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Abstract 

Post-fire tree regeneration in an altered disturbance regime:  
community dynamics and interactions with land management 

by 

Carmen Loretta Tubbesing 

Doctor of Philosophy in Environmental Science, Policy, and Management 

University of California, Berkeley 

Professors John Battles and Scott Stephens, Co-chairs 

 

Fire has long shaped forests across the globe. Anthropogenic forces are reshaping fire 
regimes, leading to unprecedented forest conditions and unknown long-term 
consequences. Land management can help mitigate undesired effects of altered fire 
regimes, but effective management requires information about tree species’ responses to 
disturbances both historical and modern. In my dissertation, I add to a body of literature 
examining how novel fire patterns affect tree regeneration and whether forest 
management strategies can mitigate any undesired effects. I focus on mixed-conifer 
forests of the Sierra Nevada, where logging, fire exclusion, and climate change have 
shifted the fire regime from frequent, heterogenous fire to infrequent fire with greater 
high severity. The tree species that have long comprised these forests are not well adapted 
to regenerate in large, homogenous fire patches. My dissertation investigates three main 
questions in three chapters: 1) Can forest management prevent large fire patches and 
promote post-fire recovery? 2) Will the novel fire regime shift overall species composition 
toward firs and away from pines? 3) What is the role of post-fire shrub dynamics in 
determining ecological succession in novel-type fire patches? In Chapter 1, I show that 
strategically placed fuel reduction treatments effectively reduced fire severity and 
promoted recovery when burned in a wildfire. In Chapter 2, I explore the idea that the 
shifting fire regime may lead to regional fir enrichment. I focus on plant interactions 
following severe wildfire and show that shrub competition affects ponderosa pine more 
strongly than it affects white fir. However, simulation modeling results in Chapter 3 show 
that, on net, shrub neighborhood dynamics do not produce an ecological filter favoring 
firs, though patterns are sensitive to shrub species. These three chapters together 
illustrate the importance of forest patch dynamics for wildfire resistance and recovery. 
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Introduction 
Disturbances, whether wind, fire, or insect attack, have long shaped forests across the 
globe. Every tree species has unique characteristics that affect its ability to survive 
disturbances and regenerate afterwards, which may in turn affect future disturbance 
patterns. Anthropogenic forces are reshaping disturbance regimes, leading to 
unprecedented forest conditions and unknown long-term consequences. Land 
management can help mitigate undesired effects of altered fire regimes, but effective 
management requires information about tree species’ responses to disturbances both 
historical and modern. In my dissertation, I add to a body of literature examining how 
novel fire patterns affect tree regeneration and whether forest management strategies can 
mitigate any undesired effects. 

I focus on mixed-conifer forests of the Sierra Nevada, where logging, fire exclusion, and 
climate change have shifted the fire regime. Fire was once frequent, patchy, and 
heterogeneous, with a mixture of low, moderate, and high severity patches. Increasingly, 
forests experience either no fire at all or severe fire producing large patches of near-total 
overstory mortality. The tree species that have long comprised these forests are not well 
adapted to regenerate in large, homogenous fire patches. My dissertation investigates 
three main questions in three chapters: 1) Can forest management prevent large fire 
patches and promote post-fire recovery? 2) Will the novel fire regime shift overall species 
composition toward firs and away from pines? 3) What is the role of post-fire shrub 
dynamics in determining ecological succession in novel-type fire patches? 

Chapter 1 takes advantage of a natural experiment to test the efficacy of a common land 
management strategy in promoting fire resistance and recovery. Strategically placed 
landscape treatments (SPLATs) is a term coined in the early 2000s to describe the 
practice of actively managing a small fraction of a landscape to achieve landscape-wide 
fire mitigation. SPLATs can be forest thinning, prescribed fire, or other strategies that 
reduce fuels. They are placed in portions of the landscape where they are expected to 
affect downstream fire behavior. Though the SPLATs concept underpins regional public 
forest plans, it has rarely been tested empirically. In the late 2000s, a treatment network 
was implemented in an area termed Last Chance, in the Tahoe National Forest within the 
northern Sierra Nevada. This treatment network was monitored closely by the Sierra 
Nevada Adaptive Management Project (SNAMP) to test the effects of a real-world 
treatment network designed to conform with SPLAT principles. In 2013, SNAMP post-
treatment field surveys were abruptly halted by the American Fire, an 11,102-ha wildfire 
typical of modern mixed-severity fire. The American Fire produced a natural experiment, 
allowing us to test whether the Last Chance treatments performed as expected in an 
actual wildfire. In 2015, I returned to SNAMP plots within the American Fire footprint to 
measure post-fire tree regeneration. I also analyzed the spatial patterns of the American 
Fire using field data, fire behavior modeling, and a fire severity map derived from remote 
sensing.  
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I found that the treated portion of the Last Chance study area experienced lower fire 
severity and fewer large high-severity fire patches than the adjacent untreated portion. 
The success of treatments was likely due in part to their placement in the highest-risk 
areas of the landscape. I also found that treated plots had higher seedling densities than 
untreated plots, potentially due to the fact that fire moderated neighborhood fire severity, 
which enhanced tree regeneration. Regeneration was dominated by firs. 

Chapter 2 focuses on differences between firs and pines under the altered fire regime of 
the Sierra Nevada. It is well known that fire exclusion advantages shade-tolerant trees 
(e.g. firs) over shade-intolerant trees (e.g. pines). I explore the idea that large stand-
replacing fire patches, a result of fire exclusion, may also promote firs. I developed a 
conceptual framework describing how the novel fire regime promotes two types of fir 
enrichment, overstory-driven fir enrichment and patch-driven fir enrichment, with the 
latter caused by differences in dispersal as well as in shrub/tree interactions. Shrub 
interactions are particularly important in post-fire recovery because native shrubs quickly 
reoccupy severely burned areas. I measured fir and pine growth and survival in relation to 
shrub neighborhood to test whether shrub interactions provide an advantage to firs. I 
found that ponderosa pine growth is more sensitive to shrub competition following 
wildfire than fir growth, presumably due to fir’s high shade tolerance. Though pines are 
generally considered fire-adapted, this study argues that post-fire species interactions in a 
novel fire regime may exacerbate the already shifting species composition toward shade-
tolerant species, which are less well adapted to survive future fires and to persist in future 
drier, warmer climates.  

In Chapter 3, I further explore the effect of shrub neighborhood dynamics on fir and pine 
recovery. The results of Chapter 2 provided initial evidence that post-fire shrub patches 
may favor firs. However, to test whether the species differences I found have long-term 
ramifications, it was necessary to model tree growth and survival through time under 
realistic post-fire conditions. To do this, I developed a data-driven statistical simulation 
model that builds on the equations found in Chapter 2. Additional information on shrub 
dynamics was required to parameterize the model, so I synthesized and analyzed data 
from regional field surveys. I used the model to test whether shrubs act as an ecological 
filter by precluding, delaying, or altering the composition of conifer recovery.  I also 
tested differences in model results for individual shrub species and individual dimensions 
of shrub neighborhood dynamics. My model indicated that, contrary to the hypothesis 
put forth in Chapter 2, shrub competition does not impede pine recovery enough to shift 
relative success towards firs. In the model, pines grew slower under higher shrub 
competition, but because of rapid initial growth and low mortality rates they reached the 
overstory in equal proportions to firs. In fact, pine relative success was higher than fir’s 
under two of the three focal shrub species: deerbrush and whitethorn ceanothus. 
However, the final densities of pine were far lower than fir because of large differences in 
initial seedling densities. Thus, a stronger ecological filter may exist during the 
establishment phase than the growth and survival phases.  
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CHAPTER 1 Strategically placed landscape fuel 
treatments decrease fire severity and 
promote recovery in the northern 
Sierra Nevada 

 

 

Carmen L. Tubbesing, Danny L. Fry, Gary B. Roller, Brandon M. Collins, Varvara A. 
Fedorova, Scott L. Stephens, and John J. Battles 

Originally published in Forest Ecology and Management and included as a dissertation 
chapter with permission from co-authors.  

