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Abstract

In order to characterize and benchmark computational hardware, software, and algorithms,
it is essential to have many problem instances on-hand. This is no less true for quantum com-
putation, where a large collection of real-world problem instances would allow for benchmarking
studies that in turn help to improve both algorithms and hardware designs. To this end, here
we present a large dataset of qubit-based quantum Hamiltonians. The dataset, called HamLib
(for Hamiltonian Library), is freely available online and contains problem sizes ranging from 2 to
1000 qubits. HamLib includes problem instances of the Heisenberg model, Fermi-Hubbard model,
Bose-Hubbard model, molecular electronic structure, molecular vibrational structure, MaxCut,
Max-k-SAT, Max-k-Cut, QMaxCut, and the traveling salesperson problem. The goals of this ef-
fort are (a) to save researchers time by eliminating the need to prepare problem instances and
map them to qubit representations, (b) to allow for more thorough tests of new algorithms and
hardware, and (c) to allow for reproducibility and standardization across research studies.
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1 Scope and Preliminaries

1.1 Motivation

Large datasets of problem instances have long been useful for the analysis of computer hardware,
software, and algorithms. For instance, ImageNet [DDST(09] is a massive repository of images that has
facilitated the testing of many deep learning packages. Another example is computational chemistry
and materials science, where extensive datasets (e.g. the Protein Data Bank [BWF100], the Mate-
rials Project [JOHT13] and QM9 [RDRVL14]) improve ease of testing new algorithms and software
approaches, while providing standardization across the field. Well-defined datasets or problem in-
stances may in turn be used to define benchmarking suites such as MLPerf [MRC*20] and LINPACK
[DLP03, MB18].

Though there has been progress in introducing benchmarks in the quantum computing community
[PWSt16, CFGT22, LSKA, LJV'21, CBG21, TGO™22], there is not yet a topically broad database of
problem instances. Having such a dataset would be convenient for many reasons. For instance, when
researchers wish to test a novel Hamiltonian simulation algorithm [L1096, WBAG11, LC17, CST*21]
for chemistry, they must first go through the tedious and non-trivial process of preparing a set of
chemical Hamiltonians on their own. It would be useful for the researcher to have these preparatory
steps done ahead of time, so that they may spend more of their efforts on algorithm or hardware
design.

There are three primary motivations behind creating a dataset of Hamiltonians with broad coverage
in application area and in problem difficulty. First, such a library can save substantial labor time. For
example, a researcher wanting to test their new quantum chemistry algorithms will not have to learn
the minutia of electronic structure, install and run various packages, choose a representative test set,
and debug inevitable software difficulties. In turn, this allows for resources and time being devoted to
to the more interesting aspects of algorithm and software development.

Second, a large Hamiltonian library allows for more thorough testing. For example, if one is
performing numerical tests on a new Hamiltonian simulation algorithm, immediately being able to
run it on a very broad class of problems (as opposed to only e.g. a toy spin model and two to three
molecules) allows for a stronger understanding of when the algorithm performs well.
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Figure 1: The four categories of qubit Hamiltonians included in HamLib. In the area of chemistry we
include real-world accurate Hamiltonians for both electronic and vibrational structure. The condensed
matter dataset includes four commonly studied models defined on a variety of lattice topologies, with
and without periodic boundary conditions. We include Max-k-SAT and MaxCut in the binary combin-
torial problems, as well as QMaxCut, a quantum analogue with interesting mathematical properties.
For discrete combinatorics we include both Max-k-Cut and the traveling salesperson problem.

Third, such a library allows for reproducibility and standardization across research studies. It is
more straightforward to make fair comparisons between two algorithms if they are benchmarked using
the exact same problem sets.

In order to facilitate practical benchmarking of quantum algorithms, software, and hardware, in this
work we introduce an extensive dataset of many quantum problem Hamiltonians from a variety of fields
related to condensed matter physics, chemistry, and classical optimization. We call the dataset HamLib
(for Hamiltonian Library) version 1. We focus primarily on presenting a wide range of Hamiltonians
that may be used in various contexts; the definition of proper benchmarks—which generally require
defining both a problem and an algorithm in addition to a dataset—will not be our primary goal.
However, we include broad discussion of benchmarking in Section 3.

1.2 Attributes of this library

There were several principles that guided the curation of this library. Although choosing the contents
for any dataset is somewhat arbitrary, we believe that HamLib’s contents are well-motivated, while
showing exceptional breadth in terms of problem size, complexity, mathematical properties, and field
of study.

We strive to create datasets that were “well-spaced” in terms of qubit counts. This is important
for multiple reasons. First, strong simulation of quantum algorithms cannot be performed past 40
to 50 qubits; hence in order to properly study scaling, one should be studying problem instances
for every few qubits. Even for cases where tensor networks are used to simulate 100s of qubits, or
where quantum compilers are benchmarked on even more qubits, problem sizes in the context of early



quantum computing are still much smaller than typical classical datasets. For instance, the classical
benchmark Graph 500 [MMB*10] contains graph problem instances of more than 10%° vertices. Second,
because current quantum hardware is still limited in size, small spacings are necessary in order to test
as much of the device as possible. For instance, if an experimental quantum computer has exactly 24
qubits, we want to ensure that several problem instances from HamLib can be used to test the full
device.

A main focus of HamLib is the curation of real-world problems, with parameters and properties as
similar as possible to those encountered in some real scientific or industrial applications. We include
high-quality and meticulously prepared problems in molecular electronic structure and vibrational
structure, while also curating real-world datasets for combinatorial problems such as routing, by using
distance matrices from real cities [Rei91]. It is our suspicion that the reason many quantum algorithms
are often tested only on simpler condensed matter models or on random graphs is simply that it is
time-consuming to prepare problems that are more representative of the real world. However, lattice
models and random instances are equally vital for benchmarking and scientific understanding, and as
such much of our dataset consists of toy problems as well.

Another essential facet of HamLib is that all problem instances have already been mapped to
qubits, i.e. they have already been mapped to a Pauli representation of the form

Honcoded = Z & ®{Uz’k} (1)
k

i

where oy is a one-qubit Pauli or identity operator, i.e. o, € {I, X,Y, Z}, and ¢; is a real scalar. It is
our hope that this eliminates substantial labor for some researchers. The user can simply download the
qubit representations and immediately use them in a qubit-based computer or simulator. However,
we caution against a black box approach. It will often be important to understand the difference
between (for example) the various fermion-to-qubit mappings or the various integer-to-qubit mappings,
before interpreting the results of a particular benchmark. The original “unencoded” Hamiltonians are
included where appropriate, so that the user can implement alternative encoding approaches not
considered here. Further, some auxiliary information is included, such as approximate ground states
or operators that aid in implementing certain quantum algorithms.

We attempt to achieve broad coverage in terms of the mathematical properties of the Hamiltonians.
A broad range of localities (i.e. Pauli weights) are present, as the many mapping choices for fermionic,
vibrational, bosonic, and combinatorial problems lead to localities of anywhere from 2 to N, where N
is the number of qubits. Qubit connectivites vary widely as well, as we consider many graph types
for combinatorial problems, and several grid dimensionalities and types in condensed matter. Finally,
we note that a broad range of Hamiltonian norms are present—this is important because the formal
complexity of many algorithms (especially in Hamiltonian simulation [CST*21, LSTT23]) depend
explicitly on such norms.

A main use case we have in mind for this dataset is comparing quantum approaches against each
other, not just comparing quantum algorithms/computers to classical ones. Hence there are entire
problem classes for which the task is either certain or likely to scale polynomially on a classical
computer (e.g. ground state finding for the 1D transverse-field Ising model)—such problem instances
are still useful for quantum-to-quantum comparisons for quantum algorithms, quantum compilers, and
quantum computers. However, for many portions of HamLib, it would certainly be a reasonable use of
the dataset to compare scaling behavior in quantum versus classical methods, and we encourage this
as use case as well.

Some comments are merited on why certain problem areas are not included in HamLib. We
have focused exclusively on problems that are commonly represented as Hamiltonians, largely for the
purpose of saving time for researchers. For instance, quantum machine learning [CVHT22] for classical
data is not included, because most implementations of such algorithms do not in fact first map the data
to a qubit-based Hamiltonian. This is an important research areas that will require its own curated
high-quality datasets, and some work has already been done in this area [PYF21].

