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Abstract

Stimulated Raman scattering (SRS) offers the ability to image metabolic dynamics with high 

signal-to-noise ratio. However, its spatial resolution is limited by the numerical aperture of 

the imaging objective and the scattering cross-section of molecules. To achieve super-resolved 

SRS imaging, we developed a deconvolution algorithm, adaptive moment estimation (Adam) 

optimization-based pointillism deconvolution (A-PoD) and demonstrated a spatial resolution of 

lower than 59 nm on the membrane of a single lipid droplet (LD). We applied A-PoD to spatially 

correlated multiphoton fluorescence imaging and deuterium oxide (D2O)-probed SRS (DO-SRS) 

imaging from diverse samples to compare nanoscopic distributions of proteins and lipids in cells 

and subcellular organelles. We successfully differentiated newly synthesized lipids in LDs using 

A-PoD-coupled DO-SRS. The A-PoD-enhanced DO-SRS imaging method was also applied to 

reveal metabolic changes in brain samples from Drosophila on different diets. This new approach 

allows us to quantitatively measure the nanoscopic colocalization of biomolecules and metabolic 

dynamics in organelles.
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Raman imaging is a vibrational spectroscopy technique measuring the scattered light 

corresponding to the vibration of molecules. When incident light alters the polarizability 

of a molecule, the wavelength of the scattered signal is changed by the resulting vibrational 

modes. Although Raman scattering imaging reveals structural information of a molecule 

based on the wavelength change of this scattering signal, the signal of spontaneous Raman 

scattering is weak, making it difficult to achieve high-speed imaging. In 2008, SRS was 

demonstrated. To selectively accelerate the matching molecular vibrational transition by up 

to 108 times, SRS uses two synchronized pulsed lasers, the pump beam and the Stokes 

beam, to produce a beating field at their different frequencies. SRS microscopy offers 

greatly amplified signal intensities relative to conventional Raman microscopy and has 

been widely applied to bioimaging ever since1–3. About 10 years later, DO-SRS imaging 

was reported. DO-SRS allows bioorthogonal chemical imaging of metabolic dynamics 

with a greatly enhanced signal-to-noise ratio (SNR)3. Briefly, the enzymatic incorporation 

of deuterium (D) atoms from D2O into newly synthesized biomolecules generates a 

new chemical bond called the carbon–deuterium (C–D) bond in macromolecules. The 

shifted spectra of the C–D forms of lipids, proteins and DNA can then be observed and 

distinguished with macromolecular specificity using spectral unmixing. However, the spatial 

resolution of SRS imaging still needs improvement. Recently, several super-resolution SRS 

techniques have been developed4–14. Nonetheless, it is still challenging to achieve super-

resolved Raman imaging without manipulating the samples and to preserve the temporal 

resolution without any labeling or additional physical or chemical treatment.

Image deconvolution is a computational strategy that removes distortion15. Distortion in 

optical microscopy results in an image blurred by light diffraction, and this blurring 

is expressed as a point spread function (PSF). A PSF model can be combined with 

deconvolution to enhance resolution of microscopic images. One traditional approach is 

to consider images of high-density emitters as a continuous single object and deconvolve 

the image. However, this approach was less accurate or produced problems such as 

ringing artifacts, false signals in empty spaces. Another approach to computationally 

improve resolution is localization of single emitters. Several deconvolution methods have 

been developed to achieve super-resolved images by localization of single-fluorescence 

emitters16–18. These methods successfully enhanced the temporal resolution of localization 

microscopy. However, these methods cannot localize high-density emitters in a single-frame 

image taken with low-sensitivity sensors and thus cannot be applied to SRS microscopy 

data.

To overcome these limitations, Martinez et al.19 developed a deconvolution method to fit 

the measured data by superposition of virtual point sources (SUPPOSe). This method takes 

a diffraction-limited image and approximates a super-resolution image by placing a limited 

number of virtual emitters on the image and optimizing the position of each emitter. It sets 

the total number of virtual emitters, and each emitter has the same unit intensity. The fixed 

total intensity prevents virtual emitters from deviating away from the optimized position. 

Because of this characteristic, the artifact of residual images, or ringing artifact, can be 

removed, as shown in Extended Data Fig. 1a,b. Additionally, due to the fixed unit intensity, 

each pixel can have only multiples of the unit intensity. Finally, the characteristics, fixation 

of total intensity and unit intensity lead to extremely high sparsity of resulting images. 
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High sparsity keeps virtual emitters positioning on the most probable region and prevents 

the emitters going out from the region. In addition, because each virtual emitter represents 

a bundle of single emitters, this approach overcomes the limit of aforementioned sparse 

deconvolution methods. We sought to apply SUPPOSe directly to our SRS microscopy data; 

however, we found major drawbacks including low precision of the signal’s spatial location 

and slow processing speed.

We thus developed A-PoD, a method based on SUPPOSe that uses an Adam solver instead 

of a genetic algorithm for the optimization process of finding the positions of each emitter. 

The gradient descent algorithm Adam removes the randomness in the genetic algorithm 

and enables us to both enhance spatial precision and shorten the data-processing time. 

We applied A-PoD to SRS imaging and generated a series of super-resolved images of 

mammalian cells and tissues as well as Drosophila brain tissues. These images displayed 

nanoscopic distributions of protein and lipid in biological samples. We further measured 

the shapes and sizes of individual LDs in Drosophila brain samples and examined the 

effects of high-glucose diet on brain lipid metabolism and the size distribution of LDs. 

Our A-PoD algorithm achieves super-resolution images with higher spatial precision than 

existing deconvolution methods and at a markedly enhanced speed for image processing.

Results

Main concept of A-PoD

We converted SRS images into super-resolution images using a procedure illustrated in Fig. 

1a. First, a specific number of virtual emitters proportional to the overall brightness of the 

image are placed on an image (X), and a blurred image (S) is created through convolution of 

X and the PSF. When the position of each virtual emitter is adjusted such that the difference 

between the blurred image S and the measured image (Y) is minimized, X becomes the 

image with the most optimal distribution of virtual emitters. We used a modified Adam 

solver for the optimization in A-PoD (see Methods for details). Using simulation image 

data, we compared A-PoD with the Richardson–Lucy method, a widely used deconvolution 

algorithm. A-PoD outperformed the Richardson–Lucy algorithm in DeconvolutionLab2 

(even with 100 iterations; Extended Data Fig. 1).

As a proof of concept, A-PoD was applied to SRS imaging of lipids (at ~2,850 cm−1) in a 

live cell. Application of A-PoD greatly improved spatial resolution (Fig. 1b). The increased 

spatial resolution clearly revealed individual LDs inside the cell, allowing us to distinguish 

the outer layer and the internal space of the LD. Due to the strong SNR of the SRS setup, 

the –CH2 vibration signal of the lipid membrane is detectable. The measured image of 

–CH2 vibration was deconvolved using A-PoD. As a result of this process, the 3D sizes of 

individual LDs can also be clearly visualized from the sharpened image (Fig. 1c).

SPIDER18 is a sparse deconvolution algorithm that can generate super-resolved images 

from localization microscopy data. To assess the precision of A-PoD as a super-resolution 

deconvolution method, we compared the localization results with those obtained using 

SPIDER. We used a raw mitochondrial image stack from the previous SPIDER publication18 

that was composed of 100 frames. Each image frame contained information of scattered 
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blinking emitters. The image stack was processed with the SPIDER program. The widefield 

image was generated by averaging the stack and was deconvolved using A-PoD. Image 

processing using A-PoD revealed a mitochondrial structure similar to that obtained using 

SPIDER (Extended Data Fig. 2a(ii,iv)). Cross-section signal-intensity profiles of images 

showed that the thickness of the mitochondrial membrane measured by the two methods was 

almost the same. These results demonstrate that A-PoD can reconstruct a super-resolved 

image from a single-frame widefield image. To test the processing speed of A-PoD, 

we deconvolved the mitochondrial image with limited virtual emitter numbers of 105. 

