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Models of biological learning across different spatial scales

by
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Professor Johnatan Aljadeff, Chair
Professor David Kleinfeld, Co-Chair

A hallmark of the brain is its capacity for learning, which broadly refers to the animal’s

ability to constantly adapt to the changing environments by adjusting its behaviors. Learning

in the brain happens across a wide range of spatiotemporal scales. Here I will present three

modeling works that link biological mechanisms of learning across different spatial scales,

including linking molecular mechanisms to cellular function of synaptic transmission, the effects

of synaptic plasticity on network dynamics, and circuit mechanisms for multi-sensory perception.

Beyond their specific contexts, my dissertation research will provide general methods and tools

to bridge learning mechanisms across scales and elucidate principles governing the brain’s
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capability of learning, one of the unique features of intelligence.
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Chapter 1

Introduction: Seeking for Principles of
Learning in the Brain

1.1 The phenomena of learning

Humans, like many other animals, possess an intrinsic ability to adjust and adapt their

behaviors in response to changing environment, based upon past experiences. Such experience-

dependent changes in behavior are commonly termed learning. Besides behavioral changes,

learning is often accompanied with the acquisition of new knowledge, skills, values and the

formation or removal of memories. Some learning experiences are rapid and can be induced by

a single event (e.g. learning perils of heats by touching a hot stove), while others can be slow

and evolve gradually through repeated experiences (e.g. learning a new language). Learning is a

fundamental function of the nervous system, integral to our perception, reasoning, thinking, and

interaction with the surrounding world.

Learning is pervasive in our lives. For instance, when traveling to a new city, one may

initially rely heavily on maps or seek guidance from locals to locate essential places related to

daily life, like workplaces, residences, or entertainment venues. As one traverses the city’s streets

and pathways repeatedly, the brain is able to learn a spatial map of the new environment, which

then allows us to navigate to the relevant locations independent of external guidance, or to find

new places based on those places that we are familiar with. Similarly, when learning a new sport,

we may begin by mimicking specific movements. But over time, through consistent practice,
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these movements become second nature, almost reflexive. It is as if the brain has encoded an

internal program, seamlessly initiating these learned action sequences whenever prompted. As a

final example, the journey to a PhD stands for a more complex form of learning. It begins with

absorbing established knowledge but culminates in contributing novel insights and expanding

the collective knowledge base. It is remarkable that the human brain can undergo such profound

transformations in a span of a few years and successfully learn to perform such a sophisticated

task.

Although this dissertation primarily focuses on learning phenomena within the brain,

brain-based learning can be viewed as a special form of adaptive behaviors in a broader context.

These adaptive behaviors can be observed even in organisms without a nervous system and

are crucial for species survival in the ever-evolving environmental changes. Moreover, the

observation that animals can learn from experience has inspired recent advances in artificial

intelligence, where machines are built to learn from scratch to perform specific tasks. Yet in

many real-life scenarios, there is still a large gap between the performance of state-of-the-art

artificial systems and the brain. Thus, diving deeper into the brain’s learning mechanisms offers

a twofold benefit: it advances our understanding of the operating principles of nervous systems

and broader adaptive principles in biology, and also paves the way for designing artificial systems

that rival, or even surpass, human performance levels.

This dissertation concerns modeling biological mechanisms underlying learning in the

brain. The overarching goal is to uncover principles that govern the learning process of nervous

systems, which can be formulated mathematically and can be applied to explain a plethora of

learning phenomena. To set the stage for the results presented in this dissertation, the subsequent

two sections will dive into some backgrounds on mechanistic and normative approaches to model

learning phenomena in the brain. The closing section of this chapter will contain a summary of

the main results of the dissertation.
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1.2 A mechanistic viewpoint of learning

This section reviews biological mechanisms of learning on the molecular, cellular and

circuit levels. Particular emphasis is placed on those mechanisms that provide context for the

results presented in subsequent chapters.

Most of the learning processes in biological systems rely on the nervous system. Within

the nervous system, neurons (or nerve cells) are the fundamental units: they sense changes in

environment, communicate these changes to other neurons, and control the body’s response to

these sensations [21]. The communication between neurons is usually via synapses (or synaptic

junctions), which connect the axon of the presynaptic neuron to the soma, dendrite or axon of

the postsynaptic neuron. A large body of experimental evidence [107, 106, 153] has suggested

that behavioral changes induced by learning are closely linked to the modification of various

properties of synapses. The mechanisms that induce synaptic changes are collectively called

synaptic plasticity [175]. Synaptic changes caused by synaptic plasticity result in changes of

neural responses and influence the behaviors of the animals. In order to understand learning, it is

necessary to identify what properties of a synapse can be tuned by plasticity.

Most of the synapses in mature animals are chemical synapses, where an electrical

signal (action potential) of the presynaptic neuron triggers the release of neurotransmitters into

the synaptic cleft and results in the response of the postsynaptic neuron. At most chemical

synapses, neurotransmitters are packed into synaptic vesicles at specific zones at the presynaptic

axon terminals, known as active zones. When the presynaptic neuron emits an action potential,

it triggers calcium influx into the active zones. The calcium ions bind protein complexes

residing on the membrane of synaptic vesicles, called SNARE proteins [104, 35]. Following

binding of calcium, the SNARE complex undergoes configuration change and pulls the vesicle

membrane towards the presynaptic cell membrane, inducing membrane fusion (or exocytosis).

The properties of SNARE proteins and their effects on neurotransmitter release have been studied

in numerous modeling and experimental works before [104, 224, 35, 171]. These works have
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shown that the transmission properties of SNARE complex can vary dramatically across different

synaptic types, brain regions and animal species. Even inside the same synapse, structures and

components of SNARE complex can be modulated by various regulatory molecules to contribute

to synaptic plasticity on the presynaptic side.

Besides SNARE proteins, other properties of the synapses can also change in response to

the history of synaptic activity, such as the number of synaptic vesicles at the active zones, the

magnitude of calcium concentration and so on. The variations of these properties all contribute

to synaptic plasticity, especially to short-term plasticity [196, 99]. Given the immense diversity

of molecular components at synapses, it is especially challenging to formulate a quantitative

framework that can capture such heterogeneity and be used to shed light on its effects on various

synaptic functions, including synaptic plasticity.

The synaptic changes induced by short-term plasticity usually last less than a few minutes

[196]. Yet behavioral changes induced by learning can last for much longer times, which

usually requires long-term change of synaptic properties through long-term plasticity. One

primary mechanism of long-term synaptic plasticity also relies on the intracellular calcium. The

depolarization/hyperpolarization of postsynaptic membrane following neurotransmitter release

induces calcium influx into postsynaptic cytoplasm. Such a calcium influx triggers a cascade of

molecular signaling pathways at the postsynaptic side, causes synthesis or degradation of synaptic

proteins and eventually induces long-term changes of synaptic properties. A comprehensive

description of the molecular pathways underlying long-term plasticity has been advanced in

recent years [128, 150]. But these models are typically too complex to be used for understanding

learning in neural circuits.

A different line of research has directly investigated the effect of plasticity induced at

spike-level, called spike-timing dependent plasticity (STDP) [25, 60]. These studies measure the

change of excitatory postsynaptic potential (EPSP) when stimulating the neurons by spike-pairs

[24], triplets [75] and other patterns of spiking activities [60]. Recent works [79, 97] combined

these phenomenological models for STDP to more detailed, biophysical models of synaptic
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plasticity [214, 78] and proposed the calcium-based STDP model. Yet it remains unknown how

the nonlinearity in the calcium-based model, measured at physiological conditions, affects the

dynamics and structures at the network level. These results will shed light on the diverse place

field dynamics as observed in experiments [58].

Synaptic plasticity on the network level also plays important roles in the brain’s sensory

processing. One ultimate goal of neuroscience is to understand how the brain internally represents

the external world based on the sensory input signals. On the cognitive level, an effective mental

representation of the world helps the animal to take correct actions under different environmental

conditions. Early works have suggested that neurons in the brain encode specific features of the

external sensory signals, called the ”receptive field” of the neuron. Following this idea, neurons

with different receptive fields have been identified in various brain regions, such as orientation

neurons in visual cortex [94], place cells in hippocampus [181], direction neurons in motor

regions [72] and so on. The receptive field idea typically highlights that each neuron detects

features of the sensory stimuli that are currently presented. However, more and more recent

works have shown that many neurons in the sensory regions encode features of those stimuli

”expected” from past experiences rather than the ones that are actually presented [259, 210].

These observations not only indicate that sensory representations in the brain is experience-

dependent but also show that the brain can compute an expectation of the world internally rather

than just passively sense it. These ideas form the basis of predictive processing hypothesis [114].

The predictive processing hypothesis asserts that the brain is constantly generating and

updating an internal model of the external world. As the internal model is updated based on past

experiences, predictive processing is a prototypical example of learning in sensory processing.

Early experimental evidence for predictive processing is mainly based on sensory representation

of a single stimulus [93], like a image or sound. Recently, many works have identified predictive

signals in the brain for associative learning of multisensory stimuli [259, 70]. Current research is

starting to elucidate how learning changes the predictive representations formed in the neural

circuits and how these are influenced by noise and structures in the sensory signals.
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1.3 A normative viewpoint of learning

In theoretical neuroscience, the normative viewpoint emphasizes the brain’s functions

and computations [45]. This approach offers a conceptual framework to decipher the intricate

data from large-scale neural recordings and offers a potential route to reveal ”design principles”

of nervous systems. Within the realm of learning, this viewpoint seeks to address questions like:

what is learning good for? what specific brain function does the learning support?

From a functional perspective, it is useful to distinguish the two separate systems: the

brain and the external world. The brain processes sensory inputs, form its internal representations

and acts upon the external world. In this picture, learning changes the brain’s representations

and refines the actions it takes. Through learning, the brain can form a better representation of

the surrounding environments and guide the animal to take better actions to survive in severe

environments. The normative viewpoint posits that learning changes the state of the brain in

such a way to optimize its functions (e.g. performance on specific task). Based on this, learning

can be reduced to an optimization problem, i.e. identifying the optimal solution (within a model

class) for task performance.

Typically, two major classes of problems arise: statistical problem and computational

problem. The statistical problem is related to how to achieve successful learning with noisy and

partially observed sensory inputs. The computational problem focus on how to effectively find

the optimal solution during learning. Yet, there are also functional questions that do not neatly fit

in the two classes.

As an example, sparse coding has been suggested as a normative principle for how

sensory system encodes external stimuli [64, 200]. Suppose the external sensory signal is

denoted as x(t) ∈ R. We use neural activity rrr(t) ∈ RN to describe the states of a sensory region

in the brain. Sparse coding asserts that the neural activity minimizes the following objective

function

E(rrr(t)) =
1
2
[x(t)−www · rrr(t)]2 +F(rrr(t)). (1.1)
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where the first term is an error with respect to a linear readout of the neural activity and the

second term F(rrr) forces sparsity. Here the task is to reconstruct the sensory signal x(t), whose

performance is measured by the first term. From statistical perspective, the second term serves

as an regularization to avoid overfitting.

For a static sensory signal x(t) = x, the optimal neural response is given by

rrr∗ = argmin
rrr

[
1
2
(x−www · rrr)2 +F(rrr)

]
. (1.2)

From computational perspective, such an optimal solution of the brain state can be found by a

standard recurrent neural network with nonlinear activation function [200]. It turns out that these

mathematical formalism can be extended to understand the predictive processing of multimodal,

high-dimensional sensory signals.

1.4 Outline: bridging learning mechanisms across spatial
scales

As many biological systems, the brain is notably a multiscale system and spans across

different spatial scales, from molecular and cellular level up to circuit/system level and ultimately

to behavioral and cognitive levels we experience daily. Perhaps the most fascinating phenomena

about learning are related to human behaviors or cognitive capabilities. However, solely gathering

data at the behavioral or cognitive level often falls short in uncovering the underlying mechanisms.

Fortunately, modern experimental technologies now permit direct observations at the single-

molecule or single-cell level. A significant challenge then lies in bridging these granular

experimental findings on the lower level to the behavioral and cognitive level. Such efforts would

reveal what are the ”relevant” components at molecular or cellular level that are esstential for

learning at higher levels.

It is noteworthy that in studying learning phenomena, the mechanistic approach is

often employed at the molecular/cellular/circuit level, whereas the normative approach is more
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commonly used at the behavioral/cognitive level. Thus, bridging learning across different spatial

scales would also reconcile the two viewpoints and offers a coherent picture of how learning

happens in the brain.

In the next three chapters, I will present three works in this direction. Along the way,

various methods in statistical physics have been found particularly useful, including Langevin

dynamics, mean-field theory, replica methods, among others. Given that statistical physics seeks

to bridge physical phenomena across scales, the works presented here can be viewed as an

extension of the traditional statistical physics framework, applied to one of the most intricate and

heterogeneous systems known: the brain.

Below is a summary of the main results:

In chapter 2, we present a quantitative model that links molecular diversity of synapses to

its functions on cellular level. These works show that synapses that vary widely across a number

of axes (including size, vesicle release rate and calcium sensors) can be captured by a common

physical framework, which further led to a quantitative understanding of how diverse forms of

synaptic plasticity are constrained by molecular properties of synapses.

In chapter 3, we investigate the effects of plasticity rules measured on single-synapse level

on network dynamics. By formulating a mean-field description for spiking neural networks under

synaptic plasticity, we show that stability of old memories, while in the presence of acquisition

of new memories, requires the plasticity rule to operate on the physiological conditions. The

statistical-physical framework developed here can be applicable to a range of other contexts

where learning relies on the timing of the relevant events.

In chapter 4, we formulate a recurrent network model for high-dimensional predictive

processing. Mathematical analysis of the network model indicates that the most accurate and

robust predictive processing in natural conditions arises in a network operating in a regime

of loose excitatory/inhibitory balance. This network exhibits a functional desegregation of

stimulus and prediction-error representations at the cellular-level. These results illuminate how

the perception of one sensory modality (e.g. vision) is shaped by other sensory experiences (e.g.
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audition) and offer inspirations for new architectures for unsupervised learning.
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Chapter 2

Learning on Molecular/Cellular Level: A
Theory of Synaptic Transmission

Abstract

Rapid and precise neuronal communication is enabled through a highly synchronous release of signaling

molecules neurotransmitters within just milliseconds of the action potential. Yet neurotransmitter release

lacks a theoretical framework that is both phenomenologically accurate and mechanistically realistic. Here,

we present an analytic theory of the action-potential-triggered neurotransmitter release at the chemical

synapse. The theory is demonstrated to be in detailed quantitative agreement with existing data on a

wide variety of synapses from electrophysiological recordings in vivo and fluorescence experiments in

vitro. Despite up to ten orders of magnitude of variation in the release rates among the synapses, the

theory reveals that synaptic transmission obeys a simple, universal scaling law, which we confirm through

a collapse of the data from strikingly diverse synapses onto a single master curve. This universality

is complemented by the ability of the theory to readily extract, through a fit to the data, the kinetic

and energetic parameters that uniquely identify each synapse. The theory provides a means to detect

cooperativity among the SNARE complexes that mediate vesicle fusion and reveals such cooperativity

in several existing data sets. The theory is further applied to establish connections between molecular

constituents of synapses and synaptic function. The theory allows competing hypotheses of short-term

plasticity to be tested and identifies the regimes where particular mechanisms of synaptic facilitation

dominate or, conversely, fail to account for the existing data for paired-pulse ratio. The derived trade-off

relation between the transmission rate and fidelity shows how transmission failure can be controlled
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by changing the microscopic properties of the vesicle pool and SNARE complexes. The established

condition for the maximal synaptic efficacy reveals that no fine tuning is needed for certain synapses to

maintain near-optimal transmission. We discuss the limitations of the theory and propose possible routes

to extend it. These results provide a quantitative basis for the notion that the molecular-level properties of

synapses are crucial determinants of the computational and information-processing functions in synaptic

transmission. The text included here is adapted from the published paper [241]. All appendix can be

found in its online version.

2.1 Introduction

Neurons communicate across special junctions – synapses – using neurotransmitter

molecules as a chemical signal [224]. Release of neurotransmitters into the synaptic gap occurs

when neurotransmitter-loaded vesicles fuse with the membrane of the presynaptic (transmitting)

neuron in response to calcium influx during an action potential “spike”. Synaptic vesicle fusion

is remarkably fast and precise: both the duration of fusion and the time between the trigger and

fusion initiation are less than a millisecond [109, 224].

The electrical propagation of information along the axon of the presynaptic neuron (the

pre-transmission stage) and the response of the postsynaptic neuron to the chemical signal (the

post-transmission stage) have been described by theories that capture phenomenology while

connecting to microscopic mechanisms [90, 48]. However, neurotransmitter release, which

enables the synaptic transmission itself, lacks a theory that is both phenomenologically accurate

and microscopically realistic [222]. This void contrasts with detailed experiments, which have

revealed the molecular constituents involved. The key to speed and precision of neurotransmitter

release is a calcium-triggered conformational transition in SNAREs (soluble N-ethylmaleimide

sensitive factor attachment protein receptors) [104, 13, 35]. The free energy released during the

conformational transition is harnessed by SNAREs to pull the membranes of the vesicle and the

cell together, reducing the high kinetic barriers that otherwise hinder fusion. Fusion culminates
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in the release of neurotransmitters from vesicles into the synaptic cleft (Fig.2.1A).

Here, we present a theory of the action-potential-evoked (AP-evoked) synaptic trans-

mission, which quantitatively reproduces a wide range of data from fluorescence experiments

in vitro [134, 50] and electrophysiological experiments in vivo [16, 85, 208, 236, 23, 252, 145,

29, 225, 247, 205, 125, 55, 161, 66]. The theory yields analytic expressions for measurable

quantities, which enables a direct fit to the data. Fitting yields parameters that describe the fusion

machinery of each synapse: activation barriers and rates of SNARE conformational transitions at

any calcium concentration, the size of vesicle pools, and the number of independent SNARE

assemblies necessary for fusion. The analytic result of the theory allows to understand, quantita-

tively, the remarkable temporal precision of neurotransmitter release. Perhaps the most striking

result of the theory is that the peak release rate as a function of calcium concentration can be

written, with proper normalization, in a universal form so that data on different synapses – with

release rates spanning ten orders of magnitude – collapse onto a single curve. The established

universality is especially remarkable given that these synapses have been known to exhibit

strikingly different properties in synaptic transmission due to distinct Ca2+-sensors [237, 248]

as well as different couplings between the SNAREs and their regulatory proteins or calcium

channels [108, 238, 221].

The theory is further applied to relate the properties of neurotransmitter release machinery

to the proposed mechanisms of short-term plasticity [196, 99]. A quantitative comparison with

experimental data for the paired-pulse ratio enables us to identify the regions where particular

mechanisms of synaptic facilitation dominate or, on the contrary, fail to account for the observed

facilitation. We establish how the molecular properties of the transmitter release machinery

impose constraints on the tradeoff between transmission rate and fidelity, where fidelity measures

the ability of a synapse to generate a postsynaptic output in response to a presynaptic input.

Finally, we show how the molecular-level properties of synapses determine the optimal synaptic

efficacy, or the ability of a synapse to avoid both the transmission errors (lack of a postsynaptic

output) and error reads (an output in the absence of an input). Altogether, the theory shows
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how the key characteristics of synaptic function – plasticity, fidelity, and efficacy – emerge from

molecular mechanisms of neurotransmitter release machinery, and thus provides a mapping from

molecular constituents to functions in synaptic transmission.

