
UC Berkeley
Research Reports

Title
In Traffic Flow, Cellular Automata = Kinematic Waves

Permalink
https://escholarship.org/uc/item/8ht0z7mk

Author
Daganzo, Carlos F.

Publication Date
2004-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ht0z7mk
https://escholarship.org
http://www.cdlib.org/


Institute of Transportation Studies
University of California at Berkeley

October 2004
ISSN 0192 4095

RESEARCH REPORT
UCB-ITS-RR-2004-5

In Traffic Flow, Cellular Automata = Kinematic Waves

Carlos F.Daganzo



In Traffic Flow, Cellular Automata = Kinematic Waves

Carlos F. Daganzo

Institute of Transportation Studies

University of California, Berkeley CA 94720

October 13, 2004

Abstract

This paper proves that the vehicle trajectories predicted by (i) a simple linear car-

following model, CF(L), (ii) the kinematic wave model with a triangular fundamental dia-

gram, KW(T), and (iii) two cellular automata models CA(L) and CA(M) match everywhere

to within a tolerance comparable with a single “jam spacing”. Thus, CF(L) = KW(T) =

CA(L,M).



1 The CF(L) model

One of the oldest and simplest car-following models [1] relates speed and spacing by a linear

rule, with a time lag. If we use xn(t) and vn(t) for the position and speed of car n at time t,

and number cars in the reverse direction of travel, as is customary, the aforementioned rule is:

vn(t + εr) = V (xn−1(t)− xn(t)), (1)

where εr is a reaction time, and V is a (linear) function of the spacing sn(t) = xn−1(t) − xn(t)

in front of vehicle n. Because speeds are bounded we truncate the linear relation and use:

V (s) = min(
s− δ

τ
, vf ), s ≥ δ (2)

where vf is the maximum (or “free-flow”) speed, δ is the minimum possible (or “jam”) spacing

and τ is a sensitivity coefficient with units of time. In the truncated model, speed increases

linearly with spacing for s ≤ δo, where δo = δ + τvf is the “optimum” spacing, and equals vf

for s > δo.

The CF(L) model is a modification of the truncated model for discrete time. Drivers do

not continuously track their position and speed. Instead, they sample their spacing at times

ti = iεs and adjust their acceleration for the interval (ti, ti+1) to achieve an average speed in

this interval, vn
i,i+1, consistent with rule (2); i.e.,

vn
i,i+1 = V (sn

i ). (3)

It is further assumed that the sampling interval is εs = τ .

This last assumption endows the model with properties that are both realistic and mathemat-

ically useful for the purposes of this paper.1 In particular, if sn
i ≤ δo then vn

i,i+1 = (sn
i −δ)/τ and

the position of vehicle n at the end of the interval is: xn
i+1 = xn

i +τvn
i,i+1 = xn

i +sn
i −δ = xn−1

i −δ.

If sn
i > δo, then vn

i,i+1 = vf < (sn
i − δ)/τ and the position is xn

i+1 < xn−1
i − δ. In both cases,

xn
i+1 ≤ xn−1

i −δ. Since xn−1
i ≤ xn−1

i+1 , this guarantees that xn
i+1 ≤ xn−1

i+1 −δ; thus, the jam spacing

is preserved at all times. Moreover, the two results for the final vehicle position can be neatly

combined in a single formula:

xn
i+1 = min{xn

i + τvf , xn−1
i − δ}. (4)

1 Realism is discussed in Sec. 4.
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This is the discrete-time expression of Newell’s “lower order” car-following model [2]. The

formula implies that a vehicle always takes the most advanced position possible, limited by its

free-flow speed and the position of the car in front. After a vehicle catches up with the car in

front, the two trajectories become translationally symmetric.

