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The memory system has been evolving at a fast pace recently, driven by the emergence of large-

scale applications and the advance in hardware technology. This trend calls for the birth of big

memory systems with extreme heterogeneity, which combines multiple memory technologies with

different latency, bandwidth, and capacity to construct main memory. The conventional memory

management methods are not adequate to handle the increasing complexity that heterogeneity

brings forward, and will fail to deliver the full potential of the new memory. Specifically, the

heterogeneity of memory systems brings a substantial disparity in the performance and efficiency,

making the decision of which technology to use at what times intricate.

The performance of heterogeneous memory-based big memory systems highly depends on the

data locality. By dynamically profiling memory access behaviors, memory management solutions

move frequently accessed (or hot) data from slow to fast memory and less frequently accessed

(or cold) data from fast to slow memory. However, the decision of how to spread data across all

memory components in big memory systems, which data to move, and at what times is not trivial.

This dissertation proposes a series of techniques, spanning from architecture, runtime systems,

operating systems, programming models, to applications and algorithms, which are used to

efficiently identify which data in applications are performance-critical, timely determine when to

perform data migration, and select where to place those data in big memory systems. Specifically,

this dissertation contains six common scenarios using big memory systems with big memory

applications such as machine learning/artificial intelligence applications, large-scale scientific

simulation, and in-memory databases. We propose several software techniques for the efficient

use of big memory systems in all scenarios. By doing so, this dissertation identifies bottlenecks in

the existing memory management solution, explores the unique characteristics of different types

xv



of applications, and bridges gaps from different system stacks to remedy bottlenecks. Evaluation

results based on real-world big memory systems illustrate that with efficient data placement, our

solutions outperform existing OSes-based and hardware-based memory management solutions.
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Chapter 1

Introduction

The era of big memory systems come upon us. From the application perspective, we see

the emergence of machine learning, big data, scientific simulation, and in-memory database

applications, which call for large memory capacity because of large datasets and high performance

enabled by high memory bandwidth for efficient data processing. From the hardware technology

perspective, the emergence of 3D XPoint, through silicon via (TSV) technology and fast

interconnect, brings the potential of significantly increasing memory capacity or memory bandwidth

while reducing memory production cost. Furthermore, the emergence of GPU-like accelerators

brings large performance improvement to data-intensive applications, but imposes high requirements

on memory bandwidth and memory capacity. The above trend is calling for the birth of memory

systems with extreme heterogeneity, which combines multiple memory technologies to construct

big memory systems.

We summarize the features of big memory systems as follow.

• Memory heterogeneity. The big memory systems combine multiple memory technologies

with differences in latency, bandwidth, cost, and other new design parameters such as

persistence and asymmetric read and write performance. The extreme heterogeneity

requires to redesign the memory hierarchy to accommodate big memory systems.

• Huge memory capacity. Different from traditional memory systems, which have only a

few hundreds of gigabytes of DRAM per node, a typical big memory system contains a few

terabyte of memory per node. One of the commonly used big memory system is build with

Intel Optane DC PM and DRAM. With Intel Optane DC PM, the memory capacity on a

single machine can achieve 6TB [83]. The Amazon web service also provides big memory

1
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instances (up to 24 TB per node) for customers to conduct the memory intensive workloads.

The huge memory capacity requires memory management techniques must be scalable.

Memory management is one of the most important and challenging tasks in the computer

system, which includes memory (de)allocation, data placement and migration, etc. The rapid

development of memory techniques has brought new challenges in memory management -

the memory system becomes more complicated than ever. To maximize the performance of

big memory systems, via proper data tiering, allows for the desired performance levels of the

aforementioned classes of applications. To achieve this, software-level [52, 61, 116, 162, 226,

227, 234, 241] and hardware-level [13, 31, 168, 169] approaches in heterogeneous memory (HM)

management build the necessary mechanisms to maximize the utility of the fastest available

memory component via corresponding dynamic migration of frequently accessed data. The task

to identify which data is most appropriate to move and at what times, depending on the available

data access information and performance estimates.

A typical memory management (i.e., performance optimization) on HM includes three steps,

which are memory profiling, migration strategy and migration mechanism. The first step, memory

profiling, answers the question to which data in applications are performance-critical and need

to involve in data migration. The second step, migration strategy, answers questions to when

to perform data migration, and where to place those data in HM. The third step, migration

mechanism, answers the question to how to efficiently migrate data.

The unique features in big memory systems makes the memory management becoming

particular challenging. We summarize the challenges as follow.

Memory profiling. Big memory systems require high accurate and scalable memory profiling

methods. It’s difficult to striking the right balance between accurate and overhead when

profiling big memory systems. Some existing work [103, 141] explore sampling-based hardware

performance counters such as Intel’s PEBS and AMD’s IBS to track memory accesses. Performance

counters count and sample specific events by hardware, which leads to inaccurate profiling results,

especially in TB-scale big memory system. Some existing works [78, 95, 104, 248] manipulate

specific bits in page table entries (PTEs) to track memory accesses at a per-page granularity.

Manipulating PTE provides high accuracy in tracking memory accesses. However, the profiling

overhead scales linearly with the number of tracked pages, which takes several seconds to

track millions of pages (i.e., TB-scale, which is commonly seen in bit memory systems). Such

profiling method is too slow to respond to time-changing access patterns. In this dissertation, we

proposal techniques which utilize applications’ domain knowledge to reduce profiling overhead
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in Chapter 3, 4, 5, and 7. We demonstrate machine learning can be used to predict the memory

access patterns in dynamic neural networks (DyNN) to avoid expensive memory profiling in

Chapter 6. We also introduce a high-accurate, lightweight memory profiling method for TB-

scale multi-tiered memory based on adaptively merging/splitting memory regions, described in

Section 8.

Migration strategy. Migration strategy needs to make data migration decision based on

memory profiling results. It should timely capture hot data without violating the capacity of

fastest (or fast) memory. Existing work [98, 234] leverage caching algorithm such FIFO, LRU as

migration strategy. Caching algorithm is not suitable for big memory systems because following

two reasons. First, the fastest (or fast) memory component in big memory systems contains

hundreds of gigabytes. Maintaining FIFO or LRU list for fastest (or fast) memory component

is too expensive to make data migration decision timely. Second, big memory systems usually

contains multiple memory tiers. A single FIFO or LRU list can not provide enough information

to make migration decision due to multiple migration destination. The dissertation uses a greedy

algorithm to fetch data into fast memory aggressively in Chapter 3; proposes a lightweight

performance model to decide whether performs data migration based on memory component

bandwidth and latency in Chapter 7, and proposes a migration strategy for multiple memory tier

based on memory access heuristic in Chapter 8.

Migration mechanism. Data migration is not free. Data migration overhead depends on

performance features of source and destination memory components, as well as data structure

and data size of migrated data. Minimizing the data migration overhead is critical to obtain

performance gain from memory management. Existing work [234] leverages concurrent migration

and bi-direction migration to reduce the huge page migration overhead in Linux. The dissertation

discuss how to maximize the overlap between data migration and computation using performance

model in Chapter 4 and 7. In Chapter 8, we also proposal a novel data migration mechanism to

optimize read intensive data migration performance.

The above challenges in existing memory management runtime motivate the development of

our techniques that can break the trade-offs in big memory systems management and improve

the runtime system efficiency for modern big memory applications. This dissertation consists of

a series of techniques, spanning operating systems (OSes), runtime systems, applications, and

algorithms, aiming to address above challenges, optimizing away runtime system inefficiencies,

and thus, significantly improve the efficiency of big memory systems while making them easier for

users to deploy and manage their applications. In particular, the contributions of this dissertation
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are:

• Contribution 1. HM-ANN [181], a novel approximate nearest neighbor search (ANNS)

algorithm which breaks the fundamental tradeoff in ANNS algorithms between query

latency and accuracy and enables fast and highly accurate billion-scale ANNS on HM

based big memory systems.

The state-of-the-art ANNS algorithms face a fundamental tradeoff between query latency

and accuracy, because of limited main memory capacity: To store indices in main memory

for fast query response, they have to limit the number of data points in DRAM or

store compressed vectors, which hurts search accuracy. The emergence of HM brings

opportunities to largely increase memory capacity and break the above tradeoff. However,

HM consists of both fast (but small) memory and slow (but large) memory, and using

HM inappropriately slows down query time significantly. To make best utilization of

both fast and slow memory in HM, HM-ANN takes both memory and data heterogeneity

into consideration and enables billion-scale similarity search on a single node. HM-ANN

provides 95% top-1 recall in less than 1ms on billion-scale datasets, and is 2x-5.8x faster

than state-of-the-art.

• Contribution 2. Sentinel [178], a software runtime system for Tensorflow that automatically

optimizes tensor placement in static deep neuron networks (DNN) training on HM.

Memory capacity is a major bottleneck for training deep DNN. HM combining fast (e.g.,

GPU device memory) and slow memories (e.g., CPU host memory) provides a promising

direction to increase memory capacity. However, HM imposes challenges on tensor

migration and allocation for high performance DNN training. Prior work unnecessarily

causes tensor migration due to page-level false sharing, and wastes fast memory space. To

address above problems, we design Sentinel, which coordinates operating system (OS)

with runtime-level profiling dynamically, and enables co-allocating tensors with similar

lifetime and memory access frequency into the same pages to improve tensor movement

efficiency. With the above optimizations, Sentinel successfully avoids out-of-memory

(OOM) issues for large models on GPU, and outperforms five state-of-the-art memory

management solutions for DNN training.

• Contribution 3. ZeRO-Offload [179], a novel heterogeneous deep learning (DL) training

technology that makes large transformer-based model training accessible to everyone.
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Training extremely large models such as natural language processing (NLP) models with

billions of parameter is challenging. It often requires refactorization of the models and the

accesses to prohibitively expensive GPU clusters. ZeRO-Offload utilizes both memory and

computation resources in host CPU to enable large DL model training with limited GPU

resources. Specifically, ZeRO-Offload places memory-consuming tensors such as optimizer

states on CPU memory, and computation-intensive tensors such as parameters on GPU

memory. ZeRO-Offload enables 10x bigger model training on a single GPU and achieves

near-linear speedup on up to 128 GPUs.

• Contribution 4. DyNN-Offload, a memory management system to train dynamic neural

networks (DyNN) with limited GPU capacity.

Managing tensors in DyNN to save GPU memory is challenging, because the dynamic

model structure of DyNN leads to input-dependent tensor access patterns. DyNN-Offload

proposes a learned approach (using a neural network) to increase the predictability of

tensor accesses to facilitate memory management. DyNN-Offload enables fast inference

while providing high prediction accuracy of the learned model. Specifically, DyNN-Offload

reduces input feature space and model complexity based on a new representation of DyNN,

and converts the hard problem of making predictions for individual tensors or operators

into a simpler problem of making predictions for a group of operators. We implement

DyNN-Offload with cross-platform machine learning library onnxruntime. DyNN-Offload

outperforms state-of-the-art solutions by 2%-50% in terms of training time with the same

GPU memory capacity and enables 8x larger model training without out of memory.

• Contribution 5. WarpX-PM [177], a automatic data placement solution for particle-in-cell

(PIC) method on HM-based big memory systems.

The PIC method is an important model that uses computational particles to simulate plasma

particles, such as electrons and protons. High-fidelity PIC simulations often use billions

and even trillions of particles, which requires high memory capacity. I explored the usage of

HM to enable large-scale plasma simulations at unprecedented scales on a single machine.

By analysing the performance of PIC simulation in detail and designed a novel dynamic

data placement strategy, we implemented the strategy in a DOE mission-critical application,

WarpX. WarpX-PM accelerates the execution of WarpX on HM by over 60% (compared

with the case of no management).

• Contribution 6. HM-Keeper, an application-transparent page management system that
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supports the efficient use of multi-tiered big memory systems.

Multi-terabyte big memory systems are often characterized with more than two memory

tiers for large memory capacity and high performance. Those tiers include slow and

fast memories with different latencies and bandwidths. Making effective, transparent use

of the multi-tiered large memory system requires a page management system, based on

which the application can make the best use of fast memories for high performance and

slow memories for large capacity. However, applying existing solutions to multi-tiered

large memory systems has fundamental limitation because of non-scalable, low-quality

memory profiling mechanisms and unawareness of rich memory tiers in page migration

policies. To address the above problems, HM-Keeper is designed based on two principles:

(1) The memory profiling mechanism must be adaptive based on spatial and temporal

variation of memory access patterns. (2) The page migration must employ a holistic design

principle, such that any slow memory tier has equal opportunities to directly use the fastest

memory. HM-Keeper largely outperforms existing page management solutions on large

memory systems. Memory-consuming applications such as in-memory databases, billion-

scale graph processing, and many other big data applications can greatly benefit from

HM-Keeper.

The remainder of this dissertation document is organized as follows.

Chapter 2 includes background descriptions for the emerging of big memory applications 2.1,

the emerging of advanced hardware techniques 2.2. Chapter 3 introduces HM-ANN, a efficient

billion-point nearest neighbour search on HM-based big memory systems. Chapter 4 describes

Sentinel, a efficient tensor migration and allocation solution on HM for deep learning. Chapter 5

proposes techniques used in ZeRO-Offload to democratizing billion-scale model training. Chapter 6

introduces a learning based approach to predict tensor accesses in DyNN called DyNN-Offload.

Chapter 7 discusses WarpX-PM, which contains optimizing large-scale plasma simulations on

HM with effective data placement across memory hierarchy. Chapter 8 introduces a scalable

page management soluyion for multi-tiered big memory systems called HM-Keeper. Finally, we

conclude in Chapter 9 with some exciting future directions.



Chapter 2

Background

2.1 Big Memory Applications

As application data sizes ever exploding, big memory applications are emerging. Big memory

applications are used to solve big problems in math and science. The memory access patterns in

big memory applications typically are complex and irregular. Traditional memory management

techniques fail to scale in the necessary capacities and speeds to accelerate modern analytics. We

summarize the commonly used big memory applications as follow.

Machine learning and artificial intelligence applications. Machine learning and artificial

intelligence applications, such as deep neural networks (DNN), have been shown preliminary

success in many field. The memory wall exist in both training and inference DNN models. For

example, NLP model size has been increased 200x in last three years. Existing works try to

reduce memory consumption and break the memory wall of deploying ML/AI applications, such

as using low-precision tensors [236], distributed training [72, 115, 173, 195], tensor redundancy

removal [172], tensor migration on heterogeneous memory [77, 79, 158, 178, 179], and tensor

rematerialization [38, 55, 88, 100, 196].

Large-scale scientific simulations. Large-scale scientific simulations are widely used to

understand physics, chemistry, and biology. Scientific simulation can be extremely memory-

consuming. For example, in plasma simulation [30], the simulation quality depends on the number

of particles used in the simulation. To enable high-resolution scientific simulation, hundreds

of supercomputer nodes are used simultaneously [208, 210]. The large capacity of persistent

memory (PM) provides the opportunity to enable extra-scale scientific simulation. However,

memory management for scientific simulation is challenging due to its extremely complex data

7
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Heterogeneous Memory Systems

Device Memory

Accelerators /CXL devices

…  
High Bandwidth 
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Host  
Storage

PCIe RDMA
Data Node

Remote Memory

Figure 2.1: The architecture of heterogeneous memory based big memory systems.

access patterns.

In-memory database. In-memory database are widely used in cases where the response

time is critical, such as real-time bidding and caching. Existing works deploy in-memory

database on non-volatile memory DIMM (NVDIMM) to utilize NVDIMM’s high memory

capacity [1, 2, 8, 22, 46, 130, 213]. The data access patterns of in-memory database are usually

irregular, depending on the data structure used in the database and database access distribution.

The unique challenge in memory management at the operating system (OS) level for in-memory

database comes from memory management techniques such as buffers commonly used in-memory

database at application-level, which can conflict with OS-level memory management. To get the

best performance, memory management solutions must be coordinate at all system stacks.

2.2 Heterogeneous Memory Based Big Memory Systems

The emergence of advanced hardware technologies such as 3D XPoint, through silicon via

(TSV) technology and fast interconnect, brings the potential of significantly increasing memory

capacity or memory bandwidth while reducing memory production cost. We introduce real-world

memory devices which as commonly used to build heterogeneous memory based big memory

systems as follow.

Table 2.1: DRAM, HBM, PM comparison

DRAM
High Bandwidth Memory

(TSV)
Persistent Memory

(3D-Xpoint)
Bandwidth 1x 2x 0.1 - 0.25x

Latency 1x 0.75x 4 - 8x
Capacity limited very small large

$/GB 1x ∼4x 0.3x

Figure 2.1 shows the architecture of heterogeneous memory based big memory systems.

The host memory system contains High Bandwidth Memory (HBM), traditional DRAM, and

Persistent Memory. The host memory system can access data in accelerators’ memory or fabric

attached memory such as CXL device through PCIe. The host memory system can also access
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remote memory node through RDMA. Different memory components in figure 2.1 has significant

difference in terms of memory access latency, bandwidth, capacity, and production cost. Table 2.1

summarize the difference between HBM, DRAM and PM.



Chapter 3

Efficient Billion-Point Nearest Neighbor

Search on Heterogeneous Memory

The state-of-the-art approximate nearest neighbor search (ANNS) algorithms face a fundamental

tradeoff between query latency and accuracy, because of small main memory capacity: To store

indices in main memory for fast query response, They have to limit the number of data points

or store compressed vectors, which hurts search accuracy. The emergence of heterogeneous

memory (HM) brings opportunities to largely increase memory capacity and break the above

tradeoff: Using HM, billions of data points can be placed in main memory on a single machine

without using any data compression. However, HM consists of both fast (but small) memory and

slow (but large) memory, and using HM inappropriately slows down query time significantly. In

this work, we present a novel graph-based similarity search algorithm called HM-ANN, which

takes both memory and data heterogeneity into consideration and enables billion-scale similarity

search on a single node without using compression. On two billion-sized datasets BIGANN and

DEEP1B, HM-ANN outperforms state-of-the-art compression-based solutions such as L&C [51]

and IMI+OPQ [50] in recall-vs-latency by a large margin, obtaining 46% higher recall under the

same search latency. We also extend existing graph-based methods such as HNSW and NSG with

two strong baseline implementations on HM. At billion-point scale, HM-ANN is 2X and 5.8X

faster than our HNSW and NSG baselines respectively to reach the same accuracy.

10
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3.1 Introduction

Efficient billion-scale nearest neighbor search has become a significant research problem [23,

24, 90, 93], inspired by the needs of machine learning based applications. Since the number

of entities (images, documents, etc) grows enormously fast, it becomes challenging to find

correspondences in large datasets when there is a requirement for real-time responses (e.g.,

in several milliseconds). Exhaustive search is infeasible at billion-point scales, because it is

extremely computational demanding. Hence, practitioners resort to indexing structures that

perform the approximate nearest neighbor search (ANNS) by restricting a query to search only

a subset of the dataset that includes the desired neighbors [29, 68, 108]. Among those ANNS,

it has been demonstrated that similarity graphs, such as Hierarchical Navigable Small World

(HNSW) [128] and Navigating Spread-out Graph (NSG) [58], obtain superior performance

relative to tree structure based [28, 29, 136, 237], locality sensitive hashing (LSH) based [63],

and inverted multi-index (IMI) based [108] approaches, and they overall provide the best-in-class

latency-vs-accuracy trade-off on most public benchmark datasets.

While obtaining good search speed and accuracy, one major limitation of existing similarity

graphs is that they are very memory consuming and easily run out of memory with a few

hundred millions of vectors. When the dataset becomes too large to fit on a single machine,

the compressed representations of the database points are used, such as Hamming codes [143]

and product quantization [51, 59, 89, 94, 142]. However, the performance of these methods

deteriorates rapidly at higher recall targets, because they calculate approximate distance based

on compressed vectors instead of on the original data vectors. Douze et. al. [51] propose Link-

and-Code (L&C), which combines a similarity graph with quantized nodes and exploits neighbor

nodes to refine the estimation of distance. However, this approach still works poorly at high recall

targets. In [198], the authors explore slow storage to achieve billion-scale ANNS in a single

machine. However, this approach is based on a fundamental assumption that the persistent media

such as SSD is several orders of magnitude slower than DRAM. Based on this assumption, data

accesses to the persistent media during search should be zero. As a result, it maintains a copy of

compressed data in memory with product quantization [198], which results in loss of in-memory

search quality. It then preforms a re-ranking using full-precision coordinates stored on SSD, using

block-level data accesses but with expensive SSD accessing time.

In this work, we present a fast and accurate approximate nearest neighbor search algorithm

for extremely large scale ANN search, called HM-ANN, which is built on top of Heterogeneous

Memory. Heterogeneous Memory (HM) combines cheap, slow but extremely large memory with
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expensive, fast but small memory (e.g., traditional DRAM) to achieve a good balance between

production cost, memory performance and capacity. The emergence of HM brings opportunities

to significantly improve ANNS. Because of the large memory capacity, HM can use full-precision

vectors with accurate distance computation. Since memory access latency/bandwidth of slow

memory component in HM is much faster than slow storage such as SSD, it is possible to

occasionally access data in slow memory during search without paying expensive cost of data

accesses. That being said, releasing full performance potential of HM for ANNS is challenging.

Although the slow memory such as PMM performs ∼80X times faster than SSD, it is still ∼3X

slower than DRAM in terms of random access latency. Therefore, a naive data placement strategy

can hurt the search efficiency badly. It then raises the following research question: can we

leverage HM for ANNS to achieve both high search accuracy and low search latency, especially

when the dataset cannot in DRAM (fast memory)? Specifically, the algorithm should have a clear

advantage over the state-of-the-art ANNS solutions.

HM-ANN enables fast and highly accurate billion-scale ANNS on HM. In particular, we make

the following contributions. (1) We present a fast and accurate billion-scale nearest neighbor

search solution on a single node without compression. Specially, we generalize the HNSW

construction algorithm to have a top-down insertion phase and a bottom-up promotion phase. The

top-down phase creates navigable small world graph as the bottom-most layer, which is also the

largest, placed to the slow memory; The bottom-up promotion phase promotes pivot points from

the bottom layer graph to form upper layers that are placed in the fast memory, which allows

most search accesses to happen in fast memory without losing much accuracy. (2) We explore

memory management techniques such as dynamic migration to prefetch to-be-accessed data from

slow memory to fast memory and parallel search to reduce search time in slow memory. (3) We

introduce a performance model to select search-related hyperparameters that satisfy search time

and recall constraints. (4) We conduct extensive evaluation and show that on two billion-scale

datasets, HM-ANN provides 95% top-1 recall in less than one millisecond; HM-ANN outperforms

state-of-the-art compression-based solutions such as L&C [51] and IMI+OPQ [50] in terms of

recall-vs-latency by a large margin, getting 46% higher recall under the same search latency

budget; Since NSG and HNSW have never been scaled up to a billion vector on a single machine,

we create two strong baselines for them: using first-touch NUMA and hardware-managed caching,

respectively. Our results show that for 95% top-1 recall, HM-ANN outperforms the baselines by

2X-5.8X in terms of search latency.
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3.2 Preliminary and Related Works

3.2.1 ANNS and Similarity Graphs

Similarity graphs like HNSW [128] and NSG [58] have demonstrated superior performance

with polylogarithmic search and graph construction complexity for ANNS [54, 112, 198]. Take

HNSW as an example, which consists of multiple layers. The bottom-layer (L0) contains all

database elements, and the above layers are randomly selected, nested subsets of database

elements. The sizes of the layers follow a geometric progression. During the graph construction

phase, HNSW connects elements in each layer based on the closeness relationship. The

connections of an element consist both long-range links and short-range links to establish the

small world properties. HNSW constrains the length of the neighbors list of each element by a

parameter M . HNSW starts the search at the top layer, and performs a 1-greedy search until it

reaches the nearest neighbor of the query in that layer. That node is then used as an entry point in

the next layer to start search again. At the bottom layer L0, which contains all elements, HNSW

performs a best-first beam search to get the final candidates. HNSW uses a parameter efSearch,

which decides the candidate queue length, to control search time vs. accuracy trade-off. Despite

their outstanding performance, similarity graphs are memory-consuming. For example, for the

Deep1B [23] dataset, they require 384 bytes per vector, which translates to >350 GB DRAM

when including all overheads of data structures, causing out-of-memory failure. Therefore,

existing work mostly evaluate their solutions with a few millions vectors [58, 128].

3.2.2 Heterogeneous Memory

Heterogeneous memory (HM) is emerging. It combines multiple memory components to

construct main memory. HM is typically composed of a high-capacity memory technology such

as non-volatile memory (but high memory access latency) and a high-performance memory

technology (with limited memory capacity) such as DRAM. To make HM performance close to

that of DRAM-only, previous work focuses on hardware- [13, 31, 168, 169, 215] and software-

based [52, 116, 125, 180, 223, 226, 227] solutions to manage data placement on HM. Optane

PMM and DRAM are commonly used to build HM. With PMM, the memory capacity on a single

machine can achieve 6TB [87]. However, the latency and bandwidth of PMM is only 1/3 and 1/6

of DRAM. There are two operating modes for PMM, Memory Mode and App-direct Mode. In

Memory Mode, DRAM works as a hardware-managed cache to PMM. Running the application in

this mode does not require application modifications. App-direct Mode allows the programmer to

explicitly control memory accesses to PMM and DRAM. HM-ANN works in App-direct Mode
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and outperforms Memory Mode in billion-scale dataset search (Section 3.4).

3.3 HM-ANN

The design of HM-ANN generalizes HNSW, whose hierarchical structure naturally fits into

HM. Elements in upper layers consume a small portion of the memory, making them good

candidates to be placed in fast memory (small capacity); The bottom-most layer has all the

elements and has the largest memory consumption, which makes it suitable to be placed in slow

memory. Unlike HNSW, where the majority of search happens in the bottom-most layer, elements

in upper layers now have faster access speed, so it is a reasonable strategy to increase the access

frequency of upper layers. On the other hand, since accessing L0 is slower, it is preferable to have

only a small portion of it to be accessed by each query. The key idea of HM-ANN is therefore to

build high-quality upper layers and make most memory accesses happen in fast memory, in order

to provide better navigation for search at L0 and reduce memory accesses in slow memory.

Notations. In the rest of the paper, we let V denote the dataset with N = |V | to build the

graph; we refer the graph in the layer i ∈ {0, 1, ..., l} of HM-ANN as Gi = (Vi, Ei) where Vi is

the vertex set and Ei is the edge set. We refer Ni as the number of elements in the layer i, and we

have Ni = |Vi|. Because L0 contains all the elements in database, we have V0 = V and N0 = N .

Based on the hierarchical structure of HM-ANN, we have Vi ⊊ Vi−1. Similar to the existing

effort [128], we introduce Mi as the maximum number of established connection for each point v

in the layer i. For v ∈ V , we let D(v) denote the degree of node v, and D(v) =
∑

u∈V m(v, u)

where m(v, u) = 1 if there exits a link between node v and node u.

3.3.1 Graph Construction via Top-Down Insertions and Bottom-up Promotions

We generalize the HNSW construction algorithm to include two phases: a top-down insertion

phase and a bottom-up promotion phase (Alg. 1).

Top-down insertions. The top-down insertion phase is the same as HNSW (Line 1 in

Algorithm 1), where we incrementally build a hierarchical graph by iteratively inserting each

vector v in V as a node in G. Each node will generate up to M (i.e., the neighbor degree)

out-going edges. Among those, M − 1 are short-range edges, which connect v to its M − 1

nearest neighbors according to their pair-wise Euclidean distance to v. The rest is a long-range

edge that connects v to a randomly picked node, which may connect other isolated clusters. It

is theoretically justified that graphs (e.g., L0) constructed by inserting these two types of edges

guarantees to have the small world properties [58, 128, 221].
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Bottom-up promotions. The goal of the second phase is to build a high-quality projection

of L0 elements into the layer 1 (L1), such that search in L0 can find true nearest neighbours of

the query with only a few number of hops. Ideally, HM-ANN wants to achieve the goal that

performing 1-greedy search in L0 is sufficient to achieve high recall, so that the slowdown caused

by accessing the slow memory is minimal. A straightforward way to project the L0 elements into

L1 is to randomly select a subset of elements in L0 to be L1, similar to what HNSW already does

to build upper layers. However, we observe that such an approach leads to poor index quality. As

a result, many searches end up happening in L0 (slow memory), causing long search latency.

Algorithm 1: HM-ANN Graph Construction Algorithm.
Input: vector set V ,vector dimension d, number of established connection M , size of

dynamic candidate list efConstruction
Output: Multi-layer graph HM-ANN
Parameters :# of nodes in layer i Ni, HM-ANN layer depth l
1 build graph hnsw ← HNSW (V, d,M, efConstruction) ;
2 for v in V do
3 D[v]← the degree of v as in zero-layer L0;

4 sort D for descending order ;
5 remove nodes in layer 1 to l ;
6 ep← get the highest degree node v in D(v) ;
7 for v in V in D(v) descending order do
8 for i← l...1 do
9 if Ni == 0 then

// layer i is full
10 W ← search_layer(v, {ep}, ef = 1, i);
11 ep← get nearest vector from W to v;

12 else
// add v in layer i to 1

13 for j ← i...1 do
14 W ← search_layer(v, {ep}, efConstraction, j) ;
15 neighbors← heuristic select Mi nodes from W in layer j ;
16 add bidirectional connections from neighbors to v at layer j;
17 shrink connections if ∃q ∈ neighbor and Dout(q) > Mi;
18 Nj = Nj − 1;

19 beark;

HM-ANN uses a high-degree promotion strategy (Lines 7-19 in Algorithm 1). This strategy

promotes elements with the highest degree in L0 into L1. From the layer i (i ≥ 2) to i + 1,

HM-ANN promotes high-degree nodes to upper layer with a promotion rate of 1/M , where M is



16

the maximum number of neighbors for each element (i.e., Mi = M , where i = 2...l). The similar

promotion rate setting is used in HNSW [128] and typical skip list [165].

HM-ANN increases search quality in L1 by promoting more nodes from L0 to L1 and setting

the maximum number of neighbors for each element in L1 to 2×M (i.e., M1 = 2×M ). The

number of nodes in upper layers (Ni, where i = 1..l) is decided by available fast memory space.

Excluding the fast memory space for dynamic migration (discussed in Section 3.3.2) and data

structure used for search (e.g, the visited elements set V E in Algorithm 3), the remaining fast

memory space is used for storing data and links for each node. Section 3.3.4 quantifies memory

usage in each layer, from which we can calculate Ni for each layer.

The high-degree promotion strategy is based on the following observation. The hub nodes

of the graph at L0 are those nodes with a large number of connections (i.e., high degree). In the

small world navigation algorithm, a higher degree node provides better navigability [26]. Most of

the shortest paths between nodes flow through hubs. In other words, the average length of the

navigation path (i.e., number of hops) is the smallest, when the adjacent node with the highest

degree is selected as the next hop. By promoting the high-degree nodes, the resulting L1 layer

allows HM-ANN to effectively reduce the number of search in L0, compared with the random

promotion strategy.

3.3.2 HM-ANN Graph Search Algorithm

Algorithm 2: HM-ANN K-NN-Search
Input: multi-layer graph HM-ANN, query element q, number of nearest neighbour to

return K
Output: K nearest elements to q
Parameters :size of the dynamic candidate list in layer 1 and 0 as efSearchl1 and

efSearchl0 respectively
1 ep← entry point of HM-ANN;
2 L← level of ep ;
3 W ← ∅;
4 for i← L...2 do
5 W ← search_layer(q, {ep}, ef = 1, i);
6 ep← get nearest element from W to q;

7 W ← search_layer(q, {ep}, efSearchl1, 1);
8 W ← search_layer(q,W, efSearchl0, 0);
9 return K nearest elements from W to q

Fast memory search. The search in fast memory begins at the entry point in the top layer and

then performs 1-greedy search from the top layer to the layer 2, which is the same as in HNSW, as
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shown in Algorithm 2. To narrow down the search space in L0, HM-ANN performs the search in

L1 with a search budget controlled by efSearchL1 by using Algorithm 3. efSearchL1 defines

the size of dynamic candidate list in L1. Those candidates in the list are used as entry points for

search in L0 (HNSW uses just one entry point), in order to improve search quality in L0. We

provides algorithm details in the appendix.

Parallel L0 search. In L0, HM-ANN evenly partitions the candidates from searching L1 and

uses them as entry points to perform parallel multi-start 1-greedy search with Thr threads in

parallel as shown in Algorithm 3. The top candidates from each search are collected to find the

best candidates. Parallel search makes best use of memory bandwidth and improves search quality

without increasing search time. Thr is determined by peak memory bandwidth constrained by

hardware divided by memory bandwidth consumption by one thread, which is easy to calculate.

Algorithm 3: HM-ANN Search Layer
Input: query vector q, enter points set EP , number of

nearest neighbors to query q to return ef , layer

number l

Output: ef nearest vectors to q

Parameters :# of threads Thr, set of visited elements

VE, set of candidates C, dynamic list of

found nearest neighbors W

1 Thr = min(Thr, |EP |)
2 partition EP into EPi, i← Thr − 1...0

3 do in parallel

4 V Et ← EP ; Ct ← EPt; Wt ← EP

5 while |Ct| > 0 do

6 if min_dist(q,Ct)>max_dist(q,Wt) then

7 break;

8 evaluate neighbors of c ∈ Ct

9 update V Et and Wt

10 merge Wi into W , i← Thr − 1...0

11 return ef nearest vectors from W to q

Different from the SSD-

based ANNS [198, 245], the

data in slow memory in HM-

ANN can be directly accessed

by processors, and there is

no duplication between fast

and slow memories. However,

due to high latency and low

bandwidth of slow memory,

HM-ANN should still make

memory accesses in fast memory

as many as possible. HM-

ANN implements a software-

managed cache in fast memory

to prefetch data from slow

memory to fast memory before

the memory access happens. In

particular, HM-ANN reserves

a space in fast memory (∼2

GB) called migration space.

When searching L1, HM-ANN

asynchronously copys neighbor
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elements of those candidates in efSearchL1 and the neighbor elements’ connections in L1 from

slow memory to the migration space in fast memory. When the search in L0 happens, there is

already a portion of to-be accessed data placed in fast memory, which leads to shorter query time.

3.3.3 Performance Model-Guided Parameter Selection

The overall search quality of HM-ANN is related to the choice of efSearch at L1 (i.e.,

efSearchL1) and efSearch at L0 (i.e., efSearchL0), which controls the number of distance

computation happens in fast memory and slow memory, respectively. To achieve a low query

latency, ideally we would like efSearchL0 to be as small as possible, such as 1-greedy search

(efSearchL0 = 1). However, although searching L1 narrows down the L0 search into a small

local region, to have a high search quality requires that efSearchL0 can not be too small, because

the nearest neighbors not included L1 and are not visited in L0 are definitely lost. Given the

large search space of efSearchL1 and efSearchL0, it is preferable to have a systematic way to

do parameter selection. This section provides a performance model for HM-ANN, with an eye

towards being able to set efSearchL1 and efSearchL0 properly to meet the goal of having low

response time and high accuracy.

Response time constraint. To provide interactive service, the search latency must be lower

than a response time limit. In HM-ANN, we model the search latency as T = TL1∗ + TL0, where

TL1∗ models search time in L1 and above, which is primarily dominated by search in L1, and TL0

models search time in L0. The average query time at a layer is bounded by efSearch×C×TDC ,

where efSearch is the size of dynamic candidate list in the layer and can be viewed as the beam

length in the best-first beam search; C is the average number of distance computations per beam

before finding the nearest neighbor at a layer; TDC is the execution time to calculate a pair-wise

distance.

TDC is a constant and can be measured offline on both fast memory (TDCfast_mem
) and

slow memory (TDCslow_mem
). C is calculated by C = #steps × DC_per_step, which is a

multiplication of the average number of steps before we reach the nearest neighbor (#steps)

and maximum number of distance computation per step (DC_per_step). #steps in a layer is

bounded by a constant [128] based on the theory of Delaunay graph and is independent of the

dataset size; DC_per_step is bounded by the maximal out-degree M . When modeling search

time in L0, we consider the effect of parallel search with a parallel degree Thr. For the execution

time, we therefore have:
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T = TL1∗ + TL0

= efSearchL1 × C × TDCfast_mem
+

⌈
efSearchL1

Thr

⌉
× efSearchL0 × C × TDCslow_mem

≤ search_time_constraint

(3.1)

Satisfy both response time and accuracy constraint. Beyond response time constraint, high

accuracy is clearly also important for high-quality ANNS, because otherwise users will not be

able to find what they are looking for. In practice, the accuracy of search must be higher than an

accuracy target θ. Therefore, for a given HM-ANN graph, HM-ANN first applies Equation 3.1

to analytically get a set of candidate (efSearchL0, efSearchL1) pairs that satisfy the response

time constraint. This step often significantly reduces the search space to only a small set of

configurations.

Among those candidate pairs, HM-ANN uses a learning query set randomly sampled to

measure the expected accuracy E(θ), with efSearchL1 ≥ 1, and efSearchL0 ≥ 0 as

constraints. HM-ANN then chooses those configurations that satisfy E[θ] ≥ θ. Finally,

HM-ANN uses grid search to choose the configuration that leads to the shortest query time.

3.3.4 Complexity Analysis

Search complexity. HM-ANN constructs each layer as a navigable small world graph, which

enables the number of hops scales logarithmically on the greedy search path. Similar to HNSW,

HM-ANN constructs the graph with a fixed maximum number of links for each element, which

guarantees that the average degree of each element in one layer is constant. The overall number of

distance computation is proportional to a product of the number of hops and the average degree of

the elements on the greedy path. Therefore, the search complexity in each layer of HM-ANN is

logarithmic. Given a layer i with Ni elements, the search complexity of the layer i is O(log(Ni)).

