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Clinical Facts Along With a
Feedback Control Perspective
Suggest That Increased
Response Time Might Be the
Cause of Parkinsonian Rest
Tremor
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by increased
response times leading to a variety of biomechanical symptoms, such as tremors, stoop-
ing, and gait instability. Although the deterioration in biomechanical control can intui-
tively be related to sluggish response times, how the delay leads to such biomechanical
symptoms as tremor is not yet understood. Only recently has it been explained from the
perspective of feedback control theory that delay beyond a threshold can be the cause of
Parkinsonian tremor (Palanthandalam-Madapusi and Goyal, 2011, “Is Parkinsonian
Tremor a Limit Cycle?” J. Mech. Med. Biol., 11(5), pp. 1017–1023). The present paper
correlates several observations from this perspective to clinical facts and reinforces them
with simple numerical and experimental examples. Thus, the present work provides a
framework toward developing a deeper conceptual understanding of the mechanism
behind PD symptoms. Furthermore, it lays a foundation for developing tools for diagno-
sis and progress tracking of the disease by identifying some key trends.
[DOI: 10.1115/1.4034050]

1 Introduction

Patients suffering from PD experience a variety of biomechani-
cal symptoms including tremors, stooping, rigidity, and gait insta-
bility [1]. Since the discovery of this disease in 1817 [2], the
connections between these apparently unrelated biomechanical
symptoms have puzzled researchers and have led to a range of
hypotheses and conjectures about the source of these symptoms
[3,4], and it is not clear whether there is a single underlying expla-
nation for these symptoms [5,6]. PD is a neurodegenerative disor-
der and is also characterized by a permanent increase in response
time in both voluntary and involuntary motor responses. The
impairment of response time in PD was first noted in Ref. [7], stat-
ing, “recent measurements with special apparatus for muscular
response to a single visual stimulus have given the figures of 0.24
s for normal individuals and 0.36 s for the subjects with paralysis
agitans.” Several detailed studies since then have come up with
similar conclusions [8–11]. This has added another dimension to
the mystery surrounding the symptoms.

Although the deterioration in biomechanical control can intui-
tively be related to sluggish response times, how the increase in
response time leads to such biomechanical symptoms as tremors
is not yet understood [12]. In fact, it is argued that Parkinsonian
tremor may have a pathophysiology different from most other
symptoms of the disease [3,4]. Neuroprosthetic therapies such as
deep brain stimulation [13] suppress Parkinsonian tremor, how-
ever, the fundamental mechanism behind these therapies is also
unresolved [14].

On another front, empirical mathematical models are proposed,
which can simulate Parkinsonian tremor, for instance, a limit-

cycle-exhibiting system such as the Van Der Pol oscillator can be
fit to experimentally measured data [15]. But such an approach
lacks physical underpinnings and does not provide any insights
into some of the other key features of Parkinsonian tremor. For
example, why a PD patient trying to keep still would exhibit trem-
ors (referred to as rest tremors) [1], whereas these tremors would
often disappear during voluntary motion [3], is not explained by
such models. Recently, arguments based on a control-system anal-
ogy were used to support the hypothesis that Parkinsonian tremor
may indeed be a limit-cycle oscillation [16] and established a
direct logical connection between increased response time and
limit-cycle behavior of Parkinsonian tremor. Since then, similar
connections between increased time delays and limit-cycle oscil-
lations in human biomechanics (although not necessarily in the
context of PD) have also been drawn [17–19].

In this paper, we exploit this link between increased time delays
(observed as an increase in response times) and Parkinsonian
tremors to address two specific objectives (see Fig. 1). First, we
wish to draw qualitative observations based on this hypothesis
that are supported by clinical facts, explained using feedback con-
trol theory, and reproduced by simple numerical and experimental

Fig. 1 The contributions of this work
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examples. Second, based on this hypothesis, we explore possibil-
ities for using biomechanical analysis of tremor data for diagnosis
and progress tracking of the disease. The current work therefore
builds a framework toward developing a deeper conceptual under-
standing of the mechanism behind Parkinsonian tremor. Further,
we demonstrate how, in-principle, the insights in this paper can be
used to develop a simple pocket device or smartphone application
for progress tracking and diagnosis of the disease [20]. For explor-
ing the possibilities for diagnosis and progress tracking in further
details, one can use a combination of patient tests and simulations
with simple, yet reasonably realistic models of human posture,
motor control, or gait [21,22] as the next steps.

