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Abstract

This paper presents an approach to describing
group behavior using simple local interactions
among individuals. We propose that for a given
domain a set of basic interactions can be defined
which describes a large variety of group behaviors.
The methodology we present allows for simplified
qualitative analysis of group behavior through the
use of shared goals, kin recognition, and minimal
communication. We also demonstrate how these
basic interactions can be simply combined into
more complex compound group behaviors.

To validate our approach we implemented an ar-
ray of basic group behaviors in the domain of spa-
tial interactions among homogeneous agents. We
describe some of the experimental results from two
distinct domains: a software environment, and a
collection of 20 mobile robots. We also describe
a compound behavior involving a combination of
the basic interactions. Finally, we compare the
performance of homogeneous groups to those of
dominance hierarchies on the same set of basic be-
haviors.

Introduction

Our work is based on the belief that intelligence is,
at least partially, a social phenomenon. In order
to understand and analyze intelligent behavior, we
need to study agents situated in social contexts.
We examine group behavior by focusing on one of
the simplest social contexts: a collection of agents
sharing common goals, an analogy to a family of
kin.

Group behavior is a result of the local interac-
tions between the members of a group, and their
interactions with the environment. Local dynam-
ics between individuals produce consequences at
the collective level. Thus, group behavior can nei-
ther be analyzed nor, for the purposes of Al and
tobotics, synthesized by observing a single individ-
ual. However, even the behavior of a single agent
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is unpredictable, and the the multi-agent case is
considerably more complex (Lozano-Pérez, Mason
& Taylor 1984, Canny 1988, Brooks 1991).

In this paper we present a methodology for de-
scribing group behavior which allows for simpli-
fied synthesis and analysis. Our approach con-
sists of observing a group behavior as a collection
of basic behaviors consisting of simple local in-
teractions, and combined into more complex ag-
gregates. We demonstrate how the use of shared
goals, kin recognition, and limited communication
aid in generating such group behaviors. Finally,
we validate our methodology on both software and
physical agents, and evaluate and discuss the im-
plications of the experimental data.

Inferring Goals

The behavior of a society as a whole is determined
by the temporal consequences of the local interac-
tion between the individuals. These local inter-
actions are determined by the agents’ goals, the
amount of information each agent has about the
others, and the agents’ ability to act on that infor-
mation. One of the determinants of the complex-
ity of a society is the amount of variance among
the individuals.! For the purposes of this work,
the variance can be expressed as the difference in
individual goals. We have studied the effects of
the difference in the goal structure and the ability
to communicate those goals on the complexity of
the society.

In order for a society to function, it must over-
come conditions of persisting inter-agent interfer-
ence. Even in the simplest society in which all of
the agents have identical goals at all times, con-
flicts, such as competition for resources, can arise.
In more diverse societies where agents’ goals differ,
increasingly complex conflicts can persist, includ-
ing clobbering of each other’s work, deadlock, and

! Assuming the variance is manifested in the indi-
vidual behavior.
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oscillations.

It may appear necessary for agents to be able
to infer each other’s goals in order to locally act
in such a way as to produce coherent global re-
sults. This ability requires a high computational
and cognitive overhead (Gasser & N. Huhns 1989,
Rosenschein & Genesereth 1985, Axelrod 1984).
However, work in both developmental psychology
and ethology indicates that inferring the goals of
other agents is not necessary for a large repertoire
of complex interactions (Tomasello, Kruger &
Rather 1992, McFarland 1987, Gould 1982, Rosen-
thal & Zimmerman 1978). The alternative is to
base interactions on observable external behavior
and its interpretation. Of course, the interpre-
tation is determined by the amount of knowledge
available to the agent. In developmental and etho-
logical work the knowledge is innate and difficult
to circumscribe. In contrast, computational and
robot experiments allow us to vary the goals and
the amount of built-in knowledge. We have per-
formed a number of such experiments. In particu-
lar, our work has demonstrated that significant in-
formation about an individual’s goals is reflected
in the behavior, the externally observable state,
and can be obtained with minimal if any direct
communication.

Homogeneity and Similarity

To evaluate how much knowledge and communica-
tion is necessary, we have focused on the simplest,
but by no means simple, form of a society, one con-
sisting of homogeneous agents, or kin. The agents
are homogeneous in that they are situated in the
same world, embodied with similar abilities, and
have similar goal structures. Such similarity has
important implications.

Identical and similar agents have innate knowl-
edge of each other. Thus, homogeneity allows for
leaving much of the information about the world
implicit. Since agents share a common goal struc-
ture, their behavior is implicitly or explicitly pre-
dictable to each other.