Consider now a standard “lead-vehicle problem” (LVP), which will be our basis for comparing

models. Given are: (i) the trajectory of a “lead vehicle”, x0(t) for t ≥ 0 with speeds in the

feasible range [0, vf ], and (ii) initial positions for all following cars xn(0) satisfying the minimum

spacing requirement. We look for the trajectories of all the following cars. To find the CF(L)

solution, apply (4) for n = 1 and all i ≥ 0. Then iterate with increasing n to obtain the

trajectories, xn, of all vehicles.2 We shall use F for the mapping implied by one of these

iterations: xn = F(xn−1, xn
0 ).

2 The KW(T) model

We show here that the CF(L) model and the kinematic wave model with a triangular fundamental

diagram, KW(T), are identical if the parameters of the latter are chosen to be consistent with

the equilibrium values of the former. That is, if the jam density is κ = 1/δ, the free-flow speed

is vf , and the wave-speed in the congested regime (the slope of the declining branch of the

fundamental diagram) is w = −δ/τ . Some important features of the KW(T) model are now

introduced. For additional information see [3, 4, 5, 6].

Consider an LVP. Kinematic wave theory looks for a continuous function, N(t, x), giving

the vehicle number at every point in continuous space-time. The streamlines of N(t, x) (curves

where N(t, x) = n for fixed n) are the vehicle trajectories. In a well-posed LVP the lead-vehicle

trajectory is given by specifying a curve N(t, x) = 0 with speeds in the range [0, vf ]. The initial

vehicle positions are given by specifying a Lipschitz-continuous and non-increasing function,

N(0, x), such that N(0, x)−N(0, x + ∆x) ≤ δ∆x for all x and ∆x. (The initial positions xn(0)

are the values of x where N(0, x) is an integer.)

Kinematic wave theory contains recipes to obtain the nth vehicle trajectory in terms of the

n − 1st. These recipes show that if N(0, x) is linear between every pair of consecutive initial
2 In this paper when an index or a variable is omitted from a symbol, it denotes a vector.
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vehicle positions then:

xn(t) = xn(0) + tV (xn−1(0)− xn(0)) if t ≤ τ, (5)

xn(t) = min{xn(0) + tvf , xn−1(t− τ)− δ} if t ≥ τ. (6)

These equations always define a continuous curve, as the reader can easily verify. We shall use

K to abbreviate the mapping based on (5) and (6) that gives the trajectory of vehicle n in terms

of its initial position and the trajectory of n− 1: xn = K(xn−1, xn
0 ). It is easy to see from (5-6)

that K is a contraction mapping with respect to the l∞ (maximum absolute difference) norm,

‖ · ‖; i.e.,

Contraction property of K: If for some ε > 0, ‖xn−1−xn−1‖ ≤ ε and |xn
0−xn

0 | ≤
ε, then ‖xn − xn‖ ≤ ε. ¤

This in turn implies by iteration that the complete vector of KW(T) trajectories, x, also satisfies

a similar property with respect to a problem’s data,

Contraction property of KW: If for some ε > 0, ‖x0−x0‖ ≤ ε and ‖x0−x0‖ ≤ ε ,

then ‖x− x‖ ≤ ε. ¤

Finally note that if we are only interested in the position of the vehicles at the lattice times

{ti = τi}, Eq.(5) is unnecessary and recursion (5-6) becomes:

xn
i+1 = min{xn

0 + (i + 1)τvf , xn−1
i − δ}. (7)

Obviously, this discrete version of the problem also exhibits the contraction properties.

We now prove that KW(T) = CF(L). We shall use x and x to identify the vehicle positions

obtained with (4) and (7), respectively.

Equivalence Theorem: If {x0
i = x0

i ;∀i ≥ 0} and {xn
0 = xn

0 ;∀n ≥ 0}, then {xn
i =

xn
i ; ∀n, i ≥ 0}.

Proof : Consider n = 1 and note from (4) that if the second term is a minimum

for some i, then it is a minimum from then on. This happens because the second

term can never increase in one jump by more than τvf - since the speeds of the

lead vehicle are assumed to be in the range [0, vf ]. Thus, (4) predicts that vehicle
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1 will advance by τvf units for as many consecutive intervals as possible until the

second term of (4) becomes a minimum; i.e., that vehicle n = 1 moves to position

xn
i+1 = xn

0 +(i+1)τvf after the (i+1) jump if and only if xn
0 +(i+1)τvf ≤ xn−1

i −δ.

