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ABSTRACT OF THE DISSERTATION
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Hyperelliptic Curves

by

Matthew Ernest Lane

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor William Duke, Chair

There exists a sequence of orthogonal polynomials with many interesting properties from the standpoint

of number theory. These polynomials are called Atkin polynomials, and they can be constructed using the

theory of modular forms for the group PSL2 (Z). Closed formulas for these polynomials are known, and

their zeros provide information about supersingular elliptic curves.

In this dissertation, we construct an infinite collection of sets of orthogonal polynomials, of which the

Atkin polynomials are but one example. These polynomials are constructed using the theory of modular

forms for the Hecke triangle groups Gm, as well as the theory of hypergeometric functions. As in the

previously known case, the zeros of this larger family of polynomials provide information about curves. In

this setting, however, the curves are hyperelliptic, and the zeros detect whether or not certain curves are

ordinary. We show how these curves arise and give proofs generalizing the known properties of the Atkin

polynomials. We also interpret these generalized Atkin polynomials within the framework of period functions

and weakly holomorphic modular forms, and prove some new results on the Fourier coefficients of certain

modular integrals.
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CHAPTER 1

Introduction

In the late 1980’s, A.O.L. Atkin discovered a remarkable sequence of monic orthogonal polynomials

whose zeros provide information about elliptic curves. To construct these polynomials, let Γ = PSL2(Z)

denote the usual modular group generated by the elements

S = ±

 0 1

−1 0

 ,

T = ±

 1 1

0 1

 ,

and let E4 and E6 denote the weight 4 and weight 6 Eisenstein series for Γ (see Chapter 2 for precise

definitions of these objects). Define the functions ∆(τ) and j(τ) via the equations

∆(τ) =
1

1728

(
E3

4(τ)− E2
6(τ)

)
,

j(τ) =
E3

4(τ)

∆(τ)
.

It is well known that j is holomorphic on the upper half plane H = {τ = x+ iy : y > 0}, and has a simple

pole at i∞. This latter fact is easily seen from the q-expansion of j; if we set q = e2πiτ , then we have

j(τ) =

∞∑
n=−1

a(n)qn,

where, remarkably, the coefficients a(n) are always integers (the first few are given by a(−1) = 1, a(0) = 744,

and a(1) = 196884). Moreover, j is Γ−invariant, meaning that for any γ ∈ Γ,

j (γτ) = j(τ),

where Γ acts on H via fractional linear transformation. In fact, any Γ−invariant holomorphic function on H

which grows at most like q−N for some N at ∞ must be a polynomial in j (see [13]), i.e. the space of such

functions is simply C[j].

Using this information, one can define a positive definite scalar product on R[j] as follows: for two

functions f, g ∈ R[j], let (f, g) denote the constant term of fg as a Laurent series in ∆. With respect to

1



this scalar product one can produce a sequence of orthogonal polynomials An(j). These are the polynomials

discovered by Atkin.

Atkin’s work on the subject was never published, but in [40] Kaneko and Zagier wrote up his results,

and simplified some of his arguments. Though it is not obvious from this exposition, there exist relatively

simple formulas for the Atkin polynomials, which can be obtained using the theory of modular forms. If we

choose a slightly different normalization by setting J = j/1728 and An(J) = 1728−nAn(j) (the reason for

this normalization will be made clear in Chapter 4), then the main result concerning Atkin polynomials is

the following:

Theorem 1. The Atkin polynomials An are determined in each of the following ways:

i) Recursion relation:

An+1(J) =

(
J − 144n2 − 29

2332 (2n+ 1) (2n− 1)

)
An(J)

− (12n− 13) (12n− 7) (12n− 5) (12n+ 1)

21034n(n− 1)(2n− 1)2
An−1(J)

for n ≥ 2, with initial values given by

A0(J) = 1,

A1(J) = J − 5

12
,

A2(J) = J2 − 205

216
J +

935

10368
.

ii) Closed formula:

An(J) =
n∑
i=0

Jn−i
i∑

ℓ=0

(−1)
ℓ

(
− 1

12

i− ℓ

)(
− 5

12

i− ℓ

)(
n+ 1

12

ℓ

)(
n− 7

12

ℓ

)(
2n− 1

ℓ

)−1

.

Kaneko and Zagier also prove that the An satisfy a certain fourth-order differential equation which can

be used to construct the An, but we will not use this result here.

Arguably the more important property of the Atkin polynomials concerns their zeros. Consider an

elliptic curve E over a field of characteristic p > 3. Denote the Weierstrass model of E by the equation

y2 = x3 + ax+ b

2



for some field elements a, b. Such a curve is said to be supersingular if the coefficient of xp−1 in
(
x3 + ax+ b

) p−1
2

is nonzero. In fact, the condition of supersingularity is completely determined by the J-invariant of E, de-

noted

J(E) =
4a3

4a3 + 27b2
.

This represents the usual j invariant scaled by a factor of 1/1728 (see Chapter 4 for more on these definitions).

Since there are only finitely many supersingular curves in Fp ([68] has several explanations of this fact), one

can define the so-called supersingular polynomial for the prime p by

ssp(J) =
∏
E/Fp

E supersingular

(J − J(E)) ∈ Fp[J ].

Inspired by a paper of R.A. Rankin (see [61]), Atkin proved the following result.

Theorem 2. Let p be a prime number, p ̸= 2, 3. Then

ssp(J) ≡ Anp(J) mod p,

where

np =

⌊
p− 1

12

⌋
+ δ + ϵ,

ϵ =


0, p ≡ 1, 7 mod 12,

1, p ≡ 5, 11 mod 12,

δ =


0, p ≡ 1, 5 mod 12,

1, p ≡ 7, 11 mod 12.

In other words, the zeros of Atkin polynomials determine the J-invariants corresponding to supersingular

elliptic curves.

The purpose of this thesis is to generalize Theorem 1 by interpreting the Atkin polynomials as but one

set of orthogonal polynomials in an infinite family, which we name generalized Atkin polynomials, or Atkin-

type polynomials. By investigating the zeros of these generalized Atkin polynomials, we can then deduce a

generalization of Theorem 2 as well.

3



The basic idea is to consider generalizations of the J invariant. We do this by considering the Hecke

triangle groups Gm; these are subgroups of PSL2 (R) generated by the elements S and

Tm = ±

 1 λm

0 1


where λm = 2 cos(π/m). One can consider the Hecke triangle groups for any integral 3 ≤ m ≤ ∞; note that

G3 is simply the modular group Γ. Just as in the case of the modular group, for the Hecke triangle groups

Gm one can construct an analogue of the J invariant, denoted Jm, which is Gm-invariant, holomorphic on

H, and has a simple pole at i∞. In fact, these properties, along with the transformations

Jm

(
−e−πi/m

)
= 0,

Jm(i) = 1,

Jm(i∞) = ∞

essentially determine the function Jm uniquely.

The Hecke triangle groups were first studied by Hecke (see [27, 28]), and the triangle functions Jm

have been the subject of additional study, mostly concerning the nature of their Fourier coefficients (see for

example [46, 60, 77], or, more recently, [47]). As it turns out, one can modify the arguments of [40] to show

that for each Hecke group Gm there exists a sequence of polynomials in the variable Jm which are orthogonal

with respect to some scalar product. In fact, if we think of Jm as a holomorphic mapping of the hyperbolic

triangle with vertices at
(
i,−e−πi/m, i∞

)
to the upper half plane H, we can generalize further, and consider

triangle functions Jm,k mapping the hyperbolic triangle with vertices at
(
i,−e−πik/m, i∞

)
to H, where k

is relatively prime to m and less than m/2 (this restriction is imposed since the sum of the angles of the

triangle must be less than π). These triangle functions, it turns out, also give rise to orthogonal polynomials.

Taken altogether, this gives a sequence of orthogonal polynomials {An,m,k(J)}∞n=0 for any fixed m ≥ 3

and any k with 1 ≤ k < m/2, (k,m) = 1. Our first result is the following generalization of Theoreom 1.

Theorem 3. For each m ≥ 3 and each k coprime to m and satisfying 1 ≤ k < m/2 there exists

a family of orthogonal polynomials {An,m,k (J)}∞n=0 in the hyperbolic triangle functions J(τ) = Jm,k(τ).

These functions are orthogonal on R[J ] with respect to a real valued weight function

wm,k (J) =
−1

2παm,kJ1/2(1− J)1/2F (αm,k, βm,k; 1; 1/J)2Φm,k(J)

4



where αm,k = 1
2

(
1
2 − k

m

)
, βm,k = 1

2 − αm,k = 1
2

(
1
2 + k

m

)
, and Φm,k is related to J via the equality

2πiτ

λm,k
= Φm,k(J),

for λm,k = 2 cos (πk/m) .

The polynomials An,m,k are determined in the following ways:

(i) By the recurrence relation

An+1,m,k (J) = (J − an,m,k)An,m,k (J)− bn,m,kAn−1,m,k (J) ,

where

an,m,k =
4n2 − 1 + 4αm,k (1− βm,k)

2(2n− 1)(2n+ 1)

=
m2
(
16n2 − 1

)
− 8km+ 4k2

8m2(2n− 1)(2n+ 1)

bn,m,k =
(n+ αm,k) (n− βm,k) (n− 1 + βm,k) (n− 1− αm,k)

4n(n− 1)(2n− 1)2

=
(4mn− 3m+ 2k) (4mn− 5m+ 2k) (4mn+m− 2k) (4mn−m− 2k)

45m4n(n− 1)(2n− 1)2
.

The recurrence is valid for n ≥ 2, with initial conditions

A0,m,k (J) = 1,

A1,m,k (J) = J − βm,k

= J − m+ 2k

4m
,

A2,m,k(J) = J2 +
2βm,k (αm,k − 1)− αm − 2

3
J +

βm,k (1− αm,k) (1 + βm,k)

6

= J2 − 21m2 + 4mk + 4k2

24m2
J +

(m+ 2k)(3m+ 2k)(5m+ 2k)

6 (4m)
3 .

(ii) By the closed formula

An,m,k (J) =
n∑
i=0

Jn−i

[
i∑

ℓ=0

(−1)ℓ
(
n+ αm,k

ℓ

)(
n− 1 + βm,k

ℓ

)(
2n− 1

ℓ

)−1(−αm,k
i− ℓ

)(
−βm,k
i− ℓ

)]
.

Note Theorem 1 is an immediate Corollary of Theorem 3 in which m = 3, k = 1.

5



Once we construct this family of polynomials, it is natural to ask about their zeros. This question

depends a bit on the value of m. When m = 3, 4, 6,∞, the group Gm is arithmetic. In all other cases, Gm

is non-arithmetic, i.e. Gm is not commensurable to any PSL2(O), where O = OK is the ring of integers

of some number field K. This was proven by Takeuchi in 1977. For a proof of this, see [72]; for general

information on arithmetic groups, and more information on arithmetic triangle groups, see [39, 71, 73].

When Gm is arithmetic, the generalized Atkin polynomials still detect supersingularity. However, for

m = 4 and m = 6, the polynomials are detecting the supersingularity of genus 2 hyperelliptic curves (see

Section 4.1.1 for the general definition of a supersingular curve). As it turns out, the family of relevant curves

for m = 4 was studied over a century ago in [78], and the family of relevant curves for m = 6 was studied

around the same time in [30]. In all of these cases we only have one value of k (k = 1), so we frequently drop

the subscript dependence on k and write An,m,1 = An,m.

In the non-arithmetic case, the analogous result is not as tidy. In this setting we have more than one

family of orthogonal polynomials to consider; to put it another way, for m ̸= 3, 4, 6,∞, the value of k need

not be 1. So rather than looking at a single generalized Atkin polynomial modulo p, we must look at a

product of generalized Atkin polynomials mod p, one for each k within some range of values. These values

will not always be coprime to m, so we define

An,m,k = An, m
(k,m)

, k
(k,m)

in general. This is well defined since k < m/2 implies m
(k,m) ≥ 3. Also, when m is odd it is possible for k to

be zero; in this case, we have

An,m,0 = An,∞,1.

In the non-arithmetic case, the zeros of these polynomials are no longer detecting supersingular curves.

Instead, they test whether or not some curve in a given family is ordinary. We defer the definition of

ordinariness until Chapter 4, but for now the condition can simply be thought of as a weakening of the

supersingularity condition.

With these modifications, we state the following result on the zeros of generalized Atkin polynomials.

Theorem 4. Fix an m > 3 and a prime p satisfying (p, 2m) = 1. Consider the family Fm of hyperelliptic

curves over Fp given by a general equation of the form

C : y2 = x1−κm
(
x2g+2κm − 2axg+κm + b

)
= x2g+1+κm − 2axg+1 + bx1−κm ,

6



where

g =
m

(2,m)
− κm

and

κm =
(2m,m− 2)

(2,m)
− 1

=


1, m ≡ 2 mod 4,

0, otherwise.

The coefficients a and b are in Fp and satisfy b − a2 ̸= 0. Let J = b
b−a2 = JC , and define a polynomial in

the variable J as follows:

Nonord(J) :=
∏

C∈Fm

C not ordinary

(J − JC).

Meanwhile, for each 1 ≤ i ≤ ⌈g/2⌉, define the value u = up,i by

u =

⌊
(2i+ κm − 1) p

2 (g + κm)

⌋
(1.0.1)

=
(2i+ κm − 1) p

2 (g + κm)
− 2j + κm − 1

2 (g + κm)

for a unique value of j between 1 and g, in other words

(1.0.2) j =

(
i+

κm − 1

2

)
p+

1− κm
2

− (g + κm)u.

Define the values ϵ = ϵp,i, δ = δp,i, k = kp,i, and n = np,i by

ϵ =

⌊
j − 1

⌈g/2⌉

⌋

=


0, 1 ≤ j ≤ ⌈g/2⌉ ,

1, ⌈g/2⌉ ≤ j ≤ g,

δ = u− 2 ⌊u/2⌋

=


0, u even,

1, u odd,

k =
(2,m)

2
|g + 1− 2j|

= (−1)ϵ
(2,m)

2
(g + 1− 2j) ,

7



and

n = ⌊u/2⌋+ δ + ϵ.

Finally, define a product of Atkin-type polynomials Pm,p(J) by

Pm,p(J) =
⌈g/2⌉∏
i=1

Anp,i,m,kp,i(J).

Then

Nonord(J) ≡ Pm,p(J)(
Pm,p,P ′

m,p

) mod p.

Remark. In general, Pm,p may have multiple roots. We divide out by the GCD of Pm,p and its derivative

because Nonord(J) is square-free by definition. In the arithmetic cases, this is never an issue.

Also, the condition b−a2 ̸= 0 is analogous to the condition ∆ ̸= 0 in the elliptic curve case where m = 3.

In this case, ∆ ̸= 0 is equivalent to the curve being nonsingular provided p > 3, but this is no longer true for

general m, as the discriminant of the polynomials in the family Fm will always be divisible by b. However,

as we will see, the case b = 0 is not difficult to analyze.

Because of all the parameters present in the statement of Theorem 4, it may be instructive to decompose

the statement into separate cases, depending on the value of m. When m ≡ 0 mod 4, we have g = m/2 and

the family Fm is given by curves of the form

y2 = x
(
xm − 2axm/2 + b

)
.

In this case, i ranges from 1 to m/4, and for each value of i we have

u =

⌊
(2i− 1)p

m

⌋
,

j = ip− p− 1

2
− m

2
u,

k =
∣∣∣m
2

+ 1− 2j
∣∣∣ .

Similarly, when m ≡ 2 mod 4, we have g = m/2− 1 and the family Fm is given by curves of the form

y2 = xm − 2axm/2 + b.

8



i ranges from 1 to (m− 2)/4, and for each i we have

u =

⌊
ip

m/2

⌋
,

j = ip− m

2
u,

k =
∣∣∣m
2

− 2j
∣∣∣ .

Finally, when m > 3 is odd, we have g = m and the family Fm is given by curves of the form

y2 = x
(
x2m − 2axm + b

)
.

Here i ranges from 1 to (m+ 1)/2, and for each value of i we have

u =

⌊
(2i− 1)p

2m

⌋
,

j = ip− p− 1

2
−mu,

k =

∣∣∣∣m+ 1

2
− j

∣∣∣∣ .
In each case g denotes the value of the genus of the curve provided b ̸= 0.

Specializing to the arithmetic cases gives us the following corollary, which can be more easily compared

to Theorem 2.

Corollary 5. (i) m = 4. Consider the family of curves F4 given by the equation

(1.0.3) y2 = x5 − 2ax3 + bx

with b− a2 ̸= 0, and let p be an odd prime. Then the number of supersingular curves in F4 is finite over Fp

(up to isogeny), and

ssp,4(J) =
∏

C/Fp∈F4

C supersingular

(J − J(C))

≡ Anp,4(J) mod p,

9



where Anp,4 is the degree np Atkin-type polynomial with m = 4, J(C) = b
b−a2 , and

np =

⌊
p− 1

8

⌋
+ δ + ϵ,

ϵ =


0, p ≡ 1, 5 mod 8,

1, p ≡ 3, 7 mod 8,

δ =


0, p ≡ 1, 3 mod 8,

1, p ≡ 5, 7 mod 8.

(ii) m = 6. Consider the family of curves F6 given by the equation

(1.0.4) y2 = x6 − 2ax3 + b

with b − a2 ̸= 0, and let p be an odd prime greater than 3. Then the number of supersingular curves in F6

is finite over Fp (up to isogeny), and

ssp,6(J) =
∏

C/Fp∈F6

C supersingular

(J − J(C))

≡ Anp,6(J) mod p,

where Anp,6 is the degree np Atkin-type polynomial with m = 6, J(C) = b
b−a2 , and

np =

⌊
p− 1

6

⌋
+ 2ϵ,

ϵ =


0, p ≡ 1 mod 6,

1, p ≡ 5 mod 6.

(iii) m = ∞. Consider the family of curves F∞ given by the equation

(1.0.5) y2 = x4 − 2ax2 + b

with b − a2 ̸= 0, and let p be an odd prime. Then the number of supersingular curves in F∞ is finite over

Fp (up to isogeny), and

ssp,∞(J) =
∏

C/Fp∈F∞

C supersingular

(J − J(C))

≡ Anp,∞(J) mod p,

10



where Anp,∞ is the degree np Atkin-type polynomial with m = ∞, J(C) = b
b−a2 , and

np =

⌊
p− 1

4

⌋
+ 2ϵ,

ϵ =


0, p ≡ 1 mod 4,

1, p ≡ 3 mod 4.

The distinction between ordinariness and supersingularity only becomes apparent when we begin to look

at the non-arithmetic cases. In all cases, though, the zeros of Atkin-type polynomials provide information

about the geometry of a corresponding curve.

This thesis is organized as follows. In Chapter 2 we prove Theorem 3. When k = 1, the result can be

proven using an argument analogous to the one appearing in [40]. For general k, instead of using the theory

of modular forms for Gm, we approach the problem from the standpoint of hypergeometric functions. In

fact, this approach is more general, and so we effectively give two proofs of the Theorem in the case k = 1,

equivalently the case when Gm is arithmetic.

Before proving Theorem 4, we provide some discussion of the family of curves in Fm in Chapter 3. In

particular, we explain why these curves arise naturally, and prove a result on the correspondence between

points in Gm\H and isomorphism classes of curves in Fm which does not appear to exist in the literature.

This material serves as further background, and is not necessary for the proof of the main result.

In Chapter 4 we prove Theorem 4. To do so, we need to first better understand what it means for a curve

to be ordinary. We also give some basic examples and simple corollaries of the main result, and consider

what happens in the simpler case when Gm is arithmetic.

Chapter 5 features further applications of these results. Inspired by [5], we prove a connection between

the generalized Atkin polynomials and Jacobi polynomials. Motivated by a statement on the splitting of

certain Jacobians in the m = 4 and m = 6 case mentioned in [9] we also investigate Jacobians of curves

in Fm. Finally, we reinterpret generalized Atkin polynomials from the standpoint of period functions and

weakly holomorphic modular forms, and prove some new results on a certain family of modular integrals.
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CHAPTER 2

Generalized Atkin Polynomials

In this chapter we construct the infinite family of sequences of Atkin-type polynomials introduced in the

previous chapter, denoted by {An,m,k(J)}∞n=0 for some fixed m ≥ 3 and k < m/2. Our goal is to provide

a proof of Theorem 3. We first focus on the recursion formula. When k = 1, we can prove the formula

by following the approach in [40]. For general k we apply the theory of hypergeometric functions, thereby

giving us two proofs in the case k = 1. Once the recursion formula is proven, we use it to deduce the closed

formula.

2.1. Generating function of the moments when k = 1

2.1.1. The proof of Kaneko and Zagier. A key observation in the proof of the closed form for the

recurrence coefficients of the Atkin polynomials in [40] is the fact that the generating function of the moments

associated to the inner product defined in the previous chapter is essentially a ratio of hypergeometric

functions. To state this more precisely, let us first recall some definitions (see [40] for more details).

First, for a fixed positive even number ℓ, we define the weight ℓ Eisenstein series for Γ = PSL2(Z) by

its q−expansion:

Eℓ(τ) = 1− 2ℓ

Bℓ

∞∑
n=1

∑
d|n

dk−1

 qn,

where Bℓ denotes the ℓth Bernoulli number. As in the introductory chapter, q = e2πiτ . When ℓ > 2 (in

particular, for ℓ = 4 and ℓ = 6), the above Eisenstein series is a modular form for Γ; in particular, it is

holomorphic on H, holomorphic near i∞, and satisfies the following transformation rule:

Eℓ(γτ) = (cτ + d)ℓEℓ(τ), for γ =

 a b

c d

 ∈ Γ.

When ℓ = 2, the corresponding Eisenstein series is not modular, but does satisfy

(2.1.1) E2 (γτ) = (cτ + d)2E2(τ) +
6

πi
c(cτ + d), for γ =

 a b

c d

 ∈ Γ.

12



The functions E2, E4, E6, and ∆ = 1
1728

(
E3

4 − E2
6

)
are related to one another via the following differ-

ential equations:

E′
2 =

E2
2 − E4

12

E′
4 =

E2E4 − E6

3

E′
6 =

E2E6 − E2
4

2

∆′ = E2∆,

where ′ denotes differentiation with respect to 2πiτ .

We also recall the definition of the hypergeometric function 2F1 (a, b; c; z). For |z| < 1 and c different

from 0,−1,−2, . . ., we define 2F1 (a, b; c; z) via the infinite series

2F1 (a, b; c; z) =

∞∑
n=0

(a)n (b)n
(c)n n!

zn,

where

(a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1)

= Γ(a+ k)/Γ(a)

denotes the Pochhammer symbol. This function can be analytically continued to the entire complex plane,

with a branch cut along the real axis from z = 1 to z = ∞. For more on hypergeometric functions, see

Chapter 2 of [1].

Closely related is the function F1(a, b, z), defined initially for |z| < 1 via the infinite series

(2.1.2) F1 (a, b; z) =
∞∑
k=1

(a)k (b)k
k!2

k−1∑
j=0

(
1

a+ j
+

1

b+ j
− 2

1 + j

)
zk.

Like the hypergeometric function, F1(a, b, z) can be analytically continued.

These functions arise naturally in the study of solutions to the hypergeometric differential equation

(2.1.3) z(1− z)y′′ + [c− (a+ b+ 1)z]y′ − aby = 0.

Two linearly independent solutions to this differential equation when c = 1 (which will usually be the case

for us) are given by 2F1 (a, b; 1; z) and

2F1 (a, b; c; z) log z + F1(a, b, z).
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Moreover, the inverse of the J function J(τ) =
E3

4(τ)
1728∆(τ) can be described in terms of these functions; as

proven in [7] or [54] (or see [47] for a more recent treatment), if we consider the inverse to J and set

Φ3(J) = 2πiτ , then Φ3(J) is given by

Φ3(J) = log

(
1

J

)
+

F1

(
1
12 ,

5
12 ; 1/J

)
2F1

(
1
12 ,

5
12 ; 1; 1/J

) .
Using the differential equations for the modular functions given above, along with a bit of complex

analysis, Kaneko and Zagier first analyze the scalar product on R[j] which gives rise to the Atkin polynomials.

In terms of the normalized function J = j/1728, their result yields the following information.

Proposition 6. The following definitions of a scalar product on R[J ] coincide:

(i) (f, g) = the constant term of fg as a Laurent series in ∆;

(ii) (f, g) = the constant term of fgE2E4/E6 as a Laurent series in J−1;

(iii) (f, g) = the constant term of fgE2 as a Laurent series in q;

(iv) (f, g) = 6
π

´ π/2
π/3

f
(
eiθ
)
g
(
eiθ
)
dθ;

(v) (f, g) =
´ 1
0
f(J)g(J)w3(J)dJ, where

w3(J) =
−6

πJ1/2(1− J)1/22F1

(
1
12 ,

5
12 ; 1; 1/J

)2
Φ3(J)

.

We refer to the weight function w3 written above as the Atkin weight. Note that we are abusing notation

slightly, since in (iv) f and g should be thought of as functions of θ, while in (v) they are viewed as functions

of J . In practice, no confusion should arise. We omit the proof of this proposition, since we will prove a

generalization of it below.

Thinking about the scalar product in terms of (v), one can then define the generating function M of

the moments via the formal power series

M(x) =
∞∑
u=0

Iux
u,

where

Iu =

ˆ 1

0

Juw(J)dJ.

The key ingredient needed to prove the recursion formula for the Atkin polynomials is then the fact that

M satisfies

(2.1.4) M
(
1

J

)
=

2F1

(
13
12 ,

5
12 ; 1;

1
J

)
2F1

(
1
12 ,

5
12 ; 1;

1
J

) .
14



m Am

3 1/1728

4 1/256

5
√
5
(
2 +

√
5
)√5

/8000

6 1/108

8
(
3 + 2

√
2
)√2

/1024

10
√
5
(
1 +

√
5
)√5

/
(
500 · 2

√
5
)

∞ 1/64

Table 1. Values of Am for various m

From this, the classical theory of orthogonal polynomials combines with Gauss’ contiguous relations for

hypergeometric functions to give the recursion formula. To prove the recursion formula, therefore, one must

first prove (2.1.4).

Kaneko and Zagier prove (2.1.4) by combining two steps:

(1) 1
JM

(
1
J

)
= −d log∆

dJ ,

(2) ∆ = 2F1(1/12,5/12;1;1/J)
12

1728J .

These are the facts that we wish to generalize to the case of Hecke triangle groups Gm. To find the appropriate

generalization, we first recall that for each m ≥ 3 there exists a function Jm(τ) which conformally maps

the interior of the hyperbolic triangle with vertices at −e−πi/m, i, and i∞ to the upper half plane, such

that Jm
(
−e−πi/m

)
= 0, Jm(i) = 1, and Jm(i∞) = ∞. This function Jm is Gm invariant, is holomorphic

on H, and has a simple pole at i∞. As in the case m = 3, Jm(τ) also has a qm series expansion, where

qm = e2πiτ/λm , λm = 2 cos(π/m), such that

Jm(τ) =
Am
qm

+
∞∑
n=0

an,mq
nm,

where the an,m are real numbers, and the constant Am is determined by

logAm = −2
Γ′

Γ
(1) +

Γ′

Γ

(
3

4
− 1

2m

)
+

Γ′

Γ

(
3

4
+

1

2m

)
− π sec(π/m).