2.2 Results

2.2.1 Theory

We start from the observation that published data on neurotransmitter release for different

synapses and experimental setups [16, 134, 50, 85, 208, 145, 29, 161, 55, 125, 247, 225, 236,

205, 252, 23, 66] can all be encompassed by a unifying kinetic scheme:

Fast Pool
{k fast,i}
. . .

Fused

Slow Pool
. . .

{k fast,i,kslow}

(2.1)

In this kinetic scheme, synaptic vesicle fusion proceeds through two parallel reaction pathways.

Both pathways contain fast steps of rate constants {k fast,i}. One of the pathways contains an

additional, slow, step of rate constant kslow ≪{k fast,i}. The pathways originate in the “fast” and

“slow” vesicle pools of sizes ntot1 and ntot2, respectively. The interpretations of the fast and slow

steps as well as the individual states in this unifying kinetic scheme for different experimental

setups are summarized in Fig.2.1 and detailed below.

In the context of in vivo experiments [85, 208, 145, 29, 161, 55, 125, 247, 225, 236,

205, 252, 23, 66], Eq.(2.1) concretizes into the kinetic scheme in Fig.2.1B and D. The fast

pool represents the readily releasable pool (RRP) comprised of vesicles that are docked on the

presynaptic terminal (state D) and fuse readily upon Ca2+ influx [105]. The slow pool represents

the reserve pool (state R), which supplies vesicles to the RRP (R → D) with slow rate k2. Fusion

of an RRP vesicle (...→ F) requires N independent SNARE assemblies tethering the vesicle

at the cell membrane to concurrently undergo a conformational transition. This transition is
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Ca2+-dependent and involves a single rate-limiting step [95] of rate constant k1([Ca2+]). Note

that N is defined broadly as the critical number of independent SNARE assemblies per docked

vesicle. Each of the N independent assemblies may consist of a single SNARE or may represent a

“super-assembly” of multiple SNAREs that undergo the conformational transition cooperatively

[2, 243, 80, 226, 257].

In the context of in vitro experiments [134, 50], Eq.(2.1) becomes the kinetic scheme

in Fig.2.1C and E. All vesicles are initially docked (states D1 and D2) but adopt different

morphologies (Fig. 1C) and, consequently, fuse through different pathways [74]. Vesicles

in a point contact with the membrane (state D1) fuse rapidly upon Ca2+-triggered SNARE

conformational transition, mimicking RRP vesicles in vivo. Vesicles in an extended contact

(state D2) become trapped in a hemifusion diaphragm intermediate (state H), escape from which

(H → F) constitutes the slow step k2.

In all these experiments, the delay due to steps IN → F is negligible compared to both fast

and slow steps k1 and k2. Note that a scheme with N independent and concurrent steps of rates k1

(Fig.2.1B and C) is equivalent to a scheme with N sequential steps of rates Nk1,(N −1)k1, ...,k1

(Fig.2.1D and E).

Despite the differences in the details of the fusion process in vivo and in vitro described

above, the mathematical equivalence of the corresponding kinetic schemes enables their treatment

through a unifying theory. We will assume that the calcium influx is triggered by an action

potential that arrives at the presynaptic terminal at t = 0. The microsecond timescales (much

faster than neurotransmitter release) of the opening of voltage-gated Ca2+ channels and diffusion

of Ca2+ ions across the active zone justify treating the [Ca2+] rising as instantaneous. Since the

typical width of [Ca2+] profile is ∼ 1−10ms [20] while most vesicles fuse within t ∼ 100µs

[109], [Ca2+] can be treated as approximately constant during the fusion process. The theory is

thus applicable both for step-like and for spike-like [Ca2+] profiles, as well as for responses to

long sequences of spikes of the duration shorter than the timescale k−1
2 of RRP replenishment.

With the above assumptions, the theory is developed in detail in Appendix 1. Below we present
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analytic expressions derived from the theory for the key outputs of the experiments that probe

synaptic transmission at the single-synapse level in vivo and in vitro. These expressions relate

experimentally measurable characteristics of synaptic transmission to the molecular parameters

of synaptic release machinery, thereby enabling the extraction of these parameters through a fit

to experimental data.

An informative characteristic of synaptic transmission is the average release rate. Defined

as the average (over an ensemble of repeated stimuli) rate of change in the number of fused

vesicles, this quantity is the most commonly reported characteristic in experiments on the kinetics

of neurotransmitter release [208, 29, 134, 50]. The rate equations for the kinetic scheme in

Eq.(2.1) yield the exact solution for the average release rate:

d ⟨n(t)⟩
dt

= Nk1ntot1(1− e−k1t)N−1e−k1t +Nk1k2ntot2

N−1

∑
j=0

(−1) j
(

N −1
j

)
e−k2t − e−( j+1)k1t

( j+1)k1 − k2

≡ ntot1 p1(t)+ntot2 p2(t), (2.2)

where p1,2(t) are the probability distributions for the fusion time in the fast and slow pathways,

N is the necessary number of independent SNARE assemblies, and ntot1 and ntot2 are the sizes

of the fast and slow pools, respectively. We use the standard notation for binomial coefficient(N
m

)
≡ N!

m!(N−m)! .

In practice, the average release rate is obtained from the average cumulative release

⟨n(t)⟩, which is defined as the average number of vesicles fused by time t and can be measured

directly through electrophysiological recording on the postsynaptic neuron [208, 145, 29, 247,

125, 55, 161] or through fluorescence imaging in synthetic single-vesicle systems [134, 50].

Integrating Eq.(2.2) yields the exact solution for average cumulative release:

⟨n(t)⟩=
∫ t

0

d ⟨n(t)⟩
dt

dt = ntot1(1− e−k1t)N +ntot2

N

∑
j=1

(
N
j

)
(−1) j−1(1− jk1e−k2t − k2e− jk1t

jk1 − k2
)

≡ ntot1F1(t)+ntot2F2(t), (2.3)
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where F1,2(t) =
∫ t

0 p1,2(t)dt are cumulative distributions for the fusion time in the fast and slow

pathways can be found in the Appendix 1. In vivo, F1(t = T ) = (1− e−k1T )N is the fusion

probability for an RRP vesicle after an action potential of duration T [171, 161, 152]. We also

derive the full probability distribution of cumulative release by time t (Appendix 1), which,

although at present is challenging to measure experimentally, contains more information than the

average values in Eqs.(2.2)-(2.3).

Experiments indicate a separation of timescales, k2 ≪ k1 [170, 104], which yields useful

asymptotic behaviors for AP-evoked neurotransmitter release. At short times, t ≪ 1/k1,1/k2, the

release rate in Eq.(2.2) is d⟨n(t)⟩
dt ∼ tN−1, which can be readily fit to data to extract the number N of

independent SNARE assemblies necessary for fusion. At intermediate times, 1/k1 ≪ t ≪ 1/k2,

cumulative release in Eq.(2.3) becomes ⟨n(t)⟩ ≈ ntot1 +ntot2k2t, which can be used to determine

the RRP size, ntot1, by extrapolation [171]. At long times, t ∼ 1/k2 ≫ 1/k1, cumulative release

is ⟨n(t)⟩ ≈ ntot1 +ntot2(1− e−k2t). As expected, the cumulative release on the intermediate and

long timescales is independent of the number N of SNARE assemblies and conformational rate

k1 of an assembly as all the fast steps have been completed.

A measure of sensitivity of a synapse to [Ca2+] is the peak release rate [208, 145,

29]. The time at which the peak is reached is found from Eq.(2.2) using k2/k1 ≪ 1: tmax ≈

k−1
1
[
lnN +(ntot2/ntot1

(
(N −1)/N3)(k2/k1)

]
. The peak release rate is then

d⟨n(t)⟩
dt

∣∣∣∣
t=tmax

≈ ntot1k1

(
1− 1

N

)N−1(
1+

ntot2(N −1)
ntot1N

k2

k1

)
. (2.4)

Now we must establish an explicit form for the calcium-dependence of the rate constant

of SNARE conformational transition k1([Ca2+]) in Eqs.(2.2)-(2.4). We utilize the formalism

of reaction kinetics due to Kramers [129] generalized to the presence of a bias field [54]. The

formalism treats a conformational transition as thermal escape over a free energy barrier along

a reaction coordinate. In the present context, the role of the reaction coordinate is fulfilled by

the average number nCa of Ca2+ ions bound to a SNARE assembly at a given [Ca2+], assuming
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that this average follows the dynamics of the conformational degree of freedom of the SNARE

assembly. The generic shape of the free energy profile with a barrier that separates the two

conformational states of a SNARE assembly is captured by a cubic polynomial (Appendix 1

Figure 1). The effect of calcium on the free energy profile is incorporated analogously to the pH

dependence of the Gibbs free energy of a protein, taking into account both contributions of the

electrostatic energy and the entropy [207, 256, 165]. As shown in Appendix 1, the rate constant

of the conformational transition of the SNARE assembly is then

k1([Ca2+])

=k0

(
1− 2

3
kBT n‡

Ca
∆G‡ ln

[Ca2+]

[Ca2+]0

) 1
2

exp

∆G‡

kBT

1−

(
1− 2

3
kBT n‡

Ca
∆G‡ ln

[Ca2+]

[Ca2+]0

) 3
2
 .
(2.5)

Here, k0 is the rate constant and ∆G‡ is the activation barrier for SNARE conformational

transition, and n‡
Ca is the number of Ca2+ ions bound to a SNARE assembly at the transition

state, with all three parameters corresponding to a reference calcium concentration [Ca2+]0.

Equation (2.5) provides a quantitative explanation for the remarkable temporal precision of

neurotransmitter release. Indeed, the argument of exp(. . .) is the change in the barrier height at a

given [Ca2+] relative to the reference state. The logarithm of calcium concentration, ln[Ca2+],

is the external force that lowers the barrier(concentrations appear logarithmically because the

relevant “force” on the molecule comes from the chemical potential, and this helps us to

understand how changes in concentration by many orders of magnitude have sensible, graded

effects). Equation (2.5) shows that the rate k1 is exponentially sensitive to this external force,

and so are the release rate (Eq.(2.2)) and its peak (Eq.(2.4)) that are both proportional to k1. This

exponentially strong sensitivity of the release rate to the force that drives the release explains,

quantitatively, the precisely timed character of synaptic release: synaptic fusion machinery

turns on rapidly upon Ca2+ influx during the action potential and terminates rapidly upon Ca2+
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depletion [223].

Equations (2.2) and (2.5) reveal that the number of independent SNARE assemblies

N = 2 per vesicle provides the optimal balance between stability and temporal precision of

release dynamics [215]. Indeed, at N = 1, the release is hypersensitive to sub-millisecond [Ca2+]

fluctuations caused by stochastic opening of Ca2+ channels (note the high release rate on the

sub-millisecond timescale at N = 1 in Appendix 1 Figure 2B). On the other hand, at N > 2,

the peak of release following an action potential is delayed. The optimality of N = 2 is further

supported by the least squares fit of the experimental data [125] to Eq.(2.3) with different values

of N: N = 2 results in the smallest fitting errors for all calcium concentrations used in the

experiment (Appendix 3 Table 1). However, the theory also reveals that incorporating additional

independent SNARE assemblies beyond N = 2 may be advantageous for the synapses that require

robustness against slower [Ca2+] fluctuations, beyond the sub-millisecond timescale. Indeed, the

presynaptic calcium channels are diverse in their intrinsic properties and their interactions with

regulatory proteins, and, as the result, generate [Ca2+] fluctuations on a wide range of timescales,

0.5ms−20ms [189, 53]. The shift of the peak release to longer timescales that accompanies an

increase in N, as seen in Appendix 1 Figure 2B, allows the synapses to “avoid” correspondingly

longer-timescale fluctuations in [Ca2+]. This point is illustrated further in Appendix 1 Fig. 2C:

in synapses with the larger values of N, the RRP vesicle release (Eq. (2.3)) remains low over

longer timescales, thereby providing robustness against slower [Ca2+] fluctuations.

In the presence of cooperative interactions among SNAREs that form super-assemblies,

k1 in Eq. (2.5) represents the effective transition rate of a super-assembly. Appendix 1 Figure 2D

illustrates how cooperativity between SNAREs results in a steeper increase of the rate k1 with

increasing [Ca2+], and hence in a faster vesicle release. Specifically, every additional SNARE in

the super-assembly is estimated to increase the release rate by a factor of ∼ 100 (Appendix 1

Figure 2D), a result consistent with the previous work [154] that utilized a different approach.

Now that we have closed-form expressions for the key characteristics of the neurotrans-

mitter release dynamics in hand, we can establish a universal relation for the sensitivity r of a
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synapse to the strength c of the trigger. Nondimensionalization of Eqs. (2.4) and (2.5) gives:

r = exp
[
1− (1− c)

3
2

]
, (2.6)

where c ≡ 2n‡
CakBT

3∆G‡ ln [Ca2+]
[Ca2+]0

and r ≡
(

a
(1−c)1/2

d⟨n(t)⟩
dt |tmax

) kBT
∆G‡

are the dimensionless calcium con-

centration and peak release rate, and a ≡
(
1+ 1

N−1

)N−1
/(ntot1k0). If the scaling law in Eq.(2.6)

indeed captures universal principles of synaptic transmission, data from different synapses should

collapse onto the curve given by Eq.(2.6). This prediction is tested in the section “Application of

the theory to experimental data” below.

A postsynaptic response to the action potential events is measured by the peak value

of the postsynaptic current (PSC). Using the well-established conductance-based model [48],

the average of the peak PSC can be shown to be proportional to the total number of released

neurotransmitters [109]:

ĪPSC = γ ⟨n(T )⟩ , (2.7)

where T is the duration of the action potential (∼ 1ms) and γ depends only on the properties

of the postsynaptic neuron. As our focus is on the AP-evoked neurotransmitter release in

synaptic transmission, γ can be regarded as a constant and postsynaptic receptor saturation can

be neglected, so that ⟨n(T )⟩ and ĪPSC can be used interchangeably. Note that the presynaptic

factors affect the postsynaptic response through ⟨n(t)⟩ as described by Eq. (2.3), and include

Ca2+-sensitivity of different Ca2+ sensors in SNAREs (captured through N, ntot1k0, n‡
Ca and

∆G‡) and the sizes of both vesicle pools (ntot1 and ntot2). Equations (2.3), (2.5) and (2.7) relate

the presynaptic action potential to the postsynaptic current response and thus complete our

framework for synaptic transmission. Detailed derivations of Eqs. (2.2)-(2.7) are given in

Appendix 1.

To validate the developed analytic theory, we first compare its predictions to data gener-

ated through numerical simulations of the kinetic scheme in Eq.(2.1). A simple least squares fit
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reliably recovers input parameters of the simulations (Appendix 2 Figure 1 and Figure 2). Next,

we test the robustness of the theory by comparing it to modified simulations, in which deviations

from the assumptions underlying Eqs. (2.2)-(2.5) are introduced. The modified simulations

incorporate (i) the finite-capacity effect of RRP and (ii) heterogeneity of [Ca2+] among different

release sites. For deviations within physiological range, the analytic expressions still reliably

recover the input parameters (Appendix 2 Figure 3). Details of the simulations are given in

Appendix 2.

2.2.2 Application of the theory to experimental data

The availability of analytic expressions for measurable quantities enables direct appli-

cation of the theory to experimental data. A fit of the peak release rate vs. [Ca2+] with Eqs.

(2.4) and (2.5) was performed for a range of synapses to extract a set of parameters {∆G‡, n‡
Ca,

k0} for each synapse. These parameters were then used to rescale the peak release rate and

calcium concentration to get the dimensionless quantities r and c that appear in Eq.(2.6). We

utilized the experimental data from in vivo measurements on (i) the Calyx of Held, a large

synapse (diameter ∼ 20µm) in the auditory central nervous system, at different developmental

stages [208, 145, 29, 225]; (ii) parallel fiber - molecular layer interneuron (PF-MLI), a small

synapse (∼ 1µm) in the cerebellum [161]; (iii) the photoreceptor synapse [55]; (iv) the inner

hair cell [23]; (v) hippocampal mossy fibre [66]; (vi) the cerebellar basket cell [205]; (vii) the

retina bipolar cell [85]; (viii) the chromaffin cell [236]; and (ix) insulin-secreting cell [252], as

well as (x) two in vitro measurements [134, 50]. Figure 2.2 demonstrates that the data from

all these synapses collapse on a single curve given by Eq.(2.6), consistent with the prediction

of the theory. Even though these synapses have been known to have a huge variation in their

release rates (up to ten orders of magnitude) due to the different underlying calcium sensors

[41, 116, 101, 124] and different couplings between the SNAREs and their regulatory proteins

or calcium channels [108, 238, 221], our theory reveals that all these rates can be brought into

a compact, universal form (Eq.(2.6)). The universal collapse is an indication that synaptic
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transmission in different synapses is governed by common physical principles and that these

principles are captured by the present theory. Variability across synapses on the molecular level

is captured through the distinct sets {∆G‡,n‡
Ca,k0} for each synapse. Notably, the generality of

Eq.(2.6) spans beyond the context of synaptic transmission: the same scaling has appeared in

another, seemingly unrelated, instance of biological membrane fusion – infection of a cell by an

enveloped virus [256].

While a single SNARE can maximally bind nCamax = 4−5 Ca2+ ions [192, 35], the fit of

some of the experimental data on the calyx of Held analyzed in Fig. 2.2 produces the transition

state values of n‡
Ca > 5 (Appendix 3 Table 2). This result indicates that each SNARE assembly

in these synapses is in fact a super-assembly containing two or more cooperative SNAREs. We

further note that, since the number of calcium ions bound to a SNARE at the transition state

is generally less than the maximum occupancy for the SNARE, n‡
Ca < nCamax, the synapses

with the values of n‡
Ca less than but close to 5 are likely to contain SNARE super-assemblies

as well. Interestingly, if we assume that these synapses have the optimal number N = 2 of the

super-assemblies, and note that the typical rate k1 ≈ 4ms−1 at [Ca2+] = 10µM would require

∼ 3 SNAREs per super-assembly (see Appendix 1 Figure 2D), then the theory estimates that

each docked vesicle contains 2 superassemblies × 3 SNAREs/superassembly = 6 SNAREs total.

This estimate is consistent with the sixfold symmetric structure recently found using cryoelectron

tomography analysis in cultured hippocampal neurons [191].

The utility of the theory as a tool for extracting microscopic parameters of synaptic fusion

machinery is further illustrated in Fig. 2.3A-E. A fit of in vivo data for cumulative release at

different levels of [Ca2+] [247] with Eq.(2.3) extracts the rate of conformational transition of

the SNARE assembly, k1([Ca2+]) (Fig.2.3A). A fit of the rate with Eq.(2.5) extracts activation

barrier and rate at reference concentration [Ca2+]0 (Fig.2.3B) of the SNARE assembly. Fits of

in vitro data [134, 50] with Eqs. (2.2) and (2.3) are shown in Fig.2.3C and D. In Fig.2.3C, the

content mixing occurrence, defined in [134] as the average release rate normalized by the total

number of vesicles, d⟨n(t)⟩
dt /(ntot1 +ntot2), is fitted with Eq. (2.2). In Fig.2.3D, the rapid burst
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magnitude, defined in [50] as the ratio of the numbers of vesicles fused within the first 1s and

within 50s after calcium trigger, ⟨n(t = 1s)⟩/⟨n(t = 50s)⟩, is fitted with Eq. (2.3). Figure 2.3E

demonstrates that Eq.(2.5) yields a significantly better agreement with the experimental data on

the frog neuromuscular junction [16] than the empirical fourth-power model [16, 99] that was

originally used to describe these data. In contrast to the fourth-power model, Eq.(2.5) accounts

for the saturation effect in the dose-response curve of a SNARE assembly at high calcium

concentrations (see, e.g. the nonlinearity in the rate as a function of calcium concentration on the

double logarithmic plots in Fig. 2.2 and Fig. 2.3B).