 

ABSTRACT 

Strategically placed landscape area treatments (SPLATs) are landscape fuel reduction 
treatments designed to reduce fire severity across an entire landscape with only a fraction 
of the landscape treated. Though SPLATs have gained attention in scientific and policy 
arenas, they have rarely been empirically tested. This study takes advantage of a 
strategically placed landscape fuel treatment network that was implemented and 
monitored before being burned by a wildfire. We evaluated treatment efficacy in terms of 
resistance, defined here as the capacity to withstand disturbance, and recovery, defined 
here as regeneration following disturbance. We found that the treated landscape 
experienced lower fire severity than an adjacent control landscape: in the untreated 
control landscape, 26% of land area was burned with >90% basal area mortality, 
according to the remote-sensing-derived relative differenced Normalized Burn Ratio 
(RdNBR), while in the treated landscape only 11% burned at the same severity. This 
difference was despite greater pre-treatment fire risk in the treatment landscape, as 
indicated by FARSITE fire behavior modeling. At a more local scale, monitoring plots 
within the treatments themselves saw greater regeneration of conifer seedlings two years 
following the fire than plots outside the treatments. Mean seedling densities for all 
conifer species were 7.8 seedlings m-2 in treated plots and only 1.4 seedlings m-2 in control 
plots. These results indicate that SPLATs achieved their objective of increasing forest 
resistance and recovery. 
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INTRODUCTION 

Many frequent-fire-adapted forests are at risk of uncharacteristically severe wildfire as a 
consequence of climate change and forest management legacies (Keyser and Westerling, 
2017; Miller et al., 2012). Fire suppression has led to high densities of understory fuels, 
including small trees and shrubs, which elevate fire risk (Collins et al., 2011). Fuel 
treatments, such as prescribed fire and the mechanical removal of vegetation, are often 
implemented to reduce the spread and intensity of large wildland fires (Fulé et al., 2012). 
These treatments are also ecologically appropriate in frequent-fire forests (Stephens et al., 
2012). Fuel treatments cannot be used everywhere, however, as they are limited by factors 
such as operability, funding, road access, and sensitive habitat (Collins et al., 2010, North 
et al., 2015).  

Research on fuel treatments has examined how to maximize their benefits given 
constraints on geographic placement and extent (e.g. Krofcheck et al., 2017). Modeling 
studies have shown that the spatial configuration of treatments influences their ability to 
limit fire spread. If placed strategically, i.e. in areas that maximize the interruption of 
large “runs” by a fire, fuel treatments on only a fraction of a landscape can reduce fire 
spread across the entire landscape (Finney 2001, Schmidt et al., 2008). Spatially 
prioritized treatments based on this research, which are referred to as “strategically 
placed landscape area treatments,” or SPLATs, have been incorporated into US Forest 
Service management goals. For example, in the Sierra Nevada, SPLATs are one of the 
primary land management strategies employed by the U.S. Forest Service. The Sierra 
Nevada Forest Plan Amendment Record of Decision (2004) states that the SPLATs 
concept “…underpins the Decision’s fire and fuels strategy” (USDA Forest Service, 2004). 

Despite their centrality to management, empirical tests of SPLATs, which would require 
experimental wildfire, are nearly impossible. Evaluations of SPLATs have occurred only in 
modeling exercises (e.g. Collins et al., 2011; Dow et al., 2016; Finney et al., 2007; Schmidt et 
al., 2008). In fact, landscape-scale treatment networks of any kind are generally only 
tested in modeling exercises (e.g. Ager et al., 2010), and even where treatment networks 
have been implemented on the ground, fire risk is assessed through fire behavior 
modeling rather than actual wildfire (Moghaddas et al., 2010, Collins et al., 2013). 

In this study, we take advantage of a rare opportunity to quantify landscape-scale fuel 
treatment efficacy in a natural experiment in which a well-monitored treatment network 
and control “fireshed” were both burned in a large wildfire (the 2013 American Fire) 
shortly after treatment implementation.  A fireshed is a geographic planning unit that 
would be expected to contain a large or “problem” wildfire (Bahro et al., 2007). This study 
builds on previous research that modeled the effects of the same treatment network on 
predicted fire behavior and found noticeable reductions in hazardous fire potential 
throughout the treatment fireshed (Collins et al., 2011b). 

The American Fire was within the typical range of modern wildfires that escape initial 
attack in mixed-conifer forests of the western Sierra Nevada. Fires in this region average 
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2,908 ha in size (with a median of 786 ha and maximum of 104,131 ha) and 15.6% high-
severity (median 6.1%) (Lydersen et al., 2017; Miller et al., 2012). The American Fire was 
11,102 ha in size and 20% high-severity. 

The landscape fuel treatment network in question, called the Last Chance project, was 
designed by local US Forest Service managers on the Tahoe National Forest, California, 
USA, with the aim of conforming to SPLAT principles as part of the Sierra Nevada 
Adaptive Management Project (SNAMP; Collins et al., 2011b). Because the SNAMP project 
was an experiment in adaptive management, the design and implementation of SPLATs 
was left entirely up to the US Forest Service. The spatial configuration of treatments at 
Last Chance (Fig. 1) deviates from the ideal SPLAT design proposed by fire behavior 
modeling research (Finney, 2001), reflecting operational limitations inherent to public 
land management (Collins et al., 2010). Thus, the Last Chance project is the first 
opportunity to test the potential for SPLATs to achieve their objectives given the 
constraints typical of any landscape treatment network on federal lands.  

The objectives of the Last Chance project were to reduce the potential for large and 
destructive wildfires and to improve forest resilience. We evaluated the treatments’ 
fulfillment of these objectives. While definitions of resilience vary, we define it here as the 
capacity of a system to withstand and recover from disturbance such that it retains its 
initial structure and function (Levine, 2017; Scheffer, 2009). We focused on two aspects of 
this definition: 1) withstanding disturbance, which is often termed “resistance”, and 2) 
recovering from disturbance. With regard to wildfire, resistance can be quantified using 
fire severity, defined as mortality of dominant vegetation, while recovery can be measured 
by regeneration of dominant tree species following fire. 

Assessments of fuel treatments often emphasize the ability of treatments to slow down 
fire spread and reduce overall tree mortality during fire, with little attention paid to 
indicators of the forests’ post-fire recovery potential (e.g. Schmidt et al., 2008). Our study 
is unique not only in its empirical evaluation of fuel treatments, but also in that it 
recognizes the importance of recovery in addition to resistance as integral components of 
forest resilience. In doing so, we link two ecological processes, mortality and 
regeneration, that are both vital to forest restoration and management but are often 
studied separately. We evaluated recovery potential by analyzing the spatial patterns of 
overstory mortality and by quantifying initial post-fire seedling densities. We were 
particularly concerned with large, regular-shaped patches of stand-replacing fire (>90% 
basal area loss) that threaten forest structure and function in the long term by making it 
difficult for native tree species to re-occupy burned areas, since seed dispersal limits the 
recovery of large stand-replacing patches in the Sierra Nevada (Welch et al., 2016). We 
quantified how fuel treatments affected a metric of high-severity patch size and shape 
that is related to recovery potential, namely core patch area, defined as the area within 
stand-replacing patches that is greater than 120 m from a seed source.  