As iteration number increased, the similarity between the ground-truth image and the 

deconvolution image was increased (Extended Data Fig. 2b). Using A-PoD, the entire 

process was completed in 2 s, and the similarity was higher than that using the genetic 

algorithm (in 96 min with 5 × 106 iterations). By further increasing the iteration number, the 

genetic algorithm could improve the similarity but with a much longer processing time.

STORM image analysis

To evaluate the spatial precision of deconvolution, we compared A-PoD results with those 

from DAOSTORM20, a widely used algorithm to localize emitters in dense localization 

microscopy images, for example, stochastic optical reconstruction microscopy (STORM) 

images (Extended Data Fig. 3). For this comparison, an image of cultured neurons in 

which spectrin was labeled using a fluorescent antibody (mouse anti-β II spectrin antibody 

conjugated with Alexa 647) was analyzed using the two algorithms. The original STORM 

image stack was composed of 16,500 frames, and two regions of interest (ROI) having 

different emitter densities were analyzed (Extended Data Fig. 3b,c). One of the selected 

ROI contained a low emitter density. From the entire image stack of the selected ROI, an 

‘epifluorescence’-like image was calculated. The image was deconvolved using A-PoD. Due 

to the low density of emitters, individual molecules in the image frame could be localized 

using DAOSTORM. Analysis using either A-PoD or DAOSTORM revealed the periodic 

structure of the membrane-associated periodic skeleton (MPS) in neurons. The intensity 

profile and the auto-correlation curves (Extended Data Fig. 3b(iii,iv)) showed the periodicity 

quantitatively, and the periodicity obtained using A-PoD was close to that obtained using 

DAOSTORM with less than 20% of difference. The precision might be affected by SNR, 

pixel size and low-frequency background of the image. From another ROI containing a high 

emitter density (shown in the green boxed area in Extended Data Fig. 3a(i)), we analyzed a 

single frame from the image stack using A-PoD (Extended Data Fig. 3c(i,ii)). Interestingly, 

the periodic structure of the MPS becomes more clearly visible than the other ROI with 

lower emitter density (Extended Data Fig. 3c(iii,iv)). Therefore, A-PoD can be used to 

analyze images with similar performance as that of DAOSTORM at low emitter density, 

indicating that A-PoD can be applied to processing images with a wider range of emitter 

densities.

Standard sample measurement

To quantitatively determine the resolution of A-PoD-coupled SRS imaging, we first 

analyzed images of standard polystyrene beads with known sizes (100 nm and 1 μm, 

respectively). The measured image was reproduced through convolution of the PSF and 

the virtual image. For an accurate prediction of the PSF, we evaluated the results of 
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using a simulated PSF and an experimental PSF. After measurement of 100-nm beads, 

the experimental PSF was calculated using A-PoD (Extended Data Fig. 4a). The simulated 

PSF was generated by multiplication of the PSFs of the pump beam (PSFpump) and the 

Stokes beam (PSFStokes). These two PSFs have similar full width half maximum (FWHM) 

values with about 3% difference (Extended Data Fig. 4b). Using the simulated PSF, another 

100-nm bead image was deconvolved, and the FWHM of the bead was decreased from 608.5 

nm to 101.0 nm (Fig. 2a). To compare the two PSFs, a single-LD image was deconvolved 

(Extended Data Fig. 4b). Spatial resolutions of the results were evaluated based on the 

membrane thickness measurement and decorrelation results. The thicknesses measured were 

59 nm and 76 nm by using the experimental PSF and the simulated PSF, respectively. 

Decorrelation21 results demonstrated the spatial resolutions of 54 nm and 57 nm in an 

experimental PSF result and a simulated PSF result, respectively. We next analyzed the 

image of 1-μm beads using the PSFsim. After deconvolution, the lateral size of the bead was 

expressed close to 1 μm, but the axial size of the bead was approximately 2.5 times larger. 

As the focal volume of a Gaussian beam has a longer shape along the vertical axis22, the 

axial resolution is worse than the lateral resolution. Additionally, we observed a cone-shaped 

afterimage appearing along the optical axis. This is because the direction and intensity of 

scattering are affected by the size and material of an object, and this scattering behavior 

is reflected in the wavefront shape of light23,24. The wavefront of light is distorted by 

scattering and diffraction. It is difficult to predict using an ideal PSF model. Therefore, the 

distortion near the bead was not removed by deconvolution. However, this can be mitigated 

by the combination of adaptive optics and a deep learning method that learns PSF changes 

around an object25,26.

Human retinal tissue imaging

Next, we extended A-PoD to SRS imaging of human retinal tissue samples (Fig. 2b). We 

focused on the outer segments of photoreceptors, which contain membranous photoreceptor 

disks surrounded by the cell membrane. After applying A-PoD to the SRS image, the image 

resolution was markedly increased, allowing for improved structural discrimination. For 

instance, the cell membrane could be visually distinguished in the outer segment of rod 

cells. The thickness of the cell membrane was about 170 nm, and the resolution of the 

image calculated using the decorrelation analysis method21 was approximately 100 nm. This 

resolution with the retinal sample image is lower than that of the standard bead image, 

because deconvolution accuracy depends on imaging conditions, including the intensity 

and sampling frequency. The bead image was measured with a sampling rate of 26 nm 

per pixel, but the sampling rate of the retinal image was 198 nm per pixel. Although the 

increase in spatial resolution was not sufficient to resolve the actual membrane thickness 

of ~4–5 nm, considering the wavelengths of the laser beams and the characteristics of the 

PSF, the resolution of ~100 nm clearly exceeded the diffraction limit. It is known that 

the lipid composition of the rod cell membrane is substantially different from that of the 

photoreceptor disks27. A-PoD-coupled SRS microscopy demonstrated a remarkable ability 

to distinguish these compartments.
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LD imaging

LDs are organelles important for cell proliferation and survival. These ubiquitous organelles 

not only serve as energy stores but also play crucial roles in cell signaling and membrane 

trafficking. They also contain diverse spatial and chemical information that may reflect 

oxidative stress, metabolic flux and disease status28–38. However, it has been challenging 

to directly visualize LD metabolism at the organelle level, mainly due to a lack of spatial 

information in conventional lipidomic modalities. Using A-PoD-coupled DO-SRS imaging, 

we visualized the nanoscopic distribution of LDs and their metabolic activities. DO-SRS 

imaging (at 2,850 cm−1) clearly revealed numerous LDs in the breast cancer cell, and the 

size of individual LDs could be precisely measured after deconvolution (Figs. 1c and 2c and 

Extended Data Fig. 4b). The outer layer of each LD was visually separated from the inner 

space of the LD. The thickness of the LD outer layer was measured to be approximately 200 

nm. This size was similar to that of the previously measured cell membrane of the rod cells. 

The axial thickness of the LD was approximately 500 nm, about 2.5 times larger than the 

lateral resolution. This difference is comparable to the resolution difference in imaging of 

1-μm beads.

Next, we used a particle-analysis method to remove the background and to focus on the 

regions of LDs. The subcellular distribution of LDs in breast cancer cells was then analyzed 

(Fig. 3). We measured the distances of the detected particles from an arbitrarily chosen 

point near the center of the nucleus and calculated the surface area:volume (SA:V) ratio 

of individual LDs. The LDs were classified into three groups based on the distance and 

SA:V ratio using the k-mean algorithm (Fig. 3b). Group 1 had a lower SA:V ratio than 

the other two groups (Fig. 3d). The LDs in group 2 (Fig. 3e) were distributed more 

closely to the nucleus than those in group 3 (Fig. 3f). The capability of A-PoD-coupled 

DO-SRS to identify these different subpopulations of LDs with different SA:V ratios or 

subcellular distribution may facilitate future studies of dynamic interactions of LDs with 

other organelles (such as the endoplasmic reticulum (ER)), as previous studies suggested 

that nano-LDs newly detached from the ER have high SA:V ratio.

