part of the latent dimension. We have included a plot of the
schizophrenia and control subjects, and the p-value for fold 0 in the figure.
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Our findings in Figure 5 regarding schizophrenia-enriched meta-

chromatic patterns in Figure 5 show some general trends. First, each

of the schizophrenia-enriched MCPs for the modality pairs that con-

tain sFNC in its pair, show hypoconnectivity between visual and sen-

sorimotor regions and especially for the ICA-sFNC pair

hyperconnectivity between visual-cerebellum and visual-subcortical

regions. This is a general trend in each of the MCPs, although which

components are most hypo-connected and how hyperconnected the

aforementioned regions are differs for each of the modality pairs.

Hypoconnectivity between the visual and sensorimotor cortex for

schizophrenia subjects has previously been linked to schizophrenia

(Chen et al., 2015). Reduced connectivity between these areas may

have an impact on self-processing in patients (Chen et al., 2015) and

generally be related to early-stage visual processing deficits in schizo-

phrenia (Butler & Javitt, 2005). Furthermore, subcortical-visual and

cerebellum-visual hyperconnectivity aligns with previous unimodal

work within this cohort (Damaraju et al., 2014; Ford et al., 2015) and

in other cohorts (Liang et al., 2006). These connectivity patterns are

paired with reduced fractional anisotropy near the corpus callosum

and regions superior to the corpus callosum in the FA-sFNC pair.

Notably, a decrease in FA strength in the cerebellum, corpus callosum,

and superior longitudinal fasciculi have previously been linked to

schizophrenia (Koch et al., 2010; Shergill et al., 2007). The decrease in

fractional anisotropy especially near the corpus callosum is potentially

related to schizophrenia-like psychosis due to structural defects (Koch

et al., 2010; Walterfang et al., 2005). We see similar patterns of

reduced FA strength in the sMRI-FA pair, where decreased FA is also

more prominent in the cerebellum. Interestingly, the FA-ICA pair

shows increased FA strength in the cerebellum, although only slightly.

This potentially reflects a slightly distinct schizophrenia subgroup

without the reduced FA strength in the cerebellum. For the sMRI-

sFNC pair, the connectivity pattern for the sFNC are linked with

increased voxel-based morphometry most pronounced in the cerebel-

lum, occipital lobe, and near the motor areas, with some reduced

voxel-based morphometry in the superior frontal lobe. For all other

sMRI-based MCPs, we generally see reductions in frontal lobe voxel-

based morphometry, which is in line with previous work (Fornito

et al., 2009). In a similar opposite directional pattern, the sMRI-sFNC

MCP may capture some schizophrenia subjects with different patterns

from the other sMRI-based MCPs, accentuating schizophrenia's het-

erogeneity. We also observe a different pattern for the ICA-based

MCPs, where the ICA-sFNC shows increased spatial ICA map strength

in the left frontal lobe and directional asymmetry in the cerebellum

(decrease on the left and increase on the right). However, for the FA-

ICA and sMRI-ICA MCPs, the spatial ICA maps have decreased spatial

ICA map strengths in the left frontal lobe. Together, the results in Fig-

ures 5 and 6 clearly indicate that our method can find interesting

schizophrenia subgroups, indicating that heterogeneity may be a func-

tion of what modalities are paired during training.

An important aspect of schizophrenia we highlight in this work is

how the meta-chromatic patterns we find are associated with differ-

ent subgroups of schizophrenia patients. By analyzing a wider range

of modalities, and specifically training our model to find interpretable

feature sets between pairs of modalities, we are able to understand

how these subgroups change with different modality pairs. Although

the subgroups are not unique for each modality pair, it is clear that

additional modalities provide us with information about subjects

that may not have been captured by a schizophrenia-enriched cluster

if we had only considered one or two modalities. This also speaks to

the heterogeneous nature of schizophrenia, where some subjects may

deviate across most brain measures, and some subjects only deviate

along specific brain measures or the shared information in specific

brain measures. By highlighting schizophrenia from multiple direc-

tions, and conceptualizing an intuitive framework around this type of

analysis, we also specifically follow the trans-diagnostic NIMH

research domain criteria (RDoC) initiative (Sanislow et al., 2019).

