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Nonlinear operators and their propagators

Charles Schwartz
Department of Physics, University of California, Berkeley, California 94720

(Received 9 April 1996; accepted for publication 11 October 1996

Mathematical physicists are familiar with a large set of tools designed for dealing
with linear operators, which are so common in both the classical and quantum
theories; but many of those tools are useless with nonlinear equations of motion. In
this work a general algebra and calculus is developed for working with nonlinear
operators: The basic new tool being the “slash product,” defined\by/+ eB)

=A+ eA/B+0O(€?). For a generic time development equation, the propagator is
constructed and then there follows the formal version of time dependent perturba-
tion theory, in remarkable similarity to the linear situation. A nonperturbative ap-
proximation scheme capable of producing high accuracy computations, previously
developed for linear operators, is shown to be applicable as well in the nonlinear
domain. A number of auxiliary mathematical properties and examples are given.
© 1997 American Institute of Physid$$0022-24887)03301-X

I. INTRODUCTION

Physicists are familiar with a large set of mathematical tools for dealing with linear operators.
This comes mostly from work in quantum theory but also shows up in classical theory. However,
when it comes to nonlinear equations of motion, most of those familiar tools are useless. There are
a few specific nonlinear equations that have been studied and solved; and with many others one
commonly resorts to a forcible “linearization.” In the domain of numerical computations only
low order approximation techniques are known for general nonlinear equétions.

In this paper we develop a general algebra and calculus for nonlinear operators, with the
starting definitions given in Sec. Il. The basic new tool is the “slash product” of two operators,
A/B, defined byA(1+ eB)=A+ eA/B+O(€?). This quantity has a number of interesting prop-
erties which are explored in Secs. Illl and IV. For a generic time development equation, the
propagator is constructed in Sec. V and then in Sec. VI there follows the formal version of time
dependent perturbation theory, in remarkable similarity to the linear situation. Section VIl ex-
plores how the further machinery of quantum theory might look if it were not a linear theory. In
Sec. VIII a nonperturbative approximation scheme capable of producing high accuracy computa-
tions, previously developed for linear operators, is shown to be applicable as well in the nonlinear
domain. A number of auxiliary mathematical results are given in four Appendices.

Il. GENERAL PROPERTIES

A nonlinear operatoA acts on some input quantity transforming it into an output quantity

¢,
d=Ad. )

One might use the alternative notatig+=A(y) to emphasize that the operatdracts ony like a
function and not by mere multiplication, which is the mode of a linear operator; but we shall have
other uses for parentheses and would prefer to avoid this confusion.

OperatorsA,B,C, -+ (I shall use capital letters for operatpisan act in sequence, giving us
multiplication which is associative but not commutative.

ABCy=A(B(C(#))). 2
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Charles Schwartz: Nonlinear operators and their propagators 485

Assuming that the quantitiag, ¢ can be added and multiplied by ordinary numb@snoted
by lower case lettera,b,c,...) we have addition of operators which is associative and commuta-
tive

A=B+C=C+B; 3

and we have scalar multiplication on the left=bC, which is not the same &b. The symbols
1 and 0 play dual roles, as the unit and null operators as well as ordinary numbers.
The distributive law holds on one side,

(A+B)C=AC+BC (4)
but not on the other side,
A(B+C)#AB+AC. (5)

However, assuming some continuity in the set of operators, we can define a generalized derivative,
which will allow us to do some things with expressions of the sort give(bjnin the limit of
e—0,

A(B+€eC)=AB+ €{A,B,C}+O(€?). (6)
lll. THE SLASH PRODUCT
A simpler definition of this generalized derivative is the following:
A(1+ eB)=A+eA/B+O(€?). (7)

This new operatoA/B—called the “slash product ok andB"—uwill be the most useful tool
in the analysis that follows. Assuming that the operd&dn (6) has an inverse, we can identify

{A,B,C}=(A/ICB })B. (8)
If we use the representation of the operators as functions, g2)inthen we see that
AIBy=1le(A(g+ eB(4)) —A()) = A" (4)B(¥).