The paper is organized as follows: Section 2 introduces motor
control of human body in feedback control framework that will
help us in subsequent analysis. Section 3 explores how some well-
known clinical facts about Parkinsonian tremor can be explained
using feedback control arguments and validated with simple nu-
merical and experimental examples. Section 4 explores the possi-
bilities for diagnosis and progress tracking of the disease based on
the results, and then, we close with conclusion in Sec. 5.

2 Feedback Control Representation

For our analysis, we adopt the feedback control system frame-
work presented in Ref. [16] as shown in Fig. 2. This is a simple
block-diagrammatic representation of the motor control using sen-
sory feedback in humans. In this framework, the mathematical
model that governs the dynamics of any body part (e.g., hand) in
the absence of any neural control is what is referred to as a plant
in control-system notation. The feedback path represents all the
sensory feedbacks including visual feedback, tactile feedback,
proprioceptive feedback, etc. Afferent nerves carry these feed-
backs to the controller (brain). The controller represents the neu-
rosystem’s logic that continuously compares the kinematic
variables from sensory feedbacks (e.g., actual velocity) with the
desired kinematic variables (e.g., desired velocity) to determine
motor command. The information of the particular command is
carried by the efferent nerves and are then implemented on the
plant via muscle actions to get the desired response. We refer to
this closed feedback loop consisting of motor actions and sensory
feedbacks as the sensorimotor loop. We expect that there will be
various time delays in the sensorimotor loop such as delays due to
nerve conduction times, information processing time, etc. For
simplicity, we lump all the sensorimotor loop delays (delays in
various portions of sensorimotor loop) into one transport delay in
the closed-loop feedback system. Given that in PD, we see larger
response time compared to healthy individuals, it is reasonable to
assume that this lumped delay is larger in patients with PD. We
discuss in Appendix A how under a linearity assumption, the spe-
cific locations of the various delays do not affect the overall obser-
vations derived from the analysis that follows. Finally, the
physiological limit of the transmission of neural control actions
[23] is represented as a saturation function that bounds the control
input to the plant.

3 Explaining Clinical Facts Using Feedback Control

Representation

With the framework described in Sec. 2, we explore how some
well-known clinical facts about Parkinsonian tremor can be

explained using feedback control arguments. Three examples that
are explained in detail in Appendix B are chosen for this analysis:
a numerical example and two table-top motion-control experimen-
tal examples. The intention here is to choose three simple yet very
different examples within the framework described in Sec. 2, to
demonstrate the generality of the insights and observations that
follow. The insights and trends from these examples are subse-
quently leveraged to conceptualize strategies for diagnosis and
progress tracking. However, it is to be noted that more realistic
models of human motor control [21,22] along with patients stud-
ies would be needed subsequently to further develop and fine-tune
these diagnosis and progress tracking strategies.

The numerical example is that of simple pendulum in MAT-
LAB SIMULINK and is modeled as a second-order stable linear sys-
tem with a proportional–integral–derivative (PID) controller. The
first experimental example is a servomotor position control bench-
top experiment, which is a first-order, linear, stable system, with a
proportional–derivative controller. The second experimental
example is a rotary-inverted pendulum, which is a fourth-order,
nonlinear, unstable system, with a linear quadratic regulator con-
troller. Although all the three examples are different, they follow
the same feedback control framework and all the three have satu-
ration and delay, the two crucial features to explain the possible
mechanism of Parkinsonian tremor. Thus, together they serve to
qualitatively explain the clinical facts by highlighting how the
feedback control perspective can explain the facts regardless of
variations between individuals. We describe results for the pendu-
lum numerical example and the servomotor experimental example
in more detail and show some representative results for the rotary-
inverted pendulum experimental example.

Sections 3.1–3.4 describe four clinical facts and the supporting
analysis.