Nanoscopic metabolic imaging with super-resolved DO-SRS

Direct visualization of LD metabolism under different conditions at the organelle level 

is crucial for uncovering signaling pathways and molecular mechanisms regulating lipid 

metabolism. Research in this area has been limited by a lack of spatial resolution in 

conventional lipidomic imaging modalities. We applied A-PoD-coupled DO-SRS metabolic 

imaging to visualizing lipid metabolism in HeLa cells cultured in the presence of D2O. The 

distribution of LDs in HeLa cells was imaged at 2,850 cm−1 (CH2) and 2,140 cm−1 (CD), 

representing the old lipids and the newly synthesized lipids, respectively (Fig. 4a). After 

converting the images in each channel to super-resolved ones using A-PoD, differences in 

the distribution of old versus new lipid signals were clearly revealed in two dimensions (Fig. 

4b) and three-dimensional (3D)-rendered images (Fig. 4e). Thus, the metabolic turnover rate 

of subpopulations of LDs can be quantified with SA:V ratio mapping. Before deconvolution, 

only areas with concentrated old and new LDs were visualized. After deconvolution, the 

3D shape and distribution of individual LDs were clearly visualized. Additionally, we 

analyzed the surface area and volume of individual LDs from cells cultured under different 
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conditions: high tryptophan (15×,Trp) and standard control medium. The standard deviations 

of surface area and volume of LDs in HeLa cells cultured in high-tryptophan medium were 

wider than those of the control group (Fig. 4c; see Extended Data Fig. 5 for control cells). 

The SA:V ratio of individual LDs was mapped in deconvolved images (Fig. 4d).

It has been proposed that LDs play a critical role in neuroblast cell division and 

brain development. One major hurdle for understanding functional roles of LDs under 

physiological or pathological conditions is the limited imaging methods for direct 

observation of LD metabolic activity changes under physiological or pathological 

conditions. We applied A-PoD-enhanced DO-SRS imaging to directly visualize metabolic 

changes in Drosophila larval brains collected from animals on different diets. The DO-SRS 

image of the entire brain lobe collected at 2,850 cm−1 showed a large amount of lipids in 

larvae fed with the standard control diet (Fig. 5). To determine the subcellular location of 

the lipids, magnified images were taken from the central brain region. These images clearly 

revealed lipids inside LDs (small dot-like structures). Using A-PoD, we were able to acquire 

the profile of individual LDs and compare the size distribution of LDs in brain samples of 

flies fed a standard diet with that of those fed with a high-glucose diet (3× glucose) (Fig. 

5a–d; also see histograms in Extended Data Fig. 6a and images before overlay in Extended 

Data Fig. 7). Size analysis showed that LDs in the ~0.2–0.3-μm2 range were predominant 

in the control group, whereas LDs in the high-glucose group showed a wider range of 

size distribution, with many small LDs in the ~0.1–0.2-μm2 range. To better visualize the 

subcellular distribution of LDs of different sizes in situ, color-coded images were generated 

to show the distribution of small (~0.05–0.2 μm2), medium (~0.2–0.3 μm2) and large (~0.3–

0.45 μm2) LDs, respectively (Extended Data Fig. 6a). Considering the small difference in the 

two histograms and the pixel size (163 nm) in the raw images, it is worth noting that this 

A-PoD-enhanced SRS approach can measure LD sizes of a wide range (~0.05–0.45 μm2).

Combined with D2O labeling, lipid metabolic activities in the brain samples were measured. 

By measuring the LD size and turnover rates (Extended Data Fig. 6b), we quantified 

the correlation between size and metabolic activity. The correlation coefficients were 

0.44 in control flies and 0.40 in the high-glucose group, with no significant differences 

detected. Both groups showed a positive correlation between LD size and metabolic activity, 

suggesting that larger LDs have higher metabolic activity. This result is consistent with our 

studies on Drosophila fat body metabolic activity39–41. Importantly, quantitative analyses 

of the CD/CH2 ratio showed that the average lipid-turnover rate in the high-glucose group 

was about ten times higher than that in the control group, suggesting that more newly 

synthesized lipids had accumulated in flies on the high-glucose diet (Fig. 5d and Extended 

Data Fig. 6b). A-PoD-coupled DO-SRS combined with particle analysis further enabled us 

to map distinct subpopulations of LDs: new lipid-dominant, old lipid-dominant and mixed 

LDs (Fig. 5e). Further studies are necessary to determine molecular mechanisms by which a 

high-glucose diet modulates lipid-turnover rates.

Nanoscopic colocalization of macromolecules and fluorophores

Applying A-PoD to spatially correlated multiphoton fluorescence (MPF) imaging and 

SRS imaging, we next examined nanoscopic spatial distributions of proteins and lipids in 
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mitochondria of live cells (Fig. 6). We imaged HEK293 cells with the mitochondria stably 

labeled with mitochondria-red fluorescent protein (Mito-RFP). The fluorescence signals of 

Mito-RFP were measured using MPF. At the same time, SRS images of 2,930 cm−1 (CH3 

protein, in cyan) and 2,850 cm−1 (CH2 lipid, in yellow) were also measured. The SRS 

images in the two different Raman shifts were unmixed into the protein channel and the 

lipid channel using an existing protocol (Fig. 6b)3,42. The images of these three measured 

channels were then converted into super-resolved images using A-PoD (Fig. 6c). Before 

deconvolution, there was a substantial overlap of different types of signals (white areas in 

Fig. 6d, left). After deconvolution, the white area was reduced, and the different distribution 

of each component was clearly revealed (Fig. 6d, middle). This is consistent with the 

fact that SRS signals for protein and lipid panels are not mitochondrion-specific proteins 

or lipids. On the other hand, most Mito-RFP signals (in magenta) were overlapping with 

lipid signals (in yellow), consistent with the fact that Mito-RFP marked the mitochondrial 

membrane. Furthermore, in the signal-intensity profile of the cross-section, the influence 

of the blurry background signal was reduced after deconvolution, and the position of each 

component was accurately expressed (Fig. 6d, right). These data showed that applying 

A-PoD to multiplexed MPF–SRS imaging substantially enhanced the resolution.

Discussion

In this study, we have developed the A-PoD algorithm and integrated it with SRS, DO-SRS 

and MPF–SRS imaging methods. A-PoD substantially enhances the spatial resolution of 

images at a high processing speed and spatial accuracy when an appropriate PSF is defined, 

regardless of the imaging modality. A-PoD can be applied not only to widefield fluorescence 

microscopy19 but also to various other microscopy techniques. The super-resolution A-PoD-

coupled SRS microscopy introduced here also has broad applications including deep-tissue 

imaging, hyperspectral imaging and multiplex imaging43–46.

We first characterized A-PoD as a sparse deconvolution method by analyzing the simulated 

data. The capability of A-PoD to generate super-resolved images was evaluated by 

comparison with localization microscopy data (Extended Data Fig. 2a). Although the genetic 

algorithm in SUPPOSe works well for optimizing variables in an integer domain (for 

example, the address of specific pixels), it contains randomness in the process. Gradient 

values of the function need to be calculated in every optimization step, which is time 

consuming. Of note, by changing the genetic algorithm to A-PoD, the image-deconvolution 

process was shortened from a few hours to a few seconds (Extended Data Fig. 2b). 

Compared with the Richardson–Lucy algorithm (Extended Data Figs. 1c and 8), the 

most widely used deconvolution method, A-PoD offers much richer information at a high 

resolution.

For analysis of STORM imaging data (Extended Data Fig. 3), A-PoD demonstrated potential 

as an image-processing tool for localization microscopy. Generally, to achieve a super-

resolved image using STORM, we need to keep a low concentration of emitters. By contrast, 

for A-PoD, strong signals are desirable to achieve higher resolution. Due to this unique 

characteristic of A-PoD, we could clearly visualize the periodic structure of the MPS in 

neurons from a single image in the bright ROI. This finding implies that A-PoD substantially 
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improves the temporal resolution of localization microscopy, allowing us to extract image 

features from a single frame to a few frames rather than analyzing tens of thousands of 

image frames. Depending on the imaging rate of the image stack, it would be possible to 

take a super-resolved image in a few-microsecond range when enough emitter density is 

secured.

