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Nonlinear operators and their propagators
Charles Schwartz
Department of Physics, University of California, Berkeley, California 94720

~Received 9 April 1996; accepted for publication 11 October 1996!

Mathematical physicists are familiar with a large set of tools designed for dealing
with linear operators, which are so common in both the classical and quantum
theories; but many of those tools are useless with nonlinear equations of motion. In
this work a general algebra and calculus is developed for working with nonlinear
operators: The basic new tool being the ‘‘slash product,’’ defined byA(11eB)
5A1eA/B1O(e2). For a generic time development equation, the propagator is
constructed and then there follows the formal version of time dependent perturba-
tion theory, in remarkable similarity to the linear situation. A nonperturbative ap-
proximation scheme capable of producing high accuracy computations, previously
developed for linear operators, is shown to be applicable as well in the nonlinear
domain. A number of auxiliary mathematical properties and examples are given.
© 1997 American Institute of Physics.@S0022-2488~97!03301-X#

I. INTRODUCTION

Physicists are familiar with a large set of mathematical tools for dealing with linear opera
This comes mostly from work in quantum theory but also shows up in classical theory. How
when it comes to nonlinear equations of motion, most of those familiar tools are useless. Th
a few specific nonlinear equations that have been studied and solved; and with many othe
commonly resorts to a forcible ‘‘linearization.’’ In the domain of numerical computations o
low order approximation techniques are known for general nonlinear equations.1

In this paper we develop a general algebra and calculus for nonlinear operators, wi
starting definitions given in Sec. II. The basic new tool is the ‘‘slash product’’ of two opera
A/B, defined byA(11eB)5A1eA/B1O(e2). This quantity has a number of interesting pro
erties which are explored in Secs. III and IV. For a generic time development equation
propagator is constructed in Sec. V and then in Sec. VI there follows the formal version of
dependent perturbation theory, in remarkable similarity to the linear situation. Section VI
plores how the further machinery of quantum theory might look if it were not a linear theor
Sec. VIII a nonperturbative approximation scheme capable of producing high accuracy com
tions, previously developed for linear operators, is shown to be applicable as well in the non
domain. A number of auxiliary mathematical results are given in four Appendices.

II. GENERAL PROPERTIES

A nonlinear operatorA acts on some input quantityc transforming it into an output quantity
f,

f5Ac. ~1!

One might use the alternative notationf5A~c! to emphasize that the operatorA acts onc like a
function and not by mere multiplication, which is the mode of a linear operator; but we shall
other uses for parentheses and would prefer to avoid this confusion.

OperatorsA,B,C,••• ~I shall use capital letters for operators! can act in sequence, giving u
multiplication which is associative but not commutative.

ABCc5A~B~C~c!!!. ~2!
0022-2488/97/38(1)/484/17/$10.00
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Assuming that the quantitiesc, f can be added and multiplied by ordinary numbers~denoted
by lower case lettersa,b,c,...! we have addition of operators which is associative and comm
tive

A5B1C5C1B; ~3!

and we have scalar multiplication on the left,A5bC, which is not the same asCb. The symbols
1 and 0 play dual roles, as the unit and null operators as well as ordinary numbers.

The distributive law holds on one side,

~A1B!C5AC1BC ~4!

but not on the other side,

A~B1C!ÞAB1AC. ~5!

However, assuming some continuity in the set of operators, we can define a generalized der
which will allow us to do some things with expressions of the sort given in~5!. In the limit of
e→0,

A~B1eC!5AB1e$A,B,C%1O~e2!. ~6!

III. THE SLASH PRODUCT

A simpler definition of this generalized derivative is the following:

A~11eB!5A1eA/B1O~e2!. ~7!

This new operatorA/B—called the ‘‘slash product ofA andB’’—will be the most useful tool
in the analysis that follows. Assuming that the operatorB in ~6! has an inverse, we can identif

$A,B,C%5~A/CB21!B. ~8!

If we use the representation of the operators as functions, as in~2!, then we see tha
A/Bc51/e(A(c1eB(c))2A(c))5A8(c)B(c).

A most important property of the slash product is that it is linear in both of its argume
Linearity in the first argument,

~aA1bB!/C5aA/C1bB/C, ~9!

follows directly from ~4! and ~7!. Scaling in the second argument for real numbersb,

A/bB5bA/B ~10!

follows from scaling the parametere in the definition~7!. And linearity in the second argumen

A/~B1C!5A/B1A/C, ~11!

can be shown as follows:
J. Math. Phys., Vol. 38, No. 1, January 1997
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A~11eB1eC!5A1eA/~B1C!1O~e2!5A~11eC!~11eB!1O~e2!