Even with the bottom-up promotion, the maximum number of elements in each layer of HM-ANN

remains N . Therefore, the overall search complexity of HM-ANN stays at O(log(N)).

Index construction complexity. The construction of HM-ANN contains two passes over the

dataset, due to the top-down insertions and the bottom-up promotions. The insertion of an element

involves a graph traversal followed by a constant cost of inserting short-range and long-range

links. Therefore, this phase has a cost of O(Nlog(N)). The second pass of HM-ANN involves
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degree calculation and ranking and then extracts elements with high-degree in L0 into upper

layers. Calculating the degree of all elements and sorting them in terms of the degree at L0 is

bounded by O(N×M+Nlog(N)). Therefore, in total the construction complexity of HM-ANN

is O(N ×M +Nlog(N)).

Memory usage complexity. HM-ANN stores connection and elements separately in slow

and fast memories. In particular, HM-ANN stores the connections in L0 and the elements that

only appear in L0 into slow memory, and stores connections and elements at upper layers into fast

memory. The fast memory consumption of HM-ANN equals to the sum of memory consumption

of each layer (except L0): fast_memory_size =
∑l

i=1(Ni ×Mi)× byte_per_link +N1 ×
byte_per_element, where Ni is the number of elements in layer i (i > 0), and Mi is the number

of maximum established connections for each element in the layer i. The slow memory stores

most of L0, which equals to slow_memory_size = (N0 ×M0) × byte_per_link + (N0 −
N1)× byte_per_element.

3.4 Evaluation

3.4.1 Methodology

Testing bed. All experiments are done on a machine with Intel Xeon Gold 6252 CPU@2.3GHz.

It uses DDR4 (96GB) as fast memory and Optane DC PMM (1.5TB) as slow memory.

Workloads. We use five datasets, BIGANN [90], DEEP1B [23], SIFT1M [90], DEEP1M [23],

and GIST1M [18]. BIGANN contains one billion of 128-dimensional SIFT descriptors as a base

set and 10,000 query vectors. DEEP1B contains one billion of 96-dimensional feature vectors

of natural images and 10,000 queries. SIFT1M and DEEP1M are one-million subset vectors

in BIGANN and DEEP1B respectively. GIST1M contains one-million 960-dimensional image

descriptors.

Evaluation metrics. We measure the query response time as the average time of per-query

execution time. We measure the accuracy with top-K recall (e.g., K=1, or 100), which measures

the fraction of the top-K retrieved by the ANNS that are exact nearest neighbors.

Comparison configurations. For billion-scale tests, we include the following schemes:

two state-of-the-art billion-scale quantization-based methods (IMI+OPQ [50] and L&C [51]);

and the state-of-the-art non-compression-based methods (HNSW [128] and NSG [58]). To the

best our knowledge, directly running HNSW and NSG at billion-scale points would trigger the

out-of-memory error, and no prior work has been able to run HNSW and NSG with the two

billion-scale datasets on a single machine, without compression. We therefore create two baseline
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configurations for both HNSW and NSG, using existing system-level data placement solutions: a

first-touch NUMA configuration that places data in fast memory first until it is full and then in

slow memory, and a Memory Mode configuration that treats fast memory as a hardware-managed

fully-associative cache of slow memory. We include comparisons of HM-ANN at million-scale

datasets with with HNSW [128] and NSG [58], which are known to be the best-in-class solution

on the three million-scale datasets.

3.4.2 Experiment Results

Billion-scale algorithm comparison. We compare HM-ANN with the graph- (HNSW and

NSG) and quantization-based algorithms (IMI+OPQ and L&C). For HNSW, we build graphs with

efConstruction and M set to 200 and 48 respectively; For NSG we first build a 100-NN graph

using Faiss [4] and then build NSG graphs with R = 128, L = 70 and C = 500. We collect results

on NSG and HNSW using Memory Mode, since it leads to overall better performance than using

first-touch NUMA (see Section 3.4.3 for the comparison of the two). For IMI+OPQ, we build

indexes with 64- and 80-byte code-books on BIGANN and DEEP1B respectively. We present the

best search result with search parameters nprobe=128 and ht=30 for BIGANN and with autotuning

parameter sweep on DEEP1B. For L&C, we use 6 as the number of links on the base level, and

use 36- and 144-byte OPQ code-books. We use the same parameters (efConstruction=200 and

M=48) as HNSW to construct HM-ANN. We set efSearchL0=2 and vary efSearchL1 to show

the latency-vs-recall trade-offs.

Figures 3.1 (a)-(d) visualize the results. Overall, HM-ANN provides the best latency-vs-recall

performance. Figure 3.1 (a) and (b) show that HM-ANN achieves the top-1 recall of > 95%

within 1ms, which is 2x and 5.8x faster than HNSW and NSG to achieve the same recall target

respectively. IMI+OPQ and L&C cannot reach the similar recall target, because of precision

loss from quantization. As another point of reference, the SSD-based solution, DiskANN [198]

(not open-sourced), provides 95% top-1 recall in 3.5ms. In contrast, HM-ANN provides the

same recall in less than 1ms, which is at least 3.5× faster. We compare top-100 recall shown in

Figures 3.1 (c) and (d). HM-ANN provides higher performance than all other approaches. For

example, it obtains top-100 recall of > 90% within 4 ms, while performs 2.8x and 5x faster than

HNSW and NSG with the same recall target respectively. Quantization-based algorithms perform

poorly and have difficulties to reach a top-100 recall of 30%.

Table 3.1 shows the index construction time and index size of HNSW, NSG, and HM-ANN.

Among the three, HNSW takes the shortest time to build the graph. HM-ANN takes 8% longer
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Table 3.1: Indexing time and memory consumption for graph-based methods on billion-scale
datasets

BigANN DEEP1B
Indexing Search Indexing Search

Graph
size

Indexing
time

Promo.
rate

Fast-mem
usage

Slow-mem
usage

Graph
size

Indexing
time

Promo.
rate

Fast-mem
usage

Slow-mem
usage

HNSW 475GB 90h 0.02
96GB

(hw caching) 490GB 723GB 108h 0.02
96GB

(hw caching) 748GB

NSG 285GB 115h -
96GB

(hw caching) 303GB 580GB 134h -
96GB

(hw caching) 599GB

HM-ANN 536GB 96h 0.16 96GB 462GB 756GB 117h 0.11 96GB 681GB

time than HNSW, because it takes an additional pass for the bottom-up promotion. However,

HM-ANN is still faster to construct than NSG. In terms of memory usage, HM-ANN indexes are

5–13% larger than HSNW, because it promotes more nodes from L0 to L1. In terms of memory

usage, HM-ANN consumes less fast memory than HNSW and NSG, which is valuable to reduce

production cost [131, 183]. HNSW and NSG use all fast memory because they do not explicitly

manage HM and by default using Memory Mode consumes all fast memory. The sum of slow and

fast memory consumption can be larger than the index size, because there are metadata needed

for search that are not counted into the index size.

Figure 3.1: Query time vs. recall curve in (a) DEEP1B top-1, (b) BigANN top-1, (c) DEEP1B
top-100, (b) BigANN top-100, respectively.

Million-scale algorithm comparison. Besides the billion-scale tests, we evaluate HNSW,

NSG and HM-ANN with the three million-scale datasets, which can fit in DRAM. For HNSW

and HM-ANN, we set efConstruction and M to 100 and 16 for SIFT1M and DEEP1M; We

set efConstruction and M to 100 and 32 for GIST1M. For NSG we use parameters in [7]

suggested by the authors to build the graph. Figure 3.2 shows the result. Overall, HM-ANN

achieves competitive and sometimes even better performance as HNSW and outperforms NSG on

all three million-scale datasets. We further verify that the total number of distance computation

from HM-ANN is lower (on average 850/query) than that of HNSW (on average 900/query)

to achieve 99% recall target. This indicates that HM-ANN provides better accuracy-vs-latency

results even when the datasets can fit in DRAM.
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Figure 3.2: Query time vs. recall curve with (a)DEEP1M, (b)SIFT1M, and (c)GIST respectively.

3.4.3 Ablation Studies

Effectiveness of high-degree promotion. We compare the random promotion and high-

degree promotion strategies. In this study, both strategies use the same number of promoted nodes

for indexing and the same configurations for search. Figure 3.3 shows the results and indicates

that high-degree promotion outperforms the baseline HNSW largely. The high-degree promotion

performs 1.8x, 4.3x and 3.9x faster than the random promotion to reach 95%, 99%, and 99.5%

recall targets, respectively, indicating that promoting high-degree nodes is effective for improving

search efficiency.

Tfast_mem and Tslow_mem are measured by performing 10k distance computation in fast and

slow memories and then report the average. Tslow_mem and Tfast_mem are 421ns and 183ns

respectively.

HNSW with Parallel L0 search. We investigate whether it is sufficient to just modify the

search procedure without modifying the hierarchical NN graph of HNSW to achieve similar

performance gains as HN-ANN. Figure 3.4 shows the latency-vs-recall performance of default

HNSW using parallel L0 search. We use T nearest neighbours found during HNSW L1 search

as entry points for the parallel search in L0, where T is the number of parallel threads. We set

T = 4, same as HM-ANN. HNSW with parallel L0 search only slightly outperforms HNSW. This

suggests that parallel L0 search alone is not sufficient for performance improvement. Without

it, the elements of L1 in HNSW are selected randomly and sparse, and the entry nodes found

through L1 search are sub-optimal. As a result, even though the parallel search in L0 searches

more nodes under the same time, the accuracy only slightly improves.

Performance benefit of memory management techniques in HM-ANN. Figure 3.5 contains

a series of "stepping stones" between HNSW and HM-ANN to show how each optimization of

HM-ANN contributes to its improvements. “HNSW + Bottom-up promotion (BP)” modifies the

HNSW algorithm, mapping the bottom-most layer (i.e., L0) to the slow memory while building a

high-quality projection of L0 in fast memory without significantly impacting search efficiency. It
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Figure 3.5: Comparison of
techniques in HM-ANN.

provides the benefit of improved search quality in fast memory while providing better entry points

to L0 search in slow memory. Together with the parallel L0 search (i.e., “HNSW + Bottom-up

promotion (BP) + Parallel L0 search (PL0)”) it significantly improves the search efficiency versus

running HNSW on HM without explicit data management. For example, to reach a 99% recall

target, HM-ANN reduces the query time by 1.75x compared with HNSW. Finally, by prefetching

data from slow memory to fast memory, HM-ANN further pushes the search efficiency frontier.

System level data management solutions. We compare HM-ANN with HNSW in Memory

Mode and first-touch NUMA (as a software-based solution to manage data placement in HM,

HM-ANN does not work with Memory Mode and first-touch NUMA). We also evaluate HNSW

on slow memory without using any DRAM. Figure 3.6 shows the result. The figure shows that

HM-ANN outperforms HNSW with Memory Mode and first-touch NUMA by 2x and 3.7x while

achieving top-1 recall above 95%. The results suggest that although HM enables large memory

capacity, simply using a system-level solution without algorithm change cannot make the best use

of HM. Explicitly managing data for HM as HM-ANN does is the key to achieve superior latency

and recall results.

Effectiveness of performance model-guided search. Figure 3.7 shows the distribution

of (efSearchl0, efSearchl1) pairs that meet time constraint of <1ms and recall constraint of

≥90%. The bottom-left and top-right regions include those pairs violating either recall or time

constraint; The colored regions are those meeting the constraints; The darker color has shorter

query time. Figure 3.7 shows the performance model removes most of configurations violating

the constraints.

To show effectiveness of performance modeling, we evaluate HM-ANN with BIGANN and 5

latency constraints from 1ms to 5ms (vertical red lines) in Figure 3.8. Red triangles represent

(efSearchl0, efSearchl1) that meet the latency constraints set by Eqn. 3.1. Among those, we

list 9 recall constraints marked with horizontal blue lines. For those recall constraints, 9 five-stars
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are those selected by HM-ANN, which meet the corresponding recall constraints while also

having the shortest query time.
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management methods.

1 6 11 16 21 26 31 36 41 46
efSearch_L1

0

5

10

15

20

25

30

35

40

45

50

ef
S

ea
rc

h_
L0

400

500

600

700

800

900

1000

Q
ue

ry
 ti

m
e(

us
)

Figure 3.7: Distribution of
efSearch.

0 1 2 3 4 5
Query time (ms)

0.90

0.92

0.94

0.96

0.98

1.00

To
p-

1 
re

ca
ll

HM-ANN w/o configuration selection
HM-ANN seleted configuration

Figure 3.8: Performance with
various efSearch.

3.5 Conclusions

HM can store billions of point database in a single machine. However, indexing and search

algorithms on HM must be re-designed to release large performance potential of HM. We present

a new graph-based indexing and search algorithm called HM-ANN, which maps the hierarchical

design of the graph-based ANNs with memory heterogeneity in HM. Furthermore, HM-ANN

adjusts the amount of distance computations at different layers to allow most accesses happen in

upper layers stored in fast memory. Combined with a set of system-level techniques, HM-ANN is

able to avoid expensive accesses in slow memory without sacrificing accuracy. Evaluation on

billion-scale datasets show that HM-ANN establishes the new state-of-the-art for indexing and

searching billion point datasets.



Chapter 4

Efficient Tensor Migration and

Allocation on Heterogeneous Memory

Systems for Deep Learning

Memory capacity is a major bottleneck for training deep neural networks (DNN). Heterogeneous

memory (HM) combining fast and slow memories provides a promising direction to increase

memory capacity. However, HM imposes challenges on tensor migration and allocation for high

performance DNN training. Prior work heavily relies on DNN domain knowledge, unnecessarily

causes tensor migration due to page-level false sharing, and wastes fast memory space. We

present Sentinel, a software runtime system that automatically optimizes tensor management

on HM. Sentinel uses dynamic profiling, and coordinates operating system (OS) and runtime-

level profiling to bridge the semantic gap between OS and applications, which enables tensor-

level profiling. This profiling enables co-allocating tensors with similar lifetime and memory

access frequency into the same pages. Such fine-grained profiling and tensor collocation avoids

unnecessary data movement, improves tensor movement efficiency, and enables larger batch

training because of saving in fast memory space. Sentinel reduces fast memory consumption by

80% while retaining comparable performance to fast memory-only system; Sentinel consistently

outperforms a state-of-the-art solution on CPU by 37% and two state-of-the-art solutions on GPU

by 2x and 21% respectively in training throughput.

26
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4.1 Introduction

Deep neural networks (DNN) have been shown preliminary success in many fields. However,

training those models can be extremely memory-consuming. For example, the recent language

models and translation models have 100s of billions of parameters [193] requiring 100s of GB

of memory for training. Although it has been repeatedly demonstrated that larger models and

more data lead to improved model accuracy on many tasks [43, 74, 170], the memory becomes

a major bottleneck either when training models with more weight parameters or with larger

batch sizes. Lack of memory causes DNN training to have out-of-memory crashes and limits

the sizes of the model and batch for training, causing degradation in training effectiveness and

efficiency [182, 218]. Adding more DRAM can mitigate the problem, but often comes with huge

costs. In this work, we look into overcoming the memory scaling issue for DNN training by

leveraging heterogeneous memory (HM) to achieve larger memory capacity.

HM is an emerging memory architecture. Within HM, multiple memory components with

different technologies are combined to construct main memory. HM is typically composed of a

high-capacity memory (but with relatively worse performance, such as non-volatile memory) and

a high-performance memory (but with smaller capacity, such as DRAM). HM brings a promising

solution to increase memory capacity and avoids the limitation of existing memory technologies.

HM for DNN training has been explored by several studies [77, 79, 106, 133, 158, 182, 218].

Most of them focus on mitigating GPU-side memory space limitation by leveraging larger

CPU-side system memory [79, 106, 133, 158, 182, 218], while a recent study demonstrates a

HM that uses a persistent memory to scale the CPU-side DRAM capacity [77]. As observed

in these studies, computation efficiency of using HM requires a careful memory management,

such as timely tensor placement and migration, subject to the access patterns of tensors and the

performance disparity of different memory components. More specifically, existing solutions

explore methods to proactively release and prefetch temporarily inactive tensors, determine

inactive tensors based on DNN topology, and find data swap time between memories by analyzing

tensor access order [77, 79, 106, 158] or using detailed domain knowledge [133, 182, 218].

However, there has not been a study that thoroughly evaluates individual tensor characteristics

and the semantic gap between operating system/architecture and memory management in deep

learning frameworks. Missing this study leaves many performance improvement opportunities on

the table. For example, most of the existing solutions focus on the order of tensor accesses to

determine the timing and target tensors to swap. However, such solutions are oblivious to tensor

characteristics such as number of tensor accesses in memory and tensor lifetime, which would
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lead to unnecessary tensor migrations. For example, some tensors such as short-lived ones might

be better to stay in fast memory rather than unnecessarily migrated to be used only a few times or

never used again.

More importantly, most of the existing studies tackle tensor placement at the granularity

of individual tensors. However, as the memory management of operating system (OS) and

underneath architecture is conducted at the page level, such a tensor-level mapping would lead

to memory fragmentation or unexpected tensor migration if multiple tensors having different

access patterns are mapped to the same page. For example, if there are four pages, where 25%

of each page is mapped with tensors frequently accessed in the similar time and having similar

lifetime, all four pages would need to be placed in fast memory, even though the remainder of

the four pages is filled with rarely accessed tensors whose lifetimes are different from that of the

frequently accessed tensors. However, if we co-locate all frequently accessed tensors to one page

in this example, placing this single page in fast memory would be sufficient for high performance

training.

To address the aforementioned issues, we propose Sentinel, a software runtime system that

automatically manages and optimizes tensor migration and allocation in HM, and allows to

train DNN models with a much smaller size of fast memory but achieves performance similar

to that on the fast memory-only system. To do that, we first conduct an extensive study on

workload characteristics of DNN. We observe that there are a large number of small (less than

one page) and short-lived (lifetime shorter than one layer) tensors. On the other hand, the peak

memory consumption of frequently accessed tensors (hot tensors) is not big (tens of MB), and

tensors commonly share pages but with different access frequencies. These observations indicate

that an ideal memory management strategy for DNN training should co-locate tensors with

similar lifetime and access frequency in fast memory while minimizing page-level false sharing

to reduce peak consumption of fast memory. To our best knowledge, this is the first in-depth

tensor and memory mapping characterization of DNN training; It is generally applicable on linear

and non-linear network topologies and includes all tensors, which is different from those of

existing studies [38, 92, 182, 218] that focus on specific tensors (e.g., input tensors of convolution

operations or model weights) on certain DNN.

Driven by the observations, Sentinel enables efficient DNN training with three major innovations.

First, Sentinel implements a tensor-level dynamic profiling to collect characteristics of individual

tensors which is impossible in the traditional page-level profiling. This method bridges the

semantic gap between OS and DNN application. It allows the runtime to associate tensors with
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the DNN topology, dynamically identifying long-lived but sparsely accessed tensors that can be

migrated. More importantly, our profiling method counts tensor accesses in memory (i.e., the

number of accesses to each tensor in memory), not just checks whether tensors are referenced

in operations as in many HM management solutions for DNN training [77, 79, 92, 158, 182,

218, 244]. Counting tensor accesses in memory is fundamental for memory optimization for

DNN, because it leads to new optimization techniques, such as tensors co-location and being

graph-agnostic.

Second, Sentinel improves tensor migration efficiency by avoiding page-level false sharing

and unnecessary tensor movement, which is often ignored in related work [77, 79, 92, 158, 182,

218, 244]. Sentinel aggregates small tensors having a similar lifetime and access count into

the same page to prevent page-level false sharing. Sentinel also pins short-lived tensors to a

reserved fast memory space to prevent their unnecessary movement to slow memory. Note that

the unnecessary movement of short-lived tensors are commonly observed in existing page-level

data migration [234] and hardware-managed caching mechanisms [83, 175, 238], which leads to

memory bandwidth waste and performance loss.

Third, Sentinel employs a performance model-directed proactive migration strategy. Similar

to existing solutions [158], Sentinel dynamically moves unused tensors out of fast memory and

moves to-be-used tensors into fast memory to save its space. However, unlike existing studies [182,

218], we consider performance trade-off between migration frequency and performance benefit,

as frequent tensor movement can be exposed to the critical path and cause performance loss.

To identify the optimum migration interval that not only reduces memory capacity but also

avoids performance loss, we introduce analytical performance models that allow exploration

of various migration intervals and effectively find the optimum one with negligible runtime

overhead. The performance models bring great flexibility and high performance for tensor

migration across layers for various DNN topologies. The tensor migration is controlled purely

subject to the performance models to maximize overlap between tensor migration and DNN

training, unlike existing studies that use migration algorithms heuristically designed for given

network topologies [38, 92, 182, 218] or limited memory capacity [79, 158].

In summary, the key contributions are as follows.

• Characterization study. We systematically analyze how tensors are allocated and accessed in

TensorFlow.

• Runtime system. We introduce a runtime system, Sentinel, which is featured with a novel

profiling method counting memory accesses at the tensor level. Guided by analytical performance
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models, Sentinel enables efficient tensor migration by avoiding page-level false sharing and

unnecessary data movement.

• Evaluation. We evaluate Sentinel on two HM systems: one is based on DDR4 (fast) and

Optane DC persistent memory (slow), and the other is based on NVIDIA V100 GPU (fast)

and CPU (slow). On the Optane-based system, we show that using only 20% of peak memory

consumption of DNN models as fast memory size (a 5X reduction), Sentinel achieves similar

performance (9% performance difference on average) to DRAM-only system. Furthermore,

Sentinel consistently outperforms two state-of-the-art solutions ( IAL [234] and AutoTM [77])

as well as DRAM-cached Optane (using DRAM as a hardware cache) and first-touch NUMA

policy, by 37%, 17%, 23% and 70% in training throughput, respectively. On the GPU-based

system, Sentinel enables larger batch size in training by 1.9X and higher training throughput

by 2X than vDNN [182], and enables comparable batch size and higher training throughput by

16%, 17% and 65% than three state-of-the-art solutions (Capuchin [158], AutoTM [77] and

SwapAdvisor [79]), respectively.

4.2 Background

Training DNN models. A typical DNN model comprises of a stack of layers, each of which

is a group of neurons. Each neuron in a layer computes a non-linear function of the outputs of

neurons in the preceding layer, using a set of weights. Training DNN often involves a large number

of training iterations (each iteration is a training step). In each step, a batch of training samples

are fed into DNN. Performance of each step (e.g., execution time and memory access pattern)

remains stable across steps, hence highly predictable [120, 122, 197]. Training DNN often uses

a framework, such as TensorFlow [11] and PyTorch [64]. These frameworks use a dataflow

execution model where the workload of DNN is modeled as a directed graph. Operations, such

as 2D convolution, matrix multiplication, and array concatenation, are implemented as primitives.

Those operations are represented as nodes in the graph. Within the graph, edges between nodes

capture dependencies between nodes.

Recent efforts. Heterogeneous memory is used for DNN training recently [77, 79, 92, 158,

182, 218]. We comprehensively compare state of the art with Sentinel in Table 4.1 from multiple

perspectives. In Table 4.1, dynamic profiling captures the effects of inter-operation parallelism on

memory accesses and is generally applicable on various input data sizes and architectures, which

are often missed in static profiling. Minimization of fast memory usage means making best efforts
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Table 4.1: Comparison between existing work on HM management for DNN training.

Dynamic
profiling

Fast memory
usage

minimization

Graph
agnostic

Count tensor
accesses

in memory

Page-level
false sharing

avoidance
vDNN [182] N N N N N

Superneurons [218] N N N N N
Layrub [92] N N N N N

SwapAdvisor [79] N N Y N N
AutoSwap [244] N N Y N N

AutoTM [77] N Y Y N N
Capuchin [158] Y N Y N N

HALO [69] Y N Y N N
Sentinel Y Y Y Y Y

to reduce fast memory size; This also means targeting on all tensors (not just a few tensors such

as feature maps) to look for migration opportunities. Being graph agnostic means there is no need

of detailed DNN knowledge (such as which tensor is feature map or weight), which makes the

solution more general, instead of just for some specific DNN models. Counting tensor accesses in

memory totals the number of memory accesses at data object level, which is much more than just

checking whether data objects are referenced in operations [69, 77, 79, 158, 182, 218]. Counting

tensor accesses provides optimization opportunities to co-locate tensors and prioritize data

migration. Avoiding page-level false sharing is necessary to improve page migration efficiency

and achieve additional savings of fast memory usage, revealed in Section 4.3.2. Sentinel excels,

because it uses dynamic profiling, count tensor accesses in memory, and is graph agnostic;

Sentinel has high migration efficiency and enables larger model (or larger batch) training. Sentinel

is applicable to both CPU and GPU, as demonstrated in this paper, while some state-of-the-arts

(e.g., Capuchin [158]) focus only on GPU and use expensive recomputation to save GPU memory,

whose effectiveness on CPU remains to be studied.

There are large differences between generic memory management (GMM) (e.g, tcmalloc [60]

and garbage collection (GC) in a managed language/runtime) and Sentinel: (1) Tensor lifetime

management in GMM lacks DNN semantics and hence misses opportunities to timely migrate

tensors to avoid performance loss or save fast memory, hence fails to minimize fast memory

usage, evidenced in Table IV; (2) GMM cannot work well on GPU at tensor levels; (3) Without

coordination of OS, GC ignores the impact of CPU cache hierarchy on main memory accesses; (4)

Current DNN training frameworks are not based on managed runtime and cannot easily employ

GC.
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4.3 Analysis and Characterization of Main Memory Accesses in

DNN

We characterize main memory accesses to drive our design.

4.3.1 Profiling Framework

We build a profiling framework. It is integrated into TensorFlow and used in a profiling phase

(one training step) to direct tensor management at runtime (Sec. 4.4). The profiling framework

collects the following information: (1) the number of main memory accesses per tensor, (2) tensor

size and (3) lifetime. To collect the above information, the profiling framework includes the

support at both OS and TensorFlow runtime levels. At OS level, Sentinel collects the number of

memory accesses at the page level. This is implemented by a software-only solution. In particular,

to track a page for access counting, Sentinel sets a reserved bit (bit 51) in its PTE (i.e., poisoning

PTE) and then flush the PTE from TLB. When the page is accessed, a TLB miss occurs and

triggers a protection fault. Sentinel uses a customized fault handler to count this page access,

poisons the PTE, and flushes it from TLB again to track next page access.

To bridge the semantic gap between OS and DNN framework, each memory page has only

one tensor (but a tensor can use more than one pages). This is implemented by making object

allocation aligned with memory page. Using this method, page-level profiling becomes tensor-

level profiling. This method slightly increases memory footprint (Sec. 4.7) but it only happens

during the profiling phase of Sentinel on slow memory. After the profiling phase, tensors are

re-organized to reduce memory footprint and improve performance. Data reorganization happens

during memory allocation (Sec. 4.3.2), and hence does not stop training process and does not

impact performance. The profiling method does not increase the consumption of fast memory.

At the TensorFlow runtime, Sentinel leverages memory (de)allocation to get the size and

lifetime of tensors. Moreover, Sentinel introduces an API that allows the user to annotate DNN

to indicate the end of each layer in DNN. Based on the above infrastructure, Sentinel is able to

associate a tensor with the DNN topology (i.e., we can know which layer(s) a tensor is alive),

which is helpful to direct tensor migration.

Our profiling method uses only one training step for profiling. During the profiling, Sentinel

captures each page read and write by repeatedly poisoning the page. This is expensive because of

system calls and TLB misses. However, it does not lose profiling accuracy. Also, considering

that a typical DNN training involves millions of training steps, the profiling overhead is easily
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amortized. The traditional profiling methods face a dilemma between profiling overhead and

accuracy. In particular, frequently collecting memory access information brings high profiling

accuracy at the cost of large runtime overhead, and vice versa [14, 78, 226, 227]. Leveraging

the repetitiveness of DNN training, Sentinel breaks the dilemma, and enables both high profiling

accuracy and low profiling overhead.

Our profiling method is featured with the coordination between OS and TensorFlow runtime.

This provides accurate profiling, which is unachievable by TensorFlow runtime alone. In

particular, OS allows us to track memory accesses filtered by processor caches; Working with

the coordination between OS and TensorFlow runtime, we do not need to handle pointer aliasing

commonly found in TensorFlow implementation, which is difficult to be handled by a runtime

solution.

4.3.2 Observations and Preliminary Analysis

We profile DNN models listed in Table 4.3 and have the following observations to guide our

design:

Observation 1: There are a large number of small tensors with short lifetime in DNN training

workloads.

We define a tensor as small if it is smaller than a page size. A tensor is alive after it is allocated

and before it is freed. We define the lifetime of a tensor in terms of the number of layers where

the tensor is alive. In the rest of the paper, we define short-lived tensor as those whose lifetime is

no longer than one layer. Taking ResNet-32 as an example (its configuration is in Table 4.3), 92%

of its tensors have lifetime no longer than one layer. Among them, 98% is small tensors. The

peak memory consumption of short-lived tensors is small, and typically bounded by a few GB.

Observation 2: The uneven distribution of hot and cold tensors provides opportunities for

tensor management.

For example, 52.3% of tensors (using 907 MB, which is 54% of total memory pages) in

ResNet-32 are accessed less than 10 times in main memory. On the other hand, some tensors in

ResNet-32 are frequently accessed (having > 100 accesses), taking only 4 MB (0.2% of total

memory pages). They are the candidates to be placed into fast memory, and their size is a small

portion of total memory pages.

Observation 3: Page-level false sharing exists in DNN. The page-level profiling (not tensor-

level) for tensor management can be misleading.

For example, in ResNet-32, if we perform tensor-level profiling, in a training step, for those
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less-frequently accessed tensors that have only 1-10 accesses in main memory, their total object

size is 908 MB. However, if we perform page-level profiling, in the same training step, for

those memory pages with 1-10 accesses in main memory, their total page size is 764 MB. This

indicates that some less-frequently accessed tensors fall into some pages that are counted as more

frequently accessed in page-level profiling. Hence, if one uses page-level profiling to guide data

management, those less-frequently accessed tensors can be placed into fast memory and waste

memory space and bandwidth. We refer to the above result as page-level false sharing.

Example. We use ResNet-32 as an example to characterize tensors. Figure 4.1 shows

operations in six layers; Figure 4.2 shows tensor processing in Operation nn.conv2d commonly

used in DNN’s forward and backward propagation.

Short-lived tensors. We find two cases. (1) Inside an operation, tensor processing (e.g.,

padding and transpose shown in Figure 4.2, expansion, concatenation and squeeze) often generates

short-lived tensors, which are only used in that operation; (2) The output tensor of some operation

is short-lived, exemplified by the output of batch normalization (i.e.,nn.bn in Figure 4.1). Memory

allocation and free for a short-lived tensor always happen in one layer.

Long-lived tensors. We find two cases. (1) Weights associated with each layer (shown as “w1”

and “w2” etc. in Figure 4.1). They are allocated before training steps, and updated throughout

them. (2) Intermediate results generated in a layer and consumed by the downstream operations

in another layers. An example is the output tensors of operations nn.conv2d and nn.relu in

the forward propagation layers shown in Figure 4.2. These output tensors are consumed by the

backward propagation layers to calculate gradients. The memory space for these intermediate

results is allocated when they are generated and then freed after they are consumed.

Memory access patterns. Memory accesses to tensors are associated with layers. Memory

accesses to short-lived tensors tends to be ephemeral and bursty, which means in a layer, there

can be a number of short-lived tensors created, accessed a few times, and freed. Memory accesses
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to a long-lived tensor tend to be sparse and periodical, which means memory accesses happen

in a couple of specific layers, but not all layers. In addition, memory allocations for long-lived

intermediate results and short-lived tensors are interleaved throughout the training process, which

causes page-level false sharing.

Design choices. Profiling results motivate us to make three design choices. (1) We choose

DNN layer as the basic granularity for tensor management, given the fact that lifetime and

memory access patterns of tensors are associated with layers. This choice brings convenience for

tensor prefetching and migration overhead controlling. (2) We treat tensors differently, instead of

using a unified policy to manage them as in [14, 78, 95, 226, 227, 234]. This choice allows us to

enable high performance and minimize fast memory capacity. (3) We do not use static analysis

as in [216] to decide data placement, because static analysis lacks timing information needed to

overlap data migration and computation; It cannot accurately capture main memory accesses and

ignores the impact of thread-level parallelism on data locality.

4.4 Design

4.4.1 Overview

Figure 4.3 overviews Sentinel. Sentinel uses dynamic profiling (Sec. 4.4.2) to collect the

number of main memory accesses at tensor level and lifetime of tensors based on customized

memory allocation. The dynamic profiling uses one training step to collect the information.

After that, Sentinel re-organizes memory allocation for short-lived tensors to facilitate tensor

management and avoid page-level false sharing.

Driven by the profiling results, Sentinel treats short- and long-lived tensors separately. Short-
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lived tensors are allocated in contiguous memory space in fast memory and not involved in tensor

movement. This method (Sec. 4.4.3) avoids unnecessary tensor movement. To handle long-lived

tensors, Sentinel uses an adaptive migration algorithm (Sec. 4.4.4). It partitions each training step

into many migration intervals based on DNN model topology. In a migration interval, Sentinel

migrates tensors needed for the next interval, overlapping application execution with tensor

migration. Sentinel must determine an appropriate migration interval length 1, such that tensors

can be timely migrated from slow to fast memory before they are needed by the next migration

interval and without running out of fast memory. We formulate the problem and determine the

optimum length. We also use a test-and-trial algorithm to determine if the migration cannot finish

before the next interval, whether continuing migration can lead to better performance.

4.4.2 Dynamic Profiling and Data Reorganization

Sentinel integrates the profiling framework into TensorFlow. Based on the profiling results,

Sentinel uses a customized memory allocation policy in the remaining training steps, described

as follows. (1) For those short-lived tensors alive in the same layer, they are allocated into the

same pages, because of their similarity in lifetime and the number of memory accesses. (2) For

those long-lived tensors that reside in the exactly same layers, we use the following algorithm

to determine their memory co-allocation. We first sort them in terms of the number of memory

accesses in descending order, and then allocate them in contiguous memory pages, following the

order. As a result, tensors with the similar memory access pattern can be allocated into the same

memory pages. (3) For those long-lived tensors that do not reside in the same layers, they never

share any memory page. (4) Long- and short-lived tensors never share any memory page.

The above data reorganization happens to long- and short-lived tensors allocated in the middle

of the training. Those tensors are allocated and freed in each training step, allowing Sentinel to

reorganize them across training steps without impacting program correctness. A few long-lived

tensors (e.g., weights and input samples) are allocated before the training process; They cannot be

reorganized in the middle of training, because that changes memory addresses of the tensors and

causes wild pointers. Sentinel ensures that these tensors never share pages to avoid page-level

false sharing.
1We distinguish migration interval and migration interval length in the rest of the paper. The number of layers in a

migration interval is the migration interval length.
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4.4.3 Handling Short-Lived Tensors

During training, an individual short-lived tensor is not accessed many times (e.g., less than 10

times in ResNet-32) in main memory, compared to many long-lived tensors. Our profiling results

show that there are a large amount of short-lived tensors throughout the whole training, and they

share the same memory access characteristics (i.e., short life time, small size, and infrequent

accesses in main memory). We must use a general policy to manage them.

We use the following algorithm to manage short-lived tensors. We allocate a continuous

memory space in fast memory for them. Tensors in this space are never considered for migration.

This space is reused for short-lived tensors as they are allocated and freed throughout the training.

The space is reserved at the beginning of each migration interval to accommodate short-lived

tensor in the interval. Doing this, Sentinel guarantees that there is always memory space for short-

lived tensors (i.e., no competition from long-lived tensors), because the placement of short-lived

tensors is critical for performance. Within a migration interval, the space can be dynamically

shrunk to free space for long-lived tensors, when a memory page in the space is no longer needed

by short-lived tensors.

The above method addresses the limitation of the existing methods that use a caching

algorithm [78, 95, 175, 246] to decide tensor placement. Those methods move short-lived

tensors to slow memory, even though they are not accessed any more. This causes unnecessary

tensor movement and wastes memory bandwidth. Furthermore, short-lived tensors unnecessarily

stay longer in fast memory, wasting valuable space in fast memory. The above problem is caused

by the fact that making the decision on the movement of short-lived tensors takes some time,

due to the necessity of counting memory accesses to run the caching algorithm. Also, counting

memory accesses for individual tensors can be inaccurate, because tensors with different memory

access patterns share memory pages.

In our design, fast memory is always large enough to host short-lived tensors. If not, short-

lived tensors will be frequently moved between fast and slow memories. This tensor movement is

highly inefficient in terms of both performance and energy efficiency. Hence, we assume that the

fast memory size is at least larger than the peak memory consumption of those short-lived tensors

(discussed in Section 4.4.5). Since short-lived tensors are frequently allocated and freed and we

reuse the same memory space to host them, the size of peak memory space for short-lived tensors

is small, and typically bounded by a few GBs, making it feasible to host them in fast memory

without consuming too much space.
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4.4.4 Adaptive Layer-Based Migration

We migrate long-lived tensors because they are used sparsely and periodically. The tensor

migration is controlled by the migration interval length which determines how frequently we

migrate tensor between fast and slow memories. In particular, we partition a training step (i.e.,

one forward step plus one backward step) into equal-sized intervals, exemplified in Figure 4.4.

Tensor migration from slow to fast memory is triggered at the beginning of each interval,

aiming to prefetching tensors needed by the next interval into fast memory before the next interval

starts. Tensor migration follows a decreasing order of tensors in terms of number of memory

accesses to each tensor, such that tensors with the largest number of memory accesses are migrated

to fast memory first. The order information is available after data reorganization (Sec. 4.4.2).