Using A-PoD-coupled SRS microscopy, we successfully examined the distributions of 

proteins and lipids in cultured cells and tissue samples at the nanoscopic level. The 

nanoscopic distribution of LDs in cancer cells and the membranous outer segments of rod 

cells in the retinal tissue were clearly resolved. Furthermore, integration of A-PoD into our 

DO-SRS platform enabled us to examine different distributions of newly synthesized lipids 

versus the pre-existing lipids in live cells and tissues. This combination provides a powerful 

tool for direct visualization of lipid metabolic changes not only in cells but also in brain 

tissues (Figs. 4 and 5).

Using cultured HeLa cells and breast cancer cells, we demonstrated the power of A-PoD-

coupled SRS imaging in examining subcellular organelles, such as LDs and mitochondria 

(Figs. 3, 4 and 6). We mapped the SA:V ratio of individual LDs. Because the accuracy 

of the measured surface area and volume depends on the spatial resolution of images, 

A-PoD is a valuable tool for analyzing the exact values of these parameters. Using A-PoD-

coupled DO-SRS, we examined the spatial distribution of distinct subpopulations of LDs, 

those predominantly containing newly synthesized lipids, those mostly containing old lipids 

and LDs containing mixed lipids. Mapping the old and new lipid domains in individual 

LDs (Fig. 5e) provides useful information in studying lipid metabolism at the nanoscale. 

Future experiments are necessary for understanding the pathophysiological roles of LD 

heterogeneity. Nevertheless, our A-PoD-based DO-SRS imaging system provides a robust 

method for studying molecular heterogeneity in living organisms.

Analyses of the LD size distribution and lipid-turnover rate in Drosophila brain samples 

indicate that the subpopulation of LDs with higher turnover rate increased in the brain in 

flies on a high-glucose diet and that the average lipid-turnover rate in the high-glucose 

group was much higher than that in the control group. These analyses suggest that smaller 

LDs, which are usually newly born LDs connected to the ER47, may have lower de novo 

lipid-synthesis ability. They may obtain lipid content directly from the ER lumen. This is 

consistent with a previous study48 reporting that enzymes (such as DGAT2 and CCT1) 

mediating de novo lipid synthesis were mainly localized in larger mature LDs detached 

from the ER. Here, our A-PoD-enhanced super-resolution DO-SRS imaging has revealed 

the metabolic diversity of LDs, which had not been detected by other methods. Previous 

studies reported that ER stress was induced by high glucose49 and that ER stress increased 

LD number50,51. Our A-PoD-based super-resolution DO-SRS imaging system provides an 

effective tool for future studies on dynamic changes in LDs, functional roles of LDs and 

underlying mechanisms under various physiological and pathological conditions.

To define nanoscopic distribution of different molecules, we can use A-PoD in multiplex 

SRS imaging. We prepared HEK293 cells stably expressing Mito-RFP and examined 

subcellular distribution of mitochondria, proteins and lipids using A-PoD-based MPF and 
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SRS imaging. As expected, most Mito-RFP signals overlap with CH2 lipid (membrane) 

signals (Fig. 6d). By comparing the spatial localization of different components, we can 

clearly define colocalized and non-overlapping components. Furthermore, A-PoD-coupled 

multiplex SRS can be applied to imaging other biomolecules such as nucleic acids, etc.

To improve the spatial resolution, we used image deconvolution for SRS images, which 

is not trivial as SRS uses two laser beams. For the deconvolution algorithm, an accurate 

PSF model is needed, which can be either measured experimentally or simulated. Here, we 

tested both experimental and simulated PSFs and compared the results from them. For the 

simulated PSF, we chose it to be the product of the PSF of the pump beam and the Stokes 

beam. Simulated PSF has several advantages: first, it can be applied to existing images of 

which the experimental PSF might not be obtained; second, simulated PSF shows broad 

applications in other imaging modalities in addition to SRS.

The potential application of A-PoD in new localization microscopy methods was 

demonstrated in the analyses of STORM images. For existing localization microscopy 

methods, the amount of emitter signals has to be precisely adjusted. To make this 

adjustment, one needs to take numerous different frames to reconstruct a single super-

resolved image. However, A-PoD can maximize the temporal resolution by overcoming 

the limitation of emitter density. Therefore, this program allows us to take not only a 

super-resolution SRS image but also a super-resolution fluorescence image at a high speed.

A-PoD has a wide range of applications. In this study, we presented the results combining 

A-PoD with STORM, DO-SRS and multiplex MPF–SRS. It is also applicable to other 

imaging techniques. First of all, if we have enough information about the blurring 

kernel, spatial resolution of every old image can be improved. For example, for atomic 

force microscopy, the PSF model of optical microscopy cannot be applied because the 

morphology of the sample is measured by force between the tip end and the sample. 

However, the tip convolution effect blurs images due to the shape of the tip end. An attempt 

to deconvolute assuming the shape of the tip end was made 2 decades ago52, but it has not 

yet improved the quality of the atomic force microscopy image dramatically when A-PoD 

can be applied as a solution. In addition, the resolution of super-resolved images can be 

further improved by using A-PoD. Structured illumination microscopy (SIM), one of the 

super-resolution imaging techniques, is an example. Studies on the super-resolved Raman 

imaging technique using SIM were published recently53,54. Although SIM improves spatial 

resolution over twofold by reducing the size of the PSF, the resolution of SIM images 

can be further increased using A-PoD, because deconvolution is also possible based on 

the reduced PSF. This approach has been applied using a different deconvolution program, 

Sparse-SIM55. Finally, A-PoD can be applied to astronomy56, which is a research field in 

which deconvolution is widely used. In fact, the Richardson–Lucy algorithm was originally 

published for astronomy studies57. In sum, the results shown in this study represent the 

beginning of many different applications of A-PoD from the nanoscale to the astronomic 

scale.
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Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41592-023-01779-1.

Methods

Image preprocessing

The image of the 1-μm bead was interpolated two times along the optical axis direction, 

and the retina image was interpolated six times in all directions. The 3D live-cell images 

were interpolated ten times along the optical axis direction. The measured DO-SRS images 

were resampled before deconvolution. For all resampling processes, the Fourier interpolation 

code about f-SOFI was used58. To increase the SNR, the PURE denoise filter was used ten 

times to reduce noise in imaging the standard bead; and the automatic correction of the 

sCMOS-related noise algorithm was used for the retina image59,60.

A-PoD algorithm

The A-PoD algorithm described in the paper was newly implemented for SRS analysis. 

We adopted the Adam solver as the optimization method and used a gradient algorithm 

instead of a genetic algorithm. The optimization method was changed to a gradient descent 

algorithm from a genetic algorithm. The optimization method used is the Adam solver61. 

Because the variables of A-PoD are positions of each virtual emitter, the numbers are set to 

the address value of the pixel. Therefore, all these numbers have integer values, and, for this, 

the gradient equation of the Adam solver was modified as follows.

∇Φ =

Φ xn + 1, yn, zn − Φ xn − 1, yn, zn
xn + 1 − xn − 1

Φ xn, yn + 1, zn − Φ xn, yn − 1, zn
yn + 1 − yn − 1

Φ xn, yn + 1, zn − Φ xn, yn − 1, zn
yn + 1 − yn − 1

Here, Φ is an objective function for deconvolution of 3D images.

PSFs for deconvolution processes were simulated using the PSF generator in the ImageJ 

plugin according to the physical conditions of each measurement14,15. To efficiently process 

a 3D image, the image was deconvolved by dividing the image into several pieces as used 

in the SPIDER algorithm18. A-PoD was implemented using Tensorflow 1.15 and Python 3.6. 

The number of virtual emitters used was manually controlled under the condition that the 

image contrast improved. All calculations were performed on a Xeon W-2145 CPU with 64 

GB of RAM and a NVIDIA Quadro P4000 GPU.
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Lipid droplet analysis

After deconvolution, individual LDs were counted with the 3D object counter in ImageJ. 

Based on the information of position, volume, surface area and mean distance, we prepared 

the plots in Figs. 3 and 6 and Extended Data Figs. 5 and 6. After detection of individual 

LDs, we mapped the SA:V ratio using home-built Matlab code.