The parameter values extracted from the fits in Fig. 2.2 and Fig. 2.3 as well as the

least-square fitting algorithm for extracting these parameter values are provided in Appendix 3.

2.2.3 Linking molecular mechanisms to synaptic function

Short-term plasticity

Synaptic plasticity, or the ability of synapses to strengthen or weaken over time depending

on the history of their activity, underlies learning and memory [196, 12]. A measure of synaptic

strength is the peak of the post-synaptic current, which, in turn, is proportional to cumulative

release (Eq. (2.7)). The change in synaptic strength that lasts for less than a minute, known

as short-term plasticity [196], can be assessed through the paired-pulse ratio, or the ratio of

the cumulative release for two consecutive action potentials of width T (typically T ∼ 1/k1 ≪

1/k2) that are separated by interpulse interval τint . The weakening of a synapse, or short-

term depression, is typically caused by the decrease of RRP size due to depletion of vesicles

or inactivation of RRP sites [196]. In contrast, the strengthening of synapses, or short-term

facilitation, has been attributed to multiple mechanisms [99], including the residual calcium

hypothesis put forward in the early studies [109] and recently proposed buffer saturation [120,

169, 27, 11, 110] and Syt7-mediated facilitation [100, 231, 232].

Based on the measured levels of residual calcium concentration of tens to a few hundred

nanomolar [260, 166, 100], Eq. (2.5) gives an upper bound of ∼ 1.02 for the paired-pulse ratio.
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This estimate indicates that the level of residual calcium is far from what is necessary to trigger

the large amplitudes of facilitation that are observed in multiple experiments [166, 100], in

qualitative agreement with the conclusion in [100].

A more complex version of the residual calcium hypothesis incorporates a facilitation

sensor, distinct from the calcium sensor that triggers fusion (usually syt1), which binds to

residual Ca2+ in between the consecutive action potentials and increases the release probability

by interacting with the fusion machinery. Synaptotagmin isoform syt7 has been shown to act as

a calcium sensor for facilitation for multiple synapses in the brain [100, 38, 232]. According to

the syt7-mediated facilitation scenario proposed in [99], let us assume that syt7 is activated by

the residual calcium supplied by the first action potential, and this activation transiently increases

the rate of conformational transition k1([Ca2+]) of the main calcium sensor (syt1) by a factor of

σ > 1. Let τres denote the characteristic timescale on which the new rate σk1([Ca2+]) decays

due to the removal of intracellular residual calcium, and let τRRP denote the recovery timescale

of RRP. Assuming the first-order kinetics of calcium removal and RRP recovery, the change in

synaptic strength due to the facilitation sensor mechanism can be obtained from Eq. (2.3) as (see

Appendix 1)

〈
n f (T )

〉
⟨ni(T )⟩

≃
[

1− e−
τint

τRRP

(
1− e−k1([Ca2+])T

)N
](

1− e−(1+(σ−1)e−τint/τres)k1([Ca2+])T

1− e−k1([Ca2+])T

)N

, (2.8)

where the rate constant k1([Ca2+]) is given by Eq. (2.5).

Equation (2.8) enables a quantitative comparison with existing experimental data on a

variety of synapses where the activation of syt7 by residual calcium has been proposed as the

primary mechanism of facilitation [146, 100, 232]. Figure 2.4 (A-E) shows that the facilitation

sensor model in Eq.(2.8) successfully explains, with no additional assumptions, the experimental

data on Schaffer collateral, perforant path, corticothalamic, cerebellar granule cell, and retinal

ribbon synapses over most of the interstimulus timescales probed in the experiments. At the same
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time, the comparison between the data and theory shows that the facilitation sensor mechanism

alone fails to explain the data on short (< 10ms) timescales for Schaffer collateral and perforant

path synapses (Fig.2.4 D, E) as well as on the timescales > 500ms for corticothalamic and

granule cell synapses (Fig.2.4 A, B), indicating that other facilitation mechanisms are present

and dominate on these timescales. It is worth emphasizing that Eq. (2.8) provides a quantitative

model for the syt7-syt1 mechanism, and enables a quantitative test of the facilitation sensor

hypothesis, for different synapses through a single, unifying analytic expression. Furthermore,

the analytic tractability of the present theory allows the extraction of the parameters that govern

the syt7-syt1 mechanism. In particular, the extracted parameters indicate that the syt7-syt1

interaction is strongest (σ = 2.05) in cerebellar granule cell synapses and weakest (σ = 1.49) in

perforant path synapses. The full list of parameters is included in Appendix 3 Table 3.

In the buffer saturation hypothesis of facilitation [169, 11], Ca2+ buffer captures some

of the Ca2+ ions supplied by the first action potential thereby decreasing the calcium signal for

the sensor that triggers fusion. Upon arrival of the second action potential, the fully or partially

saturated buffer no longer constrains calcium concentration so that the signal becomes larger,

[Ca2+] f > [Ca2+]i, and can produce facilitation. Let τCa denote the characteristic timescale on

which the increment in calcium concentration decays due to the dissociation of calcium from

the buffer. Assuming the first-order kinetics of the calcium concentration increment and RRP

vesicle replenishment, the change in synaptic strength due to the buffer saturation mechanism

can be obtained from Eq. (2.3) as (see Appendix 1)

〈
n f (T )

〉
⟨ni(T )⟩

≃
[

1− e−
τint

τRRP

(
1− e−k1([Ca2+] f )T

)N
](

1− e−k1([Ca2+] f )T

1− e−k1([Ca2+]i)T

)N

, (2.9)

where the rate constant k1([Ca2+]) is given by Eq. (2.5), calcium concentrations during the

first and second action potentials are [Ca2+]i and [Ca2+] f = [Ca2+]i + ICae−
τint
τCa , and ICa is the

amplitude of the calcium concentration increment due to buffer saturation.

Figure 2.4F shows a quantitative comparison between Eq.(2.9) and the experimental data
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on Calyx of Held [166] where buffer saturation has been proposed as the primary mechanism of

facilitation [11, 147]. The buffer saturation model in Eq. (2.9) successfully explained, with no

assumptions of additional mechanisms, the data over all interstimulus timescales probed in the

experiment, thus supporting buffer saturation as the dominant mechanism in mature calyx of

Held synapses. Furthermore, the theory enabled the extraction of the dissociation constant for the

local calcium buffer and the rate of RRP replenishment from the experimental data (Appendix

3).

The analytic expressions in Eqs.(2.8)-(2.9) can be used to explore, quantitatively, how

short-term plasticity is affected by other factors, such as the interplay between the key timescales

and the sensitivity of the underlying calcium sensors. For example, Eq.(2.9) predicts that,

for fixed interpulse interval τint , the synapse will exhibit short-term facilitation or short-term

depression depending on the ratio of the timescales, τCa/τRRP, as illustrated in Fig. 2.4G [228].

Equation (2.9) further shows that a given synapse may exhibit multiple forms of short-term

plasticity when the interpulse interval τint is varied (Fig. 2.4G). Such coexistence of multiple

forms of plasticity has been observed experimentally [196].

A notable feature of Eq. (2.9) is the existence of an optimal value of interpulse in-

terval at which facilitation (at large τCa/τRRP) or depression (at small τCa/τRRP) of synaptic

transmission is maximal (Fig.2.4G). Such optimality becomes less pronounced at intermediate

values of τCa/τRRP where the synapse exhibits both facilitation and depression (note the curve at

τCa/τRRP = 0.4 in Fig.2.4G), suggesting a more subtle role of short-term plasticity in transmitting

transient signals [230, 65].

Equation (2.9) further reveals that a higher Ca2+-sensitivity of the calcium sensor leads

to larger facilitation (Appendix 1 Figure 3B), indicating that a high Ca2+-sensitivity of synaptic

fusion machinery is essential for the large dynamic range of short-term plasticity. An example

of this relationship can be found in [202], and it generally applies to the facilitation synapses

where the second spike is associated with higher Ca2+ influx, as is the case for the residual Ca2+

and buffer saturation mechanisms. Higher [Ca2+] at the second spike causes a larger increase in
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rate constant k1([Ca2+]) for a more sensitive synapse compared to the corresponding increase in

k1([Ca2+]) for a less sensitive synapse, thus triggering more neurotransmitter release.

Finally, Eq.(2.9) reveals how the molecular-level properties of synapses regulate the

facilitation/ depression modes of short-term plasticity (Appendix 1 Figure 3C). The unique

properties of neurotransmitter release machinery in different synapses are captured through

unique sets of parameters {∆G‡, n‡
Ca, k0} and τCa for each synapse and can reflect different

isoforms of synaptotagmin in SNAREs [95, 248], different coupling mechanisms of SNAREs

and the scaffolding proteins at release sites [238, 77], or different types of Ca2+ buffering

proteins present at the presynaptic terminal [213]. These results highlight how the diversity of

the molecular machinery for vesicle fusion enables the diverse functions of short-term plasticity

[224].

Transmission rate vs. fidelity

An important characteristic of neuronal communication is fidelity of synaptic transmis-

sion. Two measures of fidelity can be considered at the single-synapse level for different types

of synapses. The probability of spike transmission is a natural measure of fidelity for giant

synapses in sensory systems [31] and neuromuscular junctions. The probability of a postsynaptic

voltage/current response, beyond the noise level, to a presynaptic spike is a measure of fidelity

for small synapses in the central nervous system (CNS) [51]. The probabilistic nature of release

mechanisms at synapses is a common origin of synaptic failure [8].

Although the two definitions of fidelity apply to different types of synapses, the present

theory allows for a unifying treatment of both phenomena. We assume that the desired postsynap-

tic response – a postsynaptic spike or a postsynaptic current beyond the noise level – is generated

only if the number of released vesicles in response to an action potential exceeds some threshold

M. The value of M depends on the density of postsyanptic receptors and the excitability of the

postsynaptic neuron [26]. For both types of the postsynaptic response, the probability that the

synaptic transmission fails is then obtained from the probability P{n(t) = m} that m vesicles
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fuse by time t as

p fail(T,k1([Ca2+]),ntot1) =
M

∑
m=0

P{n(T ) = m} ≃
M

∑
m=0

(
ntot1

m

)
F1(T )m(1−F1(T ))ntot1−m,

(2.10)

where F1(T ) = (1−e−k1([Ca2+])T )N . Since the presynaptic neuron cannot generate a second spike

during time [0,T ], f ≡ 1/T represents the maximum transmission rate. Equation (2.10) predicts

that a higher maximum transmission rate f results in a higher probability of transmission failure

p fail and thus lower fidelity (1− p fail). This trade-off between the maximum rate and fidelity

in synaptic transmission is shown in Fig.2.4H. Consistent with intuitive expectation, Eq. (2.10)

further predicts that, for a given maximum transmission rate, the probability of transmission

failure can be constrained by the RRP size ntot1 and/or SNARE conformational rate k1([Ca2+])

(Fig. 2.4H).

Equation (2.10) allows us to make a quantitative statement regarding the molecular-level

constraints on the fidelity of synapses of different sizes. Faithful spike transmission implies

that the threshold M for postsynaptic response is smaller than the average cumulative release,

M < ⟨n(T )⟩= ntot1F1(T ). Then, by the Chernoff bound for Eq. (2.10) [235],

p fail(T,k1([Ca2+]),ntot1)≤ e−αntot1(
F1(T )

α
+ln α

F1(T )
−1)

, (2.11)

where α ≡ M/ntot1. Because both M and ntot1 scale linearly with the area of synaptic junctions

[167, 160, 91], it is reasonable to assume that α = M/ntot1 < F1(T ) is kept at an approximately

constant level for different synapses. Since F1(T )/α + ln(α/F1(T ))−1 > 0, the probability of

synaptic failure decreases exponentially as the RRP size ntot1 increases. Thus, it follows from

Eq. (2.11) that larger synapses tend to be significantly more reliable, i.e., have an exponentially

smaller probability to fail, than smaller synapses in transmitting signals [51].

27



Synaptic efficacy

Equations (2.10)-(2.11) show that synaptic strength can be increased, i.e. failure sup-

pressed, by increasing the RRP size or decreasing the threshold for eliciting postsynaptic response.

However, a high synaptic strength increases the probability of an error read, i.e. a postsynaptic

response generated without a presynaptic spike. We will now establish the condition for the

optimal synaptic strength through the balance of probabilities of failure (no postsynaptic response

to an action potential) and error read (postsynaptic response in the absence of an action potential).

Let [Ca2+]rest and [Ca2+]AP be the calcium concentrations at rest and during the action potential

and q the probability of firing an action potential by the presynaptic neuron. The total probability

of transmission error is

P(error) = qp fail(T,k1([Ca2+]AP),ntot1)︸ ︷︷ ︸
no postsynaptic response after presynaptic spike

+(1−q)(1− p fail(T,k1([Ca2+]rest),ntot1))︸ ︷︷ ︸
postsynaptic response without presynaptic spike

.

(2.12)

Here, we consider the long-term (minutes to days) change in synaptic strength, known as long-

term plasticity, through the presynaptic mechanisms and is predominantly due changes in the

RRP size, ntot1, which has been shown to be regulated through retrograde signaling according

to the threshold M on the postsynaptic side [82, 253, 159, 12]. Synaptic efficacy, 1−P(error),

measures the ability of the synapse to faithfully transmit signal. The optimal RRP size is obtained

by minimizing the transmission error in Eq.(2.12):

n∗tot1 =

⌈
M

(
1+

ln FAP
Frest

ln 1−Frest
1−FAP

)
+

ln q
1−q

ln 1−Frest
1−FAP

⌉
, (2.13)

where ⌈x⌉ denotes ceiling, i.e. the smallest integer greater than or equal to x, and FAP =

(1− e−k1([Ca2+]AP)T )N and Frest = (1− e−k1([Ca2+]rest)T )N are the fusion probabilities during the

action potential and at rest. Equation (2.13) predicts that, as the synapse is stimulated more
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frequently (q increases), a larger RRP size is needed for the optimal performance, i.e. the optimal

RRP size and hence the optimal synaptic strength increase, resulting in long-term potentiation

on the presynaptic side.

How far can the RRP size deviate from its optimal value without a significant loss of

synaptic efficacy? The range of RRP sizes for near-optimal performance can be estimated

through the Chernoff bound for Eq. (2.12):

P(error)≤ qe−αntot1(
FAP

α
+ln α

FAP
−1)

+(1−q)e−(1−α)ntot1(
1−α

Frest
+ln Frest

1−α
−1). (2.14)

According to Eq. (2.14), for synapses that are large (ntot1 ≫ 1) and sufficiently sensitive to

Ca2+ (FAP/Frest ≫ 1), the error probability is exponentially small and thus insensitive to changes

in the RRP size ntot1. Specifically, the near-optimal range for ntot1 can be estimated from

Frest ≲ α ≲ FAP to be M/FAP ≲ ntot1 ≲ M/Frest . Since 1/FAP ≪ 1/Frest , this range is broad,

indicating that large synapses do not need to fine-tune their RRP size in order to maintain

near-optimal transmission. This robustness in synaptic transmission is illustrated in Fig. 2.4I.

2.3 Discussion

The capacity of neurons to transmit information through synapses rapidly and precisely

is the key to our ability to feel, think, or perform actions. Despite the challenge posed for

experimental studies by the ultrashort timescale of synaptic transmission, a number of recent

experiments in vivo [85, 208, 145, 29, 161, 55, 125, 247, 225, 236, 205, 252, 23, 66] and

in reconstituted systems [134, 50] demonstrated the ability to probe the kinetics of synaptic

transmission at the single-synapse level. By design, these experiments generate pre-averaged

data that encode unprecedented information on the molecular mechanisms of synaptic function,

which is lost in the data that are averaged over multiple heterogeneous synaptic inputs. However,

decoding this information requires a quantitative framework that would link the quantities that

are measured in the experiments to the microscopic parameters of the synaptic release machinery.
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Here, we presented a statistical-mechanical theory that establishes these links.

2.3.1 Analytic theory for synaptic transmission

Our theory casts the synaptic fusion scenarios observed in different experimental setups

into a unifying kinetic scheme. Each step in this scheme has its mechanistic origin in the

context of a given experimental setup. In the context of in vivo experiments, distinct vesicle pool

dynamics are taken into account [5, 253, 105] to quantitatively explain the different timescales

observed in the vesicle release dynamics [104, 172, 201]: vesicles from the readily releasable

pool (RRP) fuse readily once the critical number of SNARE complexes undergo conformational

transitions upon Ca2+ influx (fast step), while the reserve pool supplies vesicles to the RRP (slow

step). In the context of in vitro experiments, different timescales in vesicle release dynamics are

due to the observed distinct states of docked vesicles [50, 133, 74]: the vesicles that are in a point

contact with the membrane fuse readily upon Ca2+-triggered SNARE conformational transition

(fast step), while the vesicles that are in an extended contact become trapped in a hemifusion

diaphragm state prior to fusing with the membrane (slow step). Although the presence of these

distinct docked states in vivo is still under debate [173, 35], the realization that both of the

fusion scenarios can in fact be mapped onto the same kinetic scheme allowed us to capture

these scenarios through a unifying analytical theory. The fact that each fusion step in the kinetic

scheme has a concrete mechanistic interpretation makes the theory directly predictive in both in

vitro and in vivo experiments.

The calculated measurable quantities include: (i) cumulative release, which quantifies

the number of vesicles fused during a given time interval following the action potential, (ii)

temporal profile of the release rate, which measures the rate of change in the number of fused

vesicles, (iii) peak release rate, which is a measure of sensitivity of a synapse to the trigger,

and (iv) the calcium-dependent rate of SNARE conformational change. A least-squares fit of

data with these expressions yields the activation energy barrier and rate constant for SNARE

conformational change at any calcium concentration of interest, the critical number of SNARE
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assemblies necessary for fusion, and the sizes of the readily releasable and reserve vesicle pools.

Since the pioneering efforts to quantitatively describe synaptic transmission [109, 52],

multiple models have been developed, such as the “five-site” model and its variants [120, 208, 29,

205, 125, 236, 23] and the dual Ca2+ sensor models [225, 185]. These models provided valuable

insights into the action-potential-triggered neurotransmitter release in the particular synapses for

which they have been developed. However, the existing models have at least two fundamental

limitations. First, the system-specific nature of these models limits their applicability beyond

specific systems, so that the description of synapses with different calcium-response properties

requires the use of different models. In contrast, the present theory is applicable to a wide variety

of synaptic types, despite the differences in their fusion pathways, different calcium sensors

that they implement [248] and different couplings between their regulatory proteins [108, 77].

Indeed, recent experiments have suggested that the calcium-response properties of synapses are

much more diverse than had been thought previously [183, 76, 211]. Second, the existing models

did not produce analytic expressions for the key observables that emerge from the experiments,

which limits the predictive value of these models, their utility in extracting information from the

experiments, and their ability to reveal the organizing principles of synaptic transmission. In

contrast, the present theory yields analytic expressions for the key measurable characteristics

of synaptic transmission, which can be used as the tools for extracting the essential molecular

parameters of synaptic release machinery through a direct fit to experimental data. Thus, the

predictive power of the present theory in describing synaptic transmission in vastly different

synapses through a unifying framework is complemented by the utility of the theory as a tool for

extracting the molecular parameters that uniquely identify each synapse. The theory links the

underlying molecular diversity of synapses to the distinct phenomenological responses observed

in experiments, and thus constitutes a constructive step toward a yet more complete description

of synaptic transmission [222].

