
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Graphs, Matrices, and the GraphBLAS: Seven Good Reasons

Permalink
https://escholarship.org/uc/item/8hn2t21h

Journal
Procedia Computer Science, 51(1)

ISSN
1877-0509

Authors
Kepner, Jeremy
Bader, David
Buluç, Aydın
et al.

Publication Date
2015

DOI
10.1016/j.procs.2015.05.353

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8hn2t21h
https://escholarship.org/uc/item/8hn2t21h#author
https://escholarship.org
http://www.cdlib.org/

*This material is based upon work supported by the National Science Foundation under Grant No. DMS-1312831. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.
†The work of this author is supported by the Applied Mathematics program of the DOE Office of Advance Scientific Computing
Research under contract number DE-AC02-05CH11231.

Graphs, Matrices, and the GraphBLAS:
Seven Good Reasons

Jeremy Kepner1,*, David Bader2, Aydın Buluç3,†,
John Gilbert4, Timothy Mattson5, Henning Meyerhenke6

1Massachusetts Institute of Technology (MIT), 2Georgia Institute of Technology (GaTech),
3Lawrence Berkeley National Laboratory (LBNL), 4University of California Santa Barbara (UCSB),

5Intel Corporation, 6Karlsruhe Institute of Technology (KIT)

Abstract
The analysis of graphs has become increasingly important to a wide range of applications. Graph
analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data
complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance,
and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides
a number of promising solutions to these challenges. The GraphBLAS standard (istc-
bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph
algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of
matrix-based graph operations that can be used to implement a wide class of graph algorithms in a
wide range of programming environments. This paper provides an introduction to the GraphBLAS
and describes how the GraphBLAS can be used to address many of the challenges associated with
analysis of graphs.

Keywords: graphs, algorithms, matrices, linear algebra, software standards

1 Introduction
Graphs are among the most important abstract data structures in computer science, and the

algorithms that operate on them are critical to applications in bioinformatics, computer networks, and
social media [Ediger et al 2010, Ediger et al 2011, Reidy et al 2012, Reidy & Bader 2013]. Graphs
have been shown to be powerful tools for modeling complex problems because of their simplicity and
generality [Staudt et al 2014a, Bergamini et al 2015]. For this reason, the field of graph algorithms
has become one of the pillars of theoretical computer science, informing research in such diverse areas
as combinatorial optimization, complexity theory, and topology. Graph algorithms have been adapted
and implemented by the military, commercial industry, and researchers in academia, and have become
essential in controlling the power grid, telephone systems, and, of course, computer networks.

Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2)
data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial
performance, and (7) parallel performance. Implementing graph algorithms using matrix-based
approaches provides a number of promising solutions to these challenges.

The duality between the canonical representation of graphs as abstract collections of vertices and
edges and a matrix representation has been a part of graph theory since its inception [Konig 1931,
Konig 1936]. Matrix algebra has been recognized as a useful tool in graph theory for nearly as long
(see [Harary 1969] and references therein, in particular [Sabadusi 1960, Weischel 1962, McAndrew
1963, Teh & Yap 1964, McAndrew 1965, Harary & Tauth 1966, Brualdi 1967]). However, matrices

have not traditionally been used for practical computing with graphs, in part because a dense two-
dimensional matrix is not an efficient representation of a sparse graph. With the growth of efficient
data structures and algorithms for sparse matrices, it has become possible to develop a practical
matrix-based approach to computation on large, sparse graphs.

The GraphBLAS standard (istc-bigdata.org/GraphBlas) is being developed to bring the
potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS
mathematically defines a core set of matrix-based graph operations that can be used to implement a
wide class of graph algorithms in a wide range of programming environments. This paper provides an
introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of
the challenges associated with the analysis of graphs.

