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Abstract

In this report, a model of human sequence learning
is developed called the linear associative shift register
(LASR). LASR uses a simple error-driven associative
learning rule to incrementally acquire information about
the structure of event sequences. In contrast to recent
modeling approaches, LASR describes learning as a sim-
ple and limited process. We argue that this simplicity
is a virtue in that the complexity of the model is better
matched to the demonstrated complexity of human pro-
cessing. The model is applied in a variety of situations
including implicit learning via the serial reaction time
(SRT) task and statistical word learning. The results of
these simulations highlight commonalities between dif-
ferent tasks and learning modalities which suggest sim-
ilar underlying learning mechanisms.

Introduction
One of the most striking aspects of human behavior is
the ease with which we can acquire new skills with little
conscious effort. In order to better understand this phe-
nomena, a large literature has developed exploring the
ability of participants to implicitly learn about the se-
quential structure of a series of events (see Cleeremans,
Destrebecqz, Boyer, 1998, for a review). However, the
type of memory and learning mechanisms which might
support such learning are not well understood (see Keele,
Ivry, Mayr, Hazeltine, & Heuer, 2004 or Sun, Sluzarz, &
Terry, 2005 for some recent proposals).

In this paper, we develop a simple model of se-
quence learning behavior called the linear associative
shift-register (LASR). The model is unique from past ap-
proaches in that it describes implicit sequence learning as
a simple and limited process which operates on a small
temporary buffer of past events. This contrasts with
other models of sequence learning which have described
learning as a more complex and flexible process (Cleere-
mans & McClelland, 1991; Cleeremans, 1993; Lebiere &
Wallach, 2000).

There are two main goals of this report. First, we
demonstrate how a very simple learning mechanism such
as LASR can provide a detailed account of a number of
findings from the implicit sequence learning literature.
A key criticism we develop is that in previous modeling
accounts (such as the simple recurrent network (SRN)
of Cleeremans, 1993), the complexity of the model is
not well matched to the demonstrated complexity of the
learner. While LASR cannot explain all aspects of our
rich sequential behavior, we believe the model provides
a unique baseline against which to test more complex
theories and experiments.

Second, we explore the ability of this simple model
to account for sequential learning phenomena in a va-
riety of implicit learning situations including the serial
reaction time (SRT) task and statistical word learning
paradigms. LASR provides a similar account of the type
of processing which underlies performance in both kinds
of tasks, suggesting that they may rely on similar under-
lying mechanisms.

We begin by introducing the LASR model and the
principles upon which it is based. Next, we consider a
study conducted by Lee (1997) assessing implicit learn-
ing of sequentially structured material. Finally, we ex-
plore the ability of LASR to account for statistical word
learning in infants as reported by Saffran, Aslin, and
Newport (1996).

The Linear Associative Shift-Register
(LASR) Model

LASR is a mechanistic model of implicit sequence learn-
ing. The model describes implicit sequence learning as
the task of appreciating the associative relationship be-
tween past events and future ones. LASR assumes that
subjects maintain a limited memory for the sequential
order of past events and that they use a simple error-
driven associative learning rule (Widrow & Hoff, 1960;
Rescorla & Wagner, 1972) to incrementally acquire in-
formation about sequential structure. Despite its sim-
plicity, the model can very quickly learn to appreciate
rather complex dependencies between events which are
structured in time. The model is organized around 3
principles:

1. Past events are stored in a temporary buffer
The model begins by assuming a simple shift-register
memory for past events. Individual elements of the reg-
ister are referred to as slots. New events encountered
in time are inserted at one end of the register and all
past events are accordingly shifted one time slot. Thus,
the most recent event is always located in the right-most
slot of the register (see Figure 1). This form of mem-
ory maintains the sequential order of recent events us-
ing spatial position (similar to many other models, see
Sejnowski and Rosenberg (1987) or Cleereman’s (1993)
buffer network).