Fig. 2 The closed-loop feedback system representing motor
control of human body

Fig. 3 Angular velocity for various time delays with zero
intended velocity, initial angular position of 0.1 rad, and satura-
tion limits as 2100 to 100 N�m (pendulum numerical example)

Fig. 4 Angular velocity for various time delays with zero
intended velocity, various initial angular velocities (24.11 rad/s
for delay 5 0.02 s, 23.52 rad/s for delay 5 0.03 s, 25.35 rad/s for
delay 5 0.04 s, and 25.27 rad/s for delay 5 0.05 s), and saturation
limits as 21 to 1 N�m (servomotor experimental example)
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3.1 Parkinsonian Tremor Is Primarily a Rest Tremor.
Rest tremor is shaking of body parts, most commonly the hands or
fingers, when these body parts are in rest position. By contrast,
action tremor occurs during any type of intentional movement of
a body part. In this context, all the three of our simple examples
revealed that a delay beyond a certain threshold triggers oscilla-
tory behavior for zero intended velocity (feedback control trying
to bring the system to rest). For example, Fig. 3 shows that the
pendulum numerical example exhibits no oscillations in the
steady-state response with the delay values of 0.05 s and 0.1 s
(both responses are visually indistinguishable in Fig. 3). However,
as the delay increases from 0.1 s to 0.15 s, the response settles at a

Fig. 5 Trajectories starting from various initial conditions con-
verging to a limit cycle in phase space for delay 0.3 s and satu-
ration limits 2100 to 100 N�m (pendulum numerical example)

Fig. 6 Trajectories starting from various initial conditions con-
verging to a limit cycle in phase space for delay 0.05 s and satu-
ration limits 21 to 1 N�m (servomotor experimental example)

Fig. 7 Trajectories starting from various initial conditions con-
verging to a limit cycle in phase space (rotary-inverted pendu-
lum experimental example)

Fig. 8 Velocity plots for a sinusoidal intended velocity of fre-
quency 0.6 Hz, saturation limits 2100 to 100 N�m, delay 0.2 s,
and amplitudes 0, 25, and 60 rad/s (pendulum numerical
example)

Fig. 9 Velocity plots for a sinusoidal intended velocity of fre-
quency 0.5 Hz, saturation limits 21 to 1 N�m, delay 0.05 s, and
amplitudes 0, 10, and 20 rad/s (servomotor experimental
example)

Fig. 10 Frequency content of velocity plots for a sinusoidal
intended velocity of frequency 0.6 Hz, saturation limits 2100 to
100 N�m, delay 0.2 s, and amplitudes 0, 25, and 60 rad/s (pendu-
lum numerical example). Here, x 5 1.709 Hz is the frequency of
rest tremor, and the amplitude of this rest tremor is subse-
quently reduced (second and third subplots) as we increased
the input amplitude. Note that in the third subplot, due to satu-
ration nonlinearity, we observed the peak (at x 5 1.2 Hz) other
than intended velocity frequency 0.6 Hz, which is the second
harmonic of the intended velocity frequency 0.6 Hz.

Fig. 11 Delay versus frequency and amplitude of oscillation
with saturation limits 24 to 4 N�m (pendulum numerical
example)
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steady-state oscillation, implying that the threshold delay is some-
where between 0.1 s and 0.15 s. Likewise, for the servomotor ex-
perimental example, Fig. 4 indicates that the threshold delay is
somewhere between 0.03 s and 0.04 s. These observations can be
readily explained from feedback control theory in the following
way. It is well known that any stable feedback control loop with
loop gain more than one becomes unstable if a large enough delay
is introduced in the loop [24]. Further, due to the presence of the
saturation in the loop, the instability is not able to drive the ampli-
tude of oscillations to infinity, but rather a bounded oscillatory
behavior is approached [24]. In the phase space, an increased
delay (beyond a certain threshold) renders the origin (the equilib-
rium corresponding to the rest condition) unstable, and even with
the smallest disturbance or initial condition, the response is driven
to a stable limit-cycle oscillation due to the saturation in the loop.
Figure 5 (pendulum numerical example), Fig. 6 (servomotor ex-
perimental example), and Fig. 7 (rotary-inverted pendulum exper-
imental example) confirm this explanation by showing that all the
trajectories starting from different initial conditions in the phase
space plot of angular velocity versus angular acceleration con-
verge to a stable limit cycle. Hence, these examples explain, in
relatively simple terms, why Parkinsonian tremor is a rest tremor
and occurs when the patient tries to keep still.