2 GraphBLAS Standard
Data analytics and the closely related field of “big data” have emerged as leading research topics in

both applied and theoretical computer science. While it has been shown that many problems can be
addressed with a “map-reduce” style framework, as we move to the next level of sophistication in data
analytics applications, graph algorithms that demand more than “map-reduce” will play an
increasingly vital role. There are many ways to organize a collection of graph algorithms into a high
level library to support data analytics [Staudt et al 2014b]. It is probably premature to standardize
these graph APIs. The low level building blocks of graph algorithms, however, are well understood
and we believe a suitable target for standardization. In particular, the representation of graphs as
sparse matrices allows many graph algorithms to be composed from a modest set of linear algebra
operations.

Our concern, however, is that as new researchers enter this expanding field of research, the linear
algebraic foundation of this class of graph algorithms will fragment. Diversity at the level of the
primitive building blocks of graph algorithms will not help advance the field of graph algorithms. It
will hinder progress as groups create different overlapping variants of what should be common low
level building blocks. Furthermore, diverse sets of primitives will complicate the ability of the vendor
community to support this research with math tuned to the needs of these algorithms.

It is our view that the state of the art in constructing a large collection of graph algorithms in terms
of linear algebraic operations is mature enough to support the emergence of a standard set of primitive
building blocks. We believe it is critical that we move quickly so as new research groups enter this
field we can prevent needless and ultimately damaging diversity at the level of the basic primitives
supporting this research, thereby freeing up researchers to innovate and diversify at the level of higher
level algorithms and graph analytics applications.

The deep connection between graphs and sparse matrices [Kepner & Gilbert 2011] has been
recognized to such an extent that it has led to the development of the GraphBLAS standard for
bringing these fields together [Mattson et al 2013, Mattson 2014, Gilbert 2014, Kepner & Gadepally
2014, Buluc et al 2014]. The core of this connection is the duality between the fundamental operation
on graphs---Breadth First Search (BFS)---and the fundamental operation of matrices---matrix multiply
(see Figure 1).

Figure 1. Graph/Matrix Duality. The fundamental operation of a graph is breadth first
search (BFS) and is depicted on the left by the operation of starting at the node alice and
traversing its edges to bob and carl. The identical operation is depicted on the right via
multiplying the adjacency matrix representation of the graph by the vector with a single entry
corresponding to the starting vertex alice.

The GraphBLAS define a narrow set of mathematical operations that have been found to be useful

for implementing a wide range of graph operations. At the heart of the GraphBLAS are matrices. The
matrices are usually sparse, which implies that the majority of the elements in the matrix are zero and
are often not stored to make their implementation more efficient. Sparsity is independent of the
GraphBLAS mathematics. All the mathematics defined in the GraphBLAS will work regardless of
whether the underlying matrix is sparse or dense.

Graphs represent connections between vertices with edges. Matrices can represent a wide range of
graphs using adjacency matrices or incidence matrices (defined below). Adjacency matrices are often
easier to analyze while incidence matrices are often better for representing data. Fortunately, the two
are easily connected by the fundamental mathematical operation of the GraphBLAS: matrix-matrix
multiply. One of the great features of the GraphBLAS mathematics is that no matter what kind of
graph or matrix is being used, the core operations remain the same. In other words, a very small
number of matrix operations can be used to manipulate a very wide range of graphs.

2.1 Adjacency Matrix
A graph with N vertices and M edges can be represented by an N×N adjacency matrix A, with

rows and columns labeled by vertices. If A(v1,v2) = 1, then there exists an edge going from vertex v1
to vertex v2. Likewise, if A(v1,v2) = 0, then there is no edge from v1 to v2. The number of non-zero
entries in A corresponds to the number of edges in the graph. Adjacency matrices have direction,
which means that A(v1,v2) is not the same as A(v2,v1). Adjacency matrices can also have edge
weights. If A(v1,v2) = w12, and w12 ≠ 0, then the edge going from v1 to v2 is said to have weight w12.
Adjacency matrices provide a simple way to represent the connections between vertices in a graph
between one set of vertices and another. Adjacency matrices are typically square and both out-vertices
(rows) and the in-vertices (columns) are the same set of vertices. Adjacency matrices can be
rectangular in which case the out-vertices (rows) and the in-vertices (columns) are different sets of
vertices. This would occur, for example, in bipartite graphs. In summary, adjacency matrices can
represent a wide range of graphs, which include any graph with any set of the following properties:
directed, weighted, and/or bipartite.

x! ATx!AT!