5~A1eA/C!~11eB!1O~e2!5A~11eB!1eA/C~11eB!1O~e2!

5A1eA/B1eA/C1O~e2!. ~12!

Note that there is no ambiguity in writing, as in~10! above,bA/B to meanb(A/B). In fact, if
L is a linear operator~of which ordinary numbers are a special case! then, (LA/B)5L(A/B) can
be written asLA/B. Also, for linear operatorsL, we note thatL/B5LB; thus slash products
become ordinary products when we have all linear operators. Be aware, however, thatA/L is not
equal toAL, and in particularA/1 is not equal toA, unlessA is linear. Considering the nul
operator 0, the statementA050 is a restriction upon the class of nonlinear operatorsA which we
shall study; but the equations 0A50/A5A/050 are true in any case.

In general I shall writeABC/DEF without parentheses to mean (ABC)/(DEF); but paren-
theses are required to specify other things, such as (A/B)C or multiple slash products such a
A/(B/C)—which is not the same as (A/B)/C—etc. Note, however, that multiple slash produc
are linear in each one of their factors, regardless of how the parentheses are drawn. In expr
like 1/2 or tn/n! which do not involve any operators, the / symbol means ordinary division.

Another important property is found from the following calculation. Here we assume tha
operatorB has an inverse; and••• meansO~e2!.

AB~11eC!5AB1e~AB!/C1•••5A~B~11eC!!5A~B1eB/C1••• !

5A~11e~B/C!B211••• !B5~A1eA/CB1••• !B. ~13!

Here, we have introduced the important definition

CB[~B/C!B21, ~14!

which is the generalization of a similarity transformation. One readily shows that (CB)D5CDB ;
and the new identity for the slash product is,

~AB!/C5~A/CB!B. ~15!

Although multiple slash products are not associative, I shall use the notationA/B/C/•••/Z to
mean the particular order (•••((A/B)/C)/•••)/Z. In addition, I shall use a shorthand notation f
this multiple slash product of a single operator:

A∧n[A/A/A/•••/A ~n factors A! ~16!

where

A∧15A51/A and A∧051 ~17!

make this consistent with

A∧n115A∧n/A. ~18!

IV. FURTHER PROPERTIES OF /

We can define higher order slash products by continuing the expansion in Eq.~7!

A~11eB!5A1eA/B1~1/2!e2A//B1O~e3!. ~19!

As shown in Appendix A, these higher terms may be reduced to multiple applications of the
slash product; for example,
J. Math. Phys., Vol. 38, No. 1, January 1997
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A//B5~A/B!/B2A/~B/B!. ~20!

The expressionA//B ~which vanishes ifA is a linear operator! is linear in the first argumen
A, but is more complicated~quadratic! in the second argumentB. The calculation in Appendix A
also leads us to the identity,

~A/B!/C2A/~B/C!5~A/C!/B2A/~C/B!. ~21!

Suppose thatF andG are two operators that depend on some parameterl and we write
F85dF/dl. Now calculate the derivative of the product,

~FG!851/e~~F1eF8!~G1eG8!2FG!51/e~FG1e~F/G8G21!G1eF8G2FG1O~e2!!

5F8G1~F/G8G21!G5$F8F211~G8G21!F%FG. ~22!

In the special case whereF is a linear operator, the / can be dropped and~22! reads like the usua
rule for the derivative of a product; but this result is more general. An interesting special ca
~22! is whenF is taken to be the operator inverse ofG

G21852G21/G8G21. ~23!

Extending equation~22! we have

~FGH!85$F8F211~G8G21!F1~~H8H21!G!F%FGH. ~22a!

Using the identity (CB)B21 5 C, one can deduce an inversion formula for the slash produ

If A5B/C, then C5~B21/AB21!B. ~24!

V. PROPAGATORS

Problems of interest concern differential equations of the form

dc

dt
5Ac, ~25!

wherec5c (t) but we assume for the moment that the nonlinear operatorA is independent oft.
Solutions of this equation are given in terms of some operatorE(A,t), which we call the propa-
gator forA

c~ t !5E~A,t !c~0!. ~26!

The propagator should obey the composition law

E~A,t1!E~A,t2!5E~A,t11t2! ~27!

and we have

E~A,0!51. ~28!