2. Learning to predict what comes next This
simple memory mechanism forms the basis of a detector
(see Figure 1). A detector is a simple, single-layer linear
network or perceptron (Rosenblatt, 1958) which learns
to predict the occurrence of a single future event based
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Figure 1: A shift-register memory and a single detector.
New events encountered enter into the register from the
right and are stored in the sequence they arrived in the
memory register.

on past events. Because each detector predicts only a
single event, a separate detector is needed for each pos-
sible event. Each detector has a weight from each event
outcome at each time slot. On each trial, activation
from each memory-register slot is passed over a connec-
tion weight and summed to compute the activation of
the detector’s prediction unit. The task of a detector
is to adjust the weights from individual memory slots
so that it can successfully predict the future occurrence
of it’s response. Each detector learns to strengthen the
connection weights for memory slots which prove pre-
dictive of the detector’s response while weakening those
which are not predictive or are counter-predictive.

3. Recent events have more influence on learning
than past events The model assumes that events in
the recent past are remembered better than events which
happened long ago. This effect is implemented by atten-
uating the activation strength of each register position
by how far back in time the event occurred. Because of
this, an event which happened at time t − 1 has more
influence on future predictions than events which hap-
pened at t − 2, t − 3, etc... Similarly, learning is slower
for slots which are positioned further in the past because
their activation strength is reduced (see Equation 4).

Model Formalism

The following section describes the mathematical formal-
ism of the model. The model is easily described using
three equations and three intuitive parameters.

Memory As illustrated at the top of Figure 1, input
to the model on each time step is a N -dimensional vec-
tor mt where each entry mt

i corresponds to the presence
(mt

i = 1) or absence (mt
i = 0) of event i on the cur-

rent trial, t. The complete history of past events is thus
a NxP matrix, M, where N is the number of possible
events, and P is the number of events so far experienced
and stored in memory. The shift-register memory of past

events is indexed based on the current time t. Thus,
mt−1 refers to the input vector experienced on the pre-
vious time step, and mt−2 refers to the input experienced
two time steps in the past.

Response Given N possible events or choice options,
the model has N detectors. The activation dk of the
detector k at the current time, t, is computed as the
weighted sum of all events in all slots multiplied by an
exponential attenuation factor:

dk =
P∑

i=1

N∑
j=1

w(t−i)jk · mt−i
j · e−α·(i−1) (1)

where w(t−i)jk is the weight from the jth outcome at
time slot t − i to the kth detector, and mt−i

j · e−α·(i−1)

is the outcome of the jth option at time t− i multiplied
by the memory attenuation factor. The α is a free pa-
rameter which controls the rate of decay for traces in
memory. The final output of each detector, ok, is a sig-
moid transform of the activation, dk, of each detector:

ok =
1

1 + edk
. (2)

When being compared to human data, the output of
each detector is converted into a response probability or
tendency (pk) using the Luce choice rule (Luce, 1959):

pk =
ok∑N

j=1 oj

(3)

For example, human reaction time is assumed to in-
versely relate to this response tendency so that faster
responses in the task correspond to higher values of
pk (Cleeremans & McClelland, 1991).

Learning Learning in the model is implemented using
the well known delta-rule for training single layer net-
works (Widrow & Hoff, 1960) with a small modification
introduced by Rumelhart and McClelland (1986) (some-
times referred to as the generalized delta-rule for single
layer networks). For each detector, the difference be-
tween the actual outcome of the current trial, tk, and
the output of the detector, ok, is computed and used to
adjust the weights:

∆wijk = η · (tk − ok) · mi
j · e−α·(i−1) · dk(1 − dk) (4)

The ∆wijk value is added to the corresponding weight
after each learning episode. The η is a learning rate pa-
rameter and e−α·(i−1) is the memory attenuation factor
described above and dk(1 − dk) is a factor representing
the derivative of the sigmoid transfer function with re-
spect to the weights which moves learning on each trial
in the direction of gradient descent on the error. In the
simulations reported here α = 0.2 and η = 0.9.