When m = 3 we have A3 = 1
1728 and J3(z)/A3 = j(z); moreover, it was proven by Wolfart that Am is

transcendental except in the cases when Gm is arithmetic, i.e. except when m = 3, 4, 6,∞ (see [77]). A table

of some values of Am for various m is presented in Table 1.

Also as in the case m = 3, if we consider the inverse function to Jm(τ) and set

2πiτ

λm
= Φm(J),
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then Φm(J) is a ratio of solutions to a certain hypergeometric differential equation (in fact, in many contexts

this is how the function Jm is defined). In particular, Φm is given by

Φm(J) = log

(
Am
J

)
+

F1 (αm, βm; 1/J)

2F1 (αm, βm; 1; 1/J)
,

where αm = 1
2

(
1
2 − 1

m

)
, βm = 1

2

(
1
2 + 1

m

)
(note that for a fixed m, we shall sometimes omit the dependence

on m and simply replace Jm by J). Such a function Φm is called a Schwarz triangle map; a thorough

discussion of these maps can be found in [7]. In general, for a hyperbolic triangle with angles πν, πµ, and

πλ, the corresponding hypergeometric function arising in the inverse to the analogue of the J function has

parameters

a =
1

2
(1− λ− µ− ν)(2.1.5)

b =
1

2
(1− λ+ µ− ν)(2.1.6)

c = 1− λ.(2.1.7)

The parameters αm, βm, and 1 are determined by the angles π/2, π/m, 0.

With this notation, we introduce the following proposition:

Proposition 7. Let m ≥ 3 be an integer. Then there exists an analogue of the Atkin weight, which we

denote wm, given by

(2.1.8) wm (J) =
−1

2παmJ1/2(1− J)1/22F1 (αm, βm; 1; 1/J)
2
Φm(J)

on [0, 1], so that the generating function of the moments associated to wm (denoted M = Mm) satisfies

(2.1.9) M
(
1

J

)
=

2F1

(
αm + 1, βm; 1; 1

J

)
2F1

(
αm, βm; 1; 1

J

) .

To prove this proposition, we must prove analogues of steps 1 and 2 for Gm. We will then show how

the recurrence equation for the generalized Atkin polynomials with k = 1 follows from this proposition, by

using Gauss’ contiguous relations.

2.1.2. Proving an analogue of step 1. Before we formulate and prove an analogue of step 1, we need

to generalize the scalar product on R[J ] given in the introduction. This, in turn, requires some background

on modular forms for Gm, which we briefly review now (see [28] for more details).

On Gm there are two canonical modular forms, typically denoted f0 and fi of weights 4
m−2 and 2m

m−2 ,

respectively. Of course, f0 and fi depend on m, but we suppress this dependence in the notation. In the

case m = 3 these modular forms are the familiar Eisenstein series E4 and E6, and as in the case m = 3, the
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modular forms f0 and fi satisfy

f0(Tmz) = f0(z)

fi(Tmz) = fi(z)

f0(Sz) = (−iz)
4

m−2 f0(z),

fi(Sz) = −(−iz)
2m

m−2 fi(z).

Of particular interest is the canonical cusp form ∆m on Gm. For m = 3 we defined the usual cusp form

∆3 = ∆ via the relations

∆ =
E3

4 − E2
6

1728
=
E3

4

j
.

In the same way, we can define ∆m via the relations

(2.1.10) ∆m = Am
(
fm0 − f2i

)
=
Amf

m
0

Jm
.

∆m is then a cusp form of weight 4m
m−2 for Gm.

We can use ∆m to define an analogue of the weight 2 Eisenstein series E2 in the case m = 3. One way

to define the weight 2 Eisenstein series is via the formula

d∆(τ)

dτ
= 2πiE2(τ)∆(τ).

In other words, the weight 2 Eisenstein series for Γ(1) is essentially the logarithmic derivative of ∆. For

general m, we can use a similar equation to define a function E2,m by

E2,m :=
∆′
m

∆m
,

where ′ denotes differentiation with respect to 2πiτ/λm (this ensures that the qm expansion of E2,m has

leading coefficient 1). By differentiating the functional equation ∆m

(
az+b
cz+d

)
= (−i(cz + d))

4m
m−2∆m(z), it

follows that for γ =

 a b

c d

 ∈ Gm,

(2.1.11) E2,m (γz) = (cz + d)2E2,m(z) +
2mλm

πi(m− 2)
c(cz + d).

We also need some information on the derivatives of f0, fi, ∆m, E2,m, and Jm. This information is provided

by the following lemma, and will be used heavily throughout the next two sections.

Lemma 8. Fix a whole number m ≥ 3. Then the following equalities hold:
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∆′
m = ∆mE2,m, E

′
2,m = m−2

4m

(
E2

2,m − fm−2
0

)
f ′0 =

E2,mf0−fi
m , f ′i =

E2,mfi−fm−1
0

2 , J ′
m = −Jmfi

f0
,

where ′ denotes differentiation with respect to 2πiτ/λm.

Proof. The first equality holds by definition of E2,m. For the second, it follows from (2.1.11) that

E′
2,m(τ)− m−2

4m E2
2,m(τ) is modular on Gm of weight 4. Since the space of modular forms on Gm of weight k

has dimension at most
⌊
k(m−2)

4m

⌋
+ 1 (a more precise dimension statement can be found in Chapter 5), the

space of modular forms of weight 4 has dimension 1, which means that

E′
2,m − m− 2

4m
E2

2,m = cfm−2
0

for some c, since fm−2
0 has weight 4. Considering the first term of the qm series expansion, it follows that

c = −m−2
4m .

A similar argument works for the derivatives of f0 and fi. In particular, from the modularity relation for

f0 it follows that f ′0 − 1
mE2,mf0 is modular of weight 2m

m−2 , so by dimension restrictions must be a multiple

of fi, and from the qm expansion the constant must be −1/m. Similarly, from the modularity relation for

fi it follows that f ′i − 1
2E2,mfi is modular on Gm of weight 4(m−1)

m−2 , so by dimension restrictions must be a

multiple of fm−1
0 , and from the qm expansion the constant must be −1/2. The last equation follows from

the previous ones, along with the second equality in (2.1.10). �

The desired generalized scalar product is now provided by the following analogue of Proposition 6.

Proposition 9. The following definitions of a scalar product (·, ·)m on R [Jm] are equivalent:

(i) (f, g)m = the constant term of fg as a Laurent series in ∆m,

(ii) (f, g)m = the constant term of fgE2,mf0/fi as a Laurent series in J−1,

(iii) (f, g)m = the constant term of fgE2,m as a Laurent series in qm;

(iv) (f, g)m = 2m
π(m−2)

´ π/2
π/m

f
(
eiθ
)
g
(
eiθ
)
dθ;

(v) (f, g)m =
´ 1
0
f (J) g (J)wm (J) dJ, where wm is given by (2.1.8).

Proof. The first three scalar products are equivalent since, by Lemma 8, we have the equalities

d∆m(τ)

∆m(τ)
=

2πi

λm
E2,m(τ)dτ = E2,m(τ)

dqm
qm

= −f0E2,m

fi

dJ

J
.

So it suffices to show that (iii) and (iv) are equivalent, and that (iv) and (v) are equivalent. To prove the

first equivalence, let Fm(Y ) denote a truncated fundamental domain for Gm\H for some fixed Y , in other
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words

Fm(Y ) = {z = x+ iy ∈ H : |z| ≥ 1, |x| ≤ λm, y ≤ Y } ,

with Gm−equivalent points on the boundary identified. We want to integrate f(τ)g(τ)E2,m(τ) around the

boundary of Fm(Y ).

By Cauchy’s Theorem, the integral must be zero, since E2,m is holomorphic on H. On the other hand,

the integrals along the left and right hand sides of the contour cancel, and the integral along the top is equal

to λm(f, g)m. Splitting the integral along the bottom circular arc into a contour from eπi/m to i and from i

to −e−πi/m, and using (2.1.11),

λm(f, g)m = −
ˆ i

ρm

f(τ)g(τ)E2,m(τ)dτ −
ˆ ρm

i

f(τ)g(τ)E2,m(τ)dτ

= −
ˆ i

ρm

f(τ)g(τ)
[
E2,m(τ)− τ−2E2,m(−1/τ)

]
dτ

=
2mλm

πi(m− 2)

ˆ i

ρm

f(τ)g(τ)
dτ

τ

=
2mλm
π(m− 2)

ˆ π/2

π/m

f
(
eiθ
)
g
(
eiθ
)
dθ

under the change of variables τ = eiθ. Dividing out by λm then gives the result.

For the equivalence between (iv) and (v), we observe that for θ in the range [π/m, π/2] ,

2πi

λm
eiθ = Φm

(
Jm
(
eiθ
))
,

so that if we view Jm = J as a variable on [0, 1], we have

dθ =
−λm
2πeiθ

Φ′
m(J)dJ.

=
Φ′
m(J)

iΦm(J)
dJ.

We now wish to find an expression for Φ′
m(J). By the definition of Φm, we see that Φm is a ratio of two

functions y1 and y2, where

y1(J) = 2F1 (αm, βm; 1; 1/J) ,

y2(J) = 2F1 (αm, βm; 1; 1/J) log

(
Am
J

)
+ F1 (αm, βm; 1/J) .

If we replace 1/J by w, we see that y1 and y2 viewed as functions of w satisfy the hypergeometric differential

equation (2.1.12) with a = αm, b = βm, and c = 1.
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Now, it is a general fact that if y1 and y2 are two solutions to a second order differential equation of the

form

y′′ + P (w)y′ +Q(w)y = 0,

then the Wronskian G = y1y
′
2 − y′1y2 satisfies G′ = −P (w)G, so that

G(w) = Ke−
´
P (w)dw

for some constant K. In particular, for y1 and y2 given above, we have

P (w) =
1− 3w/2

w(1− w)
=

1

w
+

1

2 (w − 1)

so that

G =
K

w(1− w)1/2

and

dΦm
dw

=
y1

dy2
dw − dy1

dw y2

y21

=
K

w(1− w)1/22F1 (αm, βm; 1;w)
2 .

Furthermore, by considering the limiting behavior as z → 0, it follows that K = 1. Therefore, by the chain

rule,

Φ′(J) =
dΦ

dw

dw

dJ

=
−1

J1/2(J − 1)1/22F1 (αm, βm; 1; 1/J)
2 ,

so that
2m

π(m− 2)
dθ = wm(J)dJ,

with wm(J) as defined by (2.1.8). Note the limits of integration with respect to J are 0 and 1 by basic

properties of the function Jm. �

With a firmer understanding of the scalar product for general m, we now state and prove a proposition

giving an analogue of step 1.

Proposition 10. The generating function M = Mm of the moments satisfies

1

Jm
M
(

1

Jm

)
= −d log∆m

dJm
.
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Proof. By Proposition 9, we see that the kth moment of the weight wm is the coefficient of J−k−1
m in

E2,mf0
Jmfi

as a series in J−1
m ; in other words,

1

Jm
M
(

1

Jm

)
=
E2,mf0
fiJm

.

On the other hand, we see that the right hand side is equal to −d log∆m

djm
by Lemma 8. �

2.1.3. Proving an Analogue of Step 2. An analogue of step 2 is a consequence of the following

proposition:

Proposition 11. f0 = 2F1 (αm, βm; 1; 1/Jm)
4

m−2 .

Proof. In general, the two independent solutions to the hypergeometric differential equation

(2.1.12) z(1− z)
d2y

dz2
+ [1− (a+ b+ 1)z]

dy

dz
− aby = 0

are given by the hypergeometric function 2F1(a, b; 1; z) and 2F1(a, b; 1; z) log z+F1(a, b; z), where F1 is given

by (2.1.2). Let g0 be a function satisfying (2.1.12) with a = αm, b = βm, and let g(z) = g0(1/Jm(z)). Using

the equations from Lemma 8, a straightforward calculation shows that g satisfies the following differential

equation: (
λm
2πi

)2
d2g

dz2
+

(
1

2
− 1

m

)
λm
2πi

(
fi
f0

− E2,m

)
dg

dz
+
fm−2
0

4Jm

(
1

4
− 1

m2

)
g = 0.

Another calculation shows that f
m−2

4
0 satisfies the same differential equation. It follows that

f0(z)
m−2

4 = A2F1 (αm, βm; 1; 1/Jm(z))

+B (F1 (αm, βm; 1/Jm(z))− 2F1 (αm, βm; 1; 1/Jm(z)) log Jm(z))(2.1.13)

for certain constants A and B.

To determine the values of A and B, note that the left hand side of (2.1.13) is constant at i∞, so B

must equal 0 to compensate for the fact that Jm(i∞) = ∞, so the logarithmic term diverges. Since the first

term in the qm expansion of f0(z) is 1, this then gives us that A = 1, and so the result holds. �

Combining this proposition with (2.1.10), we see that

(2.1.14) ∆m =
Amf

m
0

Jm
=
Am
Jm

2F1 (αm, βm; 1; 1/Jm)
4m

m−2 ,

and this is the desired analogue of Step 2.

We also obtain the following corollary immediately from this description of the function ∆m along with

(2.1.8):
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Corollary 12. The generalized Atkin weight wm(J) can be written as

wm(J) =
−2mA2αm

m

π(m− 2)J1/2+2αm(1− J)1/2∆m

(
λm

2πiΦm(J)
)2αm

Φm(J)
.

We will return to this description of the weight in Chapter 5.

2.1.4. Completing the Proof of Proposition 7. Let’s now combine the results from Propositions

10 and 11 to complete the proof of Proposition 7. This is analogous to the procedure carried out in [40], but

for sake of completeness we include the argument here.

Combining the two propositions, we see that

1

Jm
M
(

1

Jm

)
= −d log∆m

dJm

= −d
(
log

(
Am
Jm

2F1 (αm, βm; 1; 1/Jm)
4m

m−2

))
/dJm

=
1

Jm

(
1 +

2F
′
1 (αm, βm; 1; 1/Jm)

αmJm2F1 (αm, βm; 1; 1/Jm)

)
,

since α−1
m = 4m

m−2 . By Gauss’ contiguous relations (see [1] for more details), we also know

(2.1.15) 2F
′
1 (αm, βm; 1; 1/Jm) = αmJm (2F1 ((αm + 1, βm; 1; 1/Jm))− 2F1 (αm, βm; 1; 1/Jm)) .

Substituting this into the above expression and simplifying, we then get

M
(

1

Jm

)
=

2F1

(
αm + 1, βm; 1; 1

Jm

)
2F1

(
αm, βm; 1; 1

Jm

) ,

as desired.

2.2. Generating function of the moments when k ̸= 1

2.2.1. Defining a J function for k ̸= 1. Throughout the previous section we assumed k = 1. In

other words, we only considered the triangle function Jm mapping
{
−e−πi/m, i, i∞

}
to {0, 1,∞}. We made

this simplification to exploit the theory of modular forms for the Hecke groups Gm.

However, we will need to define scalar products on R[J ] for a larger family of triangle functions J

whenever m differs from 3, 4, 6, or ∞. In other words, in the general setting there is no longer only one

hyperbolic triangle to consider. In fact, as discussed in [10, 64] one can construct a triangle for each element

σk ∈ Gal (Q(cos(π/m)/Q) by mapping the vertex −e−πi/m to the vertex σk
(
−e−πi/m

)
= −e−πik/m for some

k coprime to m. Equivalently, one can view σ as acting on the generator Tm of the Hecke triangle group Gm
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via

σ

 1 λm

0 1

 =

 1 σ (λm)

0 1

 .

This mapping is not injective; in fact, for Hecke triangle groups it is two to one. The number of distinct

triangles that can be formed with this construction is equal to φ(m)/2, and without loss of generality we

may assume k < m/2. As usual φ denotes Euler’s Phi function, which counts the number of positive integers

less than m and coprime to m. In particular, note that φ(m) = 2 if and only if m = 3, 4, 6. For example,

when m = 5 there are two triangles: one with angles
(
0, π5 ,

π
2

)
, and one with angles

(
0, 2π5 ,

π
2

)
(for more on

the m = 5 case, see [64]).

Corresponding to any such triangle there is a triangle function, analogous to the function Jm we have

already considered (see [10] for more details). For any m ≥ 3 and any k coprime to m, we denote this J

function by Jm,k. If, as will sometimes be the case, m and k are not coprime, then we set Jm,k = J m
(m,k)

, k
(m,k)

,

which is well defined when k < m/2. We also define Jm,0 = J∞, because the case k = 0 will arise when m

is odd. Where no confusion will occur, we simply denote the triangle function as J .

The triangle functions Jm,k map
{
−e−πik/m, i, i∞

}
to {0, 1,∞} for any 3 ≤ m ≤ ∞ and any 1 ≤ k ≤ m/2

relatively prime to m. However, when the angles of the triangle are not of the form π/n for some positive

integer n (with n possibly infinite), the corresponding group is no longer discrete. As a consequence, the J

functions Jm,k can no longer be automorphic with respect to the group Gm,k generated by

S =

 0 1

−1 0



Tm,k =

 1 λm,k

0 1

 ,

where λm,k = 2 cos(πk/m). In fact, there can be no nonconstant automorphic forms with respect to such a

group.

Before discussing the inner product in this setting, we need a better understanding of the relationship

between the various functions Jm,k for m fixed and k coprime to m. The most important point is the fact

that if we set r = φ(m)/2, then there exists a complex analytic embedding F : H → Hr extending the action

of Gm on H. This well-known result was was proven in [10] and is discussed in several related papers, see

for example [3, 11, 65]. The embedding F is determined by r mappings fk satsifying

fk (γτ) = γkfk(τ)
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Figure 2.2.1. Commutative diagram for φk

for any γ ∈ Gm, where γk = σk(γ) and on both sides the group action is given by fractional linear transfor-

mation.

The functions fk can be described explicitly. For each fixed k, consider a biholomorphic mapping from

the interior of the hyperbolic triangle with vertices
{
−e−πi/m, i, i∞

}
to the interior of the hyperbolic triangle

with vertices
{
−e−πik/m, i, i∞

}
. Such a mapping can be constructed using Schwarz triangle maps and their

inverses. In particular, the function Jm = Jm,1 maps the first triangle to the upper half plane, and, in

analogue with the Schwarz triangle functions Φm, the function

Φm,k(w) = log

(
Am,k
w

)
+

F1 (αm,k, βm,k; 1/w)

2F1 (αm,k, βm,k; 1; 1/w)
,

maps the upper half plane to the second triangle. Here the parameters αm,k, βm,k, and Am,k are given by

αm,k =
1

2

(
1

2
− k

m

)
,(2.2.1)

βm,k =
1

2

(
1

2
+
k

m

)
,(2.2.2)

logAm,k = −2
Γ′

Γ
(1) +

Γ′

Γ
(1− αm,k) +

Γ′

Γ
(1− βm,k)− π sec (π (βm,k − αm,k)) .

These reduce to the previous formulas when k = 1. As before, Φm,k is a ratio of solutions to the hyperelliptic

differential equation, but with the relevant angle changed from π/m to kπ/m. Calculation of the term

logAm,k can be found in [7].

This mapping between the two triangles extends holomorphically to the boundary, and by Schwarz re-

flection can be reflected across the line from i to i∞, creating a biholomorphic mapping from the fundamental

domain Fm of Gm\H to the domain Fm,k, a set consisting of the points

{z : |z| > 1, |Rez| < cos(πk/m)}

along with the left boundary and the left half of the bottom boundary. As usual, the boundary of Fk,m

consists of pairs of points that are equivalent under the action of Gm,k.
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This gives us a mapping φk such that the diagram in Figure 2.2.1 commutes. In particular, Jm,k is

related to the inverse of Φm,k via the identity

Φm,k (Jm,k(τ)) =
2πiτ

λm,k
.

Since we can tessellate the upper half plane by images of Fm under Gm, one can continue to apply

Shwarz reflection to extend φk to an analytic mapping on the entire upper half plane; this extension is the

map fk described above. More details on this construction can be found in Section 3 of [10]. For the purposes

of understanding the inner product in this more general setting, we need only concern ourselves with the

mapping φk determined by the commutative diagram above, i.e.

φk (τ) =
λm,k
2πi

Φm,k (Jm(τ))

for τ ∈ Fm.

2.2.2. Construction of the inner product. With a better understanding of the functions Jm,k and

how they relate to one another, we can now prove the following analogue of Proposition 7 in the case of

general k.

Proposition 13. Let m ≥ 3 be an integer, and let k < m/2 be a fixed positive integer coprime to m.

Then there exists an analogue of the Atkin weight, which we denote wm,k, given by

(2.2.3) wm,k (J) =
−1

2παm,kJ1/2(1− J)1/22F1 (αm,k, βm,k; 1; 1/J)
2
Φm,k(J)

on [0, 1], so that the generating function of the moments associated to wm,k (denoted M = Mm,k) satisfies

(2.2.4) Mm,k

(
1

J

)
=

2F1

(
αm,k + 1, βm,k; 1;

1
J

)
2F1

(
αm,k, βm,k; 1;

1
J

) .

We prove this result by constructing an inner product for which the condition on Mm,k is clearly satisfied.

For fixed k and m coprime with k < m/2, we begin by defining an inner product (·, ·)m,k on R [Jk,m] = R [J ]

by setting

(f, g)m,k = the constant term of f(J)g(J) 2
F1

(
αm,k + 1, βm,k; 1;

1
J

)
2F1

(
αm,k, βm,k; 1;

1
J

)
as a Laurent series in J−1.
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Notice that this is completely analogous to definition (ii) of the scalar product (·, ·)m from Proposition 9,

since by Lemma 8, (2.1.14), and (2.1.15), we have =

E2,mf0
fi

= −∆′
m

∆

J

J ′

= 1 +
2F

′
1

(
αm, βm; 1; 1

J

)
2F1

(
αm, βm; 1; 1

J

)
=

2F1

(
αm + 1, βm; 1; 1

J

)
2F1

(
αm, βm; 1; 1

J

) .

With this definition, the inner product of Jn and 1 is simply the coefficient of J−n in the Laurent series

expansion of
2F1

(
αm,k + 1, βm,k; 1;

1
J

)
2F1

(
αm,k, βm,k; 1;

1
J

) ,

so that this ratio is the generating function of the moments, when viewed as a function of 1/J .

The more difficult part of the proof is showing that this inner product agrees with the one given in

terms of the weight wm,k. To prove this, we follow the type of argument used in Proposition 9. We begin

by considering a truncated domain

Fm,k(Y ) = {z = x+ iy ∈ Fm,k : y ≤ Y }

and suppose we want to integrate the function

(2.2.5)
λm,k
2πi

f (Jm,k(z)) g (Jm,k(z))
J ′
m,k(z)

Jm,k(z)

2F1

(
αm,k + 1, βm,k; 1;

1
Jm,k(z)

)
2F1

(
αm,k, βm,k; 1;

1
Jm,k(z)

)
over the boundary of Fm,k(Y ), oriented clockwise. Here the symbol ′ denotes the usual differentiation with

respect to the variable z.

We first claim this integral equals 0. To see this, note that the ratio of hypergeometric functions

2F1 (a+ 1, b; c; z)

2F1 (a, b; c; z)

is analytic in C\[1,∞) (see, for example, Theorem 1.5 of [44]). This means (2.2.5) is analytic everywhere

inside and on the boundary of Fm,k(Y ) except the bottom arc, since Jm,k maps the circular arc from

−e−πik/m to i to the interval from 0 to 1. Similarly, it maps the circular arc from eπi/m to i to the same

interval, since even though Jm,k is not automorphic in general, for z on the circular arc between −e−πik/m
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to i, there exists τ on the bottom arc of the boundary of Fm such that

Jm,k

(
−1

z

)
= Jm,k (Sz)

= Jm,k (Sφk(τ))

= Jm,k (φk (Sτ))

= Jm (Sτ)

= Jm(τ) = Jm,k(z).

In particular, if we consider the modified domain Fm,k(Y, ϵ) obtained by requiring that |z| > 1 + ϵ, then the

integral of (2.2.5) around the boundary of Fm,k(Y, ϵ) equals zero for any ϵ > 0 by Cauchy’s Theorem. Taking

ϵ→ 0 then gives the desired result for the original integral.

Similar to the calculation above, even though Jm,k is not automorphic with respect to σk (Gm) = Gm,k

for k ̸= 1, the above commutative diagram still ensures that if z is on the left hand side of the boundary of

Fm,k(Y ),

(2.2.6) Jm,k (z + λm,k) = Jm,k(z),

so that the integral along the left and right hand sides of the boundary cancel each other out. Therefore,

just as in the proof of Proposition 9, the integral consists of two opposite pieces: one along the path

C1 = {x+ iY : |x| ≤ λm,k/2} ,

and one along the path

C2 = {z = x+ iy : |z| = 1, |x| ≤ λm,k/2} .

For the integral along the top, we transform from the z variable to the variable Jk,m = J (we will

continue to abuse notation slightly, by letting J represent either a function or a variable, as suits our needs).

This change of variables transforms the integral to

λm,k
2πi

ˆ
Jm,k(C1)

f(J)g(J)
2F1

(
αm,k + 1, βm,k; 1;

1
Jm,k(z)

)
J2F1

(
αm,k, βm,k; 1;

1
Jm,k(z)

) dJ.

In these new variables, note that the path of integration is now a loop, because of (2.2.6). Moreover, since C1

and C2 are disjoint, and Jm,k maps C2 two-to-one to the interval [0, 1], we see that the closed path Jm,k (C1)

avoids the branch cut of the ratio of hypergeometric functions. Therefore, by the residue theorem the value
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of this integral is just the coefficient of J−1 in

λm,kf(J)g(J)
2F1

(
αm,k + 1, βm,k; 1;

1
Jm,k(z)

)
J2F1

(
αm,k, βm,k; 1;

1
Jm,k(z)

) ;

in other words, the integral along C1 is precisely −λm,k (f, g)m,k.

The integral along the bottom needs to be treated more carefully, since we are essentially integrating

along the branch cut of the ratio of hypergeometric functions. Note, however, that as in the k = 1 case we

can still split C2 into two pieces which are mapped onto each other via z 7→ − 1
z . In particular, we can write

λm,k (f, g)m,k =
λm,k
2πi

ˆ
C2

f (J(z)) g (J(z))
J ′(z)

J(z)

2F1

(
αm,k + 1, βm,k; 1;

1
J(z)

)
2F1

(
αm,k, βm,k; 1;

1
J(z)

) dz

=
λm,k
2πi

ˆ i

eπik/m

f (J(z)) g (J(z))
J ′(z)

J(z)

2F1

(
αm,k + 1, βm,k; 1;

1
J(z)

)
2F1

(
αm,k, βm,k; 1;

1
J(z)

) dz

− λm,k
2πi

ˆ i

−e−πik/m

f (J(z)) g (J(z))
J ′(z)

J(z)

2F1

(
αm,k + 1, βm,k; 1;

1
J(z)

)
2F1

(
αm,k, βm,k; 1;

1
J(z)

) dz.