A most important property of the slash product is that it is linear in both of its arguments.
Linearity in the first argument,

(aA+bB)/C=aA/C+bB/C, 9
follows directly from(4) and (7). Scaling in the second argument for real numkbgrs
AlbB=bA/B (10
follows from scaling the parameterin the definition(7). And linearity in the second argument,
Al(B+C)=A/B+A/C, (12)

can be shown as follows:
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486 Charles Schwartz: Nonlinear operators and their propagators

A(1+eB+eC)=A+eAl(B+C)+0(e?)=A(1+€C)(1+ eB)+O(€?)
=(A+€eAIC)(1+eB)+O(e?)=A(1+eB)+ eA/C(1+ eB)+O(€?)
=A+ eAIB+ eA/C+O(€?). (12)

Note that there is no ambiguity in writing, as (b0) above,bA/B to meanb(A/B). In fact, if
L is a linear operatofof which ordinary numbers are a special gaben, LA/B)=L(A/B) can
be written asLA/B. Also, for linear operatord, we note thatL/B=LB; thus slash products
become ordinary products when we have all linear operators. Be aware, howevévLitiatnot
equal toAL, and in particularA/1 is not equal toA, unlessA is linear. Considering the null
operator 0, the statemeAD=0 is a restriction upon the class of nonlinear operafokghich we
shall study; but the equationsAG0/A=A/0=0 are true in any case.

In general | shall writeABC/DEF without parentheses to meaABC)/(DEF); but paren-
theses are required to specify other things, suchfd8)C or multiple slash products such as
A/(B/C)—which is not the same a®A\(B)/C—etc. Note, however, that multiple slash products
are linear in each one of their factors, regardless of how the parentheses are drawn. In expressions
like 1/2 ort"/n! which do not involve any operators, the / symbol means ordinary division.

Another important property is found from the following calculation. Here we assume that the
operatorB has an inverse; and- meansO(é?).

AB(1+€C)=AB+ €(AB)/C+---=A(B(1+€C))=A(B+€B/C+:+")
=A(1+¢e(B/C)B 1+---)B=(A+€A/Cgz+---)B. (13
Here, we have introduced the important definition
Cg=(B/IC)B ™}, 19

which is the generalization of a similarity transformation. One readily shows @giy=Cpg;
and the new identity for the slash product is,

(AB)/C=(AICg)B. (15)

Although multiple slash products are not associative, | shall use the nofati®#C/---/Z to
mean the particular order (- ((A/B)/C)/---)/Z. In addition, | shall use a shorthand notation for
this multiple slash product of a single operator:

AT=A/A/A/---IA (n factors A) (16)
where
A"l=A=1/A and A™=1 (17)
make this consistent with
AP 1= AD/A (18)

IV. FURTHER PROPERTIES OF /

We can define higher order slash products by continuing the expansion {@)Eq.
A(1+ eB)=A+ eAIB+(1/2) €?AlIB+O(€d). (19

As shown in Appendix A, these higher terms may be reduced to multiple applications of the single
slash product; for example,

J. Math. Phys., Vol. 38, No. 1, January 1997
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Charles Schwartz: Nonlinear operators and their propagators 487

A//B=(A/B)/B—Al(B/B). (20)

The expressiod\//B (which vanishes ifA is a linear operatoris linear in the first argument
A, but is more complicatetquadratig in the second argumeBt. The calculation in Appendix A
also leads us to the identity,

(A/B)/IC—A/(B/C)=(AIC)/B—A/(C/B). (21)

Suppose thaF and G are two operators that depend on some parametand we write
F’'=dF/d\. Now calculate the derivative of the product,

(FG)' =1/e((F+€eF')(G+€eG')—FG)=1/e(FG+ e(FIG'G 1)G+eF'G—FG+0(€?))
=F'G+(FIG'G H)G={F'F 1+ (G'G })(}FG. (22

In the special case wheFeis a linear operator, the / can be dropped &2) reads like the usual
rule for the derivative of a product; but this result is more general. An interesting special case of
(22) is whenF is taken to be the operator inverse Gf

G lV=-G"YGe'G L (23
Extending equatiori22) we have
(FGH)' ={F'F 1+ (G'G Y+ ((H'H Y)g)}FGH. (229
Using the identity Cg)g-1 = C, one can deduce an inversion formula for the slash product
If A=B/C, then C=(B Y/AB 1)B. (24)
V. PROPAGATORS

Problems of interest concern differential equations of the form

dy
3t AV (25

where = (t) but we assume for the moment that the nonlinear operaisrindependent of.
Solutions of this equation are given in terms of some opei&aféy,t), which we call the propa-

gator forA
P(1)=E(A,1)4(0). (26)
The propagator should obey the composition law
E(At)DEA ) =E(At;+15) (27
and we have
E(A0)=1. (28)

There is also a scaling law, implied by the structure of &%),
E(aAt)=E(A,at). (29

In the special case wher is a linear operatoriz(A,t) is just the exponential function of
argumentA.