3.2 Rest Tremor Often Disappears When Large-Scale
Voluntary Motion Is Attempted. Our numerical and experimen-
tal examples support this clinical observation by revealing that
when a significant intended velocity is used (large-scale voluntary
motion), the tremor disappears. Figures 8 and 9 illustrate this find-
ing for the pendulum numerical example and the servomotor ex-
perimental example, respectively. As an example, the intended
velocity is chosen to be a low-frequency sinusoidal input. In Figs.
8 and 9, the first subplots, which correspond to zero input ampli-
tude (implying no intended motion), reproduce the tremor. The
traces of the (higher frequency) tremor are still present for a low
amplitude input (second subplots), while the tremor visibly disap-
pears for higher value of input amplitude (third subplots). This is
further obvious in the frequency domain as shown in Fig. 10. In
the third subplot of Fig. 10, in addition to the peak at the low-
frequency sinusoidal input, a new second peak is observed which
is merely a harmonic of the low-frequency sinusoidal input and
thus unrelated to tremor.

This amplitude-dependent behavior is expected as a nonlinear
effect of the saturation in the loop. The noteworthy finding is that
all the three examples show similar trend of tremor disappearance
with increasing amplitude of the intended velocity. This consistent
trend needs a rigorous analysis as a nonlinear effect of the
saturation.

3.3 Rest Tremor Disappears When Patients Sleep or Dur-
ing Mental Concentration. When a patient is asleep or engaged
in engrossing mental activity requiring mental concentration, one
can argue that their sensory feedback is cut off or diminished. It is

then obvious from the explanation in Sec. 3.1 that if the feedback
path is disrupted, then the tremors should disappear. This explains
why Parkinsonian rest tremor, in contrast to “essential tremor” [1,
Table 2], disappears when patients sleep. One may argue that in
the case in which a patient is undertaking an activity requiring
mental concentration, the feedback may not be completely cut off
but rather diminished. Since reducing the feedback gain (and con-
sequently, the loop gain) will have a stabilizing effect when there
is a delay in the loop [24,25], this clinical fact is also explained.
This argument further explains the surgical serendipity [26,27], in
which brain’s control circuitry of a PD patient was accidentally
damaged and resulted in disappearance of rest tremor. This

Fig. 12 Delay versus frequency and amplitude of oscillation
with saturation limits as 210 to 10 N�m (servomotor experimen-
tal example)

Fig. 13 (a) Amplitude of the tremor as a function of saturation
and delay. (b) Frequency of the tremor as a function of satura-
tion and delay. (c) Area of the limit cycle as a function of satura-
tion and delay. (d) Aspect ratio of the limit cycle as a function of
saturation and delay (pendulum numerical example).
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observation also gives a key insight that sensory feedback plays a
crucial role in the mechanism causing rest tremors.

3.4 As the Disease Progresses, a Decrease in Frequency of
Tremor Is Observed and a Corresponding Increase in the
Amplitude of Tremor Is Observed. From the explanation of the
previous clinical facts, we conclude that the progression of the
disease must be directly linked to increased response times. Fur-
ther, all our numerical and experimental examples show a
decrease in the frequency of oscillation (tremor) with an increased
delay [28]. Figures 11 and 12 show this finding for the pendulum
numerical example and the servomotor experimental example,
respectively. It is clear that there exists an inverse relationship
between the loop delay and frequency of tremor and that further
results in an increase in the amplitude as explained below. Con-
sider a simple oscillating signal, such as a ¼ sinðxtÞ, where x is
an angular frequency and a is an acceleration. Note that its inte-
gral is v ¼ �cosðxtÞ=x, it is obvious that for periodic oscillations
the amplitude of the velocity signal is inversely proportional to
the frequency of the acceleration signal. Here, since the amplitude
of the acceleration signal is constrained by the saturation levels in
control actions, it is not surprising that for the same saturation
level, the amplitude of velocity signal is higher for lower fre-
quency oscillations and vice versa. It should also be noted here

that this explanation holds regardless of whether the plant has
low-pass filter characteristics or not.

In Sec. 4, we explore if these trends lead to specific features
that can be used for diagnosis of PD and estimate its severity.