There is also a scaling law, implied by the structure of Eq.~25!,

E~aA,t !5E~A,at!. ~29!

In the special case whereA is a linear operator,E(A,t) is just the exponential function o
argumenttA.
J. Math. Phys., Vol. 38, No. 1, January 1997
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For a simple example, consider the nonlinear operatorAc5pcq. The differential equation
~25! is readily solved and we get this formula for the propagator

E~A,t !c5@c12q1tp~12q!#1/~12q!. ~30!

In what follows we shall assume that a power series expansion exists for the propaga
least for sufficiently small values oft. The basic operator equation, writingdt for d/dt, is

dtE~A,t !5AE~A,t ! ~31!

so that the power series starts as 11tA1••• . To see what the later terms look like, take anoth
derivative of~31!. Writing E for E(A,t) and using~22!

dt
2E5dt~AE!5~A/~dtE!E21!E5~A/A!E5A∧2E. ~32!

Repeating this procedure any number of times, then taking the limitt50, yields the terms in
the infinite power series.

E~A,t !5( tn/n! A∧n. ~33!

It is interesting to take the derivative of this power series.

dtE~A,t !5( ntn21/n! A`n5( tn/n! A`n115E~A,t !/A, ~34!

where we have used the linear property of the slash product. Thus we have the special iden
propagators

AE~A,t !5E~A,t !/A, ~35!

which is not easily verified by multiplyingA times the series~33!.
Now consider the general case when the operatorA is time dependent.

dtc~ t !5A~ t !c~ t !. ~36!

The propagator must now be given two time variables

c~ t2!5E~A;t2 ,t1!c~ t1!, ~37!

where

E~A;t,t !51. ~38!

Taking the derivative of~37! with respect tot2 yields the equation

d/dt2E~A;t2 ,t1!5A~ t2!E~A;t2 ,t1! ~39!

while taking the derivative of~37! with respect tot1 yields

d/dt1E~A;t2 ,t1!52E~A;t2 ,t1!/A~ t1!. ~40!

With these two equations, one can now prove the general group property

E~A;t3 ,t2!E~A;t2 ,t1!5E~A;t3 ,t1! ~41!
J. Math. Phys., Vol. 38, No. 1, January 1997

22¬Jan¬2008¬to¬169.229.32.135.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jmp.aip.org/jmp/copyright.jsp



nt of

r
-

-

t

489Charles Schwartz: Nonlinear operators and their propagators

Downloaded¬
as follows: Take the derivative of the expression on the left hand side of~41! with respect tot2
and, using both~39! and~40!, show that the result is 0; then, since this product is independe
the value oft2, one can sett25t1 , and the right hand side of~41! is obtained.

The power series solution for the propagator is easily constructed by using Eq.~40!

E~A;t,t0!5( E dt1•••E dtnUA~ tn!/A~ tn21!/•••/A~ t2!/A~ t1!, ~42!

where the symbolU selects the region of then-dimensional integration space for which

t0<t1<t2<•••<tn21<tn<t ~assuming thatt0<t !. ~43!

This result reverts to~33! whenA is independent of the time. One might give this series~42! the
symbolic nameT/exp(* t dt8 A(t8)), whereT/ is read, ‘‘time ordered slash products.’’

VI. PERTURBATION THEORY

We consider the equation

dc

dt
5Ac1Bc; ~44!

and assuming we know the propagatorE(A;t2 ,t1) we want to study the full propagato
E(A1B;t2 ,t1), expanded in a power series in the small operatorB. We start with the decompo
sition

E~A1B;t2 ,t1!5U~ t2 ,t1!E~A;t2 ,t1! ~45!

introducing the operatorU; and we take the time derivatived/dt1 and use~40!, assumingA is
time-independent, to arrive finally at

d/dt1U~ t2 ,t1!52U~ t2 ,t1!/BE~ t2 ,t1! ~46!

where I use the shorthand:BE(t2 ,t1)5(E(A;t2 ,t1)/B(t1))E
21(A;t2 ,t1). This would be called the

‘‘perturbation operator in the interaction representation.’’
Equation~46! is of the form of~40! and so we can write the power series analog of~42! to

obtain the result

U~ t,t0!5( E dt1•••E dtnUBE~ t,tn!/BE~ t,tn21!/••••••/BE~ t,t2!/BE~ t,t1!, ~47!

Further manipulation of the terms in~47! allows one to rewrite this result as follows:

E~A1B;t,t0!5( E dt1•••E dtnU~~•••~~E~A;t,tn!/B~ tn!!