On the second integral, we make the transformation z 7→ − 1
z . Since we’ve already seen that Jm,k(z) =

Jm,k
(
− 1
z

)
on C2, we see that

J ′(z) =

(
J

(
−1

z

))′

=
1

z2
J ′
(
−1

z

)
,

which tells us the second integral is the same as

−λm,k
2πi

ˆ i

eπik/m

f(J(z))g(J(z))
J ′(z)

J(z)

2F1

(
αm,k + 1, βm,k; 1;

1
J(−z−1)

)
2F1

(
αm,k, βm,k; 1;

1
J(−z−1)

) dz.

Here is where we must be careful. Since we are integrating along the branch cut, it is not true that

2F1

(
αm,k, βm,k; 1;

1
J(−z−1)

)
and 2F1

(
αm,k, βm,k; 1;

1
J(z)

)
must be equal. In order to proceed from here, we

need to make use of the following proposition.

Proposition 14. For z ∈ C2, the following transformation law holds:

(2.2.7) 2F1

(
αm,k, βm,k; 1;

1

J(−z−1)

)
= −iz2F1

(
αm,k, βm,k; 1;

1

J(z)

)
.

We will prove this proposition below; for now, let’s see how this proposition allows us to complete the

proof of Proposition 13.
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To simplify the notation, for the remainder of this section we set

F (z) = 2F1

(
αm,k, βm,k; 1;

1

J(z)

)
,

F+(z) = 2F1

(
αm,k + 1, βm,k; 1;

1

J(z)

)
.

If we know that (2.2.7) holds, then by taking the logarithmic derivative of both sides with respect to z,

we see that (
F
(
− 1
z

))′
F
(
− 1
z

) =
(F (z))

′

F (z)
+

1

z
.

On the other hand, by the contiguous relation (2.1.15) we know

F+(z)

F (z)
= 1− J(z)

αm,kJ ′(z)

F ′(z)

F (z)
,

which in turn implies
F+

(
− 1
z

)
F
(
− 1
z

) = 1− J(z)

αm,kJ ′(z)

(
F
(
− 1
z

))′
F
(
− 1
z

) .

Combining these three equalities then gives us the following:

F+

(
− 1
z

)
F
(
− 1
z

) =
F+ (z)

F (z)
− J(z)

αm,kτJ ′(z)
.

Returning to our above calculation of the original intergal,

(f, g)m,k =
1

2πi

ˆ i

eπik/m

f (J(z)) g (J(z))
J ′(z)

J(z)

[
F+(z)

F (z)
−
F+

(
− 1
z

)
F
(
− 1
z

) ] dz
=

1

2πiαm,k

ˆ i

eπik/m

f (J(z)) g (J(z))
dz

z
.

Now using the fact that

z =
λk,m
2πi

Φm,k (J) ,

and by changing variables once more, we obtain

(f, g)m,k =
1

2πiαm

ˆ 1

0

f(J)g(J)
Φ′
m,k(J)

Φm,k(J)
dJ.

The proof that

(2.2.8) wm,k(J) =
1

2πiαm,k

Φ′
m,k(J)

Φm,k(J)

is unchanged from the case where k = 1, so this completes the proof of Proposition 13 assuming Proposition

14 is true.
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We now turn our attention towards proving Proposition 14. This requires an understanding of how the

hypergeometric function transforms when we move across the branch cut. We will need a few transformation

laws for hypergeometric functions; a fairly exhaustive list of them can be found in the tables at the end of

Section 395 in [7].

The triangle function Jm,k(z) maps the triangle with vertices
{
−e−πik/m, i, i∞

}
to the upper half plane,

and maps the boundary of this triangle to the real axis. By Schwarz reflection it maps the triangle with

vertices
{
eπik/m, i, i∞

}
to the lower half plane, again mapping the boundary to the real axis. Therefore,

1/Jm,k(z) flips the ranges of these two functions, so that as z approaches the circular arc from −e−πik/m to

i from above, 1/Jm,k(z) approaches the branch cut of F+(z)
F (z) from below, while as z approaches the circular

arc from eπik/m to i from above, 1/Jm,k(z) approaches the branch cut of F+(z)
F (z) from above.

To understand the behavior near the branch cut, we recall the following transformation rule:

2F1 (a, b; c;w) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1 (a, b; a+ b+ 1− c; 1− w)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− w)c−a−b2F1 (c− a, c− b; 1 + c− a− b; 1− w) ,

provided c ̸= a + b. In particular, for the case a = αm,k, b = βm,k, c = 1, since αm,k + βm,k = 1
2 , we can

write this transformation as

2F1 (αm,k, βm,k; 1;w) =
Γ(1/2)

Γ (1− αm,k) Γ (1− βm,k)
2F1

(
αm,k, βm,k;

1

2
; 1− w

)
+

Γ(−1/2)

Γ (αm,k) Γ (βm,k)
(1− w)

1/2
2F1

(
1− αm,k, 1− βm,k;

3

2
; 1− w

)
.

For |w − 1| < 1, the hypergeometric functions on the right hand side of the above formula will both be

analytic, so the branching behavior of the left hand side is completely determined by the presence of the

(1−w)1/2 term on the right. From this it follows that, restricted to the set |w − 1| < 1, if we set w = u+ iv,

we have

lim
v→0+

2F1 (αm,k, βm,k; 1;w) + lim
v→0−

2F1 (αm,k, βm,k; 1;w)

=
Γ(1/2)

Γ (1− αm,k) Γ (1− βm,k)
2F1

(
αm,k, βm,k;

1

2
; 1− u

)
.

By our above analysis of how Jm,k behaves as z approaches C2 from above, the above equality in terms of

Jm,k becomes

(2.2.9) F (z) + F

(
−1

z

)
=

2Γ(1/2)

Γ (1− αm,k) Γ (1− βm,k)
2F1

(
αm,k, βm,k;

1

2
; 1− 1

Jm,k(z)

)
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for z on C2.

This doesn’t give us our desired transformation, but it does bring us one step closer. Next we apply

another transformation to handle the hypergeometric function on the right hand side of (2.2.9). Namely, we

have the following identity in the special case c = a+ b:

2F1 (a, b; a+ b; 1− w) = C2F1 (a, b; 1;w) +D (2F1 (a, b; 1;w) logw + F1 (a, b;w)) ,

where

C =
Γ(a+ b)

Γ(a)Γ(b)

(
2
Γ′

Γ
(1)− Γ′

Γ
(a)− Γ′

Γ
(b)

)
,

D = − Γ(a+ b)

Γ(a)Γ(b)
,

and we recall F1(a, b, z) is given by (2.1.2). More transformations like this will be given in the next chapter.

To apply the above transformation to the right hand side of (2.2.9) we must multiply everything by

2Γ(1/2)

Γ (1− αm,k) Γ (1− βm,k)
.

The effect of this on the constants C and D is easily obtained. For D,

2Γ(1/2)

Γ (1− αm,k) Γ (1− βm,k)
D

= − 2Γ(1/2)2

Γ (αm,k) Γ (1− αm,k) Γ (βm,k) Γ (1− βm,k)

= − 2

π
sin (παm,k) sin (πβm,k) ,

since Γ(1/2) =
√
π and

(2.2.10) Γ(x)Γ(1− x) = π csc (πx) .

Similarly, for C observe that

2
Γ′

Γ
(1)− Γ′

Γ
(αm,k)−

Γ′

Γ
(βm,k)

= 2
Γ′

Γ
(1)− Γ′

Γ
(1− αm,k)−

Γ′

Γ
(1− βm,k) + π cot (παm,k) + π cot (πβm,k)

= − logAm,k − π sec (π (βm,k − αm,k)) + π cot (παm,k) + π cot (πβm,k)

= − logAm,k + π sec (παm,k) sec (πβm,k) ,
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where we have applied the logarithmic derivative of (2.2.10) in the first step, and the definition of logAm,k in

the second step. The third step then follows from basic trigonometry, along with the fact that αm,k+βm,k =

1/2. This means that

C = − 2

π
sin (παm,k) sin (πβm,k) logAm,k + 2.

We are now ready to rewrite the right hand side of (2.2.9). By what we have just shown, it must equal

2

π
sin (παm,k) sin (πβm,k) [(π sec (παm,k) sec (πβm,k)− logAm,k)F (z)

+F (z) log Jm,k(z)− F1

(
αm,k, βm,k;

1

Jm,k(z)

)]
= − 2

π
sin (παm,k) sin (πβm,k)F (z) [Φm,k (Jm,k(z))− π sec (παm,k) sec (πβm,k)]

= − 2

π
sin (παm,k) sin (πβm,k)F (z)

[
2πiz

λm,k
− π sec (παm,k) sec (πβm,k)

]
.

Therefore, (2.2.9) becomes

F

(
−1

z

)
= − 2

π
sin (παm,k) sin (πβm,k)F (z)

[
2πiz

λm,k
− π sec (παm,k) sec (πβm,k)

]
− F (z)

=
−4i sin (παm,k) sin (πβm,k)

λm,k
zF (z)

= −izF (z),

again by basic trigonometry and the fact that λm,k = 2 cos (π (βm,k − αm,k)). This completes the proof of

Proposition 14.

One could obtain generalizations of some of the other formulations of the inner product (·, ·)m given in

Proposition 9, but this will not be necessary in what follows. The above argument works equally well in

the case k = 1, so actually we have provided two proofs of Theorem 7; one from the perspective of modular

forms, one from the perspective of hypergeometric functions. The former proof is a clearer analogue of the

result in [40], though is not as general as the result proven here.

In any event, with the proof complete we can safely conclude that regardless of the value of k, the

generating function associated to the moments of wm,k is a ratio solutions to the hypergeometric differential

equation, and this is what will allow us to prove the first part of Theorem 3.

2.3. The recurrence relation for generalized Atkin polynomials

The proof of the first part of Theorem 3 uses several well-known results; references to relevant proofs

are provided throughout. We assume a certain degree of familiarity with the basic theory of orthogonal

polynomials. There are many excellent references on the subject - see, for example, [14, 35, 69].
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To begin, we use the following result from the study of orthogonal polynomials, proven in [40]. Suppose

we have a weight w on some interval [a, b] and a corresponding sequence of orthogonal polynomials πn(x).

These polynomials will then satisfy a three-term recurrence of the form

πn+1(x) = (x− an)πn(x)− bnπn−1(x).

Let the sequence of moments given by this weight be denoted by {In}∞n=0, and let M(x) denote the generating

function corresponding to these moments. If we define the numbers {λn}∞n=1 by the equation

(2.3.1) M(x) = I0 + I1x+ I2x
2 + . . . =

I0

1− λ1x

1− λ2x
1−...

,

then

an = λ2n + λ2n+1(2.3.2)

bn = λ2nλ2n−1.(2.3.3)

In the case of the weights determined by the inner products defined above, we know that regardless of

the value of k,

(2.3.4) M
(
1

J

)
=

2F1

(
αm,k + 1, βm,k; 1;

1
J

)
2F1

(
αm,k, βm,k; 1;

1
J

) =
∞∑
n=0

In,m,k
Jn

,

and therefore, to determine the coefficients {λn,m,k}∞n=1 appearing in (2.3.1), it suffices to determine the

continued fraction expansion of the ratio of hypergeometric functions in the above equation.

By Gauss’s contiguous relations, it is well-known (see [1] for example) that

2F1 (a, b; c; z)

2F1 (a+ 1, b; c; z)
= 1− zb

c

1
2F1(a+1,b;c;z)

2F1(a+1,b+1;c+1;z)

,

and the contiguous relations can also be used to give the continued fraction expansion of 2F1(a+1,b;c;z)

2F1(a+1,b+1;c+1;z) .

It follows that
2F1 (a+ 1, b; c; z)

2F1 (a, b; c; z)
=

1

1− λ1z

1− λ2z
1−...

,

where

λ1 =
b

c
,

λ2n =
(a+ n)(c− b+ n− 1)

(c+ 2n− 2)(c+ 2n− 1)
,

λ2n+1 =
(b+ n)(c− a− 1 + n)

(c+ 2n− 1)(c+ 2n)
.
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Therefore, using the fact that αm,k + βm,k = 1/2, the ratio in (2.1.9) has corresponding coefficients λn,m

given by

λn,m,k =


βm,k, n = 1(

1
2 +

(−1)nαm,k

n

)(
1
2 +

(−1)nαm,k

n−1

)
, n > 1.

The formulas for an,m,k and bn,m,k then follow from the fact that αm,k = m−2k
4m , αm,k + βm,k = 1

2 , and the

identities (2.3.2) and (2.3.3).

The formulas for An,m,k for n ≤ 2 can be found directly by using the theory of orthogonal polynomials.

Given the moments, one can determine the orthogonal polynomials by computing determinants. For A1,m,k

and A2,m,k, the relevant expressions are

A1,m,k (J) = det

 1 I1,m,k

1 J

 ,

A2,m,k (J) =

det


1 I1,m,k I2,m,k

I1,m,k I2,m,k I3,m,k

1 J J2


det

 1 I1,m,k

I1,m,k I2,m,k


.

The first few moments In,k,m can be computed directly from the first few terms in the formal power series

expansion of the right hand side of (2.3.4). In particular, we find that

I1,m,k = βm,k

I2,m,k =
1

2
βm,k ((αm,k + 1) (βm,k + 1)− 2αm,kβm,k)

I3,m,k =
1

6
βm,k

(
α2
m,k

(
2β2

m,k − 3βm,k + 1
)
− 3αm,k

(
β2
m,k − 1

)
+ β2

m,k + 3βm,k + 2
)
.

The first part of Theorem 3 then follows after simplification.
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2.4. The closed formula for generalized Atkin polynomials

To prove part (ii) of Theorem 3, we first introduce four polynomials via the equations

Jn2F1

(
αm,k, βm,k; 1;

1

J

)
= U0

n,m,k (J) +O

(
1

J

)
,

Jn−1 (J − 1) 2F1

(
1− βm,k, 1− αm,k; 1;

1

J

)
= U1

n,m,k (J) +O

(
1

J

)
,

(J − 1)
n

2F1

(
αm,k, 1− βm,k; 1;

1

1− J

)
= V 0

n,m,k (J) +O

(
1

J

)
,

J (J − 1)
n−1

2F1

(
βm,k, 1− αm,k; 1;

1

1− J

)
= V 1

n,m,k (J) +O

(
1

J

)
.

One can think of these polynomials as truncated hypergeometric series.

The relationship between the polynomials Uδn,m,k and V ϵn,m,k and the Atkin-type polynomials An,m,k is

determined by the following proposition, which serves as a generalization of Proposition 4 of [40].

Proposition 15. The Atkin-type polynomials An,m,k have the following expressions in terms of the

polynomials introduced above:

An,m,k (J) =
n∑
ℓ=0

(−1)ℓ
(
n+ αm,k

ℓ

)(
n+ βm,k − 1

ℓ

)(
2n− 1

ℓ

)−1

U0
n−ℓ,m,k (J) ,

An,m,k (J) =
n∑
ℓ=0

(−1)ℓ
(
n− αm,k − 1

ℓ

)(
n− βm,k

ℓ

)(
2n− 1

ℓ

)−1

U1
n−ℓ,m,k (J) ,

An,m,k (J) =
n∑
ℓ=0

(
n+ αm,k

ℓ

)(
n− βm,k

ℓ

)(
2n− 1

ℓ

)−1

V 0
n−ℓ,m,k (J) ,

An,m,k (J) =
n∑
ℓ=0

(
n− αm,k − 1

ℓ

)(
n+ βm,k − 1

ℓ

)(
2n− 1

ℓ

)−1

V 1
n−ℓ,m,k (J) .

Proof. We prove the first of these formulas; the proof of the remaining three is similar. Denote the

right hand side of the first formula by A0
n,m,k (J). For n ≤ 2, one verifies the equality An,m,k = A0

n,m,k

directly. Therefore, by the first part of Theorem 3, it suffices to show that

(2.4.1) A0
n+1,m,k (J) = (J − an,m,k)A0

n,m,k (J)− bn,m,kA0
n−1,m,k (J) ,

where the recurrence coefficients an,m,k and bn,m,k are identical to the recurrence coefficients for the Atkin-

type polynomials, as given in the theorem.

Write A0
n,m,k (J) as

A0
n,m,k (J) =

n∑
ℓ=0

cm,k(n, ℓ)U
0
ℓ,m,k (J) .
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By direct computation, and using the fact that(
n+ x

n

)
= (−1)n

(
−x− 1

n

)
,

one finds that

cm,k(n, 0) = (−1)n
(
−αm,k − 1

n

)(
−βm,k
n

)(
2n− 1

n

)−1

,(2.4.2)

cm,k(n, ℓ) = cm,k(n, 0)

(
n

ℓ

)(
−n
ℓ

)(
−βm,k
ℓ

)−1(−αm,k − 1

ℓ

)−1

.(2.4.3)

Also, by definition of U0
ℓ,m,k,

JU0
ℓ,m,k − U0

ℓ+1,m,k = −
(
−αm,k
ℓ+ 1

)(
−βm,k
ℓ+ 1

)
.

Combining these facts, (2.4.1) becomes

n∑
ℓ=0

[cm,k(n+ 1, ℓ)− cm,k(n, ℓ− 1) + an,m,kcm,k(n, ℓ) + bn,m,kcm,k(n− 1, ℓ)]U0
ℓ,m,k(2.4.4)

+
n∑
ℓ=0

(
−αm,k
ℓ+ 1

)(
−βm,k
ℓ+ 1

)
cm,k(n, ℓ).

To complete the proof, we need to show this expression is 0 whenever n ≥ 2. Using the formulas for the

recurrence relations an,m,k and bn,m,k along with the relations

cm,k(n+ 1, ℓ) = − (n+ ℓ) (n+ βm,k) (n+ αm,k + 1)

2n (n− ℓ+ 1) (2n+ 1)
cm,k(n, ℓ),

cm,k(n, ℓ+ 1) =
(ℓ− n) (n+ ℓ)

(ℓ+ βm) (ℓ+ 1 + αm)
cm,k(n, ℓ),

one can show that the term in brackets in (2.4.4) is 0 for ℓ ≥ 1, and, by setting cm,k(n,−1) = 0, for ℓ = 0

the term in brackets equals

cm,k(n+ 1, 0) + an,m,kcm,k(n, 0) + bn,m,kcm,k(n− 1, 0)

= cm,k(n, 0)

[
− (n+ βm,k) (n+ αm,k + 1)

2(n+ 1)(2n+ 1)
+ an,m,k − bn,m,k

2n(2n− 1)

(n− 1 + βm,k) (n+ αm,k)

]
= cm,k(n, 0)

[
− (n+ βm,k) (n+ αm,k + 1)

2(n+ 1)(2n+ 1)
+

4n2 − 1 + 4αm,k(1− βm,k)

2(2n− 1)(2n+ 1)
− (n− βm,k) (n− αm,k − 1)

2(n− 1)(2n− 1)

]
= cm,k(n, 0)

αm,k (1− βm,k)

n2 − 1
.
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Therefore, we may rewrite (2.4.4) as

cm,k(n, 0)
αm,k (1− βm,k)

n2 − 1
+

n∑
ℓ=0

(
−αm
ℓ+ 1

)(
−βm
ℓ+ 1

)
cm(n, ℓ)

= αm,kcm,k(n, 0)

[
1− βm,k
n2 − 1

+
n∑
ℓ=0

βm,k + ℓ

(ℓ+ 1)2

(
n

ℓ

)(
n

−ℓ

)]

=
αm,kcm,k(n, 0)

n2 − 1

[
1− βm,k +

n∑
ℓ=0

(βm,k + n− ℓ)

(
n+ 1

ℓ

)(
1− n

n− ℓ+ 1

)]

=
αm,kcm,k(n, 0)

n2 − 1

[
n+1∑
ℓ=0

(
1− n

n− ℓ+ 1

)[
(βm,k − 1)

(
n+ 1

ℓ

)
− (n+ 1)

(
n

ℓ

)]]
,

where we have used the change of variables ℓ → n− ℓ in moving from the second line to the third. Finally,

we observe that the sum in the above expression represents the coefficient of the xn+1 term in

(1 + x)
1−n [

(βm,k − 1) (1 + x)n+1 − (n+ 1)(1 + x)n
]
,

and therefore vanishes for n ≥ 2, as desired. �

We will exploit the above proposition extensively in Chapter 4. It should be noted that this process can

be inverted; i.e. we can write the truncated hypergeometric series as sums of Atkin polynomials. However,

we shall not need this fact in what follows.

To see how the second part of Theorem 3 follows from this proposition, notice that for any 0 ≤ ℓ ≤ n,

U0
n−ℓ,m,k(J) = Jn−ℓ

n−ℓ∑
i=0

(αm,k)i (βm,k)i
i!2J i

=
n∑
i=ℓ

(
−αm,k
i− ℓ

)(
−βm,k
i− ℓ

)
Jn−i,

under the transformation i→ i+ ℓ. Therefore, using the first equation in Proposition 15, we have

An,m,k(J) =
n∑
ℓ=0

(−1)ℓ
(
n+ αm,k

ℓ

)(
n+ βm,k − 1

ℓ

)(
2n− 1

ℓ

)−1

U0
n−ℓ,m,k (J)

=
n∑
ℓ=0

n∑
i=ℓ

(−1)ℓ
(
n+ αm,k

ℓ

)(
n+ βm,k − 1

ℓ

)(
2n− 1

ℓ

)−1(−αm,k
i− ℓ

)(
−βm,k
i− ℓ

)
Jn−i

=

n∑
i=0

Jn−i

[
i∑

ℓ=0

(−1)ℓ
(
n+ αm,k

ℓ

)(
n− 1 + βm,k

ℓ

)(
2n− 1

ℓ

)−1(−αm,k
i− ℓ

)(
−βm,k
i− ℓ

)]
,

by interchanging the two sums. This last expression is precisely the one given in the theorem, so the proof

is complete.
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CHAPTER 3

The Family of Curves Fm

Now that we have proven the existence of Atkin type polynomials An,m,k, we would like to investigate

their zeros in order to prove Theorem 4. As stated in the introduction, the zeros of these polynomials are

closely related to properties of families of curves, denoted here by Fm. It is not yet clear, however, why

these particular families should arise. In this chapter, we explain how these curves emerge. This material is

independent from what follows, so the reader interested only in the proof of Theorem 4 can skip to the next

chapter.

We provide two explanations for the origins the family of curves Fm: one coming from monodromy, and

one coming from the fundamental domain Gm\H viewed as a space of isomorphism classes of curves in Fm.

3.1. Monodromy and hypergeometric functions

Fix an m ≥ 3. One way to explain the presence of the curves in Fm is that the monodromy group

associated to such a curve is precisely the Hecke triangle group Gm. However, there is some ambiguity in

what is meant by this phrase, so it is important to explain this terminology precisely.

3.1.1. Contemporary treatment of the monodromy group. In the more recent literature (e.g.

[81]), the Hecke triangle group Gm is described as the monodromy group of the hypergeometric differential

equation (2.1.3) where a = αm, b = βm = 1/2 − αm, and c = 1. As we have already discussed, such a

differential equation has two linearly independent solutions, but the explicit representation of these solutions

typically depends on whether one is in a neighborhood of 0, 1, or ∞. More precisely, near w = 0 one can

take

y1 = 2F1 (αm, βm; 1;w)

y2 = 2F1 (αm, βm; 1;w) logw + F1 (αm, βm;w)

as a system of independent solutions; near z = 1 one has the system

y3 = 2F1

(
αm, βm;

1

2
; 1− w

)
y4 = (1− w)

1/2
2F1

(
1− αm, 1− βm;

3

2
; 1− w

)
,
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and near ∞ one has the system

y5 = (−w)−αm
2F1

(
αm, αm;αm + 1− βm;

1

w

)
y6 = (−w)−βm

2F1

(
βm, βm;βm + 1− αm;

1

w

)
.

Relations between these systems were exploited in the proof of Proposition 14; specific examples can also be

seen below.

In this setting, a monodromy of the hypergeometric differential equation means a transformation of these

fundamental solutions as z moves in a positively oriented closed loop around 0, 1, or ∞. For example, as

w winds around 0, we see that y1 remains unchanged, while y2 transforms into y2 + 2πiy1. In other words,

in the basis of solutions {y2, y1}, a closed loop in a neighborhood around zero gives rise to the monodromy

matrix

M0 =

 1 2πi

0 1

 .

If we fix a basis of solutions, then each loop around one of the points 0, 1,∞ gives rise to a cor-

responding monodromy matrix M0,M1,M∞. The eigenvalues of these matrices are {1, 1}, {1,−1}, and{
e2πiαm , e2πiβm

}
, respectively, and the monodromy matrices satisfy

M0M1M∞ = I.

These monodromy matrices induce transformations on the variable z satisfying

(3.1.1)
2πiz

λm
= Φm(J) =

y2
y1

+ logAm,

where y2 and y1 are evaluated at w = 1/J . The matrix M0, when viewed as a fractional linear transformation

on ratios of solutions to the hypergeometric differential equation, maps Φm(J) to Φm(J) + 2πi. Since

2πiz/λm = Φm(J), the corresponding transformation on z is z 7→ z + λm. In other words, the monodromy

matrix M0 corresponds to the translation Tm.

Similarly, we have  y2

y1

 = Bm

 y4

y3

 ,

where

Bm =

 Γ(1/2)
Γ(αm)Γ(βm)

{
2π
λm

− logAm

}
Γ(−1/2)

Γ(1−αm)Γ(1−βm)

{
− 2π
λm

− logAm

}
Γ(1/2)

Γ(αm)Γ(βm)
Γ(−1/2)

Γ(1−αm)Γ(1−βm)

 ,
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(for this and other transformation matrices in more general settings, see [7]). Because y3 is unchanged as w

winds around a loop near 1, while y4 transforms into −y4, in the basis {y2, y1} the monodromy matrix M1

is given by

M1 = Bm

 −1 0

0 1

B−1
m ,

and so M1 maps y2/y1 to

− logAmy2/y1 + (2π/λm + logAm) (2π/λm − logAm)

y2/y1 + logAm
.

Once again, replacing y2/y1 by 2πiz/λm− logAm, we conclude that the monodromy matrix M1 corresponds

to the mapping z 7→ −1/z. In other words, M1 corresponds to S. Since the monodromy group is generated

by M0 and M1, it follows that this group, when viewed as a group of transformations of z, is precisely the

Hecke triangle group Gm.

One can also interpret the effect of one of the monodromies by recalling that 2F1 (a, b; c;w) satisfies

(3.1.2) 2F1 (a, b; c;w) =
Γ(c)

Γ(b)Γ(c− b)

1

(1− e2πib)
(
1− e2πi(c−b)

) ˆ
γ01

xb−1(1− x)c−b−1(1− wx)−adx,

where γ01 is a Pochhammer cycle around 0 and 1 (see Figure 3.1.1). In fact, we can view the above integral

as the integral of a differential form dx
y , where x and y satisfy the equation

(3.1.3) yN = xA (1− x)
B
(1− wx)

C
,

N is the least common denominator of a, b and c, and

A = N(1− b)

B = N(1 + b− c)

C = Na.
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Figure 3.1.1. A Pochhammer cycle around 0 and 1

In this way, the hypergeometric functions can be viewed as period integrals on the Jacobian of the curve

(3.1.3). In our present case, we see that

N =
4m

(m− 2,m+ 2)
,

A =
3m− 2

(m− 2,m+ 2)
,

B =
m+ 2

(m− 2,m+ 2)
,

C =
m− 2

(m− 2,m+ 2)
.