The objectives of this study were to a) evaluate the effects of treatments on wildfire 
severity, and to b) compare conifer seedling regeneration following fire between 
treatment and control plots. Based on modeling studies predicting that SPLATs would 
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reduce fire severity in our study area, we expected treatments to reduce fire severity and, 
in moderating fire effects, facilitate higher conifer regeneration rates (Collins et al., 2011b, 
Shive et al., 2013, Stevens et al., 2014). 

Specifically we asked: 

1) How did fuel treatments affect fire severity patterns at the landscape scale?  

2) What post-fire plot characteristics (cover of bare mineral soil, tree basal area, fire 
severity, shrub cover, and conspecific basal area) influenced conifer seedling densities?  

3) Did treatments influence post-fire conifer seedling densities at the plot scale, and if so, 
how did these patterns compare for Pinus seedlings versus Abies and Pseudotsuga 
seedlings?  

4) How did treatments influence each of the post-fire plot characteristics identified as 
important drivers of seedling densities? 

METHODS 

Study area 

The Last Chance study area is located within the Tahoe National Forest in the northern 
Sierra Nevada. The climate is Mediterranean, with the majority of precipitation occurring 
in winter as snow. Precipitation averaged 1,182 mm per year in 1990-2008, and mean 
monthly temperatures were 3°C in January and 21°C in July (Hell Hole Remote Automated 
Weather Station, 19 km from study area). Elevations range from 800 m to 2,200 m. Soils 
are moderately deep, well-drained Inceptisols with a gravely loam texture (NRCS, 2017). 
Vegetation on this landscape is typical of the western slopes of the Sierra Nevada: mixed-
conifer forest dominated by white fir (Abies concolor; 31% by basal area according to pre-
treatment field surveys), sugar pine (Pinus lambertiana; 22%), Douglas-fir (Pseudotsuga 
menziesii; 19%), ponderosa pine (Pinus ponderosa; 13%), with some incense-cedar 
(Calocedrus decurrens; 8%), red fir (Abies magnifica; 5%), and California black oak 
(Quercus kelloggii; 2%). Montane chaparral is interspersed throughout the area, with 
diverse shrub species including several species of manzanita (Arctostaphylos) and 
Ceanothus, chinquapin (Chrysolepis sempervirens), huckleberry oak (Quercus 
vacciniifolia) and the shrub growth habit of tanoak (Notholithocarpus densiflorus). Fire 
history analysis using fire scars recorded in tree rings suggests a fire regime with 
predominantly frequent, low- to moderate-severity fires with a median fire return interval 
of 15 years (Stephens and Collins 2004, Krasnow et al., 2016). The study area consists of 
four adjacent firesheds: two treatment and two control (Fig. 1). In this study, we focus on 
the two firesheds that were located inside the American Fire perimeter (Fig. 1): a control 
fireshed to the north (3,455 ha) and treatment fireshed to the south (2,162 ha). 
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Fuel treatments 

Fuel treatments were implemented between 2008 and 2012 (Tempel et al., 2015). 
Treatment types included whole-tree harvest, cable harvest, prescribed burning, and 
mastication. Whole-tree harvest included commercial and biomass thinning from below 
followed by mechanical/hand piling and burning. For harvest treatments, the target was 
to retain at least 40% of the initial tree basal area, while also keeping at least 40% canopy 
cover in the residual stand. This priority was achieved by removing mid-canopy and 
understory trees. Secondary goals of the treatments were to increase vertical and 
horizontal heterogeneity and to shift residual species composition toward pines. Within 
the treatment fireshed, 18% of the area was treated, with the majority whole-tree 
harvested (Table 1).  

Field measurements 

Pre-fire measurements 

Plots were established on a 500 x 500 m grid across both the control and treatment 
firesheds based on a random starting location. In some areas, sampling was intensified to 
250 m spacing in order to accommodate hydrological research in the two instrumented 
catchments (Hopkinson and Battles, 2015) (Hopkinson and Battles 2015). Plots were 
circular and 0.05 ha in size. In the summers of 2007 and 2008, pre-treatment 
measurements were conducted, including species, height, vigor, and diameter at breast 
height (DBH) of all trees ≥ 19.5 cm DBH (“overstory trees”), which were tagged for long-
term monitoring. The cover and average height of shrubs were measured by species using 
the line intercept method (total length sampled = 37.8 m). Fuels were measured on three 
randomly chosen transects within each plot, as described in Collins et al. (2011b). 

In 2013, plots were re-measured to capture post-treatment conditions, following the pre-
treatment measurement protocol. The American Fire began burning in August of 2013, 
cutting short field measurements, so that 369 of the 408 plots were re-measured before 
the fire.  

Post-fire measurements 

In 2014, we re-measured 162 plots within the American Fire perimeter, including 69 in the 
treatment fireshed and 93 in the control fireshed, all of which were on the main 500-m 
grid.   

Regeneration measurements 

In 2015, we visited 97 plots for seedling measurements. Our research goal was to evaluate 
the effect of treatments on seedling regeneration at the plot scale, so we measured 
seedling densities within treated areas and in nearby untreated areas. We adjusted the 
grid-based sampling regime in order to ensure a more even sample size of treatment and 
control plots within the fire perimeter, visiting some plots on the densified 250 m grid. 
We avoided plots that had been salvage logged or planted since the fire. We visited 20 
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unburned plots, 5 treatment and 15 control, in the neighboring fireshed south of the fire 
perimeter to capture regeneration differences between treatment and control plots in the 
absence of fire.  

At each plot, we repeated the shrub measurements that had been previously performed. 
We also recorded ground cover type using the line-intercept method in 10-cm increments 
along the same transects as were used for shrub measurements. We then tallied seedlings 
by species on belt transects originating from the shrub and ground cover transects. 
Because of high variation in seedling densities, we used a variable sampling area to 
increase sampling efficiency: belt transects were 0.5 m, 1 m, or 2 m wide, depending on 
the number of seedlings counted in the first 0.5 m wide transect sampled. Thus, total 
seedling sampling area in a plot varied between 18.9 m2 and 75.6 m2. We included all 
seedlings that were young enough to have germinated after the fire, as determined by size 
and whorl counts.  

Statistical Analyses 

Our analytical framework combined spatial analysis of satellite data, fire modeling, and 
statistical analysis of field data. We used the fireshed scale to evaluate treatment effects 
on resistance to fire because SPLATs were explicitly designed to affect fire behavior at the 
landscape scale. In other words, we compared fire severity metrics across the entire 
treatment fireshed (18% of which was treated) to the control fireshed, rather than 
comparing areas within the same fireshed. On the other hand, seedling densities were 
analyzed at the plot scale to capture local influences on conifer regeneration (Legras et 
al., 2010, Welch et al., 2016). Additionally, fireshed-scale analyses of seedling densities 
would violate independence assumptions used in our statistical analyses due to spatial 
clustering of treatment plots within the treatment fireshed. Plot-scale analyses helped to 
alleviate this lack of independence, particularly because the factors influencing seedling 
regeneration generally act more locally than spacing between plots.(Legras et al., 2010; 
Welch et al., 2016). 