Following this order for migration allows Sentinel to make the best use of fast memory for high

performance, in case certain tensors are left out in slow memory, which is discussed later. The

tensor migration is overlapped with DNN training computation as much as possible, such that the

overhead of tensor migration is removed from the critical path.

Tensor migration from fast to slow memory happens in the middle of the interval, when the

long-lived tensor is no longer accessed by any operation in the interval. Such tensor migration is

used to save fast memory space as much as possible, in order to accommodate upcoming tensor

migration. We can know if a long-lived tensor will be used by any operation in an interval by

using the profiling results.

We define the migration interval in terms of layers in DNN, not in terms of execution

time, because of the following three reasons. First, the layer-based migration interval naturally

guarantees the completion of operations at the end of the interval, because no operation runs

across layers. The time-based migration interval cannot guarantee that, and hence needs inevitable
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synchronization between application execution and tensor migration, causing performance loss.

Second, each layer is associated with a computation phase with a memory access pattern (e.g.,

which tensors are accessed and their lifetime). The layer-based migration interval allows us

to easily leverage the memory access patterns collected at the profiling phase to guide tensor

migration. Third, the time-based migration imposes challenges on deciding which operations are

executed in which migration interval, because of operation-level parallelism.

Determining an appropriate migration interval length is challenging. If the migration

interval length is too long or too short, we cannot achieve the best performance. Figure 4.5 shows

the performance when we use different interval lengths to train ResNet-32 on an Optane-based

platform (shown in Table 4.2). There is a 21% performance variance when we change the interval

length from 5 to 11. When the interval length is 8, we achieve the best performance. Hence,

determining an appropriate interval length is critical for performance.

We analyze the trade-off between long and short migration interval lengths as follows. If the

interval length is long, then the tensors to migrate for an interval is large. The interval length

cannot be too long. Otherwise the tensors to migrate can be larger than the available space in fast

memory. This constraint on the interval length is the space constraint, formulated in Equation 4.1.

If the interval length is short, then the available execution time to overlap tensor migration

with application execution is short. The interval length cannot be too short. Otherwise, the tensor

migration time is largely exposed to the critical path. We want to minimize the migration time

exposed to the critical path, which is formulated in Equation 4.2.

In Equations 4.1 and 4.2, RS is the fast memory space for short-lived tensors, S is the fast

memory size, and MIL stands for the migration interval length. RS is a function of the migration

interval length (different migration interval lengths have different RS). In Equation 4.1, Tensor

is the size of tensors for migration in an interval; In Equation 4.2, BW is the migration bandwidth

from slow to fast memory, and T is the DNN training time in an interval. (S −RS(MIL))/BW

is the tensors migration time. Tensor and T are functions of the interval length (different interval

lengths have different Tensor and T ).

Space constraint: Tensor(MIL) < S −RS(MIL) (4.1)

Goal: arg min
MIL

((S −RS(MIL))/BW − T (MIL)) (4.2)

RS is relatively stable, according to our profiling results: There is only a small variance as
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we change MIL. Hence S − RS(MIL) is near constant. Tensor(MIL) and T (MIL) are

monotonically increasing functions of MIL (i.e., a larger MIL indicates larger Tensor and T ,

and vice versa).

After collecting the profiling results, Sentinel uses Equation 4.1 to narrow down the search

space of finding the optimum migration interval length; Sentinel then uses profiling results to

estimate performance of using various interval lengths, based on which to determine the best one

according to Equation 4.2. This exploration is quick, because it does not need to run any training

operations, and the search space has only one dimension (i.e., the migration interval length). Due

to the quick exploration and low-dimensional search space, using a statistical algorithm such as

the genetic algorithm or Markov Chain Monte Carlo for multi-dimensional space as the existing

work [79, 91] is not necessary.

We cannot use training steps to try every possible migration interval length to determine the

best one without using performance modeling, because it raises concerns on runtime overhead,

when the number of layers (and sub-layers that can be used as an interval) in a DNN model is

very large.

We encounter three possible tensor migration cases at the end of a migration interval. We

discuss them as follows. Assume that we have two intervals, A and B, and B is right after A.

Sentinel migrates tensors at the beginning of A for B. At the end of A, we have three cases.

• Case 1: All tensor migration has been finished;

• Case 2: Tensor migration cannot finish, because of lack of space in fast memory;

• Case 3: Tensor migration cannot finish because of lack of time for migration (there is still

space in fast memory).

In Case 1, once B starts, all of the migrated tensors are in fast memory, which is the ideal

case. Case 2 can happen, even though the space constrain is respected for tensor migration for B,

because some tensors in A may not be timely migrated from fast to slow memory to save space

for B; Case 3 can happen, because the optimization goal ensures the migration time exposed to

the critical path is minimized but the migration may not necessarily finish when B starts. We

must avoid Cases 2 and 3 for the best performance. The migration interval length has impact on

how often the three cases happen. Given a fast memory size, a short interval length can create

more Case 3 while a long interval length can create more Case 2.

To avoid Case 2, long-lived tensors are immediately moved out of fast memory in the middle

of A to save space, once the remaining operations in A do not need them. This solution prevents
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all occurrences of Case 2 in our evaluation.

To handle Case 3, we can either continue migration and let B wait for the migration

completion, or leave tensors in slow memory. The continuation of tensor migration exposes tensor

migration into critical path, but the execution of B uses tensors in fast memory; On the contrary,

leaving tensors in slow memory uses the tensor in slow memory but avoids tensor migration

overhead. This is a classic trade-off between data locality and data movement. To determine

which method leads to the better performance, we use a test-and-trial algorithm.

In particular, whenever Case 3 happens at the end of an interval, we use one training step to

try the continuation of tensor migration, and use another training step to try no-tensor-migration.

We measure the performance of the two methods and use the better method in the remaining

training steps.

The above algorithm does not cause significant runtime overhead, because Sentinel uses at

most two training steps for test and trial to handle each occurrence of Case 3 and the number of

occurrences is less than 10 in our evaluation, while the total number of training steps is easily

millions. We quantify runtime overhead in Sections 4.7.2 and 4.7.3.

4.4.5 Discussions

The lower bound on fast memory size. Although fast memory can be smaller with Sentinel,

there is a lower bound on fast memory size to avoid significant performance loss. This lower

bound is the peak memory consumption of short-lived tensors among all migration intervals plus

the largest long-lived tensor. Smaller than this bound, the runtime system has to either frequently

migrate short-lived tensors or has no space to accommodate long-lived tensors, which easily

causes performance loss larger than 20%.

Handling dynamic graphs. Sentinel focuses on common DNN models with static graphs,

similar to other work [77, 197]. Some frameworks, such as PyTorch and TensorFlow 2.0, support

dynamic graphs. Depending on the input size within a batch, these frameworks generate a different

dataflow graph with a right shape to accommodate the batch. Hence there could be multiple

graphs. To handle dynamic graphs, the existing solution pads zeros at the end of input [65], such

that batches have the same structure. This transforms a dynamic graph into a static one, but at the

cost of larger memory footprint and unnecessary computation. We use a solution similar to [197]

that uses bucketed profiling. In particular, Sentinel bucketizes input sizes into a small number of

buckets (at most 10). Input sizes in the same bucket have a similar graph. Sentinel profiles each

bucket to decide tensor migration.
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Handling control dependencies. A static graph can have control flow. Depending on input

values in a batch, the graph can have different dataflow, causing different memory access patterns.

Sentinel handles this by tracking dataflow. Whenever a new dataflow is encountered, Sentinel

triggers profiling and makes migration decisions again.

Support of dynamic migration interval length. Sentinel uses the same length for all

migration intervals. An alternative approach is to use different lengths for different intervals.

Using such a dynamic interval length is helpful to avoid Cases 2 and 3. However, this method

brings minimal performance benefit in practice, because Cases 2 and 3 do not happen often (see

Table 4.3). Also, determining appropriate dynamic migration interval lengths has to explore a

large search space of migration interval length, causing larger runtime overhead.

4.5 Applying Sentinel to GPU

Sentinel can be applied to HM on CPU; With slight extension, it can also be applied to address

memory capacity limitation on GPUs by treating GPU’s global memory and CPU’s main memory

as fast and slow memories respectively. We name Sentinel for GPU, Sentinel-GPU.

Profiling method. GPU typically uses a proprietary driver that we cannot modify to trigger

protection faults to enable tensor-level profiling as for CPU. Although there is an open-source

GPU driver [145], it supports limited types of GPU and is not stable; Although recent GPU has

a paging mechanism to trigger traditional page faults [146], it cannot be used to count memory

accesses on GPU, once pages are loaded into GPU memory; A binary instrumentation tool such as

NVBit [211] or compiler tool can instrument load/store instructions but cannot directly measure

main memory accesses. Hence, there is no tool to count memory accesses at page or tensor level

for GPU. Also, introducing new hardware counters to collect page access statistics is possible,

but hardware modification is expensive and unscalable.

To address the above problem, we use a customized pinned memory mechanism to enable

tensor-level profiling for GPU. The traditional pinned memory mechanism allows GPU to access

pages resident on CPU memory. By allocating tensors on pinned memory on CPU, we can use

the existing profiling mechanism in Sentinel to count memory accesses from GPU. In particular,

whenever GPU accesses a pinned memory page on CPU, a protection fault is triggered on CPU

and handled by the fault handler in Sentinel to count it. Using the above method, we do not lose

accuracy of counting memory accesses on GPU, because protection faults are caused by memory

accesses on GPU, not on CPU.

However, implementing the above idea faces a challenge. The traditional pinned memory
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mechanism disables paging, such that when GPU accesses a page resident on CPU memory, the

page is guarantee to be there. The implementation of this mechanism includes using the system

call mlock() to lock PTE. As a result, Sentinel cannot modify the specific bit (bit 51) to trigger

protection fault.

To address the above problem, we customize the pinned memory mechanism. In particular,

Sentinel intercepts mlock() and bypasses it. To disable paging to ensure the correctness of the

pinned memory mechanism, Sentinel temporarily disables OS-level page swapping mechanisms

during the profiling using the existing system calls. This does not lock PTE, and hence allows

Sentinel to set the bit to trigger protection faults.

Sentinel uses the above customized mechanism during the profiling, but must revert to the

traditional GPU memory allocation and accesses in TensorFlow to avoid expensive CPU memory

accesses. This reversion is feasible for those tensors that are repeatedly allocated and freed across

training steps, but not possible for a few tensors that are allocated before all training steps and

freed after them. For each of those tensors, Sentinel creates two copies, one using pinned memory

and accessed during profiling, while the other using the traditional GPU memory allocation and

used after profiling. Creating two copies does not require the user to change the implementation

of DNN training, because it can be done by pointer switch through the runtime implementation.

The two copies need to be synchronized after profiling to ensure the remaining training uses

the most updated tensors. This synchronization overhead is paid in only one training step and

ignorable in the whole training. We quantify this overhead in Section 4.7.3.

Handling Case 3. In Case 3, tensor migration cannot finish in time, because of lack of time

for migration. A possible solution to handle this case on CPU-based HM is to leave tensors in

slow memory on CPU. On GPU, however, the tensors must be placed on GPU memory when

GPU accesses them (accessing CPU memory is too slow). Hence, there is no need to use the

test-and-trial algorithm to handle Case 3. Handling this case must wait for tensor migration to

complete, but subject to the optimization goal in Equation 4.2.

4.6 Implementation

We implement Sentinel in Linux v5.6.0 and TensorFlow v1.14. We change OS kernel for

memory profiling; We change the TensorFlow runtime system for page migration (Figure 4.6).

Sentinel introduces three APIs to trigger/stop memory profiling and identify DNN layers, which

are start_profile(), end_profile(), and add_layer(). start_profile() triggers a system call to

enable tracking of main memory accesses, memory (de)allocation to record lifetime of tensors.
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import tensorflow as tf
…
def train(self):

for step in train_steps:
if(step == 11)

tf.start_profile()
if(step == 12)

tf.end_profile()
…

return prediction_array

def conv_bn_relu_layer(…):           
…

tf.add_layer()
return output

...       

kernel space 

Track mem
allocation/deallocation 

user space 

Set PTE;
Intercept protection faults

mmap b/w user and kernel spaces

tensor access info

tensor lifetime info

An analysis thread 
reorganizes tensors

A migration thread moves pages into fast mem

A migration thread moves pages out of fast mem

Figure 4.6: Implementation overview.

add_layer(), placed at the end of each layer, informs the runtime of where is each layer to

determine migration intervals. Adding start_profile() and end_profile() includes only two lines of

changes to the DNN model. Adding add_layer() includes 10-100 lines, depending on how many

layers there are in a DNN model.

Figure 4.6 shows implementation details. Sentinel skips the first 10 training steps used by

TenorFlow to detect hardware configurations, and uses the 11th for profiling. During the profiling,

Sentinel collects memory access and lifetime information for each tensor from OS and TensorFlow

respectively. After the profiling phase, Sentinel uses three helper threads: one for information

analysis to determine migration intervals and make migration decision, one for data migration

from fast to slow memory, and one for migration in the opposite way. The two migration threads

work in parallel to accelerate migration. Sentinel uses the Linux system call move_pages() to

migrate pages. Sentinel extends TensorFlow memory allocation and free functions by adding the

customized data reorganization policy. Before the training happens, tensor are allocated in slow

memory. After collecting the profiling results, Sentinel manages tensor allocation and migration.

GPU implementation. Similar to Sentinel, Sentinel-GPU leverages the APIs to enable online

profiling and tensor management. To manipulate tensor allocation, Sentinel-GPU intercepts

TensorFlow GPU memory allocators (such as AllocateRaw and gpu_bfc_Allocator), similar

to [158]. Sentinel-GPU replaces those allocators with the customized ones for pinned memory

control or tensor collocation. add_layer() is implemented as a CUDA kernel to execute at the

end of each DNN layer. For short-lived tensors, Sentinel-GPU manages a memory pool allocated

by cudaMalloc and enforces data reorganization. For long-lived tensors, Sentinel-GPU triggers

bi-direction tensor movement by using CUDA events and streams. In particular, Sentinel uses two

CUDA streams: one for computation and the other for tensor movement. Sentinel inserts tensor
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Table 4.2: Hardware overview of experimental system.
Optane-based HM

CPU An Intel Xeon Gold 6252 CPU @2.30GHz
Last Level Cache 36608KB
Fast Memory DDR4 DIMM: 96GB
Slow Memory Optane DC PMM: 756GB

GPU-based HM
GPU Nvidia V100 with 16GB with 15.75 GB of GDDR6
CPU Intel(R) Xeon(R) E5-2670 with 128 GB of DDR4
Interconnect PCIe 3.0×16

movement events into the stream based on the decision on the migration intervals. Sentinel-GPU

achieves asynchronous tensor movement with cudaMemPrefetchAsync.

4.7 Experimental Results

4.7.1 Experimental setup

We evaluate Sentinel on two HM platforms. One, named Optane-based HM, uses DRAM and

Intel Optane DC persistent memory (PMM) as fast and slow memories respectively on CPU; The

other, named GPU-based HM, treats GPU global memory and CPU main memory as fast and

slow memories respectively. Table 4.2 gives details. PMM has two operating modes, Memory

Mode and App-direct Mode. In Memory Mode, DRAM works as a hardware-managed cache to

PMM. Running the application in this mode does not require modifications to the application.

App-direct Mode allows programmer to explicitly control memory accesses to PMM and DRAM.

Sentinel works in App-direct Mode and beats Memory Mode for large model training.

We evaluate five DNN models with small and large batch sizes (Table 4.3). We use the

implementations of LSTM and MobileNet from TensorFlow [10], ResNet from [6], Bert from [9],

and DCGAN from [5]. We use the default precision setting (FP32 or FP16) for floating point

numbers. We report training throughput when the execution time per step becomes constant

(usually after the first couple of steps).

4.7.2 Sentinel on Optane-based HM

Evaluation methodology. We compare Sentinel with a state-of-the-art memory management

solution for HM on CPU [234]. This solution is based on a FIFO-based active list, and we name

it improved active list (IAL). We also compare Sentinel with AutoTM [77]. AutoTM uses Integer

Linear Programming (ILP) to decide tensor movement and placement based on static profiling and
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nGraph compiler. To enable fair comparison, we implement the AutoTM’s memory management

solution in TensorFlow. We compare Sentinel with IAL and AutoTM using the same fast memory

size, which is 20% of the peak memory consumption of DNN models. This setting follows

previous work [77, 234]. In addition, we compare Sentinel with the default NUMA allocation

policy (first-touch NUMA) and Memory Mode. In our platform, DRAM and PMM belong to two

NUMA nodes.

Table 4.3: DNN model for evaluation.“Sen.”, stands for Sentinel.

DNN Model
Dataset

(Batchsize)
Peak men. (GB) # of steps used in Sen.

w/o Sen. w/ Sen. profiling test & trial

ResNet-32 CIFAR-10 (128) 14.10 14.19 1 3
BERT-large CoLA (32) 35.39 35.51 1 3

LSTM PTB(20) 11.12 11.25 1 0
DCGAN MNIST (128) 15.68 15.79 1 3

MobileNet CIFAR-10 (128) 14.15 14.26 1 1

ResNet-200 CIFAR-10 (4K) 99.73 100.01 1 7
BERT-large CoLA (128) 133.59 133.90 1 3

LSTM PTB (4K) 29.97 30.09 1 0
DCGAN celebA (10K) 115.10 115.23 1 7

MobileNet CIFAR-100 (4K) 142.07 142.59 1 7

Overall performance. Figure 4.7 shows performance of IAL, AutoTM and Sentinel normalized

by that of slow memory-only system. We use DNN models with small batch sizes for evaluation,

because IAL code cannot work well for large batch sizes, either due to segfault or more than 10x

performance slowdown. The figure shows that performance difference between Sentinel and fast

memory-only system (shown as the red horizontal line in the figure) is very small (no difference in

DCGAN, and 9% difference on average), while IAL has 46% performance difference on average.

Sentinel outperforms IAL by 37% on average (up to 56%). Sentinel outperforms AutoTM by 17%

on average (up to 31%) because of the following reasons. First, all tensor movements in AutoTM

between fast and slow memories are exposed to the critical path, which incurs runtime overhead.

Second, AutoTM uses static profiling to conclude that the output of an operation should be placed

into slow memory with negligible performance impact. This conclusion is not true when the

output is large. Sentinel uses dynamic profiling and attempts to put all tensors needed by the

upcoming operations into fast memory, hence avoiding the performance problem.

Table 4.4 reports the total size of migrated tensors in one training step using IAL, AutoTM

and Sentinel. Sentinel has 85% and 32% more migrations (on average) than IAL and AutoTM

respectively. Frequent migrations allow Sentinel to make best use of fast memory for performance.

Those migrations are overlapped with training to hide overhead.

Figure 4.8 shows performance with large batch sizes for first-touch NUMA, Memory Mode,
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Table 4.4: Total size of migrated tensors in one training step.
ResNet BERT DCGAN LSTM MobileNet

IAL 3.1GB 2.8GB 0.8GB 0.7GB 0.55GB
AutoTM 5.1GB 2.3GB 0.7GB 1.2GB 0.8GB
Sentinel 8GB 4GB 1.2GB 1.2GB 0.95GB

AutoTM, and Sentinel. Training with large batch sizes consumes large memory consumption

(Table 4.3), creating challenges on data management in HM. The results are normalized by

performance of first-touch NUMA. The results show that for the models whose peak memory

consumption is larger than fast memory (e.g., ResNet200, BERT_large, DCGAN and MobileNet),

Sentinel outperforms first-touch NUMA, Memory Mode and AutoTM by 1.7x, 1.2x and 1.1x

(on average) respectively. For the models whose peak memory consumption is less than the fast

memory size (LSTM), Sentinel has the same performance as first-touch NUMA, Memory Mode

and AutoTM. In this case, DRAM is large enough to hold all tensors. This case shows ignorable

overhead of Sentinel.

Memory bandwidth. We analyze memory bandwidth consumption in IAL and Sentinel,

shown in Figure 4.9. Compared with IAL, Sentinel consumes much higher (7.3x on average)

memory bandwidth in fast memory, indicating that fast memory accesses happen much more

often in Sentinel than in IAL. Sentinel also has lower memory bandwidth consumption in slow

memory, compared with IAL, indicating that Sentinel reduces accesses in slow memory.

Runtime overhead. Table 4.3 shows total number of training steps used for profiling and test-

and-trial. Those steps have longer execution time than regular training steps, hence introducing

runtime overhead. On average, Sentinel uses only 1.8 steps. Each of those steps is extended by

up to 5x in terms of execution time. However, such overhead is amortized by millions of steps.

As a result, the runtime overhead of Sentinel is negligible (less than 1%).

Memory overhead. Using Sentinel for tensor-level profiling increases peak memory consumption,
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causing memory overhead. Table 4.3 shows peak memory consumption. Sentinel does not increase

peak memory consumption much (by 2.4% at most). This is because tensors larger than one

page dominate total memory consumption. Profiling those tensors with Sentinel does not cause

memory overhead.
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Figure 4.9: Memory access bandwidth during training of ResNet-32.

Sensitivity study. We change fast memory size and measure performance with small batches.

Figure 4.10 shows the results. In general, larger fast memory gives better performance. When

the fast memory size is 60% of peak memory consumption, all of DNN models on HM with

Sentinel do not have any performance difference from the fast memory-only system. Also, with

Sentinel, performance is not sensitive to fast memory size: There is at most 17% performance

variance when fast memory size is changed from 20% to 40% of peak memory consumption. This

demonstrates how Sentinel effectively uses tensor movement to make the best use of fast memory.

Saving fast memory size. Figure 4.7 shows using 20% of peak memory consumption of

DNN models as fast memory size, Sentinel on HM has similar performance (9% difference on

average) as the fast memory-only. This brings 80% saving in fast memory. Figure 4.10 shows

using 60% of peak memory consumption as fast memory size, no performance loss.

To further study Sentinel’s effectiveness, we use ResNet with various topology and peak

memory consumption. We report the minimum fast memory size with which Sentinel performs

the same as the fast memory-only. Figure 4.11 shows peak memory consumption and fast memory

size for all ResNet variants. The figure shows that although peak memory consumption increases

quickly as ResNet becomes more complicated, the fast memory size increases in a much slower
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rate because of adaptive layer-based migration. This demonstrates the effectiveness of using

Sentinel to save fast memory size.

4.7.3 Sentinel on GPU-based HM

Evaluation methodology. We use Nvidia Tesla V100 GPU shown in Table 4.2 with CUDA

v10.1 for evaluation. We compare Sentinel-GPU with five existing work on GPU, including

Unified Memory (UM) [146], vDNN [182], AutoTM [77], SwapAdvisor [79] and Capuchin [158].

UM automatically moves tensors from CPU to GPU in the event of a GPU page fault, and

moves least-used pages from GPU to CPU. vDNN is a solution using GPU-based HM for DNN

training. vDNN focuses on convolution layers and migrates input tensors of convolution layers

between CPU and GPU memories; vDNN tries to overlap the migration of the input tensors

with convolution computation. AutoTM works for both CPU and GPU, and uses ILP to decide

tensor movement and placement. We implemented asynchronous tensor migration in AutoTM as

described in [77]. SwapAdvisor uses the Generic Algorithm (GA) to find a good combination

of memory allocation and operation scheduling on MXNet [37]. Capuchin is a state-of-the-art

solution using GPU-based HM for DNN training. Capuchin overlaps tensor movement with

training. When the tensor movement overhead is too large to be overlapped, Capuchin discards

tensors and recomputes them when needed to save GPU memory. vDNN, SwapAdvisor, AutoTM

and Capuchin are either close-sourced or not implemented on TensorFlow. We implement their

migration strategies in TensorFlow.

Profiling method. We make the comparison in terms of profiling method. UM does not

use any profiling, and uses on-demand tensor movement. As a result, UM causes large runtime
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overhead because most of tensor movement is exposed to the critical path. vDNN does not use any

profiling, but heavily rely on domain knowledge to decide tensor migration. As a result, vDNN

only works for specific models (feedforward CNN models) and cannot handle recursive structures

in DNN models. AutoTM collects execution time of individual operations at compilation time.

Such static profiling method misleads tensor migration, when the batch size or hardware used

in production is different from the ones used in static profiling. SwapAdvisor uses a lot of

training steps for dynamic profiling. Because of the GA algorithm SwapAdvisor uses to decide

tensor migration, SwapAdvisor suggests to use 30 minutes to make the final migration decision

at runtime [79]; According to our experimental results, for a large model such as BERT-large,

SwapAdvisor cannot make the decision within 30 minutes. This decision process is too slow for

some model training (e.g., NLP fine-tuning which can take less than two hours [9]). Capuchin

and Sentinel use dynamic profiling, whose overhead is negligible (a few seconds and less than

1%).

Maximum batch size. We compare vDNN, AutoTM, SwapAdvisor, Capuchin and Sentinel-

GPU in terms of maximum batch size each solution can achieve, given the same GPU memory

capacity. This comparison aims to show how effectively these solutions save GPU memory.

We do not evaluate UM, because its maximum batch size is limited by CPU memory and can

be much larger than that with vDNN and Sentinel-GPU, but with much worse performance

(shown in Figure 4.12). Table 4.5 shows the result. The result for “TensorFlow” in Table 4.5 is

collected without using tensor migration. Compared with TensorFlow without tensor migration,

Sentinel-GPU increases batch size by 4.18x on average. vDNN is designed for feedforward CNN

models and cannot handle recursive structures in a DNN graph. Hence it cannot work for LSTM

and BERT-large. For CNN models, Sentinel-GPU outperforms vDNN by 1.9x. This is because

Sentinel-GPU migrates tensors as many as possible to save GPU memory, whereas vDNN only

focuses on input tensors of the convolution layers. Sentinel-GPU outperforms SwapAdvisor by

1.1x. This is because SwapAdvisor aims to minimize training time instead of minimizing memory

consumption of tensors in GPU. AutoTM, Capuchin and Sentinel-GPU achieve a comparable

maximum batch size, because all of them try to migrate tensors out of GPU memory as much as

possible. They differ in training throughput, discussed as follows.

Training throughput. For each model, we use three batch sizes, shown in Figure 4.12.

Throughput in Figure 4.12 is normalized by that of UM. With the largest batch size shown in

Figure 4.12, Figure 4.13 shows the performance for two components (migration overhead in the

critical path and recomputation) in one training step for deeper analysis, and percentage numbers
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on top of bars in Figure 4.13 are the ratio in terms of execution time of one training step. For

Sentinel-GPU, Figure 4.13 shows performance breakdown results to quantify the contributions of

various techniques in Sentinel-GPU. “Direct tensor migration” does not use migration interval

and trigger tensor migration simply based on tensor forthcoming usage; It does not reserve space

for short-lived tensors; “w/ det. MI” uses an optimal migration interval length but without space

reservation; “w/all” is the full featured Sentinel.

UM vs. Sentinel-GPU. Sentinel-GPU has 1.1x-7.8x higher throughput than UM. Such a large

performance gain comes from effectively prefetching tensors from CPU to GPU and reduction of

migration overhead in Sentinel-GPU.

vDNN vs. Sentinel-GPU. For CNN models, Sentinel-GPU outperforms vDNN by 2x. Similar

to Sentinel-GPU, vDNN tries to overlap tensor movement with computation. However, vDNN

does not consider time difference between layers, which exposes most of tensor migration

overhead to critical path (3x more than with Sentinel-GPU).

SwapAdvisor vs. Sentinel-GPU. Sentinel-GPU outperforms SwapAdvisor by 65% on average

(up to 110%). The GA in SwapAdvisor is too slow (more than 30 minutes) to find an optimal

solution for tensor placement and migration. The process of finding the solution causes slowdown;

The tensor migration overhead in SwapAdvisor is 81% larger than that in Sentinel-GPU, because

SwapAdvisor fails to hide that.

AutoTM vs. Sentinel-GPU. Sentinel-GPU outperforms AutoTM by 17% on average (up to

29%). Sentinel-GPU with the space reservation reduces migration overhead by 8% of training

time, compared with AutoTM, because this technique avoids unnecessary tensor movement while

AutoTM exposes tensor movement into the critical path. Avoiding page-level false sharing in

Sentinel-GPU contributes additional 9% benefit over AutoTM.
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Table 4.5: Maximum Batch Size with vDNN, AutoTM, SwapAdvisor, Capuchin and Sentinel-
GPU

ResNet-200
(CIFAR10)

BERT-large
(CoLA)

LSTM
(PTB)

DCGAN
(celebA)

MobileNet
(CIFAR100)

TensorFlow 1K 5 800 0.6K 0.8K
vDNN 4.2K not work not work 1.4K 1.2K

AutoTM 5.6K 27 1.4K 2.5K 3.2K
SwapAdvisor 5.4K 25 1.2K 2.4K 3.1K

Capuchin 5.9K 27 1.4K 2.7K 3.2K
Sentinel-GPU 5.7K 28 1.5K 2.5K 3.2K
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Figure 4.13: Performance breakdown for vDNN, AutoTM, SwapAdvisor, Capuchin and Sentinel-
GPU. “det. MI” stands for “determine an appropriate migration interval length”. Percentage
numbers on top of bars are the ratio in terms of execution time of one training step.

Capuchin vs. Sentinel-GPU. Sentinel-GPU outperforms Capuchin by 16% on average (up

to 21%). Because of the pervasiveness of page-level false sharing, Sentinel-GPU improves

performance by 11% - 21%. In Capuchin, recomputation takes about 11% of the training time

while Sentinel-GPU does not have recomputation overhead. As a result, although the migration

time in Capuchin is shorter than in Sentinel-GPU, the net effect is that Sentinel-GPU outperforms

Capuchin.

4.8 Related Work

Comparison with recent efforts on using HM for DNN training. We review and evaluate

them in Sections 4.2 and 4.7.

Using Managed Runtime for Data Management on HM. Existing efforts [16, 17, 216, 228]

leverage managed runtime such as JVM. There are two differences between them and Sentinel. (1)

The existing efforts couple data migration with garbage collection, and hence miss opportunities

to minimize data migration overhead; (2) The existing efforts do not proactively migrate data
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objects to save fast memory space.

Page-based Runtime Data Management on HM. Existing proposals [14, 78, 95, 121, 181,

226, 227, 234] explore various page placement polices based on memory access profiling. Some

works [14, 78, 95] track page accesses by setting and resetting PTE as Sentinel does, but this

tracking mechanism incurs high runtime overhead. Unlike the above work, Sentinel leverages

DNN domain knowledge, and hence only profiles a small portion of total execution (one training

step) without paying large runtime overhead and losing accuracy. Also, Sentinel associates

page-level profiling results with tensors, making profiling results more meaningful for tensor

migration.

4.9 Conclusions

Training DNN faces a problem on memory capacity. This paper focuses on how to use HM to

address this problem without losing training throughput while saving fast memory. We introduce

a runtime system (Sentinel) based on a unique and comprehensive performance study on all

tensors in various linear and nonlinear models. The runtime system is featured with a novel

tensor-level profiling method and runtime techniques to improve tensor migration efficiency for

high performance and saving fast memory capacity. Evaluating on Optane-based HM and CPU-

GPU-based HM, we show Sentinel outperforms seven software- and hardware-based solutions.



Chapter 5

Democratizing Billion-Scale Model

Training

Large-scale model training has been a playing ground for a limited few users, because it often

requires complex model refactoring and access to prohibitively expensive GPU clusters. ZeRO-

Offload changes the large model training landscape by making large model training accessible

to nearly everyone. It can train models with over 13 billion parameters on a single GPU, a 10x

increase in size compared to popular framework such as PyTorch, and it does so without requiring

any model change from data scientists or sacrificing computational efficiency.

ZeRO-Offload enables large model training by offloading data and compute to CPU. To

preserve compute efficiency, it is designed to minimize data movement to/from GPU, and reduce

CPU compute time while maximizing memory savings on GPU. As a result, ZeRO-Offload can

achieve 40 TFlops/GPU on a single NVIDIA V100 GPU for 10B parameter model, compared to

30TF using PyTorch alone for a 1.4B parameter model, the largest that can be trained without

running out of memory on GPU. ZeRO-Offload is also designed to scale on multiple-GPUs when

available, offering near-linear speedup on up to 128 GPUs. Additionally, it can work together

with model parallelism to train models with over 70 billion parameters on a single DGX-2 box, a

4.5x increase in model size compared to using model parallelism alone.

By combining compute and memory efficiency with ease-of-use, ZeRO-Offload democratizes

large-scale model training making it accessible to even data scientists with access to just a single

GPU.

54
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5.1 Introduction

Since the advent of the attention-based deep learning (DL) models in 2017, we have seen

an exponential growth in DL model size, fueled by substantial quality gains that these attention

based models can offer with the increase in the number of parameters. For example, the largest

language model in literature had less than 100M parameters in 2017. It grew to over 300M with

BERT [43] in 2018, and increased to tens of billions in 2019 with models such as GPT-2 [34],

T5 [171], Megatron-LM [195] and Turing-NLG [184]. Today, the largest language model GPT-3

[33] has a staggering number of 175B parameters. With the three orders of magnitude growth in

model size since 2017, the model accuracy continues to improve with the model size [97]. Recent

studies in fact show that larger models are more resource-efficient to train than smaller ones [97]

for a given accuracy target. As a result, we expect the model size to continue growing in the

future.

However, accessibility to large model training is severely limited by the nature of state-of-

art system technologies. Those technologies make entry into the large model training space

prohibitively expensive. To be more specific, distributed parallel DL training technologies such as

pipeline parallelism [81], model parallelism [195], and ZeRO [172] (Zero Redundancy Optimizer)

allow transcending the memory boundaries of single GPU/accelerator device by splitting the

model states (parameters, gradients and optimizer states) across multiple GPU devices, enabling

massive models that would otherwise simply not fit in a single GPU memory. All record-breaking

large models such as GPT-2, Megatron-LM, Turing-NLG, and GPT-3, were trained using a

combination of the aforementioned technologies. However, all of these DL parallel technologies

require having enough GPU devices such that the aggregated GPU memory can hold the model

states required for the training. For example, training a 10B parameter model efficiently requires a

DGX-2 equivalent node with 16 NVIDIA V100 cards, which costs over 100K, beyond the reach

of many data scientists, and even many academic and industrial institutions.

Heterogeneous DL training is a promising approach to reduce GPU memory requirement by

exploiting CPU memory. Many efforts have been made in this direction [77, 79, 92, 158, 178,

182, 212, 218, 244]. Nearly all of them target CNN based models, where activation memory is

the memory bottleneck, and model size is fairly small (less than 500M). However, the primary

memory bottleneck for recent attention based large model training are the model states, instead of

activation memory. There is an absence in literature studying these workloads for heterogeneous

DL training. Additionally, existing efforts on heterogeneous training are further limited in two

major ways: i) nearly all of them exploit CPU memory, but not CPU compute, which we show can



56

be used to significantly reduce the CPU-GPU communication overhead, and ii) they are mostly

designed for and evaluated on single GPU [79, 92, 178, 244], without a clear path to scaling

efficiently on multiple GPUs, which is crucial for large model training.

Addressing the aforementioned limitation, we attempt to democratize large model training by

developing ZeRO-Offload, a novel heterogeneous DL training technology designed specifically

for large model training. ZeRO-Offload exploits both CPU memory and compute for offloading,

while offering a clear path towards efficiently scaling on multiple GPUs by working with ZeRO-

powered data parallelism [172]. Additionally, our first principle analysis shows that ZeRO-Offload

provides an optimal and the only optimal solution in maximizing memory saving while minimizing

communication overhead and CPU compute overhead for large model training.

ZeRO-Offload is designed around three main pillars: i) Efficiency, ii) Scalabilty, and iii)

Usability.

Efficiency: The offload strategy in ZeRO-Offload is designed with the goal of achieving

comparable compute efficiency to the state-of-art non-offload strategies but for significantly larger

models. To achieve this goal, we rely on first principle analysis to identify a unique optimal

computation and data partitioning strategy between CPU and GPU devices. This strategy is

optimal in three key aspects: i) it requires orders-of-magnitude fewer computation on CPU

compared to GPU, preventing the CPU compute from becoming a performance bottleneck, ii) it

minimizes the communication volume between CPU and GPU preventing communication from

becoming a bottleneck, and iii) it provably maximizes memory savings on GPU while achieving

minimum communication volume.

Our analysis shows that to be optimal in the aforementioned regards, we must offload the

gradients, optimizer states and optimizer computation to CPU, while keeping the parameters

and forward and backward computation on GPU. This strategy enables a 10x increase in model

size, with minimum communication and limited CPU computation, which allows us to train 13B

parameters on a single NVIDIA V100 GPU at 40 TFLOPS, compared to 30 TFLOPS on the same

GPU with 1.2B parameters, the largest model that can be trained without any CPU offloading.

Offloading optimizer computation requires CPU to perform O(M) computation compared to

O(MB) on GPU where M and B are the model size and batch sizes respectively. In most cases,

the batch size is large, and CPU computation is not a bottleneck, but for small batch sizes, the

CPU compute can be a bottleneck. We address this using two optimizations: i) an efficient CPU

optimizer that is up to 6x faster than the-state-of-art , and ii) One-step delayed parameter update

that allows overlapping the CPU optimizer step with GPU compute, while preserving accuracy.
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Together, they preserve efficiency for ZeRO-Offload even with small batch sizes.

Scalability: Good scalability is crucial to take advantage of multiple GPUs that may be

available to some data scientists. In the DL community, data parallelism is generally used as the

de facto standard to scale DL training to multiple GPUs [42, 190, 249]. However, it is not designed

to work with heterogeneous training and presents scalability challenges because of the replication

of data and computation in data parallel training. Data parallel training replicates all the model

states such as optimizer states, parameters, and gradients, and it also replicates the optimizer

computation on each GPU. Therefore, offloading model states or optimizer computation to CPU

in combination with data parallelism will result in significant replication of communication and

CPU compute: increase the CPU memory requirement proportionally to the data parallelism

degree while limiting throughput scalability due to the increased communication.