Evaluating the LASR model
In the following section we explore the ability of this
model to account for a number of published findings con-
cerning implicit sequence learning. The results illustrate
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Figure 2: Top: Human reaction time and model re-
sponse as a function of set position in Boyer, Destre-
becqz, and Cleeremans’ (1998). Bottom: Human and
model response as a function of the lag separating two
occurrences of the same event. All human data repli-
cated approximately from figures in Boyer, et al. (1998)

how the simple principles which define the LASR model
are able to provide a strong account of learning and show
the relationship between the data collected across a num-
ber of paradigms.

Sequence Learning via the SRT task
The majority of SRT studies have used simple repeating
sequences of various lengths. One notable exception is
Lee (1997). In this study, the pattern of stimuli was de-
termined by a simple, yet subtle rule: each of six choice
options had to be visited once in each set of six trials in
a random order. Examples of legal six-element sequence
sets are 132546, 432615, and 546123. Boyer, Destre-
becqz, and Cleeremans (1998) provide a replication of
Lee (1997) and showed that reaction time monotonically
decreases as a function of set position 1-6 (see Figure 2,
top panel).

What is unique about the sequence employed by Lee
(1997) is that while it is generated by a simple rule, each
stimulus item can be followed by any other item. The
key predictive structure is contained in the set of six suc-
cessive elements which avoid repetition. Can the simple
one-layer associative learning mechanism in LASR ac-
count for such a result?

Simulation Results LASR was applied to the task in
a similar manner to how participants were trained with
the same number of trials and the same sequential struc-
ture as the Boyer, Destrebecqz, and Cleeremans (1994)
replication. On each trial, the magnitude of the model’s
response for the correct outcome was recorded. Figure 2
(top panel) shows the model’s response as a function of
position. At the first set position, the model’s error is
about 0.83 which is chance (i.e, 5/6) but as more of the
sequence is revealed, the model continues to reduce this
error (thus predicting faster RT).

The model is able to replicate the key qualitative
results of the study despite having no mechanism for
grouping sequence elements, and only a simple single
layer of weights. A closer look at how the model solves
the problem gives some insight into the structure of the
task. Figure 3 shows the setting of each of the weights
in the model at the end of learning. The key pattern to
notice is that the diagonal entries for each past time slot
are strongly negative while all other weights are close to
zero. The diagonal of each weight matrix represents the
weight from each event to it’s own detector. Thus, the
model attempts to inhibit any response that occurred in
the last few trials.

The impact of this is demonstrated in Figure 2 (bot-
tom panel) which shows response probability as a func-
tion of the number of events separating two repeated
events (lag). Since the same event could not repeat on
successive trials, repeated events were at minimum sep-
arated by 1 event (lag-1). This might happen if the fifth
event of one sequence repeated as the first element of
the next sequence. Figure 2 (bottom) shows that as the
lag between two repeated events increases, the model
accurately predicts faster RT. The memory attenuation
of past events causes them to become less inhibited as
they move further into the past (i.e., events at lag-10 are
more strongly inhibited than events at lag-1). Boyer, et
al. (1998) examined this same lag effect in the reaction
time of participants in their replication and found an
identical effect (also shown in Figure 2, bottom panel).
Participant RT was inversely related to the number of
trials that separated the repeated event. The model de-
scribes performance in the task as a simple negative re-
cency effect.