The theory presented here has several limitations. (i) Our treatment of the vesicle

replenishment rate k2 as a constant is justified by its weak sensitivity to the intracellular calcium
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concentration compared to that of k1, as found in recent experiments [247, 123, 132]. However,

in the response to a tetanic stimulus, where the asynchronous component of the release becomes

dominant, the calcium-dependence of k2 may no longer be negligible. Explicitly taking this

dependence into account in the theory will allow the extraction of the parameters for post-tetanic

potentiation. (ii) The theory describes synaptic transmission at the level of a single synapse. The

theory was motivated by the experimental setups that are capable of probing synaptic transmission

at the single-synapse level and is applicable both to giant synapses with many active zones in

sensory systems [31] and to small synapses with few active zones in the brain [83] (Fig.2.2).

However, a postsynaptic neuron usually receives inputs from many synaptic connections, and

the cellular response is an integration of these inputs. The analytic expressions presented above

can be directly applied to integrated multiple synaptic inputs in the cases where the molecular

features of the presynaptic and postsynaptic sides are similar across the synapses, e.g. when the

synapses originate from the same axon and connect to nearby dendritic regions of a postsynaptic

neuron [33]. The theory can be extended to account for the effects of heterogeneous presynaptic

inputs by applying the derived expressions to each synapse separately with an individual set

of microscopic parameters for each synapse. (iii) We treated the postsynaptic response as a

linear function of neurotransmitter release (Eq. (2.7)). Such a treatment is sufficient to explain

the experimental data on neurotransmitter release (Fig. 2.2 and Fig. 2.3) and the paired-pulse

ratio in short-term plasticity (Fig. 2.4) through a single, unifying framework. The theory can be

extended to account for the nonlinearity of postsyanptic response by replacing Eq.(2.7) with a

relevant nonlinear function. Such an extension will enable the elucidation of the details of active

dendritic integration of heterogeneous synaptic inputs.

2.3.2 Ca2+-dependent rate of SNARE conformational transition from
Kramers theory

The rate-limiting step in the initiation of fusion of the synaptic vesicles that are docked

on the presynaptic membrane is the conformational transition of the critical number of SNARE
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assemblies tethering the vesicles to the membrane [104]. We derived the calcium-dependence

of the SNARE conformational rate from the classical reaction-rate theory [129] which we

generalized to include an external trigger – calcium influx. The resulting analytic expression

reveals that the SNARE conformational rate, and hence both the vesicle release rate and the

peak of the release rate, are all exponentially sensitive to the force that drives the release – the

logarithm of calcium concentration (the logarithmic scale arises naturally due to the several-

orders-of-magnitude changes in [Ca2+] following an action potential). This result provides a

quantitative explanation for the remarkable synchrony of synaptic vesicle fusion: since the rising

of calcium concentration after an action potential occurs on a microsecond timescale and is

thus essentially instantaneous on the timescale of synaptic release, the exponential sensitivity of

the release rate to this nearly-instantaneous trigger ensures an ultra-rapid initiation of vesicle

fusion upon calcium influx. Likewise, the exponential sensitivity of the release rate to the trigger

ensures that the fusion process terminates rapidly upon calcium depletion [35].

Unlike the conventional model due to Dodge and Rahamimmoff [52] that postulates

kSNARE ∼ [Ca2+]4, our expression in Eq.(2.5) naturally accounts for the saturation effect at

intermediate-to-high calcium concentrations (Fig. 2.2 and Fig. 2.3B), which is the typical regime

for the AP-evoked neurotransmitter release. In the limit of ln
(

[Ca2+]
[Ca2+]0

)
≪ 1, the asymptotic

expansion of Eq.(2.5) recovers the power-law k1([Ca2+])∼
(

[Ca2+]
[Ca2+]0

)n‡
Ca

, indicating that a power-

law description is only valid for the initial rise of the release rate in response to calcium.

Moreover, the power exponent n‡
Ca is not a universal number (e.g., 4) but rather depends on

the details of the molecular constitutes of the SNARE complexes in a given synapse, such as

different calcium sensors from synaptotagmin family [248] and different couplings between the

regulatory proteins [108, 221] (Appendix 3 Table 2).

2.3.3 Critical number of SNARE assemblies for vesicle fusion

The theory further reveals how the kinetics of vesicle fusion are affected by the critical

number of SNARE assemblies per vesicle. Given the lack of general consensus [224, 215, 234,
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35], the theory makes no assumptions about the specific number of SNAREs necessary for fusion,

and the number itself can serve as a free parameter when sufficient data is available for a robust

fit. Interestingly, however, the theory suggests that N = 2 independent SNARE assemblies per

vesicle provide the optimal balance between stability and precision of release dynamics. Indeed,

on the one hand, in the presence of a single SNARE, the high values and an exponentially-steep

temporal dependence of the release rate makes the rate very sensitive to sub-millisecond calcium

fluctuations, and thus a very fine tuning of the calcium concentration would be necessary to

prevent instability of the fusion process. On the other hand, the values of N greater than 2 lead

to longer delays in the peak of the release rate following an action potential, thus reducing the

temporal precision of vesicle release. Furthermore, a least-squares fit of the release rate from

the experiment [125] with the theory at different values of N reveals that N = 2 indeed results

in the smallest fitting errors for all calcium concentrations. The generality of this result can be

determined as more data on the release dynamics for different synapses becomes available. The

theory further suggests that incorporating additional SNARE assemblies beyond N = 2 may be

advantageous for the synapses that require robustness against slow [Ca2+] fluctuations [164].

The theory can account for cooperativity between SNAREs and can help identify the

presence of SNARE super-assemblies [191]. Mathematically, this is due to the formal definition

of the parameter N as the number of independent reaction steps needed for fusion. Each such step

may represent a conformational transition of a single SNARE (in the absence of cooperativity)

or of a multi-SNARE super-assembly (i.e., an assembly of cooperative SNAREs). The calcium-

dependent release rate k1([Ca2+]) in Eq. (2.5) should be regarded as the transition rate for

each independent SNARE unit: if individual SNAREs act independently, k1 is the transition

rate of a single SNARE and N is the number of SNAREs per vesicle; alternatively, if multiple

SNAREs undergo conformational change cooperatively, k1 is the effective transition rate of a

super-assembly and N is the number of the super-assemblies per vesicle. The theory allows one

to detect the presence of super-assemblies through the values of n‡
Ca extracted from the fit: if

n‡
Ca is larger than the number of Ca2+ binding sites for a single SNARE (nCamax = 5), it is an
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indication that a super-assembly of more than one SNARE is present. Applying this criterion

produced evidence for the presence of such super-assemblies in several experimental data sets

analyzed in this study. More detailed measurements will be needed to get a more direct estimate

of the number of SNAREs in each super-assembly. One approach is to perform single-molecule

measurements of the kinetics of a single SNARE under different calcium concentrations, fit the

resulting rate k1([Ca2+]) with Eq. (2.5) to extract the value of n‡
Ca for the single SNARE, and to

compare this value with the value of n‡
Ca extracted from a fit with Eq. (2.5) of in vivo data to

get an estimate for the number of SNAREs in each super-assembly. The theory suggests that

synapses may have more than 2 SNAREs while still having the optimal value of N = 2: the

SNAREs in these synapses may form N = 2 super-assemblies, each comprising more than one

SNARE.

2.3.4 Universality vs. specificity in synaptic transmission

The fact that, in all chemical synapses, the delay time from the action potential trigger-

ing to vesicle fusion is determined by the conformational transition of preassembled SNARE

complexes, and that the conformational transition itself occurs through a single rate-limited step,

suggests possible universality in synaptic transmission across different synapses despite their

structural and kinetic diversity. Our theory made this intuition precise through a nondimension-

alized scaling relationship between the peak release rate and calcium concentration (Eq.(2.6)),

which is predicted to hold for all synapses irrespective of their variability on the molecular

level. In statistical physics, the significance of universality is that it indicates that the observed

phenomenon (here, synaptic transmission) realized in different systems is governed by common

physical principles that transcend the details of particular systems.

The universal relation was tested using published experimental data on a variety of

synapses, including in vivo measurements on the Calyx of Held (an approximately 20µm-

diameter synapse in the auditory central nervous system) studied at different developmental

stages, parallel fiber-molecular layer interneuron (a 1µm-diameter synapse in the cerebellum),
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the photoreceptor synapse, the inner hair cell, the hippocampal mossy fiber, the cerebellar basket

cell, the retina bipolar cell, the chromaffin cell, and the insulin-secreting cell, as well as a

reconstituted system. Despite more than an order of magnitude difference in the size of these

synapses, ten orders of magnitude variation in the dynamic range of synaptic preparations, and

a range of calcium concentrations spanning more than three orders of magnitude, the data for

the sensitivity of the synapses to the trigger collapsed onto a universal curve, as predicted by

the theory. The collapse serves as an evidence that the established scaling of the normalized

peak release r with calcium concentration c, r = exp
[
1− (1− c)3/2

]
, is indeed universal across

different synapses. At the same time, the unique properties of specific synapses are captured

by the theory through the distinct sets of parameters of their molecular machinery: the critical

number of SNAREs, their kinetic and energetic characteristics, and the sizes of the vesicle pools.

The practical value of the theory as a tool for extracting microscopic parameters of synapses

was further illustrated by fitting in vivo and in vitro data for cumulative release and for the

average release rate at different calcium concentrations. Compared to previous work based

on phenomenological formulas [126], the mechanistic nature of the present theory allows it to

be further tested by independently measuring the microscopic parameters of synaptic fusion

machinery {∆G‡,n‡
Ca,k0} through single-molecule experiments [69, 180] and the postsynaptic

response through electrophysiological recording experiments.

2.3.5 From molecular mechanisms to synaptic function

We applied the theory to establish quantitative connections between the molecular con-

stituents of synapses and synaptic function. Previous quantitative analyses of the experimental

data on short-term plasticity were based either on the empirical fourth-power model [148] or on

custom models that are only applicable to specific calcium sensors [120, 185]. The present theory

provides analytic expressions for the paired-pulse ratio (Eqs.(2.8) and (2.9)) that can be directly

compared with the existing experimental data on a variety of synapses [166, 100, 232]. As an

illustration of the functional implications of the theory, we tested two prevalent hypotheses for the
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mechanism of synaptic facilitation: syt7-mediated facilitation and buffer saturation. Our results

support the facilitation sensor (Syt7) as the dominant mechanism for short-term facilitation over

most of the interstimulus timescales in the Schaffer collateral, perforant path, corticothalamic,

cerebellar granule cells, and retinal ribbon synapses, in agreement with [100, 232] but contrary to

an earlier study that, in particular, have suggested other mechanisms for facilitation in the retinal

ribbon synapse [146]. The theory also identified the regimes where the proposed mechanisms

fail to account for the observed facilitation. In particular, the syt7-mediated facilitation cannot

explain data at > 500ms for cerebellar granule cell and corticothalamic cell synapses, plausibly

due to a dominant effect of buffer saturation in this regime [110, 195]. Likewise, the failure of

the syt7 mechanism to explain facilitation in Schaffer collateral and perforant path synapses

at < 10ms suggests a significant contribution of the calcium current facilitation in this regime

[168]. We limited the discussion of the short-term plasticity to the two mechanisms of synaptic

facilitation and to the data on the paired-pulse ratio as illustrative examples, but other mecha-

nisms can be explored in an analogous manner. For example, spike-broadening effects [39] and

calcium-dependent vesicle recycling [158] can be incorporated into the theory by introducing

variations in T and k2, respectively.

The theory enabled a quantitative description of how short-term facilitation, depression, or

coexistence of multiple forms of plasticity in a given synapse emerge from the interplay between

the molecular-scale factors such as the timescales of RRP recovery and buffer dissociation as

well as the sensitivity of Ca2+-sensors. In contrast to phenomenological models of short-term

plasticity [230, 65, 199], the mechanistic nature of the present theory reveals the connection

between temporal filtering of synaptic transmission and calcium-sensitivity of synaptic fusion

machinery, and shows how diverse short-term facilitation/depression modes emerge from the

diversity of the molecular constituents.

While one intuitively expects that there must be a tradeoff between the maximum trans-

mission rate and fidelity of a synapse, our theory turns this intuition into a quantitative relation

(Eq. (2.11)). The trade-off relation shows how transmission failure can be controlled by changing
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the microscopic properties of the vesicle pool and SNARE complexes. The relation further

shows that the probability of synaptic failure decreases exponentially with increasing the synapse

size, which makes large synapses significantly more reliable than small synapses in transmitting

signals. Furthermore, the established condition for the maximal synaptic efficacy (Eq.(2.13))

reveals that, for large synapses, the parameter range of near-optimal performance is broad,

indicating that no fine tuning is needed for these synapses to maintain near-optimal transmission

(Fig. 2.4I). This finding may also be relevant to small synapses: although a small size of their

individual RRPs makes them less reliable in transmitting signals individually, trans-synaptic

interactions that couple many nearby small synapses may result in a large “effective” RRP

[12] and thus enable small synapses to collectively maintain near-optimal transmission without

fine-tuning. Altogether, the results of the theory provide a quantitative basis for the notion that

the molecular-level properties of synapses are not merely details but are crucial determinants

of the computational and information-processing synaptic functions [224]. Limitations of the

theory and possible routes to generalize it to other settings are also discussed.

Other biological processes, including infection by enveloped viruses, fertilization, skeletal

muscle formation, carcinogenesis, intracellular trafficking, and secretion, have features that are

very similar to those in synaptic transmission, despite the bewildering number and structural

diversity of the molecular constituents involved [84]. These processes occur through membrane

fusion that (i) requires overcoming high energy barriers, (ii) is controlled by proteins that undergo

a conformational transition once exposed to a trigger, (iii) is facilitated by the energy released

during this transition, which reduces the fusion timescale by orders of magnitude. The theory

presented here can be generalized to encompass these processes while engaging with the diversity

of specific systems. The mapping from molecular mechanisms to cellular function, provided by

the present theory, is a step toward a more complete framework that would bridge mechanisms

with function at the multicellular scale (e.g. neuronal circuits and tissues) and further at the scale

of an organism.
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Figure 2.1. Synaptic transmission in vivo and in vitro. (A) Release of neurotransmitters into the
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∼ 30nm) fuse with the presynaptic cell membrane in response to Ca2+ influx during an action
potential. Fusion is facilitated by SNARE protein complexes and proceeds via two parallel
pathways that originate in the “fast” and “slow” vesicle pools. (B and C) Fusion stages in vivo
and in vitro. SNARE conformational transition constitutes the fast step, k1. Vesicle transfer from
the reserve pool to the readily releasable pool (RRP) in vivo and escape from the hemifusion
diaphragm in vitro constitute the slow step, k2. (D and E) Reaction schemes for (B) and (C).
In vivo, state R represents the reserve pool, D the RRP, Ii the state with i independent SNARE
assemblies that underwent conformational transitions, F the fused state. In vitro, D1 and D2
represent docked vesicles with point- and extended-contact morphologies, H the hemifusion
diaphragm. Mathematical equivalence of the reaction schemes in vivo and in vitro enables the
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40



Figure 2.2. Application of the theory to experiments: verifying universality and quantifying
specificity. (Left) Measured peak release rate versus calcium concentration for a variety of
synapses [208, 29, 161, 55, 50, 125, 247, 145, 85, 23, 66, 205, 236, 252, 225]. (Right) The
same data as shown on the left, after the peak release rate and calcium concentration have been
rescaled. Despite ten orders of magnitude variation in the dynamic range and more than 3 orders
of magnitude variation in calcium concentration (left), the data collapse onto a single master
curve, Eq.(2.6) (right). The collapse indicates that the established scaling in Eq.(2.6) is universal
across different synapses. The distinct sets of parameters for each of the synapses (Appendix
3 Table 2) demonstrate the predictive power of the theory as a tool for extracting the unique
properties of individual synapses from experimental data.
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Figure 2.4. Functional implications of the theory. (A-F) The paired-pulse ratio as a measure of
short-term plasticity from experiments [100, 232, 166] (symbols) and theory (lines) on a variety
of synapses. Equation (2.8) for the Syt7-mediated facilitation captures the data in A-E, and Eq.
(2.9) for the buffer saturation mechanisms captures the data in F over most of the interstimulus
timescales probed in the experiments. The theory also identifies the regimes where particular
mechanisms fail to account for the observed facilitation (A, B, D, E). (G) Paired-pulse ratio
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Chapter 3

Learning on Network Level via Synaptic
Plasticity

Abstract

Fluctuations of synaptic-weights, among many other physical, biological and ecological quantities, are

driven by coincident events of two ‘parent’ processes. We propose a multiplicative shot-noise model

that can capture the behaviors of a broad range of such natural phenomena, and analytically derive

an approximation that accurately predicts its statistics. We apply our results to study the effects of a

multiplicative synaptic plasticity rule that was recently extracted from measurements in physiological

conditions. Using mean-field theory analysis and network simulations we investigate how this rule shapes

the connectivity and dynamics of recurrent spiking neural networks. The multiplicative plasticity rule

is shown to support efficient learning of input stimuli, and gives a stable, unimodal synaptic-weight

distribution with a large fraction of strong synapses. The strong synapses remain stable over long times but

do not ‘run away’. Our results suggest that the multiplicative shot-noise offers a new route to understand

the tradeoff between flexibility and stability in neural circuits and other dynamic networks. The text

included here is adapted from the published paper [241]. All supplementary materials can be found in its

online version.

3.1 Introduction

Many natural processes are triggered by coincidences of two ‘parent’ events. Examples

include firefly flash synchronization [206]; effects of simultaneous environmental stressors [43];
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applications of two-photon microscopy [246]; and stimulus-reward associations in reinforcement

learning [212, 32]. In neuroscience, co-activation of pre- and postsynaptic neurons plays a

crucial role in inducing synaptic plasticity [24, 97], a primary mechanism underlying learning

and memory.

The parent processes are often described by event-based models [216], among which the

Poisson process is an appealing starting point owing to its memory-less property. Experimental

studies show that the aforementioned coincidence-based phenomena often cannot be accurately

described as sums over the parent shot-noise (Poisson) processes [43, 97]. Specifically, induction

of long-term plasticity was shown to depend strongly on the calcium flux into the postsynaptic

neuron [214, 79]. This flux, in turn, depends on coincident spiking activity of pre- and postsy-

naptic neurons, and is well described by the product of two shot-noise processes [244, 176, 97].

In contrast, most network-level studies of spike-timing dependent plasticity (STDP) typically

assume that the synaptic strength change is the sum over contributions of spike-pairs, ignor-

ing cooperative effects between spikes [115, 203, 179, 194, 135]. These models often cannot

reproduce realistic spiking activities observed in vivo [255].

Motivated by the converging theoretical and experimental evidence, we propose a stochas-

tic process whose fluctuations are triggered by multiplicative interactions between two parent

shot-noise processes [cα(t), α = 1,2]. The rates of parent events are λα , and their amplitudes

aα,i are exponentially-distributed with mean Aα . Events are referred to as “spikes”, adopting the

neuroscience terminology, but they may correspond to events in other domains. Spike-times are

denoted {tα,i} and may be temporally correlated. We then have,

dcα(t)
dt

=−cα(t)
τα

+∑
i

aα,iδ (t − tα,i). (3.1)

The decay timescales τα define a window during which coincidences can occur.

Our primary interest is a multiplicative shot-noise process (denoted C (t) and henceforth

referred to as the coincidence detector), whose transient deviations from baseline are driven by
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the product c1 × c2, with decay timescale τC (Fig. 3.1A),

dC (t)
dt

=−C (t)
τC

+ηc1(t)c2(t). (3.2)

The stochastic calculus of Poisson processes makes it difficult to analyze their products [186]. In

contrast, existing nonlinear shot-noise models [227, 155, 204, 59] are equivalent to transforma-

tions of a single Poisson process, and are not suitable for studying statistics of coincidences.