!

alice!

bob!

alice!

carl!

bob!

carl!
cited!

cited!

2.2 Incidence Matrix
An M×N incidence, or edge matrix E, uses the rows to represent every edge in the graph and the

columns represent every vertex. There are a number of conventions for denoting an edge in an
incidence matrix. One such convention is to set E(i,v1) = -1 and E(i,v2) = 1 to indicate that edge i is a
connection from v1 to v2. Incidence matrices are useful because they can easily represent multi-
graphs, hyper-graphs, and multi-partite graphs. These complex graphs are difficult to capture with an
adjacency matrix. A multi-graph has multiple edges between the same vertices. If there was another
edge, j, from v1 to v2, this can be captured in an incidence matrix by setting E(j,v1) = -1 and E(j,v2) =
1. In a hyper-graph, one edge can go between more than two vertices. For example, to denote edge i
has a connection from v1 to v2 and v3 can be accomplished by also setting E(i,v3) = 1. Furthermore,
v1, v2, and v3 can be drawn from different classes of vertices and so E can be used to represent multi-
partite graphs. Thus, an incidence matrix can be used to represent a graph with any set of the
following graph properties: directed, weighted, multi-partite, multi-edge, and/or hyper-edge.

Using the conventions defined above for E, the adjacency matrix A and the incidence matrix E are
linked by the formula A = |ET < 0| |E > 0|. In other words, A is the cross-correlation of E. Any
algorithm that can be written using A can also be written using E via the above formula. However,
because A is a projection of E, information is always lost in constructing A, and there are algorithms
that can be written using E that cannot be constructed using A.

2.3 Operations
The GraphBLAS consists of four core operations: matrix construction from triples (Sparse),

extracting triples from a matrix (Find), element-wise addition (SpEWiseX), element-wise
multiplication (SpEWiseX), and matrix products (SpGEMM)

A = M×N(i,j,v) (i,j,v) = A C = A ⊕ B C = A ⊗ C C = A B = A ⊕.⊗ B

where:

is a set of scalars (e.g., real numbers, complex numbers, integers, …);
A, B, C : M×N are matrices of scalars;
i, j, and v are vectors corresponding to the row index, column index and value of the non-zero

entries of a matrix;
⊕ and ⊗ are user definable elment-wise “addition” and elment-wise “multiplication” operations;
⊕.⊗ denotes the matrix product using user defined ⊕ and ⊗ [Note: matrix products require that

the number of rows of A are to equal the number of columns B].
Using these four operations, six additional operations can be constructed that form the GraphBLAS
standard: Sparse, Find, Transpose, SpGEMM, SpRef, SpAsgn, SpEWiseX, Apply, and Reduce.
These ten operations can then be used to build various utility functions and more complex graph
operations and algorithms. The goal is to define a handful of matrix operations that can be
implemented well and can enable a large class of graph algorithms. One possible implementation of
these primitives can be found in the Combinatorial BLAS [Buluc and Gilbert 2011], which has been
used to build higher level graph algorithms in the Knowledge Discovery Toolbox [Lugowski et al.
2012].

2.4 Composable Operations on Entire Graphs
Closure, associativity, distributivity, and commutativity are very powerful properties of the

GraphBLAS and separate the GraphBLAS from standard graph libraries because these properties
allow the GraphBLAS to be composable (i.e., you can re-order operations and know that you will get

the same answer). Composability is what allows the GraphBLAS to implement a wide range of graph
algorithms with just a few functions.

Let A, B, C : N×M, be matrices with scalar elements a = A(i,j), b = B(i,j), and c = C(i,j) all drawn
from the set of scalars . Associativity, distributivity, and commutativity of scalar operations
translates into similar properties on matrix operations in the following manner.

Closure ensures that the result of combining two matrix representations of graphs using addition,
elementwise multiplication, and/or matrix products will be another matrix representation of a graph.
A unique aspect of the GraphBLAS is that the scalar addition ⊕ and scalar element-wise
multiplication operations ⊗ are user definable. If these scalar operations have certain useful
properties, then the corresponding matrix operations will also have those properties.