1.3 Related work

Benchmarking for classical computing has matured over many decades. Perhaps the most promi-
nent large-scale linear algebra benchmark is LINPACK [DLP03, MB18], though widely used classical



benchmarking standards exist, including MLPerf [MRC*20], SPEC [Dix91], HPCG [DLH13], Green500
[FCO07], and Graph500 [MMB™10]. More analogous to the current work are past efforts constructing
large datasets that can be used in various benchmarking tasks. For instance, as mentioned above, Ima-
geNet [DDS'09] contains millions of images intended for use in image analysis and deep learning, while
similarly large datasets exist for simulating chemistry [RDRVL14] and materials science [JOHT13].

In recent years there have been several proposals for benchmarking quantum algorithms and quan-
tum computers. Perhaps most similar to previous classical benchmarking efforts are the proposed
benchmark suites consisting of common quantum subroutines, such as quantum phase estimation and
quantum adders [PWST16, CFG*22, LSKA, LJV*21, CBG21, TGO"22]. Benchmarks have been pro-
posed specifically for near-term hybrid quantum-classical algorithms [YAGJ*21, MPJ*T19, WRV 23],
with some benchmarking work concentrating on more specific topics, such as particular classical op-
timization problems [MAAM21, FRH*22, LCM™23], benchmarking the optimizer used in the clas-
sical step of hybrid algorithms [MRBAG16, GS17, SMM22], a dataset used for quantum machine
learning [PYF21], and the dataset of curated Hamiltonians available in the software package Pen-
nylane [BIST18]. Narrower benchmarks have been proposed for very specific applications as well
[KLMT00, HWPC05, ZKET19, YADM*19, EHW 20, DDSG ™20, RK21, DL21, NMP*23]. Other pro-
posals include those related to quantum volume [CBS*19, MGE12], random benchmarking [KLR*08],
and related techniques [EWPT19, PRY122]; such efforts are not associated with specific quantum
algorithms but are an essential aspect of hardware characterization and design.

Despite the above-mentioned progress, there is not yet a large publicly available dataset of quantum
Hamiltonians (i.e. cost functions) for benchmarking algorithmic implementations e.g. QPE, adiabatic
quantum computing, VQE, and QAOA. The purpose of the current work is to fill this gap.

1.4 Availability and dataset structure
At the time of publication, the HamLib dataset is downloadable from the following URL:

https://portal.nersc.gov/cfs/m888/dcamps/hamlib/

The Hamiltonians are organized into the following high-level categories:

e Binary-variable optimization and related problems. Subcategories are Max-k-SAT, Max-
Cut, and QMaxCut.

e Discrete-variable optimization problems (discrete variables taking > 2 values). Subcate-
gories are Max-k-Cut and the traveling salesperson problem.

e Condensed matter physics models commonly studied by theoretical physicists. Subcategories
are the transverse-field Ising, Heisenberg, Fermi-Hubbard, and Bose-Hubbard models.

e Chemistry Hamiltonians that use curated or calculated real-world parameters. Subcategories
are electronic structure and vibrational structure.

As stated above, a major purpose of this work is to provide a large set of Hamiltonians that
have already been mapped to a qubit representation. All encoded Hamiltonians are represented using
OpenFermion’s QubitOperator class [MRS'20] and stored in the HDF5 format. These are compressed
to ZIP format. Please note, it will not be unusual for the decompression to yield an HDF5 file that
is an order of magnitude larger than the ZIP file. We provide a few Python code snippets useful to
interact with the HamLib dataset in Appendix A.

It is important to point out that for some of these Hamiltonians, minimization (e.g. minimum
eigenvalue finding) is a typical goal, while for others maximization (e.g. maximum eigenvalue finding)
is more natural. We point this out this for any researcher considering running the entire dataset
through a set of algorithms in a black-box manner.

In addition to the qubit representations of the operators herein, we include files for the original
“pre-encoded” (before having been encoded into qubit representation) Hamiltonians where appropriate.
This may take the format of a mat2qubit, OpenFermion, or SciPy array object as specified in the
relevant sections of this document. Where appropriate, other auxiliary data is included, e.g. graph
instances or approximate ground state values. If such auxiliary data is present for a given subset then
this is mentioned in the relevant portion of Section 2.
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In Hamiltonians with non-binary and non-fermionic variables, the correspondence between the
qubit indices and the original variable indices can be determined as follows. Smaller variables indices
in the original variables space correspond to smaller variable indices in qubit space, and within an
encoded discrete variable the least significant figures correspond to the smaller qubit index. For
example, assume we have variables zg, z1, and xo, all with cardinalities 4 and encoded with standard
binary. The state zo = 2 — 102 (subscript denoting binary representation) corresponds to the quantum
basis states O1**x* where asterisks denote arbitrary values on z; and z. For the unary (one-hot)
representation for which zg = 2 — 01005, the quantum basis states are 0010%*****x**,

1.5 Modifications to and extensions of HamLib

We believe that, for the purposes of this project, it is best to maintain static datasets. This allows
comparisons between research papers to be as valid as possible over the years. However, there are of
course many other problem types that could have been included in this dataset, including e.g. those
related to high energy physics or nuclear structure. Hence future modifications to HamLib will likely
take the form of additional datasets, whether e.g. adding new distinct subsets of electronic structure
Hamiltonians, or adding subsets for entirely new problem areas. Additionally there is some chance
that some modifications will be made to the first version of the dataset.

The first version of the dataset is denoted HamLib v1.0. If modifications are made to HamLib,
we will assign a new version number to the changes, and include a full description of the changes or
additions in the present section of this manuscript. HamLib versions:

e v1.0 - Initial release of HamLib.

2 Problem instances

2.1 Binary-variable optimization and related problems

This section includes combinatorial problems defined over binary variables. We consider MaxCut, Max-
k-SAT, and QMaxCut, a local Hamiltonian problem that is a quantum analogue of MaxCut. We make
a point of using problem instances from established libraries used in classical benchmarking, as well
as random graphs we constructed for this work. For the former classes of graphs, where appropriate,
we have implemented variable reduction schemes whereby smaller problem instances are created from
the large original instances [HV02, DCD"06, LMS12]. The purpose of these problem reductions is to
ensure that the qubits counts are well-spaced as discussed in Section 1.2, while retaining some of the
structure of the original problem instance.

2.1.1 MaxCut

The prototypical classical problem to which NISQ algorithms (especially QAOA) are applied is the
MaxCut problem, for which the cost function is defined as

1
He = Z 5(1—2]-2;@)7 (2)
(5,k)e€

where £ is the set of edges in the graph G. MaxCut is a commonly studied graph partitioning problem,
which in turn has applications in many domains. In addition, MaxCut (the optimization version) is a
classic NP-hard problem.

In HamLib we include a set of trivially 2-colorable graphs, which may be useful for sanity checks—
i.e. if a quantum algorithm cannot find the optimum for these trivial graphs then it may indicate a
pathology in the algorithm. These are the complete bipartite graphs (with partition sizes a and b),
star graphs, and circulant graphs.

We constructed two general types of random graphs. First are random X-regular graphs for
regularities 3,4,5,6. Additionally, we include Erdos-Renyi graphs GNP(n, p), where p is the probability
that a given edge is present. Though previous work in quantum algorithms has studied the case
of GNP(n, %) for fixed parameter d [FGG20, BM21], we have chosen not to use this graph class

because nearly all such graphs are disconnected [ERT60]. We instead implement GNP(n,klnT") for



fixed parameter k, which for k¥ > 1.0 is virtually guaranteed to be a connected graph [ERT60]. For
these constructed graphs we include variable counts of: 4 to 10 (step 1); 10 to 48 (step 2); 50 to 200
(step 10); 300 to 1000 (step 100). These instances are used in Max-k-Cut and QMaxCut as well.