We analyze the statistics of the coincidence detector and apply these results to gain

insights to a longstanding problem in neuroscience: the stability of recurrent neuronal networks

subject to STDP [6]. Here, c1, c2 are calcium transients induced by pre- and postsynaptic

spikes; and C is the total calcium flux, which triggers plasticity [97]. Based on spiking network

simulations and theoretical analysis of a reduced model, we show that when individual synapses

in a recurrent network are subject to a nonlinear calcium-based plasticity rule, the empirical

macroscopic network properties are reproduced (e.g., stable activity patterns, unimodal heavy-

tailed synaptic-weight distributions [217]. Further, our results suggest that STDP in itself can

support representations that remain stable over timescale of hours, making an important step

towards understanding prolonged retention of spatial memories in the face of plasticity and noise

[258].

3.2 Statistics of multiplicative shot-noise

For simplicity, we assume that the decay timescales of the parent processes are identical,

τ1 = τ2 ≡ τ . This is consistent with calcium-induced plasticity [177, 97] and cases where the

parent processes are generated by similar agents (e.g., firefly flashes [206]).

Solving Eq. (3.1) gives filtered spike-trains (Fig. 3.1A). Using these solutions, we evaluate

C (t) [Eq. (3.2)] at steady-state. When the parent processes are uncorrelated,

C d= ητC ∑
i, j

a1,ia2, j × e−
|t1,i−t2, j|

τ ×
R(min(t1,i, t2, j))

2δ −1
. (3.3)
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Figure 3.1. Analytical approximation of multiplicative shot-noise statistics. (A) An illustration
of the process C , driven by the product c1 × c2. (B) The cumulative distribution function (CDF)
of C calculated through method of moments (MM) [Eq. (3.4)] matches simulations well at high
firing-rates. (C) Relationship between the log-expectation, mean and variance of C [Eq. (3.5)].
Data collapses on a line for a range of firing-rates and spike-time correlations (ρ). (D) At low
firing-rates, the CDF given by MM matches simulations well for C ≳ ητC A1A2 but poorly for
C → 0. The heuristic MM matches the simulation over the entire range of C . (E) Performance
of heuristic MM for uncorrelated spike trains. The errors, measured by KS distance, are ≤ 0.2
for all firing-rates. See [1] for definition of ρ and KS distances for other parameters.

Here, δ = τC
τ

is the ratio between timescales [Eqs. (3.1, 3.2)], and d= means “equal in distribution”.

The natural interpretations of the three factors in Eq. (3.3) are the stochastic amplitudes of

synaptic transmission; the temporal window for coincident spikes; and R(x) = e−
x

τC − e−
2x
τ

describes firing-rate dependent accumulation of multiple coincidences. Notably, R represents

a departure from summation over spike-pairs [115, 203, 179, 194]. Similar expressions for

temporally correlated spike-trains appear in [1].

We begin by formulating an analytical approximation of PC , the distribution of C . At

steady-state, the shot-noise process [e.g., cα in Eq. (3.1)] follows a Gamma distribution [119, 197]

with shape and scale parameters λατ, Aα . We think of the coincidences of the parent processes

as events which drive fluctuations of C . Therefore, we assume PC can be approximated by a

Gamma distribution whose shape (k) and scale (σ ) parameters measure the effective rate and

amplitude of the coincident spikes.

We used the method of moments (MM), i.e., matching the first and second moments of
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PC to a Gamma distribution, to analytically estimate k, σ . We find for uncorrelated spike-trains,

k =
⟨C ⟩2

Var(C )
=

λ1λ2τ2

λ1+λ2
δ+1 τ + 1

2δ+1

,

σ =
Var(C )

⟨C ⟩ = ητC A1A2

(
λ1 +λ2

δ +1
τ +

1
2δ +1

)
. (3.4)

See [1] for expressions including correlations.

We show that MM [Eq. (3.4)] is highly accurate in the high firing-rate regime (⟨C ⟩>

ητC A1A2) by comparing it to numerical simulations (Fig. 3.1E, above blue line). However, for

low firing-rates (i.e., λ1τ,λ2τ < 1 which implies ⟨C ⟩< ητC A1A2) and particularly at C → 0,

the MM is inaccurate (Fig. 3.1D). The reason is that for low firing-rates (and k < 1), the Gamma

probability density diverges at 0. Such a singularity cannot be captured by the mean and variance

of PC . Notably, either of λ1, λ2 being high suffices for the MM to be accurate, because the

high-rate process provides a “background” on top of which the low-rate process can trigger

coincidences.

In some applications of our theory, it may be important to accurately estimate PC at C →

0, in the low firing-rate regime. We obtain such an estimate by first noticing that in this regime,

the maximum-likelihood estimate of the Gamma distribution parameters (k, σ ) yields a good

approximation of PC . This estimate relies on the log-expectation variable s = ln⟨C ⟩−⟨lnC ⟩,

which is indeed sensitive to the singularity at C → 0. Next we show that the log-expectation, the

mean and variance of C obey a simple relationship, irrespective of the firing-rates and correlation

(Fig. 3.1C),

ln
(

s
Var(C )

)
=− ln2−2ln⟨C ⟩+b(δ )[− ln⟨C ⟩]2+, (3.5)

where [x]+ = max(x,0) and b(δ ) was fit directly to simulations. We found corrected shape and

scale parameters k̃, σ̃ by computing s via Eq. (3.5) and using standard maximum-likelihood

formulae [1]. We call this the “heuristic MM”, and use it when coincidences are rare k < 1, and

both firing-rates are small max(λ1τ,λ2τ)< 1. This approximation is accurate for all values of
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C , in the entire parameter space we explored (Fig. 3.1E).

3.3 Network stabilization by multiplicative synaptic plastic-
ity

We now leverage our results to study effects of a multiplicative plasticity on network

structure. In this context, C represents the calcium influx into a neuron, triggered by coincident

pre- and post-synaptic spikes. Large influx induces long-term potentiation (LTP; when C > θp),

intermediate influx induces long-term depression (LTD; θp > C > θd) [214, 79, 97]. Given the

potentiation and depression rates γp,d and thresholds θp,d , the synaptic-weight dynamics are,

τw
dw
dt

= γpΘ(C (t)−θp)− γdΘ(C (t)−θd)≡ Γp −Γd. (3.6)
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Note that w has lower bound at 0, and typically τw ≫ τC . Based on our analytical approximation

of PC , we computed the total potentiation/depression rates Γp,d ≃
γp,d

Γ(k̃)

∫
∞

θp,d
Ck̃−1e−C/σ̃ dC, which

depend on the spike-train properties and the plasticity rule [Eqs. (3.4, 3.5)].

Neuronal activity in vivo undergoes substantial firing-rate fluctuations, generated by exter-

nal input variability or intrinsic dynamics [40]. Below we formulate a mean-field approximation,

reducing the joint dynamics of neurons and synapses and accounting for network structure, to

the effective dynamics of a pair of pre- and postsynaptic neurons and the synapse connecting

them. The statistical properties of the reduced system recapitulate the network behavior.

In the reduced model, we assume that the neurons’ firing-rates (λ1, λ2) are sampled from

Pλ , and have correlation time Tλ ∼ 0.1−1s. Pλ may depend on the synaptic strength, and will

be determined self-consistently, accounting for network interactions. During an interval Tλ , the

rates (λ1, λ2) are approximately constant, so the weight change is ∆w = Tλ/τw × (Γp −Γd). Its

distribution Pstep(∆w) is calculated from Pλ through Eq. (3.6) (Fig. 3.2A,B). Thus, the synaptic

dynamics are reduced to a 1D random walk on w ≥ 0 (Fig. 3.2C) with weight-dependent step-

size distribution Pstep. We identify its steady-state distribution Pw with the synaptic-weight

distribution of the network. Importantly, for Tλ ∼ 1s, ∆w is not infinitesimal, so the small

step-size approximation [115, 203, 149] is invalid. Next we use the mean-field approach to study

representative network architectures.

3.3.1 Weak synapses

In this limit, the pre- and postsynaptic firing-rates (λ1, λ2) are sampled independently

of the synaptic-weight w. Pstep is further assumed to be discrete, such that a synapse can be un-

changed/potentiated/depressed by fixed amounts ∆w = 0, Lp,−Ld with probabilities α0, αp, αd .

Equivalently, Pstep(∆w) = α0δ (∆w)+αdδ (∆w+Ld)+αpδ (∆w−Lp). Such a scenario would

be expected in a network switching between “high” and “low” states. For illustration, we assume

that Lp/Ld is an integer (see [1] for more general analysis). We define the potentiation-depression

ratio α ≡ αpLp/αdLd . When depression dominates (α < 1), using results for random walks
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[61, 63], Pw is unimodal, and its tail follows Pw ∼ h(β )e−
βw
Ld , w ≫ Lp. The factors β , h(β ) were

determined by analyzing the moment generating function of w [1].

We find that the tail becomes heavier as overall potentiation and depression are more

closely balanced (αdLd ≳ αpLp); or as Lp/Ld is larger with fixed α . Generally, when weight

changes (∆w) are non-negligible relative to the mean, the distribution Pw is unimodal, and its tail

behavior is sensitive to the high-order statistics of the step-size distribution Pstep, in contrast to

the case of infinitesimal ∆w [203].

To study the process of forgetting in the reduced model, we envision a potentiated synapse

with initial weight w0 representing a certain memory. The memory-time T (w0) is that synapse’s

first-passage time to 0. Analysis of the random walk statistics [1] gives the average and tail

behavior of T (w0),

⟨T (w0)⟩=
w0

αdLd −αpLp
and PT (t)∼ w0t−

3
2 e−

t
κ . (3.7)

See [1] for expressions of κ . Similarly to Pw, the average memory-time becomes longer and the

tail becomes heavier as Lp/Ld increases, with fixed α (Fig. 3.2E).

3.3.2 Strong synapses

When synapses are strong [15, 3], Pλ becomes weight-dependent. The postsynaptic neu-

ron receives feedforward weighted presynaptic input (firing-rate λ1, weight w) and background

input from the rest of the network. Both inputs switch between high and low firing-rates. Here,

using the heuristic MM to compute Pstep(∆w) requires knowing how spike-time correlations

depend on w and the background input. This relationship was determined by matching the

postsynaptic neuron with a leaky-integrate-and-fire neuron driven by presynaptic shot-noise and

background Gaussian noise [1]. We then numerically evaluated Pw, PT at steady-state, showing

a substantially heavier tail when compared to the independent case (while fixing the overall

potentiation-depression ratio ⟨α(w)⟩Pw , Fig. 3.2E,F).
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Figure 3.3. Recurrent spiking neural network simulations with synapses subject to the mul-
tiplicative plasticity rule. (A) Initial network structure, and steady-state spiking activity. (B)
Calcium influx and synaptic-weight (inset) distributions at steady-state, for inter- and intra-cluster
connections. (C) Eigenvalues (top) and eigenvectors (bottom) of the E → E steady-state synaptic-
weight matrix. The second outlier suggests that the network’s cluster structure is preserved at
steady-state. (D) The first two subspace angles between the plastic network and a network with
perfect cluster structure as a function of time. The second angle in the plastic network remains
far from π/2 compared to the shuffled network. (E) Joint distribution of (wmax, T ) for intra-
cluster E → E connections at steady-state. Similarly to the reduced model (Fig. 3.2C), strong
synapses are preferentially protected. (F,G) The plastic network exhibits larger avalanches and
stronger intra-cluster spike-timing correlations, compared to the shuffled network. (H) Memory
capacity of a Hopfield-like network versus synaptic-weight variability. Synaptic-weights are
normalized such that the variance is independent of the memory load α . See [1] for simulation
and calculation details.

Inspection of the joint distribution of the synaptic-weight running maximum and the

memory-time (wmax,T ) suggests that strong synapses are specifically resistant to forgetting

(Fig. 3.2G). Moreover, the average memory-time increases nonlinearly with the LTP-LTD

amplitude ratio (Fig. 3.2H), compared to an approximately linear increase in the independent

case [Eq. (3.7), again matching ⟨α(w)⟩Pw]. Similar results were observed in a reduced clustered

recurrent network model [1].

Taken together, in the regime where a small number of inputs is sufficient to trigger a

postsynaptic response, the multiplicative plasticity rule supports a unimodal synaptic-weight

distribution in which strong synapses are preferentially protected from turnover.
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3.4 Spiking network simulations

We tested our results by simulating a network of leaky-integrate-and-fire neurons. The

network consists of two excitatory (E) clusters which mutually inhibit each other indirectly via

inhibitory clusters (Fig. 3.3A, see [1] for networks with > 2 clusters). Initially, intra-cluster

E → E connections are strong while inter-cluster connections are weak. Crucially, the probability

that an E → E connection exists is independent of the cluster assignment. The initial structure

may represent two mutually exclusive memories stored in the network that spontaneously switch

on timescale of ∼ 0.2s (Fig. 3.3A). Structured inhibition is consistent with experiments showing

inhibitory stimulus-specific ensembles, and may arise from inhibitory plasticity [117, 71, 62].

We investigated memory retention when E → E synapses undergo multiplicative plasticity, by

examining the steady-state statistics of C , network structure, and dynamics.

In this network, potentiation is more likely in intra-cluster relative to inter-cluster

synapses, so the tail of Pw for intra-cluster synapses is heavier (Fig. 3.3B). Yet, notably, Pw is

unimodal with only minimal saturation to the upper bound. To examine stability of network

structure, we plotted the steady-state E → E weight matrix spectrum (Fig. 3.3C). The spectral

distribution’s bulk follows the circular law for a network with independent, random weights, sam-

pled from cluster-specific distributions [7, 1]. Additionally, there are two outlying eigenvalues.

The fact that the larger eigenvalue (corresponding to the “DC” eigenvector) does not saturate

to its maximum possible value, together with the stability of the switching dynamics, suggests

that there is no runaway potentiation of either cluster. The smaller eigenvalue corresponds to an

eigenvector that follows from the clustered connectivity. Angles between the plastic network’s

eigenvectors and those of a network with perfect cluster structure are stable and much smaller

than angles computed for a network with shuffled connections, indicating that network structure

is preserved despite ongoing plasticity. As predicted by the mean-field analysis, strong synapses

are protected from rapid turnover. The dynamics of the plastic network also retain the cluster

properties, exhibiting larger intra-cluster spike-time correlations and larger avalanches, than a
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shuffled network. Intriguingly, avalanche statistics are closely related to the synaptic-weight

distribution [131].

To understand the implications of the multiplicative rule beyond stability, we extended

the results in [187] and analytically computed the memory capacity of Hopfield-like network,

defined such that the variance of the synaptic-weight distribution is independent of the memory

load [1]. Fig. 3H shows that a heavier tail of the distribution, similarly to Pw in Fig. 2E, leads

to a marked increase in capacity. Furthermore, we demonstrate in [1] that the multiplicative

plasticity rule supports efficent learning of structured connectivity (akin to Fig. 3A), reflecting

the structure of an external input.

In [1] we explored the sensitivity of the spiking-network stability results to changes of

two key parameters, the potentiation/depression thresholds [θp,d in Eq. (3.6)] and the structure

of inhibition.

We additionally showed that networks with intrinsically bistable synapses [79] are also

stable, but do not exhibit realistic synaptic-weight distributions or activity-dependent protection

of strong synapses. Highlighting the importance of the multiplicative rule’s statistics, we found

that an additive plasticity rule with C = c1 + c2 [instead of Eq. (3.2)] rapidly leads to instability,

and is unable to efficiently learn the structure of an external input [1].

Our analysis offers insights to the two-timescale problem, where synaptic interactions

determine network dynamics on short timescales, and undergo neural activity-dependent mod-

ifications on longer timescales. Importantly, we analyze the network in a regime where strict

separation of timescales does not hold. Previous studies utilizing plasticity rules where modi-

fications depend (possibly nonlinearly) on sums over pre- and postsynaptic activity, typically

resulted in unrealistic synaptic-weight or firing-rate distributions, or required fast homeostatic

mechanisms for stability [115, 203, 142, 89, 179, 194, 4, 127]. The multiplicative structure of

the plasticity rule analyzed here effectively eliminates modifications due to ‘spurious’ activity,

while specific patterns of activity are responsible for potentiation and learning. The general

structure of the multiplicative process introduced here suggests that our results could be applied
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to understand nonlinear and adaptive interacting systems in a broad range of scientific fields.
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Chapter 4

Learning on Cognitive Level: Desegrega-
tion of Neural Predictive Processing

Abstract

Neural circuits across animal species and brain regions are thought to construct internal ‘world-models’ to

guide behavior. The predictive processing framework posits that this is done by generating predictions

for sensory signals, and concurrently computing prediction-errors. Extending this framework to complex

multi-sensory signals encountered in naturalistic environments is a major challenge in neuroscience. We

address this challenge here by investigating how multi-modal and high-dimensional predictive represen-

tations can emerge in recurrent neural networks during learning. Our analysis of neural representations

formed in the network indicates that the most accurate and robust predictive processing in natural con-

ditions arises in a network operating in a regime of loose excitatory/inhibitory balance. This network

exhibits a functional desegregation of stimulus and prediction-error representations, at the cellular-level.

We confirmed our model predictions based on recent experiments that probe predictive coding circuits

using a more rich set of stimulus associations than done previously. Overall, our study suggests that, in

natural conditions, neural representations of internal models are highly distributed, yet structured so as

to allow effective readout of behaviorally relevant information. Furthermore, owing to the generality of

our model, our study will help decipher how internal models are formed across brain regions, including

outside of the neocortex, by linking circuit mechanisms and architectures to functional properties of neural

predictive processing. The text here is adapted from the unpublished manuscript. The supplementary

materials will be available once the manuscript is online.
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4.1 Introduction

Predictive coding, the process of computing the expected values of sensory, motor, and task-

related quantities, is thought to be a fundamental operation of the brain [193, 114]. Violation

of internally-generated expectations, known as prediction errors, is an important neural signal

that can be used to guide learning and synaptic plasticity [190, 245]. Signatures of predictive

coding, including neural correlates of prediction errors, were identified in multiple brain circuits,

and across animal species [57, 113, 114, 239]. Two well-studied examples are motor-auditory

predictions [174, 209, 210, 10, 9] and visual-auditory predictions [98, 96, 70] in the mouse

cortex. Previous work has proposed that a canonical cortical microcircuit underlies the compu-

tation of predictions and prediction errors, based on imaging, electrophysiological and genetic

experimental tools [174, 209, 114, 184]. While some predictions of this proposed microcircuit

were tested and confirmed in restricted scenarios, the hypothesis that the circuit-motif within the

mouse cortex is a general mechanism for predictive processing faces a number of challenges:

• Predictive processing of multi-modal and high-dimensional stimuli: Typical experi-

mental paradigms to study predictive coding are based on training animals to make a single

association between sensory stimuli from different modalities [70], or a single sensory-

motor pairing [102, 10]. However, in natural settings, predictable stimuli are typically

high-dimensional and multi-modal (e.g., speech production, [92]). In addition, associations

between sensory stimuli and different motor commands are often context-dependent. For

example, the visual scene may provide a contextual signal that alters the sounds expected

from self-motion. While some work in this field has proposed a conceptual framework

for computing multi-modal predictions [114, 70], how these computations are learned in

specific circuit structures is not understood.