Fire severity analysis 

The effects of treatments on fire severity patterns were evaluated using analysis of 
remotely sensed relative differenced Normalized Burn Ratio (RdNBR), fire behavior 
modeling results, and direct field measurements of tree mortality.  

Remote sensing fire severity analysis. To compare fire severity patterns in the 
American Fire between the treatment fireshed and control fireshed, we analyzed stand-
replacing polygons based on Landsat-derived RdNBR calibrated to ≥90% basal area loss, 
available at https://www.fs.usda.gov/detail/r5/landmanagement/gis/?cid=stelprd3804878 
(Miller and Quayle 2015, Stevens et al., 2017). We calculated the percent area of each 
fireshed that burned at stand-replacing severity as well as the mean stand-replacing patch 
size using a minimum patch size of 0.5 ha (sensu Collins and Stephens, 2010). Next, we 
calculated the sum of the “core patch areas” of each fireshed. Core patch area is the area 
within a stand-replacing patch that is farther than a certain distance from patch edge, and 
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thus less likely to recover to forest within a few decades (Cansler and McKenzie, 2014). 
We used a distance of 120 m from the patch edge because it is greater than the likely 
dispersal distance for California mixed-conifer species (sensu Collins et al., 2017). Small 
areas of live trees are unlikely to be an equivalent seed source to external patch edge. 
Therefore, we filled in internal “islands” of lower severity within stand-replacing patches, 
considering them part of the stand-replacing patch, if the internal islands were 0.81 ha (9 
pixels) or smaller (sensu Stevens et al., 2017). All fire severity pattern analysis was 
performed in R 3.4.3 (R Core Team, 2017). 

Fire modeling. Our comparison of the treatment fireshed to control fireshed would be 
incomplete without consideration of pre-treatment fire risk, as differences in fire severity 
patterns could have been due to factors such as topography or vegetation types that 
existed before treatments. Thus, we ran the fire behavior model FARSITE using pre-
treatment vegetation data to simulate how the American Fire would have burned had 
treatments not occurred. This study design follows the principles of a before-after 
control-impact (BACI) experiment (Stewart-Oaten and others 1986).  

To check the validity of comparing pre-treatment modeled fire severity to actual wildfire 
severity, we also simulated American Fire behavior using post-treatment vegetation data 
and compared results to severity as measured by RdNBR. Since the post-treatment 
vegetation data was taken the same year the American Fire burned, we expected these 
model predictions to resemble actual burn patterns. However, given FARSITE’s 
limitations in predicting large, contiguous high-severity fire (Coen et al., 2018), we did not 
expect the spatial patterns of fire in post-treatment FARSITE model to exactly match 
RdNBR burn severities (Collins et al., 2013). 

We used FARSITE (v.4.1.005) for fire behavior modeling because it simulates an 
individual fire initiating from a single point on a landscape, which allowed us to use 
American Fire inputs for weather and ignition location. FARSITE is a landscape-scale, 
spatially explicit fire growth model requiring inputs of detailed forest structure data, fuel 
models, topography, and weather (Finney, 1998). While FARSITE models have been used 
to examine treatment effects at Last Chance in previous studies (Tempel et al., 2015), this 
is the first time FARSITE has been used with inputs based on the American Fire (weather 
and ignition location).  

Our methods for developing the necessary layers for FARSITE are described in detail by 
Tempel et al. (2015) and Fry et al. (2015) and summarized in the Appendix. In short, we 
created wall-to-wall maps of vegetation structure in the study firesheds based on a 
combination of field measurements and LiDAR. This was completed once using pre-
treatment data from field plots and LiDAR and again using post-treatment plot and 
LiDAR data.   

We categorized flame lengths from FARSITE model output into three classes: 0-1.2 m, 1.3-
2.4 m, and >2.4 m, based on likelihood of crowning and torching (NWCG, 2006). Though 
these flame lengths are not equivalent to RdNBR-derived fire severity classes, we 
compared them to low, moderate, and high fire severity classes for the purposes of 
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examining patterns in stand-replacing area and core patch area (sensu Collins et al., 2013; 
Miller and Quayle, 2015). This resulted in maps of stand-replacing polygons similar to 
those derived from RdNBR, allowing comparison of severity patterns between model 
results and remotely sensed metrics.  We quantified the percent of total fireshed area 
predicted to burn at high severity for both pre- and post-treatment FARSITE output 
severity maps. For both FARSITE-based severity maps, we calculated the sum of the “core 
patch areas” of each fireshed following the method used with RdNBR.  

Field measurements of fire severity. We compared overstory tree mortality between 
firesheds from plot data by using a generalized linear mixed model (GLMM) with a 
binomial distribution and logit link, and with plot as a random effect. We used the 
package “lme4” in R (Bates et al., 2015). This comparison was made using only plots that 
were re-visited in 2014 because the plot sample in 2015 was selected to represent plot-
scale differences in seedling densities, not fireshed-scale differences in tree mortality. Due 
to the spatial clustering of plots in the treatment fireshed and control fireshed the plots in 
this test are not strictly independent.  

Seedling density analysis 

Our analytical approach was designed to determine the effect of treatments on 
regeneration and to identify a potential mechanism behind that effect. Thus, we not only 
analyzed the relationship between treatments and seedling densities, but we also 
identified what specific plot characteristics drove seedling densities and how those 
characteristics were affected by treatments (Fig. 2). 

Our analysis was also guided by our desire to avoid attributing regeneration differences to 
treatments if those trends were actually caused by plot characteristics that were present 
before treatments. For example, if control plots happened to have higher shrub cover 
than treatment plots before the experiment began, we did not want to erroneously 
attribute seedling differences to treatments if they were actually driven by shrub cover.  

In order to achieve these analytical goals, we used a combination of seedling data, pre-
treatment plot data, and post-fire plot data in three steps:  

1. We first identified which post-fire plot characteristics (e.g. tree basal area, shrub 
cover, etc.) were most strongly associated with seedling densities (Fig. 2, Step 1).  

2. We then tested for a treatment effect on seedling densities (Fig. 2, Step 2). We 
included pre-treatment plot variables to control for inherent differences (i.e., 
differences unrelated to the fire or the treatment) that were likely to affect 
seedling densities, as determined by the results of Step 1. For example, if post-fire 
shrub cover was identified as a driver of seedling densities by Step 1, we included 
pre-treatment shrub cover in the model used to test for treatment effects on 
seedling densities in Step 2. We included these pre-treatment plot characteristics 
rather than post-fire characteristics because we expected post-fire variables to be 
correlated with the treatment effect, and our goal was to attribute all variation in 
the data caused by treatments to the treatment variable alone. For example, we 
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expected treatments to directly affect post-fire basal area through tree harvest, so 
including post-fire tree basal area in the model would confound the treatment 
effect signal.  

3. Finally, we tested the effect of treatment on each plot characteristic that was 
identified as an important driver of seedling densities by Step 1 (Fig 2, Step 3). If 
any plot characteristic that significantly affected seedling densities and was 
significantly affected by treatments, then we identified it as a possible mechanism 
behind treatments’ effect on seedling densities. 

These three steps are described in more detail below. 