3E~A;tn ,tn21!/B~ tn21!!E~A;tn21 ,tn22!/••• !E~A;t2 ,t1!/B~ t1!!E~A;t1 ,t0!

~48!

which provides the familiar interpretation of a sequence of interactions (B) connected by propa
gators~E, derived fromA!.

One more thing of interest is a power series forBE , when bothA andB are time-independen
J. Math. Phys., Vol. 38, No. 1, January 1997
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BE5~E/B!E215( tn/n!Sn . ~49!

A direct computation, similar to those done earlier, yields the result

dtBE5A/BE2BE /A; ~50!

and thus, using once more the linear properties of the slash product,

Sn5A/Sn212Sn21 /A[@A/Sn21# ~51!

defining the ‘‘slash commutator.’’ The series forBE then has the familiar form with repeate
commutators

S05B,

S15@A/B#5A/B2B/A,

S25@A/@A/B##5A/~A/B!2A/~B/A!2~A/B!/A1~B/A!/A. ~52!

Using the identity~21! one can rewrite the last line of~52! as (A/A)/B22(A/B)/A1(B/A)/
A. One also has a Jacobi identity for the general [A/[B/C]].

VII. FURTHER MACHINERY OF QUANTUM MECHANICS

Suppose we consider a Schrodinger equation

idtC5HC, ~53!

whereH is a general nonlinear operator. The wave functionC depends on the timet as well as the
coordinate variablesx and perhaps other variables. Equation~53! will have a propagatorE5E
(2 iH ,t), which we use~formally! to construct the Heisenberg picture, in which the coordina
and other variables become time dependent. IfF is any function or operator made up from the
variables in the Schrodinger picture, then we construct the Heisenberg representation of thF as
follows:

FE5~E/F !E21 ~54!

and calculate

dtFE52 iH /FE1FE / iH5@2 iH /FE#. ~55!

If U is some symmetry operator, with the infinitesimal formU511eS, then its application to
some general operatorA can be considered in two forms, each of which has the group prop

UAU215A1e~SA2A/S!1••• ~56!

or

~U/A!U215A1e@S/A#1••• . ~57!

For more, see Appendix D.
J. Math. Phys., Vol. 38, No. 1, January 1997
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In order to get stationary states, one needs to put some kind of restriction upon the operH:
It should be time independent and Hermitian in the linear case. So much of the usual mac
of quantum mechanics depends upon this linearity, we should not expect too much in the no
case; but several results can be carried over.

The first thing we require, even for a nonstationary state, is conservation of total proba
We shall keep the usual definition thatC*C is the probability density for this complex time
dependent wave function, which is defined on some set of coordinates we shall refer to sim
x. We require,

E C*C dx51 ~58!

and calculate

idtE C*C dx505E C* ~HC!dx2E ~HC!*C dx. ~59!

This is our condition onH for any stationary state.
For example, the following nonlinear Hamiltonian satisfies this condition:

H5HL1A, and AC5 f ~C*C!C, ~60!

whereHL is a linear operator, Hermitian in the usual sense, andf is a real function of its
argument. With this model~60! put into the time-dependent equation~53!, one can separate ou
the time dependence in the usual manner,C5exp~2ivt!c, and get the time-independent~non-
linear! Schrodinger equation,

HLc1 f ~c*c!c5vc. ~61!

If we add the normalization condition*c*c dx51, then this is an eigenvalue problem—althou
not a linear one.

For example, the equation

2d2c

dx2
1ac~c*c!q5vc ~62!

has an eigenfunction of the formc5c~sech(bx)!p. Actually, a family of such solutions can b
gotten from this one by translation and boosting; a state moving with velocityv has frequency
v11/4v2, thus giving what looks like a ‘‘rest energy’’ as the result of an eigenvalue problem

Variational principles may also be constructed for equations like~61!.

J@c,c* #5E dx$c*HLc1g~c*c!%2l H E dxc*c21J ~63!

is stationary about solutions of~61!, if f5g8 andl5v. Note that the stationary value ofJ is not
v.

VIII. THE PRODUCT APPROXIMATION FOR A COMPLICATED PROPAGATOR

A typical problem of interest looks like the following differential equation, which involv
two operators, linear or nonlinear, but assumed time independent

dtc5Ac1Bc5~A1B!c. ~64!
J. Math. Phys., Vol. 38, No. 1, January 1997
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NeitherA norB is assumed to be small enough to allow a perturbation solution; but we do as
that we can construct and use the separate propagatorsE(A,t) andE(B,t). Our objective is to
construct accurate approximations to the propagatorE(A1B,d), where d is a small but not
infinitesimal time interval. We shall start by looking at the first few terms of the power se
expansion

E~A1B,d!511d~A1B!1~1/2!d2~A1B!/~A1B!1O~d3!