J. Math. Phys., Vol. 38, No. 1, January 1997
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488 Charles Schwartz: Nonlinear operators and their propagators

For a simple example, consider the nonlinear operatoe=py9. The differential equation
(25) is readily solved and we get this formula for the propagator

E(At)y=[¢* 9+tp(1—q)]H*-9. (30

In what follows we shall assume that a power series expansion exists for the propagator, at
least for sufficiently small values af The basic operator equation, writily for d/dt, is

dE(A,t)=AE(A1) (31

so that the power series starts astA+---. To see what the later terms look like, take another
derivative of(31). Writing E for E(A,t) and using(22)

d’E=d,(AE)=(A/(dE)E"1)E=(A/A)E=A"’E. (32

Repeating this procedure any number of times, then taking thetlinflt yields the terms in
the infinite power series.

E(A,t)=>, t"/n! AD. (33

It is interesting to take the derivative of this power series.
dE(AH)=2, nt" nt A= tnl ANFI=E(A /A, (34)

where we have used the linear property of the slash product. Thus we have the special identity for
propagators

AE(A,1)=E(At)/A, (35)

which is not easily verified by multiplying\ times the serie$33).
Now consider the general case when the operatar time dependent.

digh(t) =A(t) g(). (36)
The propagator must now be given two time variables
(1) =E(At, 1) (1), (37
where
E(At,t)=1. (39

Taking the derivative 0f37) with respect ta, yields the equation
d/dtE(AL, 1) =A(t) E(At,, 1) (39
while taking the derivative of37) with respect ta, yields
d/dt E(A;ts,t) = —E(A;t,,t)/A(ty). (40
With these two equations, one can now prove the general group property

E(Ats, 1) E(AL,, 1) =E(At3,1,) (41)

J. Math. Phys., Vol. 38, No. 1, January 1997
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Charles Schwartz: Nonlinear operators and their propagators 489

as follows: Take the derivative of the expression on the left hand sidélpfwith respect ta,
and, using bott{39) and(40), show that the result is O; then, since this product is independent of
the value oft,, one can set,=t;, and the right hand side ¢#1) is obtained.

The power series solution for the propagator is easily constructed by using@q.

E(A;t,to)=2 jdtl---J dt,OA(t)/A(t,_ )/ TA(t)A(ty), (42

where the symbob selects the region of the-dimensional integration space for which
tosStysty,<---<t,_;<t,<t (assuming thatty<t). (43

This result reverts t¢33) whenA is independent of the time. One might give this se(i&® the
symbolic nameT/exp(f* dt’ A(t")), whereT/ is read, “time ordered slash products.”

VI. PERTURBATION THEORY

We consider the equation

dy _
gp =AU+BY; (44)

and assuming we know the propagaté(A;t,,t;) we want to study the full propagator
E(A+B;t,,t;), expanded in a power series in the small operBtowe start with the decompo-
sition

E(A+B;t,,t)=U(ty,t;)E(A;t,,t;) (45

introducing the operatod; and we take the time derivativd/dt; and use(40), assumingA is
time-independent, to arrive finally at

d/dtlU(t21tl):_U(t21tl)/BE(t2!t1) (46)

where | use the shorthanBi(t,,t;)=(E(A;t,,t;)/B(t;))E"1(A;t,,t,). This would be called the
“perturbation operator in the interaction representation.”

Equation(46) is of the form of(40) and so we can write the power series analog4® to
obtain the result

U(t,t) =, fdtlmfdtneBE(t,tn)/BE(t,tn,l)/ ~~~~~~ IBe(t,t,)/Be(t,ty), (47)

Further manipulation of the terms {@#7) allows one to rewrite this result as follows:

E(A+B;t,tg) =2, fdtl"'J'dtne(('"((E(A;tytn)/B(tn))

XE(At,,th-1)/B(th_1))E(Ath_1,th o)/ )E(Aty, 1) /B(ty) ) E(Ajty,tp)
(48)

which provides the familiar interpretation of a sequence of interactiBysconnected by propa-
gators(E, derived fromA).
One more thing of interest is a power seriesBgr, when bothA andB are time-independent