Boyer, et al. (1998) explored how the SRN accounted
for human performance in this task. The SRN provides
a similar conceptual account by learning to increase the
likelihood of an response as a function of the number
of events since last experienced. However, the learning
mechanism of the SRN is much more complicated than
that of LASR because the model must acquire appropri-
ate hidden unit representations in addition to adjusting
weights in the upper layer of the network. As a result,
Boyer, et al. (1998) had to train the SRN on consider-
ably more trials than humans or LASR. Both humans
and LASR were trained for 4320 trials (24 blocks of 180
trials each), whereas the SRN was trained for 30,240
trials. In addition, the hidden unit representations the
SRN acquires are difficult to interpret because the model
learns to predict successors of particular aggregate con-
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Figure 3: The final LASR weights for the Lee (1997) sequence learning problem. Negative weights are darker red.
Positive weights are darker blue. The weights leaving each memory slot (t− 1, t− 2, etc...) are shown as a separate
matrix. Each matrix shows the weights from each stimulus element to each detector. For example, the red matrix
entry in the top left corner of t-1 slot is the weight from event “1” to the detector for event “1”.

texts. Instead, LASR clearly describes performance in
the task as a simple negative recency effect, where re-
cent events are inhibited.

Boyer, et al. (1998) point out that in both their repli-
cation and in the original Lee (1997) study, participants
demonstrate a faster reaction time to the latter elements
of the each sequence even in the first block of learning
and the magnitude of this effect remains relatively con-
stant throughout learning. Given the natural prevalence
of the gambler’s fallacy (i.e. negative recency) in sequen-
tial decision making tasks, it’s possible that some kind
of preexisting biases influenced their performance in the
task (Gilovich, Vallone, & Tversky, 1985; Jarvik, 1951;
Nicks, 1959). LASR also shows the learning effect in
Figure 2 (top panel) in the first block of learning due
to it’s rapid adaptation to the task. However, assuming
Boyer, et al.’s interpretation of the human data is cor-
rect (and not a floor effect of RT as participants gain
experience in the task), it would be straightforward to
simulate an initial bias in LASR by initializing the learn-
ing weights with a slightly negative value instead of zero
at the beginning of learning.

Statistical Word Learning
It is clear from the previous simulations that despite it’s
simplicity, LASR can provide an accurate description of
sequential learning behavior in the SRT. However, a key
question remains concerning the generality of these find-
ings: is sequential learning in the SRT sub-served by
similar mechanisms as other areas of cognitive process-
ing which rely on sequence processing? To evaluate this
hypothesis, we apply LASR to the infant word learning
study conducted by Saffran, Aslin, and Newport (1996).

Saffran et al. (1996) familiarized 8-month-old infants
with a 2-minute recording of a computer-synthesized
voice evenly reading a continuous stream of syllables
at an even tempo. The stream was composed of four
three-syllable nonsense words which were repeated in
random order (examples word are “tu-pi-ro” and “go-
la-bu”). The only cues concerning the beginning and
end of words in the stream was the transitional proba-
bilities between syllables which were higher between two
syllables which occurred together within a words than
between two syllables which spanned word boundaries.

On each trial of the test phase, infants were pre-
sented with repetitions of one of four three-syllable test
strings. In Experiment 1, two of the test words were

the same nonsense words which were presented during
the familiarization phase while the remaining two were
three syllable non-words which contained the same syl-
lables heard during the familiarization phase but in a
different order than they appeared in the initial phase.
In Experiment 2, the test phase contrasted knowledge
about words versus part-words where part-words con-
sisted of syllables arranged in the same order as during
familiarization, without directly corresponding to any of
the words used to generate the familiarization sequence.

The results of both studies are shown in Figure 4 and
indicate that infants were able to discriminate words
from both non-words (Experiment 1) and part-words
(Experiment 2) as reflected by longer listening times for
the latter test stimuli. These findings demonstrate that
infants are able to extract information about the statisti-
cal properties of a sequence given even a short incidental
exposure to auditory stimuli.

Simulation Results To simulate these results with
LASR, each syllable was treated as a separate event in
the model. In both Experiment 1 and 2 there were 12
possible syllables, thus the model had 12 detectors. On
each simulated trial, the model attempted to predict the
next syllable in the sequence given the syllables which it
had experienced so far.

During each trial of the the test phase, the memory
register was cleared by setting all values back to zero and
the output of the correct detector was recorded following
the presentation of each syllable of the test sequence. In
order to compare infant looking time and model perfor-
mance (a necessarily indirect relationship), the output
ok of the correct detector for each syllable of the test
sequence was summed to compute an overall familiarity
score for the test item. These familiarity scores were
then related to looking time via linear regression.