To address these challenges, ZeRO-Offload combines unique optimal offload strategy with

ZeRO [172] powered data parallelism instead of traditional data parallelism. The symbiosis

allows ZeRO-Offload to maintain a single copy of the optimizer states on the CPU memory

regardless of the data parallel degree. Furthermore, it keeps the aggregate communication volume

between GPU and CPU, as well as the aggregate CPU computation a constant regardless of data

parallelism, allowing ZeRO-Offload to effectively utilize the linear increase in CPU compute

with the increase in the data parallelism degree. As a result, ZeRO-Offload achieves excellent

scalability on up to 128 GPUs.

In addition to working with ZeRO powered data parallelism, ZeRO-Offload can be combined

with model parallelism [192, 195] to achieve higher memory savings, when multiple GPUs are

available.

Figure 5.1: ZeRO-Offload can be enabled with
a few lines of change. The code on left shows a
standard training pipeline, while the right shows
the same pipeline with ZeRO-Offload enabled.

Usability: ZeRO-Offload is available

as part of an OpenSource PyTorch library,

DeepSpeed (www.deepspeed.ai). Unlike

most strategies discussed in Section 5.2, ZeRO-

Offload does not require model refactoring

to work. In fact, PyTorch users can enable

ZeRO-Offload with few lines of code change

to their existing training pipeline as shown in

Figure 5.1, allowing to train 10x larger models

easily.

Contributions. To the best of our

www.deepspeed.ai
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knowledge, ZeRO-Offload is the first fully

distributed all-reduced based training framework using CPU memory and computation resources

to train large-scale models. We summarize contributions are as follows:

• A unique optimal offload strategy for heterogeneous large model training on GPU + CPU

system that enables 10x larger model on a single GPU without sacrificing efficiency (Sec. 5.3

and Sec. 5.4.1).

• Highly scalable multi-GPU design through i) a symbiotic combination of offload strategy with

ZeRO powered data parallelism (Sec. 5.4.2), allowing ZeRO-Offload to achieve near-linear

scalability, and ii) seamless integration with model-parallel training [195], enabling even larger

models than using ZeRO-Offload or model parallelism alone (Sec. 5.4.2).

• Open-source implementation of ZeRO-Offload in PyTorch.

• Extensive evaluation demonstrating i) Model Scale: 10x increase in model size with up to

13B on a single GPU and 4x increase in model size over model parallelism with up to 70B

parameters on a DGX-2 node. ii) Efficiency: Over 40 TFlops for a 10B parameters on a

single NVIDIA V100, compared to 30 TFLOPS on the same GPU with 1.4B parameters, the

largest model that can be trained without any CPU offloading; Outperform two state-of-the-art

heterogeneous DL training frameworks by 22% and 37% respectively on a single GPU. iii)

Scalability: Near-perfect linear scalability for a 10B parameter model on up to 128 GPUs.

iv) CPU overhead reduction with our ADAM implementation with 6x speedup over PyTorch

optimizer and up to 1.5X improvement in end-to-end throughput with delayed parameter update

optimizations (Sec. 5.6).

5.2 Background and Related Work

Memory consumption in large model training. The full spectrum of memory consumption

during DL model training can be classified into two parts: i) model states and ii) residual states

[172]. Model states include parameters, gradients, and optimizer states (such as momentum and

variances in Adam [99]); Residual states include activations, temporary buffers, and unusable

fragmented memory.

Model states are the primary source of memory bottleneck in large model training. We

consider the memory consumption due to model states for large transformer models such as

Megatron-LM (8 billion) [195], T5 (11 billion) [171], and Turing-NLG [184] (17.2 billion). They

are trained with float-16 mixed precision training [144] and Adam optimizer [99].

Mixed precision training often keeps two copies of the parameters, one in float-16 (fp16) and
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the other in float-32 (fp32). The gradients are stored in fp16. In addition to the parameters and

gradients, the Adam optimizer keeps track of the momentum and variance of the gradients. These

optimizer states are stored in fp32. Therefore, training a model in mixed precision with the Adam

optimizer requires at least 2 bytes of memory for each fp16 parameter and gradient, and 4 byte of

memory for each fp32 parameter, and the moementum and variance of each gradient. In total, a

model with M parameters requires 16 ×M bytes of memory. Therefore, the model states for

Megatron-LM, T5 and Turing-NLG require 128 GB, 176 GB and 284 GB, respectively, which

are clearly beyond the memory capacity of even the current flagship NVIDIA A100 GPU with 80

GB of memory.

Significant amount of work has been done in the recent years to enable large model training,

which requires more memory than what is available on a single GPU to fit these model and

residual states. These efforts can be classified broadly into two categories: i) scale-out training

and ii) scale-up training based approaches. We discuss them as follows.

Scale out large model training. Scale-out training uses aggregate memory of multiple GPUs

to satisfy the memory requirement for large model training. Two prominent examples of scale

out training is model parallelism [42, 195] and pipeline parallelism [72, 81], both partitioning the

model states and the residual states across multiple GPUs. Model parallelism [42, 195] partitions

the model vertically and distributes the model partitions to multiple GPU devices in order to

train large models. Pipeline parallelism [72, 81] on the other hand parallelizes model training by

partitioning the model horizontally across layers. Both of these approaches must change the user

model to work, therefore can limit usability.

A recent work, ZeRO [172], provides an alternative to model and pipeline parallelisms to

train large models. ZeRO splits the training batch across multiple GPUs similar to data parallel

training [42, 190, 249], but unlike data parallel training which replicates all the model states on

each GPU, ZeRO partitions them across all GPUs, and uses communication collectives to gather

individual parameters as needed during the training. ZeRO does not require changes to the user

model to work, making it more generic than model or pipeline parallel training. It also offers

better compute efficiency and scalability.

Despite the ability of model and pipeline parallelisms, and ZeRO to train large models, they

all require multiple GPUs such that the aggregate GPU memory can hold the model and residual

states for training large models. In contrast, ZeRO-Offload is designed to fit a larger model by

offloading model states to CPU memory and can train a 10x larger model on a single GPU without

sacrificing efficiency. When multiple GPUs are available, ZeRO-Offload is designed to work



60

together with ZeRO to offer excellent scalability, or in conjunction with model parallelism to fit

even larger model sizes that is not possible with ZeRO-Offload or model parallelism alone.

Scale up large model training. Existing work scales up model size in a single GPU

through three major approaches. The first approach trades computation for memory saving

from activations (residual memory) by recomputing from checkpoints [38]. The second approach

uses compression techniques such as using low or mixed precision [144] for model training,

saving on both model states and activations. The third approach uses an external memory such

as the CPU memory as an extension of GPU memory to increase memory capacity during

training [77, 79, 92, 158, 178, 182, 218].

Our work, ZeRO-Offload falls under the third approach. Unlike ZeRO-Offload, the above

efforts only offload data to CPU but not compute, and they use smaller models training. Furthermore,

none of the above works is communication optimal, leading to extra communication between

CPU and GPU and hurting training throughput. In contrast, a recent work called L2L [164] can

enable multi-billion parameter training by managing memory usage in GPU layer by layer. In

particular, L2L synchronously moves tensors needed in the upcoming layer into GPU memory for

computation and keeps the rest of tensors into CPU memory for memory saving. In comparison

to ZeRO-Offload, it offers limited efficiency due to extra communication overhead, does not offer

a way to scale out across devices, and requires model refactoring, making it difficult to use.

ZeRO powered data parallel training. ZeRO-Offload works with ZeRO to scale DL training

to multiple GPUs. ZeRO has three stages, ZeRO-1, ZeRO-2 and ZeRO-3 corresponding to

the partitioning of the three different model states, optimizer states, gradients and parameters,

respectively. ZeRO-1 partitions the optimizer states only, while ZeRO-2 partitions gradients

in addition to optimizer states, and ZeRO-3 partitions all model states. ZeRO-Offload works

symbiotically with ZeRO-2, and therefore we discuss it further.

In ZeRO-2, each GPU stores a replica of all the parameters, but only updates a mutually

exclusive portion of it during the parameter update at the end of each training step. As each GPU

only updates a portion of the parameters, they only store optimizer states and gradients required

to make that update. After the update, each GPU sends its portion of the updated parameters to

all the other GPUs using an all-gather communication collective. ZeRO-2 computation and

communication schedule is described below:

During the forward pass, each GPU computes the loss with respect to a different mini-batch.

During the backward propagation, as each gradient is computed, it is averaged using a reduce

operator at the GPU/GPUs that owns the gradient or part of the gradient. After the backward pass,
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each GPU updates its portion of the parameters and optimizer states using the averaged gradients

corresponding to that portion. After this, an all-gather is performed to receive the rest of the

parameter update computed on other GPUs.

5.3 Unique Optimal Offload Strategy

ZeRO-Offload is designed to enable efficient large model training on a single or multiple

GPUs by offloading some of the model states from GPU to CPU memory during training. As

discussed in Sec. 5.2, model states: parameters, gradients, and the optimizer states, are the primary

source of memory bottleneck in large model training. By offloading some of these model states to

CPU, ZeRO-Offload can enable training of significantly larger models 1. However, identifying

the optimal offloading strategy is non-trivial. There are numerous ways to offload model states

to CPU memory, each with a different trade-off in terms of CPU computation, and GPU-CPU

communication, both of which can limit the training efficiency.

To identify the optimal offload strategy, ZeRO-Offload models the DL training as data-flow

graph and uses first principle analysis to efficiently partition this graph between CPU and GPU

devices. ZeRO-Offload partitions the graph in a way that is optimal in three key aspects: i) it

requires orders-of-magnitude fewer computation on CPU compared to GPU, which prevents

CPU from becoming a performance bottleneck (Sec. 5.3.1), ii) it guarantees the minimization

of communication volume between CPU and GPU memory (Sec. 5.3.3), and iii) it provably

maximizes the memory savings while achieving minimum communication volume (Sec. 5.3.4). In

fact, ZeRO-Offload can achieve high efficiency during training that is comparable to non-offload

training and it is unique optimal, meaning no other solution can offer better memory savings

without increasing the communication volume or increasing CPU computation.

In this section, we discuss the derivation of our unique optimal offload strategy. Our strategy

is specifically designed for mixed precision training with Adam optimizer which is the de facto

training recipe for large model training.

5.3.1 DL Training as a Data-Flow Graph

The DL training workload can be represented as a weighted directed graph of data and

computation, as shown in Figure 5.2, where the circular nodes represents model states (parameter16,
1ZeRO-Offload only offloads model states. Offloading secondary sources of memory bottleneck such as activation

memory is beyond scope of our offload strategy. Given that they are significantly smaller than model states, we ignore
them for the purpose of our analysis. Furthermore, the first and second approaches described in Sec. 5.2 can be used in
conjunction with ZeRO-Offload to reduce activation memory
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gradient16, parameter32, momentum32, variance32), and the rectangular nodes represents

computation (forward, backward, param update). The edges in the graph represents the data flow

between the nodes, and the weight of an edge is the total data volume in bytes that flows through

it during any given training iteration. For a model with M parameters, the weight of the edges

in this graph is either 2M where the source node produces fp16 model states, or 4M where the

source node produces fp32 model states.

An offload strategy between GPU and CPU can be represented using a two-way partitioning

of this graph, such that computation nodes in a partition would be executed on the device that

owns the partition, and the data nodes in the partition will be stored on device that owns the

partition. The total data volume that must be communicated between GPU and CPU is given by

the weight of edges running across two partitions.

There are numerous ways to partition this graph. In the following sections, we use first

principles to simplify the data flow graph to reduce the number of possible choices based on three

different efficiency metric: i) CPU computation overhead, ii) communication overhead, and iii)

memory savings.

5.3.2 Limiting CPU Computation

The CPU computation throughput is multiple orders of magnitude slower than the GPU

computation throughput. Therefore, offloading large computation graph to CPU will severely

limit training efficiency. As such, we must avoid offloading compute intensive components to the

CPU.

The compute complexity of DL training per iteration is generally given by O(MB), where

M is the model size and B is the effective batch size. To avoid CPU computation form becoming

a bottleneck, only those computations that have a compute complexity lower than O(MB)

should be offloaded to CPU. This means that the forward propagation and backward propagation

both of which have a compute complexity of O(MB) must be done on GPU, while remaining

computations such as norm calculations, weight updates etc that have a complexity of O(M) may

be offloaded to CPU.

Based on this simple observation we fuse the forward and backward nodes in our data flow

graph into a single super-node (FWD-BWD) and assign it to GPU.
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Figure 5.2: The dataflow of fully connected neural networks with M parameters. We use
activation checkpoint to reduce activation memory to avoid activation migration between CPU
and GPU.

5.3.3 Minimizing Communication Volume

The CPU memory bandwidth is at least an order of magnitude faster than the PCI-E bandwidth

between CPU and GPU, while the GPU memory is another order of magnitude faster than even

the CPU memory. Therefore, we must minimize the communication volume between CPU and

GPU memory to prevent the PCI-E bandwidth from becoming a training performance bottleneck.

To do so we must first identify the theoretical minimum communication volume for a model-state

offload strategy.

The minimum communication volume for any model-state offload strategy is given by 4M

2. Note that after fusing the forward and backward into a single super-node as discussed in

Sec. 5.3.2, each node in our data flow graph is part of a cycle. Therefore, any partitioning of this

graph would require cutting at least two edges, each of which has a edge weight of at least 2M ,

resulting in a total communication of at least 4M .

If we choose to limit the communication volume to this bare minimum, we can greatly

simplify our data-flow graph and reduce the number of partitioning strategies to a handful:

Creating fp32 super-node. Notice that any partitioning strategy that does not co-locate

the fp32 model states with their producer and consumer nodes cannot achieve the minimum

communication volume of 4M. Such a partition must cut at least one edge with a weight of 4M,

and the other with at least 2M, resulting in a communication volume of at least 6M. Therefore, to

achieve the minimum communication volume, all offload strategies must co-locate fp32 model
2Please note that it is possible to reduce the communication volume further by only offloading partial model states.

For simplification, we assume that an offload of a model state implies that we offload the entire model state. Our
analysis on the memory savings per communication volume, still holds even if we offload partial model states
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states with their producer and consumer operators, i.e., the fp32 model states (momentum32,

variance32 and parameter32) must be co-located with the Param Update and the float2half

computation.

This constraint allows us to treat all the aforementioned fp32 data and compute nodes in the

data flow graph as a single super-node that we refer to as Update Super. We show this reduced

data flow graph in Figure 5.2, consisting of only four nodes: FWD-BWD Super node, p16 data

node, g16 data node, and Update Super node.

p16 assignment. To achieve the minimum communication volume, p16 must be co-located

with FWD-BWD Super because the edge weight between these two nodes is 4M. Separating these

two nodes, would increase the communication volume to 6M (i.e., 4M + 2M). Since, we have

already assigned node FWD-BWD Super to GPU to limit computation on CPU, p16 must also be

assigned to GPU.

5.3.4 Maximizing Memory Savings

After simplifying the data flow graph to minimize communication volume, only g16 and

Update Super remain to be assigned. Notice that at this point, all partitions will result in minimum

communication volume, so we can prune the choices further to maximize the memory savings

on GPU. Table 5.1 shows the memory savings of all valid partitioning strategies that minimize

the communication volume. The maximum memory savings of 8x can be achieved by offloading

both g16 and Update Super to CPU.

Table 5.1: Memory savings for offload strategies that minimize communication volume compared
to the baseline.

FWD-BWD p16 g16 Update Memory Reduction
gpu gpu gpu gpu 16M 1x (baseline)
gpu gpu cpu gpu 14M 1.14x
gpu gpu gpu cpu 4M 4x
gpu gpu cpu cpu 4M 8x

5.3.5 A Unique and Optimal Offload Strategy

ZeRO-Offload allocates all the fp32 model states along with the fp16 gradients on the CPU

memory, and it also computes the parameter updates on CPU. The fp16 parameters are kept on

GPU and the forward and backward computations are also done on GPU.

We arrive at this offload strategy by simplifying our data flow graph and eliminating all other

partitioning strategies as they do not limit CPU computation, minimize communication volume,

or maximize memory savings. Therefore, ZeRO-Offload is not only optimal in terms of the
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Figure 5.3: ZeRO-Offload training process on a single GPU.

aforementioned metrics, it is also unique; there can be no other strategy that can offer more

memory savings than ZeRO-Offload without increasing the compute complexity on the CPU or

incur additional GPU-CPU communication volume.

5.4 ZeRO-Offload Schedule

In this section, we discuss the concrete computation and communication schedule for

implementing ZeRO-Offload on a single GPU system based on our offload strategy. We then

show how we extend this schedule to work effectively on multi-GPU systems by combining our

offload strategy with ZeRO data parallelism and model parallelism.

5.4.1 Single GPU Schedule

As discussed in Sec. 5.3, ZeRO-Offload partitions the data such that the fp16 parameters are

stored in GPU while the fp16 gradients, and all the optimizer states such as fp32 momentum,

variance and parameters are stored in CPU.

During the training, we begin by computing the loss via the forward propagation. Since

the fp16 parameters are already presented on GPU, no CPU communication is required for

this part of the computation. During the backward propagation on the loss, the gradient for

different parameters are computed at different point in the backward schedule. ZeRO-Offload can

transfer these gradients for each parameter individually or in small groups to the CPU memory

immediately after they are computed. Therefore, only a small amount of memory is required to

temporarily hold the gradients on the GPU memory before they are transferred to CPU memory.

Furthermore, each gradient transfer can be overlapped with the backpropagation on the remainder

of the backward graph, allowing ZeRO-Offload to hide a significant portion of the communication

cost.

After the backward propagation, ZeRO-Offload updates the fp32 parameters and the remaining

optimizer states (such as momentum and variance) directly on CPU, and copies the updated fp32

parameters from the CPU memory to the fp16 parameters on the GPU memory. Figure 5.3
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Figure 5.4: ZeRO-Offload data placement with multiple GPUs

shows the computation and communication in each step of ZeRO-Offload diagrammatically, and

Figure 5.5 shows the concrete schedule as a pseudo-code.

5.4.2 Scaling to Multi-GPUs

Figure 5.5: Code representing ZeRO-Offload that
combines unique optimal CPU offload strategy
with ZeRO-powered data parallelism.

ZeRO-Offload in its entirety is a symbiotic

integration of ZeRO-Offload strategy described

in Sec. 5.3 and ZeRO-powered data parallelism

discussed in Sec. 5.2, which allows ZeRO-

Offload to scale to hundreds of GPUs

efficiently. ZeRO-Offload preserves the model

state partitioning strategy of ZeRO Stage-2

(optimizer state and gradient partitioning),

while offloading the partitioned gradients,

optimizer states and the corresponding

parameter updates to CPU.

The key benefit of doing this partitioning

before offloading is that for systems with more

than one GPU, each data parallel process is

only responsible for updating a subset of the

parameters. The aggregated communication

volume from all the data parallel GPUs to CPU

remains constant, and CPU resources are used

in parallel to jointly compute a single weight

update. As a result, the total CPU update

time decreases with increased data parallelism,

since the CPU compute resources increase
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linearly with the increase in the number of compute nodes. This allows ZeRO-Offload to

achieve very good scalability, as the overhead of communication across GPUs is offset by the

reduction in the CPU optimizer step.

ZeRO-Offload partitions gradients and optimizer states among different GPUs, and each GPU

offloads the partition it owns to the CPU memory and keeps it there for the entire training. During

the backward propagation, gradients are computed and averaged using reduce-scatter on the GPU,

and each GPU only offloads the averaged gradients belonging to its partition to the CPU memory.

Once the gradients are available on the CPU, optimizer state partitions are updated in parallel by

each data parallel process directly on the CPU. After the update, parameter partitions are moved

back to GPU followed by an all-gather operation on the GPU similar to ZeRO-2 to gather all

the parameters. Figure 5.4 shows the data placement model parameters, gradients and optimizer

states for ZeRO-Offload and the details of the ZeRO-Offload data parallel schedule is presented

in Figure 5.5. The all gather operation described above is shown as a sequence of broadcast

operations in the Figure.

Model Parallel training ZeRO-Offload can also work together with tensor-slicing based

model parallelism (MP) frameworks such as Megatron-LM [195]. It does so by offloading the

gradients, optimizer states and the optimizer computation corresponding to each MP process

allowing ZeRO-Offload to train significantly larger models than possible than using model

parallelism alone. Sec. 5.6 provides more details.

5.5 Optimized CPU Execution

We speedup the CPU execution time for the parameter updates with two optimizations. First,

we implement a fast CPU Adam optimizer using high performance computing techniques offering

significant speedup over state-of-art Pytorch implementation. Second, we develop a one-step

delayed parameter update schedule that overlaps the CPU parameter update computation with the

forward and backward computation on the GPU, hiding the CPU execution time when enabled.

5.5.1 Implementing the CPU Optimizer

We use three levels of parallelism for improving the performance of the CPU optimizer. 1)

SIMD vector instruction [135] for fully exploiting the hardware parallelism supported on CPU

architectures. 2) Loop unrolling [209], an effective technique for increasing instruction level

parallelism that is crucial for better memory bandwidth utilization. 3) OMP multithreading for
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effective utilization of multiple cores and threads on the CPU in parallel. Using these technique,

we present a significantly faster implementation of Adam optimizer compared to state-of-art

PyTorch implementation.

Mixed Precision Training with Adam ADAM is an optimization algorithm used for deep-

learning training, which takes the loss gradients together with their first and second momentums

to update the parameters. Therefore, in addition to the model parameters, ADAM requires two

more matrices of the same size (M ) saved during the training. In the mixed precision training

mode, there are two versions of the parameters stored in memory: one in fp16 (parameter16)

used for computing the activations in the forward pass (on GPU), and one master copy in

fp32 (parameter32) which is updated by the optimizer (on CPU). The p16 is updated with the

parameter32 through float2half casting, at each training step. Moreover, the momentum and

variance of the gradients are saved in fp32 (on CPU), to prevent the precision loss for updating

the parameters. Please refer to [99] for further detail on ADAM’s algorithm.

Algorithm 4: CPU-ADAM Optimizer
Input: p32, g32, m32, v32, β1, β2, α , step, eps

Output: p16, p32, m32, v32

Parameters :tile_width, simd_width, unroll_width

1 biascorrection1← −α/(1− βstep
1 )

2 biascorrection2← 1/
√

1− βstep
2

3 simd_count← sizeof(32) / simd_width

4 unroll omp parallel

5 for i in 1 to (simd_count/unroll_width) do

6 ...

7 gv , pv , mv , vv = g32[i], p32[i],m32[i], v32[i]

8 mv = FMA(gv , (1 - β1), β1*mv)

9 vv = FMA(gv*gv , (1 - β2), β2*vv)

10 gv = FMA(
√
vv , biascorrection2, eps)

11 gv = mm / gv
12 pv = FMA(gv , biascorrection1, pv)

13 p32[i],m32[i], v32[i] = pv , mv , vv
14 ...

15 IF (i == tile_width) copy_to_gpu(p16, p32)

Optimized Implementation Algorithm 4 elaborates the ADAM’s implementation detail using

SIMD operations. As shown, the Adam function receives the optimizer parameters such as β1, β2,
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Figure 5.6: Delayed parameter update during the training process.

and α, and the gradient, momentum, variance and master copy of parameters (parameter32) as

the input. We also use some parameters specific to the implementation, like the simd_width and

unroll_width. The Adam optimizer sends back the updated variance, momentum, and parameter

in both fp16 (to GPU) and fp32 (to CPU) .

We firstly read the data, including parameter, gradient, momentum and variance, into the

vector registers (line 7). Then, we use several fused multiply-add (FMA) vector operations to

preform the main execution pipeline which is repeated by the unrolling width. Note that the rest of

operations, such as multiply, division, and sqrt, also run in vector mode. For the best performance

we use AVX512 simd instruction set and an unroll_width of 8 based on auto-tuning results.

In addition to the CPU-Adam optimizer, we implement the CPU-to-GPU fp16 parameter-copy

in a tiled manner (line 15). We overlap the CPU and GPU execution by parallelizing the Adam

computation and copying the parameters over to GPU. As we process Adam computation of the

current tile of data on CPU, we write the parameters back to GPU for the previously processed

tile. This way, we reduce the idle time of GPU to start the processing of the next training step.

5.5.2 One-Step Delayed Parameter Update

Despite using a highly optimized CPU optimizer, the CPU computation overhead can become

a bottleneck during training with very small batch sizes, when the GPU computation time is not

much larger than CPU compute. For such limited cases, we develop one-step delayed parameter

update (DPU) that overlaps CPU and GPU compute to hide the CPU computation overhead by

delaying the parameter update by a single step. We verify that DPU does not impact the final

accuracy of training in the evaluation.

DPU training schedule Figure 5.6 shows the workflow of ZeRO-Offload training process

with delayed parameter update. ➊ The first N − 1 steps, are trained without DPU to avoid

destabilizing the training during the early stages where gradients change rapidly. ➋ On step N ,

we obtain the gradients from the GPU, but we skip the CPU optimizer step, and do not update
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the fp16 parameters on the GPU either. ➌ At step N + 1, we compute the parameter updates on

the CPU using gradients from step N , while computing the forward and backward pass on the

GPU in parallel using parameters updated at step N − 1. From this step onwards, the model at

(i + 1)th step will be trained using the parameters updated with gradients from (i − 1)th step

instead of parameters updated at ith step, overlapping CPU compute with GPU compute.

Accuracy trade-off. Since DPU changes the semantics of the training, it is reasonable to ask

if there is a trade-off between model accuracy and training efficiency. To answer this question, we

evaluated DPU on multiple training workloads and found that DPU does not hurt convergence

if we introduce DPU after a few dozen iterations instead of introducing it at the beginning. Our

evaluation result in Sec. 5.6 shows that compared with training with ZeRO-Offload only, training

with delayed parameter update achieves same model training accuracy with higher training

throughput.

5.6 Evaluation

This section seeks to answer the following questions, in comparison to the state-of-the-art:

(i) How does ZeRO-Offload scale the trainable model size compared to existing multi-billion

parameter training solutions on a single GPU/DGX-2 node?

(ii) What is the training throughput of ZeRO-Offload on single GPU/DGX-2 node?

(iii) How does the throughput of ZeRO-Offload scale on up to 128 GPUs?

(iv) What is the impact of our CPU-Adam and delay parameter update (DPU) on improving

throughput, and does DPU change model convergence?

5.6.1 Evaluation Methodology

Testbed. For the evaluation of model scale and throughput, we conduct our experiments on

a single DGX-2 node, whose details are shown in Table 5.2. For the evaluation of throughput

scalability, we conduct experiments on 8 Nvidia DGX-2 nodes connected together with InfiniBand

using a 648-port Mellanox MLNX-OS CS7500 switch.

Workloads. For the performance evaluation, we focus on evaluating GPT-2 [170] like Transformer

based models [207]. We vary the hidden dimension and the number of Transformer blocks to

obtain models with a different number of parameters. Note that scaling the depth alone is often not

sufficient because it would make training more difficult [97]. Table 5.3 shows the configuration

parameters used in our experiments.
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Table 5.2: Hardware overview of experimental system.
DGX-2 node

GPU 16 NVIDIA Tesla V100 Tensor Core GPUs
GPU Memory 32GB HBM2 on each GPU
CPU 2 Intel Xeon Platinum 8168 Processors
CPU Memory 1.5TB 2666MHz DDR4
CPU cache L1, L2, and L3 are 32K, 1M, and 33M, respectively
PCIe bidirectional 32 GBps PCIe

For convergence analysis, such as the delayed parameter update, we use GPT-2 [170]

and BERT [43], both of which are commonly used as pre-trained language models and have

demonstrated superior performance in many NLP tasks (e.g., natural language understanding and

inference) than recurrent neural networks or convolutional neural networks. We use BERT-

large, same as the one from [43], which has 24-layer, 1024-hidden, 16-heads, and 336M

parameters. Similar to [172, 195], we fine-tune BERT on the Stanford Question Answering

Dataset (SQuAD) [3], which is one of the most widely used reading comprehension benchmark [174].

Unless otherwise stated, we follow the same training procedure and hyperparameter settings as in

[43, 170].

Baseline. We compare the effectiveness of ZeRO-Offload with state-of-arts multi-billion parameter

training solutions:

• PyTorch DDP: This is the existing PyTorch Transformer implementation using Distributed

Data Parallel [111].

• Megatron [195]: One of the current state-of-the-art multi-billion parameter model training

solutions, which employs model parallelism to train up to 8.3B parameter models using

512 GPUs.

• SwapAdvisor [79]: SwapAdvisor explores a genetic algorithm to guide model-agnostic

tensor swapping between GPU and CPU memory for GPU memory saving.

• L2L [164]: L2L enables training of deep Transformer networks by keeping one Transformer

block at a time in GPU memory and only moves tensors in the upcoming Transformer

block into GPU memory when needed.

• ZeRO-2 [172]: ZeRO extends data parallelism by eliminating memory redundancies

across multiple GPUs, allowing to train models up to 170B parameters with high training

throughput using 25 DGX-2 nodes. ZeRO-2 achieves the SOTA results for large model

training and is a strong baseline.
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Table 5.3: Model configuration in evaluation.
# params batch size per GPU MP setting in # layer hidden size

1, 2 billion 32 1 20, 40 2048
4 billion 32 1 64 2304

6, 8 billion 16 1 53, 72 3072
10,11 billion 10,8 1 50,55 4096
12, 13 billion 4 1 60, 65 4096

15 billion 8 2 78 4096
20,40,60 billion 8 2 25,50,75 8192

70 billion 8 8 69 9216

5.6.2 Experimental Results

Model Scale

As an important step toward democratizing large model training, in this part, we first test the

largest trainable models on a single GPU as well as 16 GPUs in a single DGX-2 node.

Single GPU. The largest model can be trained using PyTorch DDP on a single GPU with 32GB

memory is 1.4B, before running out of memory, as shown in figure 5.7. Both Megatron and ZeRO-

2 do not increase the trainable model size on a single GPU in comparison to PyTorch, because

they both utilize the aggregated GPU memory to fit larger models. In contrast, ZeRO-Offload

enables 13B model training on a single GPU, which is more than 9X larger than using PyTorch,

Megatron, and ZeRO-2. This is mainly because of ZeRO-Offload’s strategy for maximizing

the memory savings on GPU by offloading expensive states such as optimizer states and the

majority of gradients to CPU memory. The largest model can be trained with SwapAdvisor on

a single GPU is 8B, which is 38% smaller than the model can be trained with ZeRO-Offload.

SwapAdvisor relies on a black-box approach and uses a simulator to predict which tensors are

more frequently used in order to keep them in GPU memory to maximize training throughput.

The prediction can not be fully accurate, and therefore SwapAdvisor keeps more tensors in GPU

memory than ZeRO-Offload does. On the other hand, L2L is able to train even larger models

(e.g., 17B) on a single GPU by frequently moving weights from unused layers to CPU memory.

However, the largest model size does not increase when training L2L with multiple GPUs, which

is discussed next.

Multi-GPU in single DGX-2. We further perform model scale tests with 4 and 16 GPUs in a

single DGX-2 node, respectively. As shown in Figure 5.7, the maximum trainable model size

stays the same for PyTorch, L2L and SwapAdvisor, because all of them do not handle memory
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Figure 5.7: The size of the biggest model that
can be trained on single GPU, 4 and 16 GPUs
(one DGX-2 node).

Figure 5.8: The training throughput with
PyTorch, L2L, SwapAdvisor and ZeRO-
Offload on a single GPU with a batch size
of 512.

redundancies in data parallelism. As a result, their scalability is bounded by the model scale on

a single GPU. Both Megatron and ZeRO-2 support large model training with more GPUs, but

they cannot scale efficiently beyond 15B parameters, even with 16 GPUs. Megatron supports

larger models than ZeRO-2, because ZeRO-2 still incurs memory redundancies on model weights.

On the other hand, ZeRO-Offload easily enables training of up to 70B parameter models by

partitioning and offloading optimizer states and gradients to CPU memory combined with model

parallelism. Overall, ZeRO-Offload increases the model scale on a single DGX-2 node by 50X,

4.5X, 7.8X, and 4.2X than using PyTorch, Megatron, ZeRO-2, and L2L, respectively.

Training Throughput

Single GPU. Next, we compare the training throughput of SwapAdvisor, L2L and ZeRO-

Offload, for models with billion-scale parameters, on a single GPU. We do not include Megatron

and ZeRO-2 in this comparison, because both of them cannot train models bigger than 1.4B

parameters due to OOM. We evaluate SwapAdvisor, L2L and ZeRO-Offload with the same

training batch size (e.g., 512) and same micro-batch sizes (shown in table 5.3), with gradient

accumulation enabled. We also disable delayed parameter update in this experiment so that

the comparison is only from the system efficiency perspective. We evaluate the performance

improvement and its impact on the convergence of delayed parameter update in Section 5.6.2.

Figure 5.8 shows that ZeRO-Offload outperforms SwapAdvisor by 23% (up to 37%) in

training throughput. SwapAdvisor relies online genetic algorithm to make tensor swapping

decision, which takes hours to find an optimal tensor swapping solution in terms of maximizing

the overlapping of computation and tensor swapping. Before getting the optimal tensor swapping

solution, SwapAdvisor tries random tensor swapping solutions and hurts training performance.
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Figure 5.8 shows that ZeRO-Offload outperforms L2L by 14% on average (up to 22%) in

throughput (TFLOPS). The performance benefit of ZeRO-Offload comes from the following two

aspects. First, ZeRO-Offload has a lower communication cost between CPU and GPU than L2L.

For a model with M parameters, L2L requires 28M data communication volume between GPU

and CPU, which is a sum of the weights, gradients, and optimizer states of each layer of the

model. As analyzed in Sec. 5.4.1, the communication volume between CPU and GPU memory

in ZeRO-Offload is 4M , which is 7x smaller than L2L. The reduced communication volume

significantly mitigates the bottleneck from CPU-GPU communication. Second, compared with

L2L, the parameter update of ZeRO-Offload happens on CPU instead of GPU, but our optimized

CPU-Adam implementation achieves a quite comparable parameter update performance than

the PyTorch Adam implementation on GPU (evaluated in Sec. 5.6.2). Therefore, although the

optimizer update on GPU in L2L is slightly faster than the optimizer update on CPU in ZeRO-

Offload, the communication overhead introduced by L2L leads to an overall slower throughput

than ZeRO-Offload.

Multi-GPU in single DGX-2. Next, we compare the training throughput of PyTorch, ZeRO-2,

Megatron, ZeRO-Offload without model parallelism (w/o MP), and ZeRO-Offload with model

parallelism (w/ MP) in one DGX-2 node. When using MP, we use a MP degree that gives the

best performance for both baseline and ZeRO-Offload. We use a total batch size of 512 for all

the experiments using a combination of micro-batch per GPU and gradient accumulation. To get

the best performance for each configuration, we use the largest micro batch that it can support

without OOM. We exclude L2L [202] in this test because its implementation does not support

multi-GPU training.

Figure 5.9 shows the throughput per GPU results when training on multiple GPUs. We make

the following observations:

• For 1B to 15B models, ZeRO-Offload achieves the highest throughput and has up to

1.33X, 1.11X, 1.64X higher speeds than PyTorch, ZeRO-2, and Megatron, respectively. By

offloading all the optimizer states to CPU with low overhead, ZeRO-Offload can train with

larger micro-batch sizes giving higher throughput.

• ZeRO-2 runs out of memory once the model size is beyond 8B due to lack of enough

aggregated GPU memory to store the model states on 16 GPUs. Instead, ZeRO-Offload

scales to 13B, without model parallelism because it offloads optimizer states and the

majority of gradients to CPU memory.

• When combined with model parallelism, ZeRO-Offload enables training up to 70B parameter



75

Figure 5.9: Training throughput with PyTorch, ZeRO-2, Megatron-LM, ZeRO-Offload without
model parallelism and ZeRO-Offload with model parallelism.

models with more than 30 TFLOPS throughput per GPU. In contrast, Megatron supports

only up to 15B parameter models before running out of memory, using just model

parallelism.

• Compared ZeRO-Offload with ZeRO-2 and Megatron, ZeRO-Offload outperforms ZeRO-2

and Megatron in throughput for 1–8B and 1–13B parameter models, respectively. ZeRO-

Offload is faster than Megatron, because it eliminates frequent communication between

different GPUs and can train with larger micro batch sizes. ZeRO-Offload outperforms

ZeRO-2 also due to larger micro batch sizes.

Throughput Scalability

We compare the throughput scalability of ZeRO-2 and ZeRO-Offload3 on up to 128 GPUs in

Figure 5.10 and make the following key observations: First, ZeRO-Offload achieves near perfect

linear speedup in terms of aggregated throughput (green line) running at over 30 TFlops per

GPU (blue bars). Second, from 1 to 16 GPUs, while ZeRO-2 runs out of memory, ZeRO-Offload

can effectively train the model, turning the model training from infeasible to feasible. Third,

with 32 GPUs, ZeRO-Offload slightly outperforms ZeRO-2 in throughput. The improvement

comes from additional memory savings on GPU from ZeRO-Offload, which allows training the

model with larger batch sizes that lead to increased GPU computation efficiency. Fourth, with

more GPUs (such as 64 and 128), ZeRO-2 starts to outperform ZeRO-Offload, because both can

now run similar batch sizes, achieving similar computation efficiency, whereas ZeRO-2 does not

suffer from the additional overhead of CPU-GPU communication. In summary, ZeRO-Offload

complements ZeRO-2 and enables large model training from a single device to thousands of

devices with good computation efficiency.
3We do not include comparison against Megatron because it consistently performs worse than ZeRO-Offload, as

shown in Figure 5.9. Given the communication overhead added by model parallelism, scaling out Megatron training
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Figure 5.10: Comparison of training throughput between ZeRO-Offload and ZeRO-2 using 1–128
GPUs for a 10B parameter GPT2.