Additive Commutativity allows graphs to be swapped and combined via matrix element-wise
addition without changing the result

a ⊕ b = b ⊕ a ⇒ A ⊕ B = B ⊕ A

where matrix element-wise addition is given by C(i, j) = A(i, j) ⊕ B(i, j).

Multiplicative Commutativity allows graphs to be swapped, intersected, and scaled via matrix
element-wise multiplication without changing the result

a ⊗ b = b ⊗ a ⇒ A ⊗ B = B ⊗ A

where matrix element-wise (Hadamard) multiplication is given by C(i, j) = A(i, j) ⊕ B(i, j).

Additive Associativity allows graphs to be combined via matrix element-wise addition in any
grouping without changing the result

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) ⇒ (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)

Multiplicative Associativity allows graphs to be intersected and scaled via matrix element-wise

multiplication in any grouping without changing the result

(a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) ⇒ (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

Element-Wise Distributivity allows graphs to be intersected and/or scaled and then combined or
vice-versa without changing the result

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) ⇒ A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C)

Matrix Multiply Distributivity allows graphs to be transformed via matrix multiply and then

combined or vice-versa without changing the result

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) ⇒ A(B ⊕ C) = (AB) ⊕ (AC)

where matrix multiply C = AB is given by

C(i, j) = ⊕k A(i, k) ⊗ B(k, j)

for matrices A : N×M, B : M×L, and C : N×L.

Matrix Multiply Associativity is another implication of scalar distributivity and allows graphs to be
transformed via matrix multiply in any grouping without changing the result

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) ⇒ (AB)C = B(AC)

3 Seven Good Reasons
Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2)

data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial
performance, and (7) parallel performance. Implementing graph algorithms using matrix-based
approaches provides a number of promising solutions to these challenges.

3.1 Software Complexity
Nearly all negative attributes of software system (e.g., effort, schedule, testing, defects, security

issues, documentation, …) increase with the size of the software. A typical graph library has hundreds
of functions consisting of many thousands of lines of code [Boost, Lemon, JGraphT, GraphStream,
Jung, …]. This high level of software complexity means that graph libraries require a lot of effort to
implement. This effort increases when the functions are implemented to run in parallel. Furthermore,
the large number of functions means that there is very little opportunity for hardware optimization.
The effort of implementing a graph function in hardware is significantly greater and requires that a
small number of critical functions be identified than can enable a large class of applications.

One approach to addressing software complexity is to use a set of composable functions that allow
a large number of graph algorithms to be built with a small number of building blocks. Sparse matrix
operations are one composable approach to building graph algorithms. Many graph algorithms can be
represented with matrix algebra using just a handful of functions [Kepner & Gilbert 2011].

3.2 Data Complexity
Most graph libraries or graph databases define specific data structures for holding different types

of graphs. These graph tools often begin their development with the simplest of graphs
(undirected/unweighted) and create a vertex-oriented data structure that works well for this type of
graph for the specific tool. As the tool matures, more complex graphs are addressed by either
evolving the initial graph data structure or adding new data structures. This cumulative approach
requires that each graph function be revisited each time the core data structure is changed.
Furthermore, since the starting point is often a data structure designed for the simplest possible graphs,
it can be difficult to evolve this to accommodate the most complex graphs that are often seen in the
real world.

The GraphBLAS provide one approach to addressing this challenge by defining a primary data
structure in the GraphBLAS that isn’t a graph. The primary GraphBLAS data structure is a sparse
matrix. Sparse matrices can be used to efficiently represent both simplest and complex graphs (see
sections 2.1 and 2.2). The GraphBLAS functions are defined on sparse matrices and thus work
regardless of the complexity of the graph that is being represented. Furthermore, sparse matrices have
been demonstrated to work well in a wide range of programming environments and fit in naturally
with modern key/value databases [Kepner et al 2013].