511dA1dB1~1/2!d2~A/A1A/B1B/A1B/B!1O~d3!. ~65!

A first step, as is commonly done with linear operators,2 is to construct a symmetric produc
of the separate propagatorsE(A,d) andE(B,d)

R~A,B,d!5E~A,d/2!E~B,d!E~A,d/2!. ~66!

Using the expansions and the computational rules given above, we find that

R~A,B,d!5E~A1B,d!1O~d3!. ~67!

This is our first major result: Formula~66! uses three steps with the individual propagators
approximate the complete propagator to second order accuracy.

The best way to study, and then remove, the higher order differences between the exa
approximate propagators is not to continue with the power series expansions of the exact
gatorsE, but rather to represent the quantityR as the exact propagator for some new operatoX

R~A,B,d!5E~X,d!, ~68!

whereX depends onA, B andd ; and there will be an expansion,

X~A,B,d!5X1~A,B!1dX2~A,B!1d2X3~A,B!1••• ~69!

which can be determined, term by term, from any given series expansion forR. What follows is
a generalization of results previously derived for linear operators by M. Suzuki.3

Making use of the results found in Appendix B, one can readily calculate:X250 and
X352(1/24)[(A12B)/[A/B]]. But we do not really need to carry out such calculations, as
following simple arguments suffice.

ClearlyX1(A,B)5A1B; and each termXm will first appear in the power series forR at order
d m. The symmetric construction ofR guarantees the exact relation

R~A,B,d!R~A,B,2d!51 ~70!

from which we infer that

X~A,B,2d!5X~A,B,d!. ~71!

Thus half of the terms in~69! disappear~we already knew this form52!

X5X11d2X31d4X51••• . ~72!

Now we proceed to build on these results to get higher order accuracy, following the ge
scheme used previously for linear operators. First, the given differential equation may hav
number of operators.

dtc5( c, ( 5A1B1C1•••1Z. ~73!
J. Math. Phys., Vol. 38, No. 1, January 1997
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The technique given in the standard literature for computing with such a general problem is
only to first order in the time intervald.4 Our second order approximation for the propaga
E~(,d! is

R~d!5E~A,d/2!E~B,d/2!•••E~Z,d!•••E~B,d/2!E~A,d/2! ~74!

which we can represent asE((1d2X31d4X51...,d).
Now we seek to eliminate theX3 terms by constructing the product

V3~d!5R~bd!R~gd!R~bd! ~75!

with certain values of the numbersb andg. For this analysis we need to expand the propaga
~whereA andB are any operators!

E~A1eB,d!5E~A,d!1edB1O~e2,ed2!

5~11edB1O~e2,ed2!!E~A,d!

5E~A,d!~11edB1O~e2,ed2!!. ~76!

Note here that we are expanding in bothe andd independently. That is, we are extracting n
the complete derivative ofE(A1eB,d), but only the leading term of that derivative expanded
a power series ind.

Now we are ready to calculate the product of two ‘‘close’’ propagators

E~A1e1B,d1!E~A1e2B,d2!

5E~A,d1!E~A,d2!~11e1d1B1••• !~11e2d2B1••• !

5E~A,d11d2!~11~e1d11e2d2!B1••• ! ~77!

where••• means next higher order terms ind as well ase.
Proceeding in this manner we calculate

V3~d!5E~S,~2b1g!d!~11~2b31g3!d3X31O~d4!!. ~78!

Finally, we fix the free parameters with the conditions

2b1g51 and 2b31g350 ~79!

and we have the fourth order accurate approximation:

V3~d!5E~S1O~d4!,d!. ~80!

Again, the symmetric construction gives usV3~d! V3~2d!51 and makes the error go down n
one but two orders ind. I have programmed numerical computations of the time-depen
nonlinear Schro¨dinger equation~in one space dimension! and found great improvements in acc
racy and efficiency by using this fourth order method.