Optimized CPU Execution

A. CPU-Adam efficiency. In this part, we evaluate our Adam implementation against the

PyTorch Adam on CPU. Table 5.4 shows the optimizer execution time of the two implementations

for model parameters from 1 to 10 billion. Compared to PyTorch (PT-CPU), CPU-Adam reduces

the execution time by over 5X for all the configurations and 6.4X for the case with 1B parameters.

The CPU-Adam optimizer achieves high speedups by exploiting the instruction-level parallelism,

thread-level parallelism, and the tile-based data copy scheme (as shown in line 15 of Algorithm 4).

Meanwhile, although CPU-Adam has a slower speed than the PyTorch Adam implementation

on GPU (PT-GPU), the performance gap is not very huge, and the CPU computation is not a

bottleneck of the training throughout.

B. One-step Delayed parameter update (DPU). Figure 5.11 shows the comparison of the

training throughput of GPT-2 with and without DPU. As shown, with DPU enabled, the training

achieves 1.12–1.59, updated times higher throughput than without it, for a wide range of model

sizes for a small micro batch size of 8. This is expected because DPU allows the optimizer updates

to overlap with the next forward computation such that the GPU does not have to be slowed down

by the CPU computation and CPU-GPU communication. But, what about accuracy?

Convergence impact We study the convergence impact of DPU on both GPT-2 and BERT.

Figure 5.12 shows the pre-training loss curves over 100K training iterations using PyTorch

(unmodified GPT-2), and Figure 5.13 shows the loss curves of fine-tuning Bert-large model on

SQuAD using ZeRO-Offload without DPU, and ZeRO-Offload with DPU. In both cases, DPU is

enabled after 40 iterations allowing the training to stabilize in its early stage before introducing

DPU.

We observe that the training curves of the unmodified GPT-2 and ZeRO-Offload w/o DPU are

can not achieve higher throughput than ZeRO-Offload even with linear scalability.
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Table 5.4: Adam latency (s) for PyTorch (PT) and CPU-Adam.
#Parameter CPU-Adam PT-CPU PT-GPU (L2L)

1 billion 0.22 1.39 0.10
2 billion 0.51 2.75 0.26
4 billion 1.03 5.71 0.64
8 billion 2.41 11.93 0.87
10 billion 2.57 14.76 1.00

Figure 5.11: The training throughput is
compared for w/o DPU and w/ DPU to
GPT-2. Batch size is set to 8.

Figure 5.12: The training
loss curve of unmodified
GPT-2, ZeRO-Offload
w/o DPU and ZeRO-
Offload with DPU.

Figure 5.13: The fine-
tuning loss curve of
BERT, ZeRO-Offload
w/o DPU and ZeRO-
Offload with DPU.

exactly overlapped, because ZeRO-Offload w/o DPU performs only system optimizations and

does not alter training dynamics. On the other hand, the training curve from ZeRO-Offload with

DPU converges slightly slower at the very beginning of the training (e.g., barely can be seen at

2K-5K iterations) and quickly catches up after 5K iterations. For the remaining of the training,

the training loss matches the original training until the model converges.

For Bert-Large fine-uning, we can see that although the training losses are not exactly

the same, they converge in the same trend and are largely overlapped. Without changing any

hyperparameters, ZeRO-Offload + DPU achieves the same final F1 score (92.8) as the baseline.

From these results on both GPT-2 pretraining, and Bert-Large fine-tuning, we empirically verify

that DPU is an effective technique to improve the training throughput of ZeRO-Offload without

hurting model convergence and accuracy.The 1-step staleness introduced by DPU is well tolerated

by the iterative training process once the model has passed the initial training phase.

Performance Breakdown and Analysis

To better understand the performance benefit from offload strategies and optimization techniques

in ZeRO-Offload, we evaluate the training throughput of PyTorch, ZeRO-Offload with PT-CPU,

ZeRO-Offload with CPU-Adam (refer as ZeRO-Offload), and ZeRO-Offload with DPU. We
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Figure 5.14: Comparison of training throughput with enabling offload strategies and optimization
techniques step-by-step in ZeRO-Offload.

perform the evaluation with various batch sizes with 1-billion GPT-2 model on a single GPU.

Figure 5.14 shows the result.

From batch size 1 to 8, PyTorch outperforms ZeRO-Offload with PT-CPU by 16% on

average. This is because when the model can fit on GPU memory, PyTorch does not incur

any communication overhead. Meanwhile, PyTorch adopts PyTorch GPU Adam (PT-GPU) for

optimizer computation on GPU. To reduce the performance loss because of communication and

optimizer computation on CPU, ZeRO-Offload optimizes execution on CPU. (1) By optimizing

CPU optimizer, ZeRO-Offload implements CPU-Adam and improves the performance by up to

10% compared with using offload strategy only (i.e., ZeRO-Offload with PT-CPU). (2) PyTorch

outperforms ZeRO-Offload by 8% on average when the model can fit on GPU memory. As

shown in table 5.4, the performance gap between CPU-Adam and PT-GPU is not very large.

Therefore, the performance degradation from PyTorch to ZeRO-Offload in Figure 5.14 are mainly

coming from tensor migration overhead between GPU and CPU memory. (3) ZeRO-Offload

further introduces one-step delayed parameter update, which overlaps computation on CPU with

computation on GPU and improves performance by 7% compared with using ZeRO-Offload

without DPU. In summary, leveraging optimized CPU execution, ZeRO-Offload has similar

performance as PyTorch when ZeRO-Offload and PyTorch training with the same batch size on

GPU.

As the batch size increases, out-of-memory on GPU memory happens in training with PyTorch.

The training throughput increases in ZeRO-Offload as the batch size increasing. With unique

optimal offload strategy, ZeRO-Offload outperforms PyTorch by 39% for the maximum training

throughput that can be achieved on a single GPU with 1-billion model.
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5.7 Conclusions

We presented ZeRO-Offload, a powerful GPU-CPU hybrid DL training technology with

high compute efficiency and near linear throughput scalability, that can allows data scientists

to train models with multi-billion parameter models even on a single GPU, without requiring

any model refactoring. We open-sourced ZeRO-Offload as part of the DeepSpeed library (www.

deepspeed.ai) with the hope to democratize large model training, allowing data scientist

everywhere to harness the potential of truly massive DL models.

www.deepspeed.ai
www.deepspeed.ai


Chapter 6

Enabling Large Dynamic Neural

Network Training with Learning-based

Memory Management

Dynamic neural network (DyNN) enables high computational efficiency and strong representation

capability, and hence has been applied to many important problems. However, DyNN faces a

memory capacity problem because of increasing model size or limited GPU memory capacity.

Managing tensors to save GPU memory is challenging, because of the dynamic structure of DyNN.

This paper presents DyNN-Offload, a memory management system to train DyNN. Uniquely,

DyNN-Offload uses a learned approach (using a neural network) to increase predicability of

tensor accesses to facilitate memory management.

The key of DyNN-Offload is to enable fast inference while providing high prediction accuracy

of the learned model. DyNN-Offload reduces input feature space and model complexity based on

a new representation of DyNN; DyNN-Offload converts the hard problem of making prediction

for individual tensors or operators into a simpler problem of making prediction for a group of

operators. To hide communication latency incurred by tensor migration, DyNN-Offload learns

knowledge on tensor migration from static neural networks. DyNN-Offload outperforms state-

of-the-art solutions by 2%-50% in terms of training time with the same GPU memory capacity

and enables 8x larger model training without out of memory. DyNN-Offload demonstrates the

possibility of using a learned approach to remove dynamism and address complicated problems

on performance optimization and analysis.

80



81

6.1 Introduction

Deep learning (DL) is embracing dynamic neural neural (NN) architectures where the NN

structure changes for each data sample. Such dynamic neural networks (DyNN) are different

from the traditional static NN where a network architecture (i.e., a dataflow graph) is defined

using symbolic expressions, once before beginning execution. In a dataflow graph, computation

functions in NN are associated with nodes, and input and output of the computation map to

edges. With a static NN, the dataflow graph is fixed for all data. In contrast, with DyNN, the DL

model may select its model components (e.g., layers [80], channel [117] or sub-networks [193])

conditional on input samples, and change the structure and parameters in the dataflow graph

accordingly. The DyNN has shown high computational efficiency computing over sequences

of variable lengths [199], trees [200], and graphs [114]. It also shows strong representation

capability and high adaptiveness to achieve a desired trade-off between accuracy and efficiency on

the fly [70]. As a result, DyNNs have been applied to many important problems, such as speech

recognition [229], DL translation [25, 199], and question answering [19].

Problems. DyNN, as many other NN, faces a memory-capacity problem [158, 178, 179, 240].

As the increase of model size brings substantial quality gains, we have seen the emergence

of large models recently. For example, DyNN var-Bert with 48 transformer-layers consumes

more than 20 GB memory, well beyond the memory capacity of an edge device (e.g., NVIDIA

Jetson TX2 GPU which has 8 GB memory) or a desktop GPU (e.g., NVIDIA RTX 6000 which

has 23 GB memory) where DyNNs are often deployed. Hence accessibility to large model

training is severely limited by GPU memory capacity. Distributed parallel training technologies

such as pipeline model parallelism [72, 81, 137] and tensor model parallelism [192] go beyond

the memory boundaries of single GPU devices by splitting the model states across multiple

GPU devices, which enables massive models that would otherwise not fit into a single GPU

memory. However, these techniques require enough GPU devices to provide large aggregated

GPU memory to save all the model states required for training, which is not affordable by many

use scenarios [173, 179].

Exploiting CPU memory to save GPU memory for large model training by tensors offloading

has been explored recently [77, 79, 158, 164, 178, 179, 182], but has difficulty to be applied to

DyNN. In particular, using the heterogeneous memory (CPU memory plus GPU memory), one

wants to minimize communication volume or hide communication overhead between CPU and

GPU, while maximizing memory savings on GPU. To achieve the above goal, most of existing

efforts rely on profiling-guided optimization (PGO) to record tensor access orders and guide tensor
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migration between CPU and GPU. The success of PGO is based on a fundamental assumption:

the NN model must be invariant, i.e., using a static computation graph where tensor dimensions

are fixed, data flow and control flow are fixed, and there are no complex data structures (such

as graphs and trees) in the dataflow graph. For such a model, profiling a few iterations of the

training process is enough to guide tensor allocation and migration in the whole training process.

However, the above assumption for PGO is broken for DyNN due to the model’s dynamic

nature. Depending on the input, the DyNN selectively activates model components, which

introduces irregular memory accesses and invalidates profiling results across training iterations.

As a result, the communication between CPU and GPU is largely exposed to the critical path,

causing training throughput loss. Our evaluation shows that using L2L, a state-of-the-art, industry-

quality framework to train large NN models using PGO and tensor offloading, to train Tree-

CNN [185], 85% of tensor migration (in terms of tensor size) is exposed to the critical path and

there is 35% loss in training throughput, compared with the case of no tensor migration cost.

Hence, we lack a cost effective while high-performance solution to train large DyNN.

In this paper, we introduce a memory (tensor) management system, DyNN-Offload, for training

large DyNN. Its design is based on a new approach to guide tensor migration between CPU and

GPU for GPU memory saving. In particular, we explore the extent to which a learned model, such

as an NN, can be used to increase predictability of tensor accesses during the training process

of large DyNN. Based on the learned model, we are able to store tenors on CPU memory, but

prefetch them to GPU memory to hide communication cost.

Major insights. The key to our approach is learning, i.e., using the learned knowledge

proactively gained from other input problems and DyNNs, instead of using PGO which lacks

flexibility to handle dynamism. Our approach is driven by the following two insights.

• The training process of NN (no matter static or dynamic) has learnable patterns. For example,

it is common to have linear computation followed by nonlinear computation (e.g., ReLU

activation function).

• In essence, the dynamic structure of DyNN is built upon a series of decision-making processes

(i.e., control flows) to activate model components, which in turn impacts the access orders

of tensors. The input sample to DyNN provides indications on how such decision-making

processes happen. The machine learning opens up the opportunity to learn a model that enables

automatic synthesis of the decision-making processes.

Research challenges. We face multiple challenges when materializing the learning-based

memory management.
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The first challenge is how to avoid performance impact of the learned model on training

time. The inference of the learned model introduces performance overhead. A training iteration

of a DyNN (e.g., Tree-LSTM with Nx1024x1024 parameters, where N depends on the input),

consuming one training sample, can take as small as ∼ 100µs. The inference time of the learned

model should be less than ∼ 10µs, a < 10% overhead per iteration. Fast inference depends on

input preprocessing and feature representation. The input features must be minimized to include

only those that matter.

The second challenge is how to make the inference highly usable. This means the inference

results should be useful to decide when to prefetch tensors from CPU memory to GPU memory

instead of on-demand fetching (e.g., as in unified memory [146]). Tensor prefetching should

be overlapped with GPU computation as much as possible, in order to remove tensor migration

overhead from the critical path.

We could build a learned model to predict exact execution order of operators, such that the

exact prefetching time can be planned as with a static NN and PGO-guided tensor migration.

However, this method requires rich output from the learned model and imposes high requirement

on prediction accuracy, which leads to heaviness in the learned model.

The third challenge is how to reconcile the tension between prediction accuracy of the learned

model and tensor migration overhead. The effectiveness of the inference results relies on the

accuracy of control-flow prediction. A mis-prediction causes missing tensors in GPU memory

when needed by an operator. As a result, tensor fetching has to happen on demand, losing training

throughput. Accuracy can be improved by increasing the depth of the layers or neural complexity,

but at the cost of long inference time. Hence, there is a fundamental tension between prediction

accuracy and migration overhead.

DyNN-Offload. The design of the learned model in DyNN-Offload is centered around how to

enable model lightness while providing high prediction accuracy. This is achieved based on two

observations: (1) Operators in machine learning, although being rich in interfaces and algorithms,

can be identified by a combination of six pervasive and expressive memory access patterns. (2)

Tensors typically migrate in batches in order to fully utilize interconnect bandwidth. Among

those tensors that migrate together, there is no need of predicting exact execution order of those

operators that will work on the migrated tensors. This observation relaxes the requirement of

using information of fine-grained execution order to plan tensor migration, which is rooted in the

existing PGO-based solution for static NN [164, 178, 182, 219].

Based on the observation (1), the input features and output of the learned model are able
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to use a compact representation based on counting of six patterns to represent the architecture

of the DyNN and indicate execution order of operators. This compact representation leads to a

reduction of input feature space and hence a simpler learned model, which cannot be achieved

by using alternative representations (e.g., using operator types as input features). Based on the

observation (2), the learned model implicitly partitions the DyNN with resolved dynamism into

multiple execution blocks, and only predicts the execution order of those blocks, which leads

to an easy prediction task, and hence lighter model and higher prediction accuracy. The above

techniques address the first challenge on the performance overhead of the learned model.

To address the second challenge on planning tensor prefetching, DyNN-Offload resorts to

learn how to hide tensor migration through the training of the learned model. This is achieved

by transforming DyNNs into the static ones and then using an existing PGO solution to decide

execution blocks. Such transformation allows DyNN-Offload to create training samples with the

knowledge of optimal model partition.

To address the third challenge on reconciling the tension between prediction accuracy and

migration overhead, DyNN-Offload does not aim to maximize prediction accuracy. Instead,

DyNN-Offload amortizes the mis-prediction penalty for an input sample by passing the mis-

prediction knowledge to predict control flows for the similar input samples. This avoids repeated

mis-prediction.

Results. Our evaluation shows that DyNN-Offload supports a variety of DyNN models

(CNN-based, LSTM-based, and transformer-based) and works on real production datasets without

requiring the user to refactor DyNN models. Given the same GPU memory capacity for DyNN,

in terms of training time, DyNN-Offload outperforms existing solutions (DTR [100] and unified

memory) by 2%-50%, and outperforms industrial approaches ZeRO-Offload [179] and L2L [164]

that work only for static NN and heavily relies on workload characterization and machine learning

domain knowledge by 11%-34%. The learned model in DyNN-Offload causes only 12 µs

inference overhead for each training sample of DyNN and achieves accuracy of 82% to resolve

dynamism (i.e., control flows) in DyNN. With DyNN-Offload, we show that we are able to train

8x larger DyNN than without DyNN-Offload.

Key takeaway. The idea of using a learned approach to save memory for DyNN can have

far reaching implications for future performance optimization and analysis of machine learning

workloads. The machine learning is becoming increasingly complicated in terms of model

topology, composability and expressiveness, which creates challenges for resource allocation

and scheduling [113, 159, 167]. Using a learned approach, DyNN-Offload makes it possible, for
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the first time, to provide a lightweight, efficient, and live solution for machine learning with rich

dynamism.

6.2 Background

6.2.1 Dynamic Neural Networks

Static NN applies fixed-structured operations to all input samples. For example, convolutional

NNs apply fixed network architecture to fixed-sized images, and are able to capture the spatial

invariance common in computer vision. However, besides images, many forms of data (e.g.,

sequences of variable lengths and graphs) are structurally complex, and cannot be captured by

fixed-structured NNs. Dynamic neural networks can adapt their structures or parameters to the

input sample. Such dynamism is able to reflect the complex structures of input data, hence leading

to high execution efficiency and accuracy. Such dynamism is often controlled by confidence-based

criteria and gating functions, which are implemented by using control flows.

Figure 6.1 gives an example of DyNN. This example is a constituency parsing problem in

natural language processing (NLP) that determines the grammar type of internal nodes in DyNN.

The structure of DyNN varies depending on the content of the sentence itself. Figure 6.1.b shows

an example where each node maps to a fully-connected NN (FC) (shown in Figure 6.1.a). This

example generates representations for the input sentence by traversing the parse tree bottom-up

and combining the representations of each sub-tree using the DyNN (named Tree-FC). Each node

takes a variable number of inputs (Line 1 in Figure 6.1.a) and returns to the parent node a vector

representing the parsing semantics up to that node. We use this example throughout the paper.

As shown in this example, the same FC NN is constant in shape and repeated at each node in

the DyNN. The node may have control flows to determine the dynamic structure of DyNN (see

Line 9 in Figure 6.1.a as an example).

6.2.2 Breaking Memory Capacity Wall

As state-of-the-art deep learning models continue to grow, training them within the capacity

of GPU memory becomes increasingly challenging. Such a memory capacity wall limits ability

to explore training techniques and memory-intensive model architectures. There are several

solutions to reduce memory consumption and address this problem, such as using low-precision

tensors [236], distributed training [137, 138, 173, 195], tensor redundancy removal [172],

tensor migration on heterogeneous memory [77, 79, 158, 164, 178, 179, 182], and tensor
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0 def Node():
1 input_shape=(32,32,3)
2 layers=nn.Sequential(
3 nn.Conv1d(1, 32, (5,5)),
4 nn.ReLU(),
5 nn.MaxPool2D((2, 2)),
6 nn.Dropout(0.25),
7 ...
8 nn.Linear(1024,28),
9 nn.ReLU(),
10 nn.Dropout(0.25),
11 nn.Linear(128,N),
12 nn.ReLU(),
13 (N = # of Classes)
14 nn.Softmax()
15 )

(a)
(b)

Figure 1: Title.

0 def Node():
1 for i in range(N-1):
2 pi = tanh(Wi(ci, ci+1) + b)
3 scorei = UT pi
4 # the score of a node
5 s(x, y) =

P
n2nodes(y) score(n)

6 # the score of a tree,
7 # x is a sentence,
8 # y is a parsing tree
9 select max s(xi, y)
10 # select the nodes which
11 # generates the highest
12 # score for the tree

1

(a)

NN NP
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VP

PP

NP

The cat
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NN
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(b)

Figure 1: Title.

1

(a) (b)

Figure 6.1: An DyNN example.(a) Implementation of each tree node in DyNN (b) The Tree-FC
network where S, PP, NP and VP stand for sentence, preposition phrase, noun phrase, and verb
phrase respectively.

Table 6.1: Distribution of Jaccard distance value for all training samples.
[0,0.2] (0.2,0.4] (0.4,0.6] (0.6, 0.8] (0.8, 1]

Percentage of training samples 5% 28% 25% 40% 2%

rematerialization [38, 55, 88, 100, 196]. Among them, tensor migration and rematerialization

are attractive, because they do not have risks of losing training convergence, do not change NN

models, and are cost-effective (i.e., no need of extra GPU). However, when applying them to

DyNN, they cannot work well.

Tensor migration highly relies on the workload predictability to decide when tensor migration

should happen. For static NN, such predictability is provided by PGO based on the assumption

that the workload characteristics (including execution time and tensor accesses) is invariant across

training samples, which is not held for DyNN.

To quantify the unpredictability of DyNN, we use Tree-LSTM [200] with 6,000 training

samples as an example. For each training sample, we build a binary vector and each element of

the vector indicates if a specific control flow is taken or not. We use the first training sample

as the baseline, and use the Jaccard distance [224] to quantify the execution similarity between

the baseline and any other training sample. For a given training sample, the analysis result is a

value falling into [0, 1], with “1” indicating the training sample and the baseline take completely

different control flows and “0” indicating opposite. A larger Jaccard distance value indicates

lower similarity. Table 6.1 shows the results, which shows a wide divergence of execution of the

dataflow graph across training samples. This divergence fails the traditional PGO-guided tensor

migration, evidenced in our evaluation (Section 6.6.2).
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Tensor rematerialization frees some tensors (particularly activations) from GPU memory

but recomputes them on demand. Tensor rematerialization must use checkpointing to store

some tensors in GPU, in order to replay the parent operations (a part of the forward pass) to

reproduce the freed tensors. Tensor rematerilization can work for both static [38, 88, 102] and

dynamic [100, 233] neural networks.

However, tensor rematerialization has fundamental limitation. (1) Rematerialization can be

recursive: if the arguments to an freed tensor’s parent operation are freed too, then those arguments

must first be rematerialized. There is no theoretical bound on depth of the recursiveness, leading

to potential large loss in training throughput. (2) Some tensors (e.g., constant tensors and weights)

cannot be rematerialized, leading to a tighter bound on memory saving (compared with using

tensor migration techniques). Our evaluation shows the inferior performance of using tensor

rematerialization than using the learned-model guided tensor migration (Section 6.6.2).

6.2.3 Using Machine Learning to Guide Tensor Migration

Before we explored machine learning models such as neural networks to guide tensor

migration for DyNN, we asked whether simple heuristics would be accurate enough to resolve

dynamism. For example, for a DyNN used in NLP and taking a sentence as input, one might

measure the ratio of the number of verbs to the number of nouns in the input sentence, and assume

that a larger ratio implies a higher possibility of taking a branch in the dataflow graph. However,

we did not find a high correlation between the ratio and the decision of taking the branch, using

Spearman’s correlation or Pearson’s correlation. Also, the heuristic is difficult to be generalized:

different DyNNs or different prediction tasks require different heuristics. Hence, we decided to

try machine learning models. Recent research on distributed and operating systems successfully

employed machine learning for scheduling and resource allocation [48, 71, 167, 194, 230, 239].

A similar exploration aiming to address the memory capacity problem can lead to a powerful

result, as we show in this paper.

6.3 Overview

We give an overview of DyNN-Offload.

Usage scenario. DyNN-Offload is used to make the decision on how input and output tensors

of operators should be placed on CPU and GPU memories, in order to save GPU memory as

much as possible without losing training throughput and accuracy. Before an input sample is fed
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Figure 6.2: The overview of DyNN-Offload.

into the DyNN for training, an NN model (i.e., the learned model) in DyNN-Offload is used to

quickly resolve the control flows and indicate when the tensor migration should happen. Based

on the prediction of the learned model, the runtime system in DyNN-Offload controls tensor

migration. To use DyNN-Offload, the user does not need to make any change to DyNN.

Overall architecture. Figure 6.2 shows the overall architecture of DyNN-Offload, consisting

of three main components.

(1) The learned model. The center of DyNN-Offload is a light NN. The model’s input

features are the input sample to the DyNN and the information about the DyNN architecture

collected through static analysis on the DyNN model script. The model’s output indicates how

operators will be executed at the granularity of execution blocks. Each execution block includes

a group of operators. The learned model indicates how the computation graph of the DyNN is

partitioned into execution blocks, such that at the beginning of an execution block i, the tensor

migration for the next execution block is triggered to hide migration cost.

The input features and output of the learned model use a program idiom-based representation

to identify operators. We use six idioms defined in terms of memory access patterns, and each

operator can be easily characterized with a combination of the six idioms. Using the idiom-based

representation significantly reduces the complexity of input features and output, compared with

alternative solutions (e.g., using operator type), which leads to the lightness of the learned model.

(2) Runtime system. DyNN-Offload manages GPU memory for tensor migration and training

based on a double-buffering mechanism. Based on the learned model, the tensors are able to

be prefetched from CPU memory to GPU memory at the beginning of each execution block.

DyNN-Offload also handles the mis-prediction of the learned model by fetching tensors on

demand and recording the input sample to improve the accuracy of the learned model and avoid

mis-prediction for other training samples.

(3) Training system for the learned model. To generate training samples to train the learned
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model, DyNN-Offload feeds a number of DyNN’s input samples to different types of DyNN

models, and records the execution trace of DyNN for tensor profiling. Then DyNN-Offload

partitions the resolved dataflow graph for each DyNN’s input sample into execution blocks to

maximize overlap between tensor migration and training computation. The information for those

execution blocks plus DyNN’s input samples and architectures become training samples for the

learned model.

6.4 Design

In this section, we describe our solution. To the best of our knowledge, DyNN-Offload is

the first memory management system that enables large DyNN model training with a memory

capacity constraint in a fast, accurate, and live fashion. The key to our design is the “lightness” of

the NN model that DyNN-Offload employs. This section presents our design and the principal

intuitions about how we get there. We will explain the three components of DyNN-Offload, from

the learned model, (including input features (Section 6.4.1), output (Section 6.4.2), and model

architecture (Section 6.4.3)), the runtime design (Section 6.4.5), to model training (Section 6.4.4).

6.4.1 Design of Input Features

The learned model takes the following information as input: (1) the input of the DyNN;

and (2) the static architecture of the DyNN model. The static architecture is collected by static

analysis on the DyNN modeling code. The static architecture includes all model components in

the DyNN whose execution is determined by the control flows. The static architecture is different

from the dynamic architecture which is input-dependent. We include the static architecture as

input features, because the learned model is able to be independent of mode architecture and

hence more general. We discuss how to represent the static architecture as input features of the

learned model in this section.

Design Goals

When determining input features to represent the static architecture, we must reach the two

goals: (1) We cannot have too many features, because that leads to a large learned model, causing

large runtime overhead, and (2) The features should be informative to represent tensor accesses in

operators.

We could use operator names (represented as numerical values) as the input features. In
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particular, treating the computation in the DyNN as a sequence of operators, we employ a vector

and each element of the vector represents an operator in the sequence. The operator names (or

operator types), indicating how tensors are accessed, are informative. However, there are three

problems with this solution. (1) There are a large number of operator names, leading to a large

feature space. For example, in Pytorch, there are over three hundreds operator names. Using an

operator name-based vector as the input increases the complexity of the learned model. (2) Some

NNs have user-defined operators. Using the operator name as the input features lacks generality

to handle a variety of NNs. (3) Some operators are the variant of the same operator (e.g., ADAM

optimizer) but with different names. These operators access the same tensors and have the same

functionality. There are no need to distinguish them in input features.

Idiom-based Representation

We introduce a new model representation as the input features to meet the above goals.

Idiom-based representation for operators. Each operator is characterized with six common

idioms. An idiom is a computation pattern. Using this idiom-based representation is based on our

observation that the six idioms have wide coverage of computation in machine learning operators.

It has been shown that these six idioms are commonly found in numerical computation [35]. We

describe these idioms using the following examples, where A, B, and C are two-dimensional

vectors, i and j are indexes, a is a scalar tensor, and operators step through tensors by enumerating

i and j.

• Transpose: Aij = Bji

• Gather: Aij = BCiiCjj

• Scatter: BCij = Aij

• Reduction: a = a+Aij

• Stream: Aij = Aij +Bij

• Stencil: Aij = A(i−1)j +A(i+1)j

The six idioms are pervasive and expressive. We can find one or more of them (with possible

repetitiveness) in the implementation of any operator (including the user-defined one). We build a

signature for each operator based on the idioms. In particular, for an operator, we introduce a six-

element vector where each element counts the number of occurrences of an idiom in the operator.

To establish distinctive identification for each operator, we append operator input information

to the six-element vector. An operator can have multiple input arguments, each of which has

up to three dimensions. The operator input information is captured with a three-element vector
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where each element is the accumulated dimension size of a dimension in all input arguments of

the operator. Hence, each operator is represented with a nine-element vector.

Idiom-based representation for DyNN. Given a static architecture of a DyNN, we aggregate

the nine-element vectors for all operators in each DyNN node into a matrix (named architecture

feature matrix or AFM). In AFM, each row corresponds to one operator. The row order in AFM

corresponds to the operator order in each DyNN node. In the case of a unresolved control flow,

the operators in multiple branches are placed into AFM following the program order in the model

script. If an operator occurs multiple times in the node, each occurrence has a row in AFM.

Besides having operator representations, AFM has rows corresponding to the control flows in the

node. Such a row has dummy values (all “0”s) and the row indexes in AFM correspond to the

control statement locations in the static architecture. Hence, AFM represents the architecture of

the DyNN and is used as an input feature.

The design of AFM pays great attentions to reduce the complexity of the learned model from

the following two perspectives. First, the operators with the same tensor accesses and similar

functionality are intentionally not distinguished to reduce the parameters of the learned model.

For example, the activation functions, ReLU and Sigmoid, use the same idioms (i.e., stream)

and tensor shapes. Those operators are not distinguishable in AFM. However, this does not

impact the prediction accuracy of the learned model, because from the perspective of tensor

usage, those operators do not have difference. Second, the detailed tensor information (such as

tensor association with operators) is not explicitly expressed to reduce the row dimension in AFM.

Instead, the tensor information is implicitly encoded in the operator information.

An example of AFM. Figure 6.3 shows the AFM for the Tree-FC in Figure 6.1. Each node

in the Tree-FC has four operators, represented as the first four rows in AFM where the first

six elements in each row correspond to the numbers of transpose, gather, scatter, reduction,

stream, and stencil respectively. The last row in FAM corresponds to the control flow (Line 9 in

Figure 6.1.a). The sequence of the operators and control flow follows the program order shown in

Figure 6.1.a.

6.4.2 Output of the Learned Model

The learned model predicts how operators will be executed, by which the model implicitly

indicates how the control flows (if there is any) in the DyNN will be resolved. The operators in

the output of the learned model use the six idioms as a part of their representations, as in the input

features, in order to reduce the complexity of the learned model. The learned model also decides
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Figure 6.3: An AFM example to show the static structure of the Tree-FC shown in Figure 6.1. (a)
A node in DyNN with input and output tensors; (b) AFM representation along with computation
in operators.

when the tensor migration should happen, by grouping output operators into execution blocks.

Execution blocks. The beginning of an execution block i is the point where tensor migration

for the next execution block i+ 1 starts. The learned model predicts how the operators should be

organized into those execution blocks, such that tensor migration for the execution block i+ 1

can be overlapped with computation in the prior execution block i. The knowledge of how to

partition the training of DyNN into execution blocks is learned through training (Section 6.4.4).

Output format. The output of the learned model is multiple vectors, each of which includes

operator information for one execution block. Each vector has ten elements: the total number of

operators and control flows in the execution block, the numbers of the six idioms accumulated

from all operators in the execution block (including six numbers), and the dimension sizes of

input/output tensors accumulated from all operators in the execution block (including three

numbers). Given the above output and idiom-based representation for DyNN (see Section 6.4.1),

we can deterministically resolve dynamism (i.e., the control flows), discussed as follows.

Map output to operators. From the first operator, DyNN-Offload traverses the static

architecture of the DyNN, meanwhile bookkeeping the number of operators, the number of

idioms, and the dimension sizes of input/output tensors. Whenever a control flow is encountered,

DyNN-Offload enumerates and traverses each possible branch. The above traverse continues

till the last operator in the DyNN. Whenever any traverse path leads to a bookkeeping record

matching the output of the learned model, then that traverse path (including the resolved control

flows) is picked to decide tensor migration.
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with three execution blocks. (b) shows the dataflow graph of DyNN with a given input, and how
the output maps back to the operators.

There should always be a traverse path whose bookkeeping record matches the output of the

learned model. During the training of the learned model, all the training samples are created

to have such a match. Hence, the learned model is expected to generate an output matching a

traverse path. In our tests of 15,000 cases, all find an exact match. If the traverse process cannot

find an exact match, then DyNN-Offload picks up a traverse path whose bookkeeping record is

the closet to the output of the learned model. In particular, among all paths, DyNN-Offload picks

up a path where the number of operators is the closet to that in the output of the learned model.

The above process of mapping the output to operators happens at runtime before the DyNN

consumes the training sample, but it does not cause large runtime overhead. This is because a

large NN model does not have many control flows. In our evaluation, we meet at most 5 traverse

paths in a DyNN model. We evaluate the overhead in Section 6.6.3.

An example of the output of the learned model. Figure 6.4 shows an output example for the

DyNN example depicted in Figure 6.1. Figure 6.4.(b) shows the dataflow graph corresponding

to the DyNN where dotted lines and solid lines show input-dependent dynamic architecture and

static architecture respectively. There are three execution blocks in this example.

6.4.3 Light Neural Network Model

Model topology. The learned model includes an embedding and a fully connected NN with

only four layers, including one input layer, two hidden layers, and one output layer. All the

neurons are regular linear neurons (y = wx + b). The inference time of the learned model is
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about 10us-15us, which is lightweight.

The embedding converts each DyNN’s input sample into a fixed-length vector (128 Dim) as

the input of the following fully connected NN. The embedding works with input samples with

various sizes/lengths, and serves as a form of feature extraction. The embedding simplifies the

input layer of the fully connected NN. For different types of input samples, we use different

embedding. In particular, we use Glove [161] for word embedding and Autoencoder for image

embedding.

The input layer is supplied with 128 features including AFM and DyNN input sample after

embedding. The architecture of DyNN is converted to the feature format (AFM) in an offline way

for training. The two hidden layers consist of 512 regular neurons. The two hidden layer use

RELU activation functions for its low computation cost and ability to support non-linear modeling.

The output layer has 160 neurons with linear activation functions to represent the partition of

execution blocks. Overall, there are 800 neurons.

Different models for different types of DyNNs. There are a variety of DyNN architectures,

built upon convolutional neural networks (CNN), LSTM, or transformer, etc. Building a general

learned model to handle all DyNN architectures is challenging: our evaluation show that a general

learned model with an inference time target of 5µs achieves accuracy of less than 60%, which

causes frequent mis-prediction and more than 25% throughout loss because of on-demand tensor

migration. We could improve accuracy by adding more layers into the learned model, but that

leads to longer inference time. Furthermore, using a general learned model raises challenges on

model training and may lack flexibility to be adaptive to new DyNN architectures.

To address the above problem, we classify DyNN in terms of its model architecture into three

types, and build a learned model for each type. In particular, the three types are CNN-based

DyNN, LSTM-based DyNN, and transformer-based DyNN. The user chooses which learned

model should be used based on the user’s DyNN architecture. The above method simplifies the

process of training the learned model: the user does not need to build a complicated learned

model, and it is easier to reach high prediction accuracy (compared with training a general learned

model). Although the above method may cause longer training time to train multiple learned

models, the training happens offline and its cost can be amortized when the learned model is

repeatedly used for various DyNNs with the same type.
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6.4.4 Model Training

A training sample is a pair of a input vector and an output vector. The input vector includes

AFM for a DyNN and an input to the DyNN. The output vector (or label) uses the same format

as the output of the learned model, including operator information for execution blocks (see

Section 6.4.2). We discuss how to collect training samples in this section.

Training sample collection. AFM for a DyNN is independent of DyNN’s input and built

using static analysis. In particular, the static architecture of the DyNN is collected offline

manually to record operator names, input tensor shapes of operators (represented with variables

and resolved at runtime), and control flows to build AFM. But this procedure can be replaced by

a static analysis tool for Python [166]. In training samples to train the learned model, different

DyNNs use different AFMs.

DyNN-Offload collects execution information of DyNN to generate labels for training samples.

In particular, given a DyNN and an input to the DyNN to produce a training sample to train the

learned model, DyNN-Offload runs the DyNN and generates a dynamic execution trace. The

trace includes execution order of operators, their names, input tensor shapes of each operator, and

execution time of each operator. This execution trace is used to generate a label.

Labeling. The execution trace of a DyNN gives enough profiling information for a tensor-

offloading method for static NN to decide the partition of a dataflow graph. We use the tensor-

offloading method in Sentinel [178] because of its generality and short turnaround time. Using a

GPU memory capacity, tensor profiling information (including execution order and execution time

of operators), and NN topology as input, Sentinel partitions the dataflow graph to maximize the

overlap between tensor migration and training computation without violating the GPU memory

capacity. DyNN-Offload transforms the output of Sentinel into a representation compatible with

output format of the learned model. This new output is used as an output vector (or a label) of a

training sample.

To train the learned model, the GPU memory capacity to be used in production environment

must be known to generate training samples. This limits the generality of the learned model, but

since there are only a handful of available GPU memory capacities in production, a learned model

can still be applicable to a number of different GPUs.

6.4.5 Runtime Design

Model inference. The learned model runs on CPU. When a batch of training samples is

about to be transferred to GPU to train the DyNN, the learned model is applied to each training
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sample in parallel. The output vectors of the learned model for each training sample is sent to the

runtime system of DyNN-Offload on CPU to guide tensor migration for all training samples in the

batch. The learned model takes the static architecture of DyNN as input. The static architecture is

collected offline (discussed in Section 6.4.4).