3.3 Security
Security is becoming increasingly important in wide range of applications, and security

considerations are playing an increasing role in algorithm design. Executing algorithms on encrypted
data requires modifying existing algorithms to include various cryptographic techniques such
homomorphic encryption, fully homomorphic encryption, multi-party computation, deterministic
encryption, and order preserving encryption. A focus of this work has been adapting scalar addition ⊕
and scalar ⊗ multiplication to work with encrypted data, which naturally lead to matrix operations
working on encrypted data [Erkin 2010, Kepner et al 2014].

3.4 Mathematical Complexity
Standard graph libraries provide hundreds of functions, but still often require the user to write long

programs to take advantage of these functions. This is often due to the wide variety of different data
structures that exist in a standard graph library and the fact that graph library functions are strongly
order dependent. The GraphBLAS provides a single mathematically defined object that is
mathematically closed (i.e., produces the same class of outputs as inputs) under the aforementioned
operations. This eliminates the requirement to write code to convert between different representations
of a graph. That said, the conversion between a sparse matrix and a triples representation is explicitly
supported so that GraphBLAS users can work the data as they please. In addition to being
mathematically closed, the GraphBLAS operations are composable, which means that operations can
be reordered without changing the results. As a result, it is possible to implement complex analytics
with ~50x less effort than other approaches [Kepner et al 2011].

3.5 Theoretical Analysis
While matrix-based graph approaches have been around since the inception of graph theory, these

approaches were less widely used for graph algorithm analysis. Interest in this area was dramatically
increased by the advent of the legendary Google PageRank algorithm [Brin & Page 1998] that
exploited the first eigenvector of the graph adjacency matrix. Since the development of PageRank,
graph algorithm theorists have found matrix based approaches to graph analysis are highly productive
[Madry et al 2010, Madry 2011, Madry et al 2011a, Madry et al 2011b, Madry et al 2013, Dodson et
al 2014].

3.6 Serial Processing Performance
On conventional processors, there is a large gap between the performance of traditional dense

matrix computations and sparse/graph computations (see Figure 1). This is partly because
sparse/graph computations are typically memory bound, while dense matrix computations are compute
bound. Memory performance improvements have been, and will most likely continue to be, slower
than processor performance improvements. However, a part of the problem is that sparse/graph
computations do rarely achieve their potential performance. While DGEMM can achieve >80% of
peak flops, very few implementations of sparse/graph operations utilize 80% or more of the available
system memory bandwidth (which is their corresponding upper bound). We know of only one existing
effort where the “roofline” [Williams et al 2009] of a graph computation has been analyzed, which
was the case for breadth-first search using sparse matrix algebra [Lugowski et al 2014]. The high
actual to peak performance ratio of dense matrix computations is in large part due to the existence of
the Basic Linear Algebra Subprograms (BLAS) standard [Lawson et al 1979]. The BLAS provide a
concise set of functions that allow software developers to write hardware independent code and
hardware designers to target their efforts on a small number of functions that impact a wide range of

programs. It is the goal of the GraphBLAS to provide the same performance benefit to graph
algorithms.

3.7 Parallel Processing Performance
Parallel graph algorithms are notoriously difficult to implement and optimize [Ediger et al 2012,

Ediger & Bader 2013, Meyerhenke 2013 McLaughlin & Bader 2014a, McLaughlin & Bader 2014b,
McLaughlin et al 2014, Staudt & Meyerhenke 2015, Meyerhenke et al 2015]. A matrix-based
approach to graph algorithms allows the graph algorithms community to leverage the decades of work
in creating optimized parallel algorithms for matrix computations. Even still, the inherently high
communication to computation ratios found in graph algorithms mean that even the best algorithms
will result in parallel efficiencies that decreases as the number of processors P is increased by a factor
of P1/2 (see Figure 2) [Buluc & Gilbert 2012]. Recent work on communication-avoiding algorithms,
and their applications to graph computations [Ballard et al 2013, Solomonik et al 2013], might defer
but not completely eliminate the parallel scalability bottleneck. Consequently, novel hardware
architectures will also be required. The GraphBLAS simplifies this hardware design challenge by
providing a clear target for system designers. In addition, because the GraphBLAS deals with graph
computations in aggregate (instead of individually), it reduces the computational challenge to one of
providing high bandwidth (instead of high bandwidth and low latency).

.