Standard beads

A colloid suspension of polystyrene beads 100 nm in diameter with a solid content of 1.0% 

(wt) (Thermo Scientific) was used in the following experiments. To tailor the suspension for 

the CAPA experiments, the colloidal solution was further diluted tenfold to a concentration 

of 0.1% (wt) (9.33 × 1,010 parts per ml) using deionized water.

Retinal section preparation

Human retinal tissue sections were obtained from a donor (age 83) (San Diego Eye 

Bank, CA, USA) with appropriate consent from the San Diego Eye Bank and following 

a protocol approved by the University of California, San Diego Human Research Protection 

Program. The donor had had no history of eye disease, diabetes or any neurological diseases. 

Following fixation, the retina was processed for cryostat sections (12 μm) and stored at –80 

°C.

Frozen sections were defrosted (10 min, room temperature) and washed with 1× PBS three 

times, for 10 min each time, and then sandwiched between a 170-nm coverslip and a glass 

slide with PBS solution. The coverslips were sealed with nail polish.

MCF-7 breast cancer cells

MCF-7 cells were cultured in DMEM growth medium supplemented with 10 mg l−1 insulin 

(Sigma-Aldrich), 1% (vol/vol) penicillin–streptomycin mix (Fisher Scientific) and 5% (vol/

vol) heat-inactivated FBS on a #1 thickness coverglass (GG-12-Laminin, Neuvitro) for 48 

h. Cells were fixed with 4% (vol/vol) paraformaldehyde (PFA) solution for 15 min and then 

mounted on 1-mm-thick glass slides.

HEK293 cells

HEK293 cells were stably transfected with a plasmid for expressing monomeric red 

fluorescent protein containing a mitochondrial targeting sequence (Mito-RFP)62. Cells were 

cultured on coverglasses in 24-well cell culture dishes at 37 °C (5% CO2) in DMEM 

supplemented with 10% FBS (Atlanta Biological) and 1% penicillin–streptomycin (Fisher 

Scientific). Cells were fixed with 4% PFA in PBS. Following washes with PBS, the 

coverglasses were mounted in PBS before imaging.

HeLa cells

HeLa cells were cultured in DMEM, supplemented with 10% FBS and 1% penicillin–

streptomycin (Fisher Scientific), and incubated with 5% CO2 at 37 °C. After passing at 80% 

confluence, cells were seeded at a concentration of 2 × 105 cells per ml onto a coverglass 

in a 24-well plate. DMEM with 0.5% FBS and 1% penicillin–streptomycin was used to 
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synchronize the cells for 8 h. The medium was then changed to 50% (vol/vol) heavy water 

(D2O) and treatment medium as described below.

For the excess aromatic amino acid condition, phenylalanine and tryptophan were increased 

as two separate test conditions at a 15× concentration. L-phenylalanine powder (SLCF3873, 

Sigma-Aldrich) and L-tryptophan powder (SLCF2559, Sigma-Aldrich) were added to 

DMEM for the excess groups. Cells were then cultured for 36 h. Next, the cells were 

gently rinsed with 1× PBS with calcium and magnesium ions at 37 °C (Fisher Scientific, 

14040216) and fixed in 4% methanol-free PFA solution (VWR, 15713-S) for 15 min. The 

coverglass was finally mounted on the cleaned 1-mm-thick glass microscope slides with 

120-μm spacers filled with 1× PBS for imaging and spectroscopy. These samples were 

stored at 4 °C when not in use.

Drosophila—The w1118 parent flies were raised in vials containing standard food 

(Bloomington cornmeal–yeast–sugar recipe) at 25 °C in an environment with controlled 

light (12–12-h light–dark cycle) and humidity (>70%) for several generations. Embryos 

from the young females (~7 d old) were collected in a 4-h window to synchronize larval 

development. Two groups of 10–15 first instar larvae were placed in vials containing 20% 

D2O-labeled standard food (100 g yeast, 50 g sucrose, 5 g agar per liter) and 3× high-

glucose food (100 g yeast, 150 g sucrose, 5 g agar per liter), respectively. The larvae were 

allowed to develop until the wandering third-instar stage, and then brains were dissected in 

PBS and fixed in 4% formaldehyde for 21 min at room temperature. After fixation, brains 

were washed four times with PBS in glass wells and were then sandwiched between a 

coverglass and the slide with PBS solution. To prevent tissue drying, nail polish was used to 

seal the surrounding coverglass.

STORM imaging

Mouse hippocampal neuronal culture and immunostaining were performed as described 

previously63. STORM imaging64 was performed on a custom inverted microscope (Applied 

Scientific Imaging) with a 60× Nikon objective (MRD01605). A custom Lumencor 

CELESTA system was used to illuminate the sample. A laser line (~1 W, 640 nm) was used 

to image a hippocampal neuron immunostained using anti-β II spectrin antibody conjugated 

to the Alexa 647 dye conjugated to the anti-spectrin antibody, and a laser line (~200 mW, 

405 nm) was used to stimulate the cycling of the dyes. The Teledyne Kinetix camera was 

used for imaging at 50 Hz.

The other imaging conditions and the parameters for the DAOSTORM fitting and processing 

were set as described previously63.

The neuron culture was performed as described previously65.

Stimulated Raman scattering microscopy

A custom-built upright laser-scanning microscope (Olympus) with a 25× water objective 

(XLPLN, WMP2, 1.05 NA, Olympus) was applied for near-IR throughput. A synchronized 

pulsed pump beam (tunable wavelength, 720–990 nm; pulse width, 5–6 ps; repetition rate, 

80 MHz) and a Stokes beam (wavelength at 1,032 nm; pulse width, 6 ps; repetition rate, 
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80 MHz) were supplied by a picoEmerald system (Applied Physics & Electronics) and 

coupled into the microscope. The pump and Stokes beams were collected in transmission 

by a high-NA oil condenser (1.4 NA). A high-O.D. shortpass filter (950 nm, Thorlabs) was 

used that would completely block the Stokes beam and transmit the pump beam only onto 

an Si photodiode for detecting the stimulated Raman loss signal. The output current from the 

photodiode was terminated, filtered and demodulated by a lock-in amplifier at 20 MHz. The 

demodulated signal was fed into the FV3000 software module FV-OSR (Olympus) to form 

an image during laser scanning. All images obtained were 512 × 512 pixels, with a dwell 

time of 80 μs and imaging speed of ~23 s per image.

Fluorescence microscopy

MPF microscopy was integrated with the DIY SRS microscopy together for imaging the 

same ROI with different modalities (DO-SRS signals and fluorescence signals). The Mitored 

signal was imaged with 800-nm ultrafast laser-scanning two-photon fluorescence excitation 

and detected by PMT with a 610-nm bandpass filter in front of it.
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Extended Data

Extended Data Fig. 1 |. Comparison of A-PoD with Richardson-Lucy method using simulation 
data.
a. To compare different deconvolution methods, we generated an artificial image composed 

of single pixel sized 9 dots. The dots in the image have different intensity values. By 

convolution with an artificial PSF, a blurry image (Y) was generated. The image (Y) was 

deconvolved using a penalized regression method. b. When we minimize the objective 

function in panel b, the images, X results. Depending on the penalty parameter, R(X), X 

has various forms. The optimization result without any penalty parameter has strong ringing 

artifact as shown in panel b(i), and the result with L2-norm penalty parameter has reduced 

ringing artifact as shown in panel b(ii). By limiting summation of total intensity, we can 

reduce the ringing artifact as shown in panel b(iii). The penalty parameter limiting the 

total intensity as a fixed value makes the values in empty space to zeros. Accordingly, one 

of the main characteristics of A-PoD, the fixed total intensity of X, can increase sparsity 

of resulting images. c. Comparison of A-PoD with Richardson-Lucy method. When we 

apply another characteristic of A-PoD, quantization of intensity value, together, the resulting 

image of A-PoD has higher resolution than that obtained using Richardson-Lucy method. 
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The signal intensity profile shows the difference in resolutions. The dots in the A-PoD image 

have narrower width than Richardon-Lucy images. The calculation time of A-PoD was 1.9 s, 

and Deconvolutionlab2 using Richardson-Lucy algorithm calculated the image for 1.1 s (50 

iteration) and 2.2 s (100 iteration).