Finally, we derive graphs from Biq Mac [Wie07], a library that is widely used in classical bench-
marking, and CI-QuBe [TG21], a collection of combinatorial instances for quantum benchmarking.
Biq Mac contains two classes of instances: the Ising instances are lattice graphs taken from statistical
physics and the ‘rudy’ instances are generated from the rudy graph generator. From CI-QuBe we used
the Karloff [Kar96] and ratio912 data sets. Karloff shows that there is a sequence of graphs whose
Goemans-Williamson (GW) approximation ratio approaches 0.878; these are the graphs at the begin-
ning of such a sequence using the construction Karloff proposes. The ratio912 graphs are graphs in
the MQLIB instance library [DGS18] that have a 0.912 approximation ratio with respect to GW. For
these instances, the optimal cut is always 2/3 of the total number of edges. These GW approximations
provide some insight into the hardness of each dataset.

The goal of the problem reductions is to preserve much of the structure of the original Biq Mac and
CI-QuBe graphs, ensure the resulting reduced graphs are connected, and ensure that the instances are
well-spaced in terms of qubit counts. To this end, we use two variable reduction methods to generate
instances with arbitrary node counts. The first is random restriction [HV02, JN08, LMS12] where we
randomly partition a sample of vertices (i.e. we reduce the graph by removing already partitioned
vertices). The second is a random walk [DCDT06] method that creates a randomly connected sub-
graph. We initially attempt to use random restriction, but in cases where the random restriction is
unable to create a sufficient number of connected instances, we use the random walk method.

The following table summarizes the graphs used for the HamLib instances of MaxCut.

Trivial graphs 2-colorable graphs: Complete bipartite, star, circulant with offsets {1,2}.
Random X-Reg with X € {3,4,5,6}, and GNP(n, kh;")[link] with k € {2,3,4,5}.
Biq Mac lib Variable reduction method: random restriction and random walk. (Ising and
Rudy)
CI-QuBe Variable reduction method: random restriction and random walk. (Karloff
[TG21] and ratio912)
| (Auxiliary) | Graph instances ‘

2.1.2 Max-k-SAT

In addition to being relevant to industrial optimization, satisfiability problems form the basis for
much of theoretical computer science. Specifically, 3-SAT is often used for complexity theoretic proofs
[AB09], partly because any NP-Hard problem can be cast as a 3-SAT problem.

Constructing a Hamiltonian to represent a 3-SAT problem involves summing 3-variable terms such
as

1
xi\/xj\/xk:I—§(1+Zk)(I+Zj)(I+Zk) (3)
if negations are not present. When negations are included (as they are in HamLib), the expression is

()% vV (2)%; V() gy = T — é[[+ (=D ZI + (=1)* Z][I + (1) Z] (4)
where s; = 1 if x; is negated in the clause, else 0.

From classical computer science, it is known that the hardness of solving satisfiability problems
increases with the clause ratio r = m/n, where m is the number of clauses and n is the number of
variables. Analytical and theoretical results exist which estimate or place bounds on the ratio r at
which a problem becomes intractable [ANPO05]. In quantum computation as well, researchers have
studied hardness scaling in random SAT instances [APMB20, ZSZ22].

Here, we choose clause ratios (r € {2,3,4,5}) that cross the (both numerically and analytically
estimated) thresholds for hardness in both classical [ANPO05] and quantum computational studies
[APMB20, ZSZ22]. Implementing variable (qubit) counts n from 4 to 1000, for each (n,r) we create
10 random Hamiltonian instances.


https://www.renyi.hu/~p_erdos/1960-10.pdf

In addition to generating random instances, we also pull a sample collection of datasets from SATLib
[HS00]. We use the following datasets: aim, Iran, flat30, flat100, uf20-20, uf100-430, uf200-860, uf250-
1065, uuf100-430, uuf200-860, and uuf250-1065. SATLib is a representative library of Max-k-SAT
instances that contains many satisfiable and unsatisfiable instances. For variable reduction, we first
convert the clauses into a graph where each vertex represents a clause, and an edge exists between
two vertices if the associated clauses share a variable. Then we apply random restriction [JNO§] to the
variables and give random assignments to a random sampling of variables. As we remove variables and
clauses, we update the graph representation accordingly. If the graph is disconnected, we compute the
connected components and then greedily connect them by adding additional clauses.

Note we include the raw pre-encoded SAT instances as lists of 1-indexed integers, while the qubit
operators are 0-indexed. We implement the following classes of instances for Max-k-SAT.

Random Clause ratios r € {2,3,4,5}
instances
SATLib Limiting to 2- and 3-SAT. Random restriction (10 random instances per problem
size) to reduce problem size.

| (Auxiliary)[ SAT instances ‘

2.1.3 QMaxCut

Here we consider a “quantum version” of MaxCut. Though this problem is structurally similar to
its classical counterparts, its “quantumness” leads to rich and surprising differences in computational
complexity with respect to its classical counterpart [Par23].

Quantum MaxCut (QMaxCut) is a quantum optimization problem (i.e., a local Hamiltonian prob-
lem) that can be understood as a generalization of the MaxCut problem. Given a (possibly weighted)
graph G with vertices i € V, edges (4, j) € £, and non-negative weights w;; € W, the problem can be
defined as finding the maximum eigenvalue of the following Hamiltonian:

H = Z winijv (5)

(1,7)€€

where H;; = i (I -X;X; =YY, — Z;Z;). All instances in HamLib use w;; € {0, 1}.

In general, QMaxCut is QMA-Hard [PM15], where QMA is the quantum analog of the NP complex-
ity class in classical computing [Pap03]. There are several approximation algorithms for this problem,
with the best approximation ratio for generic instances being 0.562 [Lee22].

This problem is quantum in the sense that instead of finding the maximum eigenvalue of a real-
coefficient degree-2 polynomial P over commutative variables I, Zy,...,Z,, the problem is to find
the maximum eigenvalue of a real-coefficient degree-2 polynomial ) over non-commutative variables
I,X1,Y1,Z4,...,Xn, Yy, Zy. This polynomial can be expressed as a Hermitian matrix Q € C2"*2"
instead of a diagonal matrix P € C2"*2",

QMaxCut resembles MaxCut in that each term H;; is a scaled version of the corresponding MaxCut
term of Ho with additional Pauli X and Y terms. In particular, the diagonal of H above is a scaled
version of the MaxCut Hamiltonian, Ho. These structural similarities have enabled generalizations
of approximation algorithms and hardness results for MaxCut to the QMaxCut setting [HNP*23]. In
this sense, QMaxCut has served as a testbed for developing algorithmic ideas to approximate quantum
local Hamiltonians, just as MaxCut serves as a canonical classical constraint satisfaction problem.

Finding a maximum energy state for QMaxCut is an equivalent problem to finding a minimum
energy state of a quantum Heisenberg model, described below; although this leads to subtle differences
from the point of view of approximate solving [GP19]. This is one instance of what is known as
quantum 2-local Hamiltonians, for which finding their minimum or maximum eigenstates is relevant
for quantum many-body physics.

While MaxCut has been a focal point for quantum algorithms such as QAOA, it is not clear whether
quantum algorithms can offer approximation advantages for classical problems. For example, it is NP-
hard to approximate MaxCut better than the celebrated Goemans-Williamson algorithm [GW95] under
the Unique Games Conjecture [KKMOO07], and NP-hardness is likely a barrier for polynomial-time
quantum algorithms as well. Thus it may be fruitful to consider inherently quantum problems when
seeking quantum approximation advantages. Yet the types of local Hamiltonian problems typically



studied in physics have not generally been amenable to approximation algorithms in the same way that
classical problems have been. We include QMaxCut in HamLib because it may serve as a canonical
quantum problem in the study of quantum approximation advantages. Approximation algorithms
for QMaxCut employ techniques for approximating MaxCut as well as quantum approaches such as
variational algorithms [GP19, AGM20, PT21, PT22, Kin22, Lee22]. HamLib’s problem instances of
QMaxCut use the same graph instances as MaxCut. The relevant table of instances is in Section 2.1.1.

2.2 Discrete-variable (d > 2) optimization problems

Here we consider classical cost functions that are defined over discrete variables taking more than 2
values. As in the case of binary optimization problems, we create both random instances and instances
derived from widely-used libraries.