Figure 2. Graph Computation Efficiency. [Buluc & Gilber 2012] Performance of multi-
source-weighted-breadth-first-search (i.e., sparse matrix-matrix multiply) on power-law graph
on a Cray supercomputer. For the largest graph (Scale-24 ⇒ 16 million vertices and 268
million edges) a speedup of 20 is achieved even though the number of processors is increased
by over 200.

100 101 102 103 104
10−5

10−4

10−3

Number of Cores

m
ul

tis
ou

rc
e−

w
ei

gt
ed
−b

re
ad

th
−f

irs
t−

se
ar

ch
 e

ffi
ci

en
cy

4 Summary
The analysis of graphs have become increasingly important to a wide range of applications. Graph

analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data
complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance,
and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides
a number of promising solutions to these challenges. The GraphBLAS standard (istc-
bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph
algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of
matrix-based graph operations that can be used to implement a wide class of graph algorithms in a
wide range of programming environments. This paper provides an introduction to the GraphBLAS
and describes how the GraphBLAS can be used to address many of the challenges associated with
analysis of graphs.

References
[Ballard et al 2013] Ballard, G., Buluc, A., Demmel, J., Grigori, L., Lipshitz, B., Schwartz, O., &

Toledo, S., Communication optimal parallel multiplication of sparse random matrices,
In Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and
architectures (pp. 222-231), 2013

[Bergamini et al 2015] E. Bergamini, H. Meyerhenke, C.L. Staudt, Approximating Betweenness
Centrality in Large Evolving Networks, In Proc. SIAM Algorithm Engineering & Experiments
(ALENEX 2015)

[Buluc and Gilbert 2011] A. Buluç & J. Gilbert. The Combinatorial BLAS: Design, implementation,
and applications. International Journal of High Performance Computing Applications (2011)

[Buluc & Gilbert 2012] A. Buluç & J. Gilbert, Parallel sparse matrix-matrix multiplication and
indexing: Implementation and experiments, SIAM Journal on Scientific Computing 34.4 (2012):
C170-C191

[Buluc et al 2014] A. Buluc, G. Ballard, J. Demmel, J. Gilbert, L. Grigori, B. Lipshitz, A. Lugowski,
O. Schwartz, E. Solomonik & S. Toledo, Communication-Avoiding Linear-Algebraic Primitives
for Graph Analytics, IPDPS Graph Algorithms Building Blocks (GABB), May 2014

[Brin & Page 1998], S. Brin & L. Page, The anatomy of a large-scale hypertextual Web search engine,
Brin & Page, Computer Networks and ISDN Systems 1998

[Brualdi 1967] R.A. Brualdi, Kronecker products of fully indecomposable matrices and of ultrastrong
digraphs, Journal of Combinatorial Theory, 2:135-139, 1967

[Chaidez & Kepner 2014] J. Chaidez & J. Kepner, The Abstract Algebra of Big Data and Associative
Arrays, SIAM Discrete Math, 2014

[Dodson et al 2014] S. Dodson, D. Ricke & J. Kepner, Genetic Sequence Matching Using D4M Big
Data Approaches, IEEE HPEC 2014

[Ediger et al 2010] D. Ediger, K. Jiang, J. Riedy, and D.A. Bader, Massive Streaming Data Analytics:
A Case Study with Clustering Coefficients, 4th Workshop on Multithreaded Architectures and
Applications (MTAAP), Atlanta, GA, April 23, 2010

[Ediger et al 2011] D. Ediger, J. Riedy, H. Meyerhenke, and D.A. Bader, Tracking Structure of
Streaming Social Networks, 5th Workshop on Multithreaded Architectures and Applications
(MTAAP), Anchorage, AK, May 20, 2011

[Ediger et al 2012] D. Ediger, R. McColl, J. Riedy, and D.A. Bader, STINGER: High Performance
Data Structure for Streaming Graphs, The IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, MA, September 20-22, 2012

[Ediger & Bader 2013] D. Ediger and D.A. Bader, Investigating Graph Algorithms in the BSP Model
on the Cray XMT, 7th Workshop on Multithreaded Architectures and Applications (MTAAP),
Boston, MA, May 24, 2013