• Predictive processing in subcortical regions and in brain circuits in invertebrates:

Placebo analgesia can be regarded as prediction-based suppression of pain, and has been
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suggested to rely in large part on predictive processing of pain information in the periaque-

ductal gray and rostral ventromedial medulla regions [37]. Here, pain-inducing signals

and pain-relief predictions typically consist of sensory inputs from multiple modalities.

Other examples of predictive processing outside of the vertebrate brain include cephalopod

camouflage behavior, where the displayed high-dimensional skin pattern can be thought

as a prediction of the pattern which is best suited to disguise the animal from predators,

given the visual scene (which can also be high-dimensional) [249], and more ‘classic’

predictive computations on motor-visual associations in insects [118]. It is not known

whether the neural circuits implementing those computations use analogous strategies to

those employed by the mammalian cortex, or altogether different strategies.

• Predictive processing on multiple timescales: In some experimental paradigms, days of

training are required to observe neural signatures of predictive coding [151, 70]. Those

changes to neural responses likely require long-term synaptic plasticity. However, neural

responses that are strongly correlated with prediction errors can emerge on much shorter

timescales. In the ‘odd-ball’ paradigm, stimulus specific adaptation (SSA) is seen when

stimuli become predictable based on statistical regularities of the input sequence [233, 86].

The fact that input sequences lasting tens to hundreds of seconds are sufficient to elicit SSA

suggests that reorganization of circuit structure and long-term synaptic plasticity cannot

account for these effects [254]. In other scenarios, the brain-body axis was shown to

compute predictions of future hunger and thirst states. The intake of food and liquids can

cause an almost immediate feeling of satiety, although the absorption process of nutrients

and water may take minutes to hours [144, 143]. It is currently not well understood what

prediction error responses require circuit reorganization, and what responses rely on other

mechanisms that are typically not included in models of predictive coding circuits.

The evidence that computing predictions is an integral part of sensory processing garnered

attention from the theoretical neuroscience community. A number of studies proposed recurrent
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network models that may perform those computations [28, 46, 103, 88, 87, 162, 163]. Those

modeling studies focused on predictions within a single sensory modality, and on predictions of

a small number of stimuli. The model proposed so far cannot capture the breadth of phenomena

that can be understood within the predictive coding framework across animal species, sensory

modalities and brain regions.

A major current gap from both experimental and modeling perspectives is predictive

processing in high-dimensions: (i) What are the neural representations of predictable and

unpredictable sensory variables in natural conditions with rich stimulus ensembles and complex

inter-dependencies between stimuli [47, 239]? (ii) What are the circuit mechanisms underlying

the computation of those representations, and how are they learned? We fill this gap here,

specifically focusing on the question of functional segregation of predictive coding [114, 184],

and on how predictive coding circuits are formed during learning.

We address these questions by developing a mathematical model to examine the predictive

representations in recurrent networks for multi-modal and high-dimensional inputs during and

after learning, and by relating this model to experimental data. By generalizing previous

models [28, 103, 163] to apply to nonlinear computation of high-dimensional predictions, our

study advances the understanding of how neural networks perform predictive processing in

scenarios where animals are trained to perform more naturalistic tasks. From a mechanistic

perspective, we provide a surprising prediction for the degree of excitation/inhibition balance

in the high-dimensional case, and novel insight into the role E/I balance plays in canceling

interference between multiple learned stimuli. From a functional perspective, our normative

approach suggests that predictive processing of high-dimensional stimuli is robust when the

representations of stimuli and of prediction errors are desegregated at the cellular-level, and

distributed among excitatory and inhibitory neurons.

Overall, our mathematical results and data analysis suggest together that high-dimensional

predictive processing in neural circuits is distributed. Since the model proposed here is more

general than previous models of cortical predictive processing, and since we provide evidence
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for its applicability based on experimental data, we believe that our work reveals principles of

predictive processing across species and brain-regions.

4.2 Results

4.2.1 Recurrent networks that learn to generate high-dimensional
predictions

We studied the neural representations formed in recurrent neural networks that perform

predictive processing of multi-modal sensory and motor inputs. We focus on a typical associative

training scenario where animals are presented with pairs of sensory stimuli simultaneously

[209, 210, 10] or after a short delay [70]. The stimuli comprising each pair are typically of

different sensory modalities (e.g., auditory-visual [70]), or involve a sensory-motor association

(e.g., locomotion-auditory [10]). In this scenario, predictive computations are thought to be

learned over time through synaptic-weight updates [112, 209, 210, 102, 70, 10]. Our network

model consists of N recurrently connected neurons whose firing rates depend nonlinearly on

the input current driving their responses (Fig. 1a). The presentation of stimuli to the network is

determined by the variables x and y. The strength of the input to each neuron corresponds to the

components of the stimulus-specific feedforward synaptic weight vectors www and vvv. There are P

stimulus pairs, and when P is of the same order as the number of neurons N, the network is said

to perform high-dimensional processing.

Before training, the feedforward weight vectors corresponding to each stimulus-pair are

random and uncorrelated within the pair (i.e., www · vvv = 0). During training, those weights become

correlated (www · vvv = µ), consistent with experimental evidence of learning-induced functional

reorganization of excitatory synaptic connections [122, 42, 56]. Our goal is to define recurrent

connectivity that will allow (i) reading out the identity of the presented stimulus, (ii) predicting

the ‘missing’ stimulus (i.e., predicting y based on x), and (iii) evaluating the prediction error

(Fig. 1a). Specifically, the weights of the recurrent connections are chosen so as to minimize the
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error between the internally generated prediction and the actual stimulus, as well as the overall

encoding efficiency (Methods).

We studied neural responses during learning in the match condition (where x = y),

and in the mismatch condition (where x ̸= y). When we compared model neural responses

to experimental data, x and y are binary variables corresponding to the presence (x, y = 1) or

absence (x, y = 0) of visual and auditory stimuli [70], visual stimuli and a motor command [102],

or auditory stimuli and a motor command [10, 9]. We extended the mathematical formalism to

scenarios where more than two stimuli are predictive of each other, and to scenarios where the

inputs to the network vary continuously (0 ≤ x, y ≤ 1, e.g., running speed or visual-flow speed,

[112, 102], Methods).

Before associative learning occurs (µ = 0), most of the neurons in the network have

comparable responses in the match and mismatch conditions. After training (µ = 0.9), match

responses are suppressed while mismatch responses are amplified (Fig. 1b). Correspondingly,

the ratio of the average firing-rates in the mismatch and match conditions increases (Fig. 1c), con-

sistent with experiments characterizing neural responses during associative learning paradigms

[102, 70, 10]. Thus, the presence of the stimulus y suppresses the response evoked by the stimu-

lus x, and can be interpreted as a prediction or expectation of stimulus x. The amplified response

in the mismatch condition is typically interpreted as a prediction error signal [114, 239].

We summarized the network responses in a reduced space containing the mismatch

responses (rrrx, rrry) and the match response (rrrxy) at different stages of learning (Fig. 1d). We found

that rrrx and rrry become increasingly anti-correlated during learning (Fig. 1e), i.e., the presence of

the stimulus y more effectively suppresses the responses to x alone. This anti-correlation does

not appear between rrrx and rrry of another stimulus-pair (Fig. SXXX1). Our results suggest that

the predictive signal, triggered by the stimulus y, is specific to its paired stimulus x, and that the

network’s predictive computation is not via a global suppression [259]. Although the predictive

signal generated by the network is largely driven by the stimulus-specific component, it can also

1Show correlation between rrrx and rrry for different stimulus-pair doesn’t change during learning.
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contain a global gain component that is modulated by the total stimulus strengths (SI).

We further found that neural population representations of the match and mismatch

conditions decorrelate during learning, quantified by the angle between the vectors rrrxy and rrrx

(Fig. 1e). This finding is consistent with [70], and suggests that neural responses can be used

to effectively decode whether the stimulus x is presented in the match or mismatch condition.

Moreover, since each neuron’s response is nonlinear with respect to its input, the response in the

match condition is not a sum of the responses in the two mismatch conditions (i.e., rrrxy ̸= rrrx + rrry,

Fig. 1c). Importantly, this implies that the network’s prediction for the stimuli (x or y) can still

be decoded, even though the optimization procedure giving the connectivity of the network did

not explicitly require that those readouts are available (Fig. 1a).

Next we make the first step towards the high-dimensional scenario, by examining neural

responses to two stimulus-pairs in the match and mismatch conditions (P = 2). Ref. [114]

proposed that neurons involved in predictive processing are functionally segregated, i.e., neurons

that signal prediction error for one stimulus association will tend to signal prediction error for

other associations, and similarly for ‘representation’ neurons that encode the stimulus itself.

This proposal has not been tested systematically. When we examined neural responses to two

stimulus-pairs in our model, we found no correlations (Fig. 1f, left). This implies, for example,

that a neuron that signals prediction error for stimulus-pair 1, may have a selective response

to stimulus x ‘itself’ for pair 2. By contrast, Refs. [114, 184] would predict a high degree of

correlation between neural responses in the matched and mismatched conditions to two stimulus-

pairs (Fig. 1f). The cellular-level desegregation of response types raises the question of what

circuit mechanisms and structure support this functional organization.

4.2.2 Learning and stimulus dimensionality determine the properties of
effective predictive processing circuits

We next investigated circuit mechanisms underlying multi-modal high-dimensional

predictive processing. To understand why neurons respond more strongly in the mismatch
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compared to the match condition, we decomposed the input into each neuron to feedforward

and recurrent components, which respectively correspond to the actual stimulus signal, and to

internally generated predictions (Fig. 2a, Methods). Such a decomposition is similar to analyses

commonly applied to predictive coding experiments, in which the inputs are decomposed to

stimulus- and prediction-related components [18, 102, 10].

To quantify the relative contribution of each component, we follow the excitatory /in-

hibitory (E/I) balance literature [46, 3], and define the balance level B as the ratio between the

total feedforward input and the net input to each neuron, in each condition (Fig. 2a).

During associative learning, the overall balance level in the network increases in the

match condition, and decreases in the mismatch condition (Fig. 2b, left). This is a signature of the

increased accuracy with which feedforward sensory input is canceled by the internally generated

prediction in the match condition. Notice that the distributions of the balance level (over neurons

and stimuli) are initially similar in the match and mismatch conditions, and become significantly

different in late stages of learning (Fig. 2b, right). Indeed, in the mismatch condition, the majority

of neurons have a balance level close to 0 after training, which explains the network’s strong

prediction error response (Fig. 1b).

To better understand the role of the balance level in predictive processing, we examined

its effect on the nonlinear transformation the network performs, from input stimuli to neural

activity (Fig. 2c). Our goal is to identify settings in which the geometry of (potentially noisy)

neural responses facilitates robust readout of the prediction error (i.e., whether a particular

stimulus was expected or not). We note that this quantity cannot be read-out by a linear classifier

from the stimulus input. By contrast, once the input is transformed by into the recurrent network’s

high-dimensional responses, prediction errors can be linearly read-out. Moreover, while the

prediction error itself is stimulus-specific, the decoder that performs this computation is stimulus

independent—it is simply the average firing rate (as in Fig. 1b). In other words, the learned

structure of neural responses in our model implies that the same linear decoder applies to every

stimulus-pair without ‘re-learning’.
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Generally, the distribution of the balance level B depends on multiple external factors,

including the stimulus statistics and the frequency with which a stimulus-pair is presented to

the animal. We elected to focus on a gain parameter b that controls the slope of each neuron’s

nonlinear transfer function (Methods, [103]). This parameter is intrinsic to the network, so it

could potentially be adjusted dynamically to achieve robust coding. Moreover, there is a direct

monotonic relationship between the gain b and the balance level B, which provides means of

relating this important model parameter to data.

The parameter b scales both feedforward and recurrent inputs, so increasing it leads to

increases of the average firing rates in the match and the mismatch conditions (Fig. 2d, top;

Methods). Increasing b also leads to a wider margin between the linear readouts of neural activity

in the match and mismatch conditions. Therefore, large b can facilitate decoding the prediction

errors, at the cost of increased overall neural activity. These observations suggest together that an

intermediate value of b can jointly optimize both encoding efficiency and decoding robustness.

As an illustration, we constrain the average network response in the mismatch condition to be

larger than a certain threshold, while requiring a minimal but nonzero average response in the

match condition (Fig. 2d), consistent with reports of weak neural responses to predictable stimuli

[102, 10]. This yields an optimal value, b⋆, corresponding to an optimal balance level B⋆ (Fig. 2d,

bottom). We carried out this optimization procedure for networks that are trained to perform

predictive processing of stimulus ensembles of increasing dimensionality (i.e., increasing values

of α = P/N), with the same constraints on the average firing-rates. This constraint was chosen

such that the value of B⋆ at α = 0 matches experimental data, and on the assumption that an

‘over-trained’ animal learns a single stimulus-pair (i.e., α = 1/N ≈ 0). Surprisingly, we found

that the optimal balance level decreases with α (Fig. 2e). In words, based on our model, we

expect that networks that perform predictive processing in natural conditions (large α) should

exhibit ‘loose’ balance. The loose balance, and the corresponding reduced gain, counteracts the

interference that arises from learning to generate a large number of internal predictions. We

further showed that this prediction of our theory does not depend on other factors such as the
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stimulus statistics (Fig. SXXX2, Methods).

We used neural activity recorded while animals perform learned tasks consisting of visual-

motor (V-M) [102] and auditory-motor (A-M) associations [10] to constrain our network model.

Specifically, we estimated the balance levels in mouse sensory cortex, by relating the neural data

to the model, and assuming that after training the neural network within the mouse cortex reaches

the optimal balance level. In the V-M experiment [102], mice were trained to associate their

running speed with the speed of visual flow in virtual reality (Fig. 3a). Intracellular voltage levels

of primary visual cortex neurons were recorded in the match and mismatch conditions. Fitting

the average voltage change in the two conditions to our model and again assuming that α = 0

based on the fact that the animals underwent extensive training, the estimated optimal balance

level was B⋆
V−M = 162±61. A consistent result was obtained in the A-M experiment [10], where

mice were trained to press a lever and received closed-loop auditory feedback (Fig. 3b,c). Here

the recording was extracellular, so balance levels were estimated by equating the ratio of average

firing rates in the match and mismatch conditions in the data and model (Methods). Here, we

also observed significant variability across animals (Fig. SXXX3).

It is notable that the estimate of the balance level is consistent across the two studies with

different measurement methods, brain regions, sensory modalities and laboratories. While all

these factors may affect the balance level to some degree, our model predicts that the balance

level can decrease by up to one order of magnitude when the stimulus dimension increases

(Fig. 2e), suggesting that future experiments in naturalistic conditions could be used to confirm

our theoretical predictions by revealing loose balance in animals habituated to more rich sensory

environments.
2Show that how balance level changes as functions of α and µ when adding noise in the stimulus (corresponding

to imperfect pairing of x and y in the match condition).
3Show that estimated optimal balance levels for different animals.
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4.2.3 Stimulus and prediction error representations are desegregated

We now turn to investigating how different functional responses are organized within the

network. Previous work has hypothesized that two distinct neural populations exist in predictive

processing circuits: (i) internal representation neurons that ’faithfully’ represent external sensory

stimuli and encode internal predictions, and prediction-error neurons, which signal the difference

between the actual stimulus inputs and internal predictions. Given that these neurons selective to

those signals exist also in our network model, we wondered whether there it contains functionally

segregated neural populations. We adopted the criteria used in experimental work for classifying

the internal representation (R) and prediction-error (PE) neurons ([259, 114], Methods): R

neurons are those which respond strongly and similarly in match and mismatch conditions, while

PE neurons are those which respond strongly in the mismatch condition but weakly in the match

condition (Fig. 4a). We further distinguish between representation neurons for x and y inputs.

Based on these criteria, we started by studying the case with a single stimulus pair (P= 1),

and computed the fraction of neurons that are classified as R or PE neurons at different stages

of associative learning (Fig. 4b). As training progresses, the fraction of PE neurons increases

significantly, consistent with experiments [141, 70], and with the notion that the network learns

to ‘recognize’ the stimulus pairing. The fraction of R neurons remains unchanged. We note

however that the fraction of R neurons exhibits some dependence on the threshold used for

categorization (Fig. SXXX4) but the increasing fraction of PE neurons is independent of the

choice of threshold.

Next we considered the functional types of each neuron, computed separately with respect

to two pairs of stimuli. The hypothesis that predictive processing is segregated [114, 184], asserts

that if a neuron is a PE neuron for stimulus-pair 1, then, if it is active during presentation of

stimuli from pair 2, it will likely be categorized as a PE neuron with respect to those stimuli

too. To test this hypothesis, we computed the joint distribution of neural responses in the four

4Show that how fraction of R neurons change when using different thresholds.
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relevant conditions (mismatch/match, stimulus-pair 1/stimulus-pair 2), using the optimal balance

level fit to intracellular voltage data [102] (Fig. 2e). We then used the aforementioned criteria

to classify R and PE neurons (separately for each stimulus-pair, Methods). We started with the

low-dimensional scenario, where the two stimulus-pairs in question are the only stimuli learned

by the network (i.e., P = 2, α = P/N ≈ 0). Surprisingly, we found that although many neurons

belong to the same functional type with respect to the two stimulus-pairs, approximately 25%

of the neurons are in fact ‘mixed’: they are classified as having different functional type with

respect to the two stimulus-pairs (Fig. 4c, left).

Furthermore, increasing the dimension of the stimulus the network learns, leads to an

increased fraction of mixed neurons (Fig. 4c,d). Intuitively, the looser balance (on average)

between feedforward and recurrent inputs in a network with larger stimulus dimension, leads to

a broader distribution of balance levels for single neurons (Fig. 2b, Fig. SXXX5). That broader

distribution, in turn, affords each neuron more flexibility in its response to different stimulus

pairs.

It is notable that the fraction of mixed neurons shown here (Fig. 4d) corresponds to

two specific stimulus-pairs. Indeed, when we considered instead the entire ensemble of stimuli

the network learned, we found that most of the neurons are mixed with respect to at least two

stimulus-pairs (Fig. SXXX6). Thus, contrary to previous hypothesis [114], neurons with mixed

representations of stimuli and predictions are common in the network model, especially in the

high-dimensional scenario.