Unlike MaxCut and Max-k-SAT, there is a rich set of choices for how these non-binary variables
are encoded into qubits [SSH22]. We implement the unary (i.e. one-hot), Gray, and standard binary
encodings for the discrete combinatorial problems of this section. A notable omission is the domain
wall encoding, which has been shown to improve computational efficiency in some cases [Chal9]; we
did not include it because this encoding is not yet included in mat2qubit [Saw22]. Note that different
encodings require different numbers of qubits per variable, which in turn can lead to space-depth
tradeoffs when choosing encodings [SMK*20, SSH22).

2.2.1 Max-k-Cut

The Max-k-Cut problem is a generalization of MaxCut. For a graph G = (V, E) with weight function
w : E — R for the edge set E, the Max-k-Cut problem amounts to finding a partition of V into k

disjoint sets {Cy,...,Cy} that maximizes the sum of the edges between disjoint sets, i.e., the cost
function is
> > w{uv}). (6)
i, j€[k] u€C;
' Z>£ ) 366}

In this work, we consider only unweighted graphs such that the weight function becomes the
indicator function 1g, i.e., 1 if {u,v} € E and 0 otherwise. This unweighted version of Max-k-Cutis
equivalent to finding the maximum k-colorable subgraph. Max-k-Cutis APX-complete [FJ97] and is
equivalent to MaxCut for k = 2.

We implement the same random graphs created for the MaxCut section, as well as a set of instances
derived from COLORO02 [col], a graph library used for benchmarking, including classical studies of
Max-k-Cut [GHHP13, LMMO6]. In the latter case, we use a random depth-first search [DCDT06] to
achieve arbitrary-sized, connected subgraphs of the original problem. For all problems in the Max-k-
Cut dataset, we use three encodings: unary (i.e. one-hot), Gray, and standard binary. We summarize
the Max-k-Cut instances in the following table. We use k € {3,4,5}.

Trivial Complete k-partite with k € {3,4,5}, circulant with offsets {3,4,5,6}, windmill
graphs with k € {3,4,5,6} cliques.

Random Random X-Regular for X € {3,4,5,6}, GNP(n,d/n —1) for d € {2,3,4,5,6}.
COLORO2 | Variable counts reduced via random depth-first search (10 random restrictions per
graph) up to 200 nodes.

| (Auxiliary)| Graph instances ‘

2.2.2 Traveling Salesperson Problem

The traveling salesperson problem [BDVD™198, Lap92] (TSP) is a widely studied problem in combi-
natorics, and relates to routing problems encountered in industry. Our dataset includes both cost
Hamiltonians and permutation penalties for the traveling salesperson problem, whose cost function is
defined as

M-—1
> d(r(a),7(a+1 mod M)). (7)
a=0

where 7 is a permutation over a set of M cities. We encode this problem as a permutation of
integers (as opposed to a binary problem with constraints). One disjoint set of qubits is used per



city, i.e. if there are N, cities, then N, x D(N.) qubits are required, where D(K) is the number
of qubits required to encode a discrete variable of cardinality /K. This way of representing TSP is
amenable to encoding-dependent penalties that have previously been called pair permutation penal-
ties [SSH22].When implementing this problem, one may alternatively use penalty-free methods that
constrain the state [HWO™19], including graph-derived partial mixers [SSH22].

Notably, for the decision version of TSP, there is a phase transition [GW96] with respect to pa-
rameter a = l/m, where n is the number of cities, A is the area, and the question is whether a path
length of < [ exists. When a < o there is unlikely to be any path shorter than [. This phase transition
has been observed to occur approximately at a* = 0.78. We use this relation to guide our construction
of random instances. For a given n, we select random positions in a square of area A = [?/(a*)?n.
Roughly speaking, this implies that there is approximately a 50% chance that a path of length [ exists;
we arbitrarily choose [ = 100.

For the 77 problem instances in TSPlib [Rei91] containing fewer than 1000 cities, we reduce the
number of cities one at a time, by removing the city with the lowest weight, i.e. the city that has
the shortest distance to its two closest neighbors. The justification is that the two shortest distances
are likely to be connected in the optimal route; hence the rest of the path is unlikely to radically
change. This is just a heuristic and we acknowledge there may be topologies for which removing cities
in this way will qualitatively change the solution to the problem. However, we note that this variable
reduction procedure is conceptually similar to what is done in previously used greedy algorithms
[GCY 11, Lap92).

We implement the following problem instances of TSP:

Random Random points chosen in a square of area A = 1002/0.78%n.

TSPLib All symmetric instances from TSPLib with Nges < 1000. Problem size
reduction is implemented by iteratively removing the node with the smallest
weight.

| (Auxiliary) | Distance matrices for all problem instances.

2.3 Condensed matter physics models

Here we describe the condensed matter models included in the dataset. We implement spin, fermion,
and boson models, covering 1D, 2D, and 3D lattices. We expect the fermionic and bosonic models to
be the more useful contributions of this section as they involve more effort to prepare.

We use both periodic boundary conditions (PBC) and non-PBC for all lattices. For users who
would like to add local disorder, we have included some qubit-encoded occupation number operators
for each individual site; these may be used to add local disorder.

Lattices

We include 1D grids, 2D grids, 2D ribbons, and 3D grids. The 2D instances include square, triagonal,
and hexagonal (honeycomb) arrangements. Qubit counts of 2 through 1000 are used, with spacing in-
creasingly sparse as qubit count increases. Importantly, we implement a “snaking” pattern for all grids,
which leads to more efficient fermionic representations [VC05]. We include the mapping from node
ID to grid position as well, which may optionally be obtained using the read_gridpositions_hdf5()
function found in the Appendix.

1D PBC and non-PBC.
2D Square, triangle, hexagonal. PBC and non-PBC.
2D ribbon Width 2 through 5 for square lattice. PBC and non-PBC.
3D Cubic lattices. PBC and non-PBC.
’ (Auxiliary) \ Grid positions (mapping of node IDs to positions).

2.3.1 Transverse-field Ising model

The transverse-field Ising model (TFIM) is the simplest of the condensed matter models that we
include. Notably, the one-dimensional version of TFIM is classically tractable even in the presence of
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disorder. The Hamiltonian is defined as
H=> hX;+Y ZZ;, (8)
i (1,5)

where the sum is over each edge (7, j) in the lattice. Quantum critical points have been found to exist
at h = 3 in two-dimensional models [Kallin et al 2013], as well as at h & 5.16 in three-dimensional
TFIM [Tepaske and Luitz 2021]. These values guide our choices for HamLib—in order to include
Hamiltonians on both sides of these critical points we implement values h € {0,0.1,0.5,1,2,3,4,5,6}
[BDO02].

2.3.2 Heisenberg model
We implement the following Hamiltonian for the quantum Heiseberg model,

N
Hyeis :Z(EJ '5j+1+h]‘Z>. (9)

i=1

where &; = (X;,Y;, Z;). The Hamiltonian is also known as the Heisenberg XXX model with external
magnetic field and can be solved by the Bethe ansatz in the one-dimensional case without disor-
der [Fral7, GJS19]. Based on values used in previous work, HamLib includes h € {0,0.1,0.5,1,2, 3,5}
[CMNT18, Aki13]. While HamLib only includes the Heisenberg XXX model, anisotropic variants such
as the Heisenberg XXZ and XYZ models [WR10] can easily be generated from the lattice data.

2.3.3 Fermi-Hubbard model

The Fermi-Hubbard Hamiltonian [Hub63] captures the behavior of fermions on lattice sites. It is
defined as

Hppg = —t Z (CI’UCJ"U + C}UCZ',U) + UZnﬁnu, (10)

(i,3),0 @

where (i, j) labels adjacent lattice sites i and j , o labels the fermion spin, ¢ and ¢ are the fermionic
annihilation and creation operators, respectively, and n;, = c}(,cj(7 is the number operator associated
with spin ¢ and site j. The first term contains the noninteracting portion of the Hamiltonian and
describes fermions hopping between adjacent sites with tunneling amplitude ¢t. The second term
describes the on-site interaction between fermions with strength U. The Fermi-Hubbard model can
be solved analytically for U = 0 and ¢t = 0. However, in the general case, an analytical solution is
only known in 1D [LWO03]. In 2D, the Fermi-Hubbard model has been investigated extensively through
simulations, with findings suggesting that the 2D Fermi-Hubbard Hamiltonian in the intermediate
coupling regime (U/t = 4,6, 8) near half-filling is especially difficult to solve [LABT15].