[Erkin 2010] Z. Erkin, Secure signal processing: Privacy preserving cryptographic protocols for
multimedia, Ph.D. Dissertation, TU Delft, Delft University of Technology, 2010

[Gilbert 2014] J. Gilbert, Examples and Applications of Graph Algorithms in the Language of Linear
Algebra, IPDPS Graph Algorithms Building Blocks (GABB), May 2014

[Harary 1969] F. Harary, Graph Theory, Reading:Addison-Wesley, 1969
[Harary & Tauth 1966] F. Harary & C.A. Tauth, Connectedness of products of two directed graphs,

SIAM Journal on Applied Mathamatics, 14:250-254, 1966
[Kepner & Gadepally 2014] J. Kepner & V. Gadepally, Adjacency Matrices, Incidence Matrices,

Database Schemas, and Associative Arrays, IPDPS Graph Algorithms Building Blocks (GABB),
May 2014

[Kepner et al 2011] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun, G. Condon, K.
Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas, A. Prout, A. Reuther, A. Rosa & C.
Yee, Dynamic Distributed Dimensional Data Model (D4M) Database and Computation System,
ICASSP, March 25-30, 2012, Kyoto, Japan

[Kepner & Gilbert 2011] J. Kepner & J. Gilbert, Graph Algorithms in the Language of Linear
Algebra, SIAM Press 2011

[Kepner et al 2013] J. Kepner, …, D4M 2.0 Schema: A General Purpose High Performance Schema
for the Accumulo Database, IEEE HPEC 2013

[Kepner et al 2014] J, Kepner, …, Computing on Masked Data: a High Performance Method for
Improving Big Data Veracity, IEEE HPEC 2014

[Konig 1931] D. Konig, Graphen und Matrizen (Graphs and Matrices), Matematikai Lapok, 38:116-
119, 1931

[Konig 1936] D. Konig, Theorie der endlichen und unendlichen graphen (Theory of finite and infinite
graphs), Leipzig:Akademie Verlag M.B.H, 1936. See Richard McCourt (Birkhauser 1990) for an
english translation of this classic work

[Lawson et al 1979] C. Lawson, R. Hanson, D. Kincaid, & F. Krogh, Basic linear algebra
subprograms for Fortran usage, ACM Transactions on Mathematical Software (TOMS), 5(3),
308-323, 1979

[Lugowski et al. 2012] Lugowski, A., Alber, D. M., Buluç, A., Gilbert, J. R., Reinhardt, S. P., Teng,
Y., & Waranis, A. (2012). A Flexible Open-Source Toolbox for Scalable Complex Graph
Analysis. In SDM (Vol. 12, pp. 930-941).

[Lugowski et al 2014] Lugowski, A., Kamil, S., Buluç, A., Williams, S., Duriakova, E., Oliker, L.&
Gilbert, J. R., Parallel processing of filtered queries in attributed semantic graphs, Journal of
Parallel and Distributed Computing, 2014

[Madry et al 2010] Madry, …, An O(log n/log log n)-approximation Algorithm for the Asymmetric
Traveling Salesman Problem, SODA 2010

[Madry 2011] Madry, ..,, From Graphs to Matrices, and Back: New Techniques for Graph Algorithms,
Ph.D. thesis, MIT, EECS Department, 2011

[Madry et al 2011a] Madry, …, A Polylogarithmic-Competitive Algorithm for the k-Server Problem,
FOCS 2011

[Madry et al 2011b] Madry, …, Electrical Flows, Laplacian Systems, and Faster Approximation of
Maximum Flow in Undirected Graphs, STOC 2011

[Madry et al 2013] Madry, …, Navigating Central Path with Electrical Flows: from Flows to
Matchings, and Back, FOCS 2013

[Mattson et al 2013] T. Mattson, D. Bader, J. Berry, A. Buluc, J. Dongarra, C. Faloutsos, J. Feo, J.
Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. Leiserson, A. Lumsdaine, D. Padua, S. Poole,