Otherwise it advances to position xn−1
i − δ. This, of course, is a restatement of (7).

Thus, the theorem is true for n = 1.

Note from (4) and (7) that the output speeds produced by K or F are in the same

range, [0, vf ], as the input speeds. Thus, the argument in the preceding paragraph

can be successfully iterated for n = 2, 3, ... Evidently the trajectories must match

for arbitrary n. ¤

3 The CA(L,M) models

A strong connection between between fluid and cellular automata (CA) models of traffic flow has

been suspected for some time; see e.g., the links established in [7] and [8]. We add to this body of

knowledge by presenting two CA models that match the CF(L) and KW(T) vehicle trajectories

precisely everywhere with a tolerance comparable with the jam spacing. The first model - a

variant of the original in [9] - achieves the match only for certain parameter combinations. The

second model achieves it for all conditions. The correspondence between the parameters of the

CA and KW(T) models is established.

In this section space is discretized in increments δ, so that the jth lattice line is at location

Xj = jδ. We shall also work with dimensionless distance, z = x/δ, because it conveniently

expresses the lattice number: zj = j.

3.1 The CA(L) model

Define now the dimensionless quantity, τvf/δ = ω, and express (4) in dimensionless form:

zn
i+1 = min{zn

i + ω, zn−1
i − 1} (8)

It is found experimentally time after time that ω ≈ 7. If ω is a positive integer, (8) is a

relationship among integers. Thus, if the data of a dimensionless LVP {z0
i , zn

0 } are integer, its

CF(L) solution {zn
i } is also integer. LVPs with integer data will be called “ILVPs”.

Associated with every LVP there is an ILVP obtained by rounding up every data point to

the next integer value. We shall use an overbar to denote the data of an associated ILVP; thus,
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{z0
i , z

n
0} = {dz0

i e, dzn
0 e}. The CA(L) model (“cellular automata (linear)”) is the application of

the CF(L) rule (8) to the associated ILVP of an LVP. A word description of (8) is as follows:

The CA(L) rule: Jump to the most forward point possible without reaching the

old position of the followed car or jumping more than ω intervals. ¤

By construction, CA(L) = CF(L) = KW(T) for the associated ILVP of any LVP. Thus, we

write z
.= {zn

i } for all three ILVP solutions. We know, however, that the CF(L) and KW(T)

solutions of the LVP are the same: z
.= {zn

i }. Since, by construction, all the data points of the

LVP and ILVP differ by less than 1 unit, the contraction property of KW(T) guarantees that

‖z − z‖ ≤ 1.

This is the desired result. It shows that if the position of every vehicle in the initial data

is advanced to the nearest lattice point, then the CA(L) model predicts the same vehicular

positions as the KW(T) and CF(L) models to within one jam spacing; i.e., to within the degree

of accuracy allowed by the CA granularity. The CA(L) model requires integer ω, however.

3.2 The CA(M) model

We now present an alternative that can be readily modified for non-integer ω, and match under

this condition the CF(L) and KW(T) predictions with a tolerance comparable with the jam

spacing.

3.2.1 Definition and performance for integer ω:

We still discretize space in jumps of δ but use a finer time-lattice: Tk = kδ/vf . Assume for now

that ω ≥ 1 is integer. Then, the old time instants {ti} are a subset of the new {Tk}, such that

ti = Tkω . The intervals of the new lattice are ω times smaller than those of the old.

We shall work with dimensionless vehicular positions on the fine lattice: Zn
k = xn(Tk)/δ.

And, again, for any LVP we define an associated ILVP by rounding up its fine-lattice data to

the nearest integer: {Z0
, Zk} = {dZ0e, dZke}.