HamLib includes numerous instances of the Fermi-Hubbard Hamiltonian for different lattice struc-
tures and dimensions. We implement three fermion-to-qubit mappings for each instance: Jordan-
Wigner, parity, Bravyi-Kitaev [CROT19]. We include files for the pre-encoded fermionic encod-
ings as well. Based on previous studies on 1D, 2D, and 3D versions of the Fermi-Hubbard model
[LAB*15], the parameters we use are the same across all grid classes. In particular, we take ¢ = 1 and
U €{0,2,4,6,8,12}. We include pre-encoded fermionic Hamiltonians in OpenFermion format.

2.3.4 Bose-Hubbard model
The Bose-Hubbard (BH) model is defined as

Hpp = —tz (b;‘r+1bi + hﬁ-) + %an(m —1) (11)

where b;-r (b;) are creation (annihilation) operators, the number operator n; = b;rbi, t is the tunneling
strength (set to ¢ = 1 in this work), and U is the site energy. Equation (11) often includes an additional
term proportional to the chemical potential u, which effectively sets the particle count. We omit this
chemical potential term in our dataset, with the assumption that the user will set an arbitrary number
of particles at the beginning of the simulation.
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The standard version of this model exhibits two phases, a Mott insulator and a superfluid [FWGF89,
FM94]. More complex versions of the model lead to more exotic phases including density wave [PP05]
and supersolid phases [BSZK95]. There has been substantial previous work on qubit-based simulations
of bosonic degrees of freedom [Som05, MSAH18a, MSAH18b, KS19, SMK 20, SGH20, TAM*21,
LSY21], though to our knowledge no qubit-based experimental demonstrations to date.

For our dataset, we chose dimensional-dependent values for U, where parameters were based on the
phase diagrams reported in reference [FM94]. The transition between Mott insulator and superfluid
is dependent on the filling (ng), the average number of particles per site. The user may effectively set
(ng) during simulation (e.g. by choosing a particular product state at the beginning of the simulation).
For most values of (ng) (which may be set for example by choosing a Fock state at the beginning of
the simulation), this range for U will yield some Hamiltonians in the Mott insulator regime and some
in the superfluid regime. For 1D, U/t € [2, 10,20, 30, 40]. For 2D, U/t € [10, 30, 50, 70, 100]. For 3D,
U/t € [20,40, 60,90, 120].

We implement 3 mappings for each instance: unary (one-hot), standard binary, and Gray, where we
implement bosonic mode truncations of both 4 and 8 (d = 4, 8). We included files for the pre-encoded
bosonic encodings as well, in mat2qubit format.

2.4 Chemistry
2.4.1 Electronic structure

The molecular electronic structure Hamiltonian may be expressed as

1
H = Z hpqa]gaq + 5 Z hpqrsa;;aga@as (12)
pq

pqgrs

where a and @ are the usual fermionic creation an annihilation operators. HamLib included molecules
from a range of chemical classes; further, we ensured that the molecules include a range of difficulty.
Unless otherwise specified, the nuclear coordinates used are those experimental geometries found in
the online database of the National Institute of Standards and Technology (NIST), https://cccbdb.
nist.gov/geometries.asp.

An important consideration was the choice of active space, as one goal of HamLib is to have
problems with evenly-spaced qubit counts. Hence for each molecule, we include Hamiltonians of several
qubit counts, in order to allow the user to choose a level of complexity. We chose the smallest qubit
count by calculating the natural orbital occupation and keeping all orbitals for which the occupation
is greater than 0.1. We use the def2SVP basis set for molecules containing transition metals, STO-6G
for elemental hydrogen, and ccPVDZ for all others. We ensured that the coupled cluster CCSD(T)
energy converges with this condition. Then, to create several instances with more qubits, we then
added orbitals to this set either one orbital at a time or one set of degenerate orbitals at a time, to
create the 5 smallest qubit counts in addition to the large Hamiltonian that uses the full basis set.

Further, because the orbitals are ordered by energy, a user may straightforwardly create their own
Hamiltonian of arbitrary qubit count by removing all qubits with index above some number, and choose
their own active space. Our Hamiltonian sizes range up to 160 qubits, with the largest instances being
hydrogen chains.

The following molecules were picked based on different benchmark studies that have been per-
formed in the chemistry literature in recent years. There are many high-accuracy classical methods
for simulating such systems, and a recent study on benzene [EADT20] highlighted many of the most
modern methods that can be used for the same molecule. Studies like these are seldom done for a
wide range of molecules, and thus we rely on many different papers that span a range of different
molecules to look at. Our dataset includes main group diatomics, hydrogen chains, and transition
metal containing diatomics.

For the transition metal molecules, we selected 10 systems that range from “easy” to “hard.” For
these molecules, a recent work took a selected CI approach to use for a benchmark set of systems,
and then compared different coupled cluster techniques against these results [HTLT19]. We observed
that there is no obvious standard ordering of the hardness of these systems that is consistent with all
the different coupled cluster techniques. For purposes of this work, we use CCSD(T) as the method
in which to assess the difficulty of the systems, as it is one of the most widely used rigorous methods
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in quantum chemistry for treating correlated systems. By this definition, these molecules in order of
difficulty are VH (1.0), ScO (1.4), ScC (3.9), TiH (4.9), CrO (8.1), MnN (9.6), FeC (10.7), CuC (12.3),
CoH , (22.7), NiO (38.2), where in parenthesis is the CCSD(T) error in units of kJ/mol. We include
the famously difficult chromium dimer (Crs) as well.

We now discuss Hamiltonians composed only of hydrogen. If quantum computers are going to be
used for computing properties of molecules and materials, they must focus on the most challenging
Hamiltonians for which classical algorithms struggle. In electronic structure, these are systems with
a large number of open-shell (singly occupied) orbitals, which leads to strong electron correlation.
A difficulty when benchmarking quantum algorithms is that such strong correlation often requires
very large qubit counts, because in typical molecules only a small subset of the electrons are strongly
correlated. This creates a large size gap between the systems typically used for benchmarking quantum
algorithms (such as diatomics or small organic molecules, which contain a small number of electrons
that become strongly entangled only when bonds are stretched) and the larger transition metal systems
which remain hard to solve via state-of-the-art classical algorithms and could therefore be potential
candidates for practical quantum advantage [RWS*17, LLD"19].

The hydrogen systems bridge this gap and constitute an ideal benchmark for quantum algorithms,
because they are strongly correlated even when the basis set is relatively small. They contain the
smallest possible molecular building block (the hydrogen atom), thus reducing qubit counts, but their
symmetric structure causes strong electron correlation. By arranging the atoms in different geometries
and dimensions, these systems can be used for testing the ability of different wave function parame-
terizations to capture different entanglement regimes. Hydrogen model systems have long served as a
benchmark for electronic structure algorithms on classical computers [JP80, MCC*17, SHE20], and
are currently being used to test quantum or hybrid quantum-classical algorithms [GEBM19, SHE20,
KMZC*22, BMDTW?22].

For all four structural motifs (linear chains, rings, sheets and pyramids), we included H,, systems
with n = 10,12,14,16, using the STO-6G basis set. These were studied in Stair et al. [SE20],
which benchmarked classical electronic structure methods including selected configuration interaction
(selected CI), singular value decomposition full CI, and density matrix renormalization group (DMRG).
This allows a direct comparison of any quantum algorithms with the classical benchmark data in said
paper. For n < 40 we include systems with bond lengths ranging from 0.5 A to 2.0 A in steps of 0.1 A;
for n > 40 we include only the bond length 1 A. For the linear H,, structures, we include the atom
counts n = 2,4,6,8,10,12,14,16,18,20, 24,28,32,36,40, 50,60,70,80.