S. Reinhardt, M. Stonebraker, S. Wallach, & A. Yoo, Standards for Graph Algorithm Primitives,
IEEE HPEC, 2013

[Mattson 2014] T. Mattson, Motivation and Mathematical Foundations of the GraphBLAS, IPDPS
Graph Algorithms Building Blocks (GABB), May 2014

[McAndrew 1963] M.H. McAndrew, On the product of directed graphs, Proceedings of the American
Mathematical Society, 14:600-606, 1963

[McAndrew 1965] M.H. McAndrew, On the polynomial of a directed graph, Proceedings of the
American Mathematical Society, 16:303-309, 1965

[McLaughlin & Bader 2014a] A. McLaughlin and D.A. Bader, Revisiting Edge and Node Parallelism
for Dynamic GPU Graph Analytics, 8th Workshop on Multithreaded Architectures and
Applications (MTAAP), held in conjunction with The IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2014), Phoenix, AZ, May 23, 2014.

[McLaughlin & Bader 2014b] A. McLaughlin and D.A. Bader, Scalable and High Performance
Betweenness Centrality on the GPU, The 26th IEEE and ACM Supercomputing Conference
(SC14), New Orleans, LA, November 16-21, 2014

[Meyerhenke 2013] H. Meyerhenke, Shape Optimizing Load Balancing for MPI-Parallel Adaptive
Numerical Simulations, Graph Partitioning and Graph Clustering, Proc. 10th DIMACS
Implementation Challenge, Contemporary Mathematics 588, 2013

[McLaughlin et al 2014] A. McLaughlin, J. Riedy, and D.A. Bader, Optimizing Energy Consumption
and Parallel Performance for Betweenness Centrality using GPUs, The 18th Annual IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA, September 9-11, 2014

[Meyerhenke et al 2015] H. Meyerhenke, P. Sanders, C. Schulz, Parallel Graph Partitioning for
Complex Networks, 29th IEEE International Parallel & Distributed Processing Symposium (IPDPS
2015)

[Reidy et al 2012] J. Riedy, H. Meyerhenke, and D.A. Bader, Scalable Multi-threaded Community
Detection in Social Networks, 6th Workshop on Multithreaded Architectures and Applications
(MTAAP), Shanghai, China, May 25, 2012.

 [Reidy & Bader 2013] J. Riedy and D.A. Bader, Multithreaded Community Monitoring for Massive
Streaming Graph Data, 7th Workshop on Multithreaded Architectures and Applications
(MTAAP), Boston, MA, May 24, 2014

[Sabadusi 1960] G. Sabadusi, Graph multiplication, Mathematische Zeitschrift,72:446-457, 1960
[Solomonik et al 2013] Solomonik, E., Buluc, A., & Demmel, J. (2013). Minimizing communication

in all-pairs shortest paths. In IEEE International Symposium on Parallel & Distributed Processing
(IPDPS) (pp. 548-559)

[Staudt et al 2014a] C. Staudt, Y. Marrakchi & H. Meyerhenke, Detecting Communities Around Seed
Nodes in Complex Networks, In Proc. First International Workshop on High Performance Big
Graph Data Management, Analysis, and Mining, co-located with the IEEE BigData 2014
Conference

[Staudt et al 2014b] C. Staudt, A. Sazonovs, & H. Meyerhenke, Networkit: An interactive tool suite
for high-performance network analysis, arXiv preprint arXiv:1403.3005 (2014)

[Staudt & Meyerhenke 2015] C Staudt & H. Meyerhenke, Engineering Parallel Algorithms for
Community Detection in Massive Networks, IEEE Transactions on Parallel and Distributed
Systems, 2015

 [Teh & Yap 1964] H.H. Teh & H.D. Yap, Some construction problems of homogeneous graphs,
Bulletin of the Mathematical Society of Nanying University, 164-196, 1964

[Weischel 1962] P.M. Weischel, The Kronecker product of graphs, Proceedings of the American
Mathematical Society, 13(1), 47-52, 1962

[Williams et al 2009] S. Williams, A. Waterman, & D. Patterson, Roofline: an insightful visual
performance model for multicore architectures, Communications of the ACM 52.4 (2009): 65-76