4 Possibilities for Progress Tracking and Diagnosis

From the discussion in Sec. 3.4, it is emerging clearly that there
are trends in frequency and amplitude of tremors that can possibly
be leveraged for tracking the progression of PD over a period of
time and observing the effect of treatment strategies. For instance,
one can develop a simple pocket device or a smartphone applica-
tion (each described further in Secs. 4.1 and 4.2, respectively),
which uses accelerometers and/or gyro sensors to record tremor
data (accelerations and/or angular velocities) of PD patients. One
could make measurements at regular intervals (say, every 3
months), and based on the frequency of the measured tremors,
track the progression of the disease using trends such as observed
in Figs. 11 and 12. It may also be possible to evaluate the efficacy
of treatment strategies using such an approach.

In reality, however, one would expect that it is very likely that
PD tremors may show a combination of frequencies and may have
some irregularities that could make it challenging to interpret the
data. To resolve this issue, there can be two approaches. One
approach is to explore other tremor parameters that may be more

Fig. 14 Effect of delay (left) and saturation (right) on the limit cycles
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robust indicators of the underlying delay. A second approach is to
take multiple independent measurements of different parameters
that relate to the delay and then fuse the estimates (e.g., using a
maximum-likelihood method [29]) to obtain a robust indication of
the delay. This is a common practice in sensor fusion wherein sev-
eral inexpensive low-quality sensor measurements are fused to
obtain a high-quality estimate.

On further exploration, two other parameters that correlate with
the delay and therefore provide possibilities of tracking the pro-
gression of disease are the area and aspect ratio of the limit cycle
(the closed trajectory formed in the phase space). The area is sim-
ply the area contained within the limit cycle, whereas the aspect

ratio is defined as the ratio of angular acceleration range to angu-
lar velocity range. Since we know that for a harmonic signal, the
aspect ratio is proportional to frequency, we may expect similar
trends in aspect ratio and frequency. Figure 13 shows the trends in
amplitude and frequency of the tremor, and area and aspect ratio
of the limit cycle, as a function of delay and saturation for pendu-
lum numerical example. The frequency and aspect ratio are very
sensitive to the delay, but are practically unaffected by the satura-
tion while amplitude and area are affected by the saturation.
Figure 14 demonstrate how the aspect ratio is directly linked to
delay and relatively insensitive to saturation for all the three
examples. So, frequency and aspect ratio appear to be the most
useful measurements among the four choices to track the delay.
Nevertheless, it should be noted that amplitude, frequency, area of
limit cycle, and aspect ratio of limit cycle serve as four independ-
ent measurements that are correlated with the delay.

This is only a first step which will form the basis of patient
studies that can help throw light on utility of these observations.
The potential of using these parameters for progress tracking has
to be confirmed through patient studies. A more challenging pos-
sibility that cannot be ruled out at the moment is to eventually use
these parameters for diagnosis of PD. These would, however,
have to be developed after extensive studies to factor out patient-
to-patient variabilities.

Nevertheless, Secs. 4.1 and 4.2 present two possible implemen-
tations based on the preliminary ideas discussed previously, a
pocket device and a smartphone application, respectively. Both
implementations utilize the angular velocity data of hand tremor

Fig. 15 A candidate algorithm for the diagnosis of PD

Fig. 16 A proof-of-concept prototype for a pocket device, which can further evolve into a convenient and compact wire-
less device

Fig. 17 Prototype for a smartphone application [20]
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from sensors (built-in sensors in the case of smartphone) and can
potentially be used both for progress tracking and diagnosis. For
diagnosis, a candidate algorithm is shown in Fig. 15 to detect the
presence and severity of PD.

4.1 Pocket Device. This pocket device consists of an acceler-
ometer and a gyro sensor in a band that can be wrapped around
the patient’s hand (as shown in Fig. 16), along with a microcon-
troller and a display. The angular velocity of hand tremor meas-
ured by the gyro sensor is processed by the microcontroller as per
the flowchart discussed in Fig. 15. An advantage of such a device
is its simplicity, cost, and usability.

4.2 Smartphone Application. The same idea is also imple-
mented on a smartphone application (Fig. 17). In this case, the
patient can simply hold the smartphone in a predetermined config-
uration and the built-in gyro sensor of the smartphone is used to
sense angular velocity of the hand/wrist, while the computations
are performed on the smartphone processor and the results are
immediately displayed on the screen. The user interface and addi-
tional features can be designed for a user-friendly and informative
product and can be used for telemedicine application.