We additionally emphasize an important finding regarding spec-

trum mental disorders: the significance of extracting shared features

from a pair of modalities. In Appendix C, we demonstrate that for

each modality pair, there exist replicable shared latent dimensions.

Furthermore, we observe that at least a few of these latent dimen-

sions exhibit high correlations to schizophrenia. The reason that these

TABLE 3 The mean squared error for cross-reconstructed modalities.

Modalities Prior Normal Cross

sMRI!FA 0.9902 ± 0.2155 0.6814 ± 0.1278 0.7108 ± 0.1411

FA!sMRI 0.9717 ± 0.0451 0.8681 ± 0.0344 0.9219 ± 0.0444

FA!sFNC 0.9717 ± 0.0451 0.8761 ± 0.0357 0.9113 ± 0.0369

sFNC!FA 1.0245 ± 0.0460 0.8197 ± 0.0324 1.0152 ± 0.0431

sMRI!sFNC 0.9874 ± 0.1635 0.7012 ± 0.0942 0.7683 ± 0.1159

sFNC!sMRI 1.0198 ± 0.0659 0.8091 ± 0.0464 1.0022 ± 0.0624

ICA!sFNC 1.0000 ± 0.0056 0.9960 ± 0.0056 0.9975 ± 0.0057

sFNC!ICA 1.0239 ± 0.0532 0.7995 ± 0.0308 0.9212 ± 0.0417

FA!ICA 0.9709 ± 0.0828 0.8646 ± 0.0433 0.8706 ± 0.0459

ICA!FA 1.0001 ± 0.0067 0.9983 ± 0.0073 1.0012 ± 0.0060

sMRI!ICA 0.9878 ± 0.1252 0.6747 ± 0.0727 0.6938 ± 0.0798

ICA!sMRI 1.0000 ± 0.0056 0.9972 ± 0.0057 1.0000 ± 0.0055

Note: The mean squared error is calculated between the voxels of the reconstructed volumes and the ground truth volumes.
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latent dimensions are of particular interest is that we can easily

interpolate between ends of the dimension that are either control-

enriched or schizophrenia-enriched. We also find that the interpola-

tions are largely non-linear and could not have been captured by a lin-

ear model. These interpolations help us view certain normative

imaging deviations related to schizophrenia on a spectrum as well.

There is a wealth of information that is encoded exactly on the border

between schizophrenia-enriched and control-enriched shared latent

dimensions, namely how the extracted shared features transition from

schizophrenia to controls. Specifically, the significance of the correla-

tions to schizophrenia as shown in Figure 7 highlight its potential for

future analyses. The patterns we see change along two highlighted

latent dimensions show distinct modality-specific patterns exist at the

extreme end of the interpolative patterns. Furthermore, we see

evidence of reduced modular functional patterns on the

schizophrenia-enriched side of the latent dimension, as linked to

schizophrenia previously (Yu et al., 2012), and focal spatial regions, for

the FA-sFNC pair specifically. Notably, the patterns we obtain for

sFNC, which is part of both modality pairs, is different for both the

highlighted FA-sFNC and sMRI-sFNC latent dimension. This again

indicates how coupling different modalities can result in distinct pat-

terns being uncovered by multimodal machine learning models.

4.1 | Limitations

The validity of meta-chromatic patterns is partly dependent on the

quality of the reconstructions that the DMVAE model produces. It is

therefore important to improve the reconstructions by adapting the

model or architectures to neuroimaging modalities and improve the

cross-reconstructions between the modalities. Furthermore, not all of

the MCPs are as robust as others, which is likely due to the stochastic

nature of training a variational autoencoder and the differences in dis-

tribution between each of the folds. This can be improved by impos-

ing more inductive biases into the architecture and model, or by using

larger datasets. This leads to another point, namely that this frame-

work needs to be tested on more datasets to show its robustness

across datasets.