We can now proceed systematically to eliminate the higher order error, two orders ind at each
step. Thus to sixth order accuracy,

V9~d!5V3~bd!V3~gd!V3~bd!5E~S1O~d6!,d!, ~81!

where these new coefficients are determined by

2b1g51 and 2b51g550. ~82!
J. Math. Phys., Vol. 38, No. 1, January 1997
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These results are identical in form with those previously derived for linear operators.3

The foregoing analysis was based upon the assumption that the separate operatorsA,B,...,
allowed us to obtain and use their exact individual propagatorsE(A,d), etc. Looking back, we see
that we can work with considerably less. The key is in the construction ofR~d!, Eq. ~74!, and its
subsequent use, Eq.~75! et seq.

There are really only two simple requirements:

R~d!511dS1O~d2! and R~d!R~2d!51; ~83!

once these two requirements are met, all the higher order accuracy of theVs will follow.
One simple approximation for any propagator is

E~A,d!'~12~d/2!A!21~11~d/2!A! ~84!

and this may be substituted in~74! without loss of accuracy. One can go even farther. F
example, with two operators, one may use

R~A,B,d!5~12~d/2!A!21E~B,d!~11~d/2!A! ~85!

or

R~A,B,d!5~12~d/2!A!21~12~d/2!B!21~11~d/2!B!~11~d/2!A!. ~86!

APPENDIX A: HIGHER ORDER SLASH PRODUCTS

Here, we shall look at the higher terms in the expansion

A~11eB!5A1eA/B1~1/2!e2A//B1~1/6!e3A///B1••• . ~A1!

Start by expanding the following product in one way.

A~11eB!~11eC!5A$11eC1eB~11eC!%

5A~11eC1eB1e2B/C1~1/2!e3B//C1••• !

5A1eA/~C1B1eB/C1~1/2!e2B//C!

1~1/2!e2A//~C1B1eB/C!1~1/6!e3A///~C1B!1••• . ~A2!

And now expand it another way.

A~11eB!~11eC!5$A1eA/B1~1/2!e2A//B1~1/6!e3A///B1•••%~11eC!

5A1eA/C1~1/2!e2A//C1~1/6!e3A///C1eA/B

1~1/2!e2A//B1~1/6!e3A///B1e2~A/B!/C1~1/2!e3~A/B!//C

1~1/2!e3~A//B!/C1••• . ~A3!

Next we compare expressions order by order in powers ofe. The zeroth and first order term
are familiar. In second order we find

A/~B/C!1~1/2!A//~B1C!5~1/2!A//C1~1/2!A//B1~A/B!/C. ~A4!

SettingC5xB, wherex is a variable number

xA/~B/B!1~1/2!~11x!2A//B5~1/2!x2A//B1~1/2!A//B1x~A/B!/B. ~A5!
J. Math. Phys., Vol. 38, No. 1, January 1997

22¬Jan¬2008¬to¬169.229.32.135.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jmp.aip.org/jmp/copyright.jsp



from

,

ith

495Charles Schwartz: Nonlinear operators and their propagators

Downloaded¬
Then, choosingx521, we get the first result

A//B5~A/B!/B2A/~B/B!, ~A6!

and also, substituting back in~A4!, we get the identity

~A/B!/C2A/~B/C!5~A/C!/B2A/~C/B!. ~A7!

Now, going on to third order terms in a similar fashion, we find

A/~B//C!1~A/~C1B!!/~B/C!1~A/~B/C!!/~C1B!

2A/~~C1B!/~B/C!!2A/~~B/C!/~C1B!!1~1/3!A///~C1B!

5~1/3!A///C1~1/3!A///B1~A/B!//C1~A//B!/C. ~A8!

Again, settingC5xB, we get

x2A/~B//B!1x~11x!~A/B!/~B/B!1x~11x!~A/~B/B!!/B2x~11x!A/~B/~B/B!!

2x~11x!A/~~B/B!/B!1~1/3!~11x!3A///B

5~1/3!x3A///B1~1/3!A///B1x2~A/B!//B1x~A//B!/B. ~A9!

Choosingx521, yields the identity~not really new!

A/~B//B!5~A/B!//B2~A//B!/B. ~A10!

And substituting this back in the previous equation finally yields

A///B5A/~B/~B/B!!1A/~~B/B!/B!1~~A/B!/B!/B22~A/~B/B!!/B2~A/B!/~B/B!

5~~A/B!/B!/B12A/~~B/B!/B!23~A/~B/B!!/B. ~A11!

If we use the representation of the operators as functions, then, starting
A/Bc5A8(c)B(c), we find

A//Bc5A9~c!B~c!B~c!, ~A12!

A///Bc5A-~c!B~c!B~c!B~c!. ~A13!