From the perspective of period integrals, as w winds around one of the points 0, 1,∞, this has the effect

of transforming the Pochhammer cycle. Integrating over a different path transforms the period, and therefore

the monodromy group acts on ratios of periods. To put it another way, since 1/w is a branch point of the

Riemann surface defined by (3.1.3), we are obtaining a monodromy group by rotating this branch point in

a closed loop around other branch points.

This is the point of view emphasized in the older works of [30, 78], and particularly the work of Richard

Morris in [53]. This series of papers appears to have been largely ignored, except for occasional references

lamenting this very fact (see [9]). However, it is from the latter paper that one obtains the family of curves

Fm.

3.1.2. Morris’s treatment of the monodromy group. The careful reader will observe that the

curves given by (3.1.3) in the case a = αm, b = βm, c = 1 are not the curves in the family Fm - in fact, they

do not even have the correct genus (the genus of a curve given by (3.1.3) can be computed quite explicitly,

see [2]). In contrast, Morris considers period integrals of the following general family of curves:

(3.1.4) yν = (x− r1)
α
(x− r2)

β
(x− r3)

γ
(x− r4)

δ
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Figure 3.1.2. The contour a1 (left) and its transformation when r2 and r3 are inter-
changed (right)

Figure 3.1.3. The contour b1 (left) and its transformation when r1 is rotated about
r2 positively (right)

where α, β, γ, δ ∈ N satisfy α+ β + γ + δ = 2ν. In general this curve has four branch points, one at each ri,

and the period integrals he considers depend on how many of the exponents are equal. As it turns out, we

need to consider the case when β = γ = ν/2.

If one considers the Riemann surface associated to such a curve, one can again construct monodromies

by rotating branch points around one another. The period integrals Morris considers are integrals of the

differential form dx/y over the curves a1 and b1, pictured on the left in Figures 3.1.2 and 3.1.3, respectively.

In each of these figures, the branch cuts are denoted by straight lines originating from each of the four branch

points, and each time the one of the contours crosses one of these branches, it moves onto another sheet of

the Riemann surface. Morris keeps careful track of how the contours depend on these sheets in his original

paper.

When β = γ, the monodromy group is generated by two branch point transformations. The first trans-

formation is the interchange of r2 and r3. The shape of the contour b1 is unchanged by this transformation,

though it is moved onto different sheets of the Riemann surface. The contour a1 is transformed into the
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contour shown in Figure 3.1.2. The second is the rotation of r1 about r2 once in the positive direction.

This first transformation does not change the shape of the contour a1, though it does shift the contour onto

different sheets; the transformation of b1 is shown in Figure 3.1.3.

If we consider the differential form dx/y, denote the integral of this form over a1 by A1, and denote the

integral of this form over b1 by B1, then Morris explicitly writes down how the ratio of periods w = A1/B1

transforms under these monodromies. The rotation of r1 about r2 corresponds to the transformation

w 7→ −e−2πiα/νw

w + 1
,

while the interchange of r2 and r3 corresponds to the transformation

w 7→ w + e−2πiα/ν − 1.

Note that because the exponents on r2 and r3 are the same, b1 need not be a Pochhammer cycle - replacing

the contour by a Pochhammer cycle simply alters the value of the period integral by a factor of 2.

If we set ν = 2m
(2,m) and α = 2αmν, (3.1.4) becomes

(3.1.5) y2m/(2,m) = (x− r1)
m−2
(2,m) (x− r2)

m
(2,m) (x− r3)

m
(2,m) (x− r4)

m+2
(2,m) .

Moreover, if we consider the complex variable τ , related to w by the transformation

w = −eπi/mτ + e2πi/m,

then the above transformations on τ become

τ 7→ 1

−τ + λm
= ST−1

m τ,

and

τ 7→ τ + λm = Tmτ,

respectively. Therefore, these monodromies once again generate the Hecke triangle group Gm.

However, the curves given by (3.1.5) are not the same as the curves given by (3.1.3) with a = αm,

b = βm, c = 1. In fact, if we transform three of the branch points to 0, 1, and ∞, say by setting

t =
x− r2
x− r4

r3 − r4
r3 − r2

,

43



then we can express A1 and B1 in terms of hypergeometric functions of the variable z, where

(3.1.6) z =
r4 − r1
r2 − r1

r2 − r3
r4 − r3

is a cross ratio of the branch points (the details of this will be given in Section 3.2). In particular, B1

essentially corresponds to a hypergeometric function in the variable z with a = 2αm, b = 1/2, c = 1. In the

terminology of Section 3.1.1, these values of a, b, c still give rise to a certain triangle group for the monodromy

group, but in this case we have

N =
2m

(2,m)
,

A =
m

(2,m)
,

B =
m

(2,m)
,

C =
m− 2

(2,m)
,

and the corresponding triangle group has signature (m,m,∞), which is an index two subgroup of the Hecke

triangle group Gm of signature (2,m,∞). How is it, then, that Morris obtains Gm as the monodromy group

rather than an index two subgroup of this group?

3.1.3. Resolving the two treatments of the monodromy group. The issue here is that the

hypergeometric function described in the previous section is a function of a cross ratio of the branch points,

while the hypergeometric functions in Section 3.1.1 are functions of the variable J = Jm. To understand how

these two variables are related, we first show how we get from the family of curves (3.1.5) to the family of

hyperelliptic curves Fm. The idea is to find a suitable birational transformation between these two families.

In fact, we prove a slightly more general statement.

Proposition 16. Let m > 3 be a whole number, and let k be a fixed number coprime to m and less than

m/2. Over an algebraically closed field, any curve of the form

(3.1.7) y2m/(2,m) = (x− r1)
m−2k
(2,m) (x− r2)

m
(2,m) (x− r3)

m
(2,m) (x− r4)

m+2k
(2,m)

is birationally equivalent to a curve in Fm.

Proof. To prove this result we need to find birational transformations between these curves in (x, y)

coordinates and the curves defining Fm, whose coordinates we will denote by (ξ, η) throughout so as to avoid

44



confusion. In other words, we need ξ and η to satsify

η2 = ξ2g+1+κm − 2aξg+1 + bξ1−κm

for some parameters a and b, where g and κm are given in the introduction.

The idea, first, is for ξ to satisfy

(3.1.8) ξm/(2,m) =
x− r1
x− r4

.

It’s not clear yet that such a ξ can be given as a rational transformation of x and y. If such a ξ exists,

however, then notice we can write

y2m/(2,m) =
[(x− r1) (x− r2) (x− r3) (x− r4)]

m
(2,m)

ξ2km/(2,m)2
.

If we take a formal m/(2,m)th root of the above expression, we get another relation between ξ, x, and y. In

particular, if we want ξ to satisfy (3.1.8) along with

ξ2k/(2,m) =
(x− r1) (x− r2) (x− r3) (x− r4)

y2
,

then this determines ξ uniquely as a rational function of x and y, since m/(2,m) and 2k/(2,m) are coprime.

We may therefore conclude that ξ is a rational function of x and y, and consequently x is a rational function

of ξ, since (3.1.8) implies that

(3.1.9) x =
r4ξ

m/(2,m) − r1
ξm/(2,m) − 1

.

Next, we define η0 by

η0 =
y (r1 − r4)

ξc (x− r4)
2

where

c =
1

2

(
g − 2k

(2,m)
+ 2κm − 1

)
∈ Z.

Since ξ can be written as a rational function of x and y, so can η0. Moreover, using (3.1.9) we see that y can

be written as a rational function of ξ and η0. Therefore, the change of variables from (x, y) to (ξ, η0) really

does represent a birational transformation.

Given our choice of ξ, we have

η20 =
y2 (r1 − r4)

2

ξ2c (x− r4)
4

= ξ1−κm
(x− r2) (x− r3) (r1 − r4)

2

(x− r4)
2 ,
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by our choice of c. Again using (3.1.9), it follows that

(x− r2) (x− r3) (r1 − r4)
2

(x− r4)
2 = (r4 − r2) (r4 − r3)

(
ξ2m/(2,m) − 2aξm/(2,m) + b

)
,

where

a =
1

2

(
r1 − r2
r4 − r2

+
r1 − r3
r4 − r3

)
b =

(
r1 − r2
r4 − r2

)(
r1 − r3
r4 − r3

)
.

Upon setting η = η0
[(r4−r2)(r4−r3)]1/2

, we obtain

η2 = ξ1−κm

(
ξ2m/(2,m) − 2aξm/(2,m) + b

)
= ξ2g+1+κm − 2aξg+1 + bξ1−κm ,

by definition of g. �

Remark. The reason for considering an arbitrary k coprime to m and less than m/2 in the above

statement, rather than simply the case k = 1, is because the monodromy groups for curves for general

k correspond to the non-discrete groups Gm,k (i.e. the Galois conjugates of Gm) corresponding to the

hyperbolic triangle with angles
(
0, πkm ,

π
2

)
at the vertices. As these triangles and groups have already appeared

in previous chapters, it is instructive to investigate the corresponding curves as well.

We can use the above proposition to understand the relationship between the cross ratio z given by

(3.1.6) and the variable J , defined in terms of the family of curves Fm as the ratio b
b−a2 . Writing a, b, and

z in terms of the branch points ri and solving for J in terms of z gives the identity

(3.1.10) J =
4 (z − 1)

z2
.

Let us now compare the monodromies discussed in the previous sections. From Section 3.1.1, we know

that when J winds around 0 once in the positive direction, we obtain the monodromy matrix M∞ = ST−1
m .

On the other hand, if we consider the mapping

(3.1.11) t =
x− r2
x− r4

r3 − r4
r3 − r2

,

where the ri denote the branch points of the curve (3.1.5), we see that r2 7→ 0 and r1 7→ 1/z, so that the

winding of r1 about r2 in the positive direction corresponds to the winding of 1/z about 0 in the positive

direction. We saw in Section 3.1.2 that this monodromy corresponds to ST−1
m as well. Also, by (3.1.10), for
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Figure 3.1.4. The transformation of z = eiθ

2 , 0 ≤ θ < 2π, under the mapping J

1/z sufficiently close to 0, this monodromy results in a winding of J about 0 once in the positive direction.

So it comes as no surprise that these give rise to the same matrix.

Next, consider what happens when 1/J winds around 0 once in the positive direction. This corresponds

to the monodromy matrix M0 given by the translation Tm. On the other hand, if we consider the mapping

(3.1.12) t =
x− r2
x− r4

r1 − r4
r1 − r2

,

we see this time that r2 7→ 0 while r3 7→ z, so that the interchange of r2 and r3 is equivalent to z winding

halfway around 0 in the positive direction. We know from above that this monodromy also corresponds to

the translation matrix Tm. On the other hand, this is not a monodromy of the cross ratio z in the traditional

sense, since z does not wind around a closed loop. If we wind z around 0 so that it ends up in its starting

position, this is the same as applying the translation matrix twice.

Comparing this to what happens with J , we see that when z winds around 0 once in the positive

direction, 1/J winds around 0 twice in the positive direction (see Figure 3.1.4). Therefore, we see that these

different families of curves are giving rise to the same “monodromy” groups because in the case of Morris,

one of the monodromies is really only half of a monodromy. If we let z make a full revolution around 0, the

corresponding group is indeed an index 2 subgroup of the Hecke group Gm.

Note that the relationship between z and J also becomes apparent through certain quadratic transfor-

mation formulas for hypergeometric functions. For example, it is well known that

2F1 (a, b; 2b; z) = (1− z)
−a/2

2F1

(
a

2
, b− a

2
; b+

1

2
;

z2

4(z − 1)

)
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when |arg (1− z)| < π. Another example is

2F1 (a, 1− a; c; z) = (1− z)
c−1

2F1

(
c− a

2
,
c+ a− 1

2
; c; 4z (1− z)

)
,

valid when the real part of z is less than 1.

Such quadratic transformation laws can be used to relate the period integrals encountered in Section

3.1.1 to the period integrals encountered in Section 3.1.2. For example, when a = 2αm, b = 1/2, the first

formula above becomes

(3.1.13) 2F1

(
2αm,

1

2
; 1; z

)
= (1− z)

−αm
2F1

(
αm, βm; 1;

1

J

)
.

Similarly, when a = 1
2 , c =

3
2 − 2αm, the second formula evaluated at 1/z becomes

(3.1.14) 2F1

(
1

2
,
1

2
;
3

2
− 2αm;

1

z

)
= (1− z)

1/2−2αm
2F1

(
1

2
− αm,

1

2
− αm;

3

2
− 2αm; J

)
.

We will apply these formulas in the next section.

3.2. Resolving definitions of Jm and exploring moduli spaces

We now turn towards a connection between points in Gm\H and isomorphism classes of curves in Fm.

Before embarking on such a discussion, though, we need to resolve the two different definitions of J that

have been presented thus far.

3.2.1. Two definitions of the J function. We have presented two definitions of Jm. One of them is

analytic, and gives Jm as a ratio of modular forms for the Hecke triangle group Gm (see equation (2.1.10)).

The other definition is algebraic, and is defined by the nonzero coefficients on the right hand side of an

equation defining a curve in Fm (see the statement of Theorem 4). In this section we will see how these two

definitions coincide. This will allow us to prove a result on isomorphism classes of hyperelliptic curves and

the space Gm\H, which does not appear to be present in the literature.

To make the connection between the analytic and algebraic definitions of Jm, we need to show that for

a curve

y2 = x1−κm
(
x2g+2κm − 2axg+κm + b

)
in Fm, we can associate a value τ ∈ H such that

b

b− a2
= J = Jm(τ) =

fm0 (τ)

fm0 (τ)− f2i (τ)
,

where, again, f0 and fi represent the canonical modular forms on Gm. Such a connection is made possible

by the work in the sections above.
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Throughout the remainder of this section, fix the same notation as in Section 3.1.2. If we begin with a

curve of the form (3.1.5), the key is to relate the cross ratio z to a value τ in the upper half plane. This can

be done with some careful calculation related to the ratio of period integrals A1/B1. First, note that the

value of the period B1 is defined by

B1 =

ˆ
b1

dx

y
.

In this case, without loss of generality we assume that

r1 = 1/z,

r2 = 0,

r3 = 1,

r4 = ∞

for some complex number z. We can reduce to such a case by means of the mapping (3.1.11) which sends r1

to 1/z where z is the cross ratio (3.1.6), though one needs to be more careful about the branching behavior

of the relevant complex roots. In any event, given this assumption, we see

ˆ
b1

dx

y
=

ˆ
b1

dx(
x− 1

z

)2αm
x1/2 (x− 1)

1/2
,

where b1 is as in Figure 3.1.3. In fact, because A/N = B/N = 1/2, the value of this integral is one half

of the integral over the Pochhammer cycle around 0 and 1. When combined with (3.1.2) and (3.1.13) we

obtain, for say Rez < 1/2,

B1 =
2π

i (−1/z)
2αm

2F1

(
2αm,

1

2
; 1; z

)
=

2π

i (−1/z)
2αm

2F1

(
αm, βm; 1;

1

J

)
.

In terms of the six solutions to the hypergeometric differential equation given at the beginning of Section

3.1.1, we have

B1 =
2π

i (−1/z)
2αm

(1− z)−αmy1(1/J),

where J is defined in terms of the cross ratio z by (3.1.10).

We can perform an analogous calculation with A1. In this case, a1 is a Pochhammer loop around 0 and

1/z, so by making the change of variables

t = zx,

we transform a1 to t (a1) , a Pochhammer cycle around 0 and 1. By (3.1.2) and (3.1.14), A1 then becomes
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A1 =

ˆ
a1

dx

y
=

1

iz1/2(−1/z)2αm

ˆ
t(a1)

dt

t1/2 (1− t)
2αm

(
1− t

z

)1/2
=

2eπi/mλm
iz1/2(−1/z)2αm

Γ
(
1
2

)
Γ (1− 2αm)

Γ
(
3
2 − 2αm

) 2F1

(
1

2
,
1

2
;
3

2
− 2αm; z

)

=
2eπi/mλm

iz1/2(−1/z)2αm

Γ
(
1
2

)
Γ (1− 2αm)

Γ
(
3
2 − 2αm

) (
1− z

−z

) 1
2−2αm

(
(−z)2

4 (1− z)

)β
y6(1/J).

where y6 is as given in beginning of Section (3.1.1).

If we now calculate the quotient A1/B1, many of the terms depending on z cancel, and since αm+βm =

1/2 we find

A1

B1
=

Γ
(
1
2

)
Γ (1− 2αm)

4βmiΓ
(
3
2 − 2αm

) λmeπi/m y6(1/J)
y1(1/J)

=
λme

πi/m

2πi

Γ (βm) Γ (1− αm)

Γ (βm + 1− αm)

y6(1/J)

y1(1/J)
,(3.2.1)

because of the standard transformation law for the Gamma function

Γ (1− αm) Γ

(
1

2
− αm

)
=

√
π22αmΓ (1− 2αm) .

We now have an expression for A1/B1 in terms of the algebraic definition of J . On the other hand, we

have previously defined

A1/B1 = −eπi/mτ + e2πi/m,

where monodromies of the branch points of the curve are equivalent to actions of Gm on τ . In particular,

for τ in the fundamental domain of Gm\H, by the analytic definition of Jm(τ) we have

2πiτ

λm
= Φm (Jm(τ))

=
y2 (1/Jm(τ))

y1 (1/Jm(τ))
+ logAm,

by (3.1.1). Combining this with (3.2.1), we find that the algebraic value J and the analytic function Jm(τ)

are related via the equation

2πieπi/m

λm
− Γ (βm) Γ (1− αm)

Γ (βm + 1− αm)

y6(1/J)

y1(1/J)
= Φm (Jm(τ)) .

Next, by the formulas in section 395 [7], we see that y6 is related to y1 and y2 via the equation

y6 =
Γ (βm + 1− αm)

Γ (βm) Γ (1− αm)
[(Cm + πi) y1 − y2] ,
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where

Cm = 2
Γ′

Γ
(1)− Γ′

Γ
(βm)− Γ′

Γ
(1− αm)

= − logAm +
Γ′

Γ
(1− βm)− Γ′

Γ
(βm)− π sec (π (βm − αm))

= − logAm + π cot (πβm)− π sec

(
π

(
2βm − 1

2

))
= − logAm + π cot (2πβm) ,

where we have applied (2.2.10) in the third line.

Writing Cm in terms of Am and using trigonometry we find

Φm (Jm (τ)) =
2πieπi/m

λm
− π cot (2πβm)− πi+Φm(J)

= Φm(J).

Taking inverses yields

τ =
λm
2πi

Φm (J)

=
λm
2πi

Φm

(
4 (z − 1)

z2

)
=

λm
2πi

Φm

(
b

b− a2

)
,

and so by applying Jm to both sides we obtain

Jm(τ) =
b

b− a2
= J,

as desired.

Note that these calculations can be interpreted within the framework of the Thomae formula, which can

be used to related periods of hyperelliptic integrals in terms of certain θ−constants to the branch points of

the curve. For more on this topic, see Thomae’s original treatment [74], as well as more recent discussions

in [19, 43, 70].

3.2.2. Isomorphism classes of curves in Fm. We now prove a result on the isomorphism classes

of curves in Fm, analogous to the statement relating isomorphism classes of elliptic curves to points in the

fundamental domain for G3\H. Our main result, which does not seem to appear anywhere in the literature,

associates to any τ in the fundamental domain of Gm\H an isomorphism class of hyperelliptic curves in Fm.
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We first record the following proposition which gives us an easy way to check whether or not two

hyperelliptic curves are isomoprhic. The interested reader can consult [49, 50] for more details.

Proposition 17. Let C1 and C2 be two hyperelliptic curves of genus g over C with affine equations

Ci : y
2 = fi(x)

where both of the polynomials fi have simple roots. Then any isomorphism between these curves is of the

form

(3.2.2) (x, y) 7→

(
ax+ b

cx+ d
,

ey

(cx+ d)
g+1

)

for some M =

 a b

c d

 ∈ GL2 (C) and some e ∈ C\{0}. Such an isomorphism is determined uniquely by

the class of pairs

(3.2.3)
(
wM,wg+1e

)
for z ∈ C\{0}.

We will rely on this proposition to prove the following theorem.

Theorem 18. The points τ ∈ H correspond to isomorphism classes of hyperelliptic curves in Fm via the

mapping

τ 7→ {Cτ}

where where {Cτ} denotes the isomorphism class of hyperelliptic curves containing the specific curve

Cτ : y2 = x1−κm

(
x2m/(2,m) − 2fi(τ)x

m/(2,m) + f0(τ)
m
)
.

Here f0 and fi are the canonical modular forms for Gm\H defined in Chapter 2. Moreover, two curves in

Fm are isomorphic if and only if their corresponding J values are equal, and therefore the above mapping

gives a bijection between points τ in Gm\H and isomorphism classes of hyperelliptic curves with invariant

Jm(τ).
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One direction in the proof of this theorem is fairly straightforward. Namely, suppose we have two curves

in Fm of the form

C1 : y2 = x1−κm

(
x2m/(2,m) − 2a1x

m/(2,m) + b1

)
C2 : y2 = x1−κm

(
x2m/(2,m) − 2a2x

m/(2,m) + b2

)
with equal J invariants, i.e.

b1
b1 − a21

=
b2

b2 − a22
.

From the previous section, we have seen there exists a τ ∈ H so that

bj
bj − a2j

=
fm0 (τ)

fm0 (τ)− f2i (τ)

for j = 1, 2. Without loss of generality we may assume bj ̸= 0, since otherwise the polynomial defining the

curve does not have simple roots. One can slightly modify the argument as in the proof of Theorem 4 in the

case bj = 0. We also continue to assume that bj ̸= a2j .

Based on these assumptions, the above equality implies that

bj =
fm0 (τ)

f2i (τ)
a2j .

Therefore, if we define an isomorphism ϕj = (Mj , ej), where

Mj =

 a
(2,m)/m
j 0

0 f
(2,m)/m
i (τ)

 ,

ej = a
1+

(2,m)
2m (1−κm)

j f
(2,m)
2m (1−κm)

i (τ) ,

then ϕj is an isomorphism between Cj and the curve Cτ . Thus, the curves are isomorphic via the isomorphism

ϕ = ϕ−1
2 ϕ1.

The other direction is a bit more complicated. Suppose we have two curves C1 and C2 in Fm which are

isomorphic. Again, we assume their J invariants are nonzero; if one invariant is zero and one is nonzero, the

curves have different genus and are therefore not isomorphic, while if both are zero there is nothing to show.

Given that the J invariants are nonzero, we must show they are equal.

First, note that any isomorphism of hyperelliptic curves is equivalent to an action on the roots of the

polynomial defining the curve under the action of some Möbius transformation. More specifically, given any
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isomorphism of the form (3.2.2), direct computation shows that the equation of the curve

y2 =

2g+1+ϵ∏
i=1

(x− αi)

transforms to

e2y2 = c1−ϵ
2g+1+ϵ∏
i=1

(a− αic)

[(
x−M−1∞

)1−ϵ 2g+1+ϵ∏
i=1

(
x−M−1αi

)]
.

Here ϵ = 0 or 1 according to the degree of f . By choosing w appropriately in (3.2.3), we can therefore

assume that the isomorphism transforms the equation of the curve to one of the form

y2 =
(
x−M−1∞

)1−ϵ 2g+1+ϵ∏
i=1

(
x−M−1αi

)
.

In other words, M as a Möbius transformation maps roots of C2 to roots of C1.

In the case of the family of curves in Fm, we may apply a birational transformation to convert each Cj

to a curve with equation of the form

y2 = x1−κm

(
xm/(2,m) − 1

)(
xm/(2,m) − σj

)
where each σj ̸= 0, 1 is related to Jj =

bj
bj−a2j

via

Jj =
−4σj

(1− σj)
2 .

We will show that J1 = J2 if C1 and C2 are isomorphic in the case m ≡ 2 mod 4; the other cases can be

proven similarly.

When m ≡ 2 mod 4, the equations of the curves Cj reduce to

y2 =
(
xm/2 − 1

)(
xm/2 − σj

)
.

If we let ωj be a root of the equation ωm/2j = σj , and let ζ = ζm/2 = e4πi/m, then the roots of the polynomial

on the right hand side are of the form ζkωδj for 1 ≤ k ≤ m/2 and 0 ≤ δ ≤ 1. Suppose an isomorphism

between these two curves exists. Our argument splits into two cases, depending on the size of the genus of

the curves.

If g ≥ 4, then since g = m/2 − 1 in the case under consideration, we see that the polynomial on the

right hand side of the equation defining Cj has at least ten roots. Of these roots, half are on the unit circle,

and half are on the circle {z : |z| = |wj |}. Because the number of roots on each circle is at least five, and

because a circle can intersect a pair of concentric circles in at most four points, this means the pair of circles

{z : |z| = 1} and {z : |z| = |w2|} is mapped to the pair of circles {z : |z| = 1} and {z : |z| = |w1|}. This is
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true because otherwise, at least one of the roots on one of the first pair of circles could not all intersect the

second pair of circles, which is a contradiction because we have assumed the existence of an isomorphism.

In fact, if we replace M by  1/w1 0

0 1


ϵ

M

for ϵ ∈ {0, 1} as necessary, we may assume our Möbius transformation sends the unit circle to itself and the

circle of radius r2 = |w2| to the circle of radius r1 = |w1|(−1)ϵ . Proving the result for such a modified M

then gives the result for the original isomorphism.

We now recall some standard facts about Möbius transformations. First, it is well known that any

Möbius transformation mapping the unit circle to itself can be written in the form α β

β α

 ,

for some complex numbers α and β. This can be seen by mapping the unit circle to the real axis and

classifying all Möbius transformations which preserve the real axis. It is also known (see for example [23])

that any Möbius transformation mapping a pair of concentric circles to a pair of concentric circles preserves

the ratio of the radii of the circles.

Combining these facts with the observations from the previous paragraph, without loss of generality

there exist complex numbers α and β such that for for any θ, our Möbius transformation satisfies∣∣∣∣αr2eiθ + β

βr2eiθ + α

∣∣∣∣ = r1,

where r1 = r2 or r1 = 1/r2. This is equivalent to the statement that

2r2
(
r21 − 1

)
Re
(
αβeiθ

)
= |α|2

(
r22 − r21

)
+ |β|2

(
1− (r1r2)

2
)
.

If r1 = r2, the first term on the right hand side fanishes, and the equation reduces to

(
1 + r21

)
|β|2 + 2r1Re

(
αβeiθ

)
= 0,

which implies β = 0 since the first term is always positive and θ can be chosen arbitrarily. Similarly, if

r1 = 1/r2 it follows that α = 0. Hence, because we know M maps roots of C2 to roots of C1, it follows that

either M is either a rotation or the composition of a rotation and an involution. Therefore either σ1 = σ2

or σ1 = σ−1
2 ; in either case, J1 = J2, as desired.
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If g < 4, then g = 2 (equivalently m = 6). In this case the polynomials defining each curve have only

six roots, three each on two concentric circles. In this case our argument from above may fail, because there

are insufficiently many roots on each circle.