For the systems with over 16 atoms, exact classical calculations are difficult or unfeasible and we
therefore only provide the restricted Hartree-Fock (RHF) energy. The larger Hamiltonians may be of
use for estimating the resources required for Hamiltonian simulation algorithms [LBG™21].

We used 3 mappings for each problem instance: Jordan-Wigner, parity mapping, and Bravyi-
Kitaev. For each encoding, we include a basis state with the correct particle count, intended for use as
an initial state. We also include the pre-encoded fermionic Hamiltonians. We implement the following
molecules for electronic structure.

Hydrogen (H,,) 1D chains, 1D rings, 2D sheets, 3D pyramidal clusters
Main group diatomics Hs, Ny, Og, Fa, Bo, Co, Beg; LiH, BeH, BH, CH, NH, OH, HF,
02, Lig7 NaLi, Nag

Trans. metals VH, ScO, ScC, TiH, CrO, MnN, FeC, CuC (low spin), CoH, NiO;
CI’2
Bond breaking Fy (single bond), Os (double bond), Ny (triple bond)

2.4.2 Vibrational structure

Molecular vibrational structure [WDCS80] is a problem that is often intractable on classical com-
puters, especially when strong anharmonicity and resonanaces (e.g. Fermi resonances) are present
[JMS12, MPR21]. Accurate calculations of the vibrational structure of molecules are crucial in identi-
fying unknown molecules in fundamental chemical physics experiments and in astrochemical settings.
Confirmed assignments in vibrational spectroscopy also provide direct probes of potential energy sur-
faces of molecules and fundamental probes of reactivity. Further, the precise locations of vibrational
energy levels, which are difficult to compute classically, can directly impact the kinetics of chemical
reactions.
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In the harmonic basis, the vibrational structure Hamiltonian is

M
1
i ij py

where ¢; are canonical position operators, ¢; are momentum operators, w; are the harmonic frequencies,
and hyj... are higher-order coupling constants.

In some respects, vibrational structure might often be easier to implement on a quantum computer
than electronic structure because the former does not require particle conservation and some properties
of vibrational Hamiltonians may be more favorable [SPT21]. Recent efforts in developing quantum
algorithms for calculating vibrational structure have demonstrated how some vibrational classical
algorithms (e.g., vibrational coupled cluster) can be adapted to quantum hardware [MMS*19, SH19,
OBRT20].

For this benchmarking set, our focus is on diversifying the set of Hamiltonians that exist for
benchmarking new methods in vibrational structure. We include a limited set of diatomic molecules,
but our primary focus is on triatomic and larger systems. Triatomic systems are the smallest systems
that can have resonances that complicate their vibrational structures. Expanding to tetra-atomic and
larger systems allows one to study interesting and nontrivial differences in physical behavior between
related molecules. For instance, BHs, BF3, and BHF, each have a similar trigonal planar geometry,
but their vibrational Hamiltonians are substantially different in practice due to the different mass
distributions across the geometry [SA70].

We include a mix of molecule sizes and a mix of vibrational truncation levels, all of which are
given in the key names of the HDF5 files. We include up to fourth-order terms excluding those with
more than two unique indices (as such terms are often negligible), which is a common approximation
in the quantum chemistry literature. This truncated expansion is common in vibrational structure
calculations and with a good choice of the coordinate system is often well-converged. The force fields
were generated with the CFOUR program package [MCH™20], at the highly accurate CCSD(T)/ANO1
(tetra-atomics and smaller without Cl or S), CCSD(T)/cc-PVTZ (tetratomics and smaller with S or
Cl), or Hartree-Fock/ANOO (larger molecules) level of theory.

These Hamiltonians are stored in wavenumber units (cm~!) commonly used by spectroscopists.
We also include qubit encodings of dipole operators pif, , -}, which are required for example in the cal-
culation of transition probabilities [RC19, JSPT21, INET22, SH22] when determining infrared spectra.
Finally, in Appendix B we report statistics for how closely-space the energy levels are in these Hamil-
tonians, as resonances (i.e. closely-space energy transitions) tend to be hard to simulate classically.

We include 3 encodings for each instance: unary (one-hot), standard binary, and Gray, as well as
the pre-encoded “bosonic” Hamiltonians in mat2qubit [Saw22] string format. The following molecules
are included.

Diatomics BeH, BH, CH, CO, F,

Triatomics CQH, CQO7 CHQ, C()H7 HQO, HQS, H3+, HC()7 }H\IC7 HNO, 1\IH27
NOH, Os3, SF2, SO4

Tetratomics BF3, BH3, BHF,, CHs, CH3 ™, CICOH, FCCF, HoCC (vinylidene),
H,CO, Hy05, HCCH

Larger Molecules Allene (C3Hy), Cyclopropene (CsHy), Ethylene Oxide (C2H40),
Propargyl cyanide (HC3H;CN)

(Auxiliary) Qubit-encoded dipole operators fiz, fiy, fi;
Cartesian coordinates of molecule and harmonic normal modes;
VPT2 Calculated transition energies

3 Benchmarking discussion

As noted previously, HamLib is not itself a benchmarking suite. Rather, in conjunction with a set
of computational tasks, it may be used to define proper benchmarks. Such computational tasks
may include “full” algorithms such as eigenvalue finding or quantum dynamics, but also narrower
subroutines such as estimation of expectation values or compilation routines [PWS*16, CFGT22,
LSKA, LJV*21, CBG21, TGO"22, YAGJ*21, MPJ*19, WRV+23].
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In this section, we discuss the various types of benchmarks that would benefit from a diverse li-
brary of Hamiltonians. At its heart, the purpose of benchmarking is to make comparisons—answering
questions such as “Which of these computers completes the task more quickly?” or “Will this new
algorithm yield more accurate results than previous state-of-the-art?” We distinguish between three
categories. First, benchmarks that allow one to compare quantum algorithms (independent of hard-
ware choice); second, those that compare different quantum hardware platforms including error-prone
devices; and third, those that compare compilation and top-of-stack tasks. Though these three can be
considered conceptually independent to some extent, many benchmarking tasks will fall under multiple
categories.

Any benchmark involves the comparison of computational resources, accuracy, or both. In the
former case, one studies the computational time (related to quantum circuit depth and circuit repeti-
tions) and/or space requirements (number of qubits). Often, there are time-space trade-offs, implying
that the best algorithmic choice is hardware-dependent. In the case of studying accuracy, one instead
compares which computational approach leads to lower errors. Below, we discuss several possible tasks
for which one might define benchmarks using HamLib. Many related quantum benchmarks have been
previously proposed in the literature, as discussed in Section 1.2.

Finally, we note that the above tasks may be used either for comparing quantum algorithms against
each other (“quantum-vs-quantum”), or for comparing quantum algorithms against classical algorithms
(“quantum-vs-classical”). Both types of comparisons are valuable and our intention is for HamLib to
be used in both.

3.1 Benchmarking quantum algorithms

Here we discuss benchmarks designed to study quantum algorithms, independently of the quantum
hardware used. The primary early use cases we envision for HamLib are eigenvalue finding and
quantum dynamics. As mentioned above, these may be analyzed both in terms of solution quality
(e.g. accuracy) and in terms of computational resources.

Eigenvalue finding is a common task, both in quantum problems (for which ground or excited states
are of interest) and classical optimization (where an extremal eigenvalue corresponds to the optimal
value). For extremal eigenvalues (i.e. ground states), several quantum algorithms have been developed.
Perhaps most well-studied for near-term hardware are the variational quantum eigensolver (VQE)
[MRBAG16] and the quantum approximate optimization algorithm (QAOA) [FGG14]. Both of these
involve a plethora of algorithmic choices. Other quantum algorithms for this task include adiabatic
quantum optimization (or adiabatic state preparation) [FGGS00], quantum imaginary-time evolution
(QITE) [MST*20], feedback-based quantum algorithms [MRGS22], and quantum subspace methods
[PM19, KMZC*22]. Finding excited (non-extremal) eigenvalues requires either distinct quantum algo-
rithms or modifications of ground state algorithms. Some notable approaches to excited state finding
include the folded spectrum method [WZ94, MRBAG16], quantum variational deflation [HWB19],
and quantum equations of motion [OKC™20]; the unmodified versions of QITE and quantum subspace
methods naturally provide estimates to excited states.