Identifying plot-scale drivers of post-fire seedling densities. To identify the most 
important drivers of post-fire seedling densities, we modeled seedling densities as a 
function of post-fire plot characteristics using generalized linear models (GLMs) with 
model selection based on the Akaike Information Criterion, corrected for small sample 
sizes (AICc). We analyzed seedling densities separately for each of two species groups: A) 
seedlings in the “fir functional group,” which included Abies concolor, A. magnifica, and 
Pseudotsuga menziesii (hereafter referred to as “firs”) and B) seedlings in the Pinus genus, 
including P. ponderosa and P. lambertiana (hereafter referred to as “pines”). These two 
species groups were used for three reasons: because it is difficult to identify 1-2 year old 
seedlings to the species level; because the species in each group share traits associated 
with tolerance of shade and microclimatic conditions (Niinemets and Vallardes, 2006); 
and because there were few P. menziesii seedlings. Of the fir functional group, 93.3% were 
of the Abies genus, while 6.7% were P. menziesii. We also analyzed all seedling species 
together, which included the addition of C. decurrens to the species in the above two 
groups, but because these results were heavily driven by firs, which were the most 
abundant seedling group, we report them only in the Appendix.  

For the fir group, we used GLMs with negative binomial distribution and log link using 
the function “glm.nb” in the R package “MASS” (Venables and Ripley, 2002). For the pine 
species group, 21 out of the 97 plots had zero pine seedlings. To account for this zero-
inflated data, we applied GLMs using the function “hurdle” in the R package “pscl”, which 
combine binomial and negative binomial models to account for zero-inflated data 
(Jackman, 2017; Zeileis et al., 2008). More details on these statistical methods can be 
found in the Appendix. 

We chose which plot characteristics to include in the analysis by selecting variables that 
could be calculated from available data and that were likely to affect seedling growing 
conditions via their effects on light availability, moisture competition, seed bed quality, or 
seed source. For each of the two species groups, we calculated AICc for all combinations 
of the following plot variables: shrub cover; cover of bare mineral soil; basal area of 
overstory trees; plot-scale fire severity class; neighborhood fire severity; and conspecific 
overstory tree basal area, as a proxy for seed availability. Plot-scale fire severity class was 
based on proportion of tree basal area that died in that plot (<20% = low severity, 20-70% 
= moderate severity, and >70% = high severity) with an additional “unburned” class for 
plots outside the fire perimeter. Neighborhood fire severity was defined as the proportion 



 

12 
 

of RdNBR pixels within 120 m of the plot center that experienced stand-replacing fire. We 
also included two interactions. The interaction between fire severity and post-fire basal 
area was included because fire severity is calculated relative to pre-fire tree basal area and 
may have different effects depending on basal area. The interaction between plot-scale 
fire severity and neighborhood-scale fire severity was included because we were 
specifically interested in the spatial aspects of fire severity and expected neighborhood 
fire severity to affect seedling densities differently depending on plot-scale fire severity. 
We then calculated the weight of evidence and evidence ratio for each model, which are 
reported in the Appendix (Burnham and Anderson, 2002). We calculated McFadden’s 
pseudo R2 for the best fir seedling driver model, but we do not report a metric of model fit 
for the pine seedling analysis because the hurdle model does not lend itself to 
calculations of pseudo R2. 

Treatment effects on seedling densities. To evaluate the effect of fuel treatments on 
post-fire conifer seedling densities, we used GLMs and likelihood ratio tests for each 
species group with seedling count as the response variable. We grouped treatment types 
into “treatment” and “control” because only 2 of the 29 treatment plots were prescription 
burned, and the other 27 were whole-tree harvested.  

We chose which pre-treatment plot characteristics to include in the treatment effects 
models based on the results of Step 1. If a post-fire plot variable was included in any 
model within 2 AICc of the best seedling driver model, and if the variable was measured 
pre-treatment, we included the pre-treatment version of the treatment effects model. 
Some post-fire variables lacked pre-treatment analogs, either because they did not exist 
pre-treatment (e.g. fire severity) or because they were not measured in pre-treatment 
surveys (e.g. cover of bare mineral soil). All pre-treatment variables were calculated from 
2007 and 2008 field data. We also included a binary variable for whether or not a plot was 
within the fire perimeter and an interaction between fire and treatment. For each species 
group, likelihood ratio tests were performed between 1) the full treatment model, 
containing pre-treatment plot characteristics, fire, and treatment, and 2) the null model, 
containing pre-treatment plot characteristics and fire but no treatment. If these two 
models significantly differed, we determined that the effect of treatments on seedling 
densities was significant. 

Treatment effects on drivers of seedling densities. We tested whether treatments 
affected each of the post-fire variables that were identified in Step 1 as potential drivers of 
seedling densities at the plot scale, again using the threshold of 2 AICc from the best 
model. For each variable, we chose between ANOVA and Wilcoxon rank-sum tests based 
on the distribution of data. When pre-treatment data were available for the plot variable 
of interest, we included pre-treatment data in the analysis in order to account for pre-
existing plot conditions. We used α = 0.05 with a Bonferroni correction for multiple 
comparisons.  
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RESULTS 

Fire severity patterns  

The control fireshed burned with 25.6% stand-replacing fire, while the treatment fireshed 
burned with only 11.3% stand-replacing fire, according to RdNBR (Table 2). The FARSITE 
simulation predicted higher pre-treatment fire severity in the treatment fireshed (37.7% 
stand-replacing in treatment vs. 28.0% in control), indicating that the effect size of 
treatments was larger than fireshed differences in actual fire severity suggests. Using the 
principles of the BACI study design, we estimated the treatment effect size by comparing 
the change in the treatment fireshed between pre- and post-treatment to the change in 
the control fireshed during the same time period. Treatments reduced stand-replacing 
area by approximately 24 percentage points (Table 2).   

The treatment fireshed also had a lower percentage of core patch area than the control 
fireshed, with only 1% of area farther than 120 m from patch edge, compared to 2.4% in 
the control fireshed (Table 2; Fig. 3). The treatment fireshed had greater expected pre-
treatment core patch area than the control fireshed (6.5% vs. 2.6%). Again using the BACI 
framework, the treatments reduced core patch area by approximately 5.3 percentage 
points (Table 2). These results match the pattern found in stand-replacing patch sizes; the 
mean stand-replacing patch size in the treated fireshed was 7.6 ha (median 1.37 ha, 
maximum 123 ha), whereas in the control fireshed the mean stand-replacing patch was 
10.1 ha (median 1.37 ha, maximum 258 ha). 

More overstory trees (i.e. trees ≥19.5 cm DBH) died in the control fireshed than in the 
treatment fireshed (40% vs. 32%), but this difference was not significant (P = 0.38).  

Regeneration 

Seedling densities were higher in treatment plots than control plots. On average there 
were 7.8 seedlings m-2 in treatment plots and 1.4 seedlings m-2 in control plots for all 
species combined. There were more seedlings inside than outside the fire perimeter, with 
a mean of 4.1 seedlings m-2 inside and 0.2 seedlings m-2 outside the fire (Fig. 4). The 
majority of seedlings were firs, which had a mean density of 3.0 seedlings m-2 (median 
0.23) compared with a mean of 0.20 pine seedlings m-2 (median 0.07).  

Drivers of post-fire seedling densities 

In the fir seedling driver model with the lowest AICc (“best” model; Table A.3), fir 
seedling densities decreased with shrub cover and neighborhood fire severity, and 
increased with plot fire severity and tree basal area. The interaction between tree basal 
area and fire severity and the interaction between neighborhood fire severity and plot fire 
severity were also present in the best fir seedling driver model, which had a pseudo R2 of 
0.45. The interaction between plot and neighborhood fire severity was especially 
pronounced for plots with moderate plot-scale fire severity (Fig. 5; Table A.1).   
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According to the best pine seedling driver model, pine seedling densities increased with 
pine basal area and were highest in moderate severity plots (Fig. 6).  