Figure 4 shows resulting performance of the model
averaged over 1000 simulated experiments. The model
predicts increased looking time for both non-words and
part-words. Examination of the final setting of the de-
tector weights reveal that the weights grow to approxi-
mate the transitional probabilities between syllables at
different lags in the training sequence.

LASR provides a similar account of sequence learn-
ing in both the Lee (1997) and Saffran, et al. (1996)
experiments. In each case, the model’s weight grow to
approximate the lag-n transition probabilities in the se-
quence (i.e. the probability of an event at time t given
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Figure 4: Comparison of infant and LASR results for
Saffran, et al. (1996) Experiment 1 and 2.

a particular event on on trial t − n, Remillard & Clark,
2001). This is made clear in Figure 5 which compares the
final setting of LASR’s weights (top) and the true tran-
sition probabilities in the training sequence (bottom) at
lag t − 1 and t − 2. LASR natural picks up on the sta-
tistical structure of the sequence and allows it to extract
what might appear to be segmented knowledge about
the sequence. The SRN has also been used to explain
sequential word learning results similar to those studied
by Saffran, et al. (Elman, 1990; Allen & Christiansen,
1996). However, the type of information acquired by the
SRN differs from LASR because the SRN is capable of
learning the true second order conditional probabilities
due to it’s hidden unit representations. The testing pro-
cedure used with infants does not distinguish between
these two types of learning, but, (as these simulations
show) the simpler lag-n statistic is sufficient to account
for learning.

Conclusions and Discussion

The results of these simulations offer two conclusions.
First, we show how the types of sequential learning re-
ported in both the SRT and statistical word learning
paradigms might be accounted by the same simple prin-
ciples which define the LASR model. Recently, a number
of authors have argued that behavior in both types of
tasks could tap similar learning processes. Evidence in
support of this hypothesis includes the fact that the type
of sequential learning demonstrated by infants with ar-
tificial syllable languages has replicated to more general
auditory stimuli such as tones (Saffran, Johnson, Aslin,
& Newport, 1999) and to motor sequences in the SRT
task (Hunt & Aslin, 2001) suggesting that this type of
processing is not specific to linguistic material. Cross-
species comparisons show that non-human primates are
also able to discriminate words and non-words in the syl-
lable task, again in support of the idea that learning in
such tasks is not a property of a language specific learn-
ing system (Conway & Christiansen, 2001).
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Figure 5: The final LASR weights for the Saffran, et
al. (1996) infant word learning experiment. The labels
on the rows correspond to possible syllable outcomes at
each time slot, while the labels on the columns refer to
the corresponding detector. The bottom two matrices
show the actual transition probabilities between syllables
at lag-1 and lag-2 in the training sequence. Black, grey,
and white squares represent a transitional probability
of 1.0, 0.33, and 0.0, respectively. The model weights
closely mirror the transition probabilities.

Second, we showed how a simple, single layer learning
mechanism is able to account for findings which have
previously been accounted for using more complex
mechanisms. A full evaluation of LASR is not possible
in this short paper, but preliminary work suggests that
the model provides a similar account of the processes
underlying implicit learning in many other studies.
With this in mind, we offer LASR model as a possible
“null” model for implicit sequence learning studies. It
is important when developing models based on indirect
measures of knowledge (such as reaction time) that
theories aren’t developed which reach beyond the data.
We argue that LASR provides a tight match between
the complexity of the model and the demonstrated
processing complexity of the learner. In this sense, our
argument bears some resemblance to other arguments
put forward in the SRT literature (Perruchet, Gallego,
& Savy, 1990; Reed & Johnson, 1994; Remillard &
Clark, 2001). However, we build upon these criticisms
by providing a viable modeling framework which shows
promise as both an explanation and as a tool.
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