J. Math. Phys., Vol. 38, No. 1, January 1997
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490 Charles Schwartz: Nonlinear operators and their propagators

Be=(E/B)E~1=> t"/n!S,. (49)

A direct computation, similar to those done earlier, yields the result

and thus, using once more the linear properties of the slash product,

Sh=AlIS 1= Sh-1/A=[AIS, 4] (51)
defining the “slash commutator.” The series fBi then has the familiar form with repeated
commutators

So=B,

S,=[A/B]=A/B—BIA,
S,=[A/[AIB]]=A/(AIB)—A/(B/A)— (A/B)/A+ (B/A)/A. (52

Using the identity(21) one can rewrite the last line §62) as A/A)/B—2(A/B)/A+(B/A)/
A. One also has a Jacobi identity for the generd|[B/C]].

VIl. FURTHER MACHINERY OF QUANTUM MECHANICS

Suppose we consider a Schrodinger equation
idWw=HV, (53

whereH is a general nonlinear operator. The wave functiodepends on the timeas well as the
coordinate variableg and perhaps other variables. Equati®3) will have a propagatoE=E
(—iH,t), which we usgformally) to construct the Heisenberg picture, in which the coordinates
and other variables become time dependerit. i§ any function or operator made up from these
variables in the Schrodinger picture, then we construct the Heisenberg representatior-adighis
follows:
Fe=(E/F)E™! (54)

and calculate

diFg=—iH/Fg+Fg/iH=[—iH/Fg]. (55

If U is some symmetry operator, with the infinitesimal fodhs 1+ €S, then its application to
some general operatér can be considered in two forms, each of which has the group property:

UAU 1=A+e(SA-A/S)+--- (56)
or
(U/IA) U t=A+ ¢ SIA]+--- . (57)

For more, see Appendix D.

J. Math. Phys., Vol. 38, No. 1, January 1997
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Charles Schwartz: Nonlinear operators and their propagators 491

In order to get stationary states, one needs to put some kind of restriction upon the dgerator
It should be time independent and Hermitian in the linear case. So much of the usual machinery
of quantum mechanics depends upon this linearity, we should not expect too much in the nonlinear
case; but several results can be carried over.

The first thing we require, even for a nonstationary state, is conservation of total probability.
We shall keep the usual definition thdt*¥ is the probability density for this complex time-
dependent wave function, which is defined on some set of coordinates we shall refer to simply as
x. We require,

f VP dx=1 (58
and calculate
idtf P>y dx=0=f ‘lf*(H\I’)dx—f (HP)* ¥ dx. (59
This is our condition orH for any stationary state.
For example, the following nonlinear Hamiltonian satisfies this condition:
H=H_+A, and AV =f(T*¥)¥, (60)

where H, is a linear operator, Hermitian in the usual sense, &nd a real function of its
argument. With this modgl60) put into the time-dependent equati@B), one can separate out
the time dependence in the usual mannkesexp(—iwt)y, and get the time-independefrton-
linean Schrodinger equation,

Hoy+ (™ )= wip. (61)

If we add the normalization conditiofy/* ¢y dx=1, then this is an eigenvalue problem—although
not a linear one.
For example, the equation

2

o vapr b= (62

has an eigenfunction of the formi=c(sechpx))P. Actually, a family of such solutions can be

gotten from this one by translation and boosting; a state moving with velocitgs frequency

w+1/4v2, thus giving what looks like a “rest energy” as the result of an eigenvalue problem.
Variational principles may also be constructed for equations (Bide.

J[Wﬂ*]:f dX{lﬂ*Huﬂng(w*lﬁ)}—)\” Xmﬁ*lﬂ—l] (63

is stationary about solutions ¢1), if f=g' and\A=w. Note that the stationary value dfis not
w.