Consider the Möbius transformation M =

 a b

c d

 from the roots of C2 to the roots of C1. If M

maps the pair of concentric circles formed by the roots of C2 to the pair of concentric circles formed by the

roots of C1, then our previous argument applies. Otherwise, M maps exactly two roots on the unit circle to

two roots on the unit circle or exactly one root on the unit circle to one root on the unit circle. By replacing

M by  1/w1 0

0 1


ϵ

M

 ζ 0

0 1


k 0 w2

1 0


δ

and w1 by w(−1)ϵ

1 as necessary for some k ∈ {0, 1, 2} and some δ, ϵ ∈ {0, 1}, we may assume without loss of

generality that M maps exactly two roots on the unit circle to two roots on the unit circle, and moreover

M(1) = 1. We therefore need only consider the four cases M (ζ) = ζ, M (ζ) = ζ2, M
(
ζ2
)
= ζ, M

(
ζ2
)
= ζ2.

In the first case, M(1) = 1 and M(ζ) = ζ implies that

a+ b = c+ d,

aζ + b = cζ2 + dζ;

solving for a and b in terms of c and d gives

M =

 d− cζ2 −cζ

c d

 .

If c = 0, M acts as the identity which is a contradiction, since we have assumed the existence of a point on

the unit circle which is not mapped to the unit circle by M . Therefore we may assume c is nonzero and we

can replace M by

M =

 u− ζ2 −ζ

1 u


for the complex number u = d/c.

Renaming w2 by ζw2 or ζ2w2 as necessary, we may assume that M (w2) = ζ2 for convenience, or

equivalently w2 = ζ2u+ζ
u−2ζ2 . Therefore, the images of M

(
ζ2
)
, M (ζw2) and M

(
ζ2w2

)
must correspond to w1,
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ζw1, and ζ2w1, respectively. In particular, this means

M (ζw2)

M (ζ2w2)
= ζj ,

M
(
ζ2
)

M (ζ2w2)
= ζ−j ,

for some j ∈ {1, 2}. Writing these equations in terms of u gives us two polynomials, which have no common

root unless j = 2. In this case, we have solutions when u = ζ2

2

(
1±

√
3
)
, but in these cases one still obtains

σ1 = 1/σ2 so that the J invariants are equal.

Finally, replacing M by  0 1

1 0


m

M

 0 1

1 0


n

for some {m,n} ∈ {0, 1} × {0, 1} allows us to apply the same argument to the other three cases mentioned

above. So in any case, an isomorphism of curves in F6 implies the J invariants of the curves are equal, as

was to be shown.
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CHAPTER 4

Zeros of Generalized Atkin Polynomials

We now turn our attention to the zeros of generalized Atkin polynomials modulo primes. We will prove

the result in full generality, though things simplify somewhat in the arithmetic cases m = 3, 4, 6,∞. As we

will see, the roots of Atkin-type polynomials in the general setting no longer detect supersingularity. Instead,

they detect whether or not a curve is ordinary. In order to fully understand the statement of Theorem 4, we

begin with some preliminary information.

4.1. Supersingularity and the Hasse-Witt matrix of a hyperelliptic curve

4.1.1. Supersingularity in general. Let us first recall what it means for a curve to be supersingular

over a field of characteristic p, since this will turn out to be the condition detected by the Atkin polynomials

in the arithmetic cases m = 3, 4, 6,∞. In the case of an elliptic curve there are several equivalent definitions,

all of them summarized by the following theorem (see, for example, [21] or [68]):

Theorem 19. Let E be an elliptic curve over a finite field Fq where q = pn, p prime. Write the

characteristic polynomial of the Frobenius endomorphism π (i.e. the endomorphism induced on the curve by

the endomorphism x → xq of Fq) as P (X) = X2 − apX + q, or, equivalently, write #E (Fq) = q + 1 − ap.

Then the following conditions are equivalent:

(i) The endomorphism ring of E over Fq is an order in a quaternion algebra.

(ii) E has no points of order p.

(iii) ap ≡ 0 mod p.

(iv) There exists an integer k such that πk = ±qk/2.

If any of the above conditions hold, E is said to be supersingular.

One can show that the number of supersingular polynomials modulo a fixed prime p is finite, and one

can therefore construct, for any such p, a polynomial

ssp(J) :=
∏
E/Fp

E supersingular

(J − J(E)) ∈ Fp[j]
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whose zeros are precisely the J invariants of supersingular elliptic curves. As it turns out, the coefficients

of this polynomial lie in Fp, and Atkin proved that the supersingular polynomial is congruent to Anp(J) =

Anp,3,1(J) mod p, where np = deg ssp(J). See Theorem 2 for the precise statement.

A proof of this theorem can be found in [40]. Note that J is a more natural parameter to consider

than j = 1728J , since in general Am will be transcendental. In particular, if we define monic orthogonal

polynomials in terms of the variable jm = Jm/Am, the value Am will appear in the recurrence relations

and the closed formula for the Atkin polynomials, making it difficult to consider the reduction of these

polynomials mod p in the nonarithmetic cases. By considering Jm, the generalized Atkin polynomials do

not depend on Am, so the reduction of these polynomials mod p proceeds smoothly.

In the cases m = 4, 6, the curves in Fm are no longer elliptic, and so we need a more general notion of

supersingularity in order to discuss these cases. Such a generalization is provided for us in [57]:

Definition. Let A be an abelian variety defined over a finite field Fq. A is called supersingular if A is

isogenous over Fq to a product of supersingular elliptic curves. Similarly, a curve C defined over Fq is said

to be supersingular if the Jacobian of C is supersingular.

It is shown in [57] that this definition can be strengthened without loss of generality; in fact, the relevant

isogeny can be defined over a finite extension of Fq, and moreover, since all supersingular elliptic curves are

isogenous, one can assume that a supersingular curve C has Jacobian isogenous to Eg, where E is a single

supersingular elliptic curve, and g is the genus of C.

To further motivate this definition of supersingularity, consider the following analogue of Theorem 19

(see [21] for more details).

Theorem 20. The following conditions for an abelian variety A over Fq of genus g are equivalent:

(i) A is supersingular.

(ii) For some positive integer k, the characteristic polynomial of the Frobenius endomorphism π on A

over Fq is given by P (X) = (X ± qk/2)2g.

(iii) For some positive integer k, #A (Fq) = (qk/2 ± 1)2g.

(iv) For some positive integer k, πk = ±qk/2.

In terms of the Frobenius (condition (iv)), this theorem shows the notion of supersingularity for general

varieties is the same as the notion of supersingularity fo elliptic curves. From a more practical standpoint,

however, it is sometimes more useful to have an analogue of condition (iii) of Theorem 19, rather than

condition (iv). To state such an analogue, we first list the following useful properties of the characteristic

polynomial of Forbenius (see [21]).
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Theorem 21. Let C be a curve of genus g over a finite field Fq, and let P (X) =
∏2g
i=1(X − αi) be the

characteristic polynomial of the Frobenius endomorphism on the Jacobian of C. Then P (X) satisfies the

following conditions.

(i) (Riemann Hypothesis): The roots of P (X) are algebraic integers and all have modulus equal to √
q.

(ii) The αi come in complex conjugate pairs, so without loss of generality we may assume αiαi+g = q

for 1 ≤ i ≤ g.

(iii) P (X) can be written in the form

P (X) = X2g + a1X
2g−1 + a2X

2g−2 + . . .+ agX
g + ag−1qX

g−1 + ...+ a1q
g−1X + qg,

where the coefficients ai ∈ Z are, up to sign, the elementary symmetric polynomials of the αi.

(iv) For any r ≥ 1,

#C (Fqr ) = qr + 1− tr,

where tr =
∑2g
i=1 α

r
i .

(v) For any r ≥ 1,

#J (Fqr ) =
2g∏
i=1

(1− αri ) .

Bearing in mind statement (iii) of the previous theorem, we now state the analogue of Theorem 19

(proven in [21]):

Theorem 22. Suppose A is an abelian variety of genus g over Fq, q = pn. Denote the characteristic

polynomial of the Frobenius by

P (X) = X2g + a1X
2g−1 + a2X

2g−2 + . . .+ agX
g + ag−1qX

g−1 + ...+ a1q
g−1X + qg.

Then A is supersingular if and only if

p⌈rn/2⌉ | ar

for 1 ≤ r ≤ g.

It is possible to apply these fundamental results on supersingularity and higher genus curves to prove

Theorem 4 in the arithmetic cases. In fact, one may make use of Theorem 21 to translate the problem of

divisibility of the coefficients of P (X) mod p given in Theorem 20 into a point counting problem for genus 2

curves over finite fields. This approach also requires some classical results on the mod p reduction of binomial

coefficients (see [51, 62]). We avoid this approach, however, in favor of an argument treating all values of m

simultaneously.
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4.1.2. Hasse-Witt matrices and ordinary curves. The general case of m ≥ 3 requires a bit more

background. We first introduce some additional material from the study of hyperelliptic curves. For related

references, see [18, 22, 55, 56, 76, 80].

Fix an algebraically closed field k of characteristic p > 2, and consider a hyperelliptic curve C defined

over k given by a non-singular affine equation of the form

(4.1.1) y2 = f(x),

where f(x) has degree 2g + 1 or 2g + 2, and g is the genus of the curve. One can easily compute the

Hasse-Witt matrix A of C given the function f , by the following procedure. If we define the coefficients ck

by the equation

(4.1.2) f(x)
p−1
2 =

p−1
2 deg f∑
k=0

ckx
k,

then the Hasse-Witt matrix for A is the g × g matrix

A = [cig−j ]
g
i,j=1 .

Example 23. Consider an elliptic curve E over k of characteristic p > 2 given by an equation in Legendre

normal form:

y2 = x(x− 1)(x− λ)

for some λ ̸= 0, 1. In this case, it is well known that the Hasse-Witt matrix reduces to the so-called Hasse

invariant for E, given by the following polynomial in λ:

W (λ) =

p−1
2∑

k=0

(p−1
2

k

)2

λk.

See [5, 29, 68] for more information on this polynomial.

In the case of elliptic curves, the Hasse-Witt matrix detects supersingularity. More specifically, an elliptic

curve given in Legendre normal form is supersingular if and only if λ is a root of the above polynomial. As

we will see shortly, in the general case we are no longer detecting supersingularity, but there is a natural

analogue of what happens in the elliptic curve case. First, we recall the following theorem proven in [80].

Theorem 24. Let C be a hyperelliptic curve of genus g defined by an equation of the form (4.1.1) over

the field Fpa for some a > 1. Let Jac(C) denote the Jacobian of C over this finite field, let π denote the

Frobenius endomorphism of J(C) relative to this finite field, let Pπ denote the characteristic polynomial of
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π, let A denote the Hasse-Witt matrix of the curve, and let

Aπ = AA(p) . . . A(p
a−1),

where

A(pr) =
[
cp

r

ig−j

]g
i,j=1

,

i.e. the coefficients of A(pr) are the pr-th powers of the coefficients of A. Then the following statements are

equivalent:

(i) detAπ ̸= 0.

(ii) detA ̸= 0, i.e. A has rank g.

(iii) AA(p) . . . A(p
g−1) has rank g.

(iv) There are pg points on Jac(C) killed by p in the algebraic closure of Fpa (in other words, the p-rank

of Jac(C) equals g).

(v) Pπ(λ) has g p-adic unit roots in Qp.

There are other equivalent conditions listed in [80], but we shall not need them here. The theorem above

motivates the following definition:

Definition 25. If any of the equivalent statements in Theorem 24 hold, the Jacobian Jac(C) is said to

be ordinary, and we call C an ordinary curve.

As seen in the statement of Theorem 4, it is this notion of ordinariness that is captured by the roots of

generalized Atkin-polynomials. It is proven in [80] that, in the notation of the above theorem, A = 0 is a

sufficient condition for a curve to be supersingular, though not necessary. Of course, the condition A = 0 is

much stronger than the condition that the curve is ordinary.

After proving some necessary preliminary lemmas, we will prove Theorem 4. We will then investigate

the finitely many arithmetic cases, and will conclude with some examples and corollaries of the main result.

4.2. Preliminary results

There are several intermediate results that will be required to prove Theorem 4. Some of them can be

stated and proven before we turn to the main result. Here we collect these necessary preliminaries.

We begin with an elementary lemma on the discriminants of the polynomials appearing in the family of

curves Fm.

Lemma 26. (i) When m ≡ 0 mod 4, the discriminant of the polynomial x
(
xm − 2axm/2 + b

)
is equal to

mmb
m
2 +1(b− a2)

m
2 .
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(ii) When m ≡ 2 mod 4, the discriminant of the polynomial xm − 2axm/2 + b is equal to

−mmb
m
2 −1(b− a2)

m
2 .

(iii) When m is odd, the discriminant of the polynomial x
(
x2m − 2axm + b

)
is equal to

−(2m)2mbm+1(b− a2)m.

Proof. This follows by direct computation from a well known result (see, for example, Proposition

12.1.4 of [34]) that the discriminant of a degree n monic polynomial f with roots αi is equal to

(−1)n(n−1)/2
n∏
i=1

f ′ (αi) .

�

As a consequence of this result, a given curve in Fm is automatically singular over a field of characteristic

p only if p | 2m . This is why we exclude such primes in the statement of Theorem 4.

Our next two results concern the reduction of certain multinomial coefficients mod p.

Lemma 27. For 0 ≤ r ≤ ⌊u/2⌋,

4−r
( p−1

2

r, u− 2r, p−1
2 − u+ r

)
≡
(p−1

2

u

)(−u
2

)
r

(
−u

2 + 1
2

)
r

r!
(
−u+ 1

2

)
r

mod p.

Proof. First, when r equals 0, both sides are equal to
( p−1

2
u

)
. Next, if the congruence holds for a whole

number r < ⌊u/2⌋, then

4−r−1

( p−1
2

r + 1, u− 2r − 2, p−1
2 − u+ r + 1

)

= 4−r
( p−1

2

r, u− 2r, p−1
2 − u+ r

)
(u− 2r) (u− 2r − 1)

4 (r + 1)
(
p+1
2 + r − u

)
≡

(p−1
2

u

)(−u
2

)
r

(
−u

2 + 1
2

)
r

r!
(
−u+ 1

2

)
r

(
−u

2 + r
) (

−u
2 + r + 1

2

)
(r + 1)

(
−u+ r + 1

2

)
=

(p−1
2

u

)(−u
2

)
r+1

(
−u

2 + 1
2

)
r+1

(r + 1)!
(
−u+ 1

2

)
r+1

.

Therefore, the result holds by induction. �

Lemma 28. For any 1 ≤ u ≤ p−1
2 , we have

(−2)u
(p−1

2

u

)
≡

(
1
2 − u

)
⌊u/2⌋ (−1)

⌊u/2⌋⌊
u
2

⌋
!

mod p.
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Proof. We prove the result by induction on u. When u = 0 or u = 1 the result is clear, as both sides

are congruent to 1 mod p. For the induction step, we first note that

(4.2.1) (−2)u+1

( p−1
2

u+ 1

)
= (−2)u

(p−1
2

u

)
(−2)

(
p−1
2 − u

)
u+ 1

,

and then split into two cases.

Case 1: u even. In this case, the induction hypothesis combines with (4.2.1) to give us

(−2)u+1

( p−1
2

u+ 1

)
≡

(
1
2 − u

)
u/2

(−1)
u/2

u
2 !

2u+ 1

u+ 1

=

(
1
2 − (u+ 1)

)
u/2

(−1)
u/2

u
2 !

,

since (
1
2 − (u+ 1)

)
u/2(

1
2 − u

)
u/2

=
1
2 − u− 1

1
2 − u+ u

2 − 1
=

2u+ 1

u+ 1
.

Case 2: u odd. In this case, again combining the induction hypothesis with (4.2.1), we see that

(−2)u+1

( p−1
2

u+ 1

)
≡

(
1
2 − u

)
u−1
2

(−1)
u−1
2

u−1
2 !

2u+ 1

u+ 1
.

This time, we have
2u+ 1

u+ 1
=

1
2 + u
u+1
2

= −

(
1
2 − (u+ 1)

)
u+1
2(

1
2 − u

)
u−1
2

u+1
2

,

so the above expression simplifies to (
1
2 − (u+ 1)

)
u+1
2

(−1)
u+1
2

u+1
2 !

.

Combining these two cases, we see the result holds by induction. �

We also need the following results on hypergeometric functions.

Lemma 29. 2F1 (a, b; c;x) satisfies the same second order differential equation as 2F1 (a, b; a+ b+ 1− c; 1− x).

Proof. Both satisfy the hypergeometric differential equation (2.1.12) (the first is obvious, the second

is a straightforward computation). �

Lemma 30. The space of solutions to the hypergeometric differential equation (2.1.12) mod p has dimen-

sion 1 when c = 1, and is generated by 2F1 (a, b; 1; z).

Proof. See p. 104 of [33]. �
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Finally, we state a result on the congruence of certain generalized Atkin polynomials mod p.

Lemma 31. Fix a prime p not dividing 2m, and fix an i between 1 and ⌈g/2⌉. Let u, j, ϵ and k be as in

the statement of Theorem 4, and let δ denote the residue of u modulo 2 (in other words, δ = u − 2 ⌊u/2⌋).

Also, let np =
⌊
u
2

⌋
+ δ + ϵ. Then

Anp,m,k (J) ≡ Uδnp,m,k(J) ≡ V ϵnp,m,k(J) mod p.

Proof. We prove the result in the case that m ≡ 0 mod 4; the proof in the other cases is nearly

identical. There are four cases to consider, though each case requires only a slight modification to the

general argument.

Case 1: ϵ = δ = 0. In this case, 1 ≤ j ≤ m/4 and u is even. Therefore, np = (2i−1)p−2j+1
2m , and

k = m/2 − 2j + 1 so that αm,k = 2j−1
2m and therefore p | (np + αm,k). Hence, the coefficients of all but the

first term in the first and third sums in Proposition 15 are divisible by p, and

Anp,m,k (J) ≡ U0
np,m,k(J) ≡ V 0

np,m,k(J) mod p.

Case 2: ϵ = 0, δ = 1. In this case, 1 ≤ j ≤ m/4 and u is odd. Now np = (2i−1)p−2j+1
2m + 1

2 and once

again αm,k = 2j−1
2m , so that in this case p | (np − βm,k). This time, the coefficients of all but the first term

in the second and third sums in Proposition 15 are divisible by p, and the result follows as in the first case.

Case 3: ϵ = 1, δ = 0. Now m/4 + 1 ≤ j ≤ m/2 and u is even, so that np = (2i−1)p−2j+1
2m + 1 but now

βm,k = 2j−1
2m . In this case, p | (np + βm,k − 1). This time, the coefficients of all but the first term in the first

and fourth sums in Proposition 15 are divisible by p, and the result follows as before.

Case 4: ϵ = 1, δ = 1. In this case m/4 + 1 ≤ j ≤ m/2 and u is odd, so np = (2i−1)p−2j+1
2m + 3

2 and

βm,k = 2j−1
2m . In this case, p | (np − αm,k − 1). This time, the coefficients of all but the first term in the

second and fourth sums in Proposition 15 are divisible by p, and the proof is complete. �

4.3. Proof of Theorem 4

We prove the result in full generality, though the notation can be somewhat cumbersome. The interested

reader can easily specify to one of the cases m odd, m ≡ 0 mod 4, or m ≡ 2 mod 4 for a slightly clearer

(though less general) explanation.

To prove Theorem 4, it suffices to show that the roots of the generalized Atkin polynomials Anp,m,k(J)

mod p correspond to curves whose Hasse-Witt matrix A fails to have full rank. The bridge between zeros of

the polynomials and entries of A is formed via hypergeometric functions.
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To begin, consider the Hasse-Witt matrix of a curve C given by the equation

(4.3.1) C : y2 = x2g+1+κm − 2axg+1 + bx1−κm

over some finite field F of characteristic p > 2. Since we assume p does not divide 2m, we know by Lemma

26 that this curve is nonsingular over F provided b ̸= 0 and b−a2 ̸= 0. We have assumed the latter condition

always holds in our definition of Fm, but we will need to study the singular case b = 0 at the end of the

argument. For the moment, though, assume b ̸= 0 too, so that this is indeed a non-singular curve. Since

this curve is hyperelliptic, and since we know the degree of the polynomial on the right hand side equals

2g + 1 + κm, the genus of such a curve is g, and therefore the Hasse-Witt matrix A will be a g × g matrix.

This follows from the well-known genus formula for hyperelliptic curves, namely that if

y2 = f(x)

represents a hyperelliptic curve with deg f = 2g + 1 or 2g + 2, then g is the genus. Our first goal is to give

a proof of the following proposition:

Proposition 32. Fix the notation as in the statement of Theorem 4. When b ̸= 0, the entries cip−j

of the Hasse-Witt matrix A associated to C are zero unless j satisfies (1.0.2). In particular, there can be at

most one non-zero entry in each row of the Hasse-Witt matrix, and for each 1 ≤ i ≤ ⌈g/2⌉, the only possible

nonzero entry in the ith row satisfies the following equality over F :

cip−j =

(
−2a

b

)u
b

p−1
2

(p−1
2

u

)
2F1

(
2j + κm − 1

4 (g + κm)
,
2j + κm − 1

4 (g + κm)
+

1

2
;
2j + κm − 1

2 (g + κm)
+

1

2
;

J

J − 1

)
,

where u is given by (1.0.1).

To prove this result, we first observe that the degrees of the terms on the right hand side of (4.3.1) differ

by at least g. This means each row of A can have at most one nonzero entry. More specifically, if we set

f(x) = x2g+1+κm − 2axg+1 + bx1−κm , then

f(x)
p−1
2 =

∑
r,s,t≥0

r+s+t= p−1
2

( p−1
2

r, s, t

)
(−2a)

s
btxr(2g+1+κm)+s(g+1)+t(1−κm).

Recalling the notation from (4.1.2), we have

cip−j =
∑

r+s+t= p−1
2

r(2g+1+κm)+s(g+1)+t(1−κm)=ip−j
r,s,t≥0

( p−1
2

r, s, t

)
(−2a)

s
bt.
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If we fix r, the conditions on r, s, and t imply

r = r,

s =
(2i+ κm − 1) p− 2j + 1− κm

2 (g + κm)
− 2r,

t =
p− 1

2
+ r − (2i+ κm − 1) p− 2j + 1− κm

2 (g + κm)
.

In particular, since r, s, and t must be nonnegative integers, cip−j = 0 unless

(4.3.2)
(2i+ κm − 1) p− 2j + 1− κm

2 (g + κm)

is an integer. But this is precisely the statement that j is given by (1.0.2), since 1 ≤ j ≤ g. Therefore, for

each i, j is uniquely determined by the expression given in the statement of Theorem 4, and we see that

each row of A can have at most one nonzero entry. This proves the first part of the proposition. Note that

for this choice of j, (4.3.2) is just the number u defined by (1.0.1). We also note for future reference that

1 ≤ i, j ≤ g implies u ≤ p− 1.

We can further simplify the expression for cip−j by using the fact that each of the integers r, s, and t

must lie between 0 and p−1
2 . In terms of r and u, we then get three inequalities:

0 ≤ r ≤ p− 1

2
u

2
− p− 1

4
≤ r ≤ u

2

u− p− 1

2
≤ r ≤ u.

This implies that

cip−j =

⌊u/2⌋∑
r=max{0,u− p−1

2 }

( p−1
2

r, u− 2r, p−1
2 − u+ r

)
(−2a)

s
bt

=

(
−2a

b

)u
b

p−1
2

⌊u/2⌋∑
r=max{0,u− p−1

2 }
4−r
( p−1

2

r, u− 2r, p−1
2 − u+ r

)(
J

J − 1

)r
.(4.3.3)

We continue to analyze the cip−j with the following lemma.

Lemma 33. Let i′ = g + 1− i, j′ = g + 1− j. Then for 1 ≤ i ≤ ⌈g/2⌉,

b
p−1
2 −uci′p−j′ = cip−j .
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Proof. First, note that if we let u′ denote the transformation of u when i goes to i′and j goes to j′,

then a straightforward calculation shows u+ u′ = p− 1. Also, note that if i ≤ ⌈g/2⌉, u ≤ p−1
2 . Therefore,

b
p−1
2 −uci′p−j′ =

(
−2a

b

)u′

bp−1−u
⌊u′/2⌋∑

r=u′− p−1
2

4−r
( p−1

2

r, u′ − 2r, p−1
2 − u′ + r

)(
J

J − 1

)r

= (−2a)
p−1−u

⌊ p−1
2 −u

2 ⌋∑
r= p−1

2 −u

4−r
( p−1

2

r, p− 1− u− 2r, u+ r − p−1
2

)(
J

J − 1

)r
.

Setting R = r + u− p−1
2 , this expression becomes

(−2a)
p−1−u

⌊u
2 ⌋∑

R=0

4−R+u− p−1
2

( p−1
2

R− u+ p−1
2 , u− 2R,R

)(
J

J − 1

)R−u+ p−1
2

= (−2a)
p−1−u

4u−
p−1
2

(
J

J − 1

) p−1
2 −u

bu−
p−1
2 cip−j

= cip−j ,

since J
J−1 = b

a2 . �

In particular, this lemma shows the rank of A is determined by just ⌈g/2⌉ coefficients, not g as it might

initially seem. This is why it suffices to give the formula for cip−j in Proposition 32 only for the case

1 ≤ i ≤ ⌈g/2⌉. Notice also that g is even if and only if m is even.

Our proof of the main proposition is now nearly complete. By combining (4.3.3) with Lemma 27, we

find that for 1 ≤ i ≤ ⌈g/2⌉, since u ≡ 1−2j−κm

2(g+κm) mod p, the following chain of equality holds in the field F :

cip−j =

(
−2a

b

)u
b

p−1
2

⌊u/2⌋∑
r=0

4−r
( p−1

2

r, u− 2r, p−1
2 − u+ r

)(
J

J − 1

)r

=

(
−2a

b

)u
b

p−1
2

(p−1
2

u

) ⌊u/2⌋∑
r=0

(
2j+κm−1
4(g+κm)

)
r+1

(
2j+κm−1
4(g+κm) + 1

2

)
r+1

(r + 1)!
(

2j+κm−1
2(g+κm) + 1

2

)
r+1

(
J

J − 1

)r

=

(
−2a

b

)u
b

p−1
2

(p−1
2

u

)
2F1

(
2j + κm − 1

4 (g + κm)
,
2j + κm − 1

4 (g + κm)
+

1

2
;
2j + κm − 1

2 (g + κm)
+

1

2
;

J

J − 1

)
,

by definition of the hypergeometric series, and the fact that either(
2j + κm − 1

4 (g + κm)

)
⌊u/2⌋+1

or (
2j + κm − 1

4 (g + κm)
+

1

2

)
⌊u/2⌋+1
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equals zero in F . This completes the proof of the proposition.