Notably, each algorithmic component may be benchmarked separately. For VQE and QAOA specif-
ically, there are arguably three main components to consider. First, one may implement different
quantum circuit ansatzae, also known as parameterized quantum circuits [CROT19, GEBM19, XK20,
ZKKT21, GZB120, LOCC22]. Second, one may compare different classical optimizers [MRBAG16,
GS17, SMM22]. Third, one may compare methods for calculating expectation values ()| H |¢)), which is
often a very time-consuming subroutine [VYI20, GADT20, CvSW+21, HKP20, KMZC*22, HMR*21].

Simulating quantum dynamics—i.e. implementing the exponential e=*2* of a Hamiltonian—is a
task distinct from eigenvalue finding and for which there are many algorithmic choices to be made. The
most space-efficient approach is to use product formulas such as Suzuki-Trotter decompositions, for
which one may consider different orders as well as more complex approaches such as randomized prod-
uct formulas [L1096, COS19, CST*21]. If one is primarily concerned with asymptotic scaling, as will
often be the case when considering long-term hardware, there are several more advanced Hamiltonian
simulation methods that require ancilla qubits [LC17, LSTT23, MOTT23]. Notably, exponentiation is
a key subroutine of other algorithms, including the above-mentioned quantum subspace methods and
some quantum machine learning protocols.

For the algorithms discussed above, the choice of encoding is very important and may be studied as
a standalone consideration. Fermionic problems, bosonic and vibrational problems, and discrete com-
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binatorial problems all involve rich choices of encoding [CRO'19, SRL12, SMK™20, SGH20, SSH22].
Indeed, simply changing the encoding while leaving the rest of the quantum algorithm unchanged is a
valuable study in itself.

We briefly touch on quantum machine learning (QML), which is conceptually distinct from eigen-
value finding and quantum dynamics. Some important machine learning tasks include classification,
regression, clustering, and dimensionality reduction. Though such tasks were originally proposed in
the context of classical data such as images or user data, some recent work has gone into the “quantum
quantum” version of machine learning, whereby a quantum algorithm is used to analyze quantum data
[HBM*21]. In principle, some subsets of HamLib may be used in benchmarking for such tasks, as has
already been proposed in QML for chemistry [SLST22].

3.2 Benchmarking quantum hardware

In this section, we discuss procedures designed to benchmark specific quantum devices, especially near-
term noisy devices [Prel8]. Our hope is that HamLib spawns a set of benchmarks meant to complement
the randomized benchmarking protocols that are often used in the industry [KLRT08]. Such hardware-
to-hardware comparisons are one major motivation behind benchmarking in classical computing, for
example, when evaluating the performance of a new generation of processor or supercomputer (see
Section 1.3).

The most obvious benchmarks in this category involve running eigenvalue finding and Hamiltonian
simulation on noisy hardware, to determine which quantum device yields the most accurate result.
Though protocols such as quantum volume [CBST19, MGE12, KLRT08, EWPT19] are valid, trans-
ferable, and objective metrics, it is unclear how such metrics relate to the accuracy of a practical
workload. It could be that, when applied to scientifically relevant problems, some algorithms are less
(or more) sensitive to noise than expected. For instance, it is not implausible that in some instances
doubling the decoherence rate will lead to a relatively small reduction in accuracy for some problems.
If there is such robustness to noise in a given device, then it is useful to understand its source and to
know for which applications it occurs. It is worth mentioning that studying energy consumption of
the quantum device will be an important future direction as well [FC07, BDPF*21].

Another class of benchmarks related to hardware involves the choice of encoding a logical qubit
into physical qubits. This may involve a choice as simple as rotating each individual qubit basis, to
mitigate e.g. amplitude damping noise. Or the consideration may be more complex, such as choosing
between different decoherence-free subspaces [LBWO03]. Again, it is plausible that the best choice of
qubit encoding is problem-dependent, which could be studied using the HamLib library.

Finally, error mitigation protocols form an important area of study. There have been several pro-
posed methods for mitigating errors on NISQ hardware [EBL18, CLK ™21, HMO™21]. Benchmarking
such procedures for the different problem classes of HamLib may allow one to understand how and
whether to apply such techniques in real applications.

3.3 Benchmarking compilation and the full stack

Here we discuss benchmarking of the quantum computing “stack,” especially compilation routines
[JPKT14, KWPT22, KIMK22]. We place such efforts in a qualitatively separate category because in
principle they do not require real simulations nor real hardware. In other words, this section dis-
cusses benchmarks that do not involve interacting with the actual Hilbert space (whether via quantum
hardware or via classical simulators).

Notably, though noisy hardware is likely to be the first testing environment for HamLib, we also
intend for HamLib to be used with fully error-corrected hardware in mind. Among other differences,
the gate set in error-corrected hardware tends to be different than that used in NISQ computers.
Especially important is resource estimation for error-corrected quantum computing. Useful studies of
this type have been performed for chemistry, where estimates for required T gate counts have been
determined for classically intractable molecules [RWS*17, LLD™19, vBLH*21]. In such cases, because
one is not performing the actual quantum computation, one must use informed estimates for quantities
such as how many operations will be required to prepare a trial state for QPE and how much overlap
this trial state will have with the ground state. Such studies, performed using HamLib, may help
researchers begin to understand how required resources scale with problem size, when solving various
problems on error-corrected quantum computers.
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Mapping problems to qubit representations is often a time-consuming procedure. For instance,
fermionic problems must implement the Jordan-Wigner (or related) mapping in order to preserve
commutation properties, and the classical steps required may be substantial when one has (not un-
commonly) O(N?) terms to consider. As mentioned above, analogous mappings are required for
vibrational and bosonic problems, as well as classical problems. There is likely much room for effi-
ciency improvement in generating qubit representations, for example via pre-processing, memoization,
and parallelization.

Methods for quantum circuit construction and optimization may be benchmarked as well [KM13,
ASD14, NRST18, WVMN19, SDC*20, PPJ*21, XLP 22, PSI*23, SIST23, Dev22]. Both the speed of
the compilation and its quality must be considered, where circuit depth might be one quality criterion.
As an example, there are a plethora of choices for compiling circuits for Hamiltonian exponentiation,
each of which has different accuracy, space, and depth trade-offs [DKPVDW20, SSIJM21, KIMK22,
PBW22, KL.S23]. Further, there are multiple ways to decompose a given unitary [BBC195], including
via randomized compilation [WE16], each of which might be considered by the compiler. Gate fusions
and cancellations may be handled with different approaches that may need to be compared. It will be
interesting to see the extent to which classical compilation, a mature field of many decades, will bring
techniques to bear on quantum circuit compilation.

Finally, we note that there are many aspects of running the quantum stack that are intimately
related to a particular hardware design. When two-qubit gates are available only between physically
adjacent qubits (which is the case for most hardware types), gate scheduling protocols [MTC™06,
GP18] must be benchmarked and the choice of qubit topology (i.e. connectivity) intimately affects
performance [HJG%20]. As noted above, multiple choices for decompositions into native gates may
be available as well, some of which may lead to more optimal circuits than others. And further into
the future, certain aspects of the quantum-classical interface as it relates to quantum error correction
ought to be optimized, including the analysis of syndrome measurements [Rof19]. As hardware-software
codesign [LWST21, WSM22] becomes more prevalent in quantum computer development, the HamLib
dataset may play a role in guiding many hardware design choices.

4 Concluding remarks

We have introduced a wide-ranging dataset of qubit Hamiltonians, for a variety of quantum problems
including condensed matter models, electronic structure, and vibrational structure, as well as classical
problems including Max-k-SAT, Max-k-Cut, and the traveling salesperson problem. We have left
actual benchmarking studies to future work, using this first work to only introduce and characterize
the dataset.

A primary purpose of this work was to provide the community with a set of problem instances that
can be used directly and immediately, without the need to learn and implement the tedious multi-step
processes required. Preparing electronic and vibrational structure instances for real-world molecules,
for instance, involves significant domain knowledge and many software steps. Further, our inclusion of
problems with real-world parameters and attributes (electronic structure, vibrational structure, TSP
for European cities) is meant to encourage the community to continue its focus on problems instances
that more closely relate to industrial impact.