For both pine and fir seedling driver analyses, though we used the best models for 
visualizing results (Figs. 5 and 6), the top three models are all within 2 AICc (Tables A.3 
and A.4), indicating substantial evidence supporting their selection as the best model 
(Burnham and Anderson, 2002). We therefore incorporated variables from all three of 
these top models into Steps 2 and 3 of the analysis. 

Treatment effects on seedling densities 

Treatment plots had more seedlings than control plots (Fig. 4). This difference was 
particularly pronounced for firs, which had mean densities of 7.1 seedlings m-2 in 
treatment plots and 1.2 seedlings m-2 in control plots.  

For analyses of treatment effects on seedling densities, we chose which pre-treatment plot 
variables to include based on the results of Step 1. For firs, we included pre-treatment 
shrub cover and pre-treatment tree basal area because the post-fire analogs of those two 
variables were in at least one of the top three models with < 2 AICc and were possible to 
calculate from pre-treatment data. For pines, we included pre-treatment shrub cover, pre-
treatment tree basal area, and pre-treatment pine basal area for the same reasons.  

Treatment was strongly associated with greater seedling densities for firs (likelihood ratio 
test; P < 0.001; Fig. 7). Pine seedling densities were higher in treatment plots, though the 
difference was not significant (means 0.27 seedlings m-2 vs. 0.17 seedlings m-2; likelihood 
ratio test; P = 0.054).  

Treatment effects on drivers of seedling densities 

Treatments reduced tree basal area (ANOVA; P = 0.003) and decreased neighborhood fire 
severity, though the latter was not significant at α = 0.05 with a Bonferroni correction for 
5 comparisons (Wilcoxon rank-sum; P = 0.017; Table 3). Neighborhood fire severity data 
were heavily zero-inflated, with medians of zero for both treatment and control plots, but 
there were more and larger non-zero values in control plots (31.3% of observations, with a 
median of 17) than treatment plots (13.8% of observations, with a median of 4). The other 
variables tested were not affected by treatments (Table 3).   

DISCUSSION 

SPLATs moderated landscape-level fire severity, resulted in post-fire vegetation patterns 
that will likely improve long-term ecological integrity of the studied forest, and promoted 
conifer seedling regeneration in the two years following fire. 

Fire Resistance 

The Last Chance fuel treatments not only decreased the area that experienced stand-
replacing fire, but also reduced the core patch area. In the treatment fireshed, the stand-
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replacing burn area was half that of the control, while the core patch area was less than 
half that of the control, despite the treatment fireshed having greater modeled fire hazard 
before treatments. Thus, the SPLAT network achieved the objective of increasing 
resistance to fire at the landscape scale, as predicted by modeling studies conducted 
before the implementation of treatments at Last Chance (Collins et al., 2011b).  

These treatment effects were achieved with only 18% of the fireshed treated. This 
proportion of area treated is comparable to other studies of landscape-scale treatment 
effects on fire behavior. For example, in one field study on the Rim Fire, 10-40% of the 
area needed to be treated to see an effect on fire severity at the scale of 2,000 ha (the 
treatment fireshed at Last Chance was 2,162 ha; Lydersen et al., 2017). Modeling studies 
suggest that for strategically placed treatments there may be diminishing returns for 
increasing area treated beyond 40% (Finney et al., 2007). Ager et al. (2010) found, 
however, that the marginal decrease in hazardous fire potential began diminishing 
beyond 10-20% of the landscape treated. Similarly, in the Lake Tahoe Basin, increasing 
area treated from 13% to 30% did not substantially decrease landscape-level fire hazard 
(Stevens et al., 2016).  

The large landscape-scale effect of treatments may have been due in part to the overlap 
between treatments and the highest fire risk areas of the fireshed. The treatments were 
largely located in the southern and southeastern portions of the fireshed, which were also 
predicted to have the highest risk of stand-replacing fire before treatments (Figs. 1 and 3). 
Previous studies have shown that prioritizing treatments in highest fire risk areas 
achieves greater hazard reduction (Krofcheck et al., 2017). 

Treatments brought fire severity patterns closer to historical norms. The high-severity fire 
patterns observed in the treatment fireshed were more consistent with the natural range 
of variation for mixed-conifer forests of the Sierra Nevada than either the control fireshed 
or the expected pre-treatment patterns in the treatment fireshed.  Historically, fires in the 
area averaged 5-10% high severity (Mallek et al., 2013, Meyer 2015), and high-severity 
patches were only a few ha in size (Collins and Stephens 2010, Stephens et al., 2015, 
Safford and Stevens 2017).  

Our BACI analytical framework relies on FARSITE simulations to provide the pre-
treatment controls. Thus the treatment impacts in Table 2 that compare pre-treatment 
model results to post-treatment empirical results (i.e., RdNBR results) do not follow a 
BACI design in the strictest sense. Empirical measures of pre-treatment differences in fire 
behavior would be preferable but were logistically impossible. Although fire behavior 
models like FARSITE are simplified simulations of complex fire events and therefore 
inherently limited in their predictive ability, they provided the best available means to 
account for pre-treatment differences in fire hazard between the firesheds. The large 
treatment impact suggests that the treatment effect we detected was real. Moreover, our 
FARSITE predictions of post-treatment fire behavior match empirical measurements 
better than the pre-treatment FARSITE predictions do (Table 2; Fig. 3). This matching 
indicates that the pre-treatment model at least partially captures differences in fire effects 
had treatments not occurred. FARSITE results using post-treatment vegetation data 
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resembled actual burn patterns in terms of severity but did not replicate the exact spatial 
pattern of fire severity (Fig. 3). Even with detailed vegetation and weather data to 
parameterize the model, FARSITE simulates a dynamic biophysical process.  

Moreover, the actual fire was influenced by suppression efforts. For example, fire fighters 
burned areas in advance of the main fire front along the southern boundary of the 
treatment fireshed. The effect of suppression on fire severity was likely smaller than the 
effect of treatments because FARSITE model runs did not include suppression efforts yet 
yielded a strong effect of treatments. Furthermore, whatever influence suppression may 
have had on fire severity was in part a consequence of treatments, as fire crews were able 
to safely burn-out in areas where it may not have been possible otherwise (Larry Peabody, 
personal communication, 2017). Part of the goal of SPLATs is to reduce fire severity 
indirectly by facilitating suppression efforts, and this effect can be significant (Finney, 
2001; Moghaddas and Craggs, 2007), though it is very difficult to quantify, and as such it is 
rarely captured in simulation studies.  

Our remote-sensing-based analyses of fire severity showed stronger treatment effects 
than did field-based measurements of tree mortality. The fact that field measurements of 
tree mortality were not significantly different between the two firesheds may be due to 
study design. Tree mortality was measured in plots and thus our analysis needed to 
include a random effect for plots. As a consequence, the model results were 
disproportionately affected by trees in sparse plots, which were more likely to experience 
lower fire severity, while trees in dense, severely burned plots contributed proportionally 
less to the model results. We do not interpret the weaker effect detected by field data as 
contradictory to satellite fire severity results, especially considering the relative scarcity of 
plot data compared to RdNBR.  

This study does not address the longevity of treatment effects in cases where there is a 
time lag between treatments and wildfire, since the American Fire burned only one year 
after treatments were completed (five years after treatments began). Collins et. al. (2011b) 
showed that treatments at Last Chance were likely to affect conditional burn probabilities 
for 20 years. This longevity is consistent with similar treatment networks in other 
locations (Finney et al., 2007), though treatments may last longer if maintenance 
treatments are incorporated (Collins et al., 2013). Fire severity may actually have been 
lower in the American Fire if it had burned a few years later because activity fuels (in 
cable logged areas) would have decayed and compressed over time (Collins et al., 2014).  