VIIl. THE PRODUCT APPROXIMATION FOR A COMPLICATED PROPAGATOR

A typical problem of interest looks like the following differential equation, which involves
two operators, linear or nonlinear, but assumed time independent

diy=Ay+By=(A+B)y. (64)
J. Math. Phys., Vol. 38, No. 1, January 1997
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492 Charles Schwartz: Nonlinear operators and their propagators

NeitherA nor B is assumed to be small enough to allow a perturbation solution; but we do assume
that we can construct and use the separate propadaf(érs) and E(B,t). Our objective is to
construct accurate approximations to the propag#&tgk-+B,5), where § is a small but not
infinitesimal time interval. We shall start by looking at the first few terms of the power series
expansion

E(A+B,8)=1+ 8(A+B)+(1/2) 6*(A+B)/(A+B)+0(6°)
=1+ 5A+ 6B+ (1/2) 8*(AIA+AIB+B/A+B/B)+0O(56%). (65)

A first step, as is commonly done with linear operafoisto construct a symmetric product
of the separate propagatde§A,s) andE(B, d)

R(A,B,8)=E(A,5/2)E(B,5)E(A,5/2). (66)
Using the expansions and the computational rules given above, we find that
R(A,B,8)=E(A+B,8)+0(48°%. (67)

This is our first major result: Formul@6) uses three steps with the individual propagators to
approximate the complete propagator to second order accuracy.

The best way to study, and then remove, the higher order differences between the exact and
approximate propagators is not to continue with the power series expansions of the exact propa-
gatorsk, but rather to represent the quantRyas the exact propagator for some new operxtor

R(A,B,8)=E(X,d), (68
whereX depends oA\, B and §; and there will be an expansion,
X(A,B,8)=X1(A,B)+ 6X,(A,B)+ 6*X5(A,B) + - -+ (69

which can be determined, term by term, from any given series expansiéh igthat follows is
a generalization of results previously derived for linear operators by M. Sdzuki.

Making use of the results found in Appendix B, one can readily calculde:0 and
X3=—(1/24)[(A+2B)/[A/B]]. But we do not really need to carry out such calculations, as the
following simple arguments suffice.

Clearly X1(A,B)=A+B; and each ternX,,, will first appear in the power series f& at order
™. The symmetric construction d&® guarantees the exact relation

R(A,B,5)R(A,B,—8)=1 (70)
from which we infer that

X(A,B,— 8)=X(A,B, ). (72
Thus half of the terms i1169) disappeafwe already knew this fom=2)

X=X;+ 6°Xg+ 6*Xg+ -+ . (72

Now we proceed to build on these results to get higher order accuracy, following the general
scheme used previously for linear operators. First, the given differential equation may have any
number of operators.

dy=> ¢, 2 =A+B+C+--+Z. (73)

J. Math. Phys., Vol. 38, No. 1, January 1997
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Charles Schwartz: Nonlinear operators and their propagators 493

The technique given in the standard literature for computing with such a general problem is good
only to first order in the time intervab* Our second order approximation for the propagator
E(Z,9) is

R(8)=E(A,8/2)E(B,5/2)---E(Z,8)---E(B, 5I2)E(A, 5/2) (74)

which we can represent &= + 6°Xg+ 8*X5+...,6).
Now we seek to eliminate th¥; terms by constructing the product

Q3(8)=R(BOR(yO)R(BI) (79

with certain values of the numbefsand y. For this analysis we need to expand the propagator
(whereA andB are any operatoys

E(A+€eB,8)=E(A,d)+ €SB+ 0(€? €6
=(1+€6B+0O(€?,€5%))E(A,S)
=E(A,8)(1+esB+0(€?,e8)). (76)

Note here that we are expanding in bethnd § independently. That is, we are extracting not
the complete derivative dE(A+ €B, ), but only the leading term of that derivative expanded in
a power series ird.

Now we are ready to calculate the product of two “close” propagators

E(A+ ElB,5l)E(A+ 628, 52)
=E(A,6)E(A,8,)(1+ €,6,B+ ) (1+€,8,B+-+)
=E(A,5l+ 52)(1"‘(6151"‘6252)8"’) (77)

where--- means next higher order terms das well ase.
Proceeding in this manner we calculate

Q3(8)=E(2,(28+7)8)(1+(28°+ y%) X3+ 0(6Y). (78)
Finally, we fix the free parameters with the conditions
2B+y=1 and 283+4%=0 (79
and we have the fourth order accurate approximation:
Q3(8)=E(Z+0(58%,9). (80)

Again, the symmetric construction gives 05(8) Q4(—8)=1 and makes the error go down not
one but two orders inS. | have programmed numerical computations of the time-dependent
nonlinear Schrdinger equatior{in one space dimensipmnd found great improvements in accu-
racy and efficiency by using this fourth order method.