In addition to predictability, homogeneity of-
fers the society flexibility in that agents are in-
terchangeable. Given their similarity, agents do
not need identities and thus do not require abili-
ties for identification. Further, irregular behavior
of any individual should not seriously affect the
group, since no particular agent or group of agents
is critical.

Taking advantage of homogeneity depends on a
fundamental property: agents must be able to rec-
ognize kin, other agents of the same kind. With
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this ability, which is innate and ubiquitous in na-
ture, even the simplest of local interactions can
produce purposive collective behavior.

The following example describes the use of ho-
mogeneity and kin recognition. If when driving on
a two-lane road we encounter an oncoming car, we
are confident that the right behavior is to stay in
our lane, since the other car will follow the same
strategy.? However, if instead of a car an elephant
is approaching, there is no clearly right behavior
since there is no way of predicting what the ele-
phant will do.®> As homogeneity and similarity
greatly reduce individual cognitive requirements,
we use them for simplifying the process of both
generating and understanding group behavior.

Group Behavior from Basic
Interactions

Irrespective of the simplicity of the individu-
als, the global consequences of even the sim-
plest local interactions can be arbitrarily com-
plex. In general, is impossible to predict precisely
or even qualitatively what the global-level behav-
ior of such a system with interacting components
will be (Mataric 1992, Weisbuch 1991, Wiggins
1990, Nicolis & Prigogine 1989). Societies are by
nature complex systems and as such do not lend
themselves to any traditional methods of analysis.

While it is impossible to predict the behavior of
an arbitrary society, we propose that it is possi-
ble to perform qualitative analysis if the behavior
of the system can be represented as a collection
of basic interactions whose dynamics are well un-
derstood. Basic interactions are behaviors typical
for a particular society. These behaviors are sta-
ble, repeatable, observable at a global level, and
determined by the goals and local interactions of
the individuals. Basic group behaviors are ob-
servable in the interaction space of the particu-
lar society. The most obvious ones take place in
physical space (such as flocking, herding, follow-
ing, traffic jams). More complex ones operate in
informational space. For example, individual com-
petitions for authority repeatably lead to the for-
mation of dominance hierarchies. Similarly, cer-
tain patterns of stock trading lead to stock market
crashes. In both cases, the interactions between
individuals are simple but the resulting global be-
havior is complex.

Our work is based on the belief that most of

?Incidentally, we use a similar strategy with our
robots
*Example due to Rod Brooks.



group behavior consists of such simple basic inter-
actions. Consequently, while the exact behavior of
each individual may not be known, the collective
behavior is qualitatively predictable and repeat-
able. While in practice most societies are too com-
plex (in terms of individuals’ behavior as well as
their interactions) to be modeled analytically, sta-
ble group interactions can be used for qualitative
analysis,? as well as for designing group behaviors.
We have applied the concept of basic group be-
haviors to a collection of software and hardware
agents, and have focused on their manifested, ob-
servable interactions. Consequently, in this work
interaction means action. By placing our experi-
ments in physical space, we can demonstrate group
behavior on simple examples of physical inter-
actions and spatial patterns. We used the con-
straints imposed by the environment and the me-
chanics of the agents to construct a set of basic
interactions we call behavior primitives (Mataric
1992) which allow for a variety of group behav-
iors. The next section describes our experimental
methodology, environments, and results.

Experimental Methodology
and Results

The goal or our work is to elucidate social inter-
action by synthesizing, observing, and analyzing
phenomena similar to those observed in biology,
sociology, and anthropology. Since behavior ob-
servation is the primary methodology for testing
our theories, it is important to attempt to identify
the effects of the experimental environment from
those intrinsic to the interaction being observed.
Toward this end, we use two very different test en-
vironments, one in software and one in hardware.

The software environment consists of an inter-
action modeler which allows for implementing a
variety of agent types and group sizes situated in
a simplified version of the physics of the world.
The main purpose of the modeled environment is
observing and testing a variety of group behaviors
and comparing them to those observed on biolog-
ical and synthetic agents.

The hardware environment consists of a collec-
tion of 20 foot-long mobile robots capable of de-
tecting each other, and equipped with a forklift for
picking up, carrying, and stacking objects. These
basic abilities are used to construct various tasks

*An analogous notion can be found in complex dy-
namics. Basic group interactions correspond to attrac-
tors, the regions of phase space in which the behavior
of the system is stable.
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and experiments, in which the robots are run au-
tonomously.

While the various sensory, mechanical, and com-
putational limitations of the hardware environ-
ment severely limit the types of experiments that
can be implemented, the environment offers some
unique features. In particular, a physical im-
plementation introduces the unavoidable variance
among the agents which has an effect on the re-
sulting group behavior. In spite of the identical
software, the robots behave differently due to their
slightly varied physical properties. This variance
provides a stringent test for our group behavior
strategies.