In terms of the new dimensionless positions, the KW(T) predictions (5) and (6) are:

Zn
k = Zn

0 + kJ(Zn−1
0 − Zn

0 ) if k ≤ ω, and (9)

Zn
k = min{Zn

0 + k, Zn−1
k−ω − 1} if k > ω, (10)
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where J is the version of (2) that returns the dimensionless speed (J = v/vf ∈ [0, 1]) in terms

of the dimensionless spacing S = s/δ: J(S) = min{1, (S − 1)/ω} for S ≥ 1. These relationships

are next put into CA form.

Since (9) is not a relationship among integers, we replace it in the CA formulation by:

Z
n
k = Z

n
0 + bkJ(Zn−1

0 − Z
n
0 )c if k ≤ ω, (11)

which produces integer outputs for integer inputs. The CA(M) (“cellular automata (memory)”)

model is the application of (11-10) to an associated ILVP.

Recall that (5) and therefore (9) arose by assuming that the initial density in each vehicular

spacing was constant and equal to the reciprocal of the spacing - but this assumption was made

for convenience only. Simple KW theory considerations show that a modified distribution always

exists for which the KW solution of the ILVP obeys (11-10).3 Thus, the output of these two

equations, Z
.= {Zn

k}, is a KW(T) solution of the ILVP on the fine lattice.

Since the maximum absolute difference between the LVP and ILVP data is inferior to 1 unit,

the contraction property of the KW(T) model again guarantees that the discrepancy between

the CA(M) and KW(T)-CF(L) predictions on the fine lattice is always less than 1 jam spacing.

3.2.2 Simplified expression of the CA(M) rule:

The Equivalence Theorem showed that (7) could be replaced by an expression (4) that did

not involve the initial conditions. Since (10) is just a dimensionless version of (7) a similar

simplification is now possible. The new expression is:

Zn
k+1 = min{Zn

k + 1, Zn−1
k−ω+1 − 1} if k > ω. (12)

Equation (12) is slightly different from the dimensionless version of (4) because it pertains to

a finer lattice, but the logic behind it is the same.4 Equations (11) and (12) are an alternative

expression of the CA(M) rule.

A further simplification is possible. Since dimensionless speeds are in the range [0,1], the Zn
k

are non-decreasing functions of k. Therefore, if the second argument in the right side of (12) is

a strict minimum then Zn
k+1 = Zn

k ; the vehicle does not move. Otherwise it jumps one position.

Thus, with the CA(M) rule vehicles make the following simple binary choices:
3This distribution only involves “jam”, “optimum” and zero densities
4 In this case too, the first argument of (12) always increases with each jump at least as much as the second,

and therefore the prediction of (12) for Zn
k+1 must be either Zn

0 + (k + 1) or Zn−1
k−ω − 1; i.e., the same as (10).
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The CA(M) rule: After initialization with (11) for ω periods, vehicles jump to the

next lattice position if this position has been vacant for ω − 1 intervals. Otherwise,

they stay where they are. ¤

3.2.3 Modification and performance for arbitrary ω:

We consider here LVPs with driver-specific lags, τn, and restrict our attention to problems with

super-optimal initial spacings:

xn+1(0) ≤ xn(0)− τn+1vf − δ. (13)

We also pretend that the system has been in a steady state before t = 0, so that: xn(t) =

xn(0) + tvf for t < 0. These stricter assumptions are reasonable since in practice most systems

are simulated starting with an empty (or lightly congested) system. For this special case of the

LVP it is pointed out in [2] that:5

xn(t) = min{xn(0) + tvf , x0(t− Γn)− nδ} where Γn =
n∑

m=1

τm. (14)

Result (14) allows us to bound the discrepancies between LVP problems that only differ in

the driver populations. If two populations have cumulative lags Γn and Γ̂n, (14) implies:

|x̂n(t)− xn(t)| ≤ vf |Γn − Γ̂n|, ∀t. (15)

This shows that a driver population with any given lag behaves similarly to a heterogeneous

population with variable lags, but similar cumulative values. We now use this idea.