It is challenging to address site effects in the context of machine

learning models that can capture complex and nonlinear relationships.

To evaluate the potential impact of the acquisition site on the result

we calculated the standard deviation between the median (across

folds) percentage of patients from each site in a cluster. Results

showed that the percentage of patients in a cluster was always within

5% of the mean. The patient/control ratio was thus consistent across

sites. This gives us confidence in the robustness of the results to site

effects. However, for larger datasets analyzed in future work, we plan

to continue to evaluate this issue and develop additional metrics that

can quantify site effects.

Other than site effects, schizophrenia clusters could also be prox-

ies for uncontrolled confounders, such as severe mental illness, pro-

longed exposure to psychotropic drugs, and lower socioeconomic

status. This is a more general issue with data-driven schizophrenia

analysis and should be carefully assessed in exploratory studies. Some

modalities may also be more compatible with each other than others.

For example, modalities with largely mutually exclusive information

can lead to very noisy shared feature sets because the model cannot

find any shared features. Thus, it is important to be careful when

applying these models to any two modalities.

4.2 | Future work

The framework can be expanded to additional datasets and more

modalities. Future work can also extend the model and MCP frame-

work to move beyond pair-wise to N-way unique and shared links

among modalities. Additionally, there is a potential to discover more

entangled shared features by learning representations from minimally

pre-processed rs-fMRI directly, together with the FA maps and struc-

tural MRI volumes. The incorporation of rs-fMRI as a timeseries,

rather than static FNC will facilitate additional insights as in parallel

group ICA + ICA (Qi et al., 2019) and also allow for the fusion of other

dynamic modalities, such as EEG. Learning representations from mini-

mally preprocessed modalities can be coupled with ingenious ways to

incorporate inductive biases such as group differentiation, regulariza-

tions on the weights in the network, or constraints on the latent fea-

tures such as sparsity. Another integration into these multimodal

frameworks is to condition them on cognitive or symptom scores,

such that we can leverage information-rich cognitive measures that

are not binary. There are thus wide-ranging possibilities to increase

the utility and generality of this framework. Furthermore, the

sub-types we find in this work and the method we propose need to

be validated in other (schizophrenia) datasets to improve our under-

standing of both the mental disorders under study and the importance

of multimodal methodologies. One way in which we can do this is

evaluate our model on other samples of schizophrenia subjects, or on

larger pooled samples. Furthermore, digging deeper into specific sub-

groups and untangling why their patterns are different from other

sub-groups under specific multimodal pairings can bring us a step

closer to understanding heterogeneity in schizophrenia.

5 | CONCLUSION

The presented framework can be used in various ways, both as an

exploratory tool, to perform hypothesis-testing, to evaluate the

enrichment of modalities with each other and specific inter-modality

patterns hypothesized apriori, or to evaluate the heterogeneity of

schizophrenia subjects within a sample. Our model can visualize indi-

vidualized inter-modal relationships, a novel aspect of our work rele-

vant to many applications, including brain development/aging, clinical

studies, etc. To conclude, we have shown this framework mostly as an

exploratory tool but linked our findings back to previous work on

schizophrenia or on this sample specifically. In doing this, we showed

how training an autoencoder to find private and shared features from

a pair of modalities leads to meta-chromatic patterns that are

schizophrenia-enriched, each modality pair with a different schizo-

phrenia subgroup. We also take a first step toward understanding and
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evaluating the heterogeneity among schizophrenia subjects in our

sample and visualize interesting inter-modality patterns and interpola-

tions. For instance, we observe a decrease in the modularity of func-

tional connectivity and decreased visual-sensorimotor connectivity

for schizophrenia patients with the FA-sFNC and sMRI-sFNC modal-

ity pairs, respectively. The visual-sensorimotor hypoconnectivity may

indicate impaired self-processing in patients. Additionally, our results

generally indicate decreased fractional corpus callosum anisotropy,

which is linked to psychosis, and decreased spatial ICA map and

voxel-based morphometry strength in the superior frontal lobe for

patients across multiple modality pairs.
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