Memory management and tensor migration. GPU memory is partitioned into two equal-

sized buffers: one, called the working buffer, is used for working tensors referenced by the

ongoing execution block, and the other, called the migration buffer, is used for prefetching tensors

referenced by the next execution block. The two buffers switch roles once the ongoing execution

block is done. If tensor prefetching for the next execution block is not complete when the ongoing

execution block is done, DyNN-Offload must wait for the completion of prefetching to avoid

data race. This double buffering-based mechanism aims to make the best efforts to hide tensor

migration overhead.

Since CPU triggers tensor migration for execution blocks and GPU performs execution block-

based training, there must be a synchronization mechanism between CPU and GPU. We introduce

an operator counter at CPU to record the number of operators (GPU kernels) launched on GPU.

When the counter reaches the number of operators in the ongoing execution block i, CPU is aware

that GPU starts to execute the execution block i+ 1, and starts to migrate tensors for i+ 2.

The migration buffer must evict unused tensors and prefetch tensors used by the next execution

block. Eviction and prefetching could happen in parallel to make better utilization of interconnect

bandwidth between CPU and GPU. However, we find this solution has difficulty to migrate

tensors into a contiguous memory space in GPU, leading to memory fragmentation. Hence,

DyNN-Offload evicts tensors first, and then prefetches tensors.

The above memory management methods are implemented at the runtime system of a training

framework (e.g., Pytorch). Hence, there is no need to change the DyNN model.

Handling mis-prediction. The learned model may mis-predict operator execution. As a

result, when an operator is about to be executed on GPU, an tensor needed by the operator may

not be on GPU memory. In this case, DyNN-Offload instruments the runtime error due to tensor

missing on GPU and migrates the tensors on demand. Furthermore, DyNN-Offload records

the mis-prediction case by recording the static architecture and input of DyNN and the correct

execution block. This case is used as a training sample to train the learned model and improve its

accuracy in the future.

Furthermore, the mis-prediction case is directly used to avoid repeated mis-prediction for

other input samples. Some input samples may lead to the same dataflow graph as the input sample
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of the mis-prediction case. To identify such an input, given an input sample (called the new input),

the output of the learned model (called the new output) is compared with the output where there

is the mis-prediction. If the two outputs are the exactly same, then during the process of mapping

the new output to operators, the correct execution block in the mis-prediction case is used to

resolve the control flows.

Using the output similarity of the learned model to determine the similarity of dataflow

graphs may lead to a false positive decision, i.e., although the two outputs are the same, the

corresponding inputs cause different control flows in the data flow graph. However, having such

a false position decision is rare, because the chance that the two outputs are the exactly same

is very low given high dimensionality of the output. If a false positive decision does happen,

using the mis-prediction case to resolve control flows can cause a mis-prediction again, which is

recorded. If the false positive decision happens frequently, then the control flow decision in the

false positive case is used to avoid mis-prediction for other input samples.

To avoid large runtime overhead of detecting the similarity of dataflow graphs, given an input

sample, DyNN-Offload only selects the top three most frequent occurrences of mis-predication

cases for comparison.

Impact of dynamic batching. Batching of training samples is commonly used to improve

GPU utilization. For DyNN, a batch is dynamically formed by batching operators from multiple

dataflow graphs (each dataflow graph corresponds to one training sample). Dynamic batching

couples the execution of multiple dataflow graphs, but does not impact the effectiveness of

DyNN-Offload, because of two reasons.

(1) Dynamic batching does not change the execution order of execution blocks in each

dataflow graph. Hence, the tensor prefetching order predicted by the learned model is still correct.

The operator counter-based approach (Section 6.4.5) can still effectively set up synchronization

between CPU and GPU for tensor migration. (2) Dynamic batching can extend the execution time

of batched operators because of extra cache misses caused by thread block scheduling [225] and

TLB misses [45]. But the extended execution time of execution blocks gives more opportunities

to overlap with tensor migration. Hence the effectiveness of DyNN-Offload is not compromised.

6.5 Implementation

DyNN-Offload includes (1) a runtime system and (2) an offline training system to collect

training samples to train the learned model. The runtime system is implemented on top of ONNX

Runtime [147]. Since ONNX Runtime supports a variety of machine learning frameworks (e.g.,
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Figure 6.5: An example of using DyNN-Offload.

PyTorch and TensorFlow), operating systems (e.g., Linux and Android), and hardware platforms,

DyNN-Offload can benefit various DyNNs regardless of their deployment environment. DyNN-

Offload uses a static analysis tool [35] based on LLVM to get and counter idioms in operators.

The runtime system has two components: tensor manager and runtime scheduler.

Tensor manager is in charge of tensor (de)allocation and handling of mis-prediction. DyNN-

Offload intercepts tensor allocation API AllocatorDefaultAlloc() used for GPU memory

allocation, and redirects it to CPU memory. DyNN-Offload initially allocates all tensors on CPU

memory to avoid out-of-memory errors. To avoid memory leak, DyNN-Offload intercepts tensor

AllocatorDefaultFree() to ensure memory space is freed regardless of the location of

the tensor. Furthermore, DyNN-Offload implements a tensor fault handler leveraging the tensor

hook mechanism in ONNX. The tensor fault handler is invoked when any tensor needed by

GPU computation is missing in GPU memory and a cudaErrorInvalidAddressSpace

fault is reported. The handler fetches the missing tensor from CPU memory and records the

mis-prediction information to a file.

Runtime scheduler is used for the learned model inference and runtime tensor migration. In

particular, the learned model is implemented as a user-defined operator learned_model_inference(),

which is used as the first operator in a dataflow graph for DyNN. learned_model_inference()

takes an input sample of DyNN and runs the learned model on CPU. The generated AFM is used in

ONNX runtime scheduling. Based upon the ONNX runtime to launch operators, DyNN-Offload

counts the number of launched operators and triggers tensor migration asynchronously. Within an

execution block, DyNN-Offload migrates tensors without priority. DyNN-Offload waits for the

completion of tensor migration and starts the computation for the next execution block.

Figure 6.5 illustrates how to use DyNN-Offload. DyNN-Offload is transparent to data scientists

and does not require model refactoring. Only Line 4 (deciding hardware target for offloading)

and Line 6 (enabling training) need to be added.

Training system for the learned model includes (1) an execution trace generator, (2) a

partition simulator, and (3) a training sample generator.

The execution trace generator is based upon existing tensor instrumentation infrastructures
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Table 6.2: DyNNs for evaluation.
Model Name Model Type Dataset Batch Size

Tree-CNN [185] CNN CUB 200 64
UGAN [134] RNN circular gaussian 1024

Tree-LSTM [200] LSTM SICK 512
var-LSTM [124] LSTM Reuters-21578 512

fixed-LSTM [199] LSTM Reuters-21578 512
var-Bert [150] transformer wikitext-2-v1 16
fixed-Bert [43] transformer wikitext-2-v1 16

in Pytorch or TensorFlow to generate the dynamic execution trace in a Json-formatted file. The

partition simulator consumes this file and implements the partition algorithm in Sentinel. The

partition algorithm specifies where tensor migration should be triggered in terms of DyNN model

topology. The partition simulator transforms this partition result into a representation compatible

with the output of the learned model by aggregating profiling results between partitions. The

training sample generator pairs up the outputs of the partition simulator (i.e., labels), AFMs for

DyNNs, and DyNN input samples to generate training samples to train the learned model. We

train three learned models, targeting on CNN-, LSTM-, and transformed-based DyNNs.

6.6 Evaluation

6.6.1 Methodology

Experimental setup. Our experiments were conducted on a server equipped with NVIDIA

RTX6000 GPUs (GPU for desktop) with 23GB memory, and dual Intel Xeon CPUs 2.6GHz

(totally 24 cores) and 186GB CPU memory. The interconnect between CPU and GPU is 16-line

PCIe 3.0. We use Ubuntu 18.04, CUDA Toolkit 11.2, and PyTorch 1.10.0.

Workloads. We evaluate DyNN-Offload with five DyNNs and two static NNs (fixed-LSTM

and fixed-Bert). See Table 6.2. Their memory consumption is larger than the GPU memory

capacity. To train the learned models, we use the training datasets coming with the CNN-, LSTM-,

and transformer-based DyNNs to generate training samples. We build 5,000 samples to train each

learned model, and 1,000 samples to test/evaluate the performance of learned model. Training

and testing samples do not have any overlap.

Baselines for evaluation are summarized as follows.

• DTR [100] is a state-art-the-art solution based on tensor rematerialization. DTR frees memory

space for activation tensors when the GPU memory is not large enough. DTR rematerializes

the freed activation when needed.
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Figure 6.6: Performance comparison between existing solutions and DyNN-Offload with seven
workloads.

• Unified memory [146] enables memory oversubscription by migrating pages on demand and

using limited user hints.

• L2L [164] is an industry-quality solution from Microsoft, aiming for saving GPU memory for

static NN based on PGO. L2L migrates parameters, activations, and optimizers layer by layer

between CPU and GPU memories.

• ZeRO-Offload [179] is an industry-quality solution from Microsoft, aiming to optimize tensor

offloading for static transformer models to save GPU memory based on PGO.

6.6.2 Overall Performance

Figure 6.6 shows the training time with DyNN-Offload and the baselines. We report the

training time for one epoch after warmed-up run. ZeRO-Offload can only work for transformer

models (i.e., var-BERT and fixed-BERT). L2L can only work for static models. In general,

DyNN-Offload consistently outperforms other solutions: by 2% - 50% for dynamic models, and

by 11% - 34% for static models. We further see that:

• Unified memory performs worst in almost all cases, because most of tensor migration happens

on demand.

• DTR performs much worse than DyNN-Offload by 75% for fixed-BERT, because large

activations in BERT leads to large rematerialization cost. DTR performs similar to DyNN-

Offload for Tree-CNN and UGAN, because re-materialization cost for the two models is

small.

• DyNN-Offload performs similarly to ZeRO-Offload and L2L (see fixed-BERT and fixed-

LSTM). ZeRO-Offload and L2L are highly-optimized based on extensive workload characterization

and machine learning domain knowledge. Without those expensive optimizations, DyNN-

Offload is able to achieve the similar performance, but is more general.
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Figure 6.7: Performance breakdown for DyNN-Offload, DTR and unified memory.

6.6.3 Performance Analysis

We break down execution time to further analyze performance. Figure 6.7 show GPU

computation time, rematerialization time in DTR, and tensor migration time exposed to the

critical path. We have three observations. (1) Unified memory spends a large portion of time on

tensor migration, which is especially pronounced in Tree-CNN and Tree-LSTM where tensor

migration takes 55% and 40% of training time. (2) Rematerialization is costly. In fixed-Bert, it

takes 33% of training time. rematerialization in var-Bert is cheaper than in fixed-Bert, because the

depth of recursive rematerialization in var-Bert is shallower. (3) By removing rematerialization

and hiding migration, DyNN-Offload outperforms both the solutions.

Overhead analysis. The overhead of DyNN-Offload includes (1) the inference time and (2)

the time of mapping the output of the learned model to operators. For (1), the inference time is 12

µs. For (2), the time is about 10-15 µs. The overhead is much smaller than the iteration time of

NN models we evaluate (i.e., a few milliseconds to a few seconds).

6.6.4 Scalability of DyNN-Offload

We evaluate scalability from two perspectives: (1) performance when increasing the complexity

of DyNN (Figure 6.8); (2) performance with larger system scales (Figure 6.9).

For (1), we use var-Bert (a dynamic transformer model), and vary the number of transformer

blocks in its static architecture. To evaluate DyNN-Offload, we compare with DTR. Figure 6.8

shows as the model scale increases, the performance benefit of DyNN-Offload over DTR becomes

larger. As the DyNN becomes larger, the DTR overhead (the rematerialization cost) becomes

larger, offsetting its performance benefit.

For (2), we use data parallelism on six machines, each of which has an NVIDIA RTX6000

GPU. Figure 6.9 shows the results. As the scale becomes larger, the training throughput increases
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Table 6.3: Learned model performance with different model complexity. “LM” stands for learned
model.

LM Complexity (# of neurons) LM Accuracy LM Training Time LM Inference Time LM Memory Consumption

256 0.7 2h 5us 40KB
512 0.82 2.5h 12us 75KB

1024 0.88 3h 20us 140KB
2048 0.91 4h 42us 260KB
4096 0.93 6h 80us 530KB

proportionally until four GPUs. After that, the performance scaling slows down because of

increasing inter-GPU communication cost, but the overhead of DyNN-Offload and on-demand

tensor migration caused by mis-prediction remain constant at all scales, showing good scalability.

With DyNN-Offload, PyTorch is able to train var-Bert with 96 transformer layers (1.4B

parameters, which is the largest model in our evaluation), on our GPU (23GB memory) without

any out-of-memory error. But without DyNN-Offload, PyTorch is only able to train var-Bert with

12 transformer layers (170M parameters), a 8x reduction in terms of model size.

6.6.5 Construction of Learned Model

We study how to construct an effective and efficient learned model. We want to reduce

inference time as much as possible but with high modeling accuracy. This is especially important

in use scenarios (e.g., mobile devices) where DyNN has short iteration time. We change the

number of neurons in the hidden layers and study its effect, shown in Table 6.3. When increasing

neurons from 256 to 512, the model accuracy largely increases by 0.12. However, when we

increase neurons beyond 512, the momentum of accuracy increase is significantly smaller, but the

inference time continuously increases with a rate of approximately 2x. Hence we choose 512 for

our learned model, because of its good balance between accuracy and costs (including inference

and training times).

The number of mis-prediction cases. With 512 neurons in the hidden layers, we find less



103

1000

3000

5000

7000

Tree-CNN
150

350

550

750

950

Tree-LSTM
0

10k

20k

30k

40k

50k

Var-Bert

Evenly split the number of operators Evenly split DyNN training time

Evenly split migrated tensor size DyNN-Offload

Be
tt

er

Tr
ai

ni
ng

 ti
m

e 
 (s

ec
/e

po
ch

)

Figure 6.11: The training time with DyNN-Offload and three heuristic solutions to partition
DyNNs.

than 60 mis-prediction cases in each of the seven NN models with 3,000 testing samples.

6.6.6 Idiom-based Representation

We compare idiom-based representation with another solution based on operator type. We give

each operator type a unique ID and name this approach “global id-based representation”. Using

the two representations, we train two learned models. Figure 6.10 shows the accuracy. Given

the same model complexity (in terms of the number of neurons), the idiom-based representation

outperforms the global id-based one in terms of accuracy by at least 19%. To reach the same

accuracy, for example 0.73, the idiom-based one needs 256 neurons, while the global id-based

one needs 4096, which increases the inference time by x6 and training time by 2.4x. This is

because using the operator type largely increases the input feature space, and has to increase

model complexity to improve accuracy.

6.6.7 Evaluation of DyNN Model Partition

DyNN-Offload partitions the dataflow graph of DyNN into multiple execution blocks to hide

tensor migration. We evaluate the partition method in DyNN-Offload with three heuristics: (1)

one partitions the DyNN by evenly splitting the number of operators, (2) one by evenly splitting

the training time, and (3) one by evenly splitting the size of all tensors. These solutions use the

same number of partitions as DyNN-Offload. Figure 6.11 shows the results for three DyNN

models. DyNN-Offload outperforms the three solutions by 2% - 29%, because DyNN-Offload

can adaptively change the partition size to hide tensor migration based on the learned knowledge

while the other solutions use the fix-sized partitions.
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6.6.8 Impact of Handling Misprediction

We study the number of mis-prediction cases without and with handling them. DyNN-Offload

handles mis-predication cases by using them to avoid repeated mis-prediction for some cases

and improve the model accuracy of the learned model. Without handling mis-predication, the

number of mis-prediction for Tree-CNN, Tree-LSTM, and var-Bert is 167, 109, 182 respectively,

evaluated with 3,000 training samples (cases). With handling mis-prediction, the mis-prediction

number for Tree-CNN, Tree-LSTM, and var-Bert decreases to 59, 42, 102.

6.7 Related Work

Machine learning for memory and storage. LinnOS [71] uses a light NN for inferring

SSD performance at per-IO granularity to achieve performance predictability. KML [15] and

LearnedSSD [110] employ machine learning to tune storage configurations. LLAMA [126]

introduces NN to predict data object lifetime and avoid memory fragmentation. Cori [49]

and Kleio [48] use machine learning to decide page migration frequency and granularity on

heterogeneous memory.

Several recent efforts use neural network for prefetching. Voyager [194] builds hierarchical

neural networks to learn address correlation and prefetch irregular sequences of memory accesses.

Peled et al. [153] use a table-based reinforcement learning (RL) framework to explore the

correlation between program contexts and memory addresses. Hashemi et al. [73] formulate

prefetching as a classification problem and use LSTM as a prefetcher. DyNN-Offload is different

from the existing work, because it focuses on a unique memory capacity problem for training

DyNN and customizes the learned model based on the characterization of DyNN.

System supports for DyNN focus on batching dynamic dataflow graphs to improve hardware

utilization. Since different input samples use different dataflow graphs, batching them together

with unresolved control flows is challenging.

TensorFlow Fold uses a depth-based batching [124], which dynamically batches nodes with

the same depth and shapes (in terms of tensor dimensions) in multiple dataflow graphs. However,

this method misses good batching opportunities (e.g., the loss functions in different dataflow

graphs can be at different depths and cannot be batched). DyNet [139] uses an agenda-based

batching that dynamically tracks nodes with dependencies resolved for batching. However,

this method focuses on individual nodes and is not open to dataflow graph level optimizations.

Cavs [233] represents DyNN with a static vertex function and a dynamic instance-specific graph.
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The scheduling of the static function exposes batched execution opportunities over multiple input

samples. However, Cavs needs many programming efforts. DyNN-Offload could complement

the above efforts by providing a new method for batching. By transforming dynamic graphs

into static ones based on the learned model, DyNN-Offload enables batching and graph level

optimizations without changing DyNN.

Input-aware performance optimization has been utilized for input-sensitive applications,

such as streaming graph processing [27], Spark programs [242], sorting [47], and sparse matrix

multiplication [232]. A common theme of the above work is to use input knowledge to determine

how to optimize performance (e.g., deciding configurations for autotuning or computation

granularity for aggregation). Besides that, input knowledge has been used for high-performance

code generation for GPU [127, 188, 205]. Different from the existing efforts, DyNN-Offload

recognizes the implicit knowledge in input samples about how the dataflow graph will be executed

and hence can be utilized to save GPU memory.

6.8 Conclusion

DyNN-Offload is a memory management system enabling large DyNN training with limited

GPU memory capacity. Unlike the traditional PGO-based approach that lacks abilities to react to

dynamism in DyNN, DyNN-Offload uses a learned approach to resolve dynamism and predict

access order of tensors. We have show the feasibility of building a fast, accurate, and live machine

learning model to guide performance optimization and analysis for machine learning systems.



Chapter 7

Optimizing Large-Scale Plasma

Simulations on Big Memory System

Particle simulations of plasma are important for understanding plasma dynamics in space

weather and fusion devices. However, production simulations that use billions and even trillions

of computational particles require high memory capacity. In this work, we explore the latest

persistent memory (PM) hardware to enable large-scale plasma simulations at unprecedented

scales on a single machine. We use WarpX, an advanced plasma simulation code which is

mission-critical and targets future exascale systems. We analyze the performance of WarpX on

PM-based systems and propose a hybrid of static and dynamic data placement for performance

optimization. We develop a performance model to enable efficient data migration between PM

and DRAM in the background, without reducing available bandwidth and parallelism to the

application threads. Our design achieves 64.6% performance improvement over the PM-only

baseline and outperforms DRAM-cached, NUMA first-touch, and a state-of-the-art software

solution by 34.4%, 41%, and 83.3%, respectively.

7.1 Introduction

Plasma simulations are critical for understanding plasma dynamics in space weather and fusion

devices [30, 210, 220]. The particle-in-cell (PIC) method is an important model that enables

large-scale plasma simulations on high-performance computing (HPC) systems [32, 66, 208, 220].

The PIC method uses computational particles to simulate plasma particles, such as electrons and

protons. High-fidelity PIC simulations often use billions and even trillions of particles, which

106
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require high memory capacity.

Persistent memory (PM), exemplified by the Intel Optane DC PM [87], provides a solution

to meet the requirement of high memory capacity in HPC applications. For instance, the Intel

Optane PM can provide up to six terabyte (TB) memory on a single machine. However, there is a

performance gap between PM and DRAM [87, 155]. Read and write bandwidth of the Optane PM

are only 38% and 16% that of DRAM, respectively. Hence, PM often comes with a small DRAM

(tens of gigabytes) to boost performance. As a result, PM and DRAM form a heterogeneous

memory (HM) system. How to place and migrate data between PM and DRAM to enjoy the

speed of DRAM and capacity of PM remains active research [56, 77, 140, 154, 180, 226, 227].

In this paper, we leverage the latest PM hardware to enable large-scale plasma simulations.

We analyze the performance and develop a performance model for optimizing PIC codes on PM-

DRAM systems. Our performance analysis and optimization use a state-of-the-art electromagnetic

PIC code called WarpX [208]. Nonetheless, the optimization strategies derived from this work

are generally applicable to other PIC-based simulation codes.

WarpX [208] is a mission-critical application designed for efficient executions on large-scale

HPC systems and future Exascale machines. WarpX enables high-fidelity modeling of many

complex processes, such as laser- and beam-driven plasma accelerators. As a PIC method,

WarpX has high memory footprints for simulating particles moving in electromagnetic fields.

The memory footprint scales up with the number of particles and field size. For example, the

recent production run on 4,096 nodes on the Cori supercomputer simulates 62 billions of particles

and consumes up to 8.9 TB memory. Therefore, a large memory capacity is a key enabler for

large-scale simulations in WarpX.

Our performance analysis identifies two challenges in optimizing WarpX on PM-based

systems. First, WarpX has frequent read/write with a streaming-like access pattern, which

intensifies memory accesses. Given the low bandwidth of PM compared to DRAM, this access

pattern is unfavorable. Second, the WarpX code uses tens of millions of data objects and frequent

memory (de)allocation. These data objects include long-lived data structures for particles, fields,

and metadata, as well as short-lived buffers for communication and computation. Managing such

a large number of data objects with diverse properties on DRAM and PM is complex.

We introduce a set of techniques to optimize the performance of WarpX on PM. Data

objects are characterized and classified based on their lifetime and memory access patterns.

This information guides their placement and migration on PM and DRAM at runtime. Ideally,

frequently accessed data objects are placed into DRAM. However, due to the limited DRAM
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capacity and the large problem size in production runs, only some data objects or even partial

data objects can fit into DRAM. To address this challenge, we partition long-lived large data

objects and migrate their partitions between PM and DRAM. To achieve efficient migration, we

need to address two challenges. First, migrating data between PM and DRAM consumes memory

bandwidth. However, the application also needs to access memory. Hence, data migration can

compete with the application threads for memory bandwidth. Second, data migration uses helper

threads in the background, other than the application threads, to avoid exposing data migration

into the critical path. However, using helper threads reduces the availability of processor cores

for the application threads. An optimal number of helper threads should expedite data migration

without causing performance loss in the application threads.

To address the above challenges, we develop a performance model to decide the optimal

number of helper threads for data migration. Our model considers the constraints on memory

bandwidth and core availability in realistic simulations. Based on the performance model, we use

a lightweight runtime algorithm combined with runtime profiling and empirical observations to

select and adapt the data migration between PM and DRAM for different input problems.

We summarize the paper contributions as follows.

• We demonstrate and quantify the benefits of leveraging PM to enable large-scale plasma

simulations in a mission-critical application called WarpX.

• We characterize the memory management, bandwidth consumption, and data object lifetime

and access patterns in WarpX production simulations. We analyze the implication of the

characterization for performance optimization on PM-based systems.

• We propose static and dynamic data placement strategies and develop a performance model

for efficient data migration between PM and DRAM.

• We improved the WarpX execution on Optane-only by 64.6% and outperformed DRAM-

cached, the NUMA first-touch policy, and a state-of-the-art HM solution by 34.4%, 41%

and 83.3%, respectively.

7.2 Background

The WarpX particle-in-cell code. WarpX leverages MPI+OpenMP parallelism. It has two

components, i.e., PICSAR [163] for particle-in-cell (PIC) routines at the innermost level and

AMReX [247] for adaptive mesh refinement (AMR). A WarpX simulation may consist of multiple
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levels of resolution. Each level is an AMR level in the AMReX library and performs a PIC

simulation at the resolution of that level.

PIC codes typically have the following characteristics. Field and particles are the main data

structures, and particles consume the most memory footprint. The core PIC routines include

four phases – current deposition, field solver, field gather, and particle

pusher. In current deposition, all particles are iterated to deposit their charge and

moments to the fields. In field solver, a linear system from the discretized Maxwell’s

equations is solved to compute electric and magnetic fields on the grid. During field gather,

forces from the fields are calculated for each particle, which then in particle pusher, are

used to update the location of particles. Both current deposition and field gather

have mostly regular data access to the particles, exhibiting streaming-like read access in current

deposition and read-write access in field gather.

Communication happens in field solver and particle pusher. Most communication

in field solver is point-to-point (P2P) between neighbor processes for halo exchange.

Both collective and P2P communications are used in particle pusher for communicating

particles that move from one subdomain to another.

The Intel Optane DC PM. The Intel Optane DC Persistent Memory Module (PMM) is the

first large-scale byte-addressable PM. The Intel Purley platform used in our study is equipped

with Optane PM DIMMs and DRAM DIMMs. Each socket has six memory channels, and each is

shared by a DRAM DIMM and a PMM DIMM. In total, there are 12 PM DIMMs and DRAM

DIMMs, respectively, on two sockets. An Optane PM DIMM may have 128, 256, or 512 GB

capacity, enabling up to 6 TB memory capacity on a single machine [87]. The latency to PM is

measured as 174 ns for sequential reads and 304 ns for random reads, in contrast to 79 ns and

87 ns to DRAM [155]. The bandwidth to PM on one socket is 39 GB/s for read and 13 GB/s for

write, while DRAM achieves 104 GB/s and 80 GB/s bandwidth on the same platform. There are

two modes in PMM: memory mode and app-direct mode. In the memory mode, DRAM becomes

a hardware-managed cache to PMM. Running the application on DRAM-cached PMM to use

both DRAM and PMM requires no application modifications. In the app-direct mode, accesses to

PM and DRAM can be explicitly controlled at the application level, either through a DAX-based

file system [187] or exposing PM as separate NUMA nodes.

Enabling Large-Scale Simulations with PM. Using the Optane persistent memory, we

can significantly increase the memory capacity per node to enable fine-grained and large-scale

scientific simulations. An Optane-based machine has up to six TB memory [87], while a node in
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Table 7.1: Compare the memory capacity and simulation scale on supercomputers
Supercomputer Mem capacity per node Largest problem (in terms of particles)

Sierra 320GB DRAM 10.6 trillions
Summit 608GB DRAM 18.9 trillions
Aurora 256GB DRAM (est.) 8.8 trillions

Taihu Light 32GB DRAM 1.1 trillions
Optane-based 1692GB (1.5TB PM + 192GB DRAM) 58.6 trillions

main-stream supercomputers has at most hundreds of GB (see Table 7.1). Given a fixed number

of nodes, using the Optane PM allows us to perform scientific simulation previously unachievable

due to limited memory capacity.

Table 7.1 presents an example case that performs a numerical simulation of a laser-driven

plasma accelerator (i.e., the laser-wakefield accelerator) using WarpX [57]. This simulation uses

a larger number of particles in the time and space scales to gain knowledge on plasma structures

towards a full-scale numerical study of the next generation laser-wakefield accelerator systems.

Such a numerical study provides insights for more-compact high-energy colliders [105].

In this example, we assume the same simulation configuration as that in a production run on

4,942 nodes on the Cori supercomputer. Table 7.1 compares the largest simulation scale that can

be supported on each supercomputer. The simulation scale is defined as the number of simulated

particles – a larger number indicates a larger simulation scale. Clearly, Memory capacity is one

main constraint on the simulation scale. The memory consumption of WarpX is calculated based

on the estimation of the sizes of particles, fields, metadata, and temporal data objects.

Table 7.1 shows that an Optane-based supercomputer can enable larger-scale simulations than

other supercomputers. Compared with Summit and Sierra (the top two supercomputers in the

top500 list by April 2020) that use hundreds of Gigabytes of DRAM per node, the Optane-based

supercomputer increases the simulation scale by 3.1x and 5.5x, respectively.

7.3 Performance Characterization

We develop a heap profiler and a phase profiler to characterize the memory usage and

bandwidth consumption in the application. The heap profiler tracks dynamic memory allocations

and collects information on each allocation (data object). The phase profiler collects hardware

events from performance counters and associates them to specific execution phases in the

application.

Heap profiler interposes common memory management routines in C and C++, e.g., malloc,

calloc, the operator new and its variants, posix_memalign, Linux-specific aligned_alloc
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Figure 7.1: The number of memory allocation/deallocation across iterations.

and valloc. It collects the metadata of data objects, including size, time of allocation/deallocation,

and lifetime (defined as the interval between allocation and deallocation). The timestamps of

allocation and deallocation are used to map to specific execution phases of the application. The

tool also supports postmortem analysis of the profiling results.

Phase profiler use specific APIs to track execution phases. The user inserts the APIs into

the WarpX code to mark execution phases. The API implementation includes two functionalities.

First, it triggers a set of auxiliary external scripts to invoke the Linux performance profiling tool

perf to collect information from hardware performance counters. Also, it invokes the Intel

PCM [204] to collect memory bandwidth data.

7.3.1 Profiling Results

We use a representative laser-driven simulation configuration for profiling. The input problem

uses 704 × 704 × 5664 cells and 8.4 billion particles (see Problem B in Table 7.5). The peak

memory consumption exceeds 1.2 TB on DRAM-cached Optane (memory mode).

Memory allocation and deallocation analysis. We use the heap profiler to track memory

allocation/deallocation in each iteration of the WarpX execution. Figure 7.1 presents the results

for the first seven iterations. The profiling results show that millions of memory allocation and

deallocation occur in each iteration. Across iterations, the number of memory allocation and

deallocation varies. Such a massive amount of data objects, which are as resulted from frequent

allocation and deallocation, imposes challenges in profiling at either data object level [78, 156,

226] or memory page level [14, 53, 95, 227, 234].

Data object lifetime and size. We classify the distribution of lifetime and size of data

objects. Table 7.2 reports the classification in the second iteration of the WarpX simulation. Other

iterations exhibit similar distributions. A data object is alive after its allocation and before its

deallocation. We categorize a data object as short-lived if its lifetime is within one iteration

and long-lived otherwise. We observe that 92.7% of data objects are short-lived in the WarpX

simulation. Furthermore, these short-lived data objects only account for less than 10% of the peak
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Table 7.2: The distribution of object size.
Bin

(MiB)
Short-lived data object Long-lived data object

Accumulated footprint Peak footprint Accumulated footprint Peak footprint
(0,1) 897.7 GiB 10.4 GiB 840.3 GiB 840.3 GiB
[1,2) 34.3 GiB 10.8 GiB 1.9 GiB 1.9 GiB
[2,4) 262.5 GiB 66.0 GiB 285.5 GiB 285.5 GiB
[4,8) 144.0 MiB 16.0 MiB 543.0 MiB 543.0 MiB

[8,16) 96.0 MiB 16.0 MiB 14.0 MiB 14.0 MiB
[16,32) 192.0 MiB 32.0 MiB 28.0 MiB 28.0 MiB
[32,64) 384.0 MiB 64.0 MiB 0 0

[64,+∞) 768.0 MiB 1.6 GiB 0 0

Table 7.3: The breakdown of execution time.
Particle pusher Current deposition Field solver Field gather Others

Ave. time 300.8s 132.0s 47.2s 25.2s 9.9s
Percentage 58% 26% 9% 4.9% 2.1%

memory consumption of WarpX. This characterization motivates us to use a small DRAM space

to host repeatedly allocated/freed short-lived data objects and avoid data movement between

DRAM and PM. This static placement strategy is described in Section 7.4.1.

Execution time breakdown. We measure the time of major execution phases (Section 7.2).

Each iteration of the main computation loop performs these major phases. Some “add-ons”

execution (such as load redistribution and moving window) may also occur in some iterations,

counted as others. Table 7.3 reports the breakdown of the execution time.

Overall, the particle pusher and current deposition phases account for about

84% of the total simulation time. Particle pusher reads the fields and updates the position

of each particle. Current deposition reads each particle and updates the current densities

on fields. These phases dominate the execution time and the read/write accesses to the main

memory. Therefore, we employ fine-grained dynamic data management to optimize their

performance. We describe the dynamic strategy in Section 7.4.2.

Memory bandwidth analysis. We measure the memory bandwidth in major phases and

report in Figure 7.2. We observe that the execution of WarpX is not bounded by DRAM/PM
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bandwidth in most of the execution time (e.g., field gather and particle pusher).

When the memory bandwidth utilization is low, e.g., about 10%, prefetching data to DRAM

would not constraint the bandwidth used by the application. Thus, performance improvement

becomes feasible. However, since data prefetching consumes memory bandwidth, using it in

bandwidth-intensive phases (e.g., current deposit) may cause performance loss in the

application. The bandwidth analysis motivates us to develop a performance model to optimize

data prefetching at runtime (Section 7.4.2).

7.4 Performance Optimization on PM

We propose a runtime system, called WarpX-PM (Figure 7.3), to manage data placement

on DRAM and PM automatically. WarpX-PM partitions DRAM into four spaces to store data

objects with different functionality and access patterns in WarpX. The metadata space stores

metadata updated infrequently but accessed frequently. The temporary space is used for short-

lived data objects frequently allocated and freed. Those short-lived data objects share and reuse

the temporary space without causing data movement between DRAM and PM. The migration

space acts as a software-managed DRAM cache to prefetch particles from PM before they are

accessed in computation. Finally, the free space stores the maximum possible field data.

We combine static and dynamic strategies for data placement in the four spaces. Except for

the migration space managed for dynamic data placement, the other three spaces are used for

static data placement. We use performance modeling to guide the data copy between DRAM and

PM without disturbing the WarpX performance. Our designs are described in detail as follows.

7.4.1 Static Data Placement

WarpX-PM uses static placement to addresses the fundamental limitations in the memory

mode. This memory mode uses DRAM as a direct-mapped hardware cache. Consequently,

some performance-critical data objects are evicted from DRAM due to iterative accesses to

large data objects, such as particles and fields. Examples of performance-critical data objects

include metadata and temporary data, where metadata is used to compute the simulation domain

iteratively, and temporary data is used to adjust the size of data objects during the computation.

These performance-critical data objects are frequently referenced but only consume a small

portion (less than 10%) of the total memory consumption. In the memory mode, these data objects

are frequently moved between DRAM cache and PM, a typical manifestation of cache thrashing.
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Figure 7.3: The overview of data management on Optane-based HM.

Static data placement takes effect on all execution phases. WarpX-PM pins the performance-

critical data objects to DRAM to avoid moving them between DRAM and PM as in the memory

mode. Depending on their lifetime, they can be categorized as long-lived and short-lived, and

placed into the metadata space and temporary space, respectively. We describe the management

of these two kinds of performance-critical data objects as follows.

Long-lived, performance-critical data objects are mostly metadata and are placed in the

metadata space in DRAM directly. In WarpX, the whole simulation domain is decomposed into

many boxes distributed over MPI ranks. Each box contains a fraction of fields and particles.

Metadata is used to record the distribution of boxes in the simulation domain. For instance,

FArrayBox is a part of box metadata for iterating particles in a box. Metadata are allocated

before the main computation loop and only freed after the whole computation finishes – long-lived.

During their life span, metadata are frequently accessed, and their size remains unchanged.

Short-lived, performance-critical data objects are typically allocated and freed within one

iteration of the main computation loop. These data objects include communication buffers and

the memory space used for resizing the data objects during the computation. WarpX-PM allocates

these data objects on demand in the temporary space, which is a pre-allocated memory space

in DRAM. To ensure the pre-allocated temporary space is large enough for all temporary data

objects throughout the computation loop, WarpX-PM uses the following algorithm.

WarpX-PM uses the first iteration of a simulation to measure the peak memory consumption

of WarpX. Then, WarpX-PM deducts the sizes of particles, fields, metadata, and a fixed buffer

per MPI rank for migration space from the peak memory consumption. The resulted size is

used to reserve the temporary space. This approach provides an estimation of the peak memory

consumption of short-lived, performance-critical data objects. Across iterations, the peak memory

consumption of these data objects may vary, mostly due to communication buffers. The variance

is typically small (tens of MB). If the temporary space is exhausted, WarpX-PM increases the

temporary space on demand to accommodate.
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After the metadata, temporary, and migration spaces are allocated, the remaining space in

DRAM is used as the free space. WarpX-PM utilizes it to hold as many as possible fields. Fields

are frequently accessed in all phases. WarpX-PM chooses fields instead of particles for static data

placement because fields are not allocated in contiguous memory space. Hence, maintaining their

location information and copying them between DRAM and PM incur large overhead. Besides,

fields are smaller but more intensively accessed than particles.

The static data placement completes after the first iteration. The memory allocation overhead

is negligible because only three spaces need to be managed. Furthermore, using the pre-allocated

temporary space reduces the overhead of frequent memory (de)allocation for short-lived data

objects.

7.4.2 Dynamic Data Placement

The dynamic strategy takes effect at particle pusher, current deposition, and

field solver. The accesses to particles mainly occur in these phases. The dynamic

placement copies particles into DRAM in batches and only copies them back to PM if particles are

updated in the computation. Particles consume at least 50% of memory consumption. For a large

input problem, particles alone may unlikely fit in DRAM. However, directly accessing particles in

PM in particle computation causes performance loss due to the low memory bandwidth. WarpX-

PM uses software-managed particle prefetching to copy batches of particles into the migration

space so that computation always accesses particles in DRAM.