HamLib may be used for several distinct types of tests: (a) simulating small problems on current
noisy quantum computers, (b) classically emulating quantum computers, or (c) studying processes for
which the quantum circuit itself does not need to be simulated, e.g. for compilation procedures up
to hundreds or thousands of qubits. These Hamiltonians may be implemented in conjunction with a
range of algorithm classes for which new algorithmic approaches need to be tested or hyperparameters
tuned: VQE, QAOA, adiabatic quantum state preparation, Krylov-subspace methods, and various
long-term Hamiltonian simulation methods.

Quality classical datasets have long been an indispensable component of benchmarking for the
design of supercomputers, processors, linear algebra methods, and Al algorithms. We hope that this
dataset fills a similar role for the quantum computing community.
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A HamlLib code snippets

We provide a collection of Python functions that can be used to interact with the HamLib dataset. The
code is depends on domain-specific Python packages, including NetworkX [HSS08], OpenFermion [MRS™20],
and mat2qubit [Saw22], and some other widely used libraries. We specifically assume that the following
imports have been made before using the functions in Sections A.1 and A.2:

import networkx as nx
import mat2qubit as m2q
import openfermion as of
import hbpy

import numpy as np

A.1 Loading HDF5 file structure

We recommend using the function print_hdf5_structure to inspect the path tree structure of the
datasets stored in the HamLib HDF5 files and get_hdf5_keys to return a list of keys to all datasets
stored in a HamLib HDF5 file. This list of keys can be used to extract data from the HDF5 file using
the functions provided in Section A.2.

Both print_hdf5 structure and get hdf5 keys make use of the decorator function
parse_through _hdf5.

def parse_through_hdf5 (func):
"""Decorator function that iterates through an HDF5 file and performs
the action specified by ‘func‘ on the internal and leaf nodes in the HDF5 file."""
def wrapper (obj, path=’/’, key=None):
if type(obj) in [hbpy._hl.group.Group, hb5py._hl.files.File]:
for ky in obj.keys():
func (obj, path, key=ky, leaf=False)
wrapper (obj=obj[ky], path=path + ky + ’/’, key=ky)
elif type(obj) == hbpy._hl.dataset.Dataset:
func (obj, path, key=None, leaf=True)
return wrapper

def print_hdf5_structure(fname_hdfb5: str):
"""Print the path structure of the HDF5 file.

Args

fname_hdf5 (str): full path where HDF5 file is stored

@parse_through_hdf5
def action(obj, path=’/’, key=None, leaf=False):
if key is not None:

print ((path.count(’/’)-1)*’\t’, ’-’, key, ’:’, path + key + ’/’)
if leaf:
print ((path.count(’/’)-1)*>\t’, ’>[""DATASET""]’)

with hbpy.File(fname_hdf5, ’r’) as f:
action(£[’/’1)

def get_hdfb5_keys (fname_hdf5: str):
"""Get a list of keys to all datasets stored in the HDF5 file.

Args

fname_hdf5 (str): full path where HDF5 file is stored

all_keys = []

@parse_through_hdf5
def action(obj, path=’/’, key=None, leaf=False):
if leaf is True:
all_keys.append(path)

with hbpy.File(fname_hdf5, ’r’) as f:
action(£[’/’1)
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return all_keys

A.2 Loading HDF5 data

The five functions listed below can be used to load data stored at a specific key in the HDF5 file back
into an appropriate Python objects, which respectively are a NetworkX graph, a dictionary of grid
positions, OpenFermion operators, mat2qubit operators and a list of clauses.

def read_graph_hdf5(fname_hdf5: str, key: str):

"""Read networkx graphs from HDF5 file at specified key. Returns a single networkx
graph.

with hbpy.File (fname_hdf5, ’r’) as f:
G = nx.Graph(list(np.array(f[keyl)))

return G

def read_gridpositions_hdf5(fname_hdf5: str, key: str):
"""Read grid positions, stored as attribute of each networkx graph from HDF5 file
at specified key. Returns grid positions of nodes associated with a single graph.

with hbpy.File(fname_hdf5, ’r’) as f:
dataset = f[key]
gridpositions_dict = dict(dataset.attrs.items())

return gridpositions_dict

def read_openfermion_hdf5(fname_hdf5: str, key: str, optype=of.QubitOperator):
"""Read any openfermion operator object from HDF5 file at specified key.
’optype’ is the op class, can be of.QubitOperator or of.FermionOperator.

with hbpy.File (fname_hdf5, ’r’, libver=’latest’) as f:
op = optype(fl[keyl[()].decode("utf-8"))

return op

def read_mat2qubit_hdf5 (fname_hdfb: str, key: str):
"""Returns mat2qubit’s qSymbOp operator from HDF5 file at specified key."""
with hbpy.File (fname_hdf5, ’r’) as f:
op = m2q.qSymbOp (f[key]l[()].decode("utf-8"))

return op

def read_clause_list_hdf5(fname_hdf5: str, key: str):
"""Read clause list from HDF5 file at specified key.Returns clause list in DIMACS
format."""
clause_list = []
with hbpy.File(fname_hdf5, ’r’) as f:
for clause in list(np.array(f[keyl)):
clause_list.append([v for v in clausel)

return clause_list

A.3 Loading and unzipping to memory

For certain workflows, especially ones targeting some of the smaller subdatasets of HamLib, we expect
that it might be useful to load the data directly from the webportal into a Python environment. This
has an additional benefit of code portability.

Alternatively one may download the zip files directly. We recommend manually downloading the
larger (>100 MB) files of HamLib, as the uncompressed data is often 10x the size of the compressed
data. Additionally, we note that for some users a manual download may be the only option—during
testing, some users were unable to access HamLib via the commands below, due to virtual private
network (VPN) or related issues.

The code snippet below provides an example of how this can be achieved. We note that this
approach loads the full zip file into memory and thus might be slow for some of the larger datasets.
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import zipfile
import requests
from io import BytesIO

url = ’https://portal.nersc.gov/cfs/m888/dcamps/hamlib/test/graph/test_graph.zip’

r
z

requests.get (url, stream=True)
zipfile.ZipFile (BytesIO(r.content))

hdf5_filename = z.namelist () [0]
G = read_graph_hdf5(z.open(hdf5_filename, ’r’), "test_graph")

B Resonances in vibrational Hamiltonians

For molecular vibrational Hamiltonians, the table shows how many pairs of transitions are within the
specified energy threshold. Because near-degenerate transitions (i.e. resonances) are difficult to treat
with classical algorithms, the number of such transitions may be used as a rough proxy for classical
hardness.

Molecule 25cm™! 10ecm™! 5cm™! 2cm” 1cm™!
BH3 148 74 40 40 39
H,CO 27 9 7 3 2
BHF, 20 3 0 0 0
H,CC 11 2 1 1 1
H,0, 31 21 10 1 0
BF3 106 68 44 44 44
CHs 88 58 38 34 34
CHZ 117 57 45 36 34
CICOH 20 8 3 1 1
FCCF 460 252 184 102 87
HCCH 150 111 72 56 48
C.H 25 21 21 17 11
C20 27 19 13 13 11
CH» 0 0 0 0 0
COH 1 0 0 0 0
H,O 3 3 2 0 0
HaS 4 1 0 0 0
HY 7 7 7 7 7
HCO 1 0 0 0 0
HNC 21 17 11 11 11
HNO 1 1 0 0 0
NH, 2 0 0 0 0
O3 0 0 0 0 0
SFo 9 0 0 0 0
SO2 0 0 0 0 0
NOH 0 0 0 0 0
BeH 0 0 0 0 0
BH 0 0 0 0 0
CH 0 0 0 0 0
6{0) 0 0 0 0 0
Fy 0 0 0 0 0
HF 0 0 0 0 0
Allene 3243 1707 1224 951 791
Cyclopropene 2827 1030 512 181 90
Ethylene oxide 4090 1902 883 349 174
Propargyl Cyanide 6611 2760 1482 564 294
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