We then turned to testing this key prediction of our theoretical model, by looking for

signatures of mixed representations of predictions and stimuli in existing experimental data. In

our recent work, we recorded primary auditory cortex responses in mice that were trained to

make auditory-motor associations [9]. Importantly, unlike typical experiments characterizing

mismatch responses, here animals were presented with probe auditory stimuli that differ from

5Show that too large or too small values of b will generate less mixed neurons (with fixed threshold).
6Show that the fraction of neurons that have mixed representation for any two stimulus-pairs.
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the expected stimulus that was paired with a lever press during training (Fig. 4e). We computed

the difference (∆) between the mismatch and match neural responses (Fig. 3e, bottom), similarly

to our analysis of the neural activity in the model (Fig. 4c). Note that for the probe stimuli,

‘match’ corresponds to a lever press paired with one of the four variants of the learned sound,

while ‘mismatch’ corresponds to responses following a lever press without a sound. We expected

∆ values of mixed neurons to lie in the upper left or lower right corners of the plot (similarly

to Fig. 4c, blue rectangles). This would correspond to neurons where match and mismatch

responses are similar for the expected sound but differ for the probe sound, or vice versa. We

quantify the degree of mixing, or desegregation of the predictive representation, by computing

the Pearson correlation coefficient of the ∆ values corresponding to the expected sound and each

probe sound separately (Fig. 4e). We refer to this coefficient as the segregation index, which is

close to 1 if the ∆ values are strongly correlated between the two stimulus-pairs (expected, probe;

see Fig. 1f, right). A segregation index close to 0 means that R and PE responses to different

stimulus-pairs are uncorrelated, and the representations of stimuli and predictions are ‘maximally

mixed’. We additionally computed representational similarity between the expected and probe

sounds, as the correlation between neural responses to those stimuli. Crucially, representational

similarity was computed on neural responses in a passive condition, not following a lever press

[9]. If neurons are segregated into two functional classes, the segregation index should be close to

1 irrespective of the representational similarity. By contrast, we found that the segregation index

depends strongly on the representational similarity (Fig. 4f). Specifically, when the expected and

probe sounds are similar (Fig. 4e,f, green shades), the segregation index is close to 1, though a

random subsampling analysis indicates a statistically significant effect of the representational

similarity on the segregation index. When the probe differs from the expected sound more

substantially (Fig. 4e,f, orange), the segregation index drops to ∼ 0.5. This relation between

representation similarity and degree of segregation is consistent with the prediction of our model,

with an appropriate level of coding sparsity (Fig. 4f, Methods). The significant dependence of

the segregation index on the representational similarity, and the fact that the segregation index is
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substantially smaller than 1, suggest that predictive processing is mixed in the mouse auditory

cortex. We note that the analysis presented here is an indirect test of the model prediction, that

predictive processing is mixed. Indeed, in the model we analyzed responses to two stimulus-pairs

that were both learned (Fig. 4c), while in the experiment the animal was only trained on the

expected sound. Nevertheless, we believe that the dependence of the smaller segregation index

we found for probe stimuli that are dissimilar to the learned sound provides strong evidence

against the notion that predictive processing is functionally segregated into separate neural

populations. Our model provides a framework that can be used to generate hypothesis that could

be tested more directly based on future experiments.

4.2.4 Predictive processing in excitatory–inhibitory networks

Thus far we have focused on relating neural responses in the model to measurements

of excitatory neurons’ activity [10, 70, 9]. Our results were obtained by analyzing a recurrent

network model where each neuron’s projections could be both excitatory (E) and inhibitory (I),

i.e., the model network does not obey Dale’s law. Given the growing literature on the role of

inhibitory neurons in computing predictions [88, 87], we sought link our model to experiments

more tightly by extending it to a network with separate E and I neurons. We did so by requiring

that the activity of E neurons in the E/I network matches exactly the activity of the neurons in the

network investigated previously. This guarantees that the E neurons in our E/I network possess

the predictive coding properties we studied so far, and opens the door to study the properties and

functional role of I neurons. We then ‘solved’ for those connectivity structures that obey Dale’s

law (Fig. 5a, Methods). Mathematically, this was done by decomposing the original connectivity

matrix to four separate components, representing E→E, E→I, I→E, and I→I connections. Each

connectivity component was guaranteed to have the ‘correct’ sign by relying on a non-negative

matrix factorization procedure (Methods, [73]), combined with previously proposed ‘recipes’ for

modeling E/I networks [81]. The balance level B defined previously based on feedforward and

recurrent inputs (Fig. 2), is equal to the stimulus-specific component of the E/I balance in the E/I
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networks (Methods).

To summarize, we used two types of constraints to derive an E/I network model that

performs high-dimensional predictive processing, namely, matching the activity of the E neurons

to the activity of neurons in our previous model, and decomposing the connectivity to preserve

the E/I identity of the presynaptic neuron. These constraints did not yield a unique connectivity

structure. Rather, we found a one-parameter family of connectivity structures that all meet

those constraints. This parameter, denoted λEI , interpolates between two extremes of structured

connectivity in the E/I network (Fig. 5b).

In one extreme (λEI = 0), inhibition is ‘private’, i.e., each E neuron projects to a single I

neuron whose activity is equal to its ‘parent’ E neuron. This has been an implicit assumption

of previous predictive coding models with lateral inhibition [220, 219, 163]. In the opposite

extreme (λEI = 1), each I neuron receives a large number of excitatory inputs and signals an

‘internal prediction’ of one of the stimuli learned by the network.

Varying λEI from 0 to 1 gives a continuum of inhibitory representations, each with its

own properties, which we investigated using the same approach that we applied to predictive

representations in E neurons (Fig. 1b-e, Fig. 4b). We started by computing the alignment of the

inhibitory response to the stimulus x in the match (rrrxy) and the mismatch condition (rrrx), as a

function of the learning stage (Fig. 5c). Before learning (µ = 0), increasing λEI leads to a marked

decrease in the alignment of these inhibitory population responses, quantified by the cosine

similarity. After learning (µ ≈ 1), increasing λEI leads to nonmonotonic effect on the alignment.

Intriguingly, for λEI = 1, after learning the alignment of I responses in the two conditions is

larger than that of E responses (Fig. 5c, compare green and black for µ = 1).

We used the differences in I neurons’ response properties to estimate the parameter λEI

based on empirical measurements of regular spiking (RS, putative excitatory) and fast spiking (FS,

putative inhibitory) neurons. In other words, our modeling framework allowed us to determine

the degree to which inhibitory processing in predictive coding circuits is private vs. signals

internal predictions. To achieve that, we computed the correlation between auditory cortex
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responses in the match and mismatch conditions, separately for RS and FS neurons [10]. We

then compared those correlation values obtained before and after learning of an auditory-motor

association (Fig. 5d). The pairing between movement and a probe sound (not presented during

training) was regarded as before-learning and the pairing between movement and the expected

sound as after-learning (Methods). We found a significant decrease in this correlation during

learning for RS neurons, consistent with the corresponding change of correlation in E population

responses in the model (Fig. 5c, light blue circles). By contrast, correlation of FS population

responses did not change significantly during learning, which rules out small values of λEI .

Moreover, the correlation of population responses after learning was similar for RS and FS

neurons, which rules out large values of λEI . Taken together, our analysis suggests that a value

of λEI ≈ 0.6 best captures the experimental observations.

Given this experimentally-constrained value of λEI , we used our theory to generate a

number of testable predictions for inhibitory representations in predictive coding experiments.

First, we have shown that responses of E neurons in the mismatch conditions corresponding

to the stimuli x and y (i.e., rrrx, rrry) become significantly anti-aligned during learning (Fig. 1d,e).

By contrast, we predict, based on the value λEI = 0.6, that anti-alignment of I responses during

learning is significantly weaker (Fig. 5e, left). Second, based on the value λEI = 0.6, we predict

large correlations between inhibitory responses to the stimulus y alone and responses in the match

condition (Fig. 5e, middle), when compared with E responses. In the model, the asymmetry

of the overlaps rrrx · rrrxy and rrry · rrrxy arises from the non-negative matrix factorization solution

we found when decomposing the connectivity. Although this asymmetry stems from a purely

mathematical reason, it may in the future be related to different functional responses of inhibitory

neurons of different subtypes [67]. Third, when λEI = 0.6, the fraction of I neurons classified

as R neurons is less sensitive to the different stages of learning, compared to I neurons in the

‘private inhibition’ case (λEI = 0.6, Fig. 5e, right). We note that the effect of learning on the

fraction of E neurons categorized as R neurons depends on the threshold (Fig. SXXX7). For this

7Show how fraction of R inhibitory neurons when using different thresholds.
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reason, it may not be straightforward to relate differences between E and I populations to the

network model.

Previous work on predictive coding suggested that associative learning enhances top-

down inhibitory projections from outside the local circuit [114, 70]. In this view, after training,

inhibitory input that signals the prediction cancels bottom-up excitatory inputs and suppresses

neural responses in the match condition. We therefore wondered what changes in inhibitory

connectivity during learning lead to stimulus-specific suppression of neural activity in our

E/I network model. One option is that inhibitory connections that predict the stimulus are

strengthened during learning, as suggested in Ref. [114]. An alternative is that reorganization of

inhibition during learning is more subtle, and that inhibitory signals are distributed differently

before and after learning. We used our solution to the non-negative matrix factorization problem

to calculate the distribution of I-to-E synaptic weights before and after learning. First, we

computed this distribution in the scenario of private inhibition (λEI = 0, Fig. 5f). The overall

distribution is broadened during learning. Examining the change in synaptic weights conditioned

on the functional cell-type of pre- and post-synaptic neurons (R or PE), suggests that stimulus-

specific suppression of E responses arises from potentiated I synapses from neurons ‘faithfully’

representing the stimulus. In other words, when inhibition is private, the predictive signal arises

in part due to strengthened projections from inhibitory R neurons to excitatory R neurons (Fig.

SXXX8).

Next we examined I-to-E connectivity when inhibitory structure was matched to exper-

imental data (λEI = 0.6, Fig. 5g). We found that learning leads to overall sparsification of I

connections. Interestingly, here R-to-R connections can be either potentiated or depressed, unlike

the λEI = 0 case (compare middle panel of Fig. 5f,g). Moreover, when λEI = 0.6, inhibitory

connections originating from PE neurons that are initially very weak get strongly potentiated.

Together, our results suggest that (i) Predictive processing is learned without large

changes to the average inhibitory connection strength. This was also seen for other values of

8Show that R to PE synaptic weights don’t potentiate a lot.
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λEI (Fig. SXXX9). (ii) The ‘strategy’ for learning predictive processing can differ substantially,

and depend on the underlying circuit structure. This suggests that multiple inhibitory cell-types

might be involved in learning of predictive processing based on diverse plasticity rules, and

may have different effects on the predictive representations at the network-level. (iii) When

inhibitory structure is matched to data, the ‘internal model’ is highly distributed and, surprisingly,

arises in part from potentiated connections from inhibitory neurons signaling prediction error.

Another signature of this distributed strategy is the fact that in the match condition, the total

inhibitory input to each excitatory neuron decreases during learning (Fig. SXXX10), suggesting

that predictive signals are primarily computed by recurrent circuitry rather than directly from

top-down inputs.

4.3 Discussion

We presented a study of a recurrent neural network model that learns to generate high-

dimensional predictions, generalizing previous theoretical studies, and thus allowing this class of

models to be applied in natural conditions. Our analysis of this model gives insight to neural

mechanisms supporting high-dimensional predictive coding; generates testable hypotheses for

functional properties of biological neural networks; and provides a framework within which

experimental data can be quantitatively compared with a normative mathematical model.

We focused on a recurrent network model (Fig. 1) for two reasons. First, cortical

circuitry that performs predictive processing is known to be highly recurrent. Plasticity of

recurrent connections forms functional neuronal assemblies [121], that were suggested to underlie

behaviorally-relevant sensory discrimination [19]. Second, predictions for sensory stimuli

typically unfold over time, so it is natural to assume that the implementation of these computations

is done in a recurrent network based on its intrinsic dynamics [28]. While we focused on steady-

9Show that the average inhibitory connection strength doesn’t change much during learning for different λEI’s.
10Show that the distribution of inhibitory input magnitudes (sum of all presynaptic inhibitory firing rate ×

synaptic weight) becomes smaller.
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state neural responses for mathematical tractability, our model could be extended in the future

to study the time-dependence of high-dimensional predictive coding. Beyond temporal coding,

other interesting theoretical directions to extend our study are: networks with asymmetric

connectivity, which could potentially be done by imposing sparsity on the existing connectivity

‘prescription’ [188]; and networks that learn predictions online, thus different stimuli may be at

different stage of learning [240, 188].

Our model suggests that balance between feedforward and recurrent input, or indeed

between excitation and inhibition, can lead to robust generation of internal predictions, within

the local network. While this has been suggested by previous studies [28, 46, 103], an important

novel feature revealed by our analysis is that in realistic conditions there is an optimal, finite

balance level, which decreases with stimulus dimension (Fig. 2). Our theory further suggests

that the a network with infinitely high balance [46] could be especially vulnerable to noise in

high-dimensional scenarios.

Based on our results, we hypothesize that the large degree of heterogeneity of empirical

E/I balance levels [3] may be a signature of the differences in the stimulus ensembles animals were

exposed to in different experiments. Our results in Fig. 2 and Fig. 3 suggest that this hypothesis

could be tested systematically by exposing animals to more rich sensory environments. Here

too it may be important to study temporal dynamics of the model, as it was previously shown

that synaptic delays (that we ignored) affect the optimal degree of balance in circuits performing

low-dimensional predictive coding [103].

The role that balance plays in computing predictions has two important implications for

the architecture and function of predictive processing circuits.

• What is the source of predictive signals? Previous work has shown that cross-modal

predictions are often stimulus-specific [259, 70]. More specifically, signals from one

brain region can suppress responses to a particular predictable stimuli in another region

(e.g., motor cortex activity suppressing visual cortex responses). It is notable that within
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our model those computations can be done without fine-tuning the targets of long-range

projections, as has been suggested previously [114]. Rather, local recurrent connections in

the ‘receiving region’ can extract the predictions from long-range inputs, relying on E/I

balance.

• What is the timescale of learning predictions? Prediction error responses in the same

cortical region can arise after as little as minutes of training [233] or only after days of

training [70, 10]. We believe that the diversity of mechanisms that together enforce E/I

balance (e.g., firing-rate adaptation, synaptic-scaling, Hebbian plasticity; see review in

Ref. [111]), may explain this wide range of predictive processing learning dynamics.

Future work may reveal that our model has explanatory power also for the emergence of

predictions over faster timescales than reported in the experiments we considered here.

Given that, these mechanisms enforcing balance identified in broad range of cortical circuits

suggests that our theory could be used to understand the predictive processing in subcortical

regions and brain circuits in invertebrates.

An important finding based on our model is that predictive representations are desegre-

gated: neurons that signal prediction errors for one stimulus-pair may faithfully represent the

presence of a stimulus for a second pair. Based on experiments where animals were probed with

multiple types of unexpected sounds, we found a signature of this desegregation at the cellular

level in mouse auditory cortex (Fig. 4). Our findings are related to the expanding literature

on mixed-selectivity [198, 68, 156], where neurons exhibit complex tuning to multiple stimu-

lus features. Here we report that neurons may have mixed-selectivity to internally generated

predictions of sensory and motor variables (Fig. 4, Fig. 5). There is however one important

distinction between our results and the mixed-selectivity literature. In most reported examples

of mixed-selectivity, neurons’ tuning curves are unstructured [68]. This means that reading out

task-relevant variables requires a finely-tuned decoder that is adjusted based on the tuning of

the upstream neurons. By contrast, the representations of stimuli in matched and mismatched
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conditions in our model is highly structured, and reading out the prediction error can be done

without any adjustments to the decoder (Fig. 2). These structured neural response do not arise in

other random architectures that give rise to mixed-selectivity.

It is noteworthy that a recent paper has argued that specific genetic markers are over-

expressed in neurons that belong to specific functional classes (in the predictive coding frame-

work, [184]). The results in that study therefore appear to be in tension with our model and its

interpretation presented here. We think however that there is no contradiction, based for the

following reasons:

• According to the method in Ref. [184], neurons are photo-converted (‘captured’) based

on expression of a single genetic marker, while the relevant markers can be co-expressed

[229]. If the interpretation offered in [184]—that genetic expression determines function—

is correct, then co-expression of multiple markers and varying levels of each individual

marker may in fact be a signature of desegregated predictive representations. Indeed, the

link Ref. [184] establishes between the genetic markers and functional cell-types relies on

binary classification to neurons with ‘high’ expression. In our view, functional properties

of neurons are expected to lie on a continuum (Fig. SXXX11) which may be related to the

continuous expression levels of the relevant genetic markers.

• In Ref. [184], classification of captured neurons into cell-types requires alignment with

the Allen Institute Atlas [229]. We believe that this alignment step may introduce artifacts

that make it difficult to definitively identify classify the captured neurons. Additionally,

the small number of animals used in [184] may imply that across neuron variability was

overestimated, since expression profiles of different neurons in the same animal could be

correlated.

In summary, predictive processing is a ubiquitous and fundamental computation support-

11Show that the distribution of number of stimuli for each neurons such that it is a R or PE or either neuron; and
joint distribution of them for the number of R and PE stimulus-pairs.
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ing diverse behaviors across animal species. Experimental measurement of internally generated

predictive signals is especially challenging, because it requires identifying the source of inputs

to each neuron [239]. We provided a mathematical framework that can be used to interpret

neural recordings during behavior in naturalistic sensory environments and decipher the circuit

mechanisms underlying predictive processing. Beyond comparison with experimental data,

we believe that our work will advance the understanding of how the brain constructs complex

internal-models by shedding light on commonalities and differences between biological pre-

dictive coding circuits and artificial systems, particularly those trained using self-supervised

algorithms [140].

4.4 Methods

Recurrent network model

Our model network consists of N neurons whose firing rates are described by the time-

dependent vector rrr(t) = (r1(t), . . . ,rN(t)). The network is driven by high-dimensional stimulus

input, denoted xxx(t) = (x1(t), . . . ,xP(t)) and yyy(t) = (y1(t), . . . ,yP(t)). The vectors xxx and yyy

correspond to stimuli from two modalities that are paired during training.

The dynamics of the recurrent network are given by

dhi(t)
dt

=−hi(t)+b
N

∑
j=1

Ji jφ(h j(t))︸ ︷︷ ︸
−IR

i

+bIF
i (xxx(t),yyy(t)). (4.1)

Here hi(t) is the voltage level of each neuron and is related to its firing rate via a nonlinear

activation function, ri(t) = φ(hi(t)). Note that the input each neuron receives is decomposed in

Eq. (4.1) into the recurrent (IR
i ) and feedforward (IF

i ) components. We rescaled the connectivity

matrix Ji j and the feedforward input IF
i (xxx(t),yyy(t)) by a constant b, which can be interpreted

as a gain parameter. The explicit forms of Ji j and IF
i (xxx(t),yyy(t)) were determined based on a

normative approach. We assume that the neurons’ dynamics jointly minimize the following
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objective

E(t) =
P

∑
k=1

[(
xk(t +d)− x̂k(t)

)2
+
(

yk(t +d)− ŷk(t)
)2
]

︸ ︷︷ ︸
Prediction errors

+
2
b

N

∑
i=1

F(ri(t))︸ ︷︷ ︸
Encoding efficiency

, (4.2)

where x̂(t) and ŷ(t) are the internal predictions generated by the network at time t and F(r) is a

monotonically increasing function whose explicit form depends on φ , the nonlinear activation

function (SI). For ReLU nonlinearity [φ(z) = max(z−θ ,0)], the appropriate choice is F(r) =

(r+θ)2

2 .

We further assume that the internal predictions are linear readouts of the network activity

x̂k(t) =
1
N

wwwk · rrr(t), ŷk(t) =
1
N

vvvk · rrr(t). (4.3)

Here wwwk,vvvk ∈ RN are the readout weight vectors. These internal predictions are, by definition,

predictions of future input, as indicated by the delay d in Eq. (4.2). However, we will focus on

the scenario where the input changes much more slowly than the neurons’ firing rates. Therefore,

on the timescale of firing rate changes, we will regard the stimulus inputs to be approximately

constant, i.e.,

xk(t +d)≈ xk(t)≈ xk, yk(t +d)≈ yk(t)≈ yk. (4.4)

We note that the parameter b in Eq. (4.2) controls a trade-off between minimizing the prediction

error and maximizing the encoding efficiency.

For mathematical tractability, the weight vectors wwwk and vvvk [Eq. (4.1)] are assumed to be

correlated random variables. Specifically, each component of wwwk and vvvk is a Gaussian random

78



number with mean zero and unit variance, and the correlation between them is µk,

⟨wk
i ⟩= ⟨vk

i ⟩ = 0,

⟨(wk
i )

2⟩= ⟨(vk
i )

2⟩ = 1,

⟨wk
i vk

i ⟩ = µ
k. (4.5)

The correlation of each stimulus-pair, µk, increases during learning. For simplicity, unless noted

otherwise, all stimulus-pairs have the same ‘age’, i.e., µk does not depend on the index k. Under

these assumptions, we derived the dependence of the steady-state firing rate distribution on the

stimuli presented to the network and the correlation µ in the limit where both N and P are large,

and their ratio α = P/N is nonzero (SI).