Communication and Cooperation

In order to focus on the simplest local interactions,
as well as control the effects of communication on
group behavior, we imposed some limitations on
the type and amount of communication available
to our agents. No explicit one-to-one communica-
tion between the agents was used in any of the ex-
periments. We define ezplicit cooperation as a set
of interactions which involve exchanging informa-
tion or performing actions in order to help another
agent. In contrast, implicit cooperation consists of
actions that are a part of the agent’s own goal-
achieving behavior, but may have effects in the
world that help other agents achieve their goals.
In the described experiments, cooperation is im-
plicit, as agents affect one another through their
external state and actions.

We conducted a number of tests of various be-
haviors using no direct communication, and re-
lying entirely on the agents sensing the external
state of others. We subsequently added a local
broadcast ability for some behaviors, allowing the
agents to transmit a simple message within a small
radius. Consequently, our work so far has used no
explicit cooperation between agents.

These communication and cooperation con-
straints were chosen in order to test the limits of
implicit communication as advocated by the pre-
viously described developmental psychology and
ethology theories.

Experiments

Our experiments to date are based on physical
interactions among agents. Consequently, the
demonstrated group behaviors are the various
manifested collective spatial and temporal pat-
terns. We have developed a collection of simple lo-
cal rules that implement the following basic group
behaviors: collision avoidance, following, disper-



sion, aggregation, homing, and flocking.

These behaviors were demonstrated to be re-
peatable and reliable over multiple time-extended
trials. The behaviors were shown to be stable over
a variety of initial conditions, and insensitive to
small perturbations in the various perceptual and
effector variables. Further, most of the behavior
primitives were implemented with multiple algo-
rithms, whose variations in performance were due
to the implementational details, but whose overall
behavior was consistent. The details of the robot
implementation are described in Mataric (1992).
Additional experimental data 1s available both nu-
merically and on video tape.

Combining Behaviors
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Figure 1: The behavior structure of the foraging
agents. Shaded states indicate carrying an object.
Basic behaviors are italicized.

The basic behaviors generated by the interac-
tion primitives demonstrate how very simple local
interactions can generate a variety of useful global
behaviors. Furthermore, they constitute useful
building blocks for compound behaviors, which
consist of spatial and temporal combinations of
the basic behaviors. In our experimental spatial
domain, these behaviors include herding (consist-
ing of flocking and homing), convoying (avoidance
and following), foraging and gathering, etc.

We are currently demonstrating foraging and
gathering, which combines the described basic be-
haviors. The high-level goal of the group is to col-
lect objects found anywhere in the environment
and deliver them home. In addition to having the
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basic social behavior repertoire, individual agents
are also able to recognize and manipulate objects.
However, they have no model of the environment,
nor a global view of it.

The internal behavior structure of the each of
the agents is identical, and specifies the conditions
triggering each of the basic social behaviors (Fig-
ure 1). Foraging is initiated by dispersion, fol-
lowed by a search for objects. Finding an object
triggers homing. Encountering another agent with
a different immediate goal (as manifested by its ex-
ternal state, e.g. not carrying an object), induces
avoidance. Conversely, encountering kin, another
agent with the same external state (carrying some-
thing, or approaching an area with free objects)
triggers following. Three or more followers initi-
ate flocking. Reaching home and depositing the
object restarts dispersion.

Foraging demonstrates how basic behaviors can
be combined into a higher-level compound behav-
ior. The combination is simple in that conflicts be-
tween two or more interacting agents, each poten-
tially executing a different behavior, are resolved
uniformly due to agent homogeneity. Since all of
the agents share the same goal structure, they will
all respond to the environmental condition consis-
tently. For example, if a group of agents is flocking
toward home and it encounters a few agents dis-
persing, the difference in the agents’ external state
will either induce kin following or non-kin avoid-
ance, thus dividing the group again.

Our experiments have served to demonstrate
two points: 1) coherent group behaviors of spa-
tially interacting physical agents can result from
simple local interactions and 2) complex, time-
extended collective behaviors of such agents can
result from a simple combinations of relatively few
basic group behaviors. We are now looking for
similar simple interactions producing global con-
sequences in other, non-spatial domains.

Heterogeneous Groups

In the experiments described so far the agents
were fully homogeneous. As a control study, as
well as an attempt to address a larger variety of
social interactions, we have introduced dominance
hierarchies into our agent societies.