Forest Recovery 

There were nearly six times more seedlings in treatment plots than in control plots, and 
this difference was largely driven by firs. Of the plot characteristics that our analysis 
identified as important drivers of seedling densities, treatments affected only two of 
them: tree basal area and neighborhood fire severity. Though the Wilcoxon rank-sum test 
showed a P-value of 0.017 for neighborhood fire severity, which equates to P = 0.085 after 
the Bonferroni correction for 5 comparisons (Table 3), an ecologically meaningful 
relationship may exist based on the large difference in their proportion and magnitude of 
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non-zero values. Neither tree basal area nor neighborhood fire severity were associated 
with pine seedling densities, meaning that we did not identify a mechanism for treatment 
effects on pine regeneration. Since post-fire tree basal area was positively associated with 
fir seedling densities and negatively associated with treatments, it is unlikely that changes 
in basal area are the mechanism by which treatments affected regeneration. Thus, the 
only potential mechanism we identified for treatments’ effects on fir seedling densities 
was neighborhood fire severity, which was negatively associated with both treatments 
and fir seedling densities. Neighborhood fire severity was consistently present in the top-
ranked 21 models identifying drivers of post-fire seedling densities (Table A.3). 

Our findings are consistent with previous evaluations of treatment effects on seedling 
densities. For example, in ponderosa pine forests of the American Southwest, treatments 
increased regeneration densities independent of plot-scale fire severity, and this effect 
was likely due to moderation of neighborhood fire severity (Shive et al., 2013). 
Neighborhood fire severity likely influences plot-scale seedling densities by affecting the 
available seed source. The strong interaction we identified between plot-scale fire severity 
and neighborhood-scale fire severity in predicting fir seedling densities adds to a body of 
literature showing that fire at the plot scale promotes seedling regeneration by increasing 
resource availability and improving seed bed quality, but these benefits are contingent 
upon there being sufficient nearby seed source (Shive et al., 2013, Welch et al., 2016).  

The effect of neighborhood fire severity on seedling densities was strongest for 
moderately burned plots. Plots that burned at low severity may have experienced smaller 
increases in resource availability, causing lower fir seedling densities than moderately 
burned plots. Furthermore, low severity plots likely had greater post-fire tree basal area 
and therefore did not need additional seed sources from the surrounding neighborhood. 
Plots that burned at high severity also had lower fir seedling densities than moderately 
burned plots, which could be due to harsher microclimates not conducive to fir 
regeneration (Irvine et al., 2009). Moderately burned plots with low neighborhood fire 
severity, and thus abundant nearby seed source, appear to have the optimal conditions 
for fir regeneration, consistent with previous findings (Crotteau et al., 2013, Welch et al., 
2016).  

Within the treatment fireshed, we did not detect an effect of treatments on plot-scale fire 
severity (Table 3). This contrasts with our findings of strong effects of treatments on 
landscape-scale fire severity patterns. This difference is likely due to strong spatial 
autocorrelation in fire behavior at the plot scale. Because our aim was to compare 
seedling regeneration in treatment and nearby control plots, we measured seedlings only 
in the treatment fireshed. Fire behavior at each plot may be more influenced by the 
behavior of the fire before it reached the plot than plot-scale treatments (Kennedy and 
Johnson, 2014).  

In contrast to fir seedlings, we did not detect a neighborhood fire severity effect on pine 
seedling densities. Overall, pines were rarer on the landscape with less than half of plots 
containing any overstory pines after the fire. Thus, neighborhood fire severity may have 
been less correlated with seed availability for pines than for firs. Because pines prefer 
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more open growing conditions (York et al., 2004), nearby low severity areas could actually 
hinder, rather than aid, pine regeneration.  

We found much higher seedling densities of firs than pines, highlighting the importance 
of management to facilitate pine regeneration. Shade-intolerant tree species like pines are 
underrepresented in many Western U.S. forests relative to historical conditions, due to 
logging legacies and fire suppression (Churchill et al., 2013, Stephens et al., 2015, Levine et 
al., 2016). Pines are critical components of mixed-conifer forests, as they are more fire 
resistant than other species and contribute to structural and compositional heterogeneity. 
Therefore, shifting species composition toward pines is a common goal of thinning 
treatments, including the treatments at Last Chance. We found that despite the 
disproportionate retention of pines in the overstory following treatment, post-fire 
seedling densities were much higher for firs than for pines even in treatment plots, and 
treatment effects on seedling densities were stronger for firs than for pines. If shifting 
regeneration toward pines is a management goal, more aggressive management, such as 
planting, may be needed. 

CONCLUSION 

Given the widespread incorporation of the SPLATs concept into land management 
planning for frequent-fire forests, empirical testing of landscape treatment networks is 
critical. The natural experiment created when the American Fire burned through half of 
the Last Chance study site allowed us to quantify treatments’ effects on wildfire resistance 
and forest recovery given real-world constraints on treatment placement. As noted in a 
recent review (Chung, 2015), there is a pressing need for "more reliable and field-verified 
data" to develop more efficient fire models appropriate for use by fire managers. Our 
results meet this need. 

More importantly, this natural experiment confirmed the value of landscape fuel 
treatments. We found that treatments on 18% of the fireshed noticeably decreased 
landscape-level fire severity, and that treatments locally increased fir seedling densities. 
The combination of high initial post-fire seedling densities and small stand-replacing 
patches in the treatment fireshed bodes well for long-term integrity of the mixed-conifer 
forests within the American Fire, though regenerating conifers will likely be dominated 
by firs. More widespread use of strategically placed treatment networks could help bring 
wildfire effects closer to historical norms and facilitate long-term recovery from fire.  

ACKNOWLEDGEMENTS 

Pre-fire data was collected as part of the Sierra Nevada Adaptive Management Project. 
Post-fire research was supported by the National Science Foundation Division of 
Environmental Biology Award 1450144 and the University of California Cooperative 
Extension’s Graduate Students in Extension Fellowship. We thank the two anonymous 
reviewers who provided helpful comments on an earlier version of this manuscript.  



 

19 
 

TABLES 
Table 1. Area of each treatment type applied in the treatment fireshed 

 Area (ha) Percent of total fireshed area 

Whole-tree harvest 226.4 10.5% 
Prescribed fire 143.9 6.7% 
Cable logging 13.2 0.6% 
Mastication 5.6 0.3% 
Total 389.0 18.0% 

 

  



 

 

Table 2. Patterns of stand-replacing fire in the treatment and control firesheds. “Pre-trt (model)” refers to stand-replacing 
patches derived from FARSITE model predictions using pre-treatment vegetation data, while “Post-trt (model)” refers to 
stand-replacing patches derived from FARSITE model predictions using post-treatment vegetation data. “Post-trt (RdNBR)” 
results were calculated from American Fire RdNBR. “Δ (RdNBR - Pre-trt)” is the difference between “Post-trt (RdNBR)” and 
“Pre-trt (model).”  