5 Conclusions

We started with the hypothesis that an increased response time
is the cause of rest tremors in PD. With this starting point, and
with the use of two simple experimental examples and a numeri-
cal example along with feedback control arguments, we were
qualitatively able to explain several clinical observations related
to rest tremors in PD. Thus, this work helps strengthen the hypoth-
esis while laying a foundation for developing a better understand-
ing of the mechanism behind rest tremors. Finally, using the
numerical and experimental examples, we further explored the
possibility of using the tremor amplitude, frequency, area of limit
cycle, and aspect ratio of the limit cycle for tracking the progress
of the disease and for diagnosis.

Acknowledgment

The authors gratefully acknowledge the support received from
the IIT Gandhinagar and the Ministry of Human Resources in the
form of the fellowships for the first author. The authors thank Tay-
maz Homayouni and Yousef Sardahi, who are Ph.D. students at
the University of California, Merced, for reviewing and editing
this paper.

Appendix A: Analysis of Location of Sensorimotor

Loop Delay

Although we performed the analysis with the delay in the for-
ward path (between the controller and plant) as indicated in Fig.
2, we note that the position of the delay in the loop does not affect
the phase portrait and therefore our conclusions. To understand
this, consider the case in which we have a delay (td2) in the feed-
back path that is additional to the delay (td1) in the forward path.
In this case, under the linearity assumption, the output becomes,
YðsÞ ¼ e�td1s ~GRðSÞ, where ~G ¼ ðGðsÞ=ð1þ GðsÞe�tdsÞÞ is the
closed-loop transfer function with td ¼ td1 þ td2. Note here that
the nature of the response is determined by ~G which has the total
delay in its denominator, while e�td1s only serves to time-shift the
output Y(s). Therefore, in the phase space, the trajectories would
only depend on the total combined delay in the loop and is unaf-
fected by the actual positions of the delay elements in the sensori-
motor loop. This claim needs to be further tested with simulations
employing nonlinear plants and controllers. Thus, the knowledge
of the mathematical model governing motor-control loop and
details of the loop delay locations are not needed for diagnosis or
for progress tracking.

Appendix B: Numerical and Experimental Examples

Numerical Example

The plant that we use in the numerical example can be thought
of as a simple pendulum with length L, mass m, and the damping
coefficient c. We linearize the pendulum about its stable equilib-
rium (vertically downward) and write it in the state-space form as
follows:

_x ¼ Axþ Bu
y ¼ Cxþ Du

where x ¼ h _h
h i

2 R2 is the state vector with h being the angle
of the pendulum, u 2 R is the controlling torque on the pendulum
as determined by the controller based on the feedback y 2 R,
which is the measured angular velocity of the pendulum, and

A ¼ 0 1

�g=L �c=mL2

� �
;B ¼ 0

1=mL2

� �
;C ¼ 0 1

� �
;D ¼ 0

For our simulation purpose, we use L¼ 0.65 m, m¼ 3.5 kg,
c¼ 3.375 kg m/s, saturation limits of �100 to 100 N�m, and a PID
controller with the proportional gain kP¼ 15 m L2, integral gain
kI¼ 4 m L2, and derivative gain kD ¼ 0:5 m L2. The simulations
are performed in MATLAB SIMULINK.

Experimental Examples

We consider two motion-control experimental examples: an
angular position control experiment for a servomotor and a rotary-
inverted pendulum balancing experiment. The former is a first-
order, linear, stable system with a proportional–derivative control-
ler and the latter is a fourth-order, nonlinear, unstable system with
a linear quadratic regulator controller. With these motion-control
experiments, the controller parameters are tuned such that the
closed-loop control system is stable analogous to the case of
healthy individuals. Then, we experimentally observe the effect of
increasing delay by replacing the dynamics of simple pendulum
(in case of simulation example) with the dynamics of servomotor
or rotary-inverted pendulum as body dynamics (Fig. 2). Both of
these experiments are based on a QUBE rotary servo experiment
from QUANSER, Markham, ON, Canada.

It is worthwhile to note here that since the focus of this paper is
on qualitative observations relating to Parkinsonian tremor, the
values of the parameters in the examples are indicative values and
not related to the parameters of a real human body.
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