APPENDIX B: FORMULAS WITH THE EXPONENTIAL

If X(t) is a linear operator depending on a parametert, then an important formula is this
involving the t-derivative of the exponential function ofX

e2Xdt e
X5E

0

1

ds e2sX~dtX!esX . ~B1!

Here, we shall derive the analogous formula for a general nonlinear operatorX5X(t) and our
nonlinear version of the exponential function,

E~X!511X1~1/2!X/X1~1/6!X/X/X1•••5(
n

1/n! ~X/ !n21X, ~B2!

where I use the convention, noted after Eq.~15! that the repeated slash products are grouped w
the left-hand factors most interior.
J. Math. Phys., Vol. 38, No. 1, January 1997
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Take thet derivative of ~B2!, which is easy because of the linear properties of the s
products

dtE~X!5(
n

(
m,n

1/n! ~X/ !m~dtX!~ /X!n2m21 ~B3!

5E
0

1

ds(
n

(
m

sm/m! ~12s!n/n! ~X/ !m~dtX!~ /X!n. ~B4!

Now the infinite sum overm can be carried out because the terms (X/)m sit at the interior of all
the multiple slash products

dtE~X!5E
0

1

ds(
n

~12s!n/n!E~sX!/~dtX!~ /X!n. ~B5!

In order to collapse the sum overn, we shall need another general formula

(
n

1/n!B~ /A!n5BE~A!. ~B6!

This may be proved by replacingA by tA and then taking the derivative with respect tot. For the
special caseB5A, this is equation~35!.

Thus we have our result, generalizing~B1!

dtE~X!5E
0

1

ds~E~sX!/~dtX!!E~2sX!E~X!. ~B7!

And, following the results given after equation~49!, we can write

~dtE~X!!E~2X!5(
n

1/~n11!! ~@X/ !n~dtX!#n ~B8!

in terms of the repeated slash commutators.
Several useful results may be obtained from the above formulas. First, we can sho

generalization of the famous Baker–Campbell–Hausdorff theorem for the product of expone
of operators

E~ tA!E~ tB!5E~X~ t !! ~B9!

with X(t)5tX11t2X21t3X31••• andX1 obviously5A1B. Taking thet derivative of Eq.~B9!,
using ~22! and ~49!–~51! for the left hand side and using~B8! for the right hand side we can
equate coefficients of each power oft. Then we see that each of the higher orderX’s is expressed
in terms of slash commutators built up from the operatorsA andB. When we let the operators b
linear, then the slash-commutators become ordinary commutators andE(A) becomes the ordinary
exponential. Thus, the algebraic structure of this theorem is identical in the case of non
operators to what it is for linear operators. We find

X15A1B; X251/2@A/B#; X351/12@~A2B!/@A/B##; etc. ~B10!

And from this it follows that, if [A/B]50, then

E~A!E~B!5E~A1B!5E~B!E~A!.
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A second result is obtained by considering the symmetric product,

W~ t !5E~ tA!E~ tB!E~ tA!5E~X~ t !!. ~B11!

SinceW(2t) W(t)51, we conclude that

X~ t !5tX11t3X31t5X51••• . ~B12!

To determine theX’s we again calculate thet derivative ofW, using now Eq.~22a!, and we get,

~dtW~ t !!W~2t !52A1B2t2/2@~A1B!/@A/B##1••• . ~B13!

Then we again use~B8! and, comparing terms, find the results

X152A1B and X3521/6@~A1B!/@A/B##. ~B14!

A third new result follows from Eq.~B6!

BE~A!5E~AB!B, ~B15!

which I leave for the reader to verify. If one replaces the operatorB by the operatorE(B), then
one has

E~B!E~A!E~B!215E~A8!, ~B16!

where

A85AE~B!5~E~B!/A!E~B!215(
n

1/n! ~@B/ !nA#n. ~B17!

This reads as the generalized relation between elements of a Lie Group and the correspond
algebra. The exponentialeA of a linear operator is replaced byE(A) for the nonlinear operator
and the usual commutator used in the Lie algebra is replaced by the slash commutator.

An alternative representation forE(X) is the limit,N going to infinity, of (111/N X)N; and
some previous results are readily derived from this.

While many of the above relations involvingE(A) could be called trivial in the case of linea
operators, this author finds it remarkable that they hold true in the case of general non
operators.

APPENDIX C: SOME OTHER INFINITE SERIES

Here, we shall look at some other infinite series of operators. First, lets find the expansi
the operator

V5V~ t !5~12tA!215( tnVn~A!. ~C1!