Extended Data Fig. 2 |. Precision and speed of A-PoD in comparison with SPIDER.
a. To compare the localization microscopy image with A-PoD result, we deconvolved a 

mitochondrial image. The image stack is composed of 100 frames. Each image frame 

contains information about blinking emitters. The emitters were localized using SPIDER 

deconvolution algorithm. By averaging the image stack, we generated a widefield image, 

and the widefield image was deconvolved using A-PoD. The intensity profiles of the cross-
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section in the deconvolved images show the similarity between the two results. b. Two 

optimization methods for the deconvolution process were compared. An image composed 

of 100000 virtual emitters was deconvolved using the two different optimizers. The results 

of Adam solver (i) finished calculation within 2 s. By increasing the iteration number, the 

deconvolution results using genetic solver (ii, iii, and iv with different iteration numbers) 

were compared with the result of Adam solver. The deconvolution result with a high 

iteration number shows more precise image. However, to generate an image having same 

quality as that obtained with the Adam solver, we need to increase the iteration number 

further beyond 5 × 106 more.
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Extended Data Fig. 3 |. Comparison of the deconvolution results on STORM images using DAO 
STORM versus A-PoD.
a. (i) A single ‘epifluorescence’-like image was calculated by averaging the STORM-stack. 

(ii) We selected an area with low emitter density (yellow rectangle region in (i)) than other 

areas. (iii) The averaged image stack of the chosen area was deconvolved using A-PoD. 

(iv) From the whole stack of the selected area, the individual single emitters were localized 

using DAOSTORM. b. The two areas marked by the blue and red rectangle areas in (a. i 

and b. ii) were selected. (iii and iv) The intensity profiles and auto-correlation data shows 
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the periodicity of the structure of the membrane-associated periodic skeleton (MPS) in 

neurons. c. Another bright area with high emitter density (green rectangle area in a.i) where 

we cannot localize the individual molecules using DAOSTORM was selected. (i) From the 

image stack of the selected area, we chose a single frame. (ii) Using A-PoD, we deconvolved 

the chosen frame. (iii and iv) The intensity profile and the auto-correlation result show the 

periodicity. Due to the strong intensity, the periodic structure was clearly revealed, and the 

interval in the MPS is also close to the previous published result, 190 nm.
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Extended Data Fig. 4 |. Comparison of two PSF models.
a. Experimental PSF was extracted from 100 nm bead image. As shown in a, by 

deconvolving the measured bead image with artificial 2D Gaussian image having 100 nm 

FWHM, experimental PSF was calculated. The FWHM of the experimental PSF was 471.2 

nm. b. Single LD image was deconvolved using simulated PSF and experimental PSF. After 

deconvolution, the raw LD image (in b, i) was converted to the two images (in b, ii and 

iii). Two PSF has almost similar size with about 5% error (bar graphs in b, iv). From the 

intensity profiles of the two deconvolved images, membrane thickness was measured. The 

thinnest part has 59 nm and 76 nm for experimental PSF and simulated PSF, respectively. 

Spatial resolutions measured with the decorrelation method were 54 nm and 57 nm for 

experimental PSF and simulated PSF, respectively.
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Extended Data Fig. 5 |. SRS images of a HeLa cell cultured in the standard medium.
a. Raw DO-SRS images of the HeLa cell. b. Deconvolution results of the images. The 

images show the shape and distribution of the lipid droplets in sub-micron scale. c. After 

measuring the surface area and volume of individual lipid droplets, the surface area to 

volume ratio of individual LDs was mapped.
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Extended Data Fig. 6 |. LD size and lipid turnover rate distribution.
a. In flies fed on different diets, LDs have different size distribution. In high glucose group, 

the LD size was widely distributed, and the number of LDs in 0.1~0.2 μm2 range was 

higher than the other size. In control dietary condition, the control group with standard diet, 

the number of LDs in 0.2~0.3 μm2 range was high. LDs were labeled on the images with 

three colors according to the size (Blue, 0.05~0.2 μm2; Red, 0.2~0.3 μm2; Green, 0.3~0.45 

μm2). b. To compare the LD size and lipid turnover rate, the two parameters of individual 

LDs were plotted. Under both conditions, LD size and lipid turnover rate show positive 

correlation. Correlation coefficient: 0.40 (3x glucose), 0.44 (control).
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Extended Data Fig. 7 |. SRS images of larvae brain samples from flies fed on different diets.
a. DO-SRS images of a drosophila larvae brain in 3x glucose group. The wide range new 

lipid (CD) and old lipid (CH2) signal show the distribution of newly synthesized lipids 

and old lipids in whole sample, respectively. In the zoomed-in images, the microscopic 

distribution of two different lipid components is clearly shown. After deconvolution, the 

nanoscopic distribution and shape of lipid droplets are getting clearer. By using the particle 

analysis method, we can remove the background and focus on the areas of lipid droplets. b. 
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SRS images of a drosophila larvae brain in the control group were processed with the same 

manner in a. These images were analyzed, and the analysis result is explained in Fig. 6.

Extended Data Fig. 8 |. Comparison between A-PoD and the Richardson-Lucy method.
a. USAF-1951 resolution target. The fluorescence image of the resolution target in the 

paper65 was deconvolved using Richardson-Lucy algorithm (Deconvolutionlab2 program)20. 

b. Intensity profiles of the yellow dotted line in figure A show the resolution difference. 

A-PoD result resolved each line perfectly, but Richardson-Lucy result could not resolve 
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them. c. Deconvolution results of retinal tissue image. The raw image (i) was deconvolved 

with Richardson-Lucy algorithm (ii) and A-PoD (iii). The image contrast was significantly 

improved when we used A-PoD for deconvolution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank K. Zhang, W. Min and J. Enderlein for helpful discussions and suggestions. Thanks to M. Shtrahman 
and S. Saidi for providing 1 μm bead samples. We acknowledge University of California, San Diego startup funds, 
NIH U54CA132378, NIH 5R01NS111039, NIH R21NS125395, NIH U54DK134301, NIH U54 HL165443 and a 
Hellman Fellow Award.

Data availability

All the data supporting the findings of this study are available within the paper and its 

Supplementary Information.

References

1. Freudiger CW et al. Label-free biomedical imaging with high sensitivity by stimulated Raman 
scattering microscopy. Science 322, 1857–1861 (2008). [PubMed: 19095943] 

2. Ploetz E, Laimgruber S, Berner S, Zinth W & Gilch P Femtosecond stimulated Raman microscopy. 
Appl. Phys. B 87, 389–393 (2007).

3. Shi L et al. Optical imaging of metabolic dynamics in animals. Nat. Commun. 9, 2995 (2018). 
[PubMed: 30082908] 

4. Ao J et al. Switchable stimulated Raman scattering microscopy with photochromic vibrational 
probes. Nat. Commun. 12, 3089 (2021). [PubMed: 34035304] 

5. Qian C et al. Super-resolution label-free volumetric vibrational imaging. Nat. Commun. 12, 3648 
(2021). [PubMed: 34131146] 

6. Xiong H et al. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. 
Light Sci. Appl. 10, 87 (2021). [PubMed: 33879766] 

7. Gong L, Zheng W, Ma Y & Huang Z Saturated stimulated-Raman-scattering microscopy for 
far-field superresolution vibrational imaging. Phys. Rev. Appl. 11, 034041 (2019).

8. Gong L & Wang H Breaking the diffraction limit by saturation in stimulated-Raman-scattering 
microscopy: a theoretical study. Phys. Rev. A 90, 013818 (2014).

9. Gong L & Wang H Suppression of stimulated Raman scattering by an electromagnetically-induced-
transparency-like scheme and its application for super-resolution microscopy. Phys. Rev. A 92, 
023828 (2015).

10. Silva WR, Graefe CT & Frontiera RR Toward label-free super-resolution microscopy. ACS 
Photonics 3, 79–86 (2016).

11. Shi L et al. Super-resolution vibrational imaging using expansion stimulated Raman scattering 
microscopy. Adv. Sci. 9, 2200315 (2022).