ParticleContainer is the primary data object for particles. It contains an array of

particle structures, each representing a particle and recording its position, velocities, ID, and the

owner CPU. Thus, ParticleContainer occupies a contiguous space in physical memory.

In each of the particle pusher, current deposition, and field solver phases,

all particles in the ParticleContainer are iterated in a streaming-like access pattern at the

granularity of FArrayBox. WarpX-PM leverages this characteristic to partition each phase into

intervals based on the time of processing particles in FArrayBox. At an interval i, WarpX-PM

copies a batch of particles needed for the next interval i+1 to DRAM. This data copy is expected

to finish before the interval i+ 1. If particles are updated in the interval i+ 1, they are copied

back to PM in the interval i+ 2. Given the streaming-like patterns to access particles, there is no

data dependency between intervals.

To implement the particle prefetching strategy, two challenges must be addressed. First,

WarpX-PM needs to decide the number of threads to copy particle batches. WarpX-PM uses
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Table 7.4: Notation for performance modeling
Source Symbol Description

Hardware
parameters

BWDRAM_to_PM () BW of copying data from DRAM to PM

BWPM_to_DRAM () BW of copying data from PM to DRAM
BWmax Peak memory bandwidth
Thrdmax Maximum number of hardware threads

App related
parameters

datain,dataout Sizes of data copied in/out of DRAM
Tcp Data copying time for an interval
Tcomp WarpX execution time of an interval
Thrdcp Number of threads to copy data
Thrdcomp Number of threads for application
T′

comp Optimal execution time of an interval

helper threads instead of application threads to copy particles to avoid delaying the execution

of application threads. Using a large number of helper threads accelerate data copy but reduces

processor cores and memory bandwidth available for WaprX execution. Using a small number of

helper threads increases the risk of exposing data copy into the critical path of WaprX execution

if data copy cannot finish in time. Second, the decision of the number of helper threads must

be adaptive and lightweight. Different input problems or MPI/OpenMP configurations may

consume memory bandwidth differently and need different numbers of helper threads for the best

performance.

Performance Modeling. We introduce a performance model-based approach to decide the

optimal number of helper threads for each phase. All intervals in the same phase use the same

number of helper threads while different phases may use different numbers of helper threads.

Table 7.4 summarizes the notations used in the performance model.

data copy time (Tcp) in an interval i includes the time to copy data needed by the interval i+1

from PM to DRAM (T in
cp ), and the time to copy data updated in the interval i− 1 from DRAM to

PM (T out
cp ).

T in
cp (Thrdcp) =

datain
BWPM_to_DRAM (Thrdcp)

T out
cp (Thrdcp) =

dataout
BWDRAM_to_PM (Thrdcp)

,

(7.1)

where datain and dataout are the sizes of data needed to copy in and out of DRAM for an interval;

BWPM_to_DRAM (Thrdcp) and BWDRAM_to_PM (Thrdcp) are the data copy bandwidth in and

out of DRAM respectively. These bandwidths are the functions of the number of helper threads

(Thrdcp). Therefore, Tcp is also a function of Thrdcp.



117

Equation 7.1 consider performance difference between copying data from DRAM to PM and

from PM to DRAM. In our implementation, copying data in two directions happens in parallel. If

memory bandwidth is not a bottleneck, we have

Tcp = max(T in
cp , T

out
cp ). (7.2)

Overlap constraint. Copying data happens in parallel with WarpX execution. The data copy

time should be no longer than the WarpX execution time, i.e.,

Tcp(Thrdcp) ≤ Tcomp(Thrdcomp), (7.3)

where Tcomp is the execution time of an interval when the particles accessed by the interval are all

in DRAM. Tcomp is a function of the number of application threads (Thrdcomp) in an MPI rank.

Bandwidth constraint. The bandwidth consumption due to copying data should not reduce

the bandwidth available for WarpX execution. Assume that without copying data, the bandwidth

consumption of WarpX execution is BWcomp, including both read from and write to PM.

BWcomp(Thrdcomp) +BWPM_to_DRAM (Thrdcp)

+BWDRAM_to_PM (Thrdcp) ≤ BWmax/N
(7.4)

where BWmax is the peak memory bandwidth constrained by the hardware and N is the number

of MPI ranks (We assume BWmax is evenly partitioned between MPI ranks). BWmax needs to

satisfy the following equation to prevent performance loss.

BWmax = max(BWDRAM_to_PM
max , BWPM_to_DRAM

max ) (7.5)

BWDRAM_to_PM
max and BWPM_to_DRAM

max are the peak memory bandwidth supported by

hardware from DRAM to PM and from PM to DRAM, respectively.

Thread constraint. The number of application threads and helper threads should be no larger

than the maximum number of threads assigned to an MPI rank (Thrdmax), i.e.,

Thrdcomp + Thrdcp ≤ Thrdmax. (7.6)

Optimization goal. Assume that T ′
comp is the execution time for an interval, given Thrdcomp

and Thrdcp threads for WarpX execution and copying data, respectively. T ′
comp is a function of

Thrdcomp and Thrdcp. The goal of our performance modeling is to minimize T ′
comp (Equation 7.7),
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subject to the constraints of overlap (Constraint 7.3), bandwidth (Constraint 7.4) and threads

(Constraint 7.6), i.e.,

min(T ′
comp(Thrdcomp, Thrdcp)). (7.7)

BWmax and Thrdmax are known from offline profiling; BWDRAM_to_PM () and BWPM_to_DRAM ()

are measured by a microbenchmark at various numbers of data copy threads; dataout and datain

are known from FArrayBox, whose value is set at the beginning of each iteration. Therefore,

based on dataout and datain, we can calculate Tcp using Equation 7.2 given Thrdcp.

We build Tcomp() based on online profiling and empirical observation. In particular, we use

an interval in the second iteration of the main computation loop to measure the execution time

online, and use Thrdmax as Thrdcomp during the execution of the interval. This measurement

is done after static data placement and after loading the required particles by the interval into

DRAM. Furthermore, we empirically observe that the execution of WarpX using various input

problems is not bounded by memory bandwidth on Optane (see Section 7.3.1); Using Thrdmax as

Thrdcomp gives the best performance. Using Thrdmax − 1 and Thrdmax − 2 as Thrdcomp give

less than 10% performance loss, while using the number of threads smaller than Thrdmax− 2 for

Thrdcomp causes more than 20% loss. Hence, we use the measured online execution time as the

result of Tcomp(Thrdcomp), when Thrdcomp ∈ [Thrdmax − 2, Thrdmax]. We do not consider

other cases of Thrdcomp to avoid performance loss of WarpX execution. Note that this approach

gives us a high requirement on data copy overhead because of Constraint 7.3.

We employ a similar approach to build BWcomp(). We measure memory bandwidth in an

interval in the second iteration of simulation and using Thrdmax as Thrdcomp. This memory

bandwidth is used for Thrdcomp ∈ [Thrdmax − 2, Thrdmax]. We do not consider other cases to

avoid performance loss.

We use the following approach to find the optimal Thrdcomp and Thrdcp to minimize T ′
comp().

We use Constraints 7.4 and 7.6 to select the numbers of helper threads to meet the bandwidth

constraint. Then, among the selected numbers, we use Constraint 7.3 to find those that meet the

overlap constraint. Finally, we choose the smallest number as the optimal number of helper thread

from those selected numbers. Given the constraints, the WarpX execution time is minimized,

T ′
comp = Tcomp(Thrdmax).

Our modeling approach is lightweight, because we avoid exhaustive search of all combinations

of Thrdcomp and Thrdcp by eliminating those that can obviously cause performance loss. The

overhead to find the optimal is almost zero.
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7.4.3 Implementation Details

WarpX-PM is implemented as a patch to WarpX and AMRex. Running WarpX with WarpX-

PM on Optane (or other HM) requires no efforts from the user. The statistics of modifications

given by git diff is 15 files changed, 1031 insertions(+), 12 deletions(-).

WarpX-PM uses pthread to implement helper threads for each MPI rank. For static data

placement, data objects that needed to be placed in DRAM are allocated into DRAM NUMA

nodes using numa_alloc_local(). For dynamic data placement, each MPI process pre-allocates a

500MB temporary space in DRAM to copy particles between DRAM and PM. We use 500MB

because the dynamic data placement handles particles batch by batch, and the batch size is

determined by FArraybox. The size of all particles in one FArraybox is bounded by 500MB.

All MPI processes evenly partition DRAM initially. To accommodate the size variance of short-

lived data objects across interations, WarpX-PM increases the temporary space by reserving extra

100MB DRAM space for each rank.

Avoiding NUMA effects is important for high performance on an Optane-based machine with

multiple sockets, each equipped with both DRAM and PM [155]. We observe that allocating data

in remote DRAM and PM nodes (i.e., DRAM and PM on the remote socket) leads to up to 2x

performance loss for large input problems in WarpX. To address this NUMA effect, in WarpX-PM,

once an MPI rank is pinned to a processor, those DRAM spaces for static and dynamic data

placements are allocated from local DRAM NUMA nodes. Also, all data objects of the MPI

process are allocated from local PM nodes.

WarpX-PM uses high-performance data copying to implement data placement based on

AVX-512 streaming load/store intrinsics and multi-threading. Alternatively, we could use a page

migration mechanism such as move_pages() and mmap() to implement data migration between

DRAM and PM instead of data copying. However, these data migration mechanisms work at

the page level, requiring setting up a mapping between data objects and pages, which is difficult

to implement at the user level. Furthermore, these mechanisms can cause frequent TLB misses

because of page remapping, which leads to performance loss [234]. Note that our data copying

mechanism in WarpX does not impact program correctness because our implementation has no

pointer alias – the pointers pointing to the old data is updated after data copying.
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Table 7.5: Input problems used in evaluation
ID Type # of cells # of particles Peak consumption
A Laser-driven (512, 512, 4096) 1.1B 228.5 GiB
B Laser-driven (704, 704, 5664) 8.4B 1.2 TiB
C beam-driven (512, 512, 4096) 2.1B 306 GiB
D beam-driven (864, 864, 7200) 10.7B 960 GiB
E Uniform-plasma (384, 384, 3104) 3.7B 525 GiB
F Uniform-plasma (512, 512, 4096) 8.6B 1.2 TiB
G Laser-driven (256, 256, 2048) 134.2M 19.2 GiB
* The names of particle species of A, E, F and G are set to electrons; the names of B are set to electrons, ions and beam; the

names of C and D are set to driver, plasma_e, plasma_p, beam and driverback. The blocking factor is 32.

Table 7.6: Platform Specifications
Processor 2nd Gen Intel Xeon Scalable processor

Cores 2.4 GHz (3.9 GHz Turbo frequency × 24 cores (48 HT) × 2 sockets
L1-icache private, 32 KB, 8-way set associative, write-back
L1-dcache private, 32 KB, 8-way set associative, write-back
L2-cache private, 1MB, 16-way set associative, write-back
L3-cache shared, 35.75 MB, 11-way set associative, non-inclusive write-back
DRAM six 16-GB DDR4 DIMMs × 2 sockets (192 GB in total)

PM six 128-GB Optane DC NVDIMMs × 2 sockets (1.5 TB in total)
Interconnect Intel UPI at 10.4 GT/s, 10.4GT/s, and 9.6 GT/s

7.5 Evaluation

7.5.1 Experimental Setup

Table 7.6 summarizes the hardware features of our testbed. When the Optane DC PMM is in

app-direct mode and exposed as NUMA nodes, we use numactl [118] to control data placement

on PMM and DRAM. The platform runs Fedora 29 (Linux 5.1.0). We use the Intel Processor

Counter Monitor (PCM) tool [204] to access hardware counters to collect core activities and

off-core events.

Table 7.5 summarizes input problems for evaluation. The input problems come from various

plasma accelerator simulations with a wide range of memory consumption (up to 1.2TB). We use

WarpX 20.04, OpenMPI 4.0.2 and GCC 7.5.0. For all problems except Problem G (a relatively

small input), we run 10 iterations and report average execution time per iteration. There is less

than 1% difference in average execution time if we use more than 10 iterations. For Problem G,

we run 30 iterations to report average execution time, because average execution time becomes

stable only after 20 iterations.
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7.5.2 Evaluation Results

Overall performance. We compare WarpX-PM with Optane-only (i.e., no DRAM) and two

common strategies (i.e., NUMA first-touch and memory mode) to use Optane-based systems.

We evaluate Problems A-F in Table 7.5. All these problems have peak memory consumption

larger than DRAM (192 GB). For the small Problem G, all data objects can be placed in DRAM.

Hence, there is almost no performance difference between NUMA first-touch, memory mode,

and WarpX-PM.

Figure 7.4 reveals that WarpX-PM performs the best in all cases. On average, WarpX-PM

outperforms memory mode, Optane-only, and NUMA first-touch by 34.4%, 64.6%, and 41%,

respectively. We notice that NUMA first-touch performs worse than memory mode and WarpX-

PM. NUMA first-touch decides data placement based on when data allocation happens, instead

of memory access patterns, which leads to sub-optimal data placement if a performance-critical

data object is allocated at a later stage of execution. For example, particles are allocated before

fields in WarpX, and NUMA first-touch places particles in DRAM, which forces fields to go to

PM because of limited DRAM capacity. However, fields is more frequently accessed throughout

simulation — placing it into PM leads to substantial performance loss. WarpX-PM avoids this

problem because it prioritizes the placement of fields over particles on DRAM.

WarpX-PM outperforms memory mode because it avoids DRAM-cache thrashing for small

and short data objects. DRAM-cache thrashing happens because of memory accesses to the large

data object, particles. Without application knowledge, the DRAM cache may evict small and

short-lived data objects to make space for particles.

WarpX execution has large performance variance in runs of Problem A in memory mode.

This problem has peak memory consumption only slightly larger than DRAM. The performance

variance is up to 30.5%. Such performance variance in memory node has been confirmed by

Intel, and imposes a big challenge on controlling performance variability in HPC applications.

WarpX-PM avoids this performance variance problem because of its static placement of critical

data objects.

Performance breakdown. We quantify the contributions of the static data placement and

dynamic data placement techniques in WarpX-PM, to the performance improvement on each

execution phase. We further compare WarpX-PM with memory mode (the second best in

Figure 7.4) to demonstrate the effectiveness of WarpX-PM. Figure 7.5 presents the results.

For input problems with large memory footprint (e.g., Problems B and D with 1.2TB peak

memory consumption), static data placement outperforms memory mode by 29% on average.
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Figure 7.4: Performance comparison between Memory mode, Optane-only, NUMA first-touch
and WarpX-PM.

Be
tt
er

Figure 7.5: Performance breakdown of main phases of excution to compare the static and dynamic
placement with memory mode.

Memory mode cannot work well for the large input problems, because metadata and temporary

data are not efficiently cached into DRAM. Furthermore, static data placement effectively reduces

the execution time on field gather and others (compared to memory mode) by 10% and

7% on average over all input problems. Field gather and others involve large amount

of metadata and temporary data objects access. Static data placement effectively prevents data

migration for these two phases and thus avoids the migration overhead.

Dynamic data placement improves the performance of particle pusher, current

deposition and field solver by 11%, 17%, and 12%, compared with static data placement.

By proactively prefetching particles from PM to DRAM, dynamic data placement outperforms

memory mode and static data placement by 34% and 41%.

Comparison with state-of-the-art. We compare WarpX-PM with a state-of-the-art page

migration system for HM, named improved active list (IAL) [234]. This system improves an

existing page replacement mechanism in the Linux kernel (i.e., an FIFO-based active list). Among

the 7 input problems listed in Table 7.5, we can only run three of them successfully with IAL.

Running other problems with IAL suffers from either extremely poor performance (10x worse

than WarpX-PM) or segmentation faults. Figure 7.6 shows the results.

Figure 7.6 reveals that WarpX-PM outperforms IAL by 83.3% on average and up to 96.6%.

There are three main reasons for the inferior performance of IAL. First, IAL is a reactive approach

– it takes effects only after it collects enough information on memory accesses. This indicates that
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Figure 7.6: Performance comparison between IAL (a state-of-the-art page migration solution for
HM) and WarpX-PM.

it cannot efficiently prefetch data objects into DRAM to reduce data movement cost. Second, IAL

periodically samples memory page accesses to identify page hotness. Finding hot pages from a

large amount memory pages (tens of millions) incurs significant overhead. Third, IAL heavily

relies on helper threads to enable parallel page migration for high performance. However, IAL

does not consider the impact of using helper threads on the WarpX execution. Using an excessive

number of helper threads decreases computation capability available for WarpX and consumes

large memory bandwidth, which negatively impact the WarpX performance.

Memory bandwidth analysis. Figure 7.7 depicts read/write bandwidth for memory mode

and WarpX-PM. We use input Problem F, because its peak memory consumption is the largest

and pressures the memory bandwidth. Compared with memory mode, WarpX-PM consumes

higher DRAM bandwidth, indicating that fast memory accesses happen more often in WarpX-PM

to make best use of DRAM. More specifically, for execution phases that only involve static

data migration (i.e., field gather and others), PM bandwidth consumption is lower than

memory mode, indicating the effectiveness of static data placement. For execution phases that

involve dynamic data migration ( current deposition, field solver and particle

pusher), WarpX-PM has higher PM bandwidth than memory mode. This is because dynamic

data placement prefetches data objects before they are accessed, but data prefetching overhead is

hidden by overlapping with the computation.

NUMA effects. Optane-based systems have multiple sockets, each with DRAM and PM

DIMMs. Efficient data placement is not only about using DRAM or PM but also about avoiding

memory accesses to a remote socket. We compare memory mode, NUMA first-touch with

WarpX-PM to quantify NUMA effect by tracking memory traffic between two sockets. We use

six input problems whose peak memory consumption is larger than DRAM to allow us to evaluate

the NUMA effect fully. Table 7.7 shows the results.

The results show that WarpX-PM has the lowest inter-socket traffic (close to zero). Memory

mode is not NUMA-aware and cannot cache accesses to remote PM in a local DRAM [62]. The
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Figure 7.7: Memory bandwidth consumption in one iteration.
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Figure 7.8: Performance with different number of helper threads. “th” is the number of helper
threads.

Table 7.7: Quantifying memory traffic between two NUMA nodes.

Problem ID Remote DRAM traffic (GB)
Memory mode First-touch WarpX-PM

A 0.92 1.01 0.01
B 4.08 3.75 0.02
C 3.69 4.76 0.02
D 18.09 23.90 0.05
E 1.01 0.90 0.01
F 2.22 2.28 0.01

NUMA first touch policy is NUMA-aware, but data may be distributed to remote DRAM when

the local DRAM is exhausted. WarpX-PM avoids these problems by explicitly placing data in

local buffers (Section 7.4.3).

Effects of performance modeling. We evaluate the effectiveness of the performance model

in determining the number of helper threads. The performance variance due to different numbers

of helper threads is the same across phases. Hence, we use the same number of helper threads

for all phases for evaluation. We manually sweep the number of helper threads and compare

their performance with the automatically adapted performance in WarpX-PM. Figure 7.8 shows
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the results. For Problem A, B, C, and E, the optimal number of helper threads is two. For

Problem D and F, the optimal number of helper thread becomes one. WarpX-PM achieves similar

performance as the optimal one, demonstrating the effectiveness of performance modeling. We

also notice more than 30% performance loss when the number of helper threads is larger than

two. As the number of helper threads increases, the available processor cores for the computation

in WarpX simulation decreases, which prolongs the total execution time.

7.6 Related Work

HPC workloads Many works have explored PM-based HM for HPC [56, 140, 154, 226, 227].

Nguyen et. al [140] introduce a multi-version octree on PM to enable adaptive mesh simulation

on PM. Unimem [226] uses performance modeling to decide data placement for MPI-based HPC

applications. Siena [154] explores rich organizations and configurations of HM architecture

for HPC applications to determine optimal system designs. Tahoe [227] combines a machine

learning model and an analytical model to predict application performance across multiple

memory components for task-parallel programs. NVStream [56] uses non-temporal store and

delta compression to reduce overhead for maintaining crash consistency and reduce I/O traffic

for HPC workloads. These works use emulated PM to demonstrate their functionality. Recent

works also characterizing HPC applications on Optane [152, 157, 214, 222]. Instead, our work

focuses on performance analysis and optimization of a production-level code (WarpX) for realistic

simulations on real PM hardware.

Database and graph workloads. Recent works also propose various performance optimizations

of databases and graph workloads on the Optane PM [39, 62, 101, 107, 235]. Yang et. al [235]

analyze the Optane architecture to optimize database and file system. TimeStone [101] solves

the problem of poor scalability of durable transaction memory (DTM) on Optane by adopting

multi-version concurrency control and a DRAM buffer. RECIPE [107] converts concurrent

DRAM indexes to crash-consistent indexes on Optane. Gill et. al [62] evaluate four graph

analytics frameworks and optimize performance by mitigating the NUMA effect of Optane.

ATMem [39] employs a sampling-based profiler to select performance-critical data regions in

graph applications on Optane.

7.7 Conclusions

The emerging large-capacity PM enables high-resolution large-scale scientific simulations.
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However, leveraging PM for production-level HPC codes on realistic problems remains to be

investigated. In this paper, we focus on WarpX, a mission-critical plasma simulation code, as a use

case to study PM implications on its performance. We demonstrate the PM benefits in simulation

scales and propose a set of performance optimization strategies driven by detailed performance

analysis. We improved the WarpX execution on Optane-only by 64.6% and outperformed DRAM-

cached, the NUMA first-touch policy, and a state-of-the-art HM solution by 34.4%, 41% and

83.3%, respectively.



Chapter 8

Scalable Page Management for

Multi-Tiered Large Memory Systems

Multi-terabyte large memory systems are emerging. They are often characterized with more

than two memory tiers for large memory capacity and high performance. Those tiers include slow

and fast memories with different latencies and bandwidths. Making effective, transparent use of

the multi-tiered large memory system requires a page management system, based on which the

application can make the best use of fast memories for high performance and slow memories

for large capacity. However, applying existing solutions to multi-tiered large memory systems

has a fundamental limitation because of non-scalable, low-quality memory profiling mechanisms

and unawareness of rich memory tiers in page migration policies. We develop HM-Keeper,

an application-transparent page management system that supports the efficient use of multi-

tiered large memory. HM-Keeper is based on two design principles: (1) The memory profiling

mechanism must be adaptive based on spatial and temporal variation of memory access patterns.

(2) The page migration must employ a holistic design principle, such that any slow memory

tier has equal opportunities to directly use the fastest memory. We evaluate HM-Keeper using

common big-data applications with large working sets (hundreds of GB to one TB). HM-Keeper

largely outperforms seven existing solutions by 15%-78%.

8.1 Introduction

Memory hierarchy has continued deepening to cope with ever-increasing demands from

applications. Multi-tier memory systems that started from multi-socket non-uniform memory

127
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access (NUMA) architecture is now a de-facto solution for building scalable and cost-effective

memory systems. For instance, the Amazon EC2 High Memory Instance has three DRAM-based

memory tiers built upon eight NUMA nodes, providing up to 12 TB memory [82]. Recently,

the commercial availability of new memory devices, such as high-bandwidth memory (HBM)

and high-density persistent memory (PM), started expanding a new dimension of multi-tier

memory systems. A multi-tier memory system implemented with heterogeneous memories

and NUMA architecture can easily exceed two memory tiers. Top tiers typically feature lower

memory latency or higher bandwidth but smaller capacity, while bottom tiers feature high

capacity but lower bandwidth and longer latency. When high-density PM is in use, e.g., Intel’s

Optane DC persistent memory [201], a multi-tier large memory system could enable terabyte-

scale graph analysis [44, 62, 160], in-memory database services [20, 36, 235], and scientific

simulations [140, 231] on a single machine.

Muti-tier memory systems can be managed transparently by hardware, e.g., Intel’s Optane can

configure DRAM as a direct-mapped cache for PM. Such hardware supports require no application

modifications or OS changes, and naturally, are often the first option to be explored on a new

system. However, cache-like mechanisms rely on good data locality to gain performance. Indeed,

applications with low data locality have shown unsatisfactory performance on such systems due

to the extra overhead in managing cache [155] and write amplification [21]. Another shortcoming

of cache mechanisms is the loss of sizable memory capacity. Unlike processor caches, which

are often in MBs, PM-based memory systems, e.g., Intel Cascade Lake processor, could contain

hundreds of GB capacity in DRAM tiers.

Software-based page management can leverage multi-tier large memory systems more

efficiently than hardware mechanisms because it can gain deeper insights into memory access

patterns. Most of software solutions [14, 84, 85, 98, 119] consist of three components – a profiling

mechanism, a migration policy, and a migration mechanism. A profiling mechanism is critical

for identifying performance-critical data in applications and is often realized through tracking

page accesses. A migration policy chooses candidate pages to be moved to top tiers. Finally,

the effectiveness of a page management solution directly depends on whether its migration

mechanism can move pages across tiers at low overhead.

Problems in profiling. Existing memory profiling mechanisms [78, 95, 104, 248] manipulate

specific bits in page table entries (PTEs) to track memory accesses at a per-page granularity. The

profiling overhead scales linearly with the number of tracked pages. Our evaluation shows

that tracking millions of pages could take several seconds – too slow to respond to time-
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Figure 8.1: Comparison of different memory profiling methods in terms of their effectiveness of
identifying frequently accessed pages (hot pages). The profiling overhead is set as 5% of total
execution time.

changing access patterns, and causes 20% slowdown in TPC-C against VoltDB [213]. Some

solutions [14, 84, 85, 119, 151, 189] only profile a small set of randomly-chosen pages based on

PTE manipulation or performance counters, or heavily rely on the user to configure the profiling

method to reduce profiling overhead. However, such a strategy compromises profiling quality and

may miss frequently-accessed pages and time-changing access patterns.

Figure 8.1 compares multiple profiling methods in Thermostat [14], AutoTiering [98],

DAMON [151, 189], and our method. These profiling methods represent state-of-the-art. We use

the GUPS [67] benchmark with 512GB working set and have priori knowledge on which pages

are accessed at least twice in a profiling interval (i.e., hot pages). In this workload, hot pages

remain stable throughout the execution. We report profiling recall (i.e., the ratio of the number

of correctly detected hot pages to the number of hot pages identified by priori knowledge) and

profiling precision (i.e., the ratio of the number of correctly detected hot pages to the number of

total detected hot pages including mis-identified hot pages). With the same profiling overhead

(5%), Thermostat and AutoTiering take long time to identify hot pages (see Figure 8.1). DAMON

takes shorter time but about 50% of hot pages detected by DAMON are actually not hot. Because

of low profiling quality, DAMON, Thermostat, and AutoTiering perform at least 15% worse than

our method. In general, there is a lack of scalable and high-quality profiling mechanism for large

memory systems.

Problems in migration. Existing solutions to multi-tiered memory are built upon an

abstraction extended from traditional memory hierarchy, where page migration occurs between

two neighboring tiers. However, such abstraction could limit multi-tiered memory systems.

First, migrating pages from the lowest to the top tier, at tier-by-tier steps, takes time, e.g., tens of

microseconds for a 4K page. Also, frequent data movement across tiers is needed to accommodate
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time-changing access patterns, different from occasional swapping between memory and storage.

To leverage a multi-tier large memory system efficiently, we argue that the following four

principles must be upheld.

• Scalable quality-aware profiling. Formal metrics that quantify performance impact from

pages need to be established to guide page selection for profiling. By only tracking the most

performance-critical pages at a time, a solution can guarantee adaptiveness to time-changing

patterns and controlled overhead.

• Global view of memory regions in all tiers. Only tracking data in the fastest tier is insufficient

because large memory regions are forced to reside in lower tiers even though they may contain

small but performance-critical subregions. This is particularly true on terabyte-scale systems

where data in the top tiers can only accommodate a small portion of total working sets and thus

insufficient to provide a comprehensive view of system-wide data. Thus, a global view of all

memory regions in all tiers is crucial.

• Tier-bypassing migration. Emerging large-memory systems feature multiple tiers. Migration

through neighboring tiers is too slow. Instead, performance-critical pages should be promoted

to the top tier bypassing intermediate tiers, i.e., pages in all slower tiers have equal chances to

be promoted to the fastest tier. Victim pages evicted from the top tier should be progressively

demoted into the next available lower tier instead of the bottom tier as in the existing swapping-

based solution in Linux [119] (i.e., AutoNUMA) because these pages are still likely to be

accessed.

• Pattern-aware migration mechanism. The page migration mechanism includes multiple stages.

Parallelism between stages is often ignored. Considering read/write patterns of page accesses,

such parallelism can be exposed, which is critical to improve page migration performance on

multi-tiered memory with frequent page migration.

In this work, we contribute a software-based page management solution called HM-Keeper

that realizes the four principles on terabyte-scale multi-tier memory.

HM-Keeper maintains a flat global view of all memory regions in all memory tiers. Profiling

quality and overhead are distributed proportionally according to a memory region’s importance.

Memory regions with a higher impact on performance are tracked with higher fidelity, i.e., more

pages are selected for profiling. In particular, HM-Keeper uses spatial and temporal variation as

the key metrics to quantify the performance impact of a memory region. Over time, HM-Keeper

adaptively merges and splits memory regions based on their similarity in spatial and temporal

locality so that pages in a memory region have similar access patterns.
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Figure 8.2: An example of multi-tiered memory system.

HM-Keeper uses the “fast promotion slow demotion” policy for page migration. Hot pages

identified in all lower tiers can be directly promoted to the top tier, minimizing data movement

through tiers. When a page is migrated out of the top tier to accommodate more important pages,

the page will be moved to the next lower tier with available space. HM-Keeper dynamically

chooses from an asynchronous page copy-based scheme and a synchronous page migration

scheme, based on the read/write pattern of the migrated page, to minimize migration time.

Evaluation. We rigorously evaluated HM-Keeper against seven state-of-the-art solutions,

including two industry-quality software solutions (Intel Memory-optimizer [84] and Intel Memory-

tiering [85]), two state-of-the-art solutions (AutoTiering [98] and HeMem [176]), an existing

solution in Linux (AutoNUMA [41]), a hardware-based solution (Optane Memory Mode), and

first-touch NUMA. HM-Keeper is also compared against two kernel-based page migration

solutions (the ones in Linux and Nimble [234]). HM-Keeper outperforms Intel memory-optimizer,

Intel memory-tiering, AutoTiering, AutoNUMA, Memory Mode, first-touch NUMA and HeMem

by 32%, 22%, 20%, 25%, 24%, 20%, and 24% on average. HM-Keeper outperforms the Linux

and Nimble migration approaches by 40% and 36% for read-intensive workloads, and has similar

performance for write-intensive workloads.

8.2 Background and Related Work

8.2.1 Multi-Tiered Large Memory Systems

In this section, we introduce memory organization in typical multi-tiered large-memory

systems. Note that recent works on using network-attached memory [132, 186, 191, 206, 217],

i.e., cross-machine multi-tiered systems are beyond the scope of this work. Figure 8.2 shows

an example of the Intel Optane-based large memory system with two sockets and four memory

components (i.e., DRAM 0-1 and PM 0-1). Each memory component is called a tier and has
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different memory latency.

8.2.2 Large Memory Systems

Given the emergence of large memory systems, there is a pressing need of studying effectiveness

and scalability of system software and hardware to support them. We review the related works as

follows.

Software support for page management. Recent work manages large memory systems based

on an existing NUMA balancing solution in Linux, AutoNUMA [119]. AutoNUMA randomly

profiles 256MB memory pages to reduce memory profiling overhead. AutoNUMA migrates

pages to reduce memory accesses across NUMA nodes, and does not consider page hotness. Intel

Memory-tiering [85] uses the same profiling method as AutoNUMA but adds extension to support

multi-tiered large memory. It balances memory accesses between sockets first, and then balance

memory accesses across memory tiers within each socket. As a result, a hot page takes a long time

to migrate to the fastest memory for high performance. Intel Memory-optimizer [84] randomly

samples pages for profiling, and only migrates pages between two memory tiers within the

same socket, failing to exploit fast memory across sockets. AutoTiering [98] is a state-of-the-art

solution. It uses random sampling as AutoNUMA, and introduces flexible page migration between

memory tiers. However, it does not have a systematic migration strategy guided by page hotness.

HeMem [176] is a state-of-the-art solution for two-tiered PM-based HM. HeMem leverages

sampling-based hardware performance counters to identify hot pages and fails to explore more

than two tiers.

Mitosis [12] and vMitosis [149] explore how to efficient place page tables across sockets

in large memory systems. They complement HM-Keeper, because HM-Keeper focuses on

application-level data (the most memory-consuming data), not kernel-level objects. ∅sim [129]

recognizes another pressing problem in large memory systems: how to enable rapid, early

prototyping and exploration of system software for large memory. ∅sim harnesses the fact that

many workloads follow the same control flow regardless of their input to make huge simulations

feasible and fast via memory compression. HM-Keeper can use ∅sim for fast evaluation.

Hardware-managed memory caching. Some large memory systems use fast memory as

a hardware-managed cache to slow memory. For example, in Intel’s Optane PM, DRAM can

work as a hardware-managed cache to persistent memory in the Memory Mode. However, this

solution results in data duplication in fast and slow memories, wasting fast memory capacity. It

also causes serious write amplification when there are memory cache misses. Recent work [21]
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reveals that Memory Mode causes more than 3x extra writes and 50% bandwidth drop, compared

with software-based solutions.

8.2.3 Two-Tiered Heterogeneous Memory

Heterogeneous memory (HM) combines the best properties of memory technologies optimized

for latency, bandwidth, capacity, and cost, but complicate memory management. There are OS-

level, application-transparent solutions that measure data reuse and migrate data for performance [14,

48, 49, 78, 95, 96, 104, 123, 176, 234]. However, they can cause large and uncontrolled profiling

overhead or low profiling quality, and are not designed for more than two memory tiers.

There are application-specific solutions that leverage application domain knowledge to reduce

profiling overhead, prefetch pages from slow memory to fast memory, and avoid slow-memory

accesses. Those solutions include big data analysis frameworks (e.g., Spark [216]), machine

learning applications [77, 178, 181], scientific computing [140, 154, 231], and graph analysis [44,

62, 160]. These solutions show better performance than the application-transparent, system-

level solutions, but require extensive domain knowledge and application modifications. Instead,

HM-Keeper is an application-transparent solution.

8.3 Overview

HM-Keeper consists of three components: (1) an adaptive memory profiling mechanism

that achieves high quality at low overhead; (2) a page-migration strategy that leverages a global

view of all memory regions in all tiers to make informed decisions; and (3) a page-migration

mechanism that adapts data copy schemes based on page access patterns.

HM-Keeper partitions the virtual address space into memory regions. It periodically profiles

memory accesses and migrates pages. In each profiling interval, HM-Keeper samples one or

more pages per memory region. This region-based profiling strategy captures spatial locality

in each region. Memory regions can be dynamically merged or split under the guidance of

quantitative analysis on the profiling overhead. Such adjustments provide opportunities to re-

distribute sampling quotas between memory regions under a fixed profiling overhead to improve

profiling quality.

HM-Keeper uses a holistic approach to decide page migration between memory tiers. By

calculating the exponential moving average of page hotness collected from all profiling intervals,

HM-Keeper learns the distribution of hot memory regions in all memory tiers. Guided by this



134

information, HM-Keeper promotes hot pages from any memory tier to the fastest tier without

going through any intermediate layers. It demotes pages tier by tier when there is not enough

space in the fast memory tiers.

When migrating pages, we introduce an asynchronous page-copy mechanism that overlaps

page copying with application execution. This mechanism reduces the overhead of page copy.

However, the asynchronous page copy can come with the time cost of extra page copy, because

when a page is updated during copying, the page has to be copied again. The traditional,

synchronous page-copy mechanism does not need extra page copy, but completely exposes the

overhead of page copy into the critical path. Hence, HM-Keeper uses a hybrid approach that takes

advantage of both asynchronous and synchronous mechanisms. HM-Keeper selects migration

mechanism based on whether page modification happens during migration.

8.4 Adaptive Memory Profiling

Figure 8.3 depicts the profiling workflow in HM-Keeper. The fundamental mechanism tracks

page accesses by utilizing PTE reserved bits and PTE scan. In particular, each PTE maintains an

access bit, which indicates the access status of the corresponding page. The access bit is initially

set to 0, but changed to 1 by the memory management unit (MMU) when the corresponding page

is accessed. By repeatedly scanning PTE to check the value of the access bit and resetting the

access bit to 0 if it is found to be 1, page accesses can be monitored. This mechanism is commonly

used in existing works [78, 151]. However, using it naively would impose high overhead on large

memory systems.

Scanning all PTEs to track memory accesses of each page for large memory is expensive.

For example, scanning a five-level page table for 1.5 TB memory with page size of 2MB in an

Optane-based platform (see Table 8.1 for hardware details) with one helper thread takes more

than one second, which is too long to capture varying workload behaviors. To avoid such a long

profiling time, it is natural to sample pages in the address space for profiling. In a large memory

system, sampling pages is challenging, because there are a large number of pages to choose for

sampling, and the profiling quality with unguided, random sampling [14, 84, 85, 98, 151] can

lead to poor performance as discussed in Section 8.1. We introduce an adaptive memory profiling

method to improve profiling quality while dynamically enforcing limits on profiling overhead.
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Figure 8.3: The overview of memory profiling in HM-Keeper.

8.4.1 Adaptive Memory Regions

HM-Keeper partitions the virtual address space of a process into memory regions for profiling.