In particular, we have tested the performance
of dominance hierarchies using hierarchical control
strategies on two of the basic behaviors described
above: aggregation and dispersion. These two be-
haviors were chosen because simple performance
evaluating criteria could be applied. Specifically,
given sufficient space, aggregation and dispersion
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Figure 2: The performance of two different aggre-
gation algorithms based on time to reach static
state. Two termination conditions were tested: a
single aggregate (data points shown with boxes)
and a few stable groups (data points shown with
dots). The performance of hierarchical algorithms
is interpolated with solid lines while the homoge-
neous ones are interpolated with dotted lines.

can reach a static state, i.e. obtain the desired dis-
tance between the agents. Consequently, it is rela-
tively simple to compare the performance of differ-
ent aggregation and dispersion algorithms based
on the time each required to reach static termina-
tion conditions. In contrast, following and flocking
are not as simply evaluated due to their dynamic
nature.

In this set of experiments the collection of agents
was classified into a total order, based on a ran-
domly assigned unique ID number, thus simu-
lating an established pecking order in the group
(Chase 1982, Chase & Rohwer 1987). Unlike
the homogeneous algorithms, in which all agents
moved simultaneously according to identical local
rules, in the hierarchical case the ID number de-
termined which agents were allowed to move while
others waited. (In all cases, a simple precedence
order was established such that within a small ra-
dius the agent with the highest ID got to move.)
As in the homogeneous case, we tested multiple
hierarchical algorithms for each of the group be-
haviors.

Using the software environment, we conducted
20 experiments with each group size (3, 5, 10, 15,
and 20 agents) and each of the algorithms. Ad-
ditionally, we tested the algorithms on two differ-
ent degrees of task difficulty. For aggregation we
tested two terminating conditions: a single aggre-
gate containing all of the agents, and a small num-
ber of stable aggregates. The former terminating
condition is more difficult. Similarly, for disper-
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Steps to Convergence

Number of Agents

Figure 3: The performance of two different disper-
sion algorithms based on time to reach static state.
Two initial states were tested: a random distribu-
tion (data points shown with stars) and a packed
distribution (data points shown with crosses). The
performance of the hierarchical algorithms is in-
terpolated with solid lines while the homogeneous
ones are interpolated with dotted lines.

sion we tested two initial conditions: a random
distribution of initial positions, and a packed dis-
tribution in which all of the agents start out in one
half of the available space. The latter condition is
more difficult.

We found that, in the case of aggregation, hier-
archical strategies performed slightly better than
totally homogeneous ones. Figure 2 plots the av-
erage number of moves an agent takes in the ag-
gregation task agains the different group sizes and
the two different terminating conditions: a sin-
gle aggregate and a few stable groups. Both hier-
archical and homogeneous algorithms behaved as
expected, improving on the simpler of the two ter-
minating conditions. Their performance declined
consistently with the growing group size.

Unlike aggregation, in the case of dispersion,
homogeneous strategies outperformed hierarchical
ones. Figure 3 plots the average number of moves
an agent makes in the dispersion task for the differ-
ent group sizes on two different initial conditions:
a random distribution, and a packed initial state.
Again, both hierarchical and homogeneous algo-
rithms improved with the easier initial conditions.

Although the performance difference between
the homogeneous and hierarchical algorithms was
repeatable and consistent, it was small, and its
magnitude barely surpassed the standard devia-
tion among individual trials for each of the algo-
rithms and group sizes. The standard deviation
was particularly significant in the case of small (3



and 5) group sizes. We believe that the difference
between the two strategies would be negligible on
physical agents.

The experiments comparing simple hierarchical
and homogeneous algorithms demonstrate that for
the described domain simple hierarchical strate-
gies do not improve the global performance. In our
experiments, hierarchies were assigned randomly
since all of the agents are identical. More com-
plex hierarchical strategies could be devised, but
would require an increased perceptual and cogni-
tive overhead. From our data we can hypothesize
that for simple spatial domains 1) the simplest,
homogeneous solution works well, and 2) quite a
bit more knowledge and processing is required to
significantly improve it.

Conclusions

In this paper we discussed an approach to describ-
ing and synthesizing group behavior. We proposed
that for a given domain a set of basic interactions
can be identified for describing a large variety of
group behaviors. To validate our approach we
have demonstrated an array of such basic group
behaviors in the domain of spatial interactions of
mobile agents. We implemented and tested the
basic behavior set on two distinct domains and
are currently using it to test compound behaviors
with various goal structures.

Our work to date has demonstrated the sim-
plifying advantages provided by agent homogene-
ity and similarity. We have also shown that for
simple spatial behaviors no dominance hierarchies
are necessary, or indeed helpful. We are currently
extending our approach to domains involving in-
formation trading, imitation and social learning.
In order to gain further insight into the dynam-
ics of group behavior, we are continuing to pursue
a synthetic approach, by generating, testing, and
evaluating behaviors in varying environments and
contexts.
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