We can now proceed systematically to eliminate the higher order error, two ord®at @ach
step. Thus to sixth order accuracy,

Qo(8)=03(B6)Q3(70)Q23(B5)=E(X+0(5%,6), (81)
where these new coefficients are determined by

28+y=1 and 28°+4°=0. (82

J. Math. Phys., Vol. 38, No. 1, January 1997
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494 Charles Schwartz: Nonlinear operators and their propagators

These results are identical in form with those previously derived for linear opefators.

The foregoing analysis was based upon the assumption that the separate opgeBtors
allowed us to obtain and use their exact individual propagdi0fs 6), etc. Looking back, we see
that we can work with considerably less. The key is in the constructid®(&f Eq.(74), and its
subsequent use, E((5) et seq

There are really only two simple requirements:

R(8)=1+65+0(5%) and R(SR(—8)=1; (83)

once these two requirements are met, all the higher order accuracy 9fstinll follow.
One simple approximation for any propagator is

E(A,8)~(1—(82)A) "1+ (85/2)A) (84)

and this may be substituted ifY4) without loss of accuracy. One can go even farther. For
example, with two operators, one may use

R(A,B,8)=(1—(58/2)A)"1E(B, 8)(1+(5/2)A) (85)
or
R(A,B,8)=(1—(8/2)A) " X(1—(48/2)B) " X(1+(5/2)B)(1+(5I2)A). (86)
APPENDIX A: HIGHER ORDER SLASH PRODUCTS
Here, we shall look at the higher terms in the expansion
A(1+ eB)=A+ eAIB+(1/2)e’AlIB+(1/6) e All/B+--- . (A1)
Start by expanding the following product in one way.

A(1+€B)(1+€eC)=A{1+eC+ eB(1+€C)}
=A(1+eC+ eB+ €’BIC+(1/2)€°BI/C+---)
=A+ eAl(C+B+eB/C+(1/2)€’B//C)
+(1/2)€?Al/(C+ B+ €eBIC)+ (1/6)A/I/(C+B)+--- . (A2)
And now expand it another way.
A(1+€eB)(1+ eC)={A+ eA/B+(1/2)e’Al/B+(1/6)e3Al//B+---}(1+ €C)

=A+ eAIC+(1/2)€Al/C+(1/6)e3All/C+ eAlIB
+(1/2) €®AlIB+ (1/6) 2AllIB+ €(AIB)/C+ (1/2) €3(AIB)/IC
+(1/2)€(AlIB)ICH+ -+ . (A3)

Next we compare expressions order by order in powers ®he zeroth and first order terms
are familiar. In second order we find

A/(B/IC)+ (112 A/l(B+C)=(1/2)A//C+ (1/2)A/IB+ (A/B)/C. (A4)
SettingC=xB, wherex is a variable number

XA/(BIB) + (1/2)(1+x)2A//B=(1/2)x?Al/B+ (1/2) Al/B+x(A/B)/B. (A5)
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Then, choosingt=—1, we get the first result
AlIB=(A/B)/B—A/(B/B), (AB)
and also, substituting back i#4), we get the identity
(A/B)/C—A/(B/C)=(A/C)/B—A/(CIB). (A7)
Now, going on to third order terms in a similar fashion, we find
Al(B//C)+ (A/(C+B))/(B/C)+(A/(BIC))/(C+B)
—A/((C+B)/(B/IC))—A/((B/C)/(C+B))+(1/3)Al//(C+B)
=(1/13)AllIC+(1/I3)All/B+(AIB)/IC+ (AlIB)/C. (A8)
Again, settingC=xB, we get
x2A/(B/IB)+x(1+x)(A/B)/(B/B)+x(1+x)(A/(B/B))/B—x(1+x)A/(B/(B/B))
—x(1+x)A/((B/B)/B)+(1/3)(1+x)3A/1/B
= (1/3)x3A/IIB+ (1/3)All/B+Xx2(AIB)//B+x(Al/B)/B. (A9)
Choosingx=—1, yields the identity(not really newy
A/(B/IB)=(AIB)/IB—(A/IB)/B. (A10)
And substituting this back in the previous equation finally yields
All/B=A/(B/(B/B))+A/((B/B)/B)+((A/B)/B)/IB—2(A/(B/B))/B—(A/B)/(B/B)
=((A/B)/B)/B+2A/((B/B)/B)—3(A/(B/B))/B. (Al11)

If we use the representation of the operators as functions, then, starting from
A/IBy=A'(4)B(), we find