The presence or absence of each stimulus was modeled by setting the corresponding

components of xxx and yyy to 0 or 1. For example, the mismatch and conditions for k-th stimulus-pair

correspond to,

(xk,yk) = (1,0) (x-only mismatch condition),

(xk,yk) = (0,1) (y-only mismatch condition),

(xk,yk) = (1,1) (match condition)

Definition of balance level

The balance level for neuron i is defined as,

Bi =

∣∣∣∣ IF
i

IF
i − IR

i

∣∣∣∣ . (4.6)

Here, IF
i and IR

i are the feedforward and recurrent input currents to neuron i at steady-state

[Eq. (4.1)]. The balance level varies between neurons and between stimuli, because the weights

wk
i and vk

i are different for different neurons and stimuli (indexed by i and k, respectively). The
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balance level distribution and its median shown in Fig. 2 were computed analytically (SI).

Extracting the optimal balance level from data

V-M experiment, Ref. [102]. We calculated the trial-averaged voltage of all the recorded

L2/3 neurons as a function of time (Fig. 2a). Voltage level of each neuron was measured with

respect to its baseline. We sampled 50 voltage levels from all recorded neurons and all time

points in the match and mismatch time windows (Fig. 2a), which were −0.1−0s (match) and

0−0.1s (mismatch). The time t = 0 corresponds to point at which the treadmill was decoupled

from visual flow in virtual reality. We then computed the standard deviation over those 50

samples of the voltage level in the match and mismatch conditions. By taking the ratio of these

standard deviations, we obtained a dimensionless quantity that has a direct analogue in the model.

We fit the model to this ratio by adjusting the value of b. The best-fit value b⋆ gives the median

of balance level B⋆ in the network model.

A-M experiment, Ref. [10]. We calculated the trial-averaged firing rates for all regular

spiking neurons (n = 815) in the movement and active condition in two time windows: from

t =−0.1s to stimulus onset (t = 0), and from stimulus onset to t = 0.06s (Fig. 3b). For every

neuron, we calculated the change in its firing rate between the two time windows in both

conditions. We sampled 400 firing rate change values from 815 neurons with replacement,

and calculated the average firing rate change in the passive (mismatch) and movement (match)

conditions. The model was fit by finding the parameter b for which the ratio of the average firing

rate change in the two conditions was equal in the data. Again we calculated the median of

balance level B⋆ based on the best-fit value of b.

The fitting procedure for both experiments was repeated 100 times, giving the estimated

values of B⋆ shown in Fig. 3c.
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Definition of functional cell types

We denote the steady-state voltage of neuron i in the mismatch conditions as hx
i (x-only)

and hy
i (y-only), and in the match condition as hxy

i . To classify neurons into functional types,

deviations of individual neurons’ voltage response relative to the mean were compared to the

standard deviation (denoted σ ) of the steady-state voltage distribution. We evaluated σ using the

voltage distribution in the x-only mismatch condition after learning (µ = 0.97). We note that

in the network model the average voltage response for any µ and in any condition is 0, which

simplifies the criteria below.

A neuron i is a representation (R) neuron for the x-stimulus if it is depolarized upon

presentation of the stimulus x, i.e., its voltage response in x-only mismatch condition is large,

and its voltage responses in the match and mismatch conditions are similar. Mathematically,

hx
i >

σ

2
and

∣∣hx
i −hxy

i

∣∣< σ

2
. (4.7)

A similar criterion was used to identify R neurons for the y-stimulus. A neuron i is a

prediction error (PE) neuron if it signals the ‘mismatch’ between x and y, i.e., its voltage response

in the x-only mismatch condition is large, and its voltage response in the match condition is

small. Mathematically,

hx
i >

σ

2
and hx

i −hxy
i >

σ

2
. (4.8)

Neurons meeting these criteria are referred to as positive PE neurons, because their activity

increases when x is presented but not expected (based on y). The activity of negative PE neurons

increases when x is not presented but is expected.

Note that neurons in the network may not belong to any of the those three classes. The

fraction of R and PE neurons in the network for different values of µ and α , shown in Fig. 4b,d,

were computed analytically (SI). Other possible functional classes of neurons are discussed in

the SI.
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Estimating functional segregation from responses to multiple stimuli

We calculated the trial-averaged firing rate change of each neuron in the match (move-

ment) and mismatch (passive) conditions, separately for each sound stimulus [9]. For each type

of probe sound, we restrict the analysis to neurons responsive in the passive condition to that

probe sound and the learned (expected) sound. The firing rate threshold we used to identify

responsive neurons was half standard deviation above the mean firing rate for expected sound in

the passive condition. Changing the threshold does not affect the results in Fig. 4e,f.

For these neurons, we computed pairs of ∆ values, defined as the difference between

mismatch and match responses, for the probe and expected stimulus. The Pearson correlation

coefficient between those ∆ values was defined as the segregation index.

To estimate the similarity of the expected and probe stimuli, we computed individual

neurons’ trial-averaged firing rate change following presentation of those stimuli in the passive

condition (the same time windows used in the A-M experiment as in Fig. 3). For each animal, we

considered population vectors consisting of all its recorded neurons. Representation similarity

was defined as the Pearson correlation of those vectors for pairs of auditory stimuli (expected

and probe, Fig. 4f). We note that to calculate this similarity in the model is calculated from the

activity of all neurons that are active in either the expected or probe stimuli in passive condition.

E/I network model

In the network with separate E and I, the time dependent voltages of E and I neurons are

given by the following set of differential equations,

dhE
i

dt
=−hE

i +
NE

∑
j=1

JEE
i j φ(hE

j )+
NI

∑
j=1

JEI
i j φI(hI

j)+ IE
i ,

τI
dhI

i
dt

=−hI
i +

NE

∑
j=1

JIE
i j φ(hE

j )+
NI

∑
j=1

JII
i j φI(hI

j)+ II
i . (4.9)
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We assume that the activation function for inhibitory neurons is ReLU with zero threshold,

φI(x) = max{x,0}. Matching the E neurons’ activity at steady state to the activity of neurons

in our original network [Eq. (4.1)] gives constraints on the connectivity components and the

feedforward input (SI),

JEE − JEI(I + JII)−1JIE = J,

IIIE − JEIIIII = IIIF . (4.10)

Here J and IIIF are the connectivity matrix and feedforward input used in Eq. (4.1). We fur-

ther assume that the matrix I + JII is invertible. In general, there are many possible solutions

{JEE ,JEI,JIE ,JII, IIIE , IIII} satisfying Eq. (4.10). We identify a family of solutions. This contin-

uum interpolates between the solution with private inhibition, where JIE is equal to the identity

matrix; and solutions with an inhibitory internal prediction, where rows of JIE are given by the

stimulus weight vectors (SI). Moreover, we show that up to a constant, this balance level is the

same as the stimulus-specific, local component of the E/I balance level in the E/I network (SI).

We extended the definition of functional cell-types [Eqs. (4.7,4.8)] to I neurons. We note

that here the average input to inhibitory neurons is not 0, so we subtracted the mean from the

voltage level [h’s in Eqs. (4.7,4.8)] before applying the criteria on the deviations from the mean.

Analyzing responses of regular spiking and fast spiking neurons

We estimated the connectivity structure parameter λEI based on recordings of regular

spiking and fast spiking neurons [10]. Using the same time windows as Fig. 3b and Fig. 4e,f,

we calculated individual neurons’ trial-averaged firing rate change in the passive and movement

conditions for the expected sound and a probe sound. Those firing rate changes recorded in each

animal form eight population vectors (regular/fast spiking, expected/probe sound, active/passive).

We computed the Pearson correlation between the population vectors in the active and passive

conditions, giving four values for each animal, shown in Fig. 5d. The correlation values for
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presentation of the expected sound were regarded as ‘after learning’, while correlation values

for presentation of a probe sound that was not associated with the lever press were regarded as

‘before learning’.

Statistical tests

In Figs. 3c, 4f and 5d, we used two-sided, unpaired t-tests. ⋆ = p < 0.05 and ⋆⋆⋆ = p <

0.0005.
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input signals (www and vvv). The recurrent weights jointly minimize prediction errors and overall
encoding efficiency. The neural representation formed under such optimal recurrent connectivity
allows flexible linear readouts of various stimulus features. (b) Firing rate responses of individual
neurons in the match and mismatch conditions. Initially match and mismatch responses are
correlated. After learning, responses are not correlated, and match responses are suppressed. (c)
The ratio between average firing rates in the mismatch and match conditions increases during
learning. (d) Reduced three-dimensional neural activity space. Each vector represents the
mean-subtracted firing rate vector of neurons in the network at different conditions and stages of
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Figure 4.4. (Next page) Desegregated stimulus and error representations in networks
performing high-dimensional predictive processing. (a) Schematic of typical tuning profiles
of different functional cell-types to the stimuli x and y. (b) Fraction of representation (R) and
prediction error (PE) neurons in the model at different learning stages. Error bars indicate
standard deviation over 10 instances of the network. (c) Joint distribution of individual neurons’
∆ values , the difference between the neuron’s , mismatch and match responses, for two stimulus-
pairs. Only neurons responsive to both stimulus pairs are included in the distribution (Method).
Mixed representation neurons have significantly different ∆ values for the two stimulus-pairs,
i.e., they are in the blue rectangular regions. As the stimulus dimension (α) increases, more
neurons have a mixed representation of the stimulus and prediction error. (d) The fraction of
mixed representation neurons increases as stimulus dimension increases. Error bars indicate
standard deviations for 200 instances of the network. (e) Evaluating the segregation of stimulus
and prediction error representations based on neural recordings during a learned auditory-motor
association. Shown are the ∆ values of stimulus-responsive neurons for the expected sound and
each probe type (colors). Red ellipses indicate the spread of data. The length and direction
major/minor axis shows the amplitude and direction of the two principle components. (f)
Segregation index as a function of representation similarity for different pairs of expected and
probe sounds. Colored points correspond to subsamples of the data, and crosses correspond
to the average for each probe type (Methods). Experimental data is compared with equivalent
quantities from the model, obtained by varying the sparsity of responses in the model ( f , see SI
for details).
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Figure 4.5. (Next page) A data-constrained excitatory/inhibitory model suggests that
internally-generated predictions are distributed across the network. (a) Schematic of
the E/I network with separate connectivity components. Excitatory neurons receive external
inputs, and their activity is constrained to equal that of neurons in our original model. (b) A
family of E/I networks that satisfy the desired constraints, identified based on non-negative
matrix factorization. Solutions are parameterized by λEI , which interpolates between ‘private’
inhibition and inhibition that signals ‘internal predictions’. Varying λEI gives different patterns
of inhibitory responses and connectivity structures. (c) The angle ψI between the match and
mismatch inhibitory population responses to stimulus x (rrrxy, rrrx), for different values of µ and
λEI (left). Comparing cosψI before and after learning (right) allowed us to link inhibitory
connectivity structure to inhibitory representations. (d) Analogous correlation between empirical
population responses, computed separately for regular- and fast-spiking neurons. Each point
represents data from one animal. Correlation mean and standard deviation across animals are
also shown. Regular-spiking neurons significantly decorrelate during learning, while fast-spiking
neurons’ correlation does not change. Correlations of regular- and fast-spiking neurons after
learning are similar. (e) The angle θI (left) between inhibitory population responses to the
paired stimuli in the mismatch conditions (rrrx,−rrry), and the angle ψ ′

I (center) between match
and mismatch inhibitory population responses to stimulus y (rrrxy, rrry). Angles are shown as a
function of µ and λEI , leading to experimentally testable predictions pertaining to inhibitory
representations. (right) Fraction of inhibitory R neurons as a function of µ and λEI . For the
experimentally constrained parameter λEI this fraction decreases for inhibitory neurons (black),
while it does not change significantly for excitatory neurons (blue, Fig. 4b). (f) Synaptic weight
distribution of all I-to-E connections before and after learning, when λEI = 0 (left), and for pairs
of E and I neurons belonging to specific functional classes (R to R, middle; PE to R or PE, right).
Learning broadens the overall synaptic weight distribution, potentiates the inhibitory connections
between inhibitory R neurons. (g) Same as (f), when inhibitory structure is matched to data
(λEI = 0.6). Here learning sparsifies and depresses inhibitory connections. Connections between
R neurons remain very small throughout learning. Surprisingly, connections from inhibitory PE
neurons are strongly potentiated.
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Chapter 5

Discussion and Perspective

Learning is a multifaceted phenomenon. Many aspects of the works in the preceding

three chapters can be extended. Here I will discuss three major directions and challenges when

extending them to understand other aspects of learning in the brain.

5.1 Learning in neural-network-like architectures

In chapter 4, we formulated a class of recurrent networks that performs high-dimensional

predictive processing. But we do not know whether there are also other possible networks with

different connectivity that perform predictive processing equally well and whether they exhibit

similar mixed representation as in ours. This is an issue both in the original network (with no

separate E/I neurons) and in the E/I network. Understanding the general mapping from network

structure to its function has been challenging [138, 182], as the space of all possible networks

can be huge and intractable to analysis. Recently, many works have been able to identify network

solutions that perform specific tasks by optimizing the network connectivity to maximize the

task performance [250, 14, 251]. It is found that these trained networks exhibit similar properties

and neural representations as observed in experiments. Similar methods might be also helpful to

find other possible network solutions to predictive processing.

One issue is that most of these works use stochastic gradient descent (SGD) to find

the network connectivity, which is unlikely the algorithm implemented by the brain. On the
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other hand, experiments have discovered different types of plasticity rules in different regions

in the brain [139]. These plasticity rules can serve as learning mechanisms to tune the network

connectivity in the brain. This motivates the general problem on understanding the effects of

learning in neural network type architectures. These results are expected to help identify circuit

mechanisms on many cognitive tasks.

Learning in these neural network models have been extensively studied in statistical

learning community [17, 22, 49]. Yet they mostly focus on how stochastic gradient descent

(SGD) enables learning in feedforward network. These networks have been suggested operating

at an overparametrized regime where the landscape has many flat minima. The learning algorithm

“bias to” those minima that generalizes well in real data [218]. Even if these results are exclusively

for artificial networks trained with SGD, the mathematical tools and concepts are expected to be

also applicable to rate networks under other learning rules. It would be interesting to see how

these types of theory can be built for biological learning rules in the neural networks, such as

what is the relevant tangent kernel and implicit bias for biological plasticity rules and how they

are different from SGD.

A further extension to these works would be to understand learning and plasticity dy-

namics in spiking neural networks. This will help a more systematic study of the effect of

calcium-based STDP rule as presented in chapter 3. While the available mathematical tools for

spiking networks are not as extensive as those for rate-based models, recent studies have begun

to pave the way, developing the necessary methodologies [178, 34].

5.2 Learning across multiple timescales

In chapter 3, we studied spiking network dynamics under calcium-based long-term

plasticity. The long-term plasticity ie also the primary mechanism to generate experience-

dependent predictions as those studied in chapter 4. While (long-term) synaptic plasticity can

span over minutes to days, it only occupies a small portion of the temporal spectra on which
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learning mechanisms in the brain can operate. Other learning mechanisms include gating and

adaptation on faster timescales, meta-plasticity and evolution on slower timescales etc. For

example, various neuromodulators can change the plasticity curves induced by calcium and

serve as gating or meta-plasticity mechanisms [157, 36]. Short-term plasticity can facilitate

stimulus-specific adaptation [86, 233] for predictive processing at much faster timescales.

It is believed that such diversity and heterogeneity in learning mechanisms is crucial

to the brain’s ability of lifelong learning [130]. How do different mechanisms collectively

support learning while not interfering with each other? Similar question arises in machine

learning community, known as continual learning. Addressing this question may require a better

understanding of how different task information are organized within the same network during

learning, which would also advance the challenges mentioned in the last section.

5.3 Learning in higher-level cognition: abstraction, mathe-
matical reasoning and more.

In chapter 4, we studied the high-dimensional predictive representation in recurrent

networks. Learning helps the network form a better and better reconstruction of the multi-

sensory inputs under the energy constrain. Interestingly, during the same learning process, the

network also learns to represent an abstract, categorical variable, which encodes whether the

sensory inputs are familiar or not (Figure 4.2cd). This is a simple example of abstraction that

can be learned by the circuits in the brain.

Decoding the neural mechanisms behind higher-order cognitive capability, like abstrac-

tion and reasoning, is arguably one of the greatest challenge of neuroscience. Abstraction,

together with mathematical reasoning, forms the basis of human capacity for performing sci-

entific research. Although the mental mechanisms underlying these high-order cognition have

been concerned by the psychology and cognitive science community for decades [137, 30], no

current artificial systems or network models can autonomously accomplish these tasks. This is
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likely because we lack a good understanding of the related functioning principles. Unlocking

these principles would certainly be vital for both neuroscience [136] and artificial intelligence

[44, 242]. Even if building such a system in reality necessitates future technological enhance-

ments in hardware or computational power, these principles will help to elucidate the cognitive

limits of the brain.
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[44] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad
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[76] Maria E Gómez-Casati and Juan D Goutman. Divide and conquer acoustic diversity. The
EMBO Journal, 40(5):e107531, 2021.

[77] Michael W Gramlich and Vitaly A Klyachko. Nanoscale organization of vesicle release at
central synapses. Trends in neurosciences, 42(6):425–437, 2019.

[78] Michael Graupner and Nicolas Brunel. Mechanisms of induction and maintenance of spike-
timing dependent plasticity in biophysical synapse models. Frontiers in computational
neuroscience, 4:136, 2010.

[79] Michael Graupner and Nicolas Brunel. Calcium-based plasticity model explains sensitivity
of synaptic changes to spike pattern, rate, and dendritic location. Proceedings of the
National Academy of Sciences, 109(10):3991–3996, 2012.

101



[80] Kirill Grushin, Jing Wang, Jeff Coleman, James E Rothman, Charles V Sindelar, and
Shyam S Krishnakumar. Structural basis for the clamping and ca 2+ activation of snare-
mediated fusion by synaptotagmin. Nature communications, 10(1):1–12, 2019.

[81] Tatsuya Haga and Tomoki Fukai. Extended temporal association memory by modulations
of inhibitory circuits. Physical Review Letters, 123(7):078101, 2019.

[82] A Pejmun Haghighi, Brian D McCabe, Richard D Fetter, Jessica E Palmer, Sabrina Hom,
and Corey S Goodman. Retrograde control of synaptic transmission by postsynaptic
camkii at the drosophila neuromuscular junction. Neuron, 39(2):255–267, 2003.

[83] Kristen M Harris and Richard J Weinberg. Ultrastructure of synapses in the mammalian
brain. Cold Spring Harbor perspectives in biology, 4(5):a005587, 2012.

[84] Stephen C Harrison. Pictures of the prologue to neurotransmitter release. Proceedings of
the National Academy of Sciences, 114(34):8920–8922, 2017.

[85] Ruth Heidelberger, Christian Heinemann, Erwin Neher, and Gary Matthews. Calcium
dependence of the rate of exocytosis in a synaptic terminal. Nature, 371(6497):513–515,
1994.

[86] Itai Hershenhoren, Nevo Taaseh, Flora M Antunes, and Israel Nelken. Intracellular
correlates of stimulus-specific adaptation. Journal of Neuroscience, 34(9):3303–3319,
2014.
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