We now have a bridge between the Hasse-Witt matrix A and hypergeometric functions. To complete

the proof of Theorem 4, we therefore need to connect this bridge to generalized Atkin polynomials. To help

make this connection, we use the remaining lemmas from the previous section.

Because the hypergeometric function appearing in Proposition 32 is a polynomial of degree ⌊u/2⌋ in J
J−1

over a field of characteristic p, we can write the above as

cip−j =
(a
b

)u
b

p−1
2 (J − 1)−⌊u/2⌋Pp,m,j(J),

where

Pp,m,j(J) = (−2)u
(p−1

2

u

)
(J − 1)⌊u/2⌋2F1

(
2j + κm − 1

4 (g + κm)
,
2j + κm − 1

4 (g + κm)
+

1

2
;
2j + κm − 1

2 (g + κm)
+

1

2
;

J

J − 1

)
is a polynomial in J . Meanwhile, since J − 1 = a2

b−a2 , we can write the remaining part of cip−j as

b
p−1
2 −u (b− a2

)⌊u/2⌋
aδ.

Since b and b − a2 are assumed to be nonzero, this is only zero if a = 0, δ = 1 (note this is equivalent to

J = 1, δ = 1). Thus, we conclude that

cip−j = b
p−1
2 −u (b− a2

)⌊u/2⌋
aδPp,m,j(J).

We now split into two cases, depending on the size of j.

Case 1: 1 ≤ j ≤ ⌈g/2⌉. In this case, by Lemma 31 we have

Anp,m,k(J) = V 0
np,m,k(J)

over F , where k = (2,m)
2 (g + 1− 2j) so that 2j+κm−1

4(g+κm) = αm,k. By definition of V 0
np,m,k

V 0
np,m,k(J) = (J − 1)np

2F1

(
αm,k, 1− βm,k; 1;

1

1− J

)
= (J − 1)np

2F1

(
2j + κm − 1

4 (g + κm)
,
2j + κm − 1

4 (g + κm)
+

1

2
; 1;

1

1− J

)
over F . On the other hand, by Lemma 29,

2F1

(
2j + κm − 1

4 (g + κm)
,
2j + κm − 1

4 (g + κm)
+

1

2
; 1;x

)
and

2F1

(
2j + κm − 1

4 (g + κm)
,
2j + κm − 1

4 (g + κm)
+

1

2
;
2j + κm − 1

2 (g + κm)
+

1

2
; 1− x

)
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satisfy the same second order hypergeometric differential equation. Since the third argument in the former

function equals 1, Lemma 30 implies that the space of solutions over Fp to the corresponding hypergeometric

differential equation has dimension 1, and therefore the two functions must agree up to a multiplicative

constant. Evaluating at J = 1 and applying Lemma 28,

Pp,m,j(1) = (−2)u
(p−1

2

u

)( 2j+κm−1
4(g+κm)

)
⌊u/2⌋

(
2j+κm−1
4(g+κm) + 1

2

)
⌊u/2⌋(

2j+κm−1
2(g+κm) + 1

2

)
⌊u/2⌋

⌊
u
2

⌋
!

=

(
2j+κm−1
4(g+κm)

)
⌊u/2⌋

(
2j+κm−1
4(g+κm) + 1

2

)
⌊u/2⌋

(−1)
⌊u/2⌋

(⌊
u
2

⌋
!
)2

=
V 0
np,m,k

(J)

(J − 1)δ

∣∣∣∣∣
J=1

over the field F . This determines the multiplicative constant, and more importantly shows that Pp,m,j(J) =
V 0
np,m,k(J)

(J−1)δ
. Therefore,

cip−j = b
p−1
2 −u(b− a2)⌊u/2⌋aδ

Anp,m,k(J)

(J − 1)δ
.

In particular, cip−j = 0 in F precisely when Anp,m,k(J) = 0 (notice that in the case δ = 1, (J−1) | Anp,m,k(J),

but J = 1 is still a root of Pp,m,j since J = 1 if and only if a = 0).

Case 2: ⌈g/2⌉+ 1 ≤ j ≤ g. In this case, by Lemma 31 we have

Anp,m,k(J) = V 1
np,m,k(J)

over F , where −k = (2,m)
2 (g + 1− 2j) so that 2j+κm−1

4(g+κm) = βm,k. By definition of V 1
np,m,k

we see that

V
(1)
np,m,k

(J) = J (J − 1)
np−1

2F1

(
βm,k, 1− αm,k; 1;

1

1− J

)
= J (J − 1)

np−1
2F1

(
2j + κm − 1

4 (g + κm)
,
2j + κm − 1

4 (g + κm)
+

1

2
; 1;

1

1− J

)
.

Note the hypergeometric function is the same as in case 1. Also as in case 1, by Lemma 28 we have

Pp,m,j(1) =
V 1
np,m,k

(J)

J(J − 1)δ

∣∣∣∣∣
J=1

,

and so

cip−j = b
p−1
2 −u(b− a2)⌊u/2⌋aδ

Anp,m,k(J)

J(J − 1)δ
.

Once again, cip−j = 0 in F precisely when Anp,m,k(J) = 0, except possibly at the root J = 0.

We need to treat the root J = 0 separately, since this implies b = 0, and in our argument we have

assumed throughout that b ̸= 0. But in the case b = 0, a ̸= 0 since b− a2 ̸= 0, so the equation of the curve
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reduces to

y2 = xg+1
(
xg+κm − 2a

)
.

By making use of the birational transformation y → yx⌊(g+1)/2⌋, we see that C is birationally equivalent to

a curve of the form

y2 = xg+1−2⌊(g+1)/2⌋ (xg+κm − 2a
)
.

Note the exponent on x is 0 if m is odd, and is 1 otherwise; in other words, the exponent can be written

more succinctly as (2,m)− 1.

This is still hyperelliptic, so the genus of the curve decreases from the value g to ⌊g/2⌋. There-

fore, the entries cip−j of the Hasse-Witt matrix satisfy 1 ≤ i, j ≤ ⌊g/2⌋. Moreover, writing f(x) =

x(2,m)−1 (xg+κm − 2a), we obtain

f(x)
p−1
2 = x

p−1
2 ((2,m)−1)

p−1
2∑

r=0

(p−1
2

r

)
xr(g+κm) (−2a)

p−1
2 −r

,

and so to find cip−j we must solve ip− j = p−1
2 ((2,m)− 1) + r (g + κm).

Fix i between 1 and ⌊g/2⌋. Then

r =
ip− j − p−1

2 ((2,m)− 1)

g + κm
,

and because r must be an integer, this forces

j ≡ ip− p− 1

2
((2,m)− 1) mod g + κm.

Therefore, if the solution to this equivalence lies between 1 and ⌊g/2⌋, then there exists a j corresponding

to i such that

cip−j =

(p−1
2

r

)
(−2a)

p−1
2 −r ̸= 0.

However, it may be that the solution to the above equivalence is not in the range between 1 and ⌊g/2⌋. In

this case, i.e. for j ≥ ⌊g/2⌋+ 1, the value of r is never integral, meaning that cip−j = 0.

In other words, when b = 0, the curve (of genus ⌊g/2⌋) is non-ordinary precisely when there exists some

i between 1 and ⌊g/2⌋ for which the corresponding value of j is larger than ⌊g/2⌋. When m is even, this

puts us in the second case above, so that whenever j is larger than ⌊g/2⌋ we have both cip−j = 0 and

Anp,m,k(J) = V 1
np,m,k(J)

over F , from which it follows that when b = 0, J = 0, and therefore Anp,m,k(J) = 0, since J is a root of

V 1
np,m,k

. When m is odd, we are once again in the second case above unless j = g+1
2 , which cannot happen.
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So in either case, for fixed i between 1 and ⌊g/2⌋, if the corresponding j value is larger than ⌊g/2⌋, the root

of cip−j is matched by a root of Anp,m,k(J). In other words, regardless of the value of b, the roots of cip−j

coincide with the roots of Anp,m,k(J).

We claim the proof is now complete. To see why, note that whenever cip−j = 0, this means the curve

is non-ordinary. Since the zeros of each cip−j correspond to the zeros of Anp,m,k(J), this implies that the

Atkin-type polynomials are detecting whether or not the curve is ordinary. In fact, the argument of this

proof allows us to say a bit more; indeed, if J is a root of Pm,p, we see that the rank of the Hasse-Witt

matrix typically decreases by two times the multiplicity of the root (though some extra care must be taken

in the case of m odd). We will summarize this statement in a corollary in the next section.

4.4. Corollaries and examples

In this section, we give corollaries and numerical examples based on the ideas of this chapter. The results

are grouped into two collections, depending on whether or not Gm is arithmetic.

4.4.1. The arithmetic cases. Though for general m we have shown the polynomials An,m,k do not

detect supersingularity, we claim that in the cases when Gm is arithmetic, supersingularity is still detected.

When m = 3 this is the original result due to Atkin, and when m = ∞ the curves are again elliptic (see

below for more on this case). In the cases m = 4 and m = 6 one can prove this using the information

on supersingular curves provided in Section 4.1.1, though it is easier to use the following result regarding

hyperelliptic curves of genus 2 (see [31, 52, 55, 80] for more details).

Proposition 34. Consider the curve C over an algebraically closed field of characteristic p > 2 given

by the non-singular affine equation

y2 = f(x),

where deg f = 5 or 6 (so that the genus equals 2). Let cj denote the coefficient of xj in f(x)
p−1
2 . Then C is

supersingular if and only if

M (p)M = 0,

where

M =

 cp−1 cp−2

c2p−1 c2p−2



M (p) =

 cpp−1 cpp−2

cp2p−1 cp2p−2

 .
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Note M is the Hasse-Witt matrix of the curve. Combining the proof of Theorem 4 with this proposition,

it follows that C is supersingular if and only if either cp−1 = 0 or cp−2 = 0. In either case, this vanishing is

controlled by the zeros of certain generalized Atkin polynomials. A more precise statement is provided by

Corollary 5.

A second corollary gives us simple formulas for the number of supersingular curves appearing in each of

the arithmetic cases m = 4, 6,∞ (the case m = 3 is discussed in [40]).

Corollary 35. Over an algebraically closed field of characteristic p > 3,

(i) The number of supersingular curves (up to isogeny) given by an equation of the form y2 = x5−2ax3+

bx with b− a2 ̸= 0 is finite; more specifically, the number of curves equals
⌈
p−1
4

⌉
−
⌊
p−1
8

⌋
.

(ii) The number of supersingular curves (up to isogeny) given by an equation of the form y2 = x6−2ax3+b

with b− a2 ̸= 0 is finite; more specifically, the number of curves equals
⌈
p−1
3

⌉
−
⌊
p−1
6

⌋
.

(ii) The number of supersingular elliptic curves (up to isogeny) given in Jacobi quartic form by y2 =

x4 − 2ax2 + 1 with a2 ̸= 1 equals p−1
2 −

⌊
p−1
4

⌋
.

We now present the following examples in the arithmetic cases.

Example 36. Here is a simple numerical example. Consider the case m = 4, p = 17. In this case,

np = 2, and by Theorem 3 we see

A2,4(J) = J2 − 89

96
J +

77

1024

≡ (J − 13)(J − 9) mod 17.

On the other hand, we know that a curve defined by the equation y2 = x5 − 2ax3 + bx with b − a2 ̸= 0 is

supersingular precisely when the coefficient c16 of x16 in
(
x5 − 2ax3 + bx

)8 vanishes. By direct computation,

we see

c16 = 1120a4b4 + 672a2b5 + 28b6

≡ b4
(
b− a2

)2
(J − 13)(J − 9) mod 17.

In other words, the J invariants corresponding to supersingularity are precisely the roots of the Atkin-type

polynomial A2,4.

Example 37. Occasionally the same generalized Atkin polynomial must serve as the reduction of the

supersingular polynomial ssp,4 for as many as four different primes. For example, np equals 14 for each of

the four primes 103, 107, 109, and 113 (congruent modulo 8 to 7, 3, 5, and 1, respectively). The Atkin-type
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polynomial A14,4(J) is given by

A14,4(J) = J14 − 6005

864
J13 +

10325333

479232
J12 − 1004047363

25559040
J11 +

58756352298721

1256277934080
J10

−11763949555530799

308206853160960
J9 +

28675267746952015

1315015906820096
J8 − 5522397073788267503

631207635273646080
J7

+
1679637535061612479575

689447059754894491648
J6 − 439175894232756927495

959230691832896684032
J5 +

61077088654582048833667

1105033756991496980004864
J4

− 3574058871399403002805

906694364710971881029632
J3 +

2829790169765988069658163

19807040628566084398385987584
J2

− 3624642993287496622187963

1901475900342344102245054808064
J +

53911532890645911389447

20282409603651670423947251286016
.

By Theorem 5, the reduction of this polynomial modulo the four primes listed above gives the mod p

reduction of the supersingular polynomials ss103,4(J), ss107,4(J), ss109,4(J), and ss113,4(J). These are

ss103,4(J) ≡ J(J + 15)(J + 20)(J + 32)(J + 48)(J + 53)(J + 54)

×(J + 67)(J + 71)(J + 102)(J2 + 33J + 25)(J2 + 63J + 64) mod 103,

ss107,4(J) ≡ J(J + 3)(J + 26)(J + 34)(J + 48)(J + 61)(J2 + 13J + 62)

×(J2 + 37J + 49)(J2 + 86J + 23)(J2 + 105J + 34) mod 107,

ss109,4(J) ≡ (J + 28)(J + 100)(J + 106)(J + 108)(J2 + 3J + 25)(J2 + 13J + 66)

×(J2 + 47J + 49)(J2 + 54J + 89)(J2 + 60J + 5) mod 109,

ss113,4(J) ≡ (J + 4)(J + 32)(J + 50)(J + 104)(J2 + 21J + 8)(J2 + 66J + 106)

×(J2 + 91J + 53)(J2 + 108J + 56)(J2 + 112J + 7) mod 113.

On the other hand, for m = 6,∞, the same generalized Atkin polynomial need only serve as the mod p

reduction for as many as two different supersingular polynomials. To see an example in each case, note that

when m = 6, np = 3 for both p = 11 and p = 19. We have

A3,6(J) = J3 − 64

45
J2 +

511

1080
J − 77

5832
.

Reducing this polynomial modulo the two primes given above, we find

ss11,6(J) ≡ J(J − 1)(J + 3) mod 11,

ss19,6(J) ≡ (J + 17)(J2 + J + 9) mod 19.
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Similarly, when m = ∞, np = 3 for both p = 11 and p = 13. The generalized Atkin polynomial takes

the form

A3,∞(J) = J3 − 7

5
J2 +

4579

10240
J − 63

8192
.

Reducing this polynomial modulo these primes yields

ss11,∞(J) ≡ (J − 1)(J + 7)(J + 8) mod 11,

s13,∞(J) ≡ (J + 1)(J2 + 8J + 1) mod 13.

Example 38. Since the curves in the m = 3 and the m = ∞ case are elliptic curves, it is possible define

the supersingular polynomial ssp,∞ in terms of ssp,3 by using the well-known relation between J3 and J∞

given by (see [60])

(4.4.1) J3 =
(4J∞ − 1)

3

27J∞
.

Following the type of argument found in [75] for the development of Atkin-type polynomials for congruence

subgroups of G3 with low level, for a fixed prime greater than 3 we set

ssnewp,∞ (J∞) =
∏
E/Fp

J3(E) determined by
J∞(E) is supersingular

(J∞ − J∞(E)) .

Here we are viewing J∞ as a variable, and J∞(E) as the J∞ invariant of a fixed elliptic curve (and similarly

for J3 compared to J3(E)).

Using (4.4.1), notice that

ssp,3(J3) =
∏

E/Fp supersingular
(J3 − J3(E))

=
∏(

(4J∞ − 1)
3

27J∞
− (4J∞(E)− 1)

3

27J∞(E)

)
,

so that if we set np = deg ssp(J3),(
27

64
J∞

)np

ssp,3

(
(4J∞ − 1)

3

27J∞

)

=
∏

E/Fp supersingular

(
(J∞ − 1/4)

3 − (J∞(E)− 1/4)
3 J∞
J∞(E)

)
.(4.4.2)

Also, notice that if we view

(4J∞ − 1)
3 − 27J3J∞ = 0
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as a polynomial in J∞, the discriminant of this polynomial equals 2839J2
3 (J3 − 1), so that for a fixed J3,

the solutions J∞ of (4.4.1) are distinct provided J3 ̸= 0, 1. When J3 = 0, we get one root with multiplicity

3, and when J3 = 1, the solutions J∞ satisfy (J∞ − 1) (8J∞ + 1)
2, so that we get one simple root and one

double root.

To understand the relevancy of the above observations, notice that by the definition of ssnewp,∞, it divides

the polynomial given by (4.4.2). On the other hand, we know that the degree of ssnewp,∞ equals p−1
2 −

⌊
p−1
4

⌋
,

in other words the degree equals p±1
4 , depending on the residue of p mod 4. Therefore, if p ≡ 1 mod 12,

np =
p−1
12 so that (4.4.2) and ssnewp,∞ have the same degree and are monic. We therefore conclude

ssnewp,∞ (J∞) =

(
27

64
J∞

)np

ssp,3

(
(4J∞ − 1)

3

27J∞

)
.

If p ≡ 5 mod 12, we need to divide out by the multiple roots to ensure that (4.4.2) is square free. With this

added consideration, we find that

ssnewp,∞ (J∞) =
1

(J∞ − 1/4)
2

(
27

64
J∞

)np

ssp,3

(
(4J∞ − 1)

3

27J∞

)
.

Similarly, if p ≡ 7 mod 12, we have

ssnewp,∞ (J∞) =
1

(J∞ + 1/8)

(
27

64
J∞

)np

ssp,3

(
(4J∞ − 1)

3

27J∞

)
,

and for p ≡ 11 mod 12, we have

ssnewp,∞ (J∞) =
1

(J∞ − 1/4)
2
(J∞ + 1/8)

(
27

64
J∞

)np

ssp,3

(
(4J∞ − 1)

3

27J∞

)
.

We can use these identities to prove that this new supersingular polynomial agrees with the one originally

introduced, though to do this requires the cubic transformation formulae proven in [75]:

2F1

(
1

4
,
3

4
; 1;x

)
=


2F1

(
1
12 ,

5
12 ; 1;

27x(1−x)2
(1+3x)3

)
(1 + 3x)

p−1
4 , p ≡ 1 mod 4,

2F1

(
7
12 ,

11
12 ; 1;

27x(1−x)2
(1+3x)3

)
(1 + 3x)

p−7
4 (9x− 1), p ≡ 3 mod 4.
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Consider the case p ≡ 1 mod 12. By the lemmas in Section 4.2 and the known result on zeros of Atkin

polynomials, over Fp we have

ssnewp,∞ (J∞) =

(
27

64
J∞

)np

U0
np,3

(
(4J∞ − 1)

3

27J∞

)

= (J∞ − 1/4)
3np

2F1

(
1

12
,
5

12
; 1;

27J∞

(4J∞ − 1)
3

)

=

(
J − 1

4

)3np

2F1

(
1

4
,
3

4
; 1;

J∞
J∞ − 1

)
= (J − 1)3np

2F1

(
1

4
,
3

4
; 1;

1

1− J∞

)
= V 0

p−1
4 ,∞ (J∞) = A p−1

4 ,∞ (J∞) = ssp,∞ (J∞) .

Similar arguments can be made in the remaining cases. We summarize this relationship between ssp,3

and ssp,∞ in the following corollary.

Corollary 39. The relationship between ssp,∞(J) and ssp,3(J) can be described as follows: let np be

the degree of ssp,3(J). Then

1

ssp,∞(J)

(
27

64
J

)np

ssp,3

(
(4J − 1)

3

27J

)
=



1 p ≡ 1 mod 12,

(J − 1/4)2 p ≡ 5 mod 12,

(J + 1/8) p ≡ 7 mod 12,

(J − 1/4)(J + 1/8) p ≡ 11 mod 12.

4.4.2. The non-arithmetic cases. In this section we prove some corollaries in the non-arithmetic

setting, and consider one example from each of the cases m ≡ 0 mod 4, m ≡ 2 mod 4, and m odd.

First we state an analogue of Corollary 35 from the arithmetic setting.

Corollary 40. The number of non-ordinary hyperelliptic curves over Fp in the family Fm is finite (up

to isogeny). The number of such curves is less than or equal to

⌈g/2⌉∑
i=1

np,i.

The method of proof also makes apparent the following corollary, which more precisely examines the

relationship between the roots of Pm,p and the genus of the curve C. In the statement we assume b ̸= 0, but

it is not difficult to modify the statements to consider the b = 0 case also.
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Corollary 41. Suppose b ̸= 0. If J is a root of Pm,j, then provided m is even or m is odd and J is not

a root of Anp,i,m,kp,i for i =
m+1
2 , the rank of the Hasse-Witt matrix is g− 2mJ , where mJ is the multiplicity

of the root at J .

If m is odd and J is a root of Anp,i,m,kp,i for i = m+1
2 , the rank of the Hasse-Witt matrix is g−2mJ +1.

The slight discrepancy between the two cases highlighted in the previous corollary is best understood

by exploring some examples.

Example 42. Consider the first non-arithmetic case, m = 5. In this case, the family of curves is given

by the general hyperelliptic equation

y2 = x
(
x10 − 2ax5 + b

)
.

Fix a prime, say p = 41, and consider such a curve over a field of characteristic p. Suppose also b ̸= 0 so

that the genus of this curve is 5. In this case,

u =

⌊
41(2i− 1)

10

⌋
,

j = 41i− 20− 5u,

so that for i = 1, 2, 3, we have j = i. Therefore, the Hasse-Witt matrix is diagonal (in fact, this will be true

whenever p ≡ 1 mod 20). Also, in all cases we have δ = ϵ = 0. By Lemma 33 and the proof of Theorem 4 if

we denote the Hasse-Witt matrix by A, then

A =



b16∆2A2,5,2(J)

b28∆6A6,5,1(J)

∆10A10,5,0(J)

∆6A6,5,1(J)

∆2A2,5,2(J)


,

where ∆ = b − a2. From this we see the zeros along the diagonal are determined precisely by the zeros of

the three Atkin-type polynomials A2,5,2, A6,5,1, and A10,5,0. Factoring these polynomials mod p, we find

(4.4.3) A2,5,2(J) = J2 + 36J + 30,

(4.4.4) A6,5,1(J) = J6 + 2J5 + 12J4 + 23J3 + 9J2 + 40J + 10,
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A10,5,0(J) = (J + 10)(J + 16)(J + 18)(J + 37)(J2 + 12J + 10)(4.4.5)

×(J2 + 14J + 1)(J2 + 34J + 37).

In particular, A6,5,1 is an irreducible degree 6 polynomial mod p; this contrasts with the arithmetic case, in

which the Atkin polynomials always factor into products of irreducible factors of degree at most 2 over Fp.

Meanwhile, if b = 0, the curve reduces to one of the form y2 = x5 − 2a. In this case, we see that the

Hasse-Witt matrix reduces to

A =

 10a12

30a4


over a field of characteristic 41, and in particular always has full rank, since a ̸= 0 if b = 0. Therefore, the

case b = 0 never corresponds to a non-ordinary curve.

Because of this, and since the three Atkin-type polynomials above are pairwise coprime, the nonordi-

nary polynomial coincides modulo 41 with P5,41(J), which is just the product of these three Atkin-type

polynomials. Consequently the nonordinary polynomial has degree 18.

We also see that the rank of the Hasse-Witt matrix is 5 if J is not a root of P5,41, equals 3 if J is a root

of A2,5,2 or A6,5,1, and is 4 if J is a root of A10,5,0. This last case is only possible in general when m is odd,

since when m is even g is even and Lemma 33 always gives a nontrivial symmetry between entries in the

matrix.

Example 43. Consider the case m = 10. The corresponding curves are now of the form

y2 = x10 − 2ax5 + b

with b − a2 ̸= 0, and the genus of such a curve is 4 if b ̸= 0 and 2 otherwise. This time we choose p = 43

and once again consider such a curve over the field of characteristic p. Suppose first that b ̸= 0. Then the

following table contains all relevant information in the two cases i = 1, i = 2:

i j u n k δ ϵ

1 3 8 5 1 0 1

2 1 17 9 3 1 0
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From this, we see that the Hasse-Witt matrix in this case is equal to

A =



b13∆4A5,10,1(J)
J

ab4∆8A9,10,3(J)
J−1

a∆8A9,10,3(J)
J−1

∆4A5,10,1(J)
J


,

and modulo 43 we have

A5,10,1(J) = J(J + 16)(J3 + 9J2 + 27J + 9),

A9,10,3(J) = (J − 1)(J + 11)(J + 19)(J3 + 30J2 + 13J + 19)

×(J3 + 36J2 + 28J + 33).

Notice that when J = 1, a = 0, so the entries of A in the second and fourth rows still vanish when J = 1

even though the factor of J − 1 is cancelled out of the Atkin-type polynomial. Related to this, when b = 0,

the genus of the curve decreases by a factor of 2 and is birationally equivalent to a curve of the form

y2 = x
(
x5 − 2a

)
.

In this case, cip−j = 0 for both values of j when i = 2, so we see the curve is always non-ordinary when

b = 0. Therefore, even in this case, the J = 0 root of A5,10,1(J) is detecting non-ordinariness of the curve.

As in the previous example, the relevant Atkin-type polynomials are coprime, and so we see the non-

ordinary polynomial is simply the product of A5,10,1 and A9,10,3, and therefore has degree 14.

Example 44. For our last example we will consider the case m = 12. This gives rise to hyperelliptic

curves of the form

y2 = x
(
x12 − 2ax6 + b

)
of genus 6 provided b ̸= 0 and b − a2 ̸= 0. As in the previous case we will set p = 43, and assume for the

moment that b is nonzero. As i ranges from 1 to 3, the values of the other relevant parameters are captured

in the following table:

i j u n k δ ϵ

1 4 3 3 1 1 1

2 5 10 6 3 0 1

3 6 17 10 5 1 1
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This gives rise to the following Hasse-Witt matrix:

A =



ab18∆
A3,12,1(J)
J(J−1)

b11∆5A6,4,1(J)
J

ab4∆8A10,12,5(J)
J(J−1)

a∆8A10,12,5(J)
J(J−1)

∆5A6,4,1(J)
J

a∆
A3,12,1(J)
J(J−1)


.

Notice in this case that the second and fifth rows depend on an Atkin-type polynomial corresponding to

m = 4, a proper divisor of 12. Indeed, since φ(12)/2 = 2, there are only two distinct J functions that can be

obtained in the manner described in Chapter 2. In general, it is possible that the Hasse-Witt matrix may

depend on Atkin-type polynomials indexed by proper divisors of m. In this case, the polynomial A6,4,1(J)

appears in the second row since when i = 2, k = 3, and we defined

An,m,k(J) = An, m
(m,k)

, k
(m,k)

(J)

whenever k and m are not coprime.