Taking the derivatived/dt and using equation~23! we find

dtV5V/AV5~1/t !V/~V21!5( ntn21Vn . ~C2!

Substituting~C1! into ~C2! and equating like powers oft, we find the relation
J. Math. Phys., Vol. 38, No. 1, January 1997
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Vn51/~n21! (
0,m,n

Vm /Vn2m. ~C3!

Starting withV051 andV15A, we thus find

V25A/A, V351/2~A/A!/A11/2A/~A/A!,

V45~1/3!$V1 /V31V2 /V21V3 /V1%,etc. ~C4!

The general termVn(A) is a linear combination of all the distinct ways of writing the multip
slash products ofn factorsA. To verify this last statement, note that Eq.~C3! provides the
necessary step in the proof by induction. The number of such terms in eachVn is equal to

2~24!n21~1/2!!/ @n! ~1/22n!! #.

The above result can be used in connection with the general equation (A1),

A~11tB!5( tn/n!A/nB, ~C5!

whereA/0B5A, A/1B5A/B, A/2B5A//B, etc. Take thet-derivative of Eq.~C5! and get:

( @ tn21/~n21!! #A/nB5~1/t !$A/@12~11tB!21#%~11tB!

52~1/t !H (
m.0

~2t !mA/Vm~B!J ~11tB!. ~C6!

Using ~C5! once again, and equating like powers oft, we find the result

A/nB52 (
m.0

@~n21!! ~21!m/~n2m!! #~A/Vm~B!!/n2mB. ~C7!

With this we can recursively derive former results,~A6! and~A11!, and go on to higher orders, fo
example,

A////B526A/V416~A/V3!/B23~A/V2!//B1~A/V1!///B. ~C8!

For another exercise, consider the infinite series

G~A,p!5( 1/pn11A`n. ~C9!

If we were dealing with linear operators, this would be the same as the first series~C1!, but in
general it is different. This seriesG(A,p) would arise, for example, if one took the Laplac
transform of the propagatorE(A,t) given by Eq. ~33!. One can readily derive the algebra
identity,

pG~A,p!2G~A,p!/A51. ~C10!

This is not something one can readily ‘‘solve’’ forG; however, this equation is immediatel
amenable to perturbation theory. If we replaceA by A1lB, wherel is a small parameter, and w
expand
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G~A1lB,p!5( lnGn ,

then we get the relations

pG02G0 /A51, pGn2Gn /A5Gn21 /B. ~C11!

Still another variation involves a quantity, denoted byA;n, which is the sum of all distinct
ways of writing the multiple slash products ofn factorsA. This is similar to the quantityVn(A)
considered above, but with all numerical coefficients equal to 1. Starting withA;15A, we have
the recursion formula

A;n5 (
0,m,n

A;m/A;n2m. ~C12!

Consider now the infinite sum

Y5 (
n.0

A;n. ~C13!

This satisfies the equation,

Y/Y5Y2A ~C14!

so we have found one solution to the general ‘‘quadratic equation’’ involving nonlinear oper
and slash products. The other solution~which does not go to zero whenA vanishes! is more
complicated; it is not equal to 12Y.

APPENDIX D: SYMMETRY OPERATORS

This concerns symmetry and invariance in the dynamical nonlinear equations. LetU be some
operator that produces a transformation of the coordinates or the functionsc

c85Uc, ~D1!

where we have an original equation of motion

dtc5Ac. ~D2!

Let us calculate

dtc85~1/e!$U~c1edtc!2Uc%5~1/e!$U~11eA!c2Uc%5~U/A!c5~U/A!U21c8.
~D3!

Thus in order forU to be called a symmetry operation the equation for the transformed fun
c8 should be identical in form to the original equation forc. That is, we require the dynamica
operatorA to obey the invariance equation

~U/A!U215A. ~D4!

If U is a linear operator, this looks like the familiar rule~without the slash! but in general this is
different.
J. Math. Phys., Vol. 38, No. 1, January 1997

22¬Jan¬2008¬to¬169.229.32.135.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jmp.aip.org/jmp/copyright.jsp



t
lash

500 Charles Schwartz: Nonlinear operators and their propagators

Downloaded¬
Suppose the dynamical equation has not just one operatorA but a sum of operators, sayA1B,
each of which individually satisfies the requirement~D4!. One can then readily prove tha
(U/(A1B))U215A1B. But note that this would not be so without the presence of the s
symbol, unlessU is a linear operator.
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