12. Tzang O, Pevzner A, Marvel RE, Haglund RF & Cheshnovsky O Super-resolution in label-free 
photomodulated reflectivity. Nano Lett. 15, 1362–1367 (2015). [PubMed: 25603405] 

13. Guilbert J et al. Label-free super-resolution chemical imaging of biomedical specimens. Preprint at 
bioRxiv 10.1101/2021.05.14.444185 (2021).

14. Kirshner H, Aguet F, Sage D & Unser M 3-D PSF fitting for fluorescence microscopy: 
implementation and localization application. J. Microsc. 249, 13–25 (2013). [PubMed: 23126323] 

Jang et al. Page 25

Nat Methods. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Sage D et al. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods 
115, 28–41 (2017). [PubMed: 28057586] 

16. Zhu L, Zhang W, Elnatan D & Huang B Faster STORM using compressed sensing. Nat. Methods 
9, 721–723 (2012). [PubMed: 22522657] 

17. Min J et al. FALCON: fast and unbiased reconstruction of high-density super-resolution 
microscopy data. Sci. Rep. 4, 4577 (2014). [PubMed: 24694686] 

18. Hugelier S et al. Sparse deconvolution of high-density super-resolution images. Sci. Rep. 6, 21413 
(2016). [PubMed: 26912448] 

19. Martínez S, Toscani M & Martinez OE Superresolution method for a single wide-field image 
deconvolution by superposition of point sources. J. Microsc. 275, 51–65 (2019). [PubMed: 
31062365] 

20. Holden SJ, Uphoff S & Kapanidis AN DAOSTORM: an algorithm for high-density super-
resolution microscopy. Nat. Methods 8, 279–280 (2011). [PubMed: 21451515] 

21. Descloux A, Grußmayer KS & Radenovic A Parameter-free image resolution estimation based on 
decorrelation analysis. Nat. Methods 16, 918–924 (2019). [PubMed: 31451766] 

22. Shi L, Rodríguez-Contreras A & Alfano RR Gaussian beam in two-photon fluorescence imaging of 
rat brain microvessel. J. Biomed. Opt. 19, 126006 (2014). [PubMed: 25490048] 

23. Chaigneau E, Wright AJ, Poland SP, Girkin JM & Silver RA Impact of wavefront distortion and 
scattering on 2-photon microscopy in mammalian brain tissue. Opt. Express 19, 22755–22774 
(2011). [PubMed: 22109156] 

24. Tzarouchis D & Sihvola A Light scattering by a dielectric sphere: perspectives on the Mie 
resonances. Appl. Sci. 8, 184 (2018).

25. Ji N, Milkie DE & Betzig E Adaptive optics via pupil segmentation for high-resolution imaging in 
biological tissues. Nat. Methods 7, 141–147 (2010). [PubMed: 20037592] 

26. Zhang B, Zhu J, Si K & Gong W Deep learning assisted zonal adaptive aberration correction. 
Front. Phys. 8, 634 (2021).

27. Boesze-Battaglia K & Yeagle PL Rod outer segment disc membranes are capable of fusion. Invest. 
Ophthalmol. Vis. Sci. 33, 484–493 (1992). [PubMed: 1544775] 

28. Abramczyk H et al. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell 
cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast 
tissue. Analyst 140, 2224–2235 (2015). [PubMed: 25730442] 

29. Bagheri P, Hoang K, Fung AA, Hussain S & Shi L Visualizing cancer cell metabolic dynamics 
regulated with aromatic amino acids using DO-SRS and 2PEF microscopy. Front. Mol. Biosci. 8, 
779702 (2021). [PubMed: 34977157] 

30. Fung A et al. Imaging sub-cellular methionine and insulin interplay in triple negative breast cancer 
lipid droplet metabolism. Front. Oncol. 12, 858017 (2022). [PubMed: 35359364] 

31. Jarc E & Petan T Focus: organelles: lipid droplets and the management of cellular stress. Yale J. 
Biol. Med. 92, 435–452 (2019). [PubMed: 31543707] 

32. Li X et al. Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans 
by stimulated Raman scattering microscopy. Anal. Chem. 91, 2279–2287 (2018).

33. Lisec J, Jaeger C, Rashid R, Munir R & Zaidi N Cancer cell lipid class homeostasis is altered 
under nutrient-deprivation but stable under hypoxia. BMC Cancer 19, 501 (2019). [PubMed: 
31138183] 

34. Paar M et al. Remodeling of lipid droplets during lipolysis and growth in adipocytes. J. Biol. 
Chem. 287, 11164–11173 (2012). [PubMed: 22311986] 

35. Rysman E et al. De novo lipogenesis protects cancer cells from free radicals and 
chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70, 8117–8126 (2010). 
[PubMed: 20876798] 

36. Schott MB et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J. 
Cell Biol. 218, 3320–3335 (2019). [PubMed: 31391210] 

37. Schug Z et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cell growth 
under metabolic stress. Cancer Cell 27, 57–71 (2014).

Jang et al. Page 26

Nat Methods. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



38. Wolins NE et al. S3–12, adipophilin, and TIP47 package lipid in adipocytes. J. Biol. Chem. 280, 
19146–19155 (2005). [PubMed: 15731108] 

39. Li Y, Zhang W, Fung AA & Shi L DO-SRS imaging of diet regulated metabolic activities in 
Drosophila during aging processes. Aging Cell 21, e13586 (2022). [PubMed: 35257470] 

40. Li Y, Zhang W, Fung AA & Shi L DO-SRS imaging of metabolic dynamics in aging Drosophila. 
Analyst 146, 7510–7519 (2021). [PubMed: 34781326] 

41. Li Y et al. Direct imaging of lipid metabolic changes in Drosophila ovary during aging using 
DO-SRS microscopy. Front. Aging 2, 819903 (2022). [PubMed: 35822015] 

42. Lu F-K et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc. 
Natl Acad. Sci. USA 112, 11624–11629 (2015). [PubMed: 26324899] 

43. Wei M et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering 
microscopy. Proc. Natl Acad. Sci. USA 116, 6608–6617 (2019). [PubMed: 30872474] 

44. Bae K et al. Mapping the intratumoral heterogeneity in glioblastomas with hyperspectral 
stimulated Raman scattering microscopy. Anal. Chem. 93, 2377–2384 (2021). [PubMed: 
33443405] 

45. Gong L, Lin S & Huang Z Stimulated Raman scattering tomography enables label-free volumetric 
deep tissue imaging. Laser Photonics Rev. 15, 2100069 (2021).

46. Shi L et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. 
Nat. Biotechnol. 40, 364–373 (2022). [PubMed: 34608326] 

47. Wilfling F, Haas JT, Walther TC & Farese RV Jr. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 
29, 39–45 (2014). [PubMed: 24736091] 

48. Wilfling F et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing 
from the ER to lipid droplets. Dev. Cell 24, 384–399 (2013). [PubMed: 23415954] 

49. Back SH & Kaufman RJ Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 
81, 767–793 (2012). [PubMed: 22443930] 

50. Yamamoto K et al. Induction of liver steatosis and lipid droplet formation in ATF6α-knockout 
mice burdened with pharmacological endoplasmic reticulum stress. Mol. Biol. Cell 21, 2975–2986 
(2010). [PubMed: 20631254] 

51. Moncan M et al. Regulation of lipid metabolism by the unfolded protein response. J. Cell. Mol. 
Med. 25, 1359–1370 (2021). [PubMed: 33398919] 

52. Tabet M & Urban KF III. Deconvolution of tip affected atomic force microscope images and 
comparison to Rutherford back-scattering spectrometry. J. Vac. Sci. Technol. B 15, 800–804 
(1997).

53. Lee H et al. Super-resolved Raman microscopy using random structured light illumination: concept 
and feasibility. J. Chem. Phys. 155, 144202 (2021). [PubMed: 34654313] 

54. Watanabe K et al. Structured line illumination Raman microscopy. Nat. Commun. 6, 10095 (2015). 
[PubMed: 26626144] 

55. Zhao W et al. Sparse deconvolution improves the resolution of live-cell super-resolution 
fluorescence microscopy. Nat. Biotechnol. 40, 606–617 (2021). [PubMed: 34782739] 

56. Starck JL, Pantin E & Murtagh F Deconvolution in astronomy: a review. Publ. Astron. Soc. Pac. 
114, 1051–1069 (2002).