Slightly different behavior also occurs when we look at the factorizations of the relevant Atkin-type

polynomials modulo 43. Indeed, we have

A3,12,1(J) = J(J − 1)(J + 19),

A6,4,1(J) = J(J + 5)(J + 23)(J + 34)(J2 + 18J + 6),

A10,12,5(J) = J(J − 1)(J + 11)(J + 19)(J3 + 30J2 + 13J + 19)(J3 + 36J2 + 28J + 33),

and these polynomials are not pairwise coprime. In addition to the trivial common roots of J = 0 and J = 1

that occur whenever ϵ = 1 and δ = 1, respectively, there is also a nontrivial root J + 19 shared between

A3,12,1 and A10,12,5.

If b = 0, and argument similar to the one in the previous example shows that cip−j = 0 for all values of

j when i = 1, so once again the curve is always non-ordinary when b = 0. Therefore, in this case we see that

the nonordinary polynomial is congruent to

P12,43(J)

J2(J − 1)(J + 19)
,

and therefore is of degree 15.
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Example 45. Our last example emphasizes the fact that the placement of the potential nonzero entries

of the Hasse-Witt matrix depends only on the residue of p modulo 2m
(2,m) . To see this, consider the example

of m = 8. The family of curves is of the form

y2 = x
(
x8 − 2ax4 + b

)
and so when b ̸= 0 and b− a2 ̸= 0 such a curve has genus 4.

For fixed i ∈ {1, 2}, we know that j is the unique integer between 1 and 4 such that

u =
(2i− 1)p− 2j + 1

8
∈ Z.

In particular, the pairing of j values corresponding to the pair of i values depends only on the residue of p

modulo 8. For example, when p ≡ 1 mod 8, j = 1 when i = 1 and j = 2 when i = 2. Denoting the four

potential nonzero entries of the Hasse-Witt matrix by ν1, ν2, ν3, and ν4, it follows that the matrix is of one

of the following forms: 

ν1

ν2

ν3

ν4


,



ν1

ν2

ν3

ν4


,



ν1

ν2

ν3

ν4


,



ν1

ν2

ν3

ν4


,

depending on whether p is congruent to 1, 3, 5, or 7 modulo 8, respectively. The general case can be studied

in a similar manner.
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CHAPTER 5

Further applications

In this chapter, we highlight some further applications of the material discussed in previous chapters.

5.1. Connection to Jacobi polynomials

Recall that the Jacobi polynomial of degree n and depending on parameters α and β is given by

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, 1 + α+ β + n;α+ 1;

1− x

2

)
.

There are other equivalent definitions, but this one will be the most useful for our present purposes. We also

note that for fixed α and β, the Jacobi polynomials are orthogonal with respect to the weight function

(5.1.1) wα,β(x) = (1− x)α(1 + x)β

on [−1, 1]. For more on Jacobi polynomials, see Chapter 4 of [35].

In [5], a connection is made between the supersingular polynomial for elliptic curves and certain Jacobi

polynomials. While the authors do not discuss the Atkin polynomials, they do prove the following result,

which provides a more elementary way to easily compute the supersingular polynomial for a fixed prime p.

Theorem 46. For a prime p > 3, let n =
⌊
p−1
12

⌋
. Then

ssp(J) = Jϵ(J − 1)δP (α,β)
n (1− 2J) ,

where α and β are given by

(α, β) =



(−1/3,−1/2) , if p ≡ 1 mod 12,

(1/3,−1/2) , if p ≡ 5 mod 12,

(−1/3, 1/2) , if p ≡ 7 mod 12,

(1/3, 1/2) , if p ≡ 12 mod 12,
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and

ϵ =


0 if p ≡ 1 mod 6,

1 if p ≡ 5 mod 6,

δ =


0 if p ≡ 1 mod 4,

1 if p ≡ 3 mod 4.

This is Theorem 3 of [5], though we have written it in a slightly different way here. In particular, we

have written the supersingular polynomial in terms of J rather than the usual invariant j = 1728J . Notice

that as an immediate corollary, we obtain the fact that the Atkin polynomial of degree np =
⌊
p−1
12

⌋
+ δ + ϵ

is essentially congruent mod p to a certain Jacobi polynomial.

The proof employed in [5] is somewhat technical, because the authors do not use Atkin polynomials.

However, given what we know about generalized Atkin polynomials and their connection to hypergeometric

functions, it is not difficult to prove an analogue of the above theorem in a more general setting.

The statement we wish to prove is the following:

Theorem 47. Let m ≥ 3, and keep the notation as in Lemma 31. Then for a prime p not dividing 2m,

we have

Anp,m,k(J) = Jϵ(J − 1)δP
(−1/2−u,δ−1/2)

⌊u
2 ⌋

(1− 2J)

over a field of characteristic p.

Proof. First, notice that regardless of the value of m, over a field of characteristic p with p - 2m we can

apply Lemma 31 and the definition of the truncated hypergeometric series U0
n,m,k, U

1
n,m,k to always write

Anp,m,k(J) = A⌊u
2 ⌋+δ+ϵ,m,k

= Uδ⌊u
2 ⌋+δ+ϵ,m,k(J)

= J⌊
u
2 ⌋+ϵ(J − 1)δ2F1

(
αm,k +

δ

2
, βm,k +

δ

2
; 1;

1

J

)
.

Note that J⌊u/2⌋
2F1

(
αm,k +

δ
2 , βm,k +

δ
2 ; 1;

1
J

)
is always a polynomial of degree

⌊
u
2

⌋
, since p divides

⌊
u
2

⌋
+

αm,k when ϵ = δ = 0, p divides
⌊
u
2

⌋
+ αm,k +

1
2 when ϵ = 0, δ = 1, p divides

⌊
u
2

⌋
+ βm,k when ϵ = 1, δ = 0,

and p divides
⌊
u
2

⌋
+ βm,k +

1
2 when ϵ = δ = 1.
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By definition of the hypergeometric series, we see

J⌊
u
2 ⌋2F1

(
αm,k +

δ

2
, βm,k +

δ

2
; 1;

1

J

)
=

⌊u
2 ⌋∑
ℓ=0

(
αm,k +

δ
2

)
ℓ

(
βm,k +

δ
2

)
ℓ

ℓ!2
J⌊

u
2 ⌋−ℓ

=

⌊u
2 ⌋∑
ℓ=0

(
αm,k +

δ
2

)
⌊u

2 ⌋−ℓ
(
βm,k +

δ
2

)
⌊u

2 ⌋−ℓ(⌊
u
2

⌋
− ℓ
)
!2

Jℓ.

Also, regardless of the value of m we see by definition of k that −u
2 is congruent to either αm,k or βm,k mod

p. Since αm,k + βm,k = 1
2 , in either case we may rewrite the above sum as

⌊u
2 ⌋∑
ℓ=0

(
δ−u
2

)
⌊u

2 ⌋−ℓ
(
1+u+δ

2

)
⌊u

2 ⌋−ℓ(⌊
u
2

⌋
− ℓ
)
!2

Jℓ

=

⌊u
2 ⌋∑
ℓ=0

(
−
⌊
u
2

⌋)
⌊u

2 ⌋−ℓ
(
1
2 + u−

⌊
u
2

⌋)
⌊u

2 ⌋−ℓ(⌊
u
2

⌋
− ℓ
)
!2

Jℓ,

since δ = u− 2 ⌊u/2⌋ .

Denote the above coefficient on Jℓ by cℓ. By definition of the Pochhammer symbol, we can rewrite cℓ as

cℓ =

⌊
u
2

⌋
!
(
−
⌊
u
2

⌋
+ u+ 1

2

)
⌊u

2 ⌋−ℓ (−1)⌊
u
2 ⌋−ℓ(⌊

u
2

⌋
− ℓ
)
!2ℓ!

=

⌊
u
2

⌋
!
(
1
2 − u+ ℓ

)
⌊u

2 ⌋−ℓ(⌊
u
2

⌋
− ℓ
)
!2ℓ!

.

In particular,

c0 =

(
1
2 − u

)
⌊u

2 ⌋⌊
u
2

⌋
!

.

The numerator here is never divisible by p. One way to see this is to note that if p divides one of the factors

in the numerator, then we must have 1−2u+k ≡ 0 mod p for some k between 0 and
⌊
u
2

⌋
−1. But regardless

of m, we always have that 2u < p, so that such a congruence cannot hold.

We now show that for 0 ≤ ℓ ≤
⌊
u
2

⌋
,

(5.1.2) cℓ = c0

(
−
⌊
u
2

⌋)2
ℓ

ℓ!
(
1
2 − u

)
ℓ

.

This expression always makes sense since we have just seen that the denominator is never congruent to 0

mod p.
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When ℓ = 0 there is nothing to prove. If the result holds for cℓ, then

cℓ+1 =

⌊
u
2

⌋
!
(
1
2 − u+ ℓ+ 1

)
⌊u

2 ⌋−ℓ−1(⌊
u
2

⌋
− ℓ− 1

)
!2 (ℓ+ 1)!

= cℓ

(
ℓ−

⌊
u
2

⌋)2
(ℓ+ 1)

(
1
2 − u+ ℓ

)
= c0

(
−
⌊
u
2

⌋)2
ℓ+1

(ℓ+ 1)!
(
1
2 − u

)
ℓ+1

,

where we have used the induction hypothesis in the last step. Therefore (5.1.2) holds by induction.

Putting everything together,

Anp,m,k(J) = Jϵ(J − 1)δ
⌊u/2⌋∑
ℓ=0

cℓJ
ℓ

= Jϵ(J − 1)δ

(
1
2 − u

)
⌊u/2⌋

⌊u/2⌋!

⌊u/2⌋∑
ℓ=0

(
−
⌊
u
2

⌋)2
ℓ

ℓ!
(
1
2 − u

)
ℓ

Jℓ

= Jϵ(J − 1)δ

(
1
2 − u

)
⌊u/2⌋

⌊u/2⌋! 2F1

(
−
⌊u
2

⌋
,−
⌊u
2

⌋
;
1

2
− u; J

)
.

Setting α equal to −1/2− u then determines β as δ − 1/2 via the equality

1 + α+ β +
⌊u
2

⌋
= −

⌊u
2

⌋
,

and with these choices, we see that the above expression becomes simply

Jϵ(J − 1)δP
(−1/2−u,δ−1/2)

⌊u
2 ⌋

(1− 2J) .

This completes the proof. �

Some remarks are in order. First, note that for fixed m and p, the above result only applies to a specific

generalized Atkin polynomial of some fixed degree, not to every generalized Atkin polynomial in the family.

Moreover, the statement only holds over a field of characteristic p. By way of example, note that if we

return to the case m = 5, p = 41 from the previous chapter, we obtain three generalized Atkin polynomials

corresponding to the values i = 1, 2, 3. Recall that in each case, ϵ = δ = 0 and i = j. Therefore, since

u =
(2i− 1)p− 2j + 1

2m
,

we see that u = 4, 12, or 20, according to the value of i.
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When i = 1, the relevant Atkin polynomial is

A2,5,2(J) = J2 − 581

600
J +

1653

16000
,

while the relevant Jacobi polynomial is

P
(− 9

2 ,−
1
2 )

2 (1− 2J) = J2 − 5J +
35

8
.

Both polynomials, however, are equivalent modulo 41 to (4.4.3).

Similarly, when i = 2, the relevant Atkin polynomial is

A6,5,1(J) = J6 − 1293

440
J5 +

28281339

8800000
J4 − 8441564927

5280000000
J3 +

1147233310111

3276800000000
J2

− 427439820336993

16384000000000000
J +

237875498609889

1310720000000000000
,

which is much messier than the relevant Jacobi polynomial

P
(− 25

2 ,−
1
2 )

6 (1− 2J) = J6 − 39J5 +
2925

8
J4 − 5525

4
J3

+
314925

128
J2 − 264537

128
J +

676039

1024
.

Both, however, are congruent modulo 41 to (4.4.4).

Lastly, when i = 3, the relevant Atkin polynomial is

A10,5,0(J) = J10 − 749

152
J9 +

9385

912
J8 − 11761043

992256
J7 +

44473367407

5419040768
J6

− 23890048637

6845104128
J5 +

218583737141

244813135872
J4 − 1426583125165

11098195492864
J3

+
1229793398431339

136374626216312832
J2 − 238475774882381

1090997009730502656
J +

4418157975

18014398509481984
.

The corresponding Jacobi polynomial becomes

P
(− 41

2 ,−
1
2 )

10 (J) = J10 − 105J9 +
21735

8
J8 − 60375

2
J7 +

11410875

64
J6

− 39709845

64
J5 +

683891775

512
J4 − 460580175

256
J3

+
48360918375

32768
J2 − 22090789875

32768
J +

34461632205

262144
,

and both are congruent modulo 41 to (4.4.5).

Also, notice that the values of α are growing larger with u. However, since we only consider u modulo

p, it is possible to find smaller values of α that will also provide us with a suitable equivalence. In the above
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example, for instance, we have that

u =
41(2i− 1)− 2j + 1

10
≡ −2j + 1

10
mod 41.

Therefore, instead of the values α = −9/2,−25/2,−41/2 considered above, we could just as easily have

taken α = − 2
5 ,−

1
5 , and 0, respectively (corresponding to the cases j = 1, j = 2, j = 3). This would give rise

to the Jacobi polynomials

P
(− 2

5 ,−
1
2 )

2 (1− 2J) =
651

200
J2 − 84

25
J +

12

25
,

P
(− 1

5 ,−
1
2 )

6 (1− 2J) =
45908976351

80000000
J6 − 35345849049

20000000
J5 +

1029490749

500000
J4

− 70108689

62500
J3 +

17738343

62500
J2 − 2186919

78125
J +

46284

78125
,

P
(0,− 1

2 )
10 (1− 2J) =

34461632205

262144
J10 − 22090789875

32768
J9 +

48360918375

32768
J8

− 460580175

256
J7 +

683891775

512
J6 − 39709845

64
J5

+
11410875

64
J4 − 60375

2
J3 +

21735

8
J2 − 105J + 1,

and these are again congruent to (4.4.3), (4.4.4), and (4.4.5) mod 41, respectively.

These latter choices of α are more in line with the α seen in Theorem 46. By considering the separate

cases of m individually, we can therefore modify the statement of Theorem 47 so that it more readily agrees

with the statement of Theorem 46. We give this new statement as a corollary.

Corollary 48. Let m ≥ 3, and keep the notation as in Lemma 31. Then for a prime p not dividing

2m, we have the following:

(i) if m ≡ 0 mod 4, then for 1 ≤ i ≤ m
4 and j satisfying (2i−1)p+1

2 ≡ j mod m/2, we have

Anp,m,k(J) = Jϵ(J − 1)δP
(− 1

2+
2j−1
m ,δ− 1

2 )
⌊ (2i−1)p

2m ⌋ (1− 2J)

over a field of characteristic p.

(ii) if m ≡ 2 mod 4, then for 1 ≤ i ≤ m−2
4 and j satisfying j ≡ ip mod m/2, we have

Anp,m,k(J) = Jϵ(J − 1)δP
(− 1

2+
j

m/2
,δ− 1

2 )
⌊ ip

m⌋ (1− 2J)

over a field of characteristic p.

(iii) if m is odd, then for 1 ≤ i ≤ m+1
2 and j satsifying (2i−1)p+1

2 ≡ j mod m, we have

Anp,m,k(J) = Jϵ(J − 1)δP
(− 1

2+
2j−1
2m ,δ− 1

2 )
⌊ (2i−1)p

4m ⌋ (1− 2J)
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over a field of characteristic p.

5.2. Jacobians of the curves in Fm

In the arithmetic cases m = 4 and m = 6, it is known that the Jacobian of a curve in Fm with b ̸= 0 is

isogenous to a product of elliptic curves over C; moreover, these elliptic curves are themselves isogenous (see

the remarks in [9], for example). Over a finite field, one obtains a similar splitting of the Jacobian, though

one may need to pass to a field extension to obtain an isogeny between the two elliptic curves (see [63, 24]).

Based on these observations, it is natural to ask whether any sort of splitting of the Jacobian occurs in

general for the curves in Fm. In this section, we show that the Jacobian of a curve in Fm with b ̸= 0 is

always isogenous over C to a product of Jacobians of lower genus hyperelliptic curves. While we restrict to

the case b ̸= 0, similar arguments could be used to treat the b = 0 case.

Since we are working over C, to simplify the notation a bit, we begin by transforming the equation

y2 = x2g+1+κm − 2axg+1 + bx1−κm

of a curve in Fm with b = 0 to the form

(5.2.1) y2 = x2g+1+κm − θxg+1 + x1−κm

via the mapping

y/b1/2 7→ y,

x/b
1

2g+1+κm 7→ x,

where

θ =
2a

b
g+κm

2g+1+κm

.

With this notation, we prove the following result.

Theorem 49. Let C be a curve in Fm of the form (5.2.1).

(i) If m is even, then the Jacobian of C is isogenous to J0 × J1, where Jj is the Jacobian of the

hyperelliptic curve

Cj : Y
2 = X

−θ +
m/2∑
k=0

(−1)(1−j)kak,mX
m/2−k

 ,

and

ak,m =
m (m− k − 1)!

k! (m− 2k)!
.
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(ii) If m is odd, then the Jacobian of C is isogenous to J0 × J1 × Eθ, where Jj is the Jacobian of the

hyperelliptic curve

Cj : Y
2 = −θ +

m−1
2∑

k=0

(−1)kζ−2jk
m ak,mX

m−2k,

ζm is a fixed nontrivial mth root of unity, and Eθ is the elliptic curve

(5.2.2) Y 2 = X3 +

(
1− θ2

3

)
X +

θ

3

(
1− 2θ2

9

)
.

In particular, Eθ is independent of m.

Proof. Our method of proof is a generalization of the proof given in [48] for the case m = 4. We focus

first on the case where m is even. In this case, g = m/2− κm and the right hand side of (5.2.1) reduces to

x1−κm

(
xm − θxm/2 + 1

)
= xg+1

(
xm/2 + x−m/2 − θ

)
.

For j ∈ {0, 1}, consider the transformation

φj (x, y) =


(
x+ (−1)

j
)2

x
,
y
(
x+ (−1)j

)
xg/2+1


= (X,Y ) .

In particular, X = x+x−1± 2, with the sign being positive for j = 0 and negative for j = 1. In other words,

X + 2(−1)1−j = x+ x−1.

The idea is to use the well known expression of xn + x−n as a polynomial in x+ x−1. This polynomial

is closely related to the Chebyshev polynomial

Tn(t) =

(
t−

√
t2 − 1

)n
+
(
t+

√
t2 − 1

)n
2

.

In particular, for t = x+x−1

2 ,

xn + x−n = 2Tn

(
x+ x−1

2

)
,

and in fact

(5.2.3) xn + x−n = 2Tn

(
xζ−1
n + x−1ζn

2

)
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for any nth root of unity ζn. Using this identity,

(5.2.4) Y 2 = X

(
2Tm/2

(
X

2
+ (−1)1−j

)
− θ

)
.

We now list the following well-known properties of the polynomial Tn :

Tn
(
1− 2x2

)
= (−1)

n
T2n(x),(5.2.5)

Tn(x) = 2F1

(
−n, n; 1

2
;
1− x

2

)

=
n

2

⌊n/2⌋∑
k=0

(−1)
k (n− k − 1)!

k! (n− 2k)!
(2x)

n−2k
.(5.2.6)

By combining these properties, we see that when j = 0,

2Tm/2

(
X

2
− 1

)
= 2Tm

(
X1/2

2

)

= m

m/2∑
k=0

(−1)
k (m− k − 1)!

k! (m− 2k)!
Xm/2−k,

so that (5.2.4) reduces to the equation for C0. Similarly, when j = 1,

2Tm/2

(
X

2
+ 1

)
= 2(−1)m/2Tm

(
iX1/2

2

)

= m

m/2∑
k=0

(m− k − 1)!

k! (m− 2k)!
Xm/2−k,

so that (5.2.4) reduces to the equation for C1.

We still need to show that the Jacobian of our original curve is isogenous to the product J0 × J1. To

see why this is so, for 0 ≤ ℓ < g, let

ωℓ = xℓ
dx

y
.

These differentials form a well known basis of the space of holomorphic differentials for the curve C. Also,

for 0 ≤ s < g/2, let

ωj,s = Xs dX

Y

denote the basis elements for the space of holomorphic differentials for the curve Cj . By direct computation,

we see

Xs dX

Y
= (x+ 1)

2s
(x− 1)xg/2−1−s dx

y

=

2s∑
r=0

(
2s

r

)
xr+g/2−1−s (x− 1)

dx

y
,
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so that

φ∗
1 (ω1,s) =

2s∑
r=−1

c(r, 2s)ωr+g/2−s,

where

c(r, s) =

(
s

r

)
−
(

s

r + 1

)
=

2r + 1− s

r + 1

(
s

r

)
.(5.2.7)

In particular, c(r, 2s) ̸= 0 since 2s is always even. Similarly, we find that

φ∗
0 (ω0,s) =

2s∑
r=−1

(−1)rc(r, 2s)ωr+g/2−s,

so that in general

φ∗
j (ωj,s) =

2s∑
r=−1

(−1)r(1−j)c(r, 2s)ωr+g/2−s.

If we now consider the g dimensional column vectors

v =
(
φ∗
1 (ω1,0) , φ

∗
0 (ω0,0) , . . . , φ

∗
1 (ω1,s) , φ

∗
0 (ω0,s) . . . , φ

∗
1

(
ω1, g2−1

)
, φ∗

0

(
ω0, g2−1

))
,

w =
(
ω g

2−1, ω g
2
, . . . , ω g

2−ℓ−1, ω g
2+ℓ

, . . . , ω0, ωg−1

)
,

then the matrix A satisfying

Aw = v

is a block lower triangular matrix of the form

A0 0

A1

. . .

∗ Ag/2−1


,

where each As is a 2× 2 matrix of the form

As =

 c(−1, 2s) c(2s, 2s)

−c(−1, 2s) c(2s, 2s)

 .

In particular, each Ai has nonzero determinant since we have already observed that the values of c(r, 2s) are

nonzero. Therefore A has full rank, and so the forms φ∗
j (ωj,s) for 0 ≤ j ≤ 1 and 0 ≤ s ≤ g/2− 1 also form
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a basis for the space of holomorphic differential forms on C. This proves the desired isogeny holds (in fact,

over Q (θ)).

Let us now consider the case of m odd. The main argument is the same, though there are some important

differences. A curve in Fm is now of the form

y2 = x
(
x2m − θxm + 1

)
The first thing to notice is that if we set

X = x+ x−1 ± 2

as in the previous case, the corresponding value of Y becomes

Y = y/x
m+1

2 ,

and consequently, using notation analogous to the previous case,

φ∗
0 (ω0,0) = φ∗

1 (ω1,0) .

In particular, the differentials one obtains from this transformation do not form a spanning set. Therefore,

we need to choose our transformation somewhat more carefully. One way to do this is to fix an mth root of

unity ζm, and apply (5.2.3) to rewrite the right hand side of the equation defining our curve as

x
(
x2m − θxm + 1

)
= xm+1

(
xm + x−m − θ

)
= xm+1

(
2Tm

(
xζ−jm + x−1ζjm

2

)
− θ

)
for j = 0, 1. Now if we set

φj (x, y) =

(
x+

ζ2m
x
,

y

x
m+1

2

)
= (X,Y ) ,

our original curve becomes

Y 2 = 2Tm

(
ζ−jm X

2

)
− θ

= −θ +m

m−1
2∑

k=0

(−1)
k
ζ−2kj
m

(m− k − 1)!

k! (m− 2k)!
Xm−2k,

and we therefore obtain the curves Cj .
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We next compute some differentials. Keeping the same notation from the previous case, we have

φ∗
j (ωj,s) =

(
x2 + ζ2jm

x

)s(
1− x−2ζ2jm

y

)
x

m+1
2
dx

y

=

s∑
r=0

(
s

r

)
ζ2j(s−r)m x

m−3
2 −s (x2 − ζ2jm

) dx
y

=

s∑
r=−1

c(r, s)ζ2j(s−r)m ω2r+m+1
2 −s.

Here c(r, s) is once again given by (5.2.7). Notice that we still have to worry about spanning, since in this

case we have c(r, s) = 0 whenever r = s−1
2 . In particular, the coefficient of ωm−1

2
is always zero.

Ignoring this form for the time being, we can try to proceed as in the previous case. If we consider the

m− 1 dimensional vectors

v =
(
φ∗
1 (ω1,0) , φ

∗
0 (ω0,0) , . . . , φ

∗
1 (ω1,s) , φ

∗
0 (ω0,s) . . . , φ

∗
1

(
ω1,m−3

2

)
, φ∗

0

(
ω0,m−3

2

))
,

w =
(
ωm−3

2
, ωm+1

2
, . . . , ωm−1

2 −ℓ−1, ωm+1
2 +ℓ, . . . , ω0, ωm−1

)
,

then the matrix A satisfying

Aw = v

is once again a block lower triangular matrix, this time of dimension (m− 1)× (m− 1), and of the form

A0 0

A1

. . .

∗ Am−3
2


,

where each As is a 2× 2 matrix of the form

As =

 ζ
2(s+1)
m c(−1, s) c(s, s)

c(−1, s) c(s, s)

 .

Since c(−1, s) and c(s, s) are both nonzero, and since s < m−1
2 , we see that detAs ̸= 0 for each s, so that

this matrix has full rank. Therefore the forms φ∗
j (ωj,s) for 0 ≤ j ≤ 1 and 0 ≤ s ≤ m−3

2 form a basis for the

subspace of holomorphic differential forms for C spanned by ωℓ for ℓ ̸= m−1
2 .

To cover this last basis element, we need one final transformation. If we start again with the curve

C : y2 = x
(
x2m − θxm + 1

)
,
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then clearly

(
x

m−1
2 y

)2
= x3m − θx2m + xm

=

(
xm − θ

3

)3

+ xm
(
1− θ2

3

)
+
θ3

27
.

Therefore, if we set

φθ (x, y) =

(
xm − θ

3
, x

m−1
2 y

)
= (X,Y ) ,

then X and Y satisfy the equation (5.2.2) of the curve Eθ. In this case, we see

dX

Y
= mx

m−1
2
dx

y
,

or in other words,

φ∗
θ (ωθ) = mωm−1

2
,

where ωθ = dX/Y. We conclude that the forms φ∗
j (ωj,s) along with the form φ∗

θ (ωθ) form a basis for the

space of holomorphic differential forms for C, and therefore the isogeny holds (this time over Q
(
θ, ζ2m

)
). �

We close this section with some remarks. First, it’s quite likely that the above result could be strength-

ened. For example, in [16] it is shown in the case m ≡ 2 mod 4 that the Jacobian of C is actually isomorphic

to a product of Jacobians. It’s possible one could extend this result to the more general setting studied here.

Second, it is instructive to treat the m = 3 case in this context. Of course, this case has already been

described in detail, but it is possible for some confusion to arise, since the m = 3 case deals with elliptic

curves, but in this more general framework, the family F3 is given by hyperelliptic curves of the form

y2 = x
(
x6 − ax3 + b

)
.