If ω ≥ 1 is not an integer, approximate the problem by one where drivers are inhomogeneous

with integer ω̂n. Choose these values according to the rule:
∑n

m=1 ω̂m = dnω− 1
2e and solve the

ILVP associated with an LVP with the (heterogeneous) CA(M) rule.

We have seen that the output of the CA(M) rule for a fixed n matches that produced by the

heterogeneous KW(T) model on the fine lattice if the input data are integer. Thus, a perfect
5A proof is by induction. For this problem (5)-(6) can be replaced by (6) with unrestricted t. Equation (14)

is obviously true for n = 1. Thus, it suffices to show that it is true for vehicle n + 1 if it is true for n. If it

is true for n, we can insert (14) into the instance of (6) for vehicle n + 1 to find its trajectory. The result is:

xn+1(t) = min{xn+1(0)+ tvf , xn(0)+ tvf − τn+1vf − δ, x0(t−Γn− τn+1)− (n+1)δ}. Inequality (13) guarantees

that the middle argument of the minimum function can never be smaller than the first. Thus, the result for

trajectory xn+1(t) is as predicted by (14).
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match is obtained for n = 1. Since the CA(M) rule produces integer trajectories, the perfect

match continues for n = 2, 3, ... Hence, we can use a single vector, x̂, to describe both ILVP

solutions on the fine lattice. (The “hat” stands for “inhomogeneous” and the “overbar” for

integer.)

We can now use (15) to compare the inhomogeneous and homogeneous KW(T) solutions of

the ILVP. By construction, |Γn− Γ̂n| ≤ 1
2τ . Thus, an upper bound to ‖x̂−x‖ on the fine lattice

is 1
2τvf = 1

2ωδ. We have already seen that δ is an upper bound to ‖x−x‖, where x now denotes

the homogeneous KW(T) solution vector on the fine lattice. Thus, ‖x̂−x‖ ≤ (1
2ω+1)δ, showing

that if ω ≥ 1 is allowed to be real, then the error in vehicle position achieved by the CA(M)

method is still bounded by a quantity comparable with the jam spacing.

In practical applications, where perfectly matching the deterministic KW(T) model is not

necessary, it may be easier and just as realistic to randomize the memory parameter, ω, across

drivers. This, of course, is equivalent to randomizing τ in the KW(T) and CF(L) models.

4 Discussion

Parallel derivations show that the results of this paper also apply to the “finite highway problem”

- where data include the flow of traffic wishing to enter at the upstream end. The CA(M) model

is particularly useful because its law of motion involves only one cell at a time. This facilitates

the formulation of meaningful boundary conditions for merges, diverges and lane-changes; and

the integration of CA methods into “next-generation” hybrid models of traffic flow.

Experimental evidence suggests that parsimonious multi-lane hybrid models can achieve an

unprecedented level of realism [10]. These models treat traffic on individual lanes as parallel

KW(T) streams intermittently interrupted by lane changing vehicles with bounded acceleration.

These vehicles are then treated as lead-vehicles in an LVP. The models have a demand compo-

nent that triggers the lane changes, and a “constrained-motion model” in continuous time that

generates the lead-vehicle trajectories. The models are easy to estimate; they only involve three

KW(T) parameters and one parameter for the demand model.

The same “hybrid” idea - combining a detailed model in continuous time and continuous

time for the lane changes, with a coarser model for the individual lane streams - can also be

applied if one replaces the KW(T) module of the model by a CA(L,M) module. The results of

this paper suggest that this hybrid model would yield similar results as [10], and this could be
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advantageous in some application contexts.

Unlike many car-following models, the CF(L) model keeps all shock fronts sharp. This is in

agreement with numerous experiments, as explained in [2]. The CF(L) model, however, assumes

that drivers are very precise (e.g., with τ = εs) and act synchronously. Since this is not possible,

but the model fits reality well, one would expect other forms of driving to produce similar

macroscopic results. Analysis and numerical experiments with very long lines of cars [11] show

that both, smooth control rules for throttle control, and very crude (but realistic) ”bang-bang”

rules, generate vehicle trajectories similar to those of the CF(L) model.
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