AlIBy=A"()B(¥)B(4), (A12)
AllIBY=A"()B(4)B(¢)B(#). (A13)

APPENDIX B: FORMULAS WITH THE EXPONENTIAL

If X(t) is a linear operator depending on a paraméteéhen an important formula is this,
involving thet-derivative of the exponential function of

1
e *d, exzf ds e sX(dX)es*. (B1)
0

Here, we shall derive the analogous formula for a general nonlinear op&raté(t) and our
nonlinear version of the exponential function,

E(X)=14 X+ (L2)XIX+ (LIB)XIXIX+---= >, 1int(X/)"X, (B2)
n

where | use the convention, noted after ELp) that the repeated slash products are grouped with
the left-hand factors most interior.
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496 Charles Schwartz: Nonlinear operators and their propagators

Take thet derivative of (B2), which is easy because of the linear properties of the slash
products

dE(X)=2, D> Ln!(X)H™M(dX)(/X)" M1 (B3)

=f1ds2 > s™mi(1—s)™n! (X)™(dX)(/X)". (B4)
0 n m

Now the infinite sum ovem can be carried out because the terrd$) " sit at the interior of all
the multiple slash products

1
th(X):f dsy, (1—s)"/nE(sX)/(dX)(/X)". (B5)
0 n
In order to collapse the sum over we shall need another general formula
> 1n!B(/A)"=BE(A). (B6)
n

This may be proved by replacimg by tA and then taking the derivative with respect té-or the
special cas®=A, this is equation(35).
Thus we have our result, generalizif@gl)

th(X)=flds(E(sX)/(th))E(—SX)E(X). (B7)
0
And, following the results given after equatiéf9), we can write

(AEX)E(=X) =2 Un+DHIX)YAX)]" (B8)

in terms of the repeated slash commutators.

Several useful results may be obtained from the above formulas. First, we can show the
generalization of the famous Baker—Campbell-Hausdorff theorem for the product of exponentials
of operators

E(tA)E(tB)=E(X(1)) (B9)

with X(t) =tX;+t2X,+t3X5+--- andX; obviously=A+ B. Taking thet derivative of Eq.(B9),

using (22) and (49)—(52) for the left hand side and usin@®8) for the right hand side we can
equate coefficients of each powertofThen we see that each of the higher ordér is expressed

in terms of slash commutators built up from the operatoendB. When we let the operators be
linear, then the slash-commutators become ordinary commutatois(@)dbecomes the ordinary
exponential. Thus, the algebraic structure of this theorem is identical in the case of nonlinear
operators to what it is for linear operators. We find

X1=A+B; X,=1/ZA/B]; X3=1/17(A-B)/[A/B]]; etc. (B10)
And from this it follows that, if [A/B] =0, then

E(A)E(B)=E(A+B)=E(B)E(A).
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A second result is obtained by considering the symmetric product,
W(t)=E(tA)E(tB)E(tA)=E(X(t)). (B11)
SinceW(—t) W(t)=1, we conclude that
X(1)=tX; +t3Xg+t5Xg+ -+ . (B12)
To determine theX's we again calculate thiederivative ofW, using now Eq(22g, and we get,
(dW(1))W(—t)=2A+B—t%2[(A+B)/[AIB]]+"-- . (B13)
Then we again uséB8) and, comparing terms, find the results
X;=2A+B and X;=—1/6(A+B)/[A/B]]. (B14)

A third new result follows from Eq(B6)

BE(A)=E(Ag)B, (B15)
which | leave for the reader to verify. If one replaces the operBtby the operatoE(B), then
one has

E(B)E(A)E(B) *=E(A"), (B16)
where
A’=AE(B)=(E(B)/A)E(B)’1=; 1/n!([B/)"A]". (B17)

This reads as the generalized relation between elements of a Lie Group and the corresponding Lie
algebra. The exponential* of a linear operator is replaced I&(A) for the nonlinear operator;
and the usual commutator used in the Lie algebra is replaced by the slash commutator.

An alternative representation f&{(X) is the limit, N going to infinity, of (1+1/N X)": and
some previous results are readily derived from this.

While many of the above relations involvirig(A) could be called trivial in the case of linear
operators, this author finds it remarkable that they hold true in the case of general nonlinear
operators.