By default, a memory region is a contiguous address space mapped by a last-level page directory

entry (PDE). This indicates that in a typical five-level page table, the memory region size is

2MB by default. During program execution, whenever a last-level PDE is set as valid by OS,

the corresponding memory region is subject to profiling. Memory regions can be dynamically

merged to reduce profiling overhead, or split to improve profiling quality. Therefore, different

memory regions can have different sizes.

We use the last-level PDE to decide the initial size of each memory region, based on

experimental analysis. If a higher-level PDE is used to decide the initial size of memory regions,

the default memory region becomes at least 1GB. With such a large memory region, data objects

with different memory access patterns are likely to reside in the same memory region [178, 244].

Since memory region is the basic unit for memory profiling and migration, those data objects will

be migrated together, even though they may favor different memory tiers.

In each memory region, HM-Keeper samples one or more 4KB pages for profiling (discussed

in detail in Section 8.4.2). HM-Keeper scans access bits in PTEs multiple times in a profiling

interval.

Multiple scans of PTEs. In a profiling interval, the access bit in a PTE corresponding to a

page sample is scanned multiple times. The total number of scans per PTE per profiling interval
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is subject to a constraint, num_scans.

We use the above multi-scan method, instead of single-scan in the existing work [78, 119, 151]

to reduce skewness of profiling results. A page in a profiling interval can be accessed multiple

times. In a profiling interval, a single-scan method can only detect whether a page is accessed

or not, but cannot accurately capture the number of memory accesses. Although aggregating

memory accesses across multiple profiling intervals could alleviate this problem, the skewness of

profiling results will be accumulated over time (see Section 8.5), leading to sub-optimal migration

decisions. Using the multi-scan method avoids this problem.

At the end of a profiling interval, the average number of accesses to all sampled pages in a

memory region is used as the hotness indication of that memory region. Based on the hotness

indication, HM-Keeper may either merge or split memory regions.

Merge memory regions. HM-Keeper actively looks for opportunities to merge contiguous

memory regions at the end of a profiling interval. Two contiguous regions are merged, if their

difference in the hotness indication collected in the most recent profiling interval is smaller than a

threshold τ1.

Split a memory region. HM-Keeper also checks whether a memory region shoud be split

to ensure pages in the same region have similar hotness in each interval. When the maximum

difference in the number of memory accesses among sampled pages in a region is larger than a

threshold τ2, the memory region is split into two equally-sized ones.

Selection of τ1 and τ2. τ1 and τ2 define the minimum and maximum differences in the

number of memory accesses among page samples in a memory region. τ1 and τ2 fall into [0,

num_scans]. To avoid frequent merging/splitting and balance between them, τ1 and τ2 evenly

split the range of [0, num_scans], i.e., τ1 = 1/3 ∗ num_scans and τ2 = 2/3 ∗ num_scans by

default. τ1 can be dynamically fine-tuned to enforce the limit on profiling overhead, discussed in

Section 8.4.3.

8.4.2 Adaptive Page Sampling

Initial page sampling. Initially, each memory region has only one page sample for profiling.

Our method for choosing the initial page sample in a memory region is based on a method in

Thermostat [14]. In particular, HM-Keeper monitors all pages in the memory region in a profiling

interval, identifies those pages with non-zero accesses, and randomly chooses one among those

pages. After the initial page sampling, the number of page samples in a memory region can be

dynamically changed to improve profiling quality.
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After merging of two memory regions, the total number of page samples in the two regions

is reduced by half under the constraint that the new memory region should have at least one page

sample. This reduction of page samples saves the profiling overhead for the two regions, and

allows other memory regions to have more samples without exceeding the overhead constraint.

The saved page-sample quota after merging memory regions is re-distributed to other memory

regions. First, HM-Keeper distributes sample quota to the memory regions whose hotness

indication shows the largest variance in the last two profiling intervals among all memory regions.

Having a large variance of hotness indication in two profiling intervals indicates that the memory

access pattern is changing. Adding more page samples for profiling in this case is useful to

improve profiling quality.

To efficiently find memory regions with the largest variance of hotness indication among all

memory regions, HM-Keeper keeps track of top-five largest variances and the corresponding

memory regions when analyzing profiling results. Whenever a new profiling result for a memory

region is available, HM-Keeper checks the top-five records and updates them if needed. After the

merging, the saved page-sample quota is re-distributed to those top-five memory regions.

After splitting a memory region into two new regions, the page-sample quota in the original

region is evenly split between the two new regions. Therefore, splitting does not change the

number of total samples. Nevertheless, splitting the memory region brings two benefits. First, the

hotness indication, which is the average number of accesses to all sampled pages in a memory

region, provides better indication of memory accesses to the new, smaller memory regions, hence

providing better guidance on page migration. Second, migration is more effective, because using

the smaller memory region avoids unnecessary data movement coming with the larger region.

8.4.3 Profiling Overhead Control

We discuss how the profiling overhead control is integrated into adaptive memory regions

and page sampling in this section. HM-Keeper supports the user to define a profiling overhead

constraint. HM-Keeper respects this overhead constraint while maximizing profiling quality,

by dynamically changing the number of memory regions and distributing page-sample quotas

between the regions. The overhead constraint is a percentage of program execution time without

profiling and migration. For example, in our evaluation section, this overhead constraint is 5%.

Given the length of a profiling interval (tmi), profiling overhead constraint, overhead of

scanning one PTE (one_scan_

overhead), and number of scans per PTE (num_scans), the total number of page samples in all



138

memory regions that can be profiled in a profiling interval, denoted as num_ps, is calculated in

Equation 8.1.

num_ps =
tmi × profiling_overhead_constraint
one_scan_overhead× num_scans

(8.1)

tmi can be set by the user, as in existing works [14, 78, 151]. one_scan_overhead is

measured offline by repeatedly scanning PTEs and then measuring the average scanning time. As

HM-Keeper merges or splits memory regions, the total number of page samples in all memory

regions remains equal to num_ps to respect the profiling overhead constraint.

The total number of memory regions needs to be smaller than num_ps so that each memory

region has at least one page sample. When the total number of memory regions is too large,

HM-Keeper dynamically fine-tunes τ1 (the threshold to merge regions) to merge memory regions

more aggressively. τ1 is gradually increased across profiling intervals, until the number of memory

regions is no larger than num_ps.

We do not change num_scans (i.e., the number of scans per page sample) to enforce the

profiling overhead constraint, because of its significant impact on profiling quality. Changing

num_scans leads to a change of profiling results in all memory regions. For example, in our

evaluation, when changing num_scans from 2 to 3, HM-Keeper changes the migration decision

for at least 20% of memory regions. We set num_scans as a constant. Our empirical study shows

that using a value larger than three leads to no obvious change (less than 5%) in the migration

decision.

Memory consumption overhead in HM-Keeper. For each memory region, HM-Keeper

stores the hotness indication as an integer. Given a terabyte-scale memory, this memory

consumption overhead is only hundreds of MBs. For example, in our Optane-based platform with

1.5 TB memory, the memory overhead to store profiling results is no larger than 600MB, which is

small on large memory systems.

8.5 Holistic Page Management

In this section, we discuss the page migration strategy. Essentially, this strategy answers two

questions: (1) which memory regions to migrate, and (2) given a memory region to migrate, which

memory tier to migrate. HM-Keeper answers the first question by selecting memory regions based

on analyzing time-consecutive profiling results, and the second question by using the strategy of

“fast promotion but slow demotion”.
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8.5.1 Which Memory Region to Migrate?

At the end of each profiling interval, HM-Keeper migrates (or promotes) some memory regions

to the fastest memory, and the total size of those memory regions is a constant N (N=200MB in

our evaluation). This is similar to the existing works [84, 85, 98, 132] that periodically migrates

a fixed number of pages. If free memory space in the fastest memory is not large enough

for migration, some pages in the fastest memory are demoted to the slower memory tiers (see

Section 8.5.2).

Select memory regions for promotion. The goal of region promotion is to place the most

frequently accessed pages into the fastest memory. HM-Keeper decides which regions to promote

based on hotness indication collected from all memory regions, regardless which tiers those

memory regions are currently in. Hence, the migration decision is holistic. The memory regions

with the largest hotness indication are promoted.

HM-Keeper uses time-consecutive profiling results to select regions for promotion. Particularly,

HM-Keeper uses the hotness indication collected from the most recent profiling interval and the

prior profiling intervals. As a result, HM-Keeper captures temporal locality, and avoids page

migration due to the bursty memory access pattern in one profiling interval.

HM-Keeper gets time-consecutive profiling results based on the exponential moving average

(EMA) of hotness indication collected from all profiling intervals. Given a sequence of data

points, EMA places a greater weight and significance on the most recent data points. We define

EMA of hotness indication as follows. Assume that HIi is the hotness indication collected at

the profiling interval i for a memory region, the EMA of the hotness indication for that memory

region at the profiling interval i, denoted as WHIi, is defined in Equation 8.2. This equation is a

recursive formulation including WHIi and WHIi−1 from the prior interval i− 1.

WHIi = α×HI + (1− α)×WHIi−1 (8.2)

α in the above formulation indicates how important the history information is for making the

decision. In practice, we set α as 0.5. There are two benefits of using EMA. First, the memory

consumption is small. There is no need to store all prior profiling results. Second, the computation

of EMA is lightweight, and hence the runtime overhead is low.

Based on the EMA of hotness indication, HM-Keeper uses the following method to select

memory regions to migrate. HM-Keeper builds a histogram to get the distribution of EMA of all

memory regions. The histogram buckets the range of EMA values, and counts how many and what

memory regions fall into each bucket. Given the size of pages to migrate to the fastest memory,
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HM-Keeper chooses those memory regions falling into the highest buckets in the histogram to

migrate. Building and maintaining the histogram is not costly: Whenever the EMA of hotness

indication of a memory region is available, the histogram only needs to be slightly updated

accordingly.

8.5.2 Where to Migrate Memory Regions?

Where to promote memory regions? As discussed in Section 8.5.1, memory regions are

promoted to the fastest memory tier based on the histogram. It is likely that after a profiling

interval, there is no memory region to promote to the fastest memory because those memory

regions falling into the highest buckets of the histogram are already there. In that case, memory

regions in the lower buckets of the histogram are selected to promote to the second-fastest memory

tier, and the accumulated size of those memory regions to migrate should always be N (the total

size of memory regions to migrate). In general, HM-Keeper makes the best efforts to promote

frequently accessed memory regions to high-performance memory tiers.

Where to demote memory regions? When a memory tier is a destination of memory

promotion but does not have enough space to accommodate memory promotion, memory regions

in that memory tier are migrated (or demoted) to the next lower memory tier with enough memory

capacity. Memory regions for demotion are selected based on the histogram – Memory regions

that are in the lowest buckets of the histogram are demoted to the next lower tier. We use the

above slow-demotion strategy to avoid performance loss caused by migrating pages that are still

likely to be accessed in a low memory tier in near future.

8.6 Adaptive Migration Mechanism

HM-Keeper uses a high-performance page migration mechanism and migrates pages at the

granularity of memory regions.

8.6.1 Performance Analysis of Page Migration Mechanism

Linux provides an API, move_pages(), for a privileged process to move a group of 4KB pages

from a source memory node (or tier) to a target memory node (or tier). move_pages() consists of

four main steps:

1. Allocate new memory pages in the target memory node;

2. Unmap pages to migrate (including invalidating PTE);
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Figure 8.4: Performance breakdown for migration mechanisms.

3. Copy pages from source to target memory nodes;

4. Map new pages (including updating PTE).

Figure 8.4 shows the performance of migrating a 2MB memory region from the fastest memory

tier to the slowest memory tier with move_pages() in the Optane-based platform. Copying pages

is the most time-consuming step, taking 40% of total time. move_pages() moves 4K-sized pages

sequentially, causing large page migration overhead. Although recent work [234] enables multi-

threaded page copy to fully utilize memory bandwidth, copying pages is still the performance

bottleneck, especially when moving a large memory region.

8.6.2 Adaptive Page Migration Schemes

Asynchronous page copy. We introduce an asynchronous page copy mechanism to reduce

page copy overhead. In move_pages(), all of the four steps are performed one after another

synchronously. But in the asynchronous page copy, the thread that triggers migration (named the

main thread in the rest of the discussion) launches one or more helper threads to run the steps (1)

and (3); the main thread runs the steps (2) and (4), and then waits for the helper thread(s) to join.

With the asynchronous page copy, it is possible that copying a page happens before invalidating

its PTE and the page is modified in the source memory node after copying the page. For such a

case, copying the page must happen again to update the page in the target memory node. Hence,

the asynchronous page copy has limitation: some pages have to be copied twice, which can be

costly. We introduce an adaptive page-migration mechanism to address the above limitation.

Adaptive page migration. For read-intensive pages, the asynchronous page copy is likely

to bring performance benefit. However, for write-intensive pages, due to repeated data copy, it

is likely that the asynchronous page copy performs worse than the synchronous. Hence, HM-
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Keeper chooses suitable migration mechanism based on the write intensity of pages. In particular,

HM-Keeper uses the asynchronous page copy by default. But whenever any page in the memory

region for migration is written after the asynchronous page copy starts, HM-Keeper switches to

the synchronous page copy. To track page dirtiness, HM-Keeper utilizes PTE access bits and

page faults, discussed in Section 8.7.

Other optimizations. (1) Concurrent page copy and parallel page copy. HM-Keeper uses

multiple threads to copy pages, and bidirectional page copy between two memory tiers (i.e., from

A to B and from B to A) in parallel. Similar optimization can be found in [234].

(2) Migration of PTE. Recent works [12, 149] reveal that the page table is distributed across

all memory tiers, and the remote page-table walk can happen frequently in a large memory system,

degrading performance. In HM-Keeper, a memory region’s corresponding PTEs take at least one

page, and HM-Keeper uses the synchronous page copy to migrate PTEs to the memory tier where

the migrating memory region moves.

We implement the above optimizations and introduce a new API called move_memory_regions().

In this implementation, tracking page dirtiness, performing page map/unmap, and migrating

PTEs are still on the critical path, but the most time-consuming page copying could be performed

off the critical path. Figure 8.4 presents the performance of move_memory_regions() migrating

2MB memory region using the same setting as for move_pages(), and excludes the overhead

of page copying (and page allocation in the step (1), using asynchronous page allocation).

move_memory_regions() is 4.37x faster than move_pages() in this case. Section 8.8.5 shows more

results.

8.7 Implementation

We implement the adaptive memory profiling as a kernel module that periodically scans the

page table based on adaptive page sampling. This kernel module takes a process ID as input,

performs memory profiling, and saves the profiling result in a shared memory space. Profiling

results are stored in a table, where each record contains a memory region ID, hotness indication

in the current profiling interval, and the EMA of hotness indication of prior profiling intervals.

The region ID is generated based on the start address of the memory region.

We implement the holistic page management as a daemon service at the user space. The

daemon service executes with the application and calls the kernel module for profiling at the

beginning of each profiling interval. At the end of each profiling interval, the service reads the

shared memory space to collect the profiling results. Specifically, with overhead control, the
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profiling module ensures profiling finished in a profiling interval. The service then makes the

migration decision and performs migration using move_memory_regions().

move_memory_regions() takes the same input as Linux move_pages(), but implements the

adaptive migration mechanism. It detects page dirtiness during the migration by setting a reserved

bit in PTE, such that when any page in the memory region is written, a write protection fault is

triggered. Leveraging a user-space page fault handler, move_memory_regions() tracks writes, and

decides whether to stop the asynchronous page copy and switch to the synchronous mechanism.

HM-Keeper runs on Linux 5.4.0. HM-Keeper has 709 LOC, 1421 LOC, and 330 LOC,

respectively, to implement the profiling kernel module, memory management daemon service,

and the new migration call.

8.8 Evaluation

8.8.1 Experimental Setup

Testbed. We evaluate HM-Keeper on a two-socket machine based on Intel Optane DC

persistent memory module (PMM). This machine has four memory tiers (see Section 8.2.1

for details). We also emulate another multi-tiered large memory system based on the Optane

machine for evaluation. The emulated system has four tiers, and their latency and bandwidth

are different from those in the original Optane machine. For the emulation, we launch two

memhog instances in each memory tier to continuously inject memory access traffic. Memhog is

an artificial memory-intensive workload in Linux used in prior studies to emulate heterogeneous

memory systems [148, 234]. Table 8.1 summarizes the two evaluation platforms. Unless indicated

otherwise, Optane uses App Direct Mode, which allows software-based page management, and

we report results on the Optane-based machine (not the emulation platform). We use madvise

for Transparent Hugepage Support (THP) [203], which uses 2MB as page size for contiguous

memory allocation. This configuration is typical in large memory systems. We set the profiling

overhead constraint to 5% and the profiling interval to 10 seconds. This setting is similar to

existing works and production environments [14, 78, 151].

Workloads. Common large-memory workloads, including in-memory database, graph

analysis, and data sorting (see Table 8.2) are used. The memory footprint of these workloads is

larger than the first two memory tiers (fast memories), allowing us to effectively evaluate page

management on all four tiers. Unless indicated otherwise, workloads were evaluated with eight

application threads.
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Baselines for performance comparison. Nine state-of-the-art application-agnostic memory

management solutions are used for evaluation.

• Hardware-managed memory caching (HMC) uses the fast memories as hardware-managed

cache for slow memories. We use Memory Mode in Optane.

• First-touch NUMA is a common NUMA allocation policy. It allocates pages in a memory

tier close to the running task that first touches the pages. It does not migrate pages after

memory allocation and does not track page hotness.

• AutoNUMA [41] is a solution established well in Linux.

• Memory-optimizer [84] is a solution from Intel.

• Memory-tiering [85] is a solution from Intel based on an extension to AutoNUMA.

• AutoTiering [98] is a state-of-the-art solution for multi-tiered memory systems based on

AutoNUMA. To enable its best performance, we enable its opportunistic promotion and

migration (OPM) and background demotion.

• HeMem [176] is a state-of-the-art solution for two-tiered PM-based HM. HeMem leverages

hardware performance counters to find hot pages and promotes hot page to the fast memory

tier.

• Thermostat [14] is a solution for two-tiered HM. It randomly samples pages for profiling.

It allocates all pages in fast memory and selectively moves them to slow memory to save

production cost, which cannot work for our use cases where the application footprint is

larger than fast memory. We do not evaluate page migration of Thermostat but evaluate its

profiling method.

• Nimble [234] is a highly optimized page migration mechanism using bi-direction page copy

and parallel page copy. We use it to evaluate our page migration mechanism.

8.8.2 Overall Performance

Optane-based multi-tiered memory system. Figure 8.5 shows that HM-Keeper outperforms

all the memory management solutions in the five workloads. We have six interesting observations.

(1) HM-Keeper outperforms HMC up to 52% (24% on average). HMC incurs write amplification

when cache misses occur frequently [76], which causes unnecessary data movement and poor

performance.

(2) HM-Keeper outperforms first-touch NUMA in all cases by up to 45% (20% on average).

Without page migration, first-touch NUMA outperforms HMC on VoltDB and BFS, and outperforms

AutoNUMA on Cassandra and BFS, indicating that page migration does not always bring
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Table 8.1: Hardware overview of experimental system.
Evaluation Platform

CPU Intel Xeon Gold 6252 CPU x 2
# of cores 24 x 2
Last Level Cache 36608KB
Fast Memory 96GB DDR4 DIMM x 2
Slow Memory 756GB Optane DC PMM x 2

Optane-based Multi-tiered Memory System
Fast Mem Local Access (1st tier) latency: 90ns bw: 95 GB/s
Fast Mem Remote Access (2nd tier) latency: 145ns bw: 35 GB/s
Slow Mem Local Access (3rd tier) latency: 275ns bw: 35 GB/s
Slow Mem Remote Access (4th tier) latency: 340ns bw: 1 GB/s

Emulated Multi-tiered Memory System
Fast Mem Local Access (1st tier) latency: 198ns bw: 95 GB/s
Fast Mem Remote Access (2nd tier) latency: 315ns bw: 35 GB/s
Slow Mem Local Access (3rd tier) latency: 825ns bw: 35 GB/s
Slow Mem Remote Access (4th tier) latency: 1010ns bw: 1 GB/s

Table 8.2: Workloads for evaluation.
Workloads Descriptions Mem R/W
VoltDB [213] A commercial in-memory database with TPC-C [109] using 5K

warehouse.
300GB 1:1

Cassandra [22] A highly-scalable partitioned row store with YCSB [40] (using
update-heavy benchmark A).

400GB 1:1

BFS [160] A parallel implementation of graph traversing and searching on
a randomly generated graph with 0.9B nodes and 14B edges.

525GB read-only

SSSP [160] A high-performance parallel implementation of finding the
shorted path between two vertices on a randomly generated
graph with 0.9B nodes and 14B edges.

525GB read-only

Spark [243] A spark program running the TeraSort benchmark [75]. 350GB 1:1

performance improvement. HMC performs worse because of unnecessary page movement

discussed above. AutoNUMA has worse performance because it cannot effectively identify hot

pages.

(3) HM-Keeper outperforms AutoNUMA by up to 72% (25% on average). AutoNUMA does

not support page migration between memory tiers within the same socket (Memory-tiering, which

is an extension to AutoNUMA, supports so), and hence fails to take full advantage of all memory

tiers.

(4) HM-Keeper outperforms Memory-optimizer by up to 65% (32% on average). Lack of

page migration across sockets, Memory-optimizer fails to fully leverage the 2nd fastest memory

on a socket for the application on the other socket.

(5) HM-Keeper outperforms Memory-tiering by up to 45% (22% on average). Different from

AutoNUMA and Memory-optimizer, Memory-tiering enables page migration across all memory

tiers. However, it promotes hot pages tier by tier instead of using fast promotion as HM-Keeper,
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delaying the opportunity to improve performance using the fastest memory.

(6) HM-Keeper outperforms AutoTiering by up to 77% (20% on average). AutoTiering uses

random sampling and opportunistic page demotion, which cannot effectively identify hot/cold

pages for page migration.

Emulated multi-tiered memory system. Figure 8.6 shows the results. We do not evaluate

HMC, because when HMC is used, fast memory tiers are hidden from software and we cannot

inject latency into fast memory. On the emulated platform, HM-Keeper maintains the same

performance trend as on Optane: HM-Keeper outperforms first-touch NUMA, AutoNUMA,

Memory-optimizer, Memory-tiering and AutoTiering by 19%, 38%, 20%, 26% and 17% on

average respectively.

Performance breakdown. We break down performance into application execution time,

migration time, and profiling time, shown in Figure 8.7. The migration time is the migration

overhead exposed to the critical path, excluding asynchronous page copying time. Figure 8.7

shows the results for Memory-tiering, AutoTiering and HM-Keeper, because they are the only

solutions that can leverage all four memory tiers for migration. We add first-touch NUMA as

performance baseline for comparison, because Memory-tiering, AutoTiering and HM-Keeper use

it for memory allocation. In all cases, the profiling overhead falls within the profiling overhead

constraint.
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Table 8.3: The number of memory accesses when using voltDB.
# of memory accesses mem-tiering AutoTiering HM-Keeper

tier 1 248M 258M 295M
tier 2 15M 34M 198K
tier 3 60M 30M 9M
tier 4 704K 2.5M 92K

With Memory-tiering and AutoTiering, the reduction of application execution time is less

than or equal to the overhead brought by profiling and migration (see VoltDB and Cassandra).

Hence, Memory-tiering and AutoTiering perform worse than first-touch NUMA without page

migration.

Compared to Memory-tiering, HM-Keeper spends similar time in profiling but 3.5x less time

in migration, reducing the total application execution time by 21% on average. Compared to

AutoTiering, HM-Keeper again spends similar time in profiling but 1.25x less time in migration,

and reduces the application execution time by 19% on average. Because of the effectiveness of

page sampling and migration strategy, HM-Keeper obtains better performance.

Number of memory accesses. We count the number of memory accesses at each memory

tier when running voltDB. We only report the results for Memory-tiering, AutoTiering, and

HM-Keeper, because they are the only solutions that leverage all memory tiers for migration.

Table 8.3 shows the results. We use Intel Processor Counter Monitor [86] to count the number of

memory accesses and then exclude memory accesses caused by page migration. This counting

method allows us to evaluate how many memory accesses from the application (not from page

migration) happen on memories.

Table 8.3 shows that with HM-Keeper, the number of memory accesses happen in the fastest

memory (top tier) is 20% and 14% more than with Memory-tiering and AutoTiering. This

indicates that HM-Keeper effectively migrates frequently accessed pages to the fast memory for

high performance.
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Scalability of HM-Keeper. We evaluate the scalability of HM-Keeper with VoltDB by

increasing the number of application threads. Specifically, we increase the number of clients

used in VoltDB. As the number of clients increases, the memory consumption increases from

300GB to 1TB. We compare the performance of HM-Keeper, HMC, first-touch NUMA, and

AutoTiering. We evaluate AutoTiering since it has the second-best performance among all page

management solutions we evaluate. Figure 8.8 shows that HM-Keeper consistently outperforms

HMC, first-touch NUMA, and AutoTiering by 19%, 10%, and 8% on average as the number of

application threads increases.

Evaluation with different page sizes. Figure 8.9 shows the results using 2MB and 1GB as

the page size with THP enabled. We use SSSP for evaluation, because it has the largest memory

consumption among all evaluated applications. The results confirm that HM-Keeper consistently

outperforms other solutions even at different huge page sizes.

Evaluation on two-tiered HM and comparison with HeMem. We compare HM-Keeper

with HeMem [176], a state-of-the-art solution for two-tiered HM. The evaluation is performed

on a single socket with two memory tiers, using the benchmark GUPS [67] as in HeMem [176].

Figure 8.10 reports the results of running GUPS with 16 and 24 application threads, respectively.

The results show that when the working set size fits in the fast memory tier (i.e., x values smaller

than 1.0), HM-Keeper performs similarly to HeMem at 16 application threads and better at 24

application threads. Once the working set size exceeds the fast memory (i.e., x values larger than

1.0), HeMem fails to sustain application performance at 24 threads while HM-Keeper can still

sustains higher performance at 24 threads than 16 threads. HM-Keeper performs better because

its profiling method is able to quickly adapt to changes in memory accesses and identify more hot

pages.
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8.8.3 Effectiveness of Adaptive Profiling

We study profiling quality and overhead, and compare HM-Keeper with two sampling-based

profiling methods (one is used in Memory-tiering, AutoNUMA, and AutoTiering, and the other is

used in Thermostat). We use Memory-tiering and Thermostat for evaluation, and replace their

migration strategy and mechanism with HM-Keeper’s. This replacement ensures that we exclude

the impact of migration on performance, and hence our comparison is fair.

The profiling method in Memory-tiering randomly chooses a 256MB virtual address space in

each profiling interval, and then manipulates the present bit in each 4KB-page PTE in the chosen

address space. This method tracks page accesses by counting page faults. The profiling method

in Thermostat randomly chooses a 4KB page out of each 2MB memory region for profiling. This

method manipulates page protection bits in PTE and leverages protection faults to count accesses.

Figure 8.11 shows the result. HM-Keeper outperforms Memory-tiering and Thermostat by

17% and 7% respectively. Thermostat has higher profiling overhead than Memory-tiering by

6x because the number of sampled pages for profiling in Thermostat is much larger than that

in Memory-tiering. Thermostat has higher profiling overhead than HM-Keeper by 2.5x, since

manipulating reserved bits in PTE and counting protection faults in Thermostat is more expensive

than scanning PTE in Memory-tiering and HM-Keeper. Using Memory-tiering, the application

execution time is longer than with HM-Keeper by 22%. This indicates that random sampling-

based profiling is not as effective as our adaptive profiling method. The adaptive profiling, when

choosing samples, considers both temporal and spatial locality, and aims to maximize profiling

quality within a profiling overhead constraint, which is missing in random sampling.

We further evaluate three major profiling techniques in HM-Keeper (i.e., adaptive memory

regions, adaptive page sampling, and profiling overhead control). We disable them one by one

and then examine the performance difference. The last three groups of bars in Figure 8.11 show

the evaluation results.

Evaluation of adaptive memory regions. The technique of adaptively merging and spliting

memory regions aims to improve profiling quality. We disable it but respect the profiling overhead

constraint. Figure 8.11 shows that the application execution time is 22% longer, although the

profiling overhead constraint is met. Such a performance loss indicates that hot memory regions

are not effectively identified without adaptive regions and hence placed in slow memory.

Evaluation of adaptive page sampling. This technique distributes samples between memory

regions by using time-consecutive profiling results, which includes information on temporal

locality. We disable this technique and randomly distribute samples between memory regions, and
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observe 21% performance loss in Figure 8.11. This indicates the importance of using temporal

locality as the metric to guide the selection of samples.

Evaluation of profiling overhead control. We disable profiling overhead control by setting

τ1 = τ2 = 0 (i.e., no merging/splitting memory regions) and removing the control of the number

of page samples (num_ps in Equation 8.1). We observe that the profiling time is increased by 3x

in Figure 8.11.

We further study the relation between profiling overhead and profiling quality. Figure 8.12

shows the result. We set profiling interval length as 5s and test a set of profiling overhead targets.

As the profiling target increase from 1% to 10%, the application execution time decrease by 12%,

which reveals that the profiling quality can be improved by increasing the number of samples in

profiling. However, better profiling quality does leads to better system performance, since the

performance benefit from more accurate profiling result may not able to cover extra profiling

overhead we have to pay. As shown in figure 8.12, the end-to-end performance decreases by 7%

as the profiling target increase from 5% to 10%.

8.8.4 Effectiveness of Migration Strategy

HM-Keeper uses a flat view on multi-tiered memory systems, and adopts the “fast promotion

but slow demotion” strategy. To evaluate the effectiveness of this strategy, we change HM-Keeper

to use a hierarchical view, where hot pages need multiple profiling intervals to reach the fastest

memory. Figure 8.13 shows that the flat view performs 20% better than the hierarchical view

because the fastest memory is used more effectively.
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8.8.5 Effectiveness of Migration Mechanism

We use three microbenchmarks to evaluate the migration mechanisms in HM-Keeper, Nimble [234],

and move_pages() in Linux. The microbenchmarks perform sequential read-only, 50% read (i.e.,

a sequential read followed by an update on an array element), and 100% sequential write on a

1GB array, respectively. The array is allocated and touched in a memory tier, and then migrated to

another tier during the execution. Figure 8.14 shows the results. Migrating pages between the tiers

1 and 2, HM-Keeper’s mechanism performs 40%, 23%, and -0.5% better than move_pages(), and

performs 36% 4% and -6% better than Nimble, for read-only, 50% read, and write-only scenarios

respectively. We see the same trend in other tiers. In general, for read-intensive pages, HM-

Keeper’s mechanism brings large performance benefit because of asynchronous page copy; for

write-intensive pages, HM-Keeper’s mechanism performs similar to move_pages() and Nimble,

because of the overhead of tracking page dirtiness during the migration.
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8.9 Conclusions

Emerging multi-tiered large memory systems bring new challenges to system software and

applications. In this work, we study page management in multi-tiered large memory systems

and pinpoint the fundamental limitations in existing solutions, i.e., non-scalable, low-quality

memory profiling and unawareness of rich memory tiers. We present HM-Keeper, an application-

transparent page management system customized for large memory systems. HM-Keeper is based

on four design principles, i.e., scalable high-quality profiling, global view of all memory tiers,

holistic migration decision and pattern-aware migration mechanisms. Our extensive evaluation of

HM-Keeper against seven state-of-the-art solutions shows that HM-Keeper can largely outperform

existing solutions on four-tiered large memory systems by 15%-78%.



Chapter 9

Conclusions and Future Directions

9.1 Conclusions

The emergence of big memory applications (e.g., AI/ML, large-scale scientific simulation, and

in-memory database etc) and the emergence of new memory technologies (e.g., e.g., HBM, HMC,

PCM, 3D-XPoint, ReRAM, fabric attached memory, and disaggregated memory) are calling the

birth of big memory systems. We envision that the HM-based big memory systems become more

and more common to see in parallel computing scenario.

The memory management in big memory systems is challenging, due to (1) the gap exists

in inaccurate and unscalable memory access profiling methods in runtime systems and complex

and irregular memory access patterns in applications; (2) making data movement decisions based

on profiling results without violating fast memory capacity; and (3) inefficient data migration

mechanism between different memory devices.

This dissertation tackles those challenges via a series of solutions spanning different levels

of the system stack, leveraging memory management runtime techniques to improve the whole

system throughput, which is equipped with big memory systems. Specifically,

• HM-ANN leverages a co-design of algorithm and system to map the hierarchical design

of the graph-based approximate nearest neighbour(ANN) search algorithm to memory

heterogeneity in Optane-based heterogeneous memory and enables billion-scale ANN

search with 95% top-1 recall in less than one millisecond.

• Sentinel coordinates OS and runtime-level profiling to bridge the semantic gap between

OS and applications, and enables accurate tensor-level profiling without ML model
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modification. Powered by such tensor-level profiling method, Sentinel successfully avoids

out-of-memory (OOM) issues for large static deep neuron network (DNN) models on GPU,

and outperforms five state-of-the-art memory management solutions for DNN training.

• ZeRO-Offload breaks the trade-off between GPU memory saving and communication

volume between GPU memory and CPU memory by applying application domain

knowledge in memory management runtime, and enables 10X larger transformer-based

model being trained on a single GPU and achieves near-linear speedup on up to 128 GPUs.

• DyNN-Offload uses a learned approach to resolve dynamism and predict access order

of tensors in dynamic neural network (DyNN) training. Learning from static program

information (i.e., DyNN model code snippets) and dynamic runtime information (DyNN

inputs), DyNN-Offload enables fast inference while providing high prediction accuracy for

tensor accesses. DyNN-Offload demonstrates the possibility of using a learned approach to

remove dynamism and address complicated problems on performance optimization and

analysis. DyNN-Offload outperforms state-of-the-art solutions by 2%-50% in terms of

training time with the same GPU memory capacity and enables 8x larger model training

without out of memory.

• WarpX-PM applies algorithm knowledge (i.e., particle in cell method) in memory

management runtime and enables high resolution plasma simulation on Optane-based HM

with high performance. WarpX-PM is implemented on a production-level mission-critical

plasma simulation called Warp-X. WarpX-PM accelerates the execution of WarpX on HM

by over 60% (compared with the case of no management).

• HM-Keeper bridges the gap between memory management runtime and OS with

a new memory abstract called memory region, and further proposes a highly accurate,

scalable memory profiling method, a global view guided memory migration strategy, and a

high efficient memory region migration masochism on a multi-tiered big memory system.

HM-Keeper largely outperforms existing page management solutions on large memory

systems. Memory-consuming applications such as in-memory databases, billion-scale graph

processing, and many other big data applications can greatly benefit from HM-Keeper.
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9.2 Future Directions

Some potential future expeditions could be pursued to achieve the overarching goal as

techniques proposed in this thesis of lowering the barriers for applications to use big memory

systems easily and efficiently are as follows:

Learned memory management. Leveraging applications’ domain knowledge can significantly

simplify the identification of data access patterns, and achieve highly efficient memory management

solutions for given applications. However, getting those domain knowledge is not free. Domain

knowledge guided memory management makes sense for those frequently used applications (such

as the nearest neighbor search) or mission-critical applications (such as some HPC applications).

There are applications where domain knowledge cannot be easily obtained. In those applications,

general-purpose (or application-agnostic) memory management is a better solution. The critical

challenge of general-purpose memory management is to timely capture memory access patterns

and make data placement decision accordingly. Therefore I proposal using machine learning

methods to learn implicit knowledge of applications to guide memory profiling. The learning

process should happens in the whole system stack, from architecture, OS, runtime, compiler to

application and algorithm.

Memory management for fabric attached memory based big memory systems. fabric

attached memory technologies such as CXL and Gen-Z are emerging, which enables I/O

operations at byte (instead of block) granularity, and provides fine-grained, microsecond-level

interconnect latency. Such new interconnect technologies bring challenges and opportunities

to HM systems: the direct accesses will be enabled among host memory, remote memory, and

accelerators/CXL devices memory without any memory page movement.

With the change of memory access methods to remote memory/devices, the mismatch between

memory access granularity and data movement (between memory components in HM) granularity

must be revised, and the existing applications and algorithms must be revisited. For example, the

application demands fine-grained (cache block level), low latency, transparent data access for

high performance. However, the existing data movement is often built upon the virtual memory

system at the page level, which incurs unnecessary data movement due to page-level false sharing

and large performance degradation due to expensive page fault handling.

In my future research, I plan to explore how to leverage the cache-coherent feature provided

by fabric attached memory to reduce the communication happened between different memory

devices. A large number of communication intensive applications, such as big data applications

(e.g., Spark-based big data sorting and big in-memory database), can benefit from this research.
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Accelerating computation using memoization on big memory systems. Big memory

systems brings memory capacity of several TB per machine. I envision that the memory capacity

accessible to a server will continue increasing, given the emergence of persistent memory and

disaggregated memory techniques. Such a large memory capacity brings new opportunities to

improve application performance.

In particular, the existing applications and algorithms are designed for a server with limited

memory capacity - applications and algorithms often use recomputation to save memory consumption.

We can use memoization to leverage the big memory systems to improve application performance.

The memoization technique, in nature, stores results of expensive computation to a data structure,

such as a lookup table, such that when the same or similar computation happens, the results

can be returned without performing expensive computation. With a control of computation

approximation, the memory can be used to memorize intermediate computation results and save

computation time.

The goal of my research in this topic is to provide an application-transparent middleware to

enable memoization on HM-based big memory platforms for some applications. The memoization

technique has been studied in existing work. However, most of efforts cannot work well when

applied to the big memory systems since their memoization data structure and data-access

granularity do not consider latency, bandwidth, and capacity characteristics in big memory

systems with extreme heterogeneity. There are a large number of computation-intensive scientific

applications and algorithms in HPC (such as molecular dynamics simulation, quantum chemistry

applications, and machine learning models) can benefit from this research.
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