57. Lucy LB An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–
754 (1974).

58. Stein SC, Huss A, Hähnel D, Gregor I & Enderlein J Fourier interpolation stochastic optical 
fluctuation imaging. Opt. Express 23, 16154–16163 (2015). [PubMed: 26193588] 

59. Mandracchia B et al. Fast and accurate sCMOS noise correction for fluorescence microscopy. Nat. 
Commun. 11, 94 (2020). [PubMed: 31901080] 

60. Blu T & Luisier F The SURE-LET approach to image denoising. IEEE Trans. Image Process. 16, 
2778–2786 (2007). [PubMed: 17990754] 

61. Kingma DP & Ba J Adam: a method for stochastic optimization. Preprint at arXiv 10.48550/
arXiv.1412.6980 (2014).

62. Deng J et al. FUS interacts with HSP60 to promote mitochondrial damage. PLoS Genet. 11, 
e1005357 (2015). [PubMed: 26335776] 

Jang et al. Page 27

Nat Methods. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Bintu B et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in 
single cells. Science 362, eaau1783 (2018). [PubMed: 30361340] 

64. Rust MJ, Bates M & Zhuang X Sub-diffraction-limit imaging by stochastic optical reconstruction 
microscopy (STORM). Nat. Methods 3, 793–796 (2006). [PubMed: 16896339] 

65. Zhou R, Han B, Xia C & Zhuang X Membrane-associated periodic skeleton is a signaling platform 
for RTK transactivation in neurons. Science 365, 929–934 (2019). [PubMed: 31467223] 

Jang et al. Page 28

Nat Methods. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. Deconvolution of SRS images using A-PoD.
a, Schematic of superresolution SRS image processing. b, Three-dimensional deconvolution 

result of LDs (2,850 cm−1) in a live cell. Following deconvolution, the membrane of an 

individual LD was clearly visualized in the intensity profile in the lower panel. AU, arbitrary 

units. c, Three-dimensional-rendering results of the SRS image before (left) and after (right) 

deconvolution. After deconvolution, the shapes of ~1-μm-sized LDs were clearly visible.
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Fig. 2 |. Deconvolution results of SRS images.
a, Images of standard beads (100 nm and 1 μm). Left, after the deconvolution of a 

two-dimensional (2D) image of a 100-nm bead, FWHM of the intensity profile was 

decreased from 608.5 nm to 101.0 nm. Right, 3D images of a 1-μm bead before and 

after deconvolution, together with the corresponding signal-intensity profiles. The lateral 

size of the bead was almost 1 μm, but the axial size was over 2.5 times bigger than 

the lateral size. The tail-like artifact was not removed by A-PoD. b, An SRS image of a 

human retinal section (at 2,930 cm−1). After deconvolution using A-PoD, contrast of the 

image was markedly enhanced. Deconvolution results revealed the rod outer segment cell 

membrane-like intensity profile. The area boxed by the dashed lines in b(i,ii) in the outer 

segment is enlarged and shown in b(iii,iv). c, Deconvolution result of 3D SRS images (2,850 
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cm−1) of LDs in a live cell. Following deconvolution, the detailed structure of LDs was more 

clearly visualized, including the internal score and the surface membrane.
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Fig. 3 |. SA:V ratio analysis.
a, The SA:V ratio of LDs in the breast cancer cell image in Fig. 2c was mapped. b, k-mean 

clustering shows that the three groups of LDs have different SA:V ratios. c, The LD images 

in different groups (d–f) were overlaid. d, LDs in group 1 are widely distributed in the cell, 

with a low SA:V ratio. e, LDs in group 2 have a high SA:V ratio, and they are distributed 

closely around the nucleus. f, LDs in group 3 also have a high SA:V ratio, and they were 

distributed far away from the nucleus. n = 3 cells per experiment, total of six experiments.
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Fig. 4 |. Three-dimensional super-resolution metabolic imaging of the HeLa cell.
a, DO-SRS images of LDs in CH2 and CD channels. The CH2 channel represents the 

distribution of old LDs (left), and the CD vibration image shows the distribution of newly 

synthesized LDs (middle). To compare the two images (left and middle), the images were 

overlaid (right). b, DO-SRS images were deconvolved using A-PoD, and the results clearly 

separate the signals of two different types of LDs, old versus newly synthesized (left, middle 

and right). c, Averaged volume and surface area of each LD in the two different culture 

conditions were plotted. The LDs in the cell cultured with excessive tryptophan (Trp) have 
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wider distribution than those in the control group (Ctrl) (number of LDs: 264 (new LDs in 

Trp), 108 (new LDs in Trp), 653 (old LDs in control) and 736 (new LDs in control)). Images 

of the control cell are presented in Extended Data Fig. 4. Bar plots are presented as mean 

values ± s.d. d, The SA:V ratio of individual LDs was mapped. Using the color code, the 

SA:V ratio was visualized. e, The 3D-rendering images of the white dashed boxed regions in 

a (right) and b (right) show the resolution difference before and after deconvolution (top and 

bottom). n = 45 (five cells in each ROI, three ROIs per experiment and three experiments).
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Fig. 5 |. Super-resolution metabolic imaging of Drosophila brain samples.
a, Schematic of the analysis method. The whole-sample image represents the overall lipid 

distribution. The image was magnified to compare the signal distribution of old and new 

lipids. The nanoscopic distribution of lipids was revealed after deconvolution. The particle-

analysis method enables us to remove background and analyze individual LDs. b, Brain 

samples from flies on two different diets were measured using DO-SRS microscopy. The 

sample in the 3× glucose group (red boxed images, yellow, –CH2 signal; cyan, –CD signal) 

and the control group (green boxed images, yellow, –CH2 signal; cyan, –CD signal) were 
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analyzed. The images before the overlay are displayed in Extended Data Fig. 7. c, The 

average signal intensity of the images in two groups. The average signal intensity of old lipid 

in the control group was slightly higher than that of the 3× glucose group. The new lipid 

signal in the 3× glucose group was much higher than that in the control group. The new lipid 

signal difference was clearer in the magnified image. Bar plots are presented as mean values 

± s.d. of each image intensity. d, The scatterplot shows the distribution of the new lipid:old 

lipid (CD/CH2) signal ratio of individual LDs. Under the two different dietary conditions, 

the LDs have a clearly distinguishable CD/CH2 signal ratio. The averaged turnover rate in 

the 3× glucose group is over ten times larger than the rate of the control group (number of 

LDs: 179 (standard food), 299 (3× glucose)). e, Using particle analysis, we can visualize the 

nanoscopic distribution of newly synthesized lipids in individual LDs. Areas boxed by pink 

dashed lines in the images in b are enlarged and shown. n = 3 brains per group.
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Fig. 6 |. Multiplexed super-resolution MPF-SRS imaging of mitochondria.
a, The multiplexed imaging scheme. Images were taken in the MPF channel (mitochondria) 

and two SRS channels (protein, lipid) simultaneously and then deconvolved using A-PoD. 

Super-res., super-resolution. b, Mitochondria in HEK293 cells were labeled with Mito-RFP 

(magenta) and imaged using MPF and SRS microscopy. The SRS images in 2,930 cm−1 

and 2,850 cm−1 were unmixed to protein (cyan) and lipid (yellow) channels, respectively. 

c, The multiplexed images of mitochondria were deconvolved and converted to super-

resolution images (magenta, Mito-RFP; cyan, protein; yellow, lipid). d, The superimposed 

images show the resolution difference before and after deconvolution. Left, superimposed 

image before deconvolution. Middle, after deconvolution, the white area where the three 

components were overlapping was much reduced. Right, top and bottom, normalized signal-

intensity profiles before and after deconvolution. The three components show distinct spatial 
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distribution after deconvolution as shown in the signal-intensity profiles. n = 15 (five ROIs 

per sample were imaged in three samples).
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