To reconcile this apparent discrepancy, we know by the theorem above that the Jacobian splits into E0 ×

E1 × Eθ, for some elliptic curves E0 and E1, where Eθ is given by (5.2.2). Using the notation of the above

theorem, we see that for j = 0, 1, Ej is given by

Y 2 = X3 − ζ−2j
3 X − θ,

and in particular these curves are isomorphic, since the mapping

(X,Y ) 7→ (ζ3X,Y )
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takes E0 to E1. Therefore the Jacobian splits into E2
0 × Eθ.

For m = 3, the dependence of θ on a and b is given by

θ =
2a

b1/2
.

It follows that the j invariant of the curve E0 is equal to

1728
4

4− θ2
= 1728

b

b− a2
.

Therefore, the results on supersingular elliptic curves and Atkin polynomials discussed, for example, in [40],

can be obtained from analysis of the curves in F3 by looking at the factor E0 in the Jacobian of the curve.

5.3. Period functions and modular integrals

5.3.1. Background on Modular Integrals for G3. There is another way to interpret the Atkin

polynomials and their generalizations. This approach makes use of the theory of period functions and

modular integrals.

Let us first recall some of the terminology in the case of the full modular group G3 = PSL2 (Z). Let

S and T = T3 denote the generators of this group, as introduced in the first chapter, and let U = ST .

A holomorphic function ψ on H is said to be a period function of even integral weight k if it satisfies the

functional equations

ψ |k (1 + S) = 0,(5.3.1)

ψ |k
(
1 + U + U2

)
= 0,(5.3.2)

along with the growth condition

|ψ(τ)| ≪ |τ |A + Im (τ)
−B

for some positive constants A and B and some even integer k, where

ψ |k g(τ) = (cz + d)
−k
ψ (gτ)

denotes the usual slash operator for g =

 a b

c d

 ∈ PSL2 (R).

Now consider a holomorphic function F on H which has a q-series expansion (q = e2πiτ )

F (τ) =
∑
n

a(n)qn,
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and let ord∞F ∈ Z ∪ {±∞} denote the smallest n for which a(n) ̸= 0. If such an F satisfies ord∞F > −∞

and

F |k (1− S) = ψ,

for some period function ψ of weight k, then F is called a modular integral of weight k for G3 and ψ.

Example 50. Consider the weight 2 Eisenstein series E2 for the full modular group. Because of the

transformation property (2.1.1),

E2 |2 (1− S) (τ) =
6i

πτ
,

so that E2 is a modular integral for G3 with period function 6i
πτ (for the statement that 1/τ is a period

function, see Proposition 52 below).

The mapping from a modular integral F to its corresponding period function ψ is linear, and the kernel

of this map defines the space of weakly holomorphic modular forms of weight k, typically denoted M !
k. These

functions satisfy the same functional equations as modular forms, but we allow for poles at the cusp i∞. As

explained in [15], if we write the weight k as k = 12ℓ+ k′ for k ∈ {0, 4, 6, 8, 10, 14}, then

ℓ =


⌊k/12⌋ − 1, k ≡ 2 mod12,

⌊k/12⌋ , otherwise

is the dimension of the space of cusp forms of even weight k when k > 2, and consequently by the Riemann-

Roch theorem for each m ≥ −ℓ there exists a weakly holomorphic modular form of weight k, denoted fk,m,

of the form

fk,m(τ) = q−m +
∑
n>ℓ

ak(m,n)q
n.

In fact, we can write the function fk,m as

fk,m = ∆ℓEk′Pk,m(j),

where ∆ denotes the canoncal cusp form of weight 12, Ek′ is the weight k′ Eisenstein series, and Pk,m(j)

is a monic polynomial of degree m + ℓ in the modular invariant j = 1728J3. More on these polynomials,

sometimes referred to as a type of generalized Faber polynomial, can be found in [37]. Note in particular,

when m = −ℓ we have fk,−ℓ = fk = ∆ℓEk′ .

While it might not seem obvious that one can always find a modular integral for a given period function

ψ, Knopp showed in [41] that the linear mapping from modular integrals to period functions is surjective. If

we impose the additional restriction that ord∞F > ℓ for ℓ as above, then in fact Knopp’s construction can

be used to give rise to a unique modular integral associated to ψ, which we will denote by Fψ.
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Though the integral Fψ can be difficult to compute explicitly, in certain cases such computations are

possible. For example, if k > 2 then for each m ≥ −ℓ, m ̸= 0, there exists a modular integral called the

Eichler integral associated to the weakly holomorphic modular form fk,m and defined by

Fk,m(τ) = (−m)
1−k

q−m +
∑
n>ℓ

ak(m,n)n
1−kqn.

This is a modular integral of weight 2− k and is associated to a period function ψk,m which is a polynomial.

Moreover, this represents the canonical modular integral for ψk,m whenever |m| ≤ ℓ.

However, it is possible to consider a much larger class of period functions than simply polynomials. One

case frequently studied is the case of rational period functions. This class of functions is discussed in [42],

and a complete classification of rational period functions for the full modular group was obtained in [8] (see

also [58]). It is also possible to consider period functions which are not rational functions. For example,

William Duke has pointed out that ∆1/6 is a weight 2 period function for the full modular group. In these

more general cases, computation of the canonical modular integral has proven to be more difficult.

Using weakly holomorphic modular forms, however, it is possible to study the coefficients of canonical

modular integrals in a more general framework. For example, one has the following result, based on the

same idea appearing in the proof of Proposition 6 and generalized in the arguments used in Chapter 2.

Proposition 51. (Duke) Let k be an even integer and let ψ be a period function of weight k for the

full modular group. Then if we consider the canonical modular integral Fψ(τ) =
∑
m>ℓ c(m)qm, we have the

following integral representation of the coefficient c(m):

c(m) =

ˆ ρ

i

ψ(z)f2−k,m(z)dz,

where the inetgral is along the circular arc from i to ρ = eπi/3. Also, if Im(τ) is sufficiently large, we have

(5.3.3)
Fψ(τ)

fk(τ)
=

ˆ ρ

i

f2−k(z)ψ(z)

j(z)− j(τ)
dz,

where j denotes the usual modular invariant.

Proof. As in the proof of Proposition 9 and Theorem 13, the key idea is to consider a truncated

fundamental domain. In this case, consider the truncated fundamental domain F(Y ) for the fundamental

domain F of G3\H:

F(Y ) = {z ∈ F : Imz ≤ Y } .

Integrate Fψ(z)f2−k(z) around the boundary of F(Y ), oriented positively. Since this function is holmorphic,

the integral equals zero. On the other hand, the integrals along the left and right hand sides cancel, while
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the integral along the top is −c(m), since f2−k,m

f2−k,m(τ) = q−m +O
(
q−ℓ
)
,

Fψ(τ) = O
(
qℓ+1

)
,

and dτ = dq
2πiq , so the constant term in the q series of the integrand with respect to dq is precisely −c(m).

Meanwhile, on the circular arc comprising the bottom of the boundary, the contribution to the integral

equals ˆ i

−ρ
Fψ(z)f2−k,m(z)dz +

ˆ ρ

i

Fψ(z)f2−k,m(z)dz.

Making the change of variables z = −1/w in the first integral, we can rewrite it as

ˆ i

ρ

Fψ

(
− 1

w

)
f2−k,m

(
− 1

w

)
dw

w2
=

ˆ i

ρ

w−kFψ

(
− 1

w

)
f2−k,m(w)dw,

using the transformation properties of f2−k. Therefore the contribution from the bottom piece of the

boundary equals

ˆ ρ

i

(
Fψ(z)− z−kFψ

(
−1

z

))
f2−k,m(z)dz =

ˆ ρ

i

ψ(z)f2−k,m(z)dz,

since ψ is the period function associated to Fψ. This completes the first part of the proposition.

To prove the second part, one must make use of the following generating function identity proven in [15]:

(5.3.4)
f2−k(z)fk(τ)

j(z)− j(τ)
=
∑
m>ℓ

f2−k,m(z)qm.

The sum on the right hand side converges uniformly on compact sets in z when τ ∈ H is fixed and Imz < Imτ .

In particular, this means that for Imτ sufficiently large, we have

ˆ ρ

i

fk(τ)f2−k(z)ψ(z)

j(z)− j(τ)
dz =

∑
m>ℓ

(ˆ ρ

i

ψ(z)f2−k,m(z)dz

)
qm

= Fψ(τ),

as claimed. �

5.3.2. A connection to Atkin polynomials. What does any of this have to do with Atkin polyno-

mials? To answer this question, suppose we have a period function that satisfies the following additional

symmetry condition:

ψ(z) = ψ (−z) .
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Consider the function

u(z) = izψ (z) f2−k (z) .

On the unit circle z = 1
z , by the transformation properties of ψ and f2−k we obtain

u(z) = −izψ (z)f2−k (z)

= − i

z
ψ

(
−1

z

)
f2−k

(
−1

z

)
= − i

z

[
−zkψ (z)

] [
z2−kf2−k (z)

]
= u(z),

so that u is real-valued.

We can relate u to Fψ by means of the second part of Proposition 51, which is now equivalent to the

statement that
Fψ(τ)

fk(τ)
=

ˆ i

ρ

u(z)

j(τ)− j(z)

dz

iz
.

Now suppose we change variables from z to J via the equality z = Φ3(J(z))
2πi where J(z) = J3(z) is the

normalization of the j invariant as in the previous chapters. Then we can rewrite the above integral as

1728
Fψ(τ)

fk(τ)
=

ˆ 1

0

wψ(J)

J(τ)− J
dJ,

where

wψ(J) =
u(J)Φ′

3(J)

iΦ3(J)
,

and we have committed a slight abuse of notation by writing u(J) for u(z(J)). The similarity between this

expression and the expresion for the generalized Atkin weight wm,k given by (2.2.8) in the case m = 3, k = 1

is not a coincidence. Indeed, if we consider the weight two period function ψ(z) = 6i
πz (the proof that this is

indeed a weight 2 period function is given in the next section), then u(z) = 6
π since f0 = 1, and the weight

wψ(J) reduces to

wψ(J) =
6

πi

Φ′
3(J)

Φ3(J)
= w3(J).

In other words, the weight associated to ψ is the Atkin weight.

In this case, the left hand side of 5.3.3 reduces to 1728 E2∆
E4E2

6
, and the right hand side reduces to

1

J(τ)

∞∑
k=0

1

J(τ)k

ˆ 1

0

Jkwψ(J)dJ
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for Imτ sufficiently large. In other words, we have recovered the fact that this power series generated by the

moments of the Atkin weight is equal to the negative of d log∆
dJ , which is precisely the statement proven by

Kaneko and Zagier and generalized in Chapter 2.

5.3.3. Generalizations to Atkin-type polynomials. It is possible to extend this theory of period

functions to a larger class of groups. In particular, if one replaces the functional equation (5.3.2) by the

equation

(5.3.5) ψ |k

(
m−1∑
ℓ=0

U ℓm

)
= 0,

where where Um = STm = ±

 0 −1

1 λm

 and λm = 2 cos(π/m), then we say that ψ is a period function

for the Hecke triangle group Gm. The slash operator has the same meaning here as in the case of the

full modular group. We can also define a modular integral in an analogous way; the only change is in the

description of the Fourier expansion, where we require

F (τ) =
∑
n

a(n)qnm,

with qm = e2πiτ/λm . The other conditions remain the same. Period functions for the Hecke groups have been

studied in [12], and the specific case of period functions for Hecke triangle groups which are polynomials in

log(τ) is discussed in [25]. Similar polynomials for non-discrete groups are discussed in [26].

As we have just seen, from the perspective of period functions, the Atkin weight is the weight associated

to a constant multiple of the period function ψ(τ) = 1
τ . However, according to the following lemma, this

function is not just a period function for G3.

Lemma 52. For any integer m ≥ 3, the function ψ(τ) = 1
τ is a period function for Gm of weight 2.

This follows from a stronger classification result on rational period functions for Hecke triangle groups

(see [12]). It is also possible to prove the statement directly using only basic linear algebra and trigonometry.

The fact that ψ(τ) = 1
τ is a period function for each triangle group Gm suggests that it should be

possible to develop an analogous theory of Atkin polynomials for each of these groups. Indeed, it’s possible

to begin with the theory of period functions, and use this as motivation to study polynomials which are

orthogonal with respect to the weight function wψ, provided the mapping ψ 7→ wψ does actually give rise to

a weight function from the viewpoint of the theory of orthogonal polynomials.
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From this perspective, we see by (2.1.11) that for fixed m ≥ 3 the function

ψ(τ) =
λm

2πiαmτ

is a period function of weight 2 for Gm with corresponding modular integral E2,m. We would like to develop

a general formula for the Fourier coefficients of modular integrals as in Proposition 51 above, but to do this

we first need an analogue of the weakly holomorphic modular forms discussed in the previous section.

Before we construct such forms, we provide a bit more background on the spaces of modular forms for

the Hecke triangle groups. For fixed m, a modular form for Gm of weight k and multiplier ν = ±1 is a

holomorphic function f on the upper half plane that satisfies the transformation laws

f (Tmτ) = f(τ),

f (Sτ) = ν

(
− 1

iτ

)−k

f(τ),

is holomorphic at infinity, and whose Fourier coefficients satisfy the growth condition

a(n) ≪ nc

for some constant c, where

f(τ) =

∞∑
n=0

a(n)qnm.

When k and ν are fixed, the space of such forms will be denoted by Mk,ν,m.

Mk,ν,m is always empty unless

(5.3.6) k =
r

mαm
+ 1− ν

for some positive integer r, in which case it has dimension

1 +

⌊
r + (ν − 1) /2

m

⌋
= 1 +

⌊
kαm +

ν − 1

4

⌋
.

For example, when m = 3, ν = −1 when k is congruent to 2 mod 4, and ν = 1 when k is congruent to 0 mod

4. In this case the dependence on the multiplier is usually ignored because the transformation rules simplify.

In particular, we see that for any even k > 2, exactly one of Mk,1,3 and Mk,−1,3 is empty, but this need no

longer be true for general m. For more on spaces of modular forms for Hecke triangle groups, see [36] and

the references therein.

As in the case of the full modular group, we define the space of weakly holomorphic modular forms of

weight k and multiplier ν = ±1 for the Hecke group Gm to be the space of holomorphic functions f on the
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upper half plane satisfying the same transformation properties as in the holomorphic case, but we allow for

negative n values in the Fourier expansion - i.e. we allow for poles at the cusp. Denote this space by M!
k,ν,m.

Fix a value m and a weight k such that M!
k,ν,m is nonempty. Let ℓ ∈ Z and 0 ≤ r < m be the unique

integers such that

(5.3.7) k =
ℓ

αm
+

r

mαm
+

1− ν

4αm
;

such integers exist because of the restriction (5.3.6). Keeping the notation from Chapter 2, let f0 and fi

be the unique modular forms in M 4
m−2 ,1,m

and M 2m
m−2 ,−1,m, and let ∆m be the unique cusp form of weight

1/αm and multiplier 1 (note this is the smallest value of k for which the space of modular forms has dimension

greater than 1).

For each m1 ≥ −ℓ, there exists a unique fk,m1,m ∈ M!
k,ν,m such that

fk,m1,m(τ) = q−m1
m +O

(
qℓ+1
m

)
.

This form can be constructed quite explicitly, as in the case m = 3: we simply take

fk,m1,m = ∆ℓ
mf

r
0 f

1−ν
2

i Pk,m1,m (jm)

= q−m1
m +

∑
n>ℓ

ak (m1, n) q
n
m.

where P is a monic polynomial of degree m1 + ℓ, and is determined by the restriction that the Fourier

coefficients ak(m1, n) of fk,m1,m are equal to zero for −m1 < n < ℓ + 1. Also, jm = Jm/Am. Note that

unlike the case m = 3, the coefficients ak (m1, n) need not be integers, though we do know that ak (m1, n)A
n
m

is rational, since it is shown in [77] that the Fourier coefficients of modular forms for the group Gm can always

be written in the form

a(n) = ã(n)A−n
m ,

where ã(n) = a(n)Anm is rational. As before, in the case m1 = −ℓ we write fk = fk,−ℓ,m. Of course, this

function depends on m, but since m is fixed this should cause no confusion.

For example, if we denote the Fourier expansion of Jm by

Jm(τ) =
Am
qm

+
∑
n≥0

am(n)A−n
m qnm
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for some rational coefficients am(n), then when k = 0 we have

P0,0,m = 1,

P0,1,m =
Jm
Am

− am(0)

Am

= jm − am(0)

Am
,

P0,2,m = j2m − 2
am(0)

Am
jm +

am(0)2

A2
m

− 2
am(1)

A2
m

.

In general, we see that Am1
m P0,m1,m(jm) is a polynomial of degree m1 in Jm with rational coefficients.

These weakly holomorphic modular forms for Gm turn out to satisfy the same type of generating function

identity as (5.3.4); indeed, the proof is nearly identical to the one provided in [15]. For sake of completeness

we provide a brief proof here.

Proposition 53. Fix an m ≥ 3. For any k of the form (5.3.7) we have

∑
m1≥−ℓ

fk,m1,m(z)qm1
m =

fk(z)f2−k(τ)

jm(τ)− jm(z)
.

Proof. By definition of the form fk,m1,m, we have

(5.3.8) ∆ℓ
mf

r
0 f

1−ν
2

i Pk,m1,m (jm) = q−m1
m +O

(
qℓ+1

)
Let C ′ denote a circular contour oriented centered at 0 in the positive direction. When the radius is sufficiently

large, since P is a polynomial, we have

Pk,m1,m (ζ) =
1

2πi

ˆ
C′

Pk,m1,m (jm)

jm − ζ
djm

=
1

2πi

ˆ
C′

q−m1
m

∆ℓ
mf

r
0 f

1−ν
2

i (jm − ζ)
djm,

by (5.3.8).

We see from Lemma 8 and (2.1.10) that

(5.3.9)
djm
dqm

= −f
m−1
0 fi
q∆m

,

so by changing variables from jm to qm we can write the above integral as

1

2πi

ˆ
C

f0(τ)
m−1−rfi(τ)

v+1
2 ∆m(τ)−ℓ−1

jm(τ)− ζ
q−m1−1
m dqm

104



for some circular contour C centered at 0 of sufficiently small radius (notice that the negative sign in (5.3.9)

ensures that the curve C still has a positive orientation). By choice of k, along with the fact that

1

2αm
− 1

mαm
= 2

for any m, the numerator in the integral is simply f2−k(τ). Therefore, if we replace ζ by jm(z) and multiply

both sides by fk(z), we have

fk,m1,m(z) = fk(z)Pk,m1,m(z)

=
1

2πi

ˆ
C

fk(z)f2−k(τ)

jm(τ)− jm(z)
q−m1−1
m dqm.

The result now follows from an application of Cauchy’s integral formula. �

As in the case of m = 3, the above proposition implies the following duality result:

Corollary 54. Fix an m ≥ 3. For any k of the form (5.3.7) we have the equality

ak(m1, n) = −a2−k(n,m1)

between the Fourier coefficients of the modular forms fk,m1,m and f2−k,n,m.

We can also use the above proposition to generalize Proposition 51 from the previous section. The proof

is nearly identical, so we merely supply the statement.

Proposition 55. Fix an m ≥ 3. For any k of the form (5.3.7) let ψ be a period function of weight

k for the Hecke triangle group Gm. Then given a modular integral Fψ(τ) =
∑
m1>ℓ

c(m1)q
m1
m , we have the

following integral representation of the coefficient c(m1):

c(m1) =
1

λm

ˆ ρm

i

ψ(z)f2−k,m1(z)dz,

where the integral is along the circular arc from i to ρ = eπi/m. Also, if Im(τ) is sufficiently large, we have

(5.3.10)
Fψ(τ)

fk(τ)
=

1

λm

ˆ ρm

i

f2−k(z)ψ(z)

jm(z)− jm(τ)
dz.

In particular, if we take ψ(τ) = λm

2πiαmτ
so that Fψ = E2,m, then keeping with the notation of the

previous section we have u(J) = λm/2παm, so that (5.3.10) becomes

A−1
m

Fψ(τ)

fk(τ)
=

ˆ 1

0

wm(J)

J(τ)− J
dJ.
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In other words, we still have wψ = wm, so the period function gives rise to a generalized Atkin weight, and

the second statement of the above proposition is equivalent to Proposition 10.

5.3.4. Coefficients of certain modular integrals. Our last topic in this section concerns a different

family of period functions for the Hecke triangle groups Gm. As mentioned earlier in this chapter, when

m = 3 the canonical cusp form ∆ gives rise to a period function proportional to ∆1/6 of weight 2 for the full

modular group. In fact, this observation can be generalized as follows.

Theorem 56. Fix an m ≥ 3. Then the function

− 2π

A2αm
m

∆2αm
m (τ) = − 2π

Jm(τ)2αm
2F1

(
αm, βm; 1;

1

Jm(τ)

)2

is a period function of weight 2 for the full modular group Gm, where ∆m is the canonical cusp form on this

group as defined in Chapter 2. Moreover, the weight associated to this period function is a Jacobi weight of

the form (5.1.1), rescaled to [0, 1], with α = 1/2 and β = 1/2− 2αm.

Proof. To show that the above function is a period function, it suffices to show that ∆2αm
m is a period

function. Since ∆m is a cusp form, the growth conditions necessary in the definition of a period function are

met (for more on the growth of cusp forms near the boundary in the casem = 3, see [38]). The transformation

rule (5.3.1) follows from analytic continuation of the functional equation for the hypergeometric function

given in Proposition 14. In particular, we see that

∆2αm
m

(
−1

τ

)
= −τ2∆m(τ).

On the other hand, we know that for |qm| sufficiently small, since ∆m is λm periodic, holomorphic on the

upper half plane, and has vanishing 0th Fourier coefficient, it has a product expansion

∆m(τ) = qm
∏
n≥1

(1− qnm)
c(n)

for some explicitly computable constants c(n) (see [6, 17]). From this, since the cusp form is nonvanishing

on the upper half plane, it follows that

∆2αm
m (τ + λm) = e4πiαm∆2αm

m (τ).

Combining these two transformation rules, we deduce that

∆2αm
m (Umτ) = −e4πiαm (z + λm)

2
∆2αm
m (τ) ,
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and more generally

∆2αm
m

(
U ℓmτ

)
= −e4πiαm (cℓz + dℓ)

2
∆2αm
m (τ) ,

where

U ℓm =

 ∗ ∗

cℓ dℓ

 .

In particular, this means

∆2αm
m |2 U ℓ(τ) =

(
−e4πiαm

)ℓ
∆2αm
m (τ),

so that

∆2αm
m

∣∣∣∣∣2
(
m−1∑
ℓ=0

U ℓm

)
(τ) = ∆2αm

m (τ)

m−1∑
ℓ=0

−e4πiαmℓ

= ∆2αm
m (τ)

m−1∑
ℓ=0

e−2πiℓ/m

= 0.

Therefore ∆2αm
m is indeed a period function.

To find the weight associated to the rescaled version of this function given in the statement of the

theorem, we recall that the Atkin weight for fixed m can be written as

wm(J) =
1

2πiαm

Φ′
m(J)

Φm(J)

−A2αm
m

2παmJ1/2+2αm(1− J)1/2∆m

(
λm

2πiΦm(J)
)2αm

Φm(J)

by Corollary 12. Using this, we see that if we fix our period function as

ψ(τ) = − 2π

A2αm
m

∆2αm
m (τ),

the fact that k = 2 implies

uψ(z) = −iz 2π

A2αm
m

∆2αm
m (z),
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and so

wψ(J) =
uψ(J)Φ

′
m(J)

λmiΦm(J)

=
2παm
λm

uψ(J)wm(J)

=
2πiz

λmJ1/2+2αm(1− J)1/2Φm(J)

=
1

J1/2+2αm (1− J)
1/2

,

since 2πiz/λm = Φm(J). Therefore the weight is indeed a Jacobi weight, as claimed. �

We can use the above result, along with Proposition 55, to investigate the coefficients of the modular

integral associated to − 2π
A2αm

m
∆2αm
m . We obtain the following result:

Proposition 57. Let ψ(τ) = − 2π
A2αm

m
∆2αm
m (τ) be the weight 2 period function from above. Also, for each

m1 ≥ 0, let bm1(ℓ) denote the (rational) coefficient of Jℓm in Am1
m P0,m1,m (jm) , i.e.

Am1
m P0,m1,m (jm) =

m1∑
ℓ=0

bm1 (ℓ)J
ℓ
m.

Then the modular integral Fψ(τ) =
∑
m1≥0 c(m1)q

m1
m satisfies

c (m1) =
−
√
π

Am1
m

Γ
(
1
2 − 2αm

)
Γ (1− 2αm)

m1∑
ℓ=0

bm1 (ℓ)

(
1
2 − 2αm

)
ℓ

(1− 2αm)ℓ

Proof. First, note that when k = 2, we have

ℓ+
r

m
+

1− ν

4
= 2αm =

m− 2

2m

for some ℓ ∈ Z, 0 ≤ r < m, and ν ∈ {±1}. This is equivalent to the statement

m

(
2ℓ+

1− ν

2
− 1

)
= −2− 2r,

and since the right hand side is nonzero, both sides must be divisible by m, i.e. r = m − 1. In turn, this

forces ν = −1 and ℓ = −1, so the Fourier series for Fψ begins with the constant term, as claimed.

To find the formula for the Fourier coefficients, we apply the integral representation of the coefficients

given in Proposition 55. Indeed, since

Φ′
m(J) =

A2αm
m

iJ1/2+2αm (1− J)
1/2

∆2αm
m
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we have

c (m1) =
1

λm

ˆ ρm

i

ψ(z)f0,m1(z)dz

=
1

2πi

ˆ 0

1

ψ(J)P0,m1,m (J) Φ′
m(J)dJ

= −
ˆ 1

0

P0,m1,m(J)

J1/2+2αm (1− J)
1/2

dJ.

Using the given information on the coefficients of P0,m1,m(J), we can rewrite the above integral as

− 1

Am1
m

ˆ 1

0

m1∑
ℓ=0

bm1 (ℓ) J
ℓ−1/2−2αm
m (1− J)−1/2dJ

= − 1

Am1
m

m1∑
ℓ=0

bm1 (ℓ)
Γ
(
1
2 − 2αm + ℓ

)
Γ
(
1
2

)
Γ (1− 2αm + ℓ)

=
−
√
π

Am1
m

Γ
(
1
2 − 2αm

)
Γ (1− 2αm)

m1∑
ℓ=0

bm1 (ℓ)

(
1
2 − 2αm

)
ℓ

(1− 2αm)ℓ
,

as claimed. �

In particular, for this period function, the modular integral has a transcendental factor which can easily

be factored out. The transcendental factor only depends on m1 through the value of Am, so in particular,

when m ∈ {3, 4, 6,∞} we obtain the following corollary:

Corollary 58. Let m ∈ {3, 4, 6,∞} , and keep the notation as in the previous proposition. Then the

Fourier coefficients c (m1) of the modular integral associated to any scalar multiple of ∆2αm
m satisfy

c (m1)

c(0)
∈ Q.

In other words, up to renormalization, the coefficients of the Fourier expansion of the modular integral

are rational. In the case m = 3, this shows that the Fourier coefficients of a suitable multiple of the modular

integral F∆1/6 are rational, a fact which appears to be new.
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