APPENDIX C: SOME OTHER INFINITE SERIES

Here, we shall look at some other infinite series of operators. First, lets find the expansion for
the operator

V=V(t)=(1-tA) 1= t"V,(A). (C1)
Taking the derivatived/dt and using equatiof23) we find
d,V=V/AV=(1t)V/(V-1)= > nt""1v,. (C2
Substituting(C1) into (C2) and equating like powers af we find the relation

J. Math. Phys., Vol. 38, No. 1, January 1997

Downloaded-22-Jan-2008-t0-169.229.32.135.-Redistribution-subject-to-AlP-license-or-copyright;~see-http://jmp.aip.org/jmp/copyright.jsp



498 Charles Schwartz: Nonlinear operators and their propagators

Vo=1(n—-1) > Vu/Vi_m. (C3
0<m<n
Starting withVy=1 andV,;=A, we thus find
Vo=AlA, V3=1/2(AIA)IA+1/12AI(AIA),
V4:(1/3){V1/V3+V2/V2+V3/V1},etc. (C4)
The general ternV,(A) is a linear combination of all the distinct ways of writing the multiple
slash products ofh factors A. To verify this last statement, note that E@3) provides the
necessary step in the proof by induction. The number of such terms in\gaishequal to

2(—4)"" Y12/ [n!(1/2—n)!].

The above result can be used in connection with the general equation (
A(1+tB)=2, t"/n!A/"B, (C5)
whereA/°B=A, A/'B=A/B, A/’B=A//B, etc. Take the-derivative of Eq.(C5) and get:
> [t Y (n—1)1A/MB=(11t){A/[1—(1+tB) 1]} (1+tB)
=—(1h) mzo (—t)™A/V,(B) | (1+1B). (Co)
Using (C5) once again, and equating like powerstpfve find the result
AI"B= —m§>)o [(n—1)!(—1)™(n—m)!](A/V(B))/"™B. (C?)

With this we can recursively derive former resuli&p) and(All), and go on to higher orders, for
example,
AlllIB=—6AIV,+6(A/IV3)/B—3(AIV,)IIB+(AIV,)IIIB. (C8)

For another exercise, consider the infinite series
G(A,p)=>, 1p"+ia/n, (C9)

If we were dealing with linear operators, this would be the same as the first $€figsbut in
general it is different. This serieG(A,p) would arise, for example, if one took the Laplace
transform of the propagatde(A,t) given by EQ.(33). One can readily derive the algebraic
identity,

PG(A,p)—G(A,p)/A=1. (C10
This is not something one can readily “solve” f@; however, this equation is immediately

amenable to perturbation theory. If we repl@cey A+ \B, whereA is a small parameter, and we
expand
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G(A+\B,p)=2, \"G,,

then we get the relations
pGy—Gy/A=1, pG,—G,/A=G,_;/B. (C1y

Still another variation involves a quantity, denoted Ay", which is the sum of all distinct
ways of writing the multiple slash products offactorsA. This is similar to the quantity/,,(A)
considered above, but with all numerical coefficients equal to 1. StartingAfitt= A, we have
the recursion formula

A= > ATmATNM (C12
0<m<n
Consider now the infinite sum
Y=> A (C13
n>0
This satisfies the equation,
YIY=Y—-A (C19

so we have found one solution to the general “quadratic equation” involving nonlinear operators
and slash products. The other solutiGmhich does not go to zero whe vanishes is more
complicated; it is not equal to-1Y.

APPENDIX D: SYMMETRY OPERATORS

This concerns symmetry and invariance in the dynamical nonlinear equatiorid. heesome
operator that produces a transformation of the coordinates or the fungtions

' =Uy, (DY)
where we have an original equation of motion

dey=Ad. (D2)
Let us calculate

dep’ = (Le){U(y+ ediyh) — Uy} = (Le){U(1+ eA)y— Uy} =(UIA) = (UIAU 1y
(D3)

Thus in order forlJ to be called a symmetry operation the equation for the transformed function
/' should be identical in form to the original equation far That is, we require the dynamical
operatorA to obey the invariance equation

(U/IAU=A. (D4)

If U is a linear operator, this looks like the familiar rul@ithout the slashbut in general this is
different.
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Suppose the dynamical equation has not just one opekdbat a sum of operators, s#@y+ B,
each of which individually satisfies the requiremdit4). One can then readily prove that
(U/(A+B))U 1=A+B. But note that this would not be so without the presence of the slash
symbol, unlesdJ is a linear operator.
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