 

  

 Control fireshed Treatment fireshed 
Treatment impact 

(Treatment Δ - 
Control Δ) 

 

Pre-trt 
(model) 

Post-trt 
(RdNBR) 

Post-trt 
(model) 

Δ 
(RdNBR - 
Pre-trt) 

Pre-trt 
(model) 

Post-trt 
(RdNBR) 

Post-trt 
(model) 

Δ 
(RdNBR 
- Pre-trt) 

Percent area 
stand-
replacing 

28.0 25.6 22.0 -2.4 37.7 11.3 20.6 -26.4 -24 

Mean stand-
replacing patch 
size (ha) 

8.41 10.1 6.85 1.69 11.7 7.64 5.25 -4.06 -5.8 

Percent core 
patch area 2.60 2.39 1.11 -0.21 6.50 1.02 0.47 -5.5 -5.3 
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  Table 3. Tests for treatment effects on the drivers of seedling densities. 

Response 
variable 

Transformation of 
response variable 

Pre-treatment 
data included? Test 

Treatment 
effect 

P 

Tree basal area Square root Yes ANOVA (-) 0.003** 

Shrub cover None Yes ANOVA (-) 0.034 

Pine basal area None Yes ANOVA (-) 0.44 

Neighborhood 
fire severity 

None No Wilcoxon 
rank-sum 

(-) 0.017* 

Local fire 
severity 

None No Wilcoxon 
rank-sum 

(+) 0.45 

*P < 0.02, the Bonferroni-corrected value of α=0.10 for 5 comparisons 
**P < 0.01, the Bonferroni-corrected value of α=0.05 for 5 comparisons 
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FIGURES 

 

 

Figure 1. Perimeters of the American Fire and the original four firesheds established by 
the Last Chance project. The two firesheds that fall within the American Fire perimeter, 
one control and one treatment, were used in the present study. The overview map on the 
left shows the location of the American Fire (red) within the Tahoe National Forest (gray). 
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Figure 2. Analytical framework for seedling analyses. Seedling densities were analyzed in 
three steps, first identification of the drivers of seedling densities (Step 1), followed by 
analysis of the overall effect of treatments on seedling densities (Step 2), and finally the 
effects of treatments on drivers of seedling densities (Step 3). Results from Step 1 dictated 
the set of explanatory variables that were used in Steps 2 and 3 
  

Treatments 

Seedling densities 

Plot 
characteristics 

Step 1) What post-fire 
plot characteristics drove 
conifer seedling densities 

at the plot scale? 

 Step 3) How did treatments 
influence each of the post-fire 

plot characteristics identified as 
important drivers of seedling 

densities? 

Step 2) Did treatments influence 
seedling densities, controlling for 

pre-fire conditions? 
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Figure 3. Stand-replacing fire patches and core patch areas based on pre-treatment 
FARSITE model output (A), post-treatment FARSITE model output (B) and actual RdNBR 
American Fire severity (C). The southern fireshed was treated while the northern fireshed 
was a control. 

 

  

Stand-replacing fire  
< 120 m from patch edge 

Core patch (> 120 m 
from patch edge) 

 

A. Pre-treatment FARSITE B. Post-treatment FARSITE C. RdNBR 
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Figure 4. Seedling densities by treatment at the plot scale for all seedling species 
combined. Note the log scale on the y-axis. The midline of the boxplot represents the 
median of the data, the upper and lower limits of the box represent the third and first 
quartile of the data, and the whiskers represent 1.5x the interquartile range from the third 
and first quartile. The points represent data outside 1.5x the interquartile range from the 
third and first quantile. 
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Figure 5. Predicted fir seedling densities in relation to plot-scale and neighborhood-scale 
fire severity for the best fir seedling driver model from Step 1. To generate these lines, the 
model was applied to a matrix of all variable combinations within the parameter space of 
the original data, and the median predicted seedling density was calculated for each 
combination of the two fire severity variables. All plots that were unburned at the plot 
scale had zero neighborhood fire severity, represented by the green point. See Table A.1 
for model coefficients. 
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Figure 6.  Predicted pine seedling densities in relation to post-fire pine basal area and 
plot-scale fire severity. Lines represent predictions based on the best pine seedling driver 
model from Step 1. To generate these lines, the same method was used as for Fig. 5. 
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Figure 7. Predicted fir seedling densities in relation to treatment and pre-treatment shrub 
cover for the fir treatment model from Step 2. For ease of visualization, plots outside the 
fire perimeter are excluded from this figure. To generate these lines, the same method 
was used as for Figs. 5 and 6. 
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In Chapter 1, I analyzed post-fire regeneration patterns and found that shade-tolerant 
tree species regenerated in much higher densities than shade-intolerant species. I also 
found that regeneration patterns were affected by neighborhood fire severity. In Chapter 
2, I explore the idea that shifts toward shade-tolerant species may be occurring on a larger 
scale in response to the changing fire regime. As indicated in Chapter 1, neighborhood fire 
severity is likely to play a significant role in the new fire regime. Patches of high-severity 
fire may favor shade-tolerant firs because they foster dense, dark shrub layers that shade-
intolerant pines may struggle to grow in. In Chapter 2, I present a conceptual framework 
illustrating how regional fir enrichment may occur. I then test a component of that 
framework. I ask: Does competition with shrubs in high-severity fire patches affect pines 
more strongly than it affects firs? Are these effects likely to alter fir and pine mortality 
rates? 
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ABSTRACT 

Novel combinations of fire regime and forest type are emerging in areas affected by 
climate change, fire exclusion, and other stressors. Species interactions following wildfire 
in these areas are not well understood. In Sierra Nevada mixed conifer forests, large 
patches of stand-replacing fire were once rare but are becoming increasingly prevalent 
and are quickly revegetated by native shrubs. There is uncertainty as to which tree species 
are best adapted to recover in the resulting post-fire environments. We introduce a 
conceptual framework for understanding how the altered fire regime in the Sierra Nevada 
may affect species composition. We investigate an understudied link in this framework: 
how juvenile ponderosa pine (Pinus ponderosa) and white fir (Abies lowiana) growth and 
mortality rates are affected by shrub competition following stand-replacing fire. We 
measured juvenile conifer growth in relation to shrub competition in five fire footprints 
ranging from 8 to 35 years old and > 400 ha in size. To test whether reductions in conifer 
growth may lead to increased mortality, we also evaluated how recent tree growth 
predicts mortality of similarly aged juvenile trees in nearby managed stands. We found 
that juvenile ponderosa pine growth was negatively associated with nearby shrub 
competition, but white fir growth was not. Both species grew slower preceding mortality, 
with a steeper relationship found in ponderosa pine. Across the range of shrub 
competition in this study, expected pine annual relative growth rate varied from 0.27 to 
0.10, which corresponded to an eleven-fold difference in annual probability of mortality 
(0.1% to 1.1%, respectively). These results show that ponderosa pine is sensitive to shrub 
competition following wildfire in terms of both growth and survival while white fir is less 
sensitive, presumably due to its high shade tolerance. Though pines are generally 
considered fire-adapted, this study argues that post-fire species interactions in a novel fire 
regime may exacerbate the already shifting species composition toward shade tolerant 
species, which are less well adapted to survive through future fires and to persist in future 
drier, warmer climates. 
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INTRODUCTION 

Fire regimes across the Western US are shifting in response to a warming climate and the 
consequences of a long-term policy of wildfire exclusion (Taylor et al. 2016, Hessburg et 
al. 2019). Historically, many forests in the region experienced frequent low- and mixed-
severity wildfires. Today, wildfires are less frequent but are larger and more severe (Miller 
et al. 2009, Westerling 2016, Collins et al. 2019). This shift leads to mismatches between 
the fire regime and fire adaptations of endemic flora (Lytle 2001, Cavender-Bares and 
Reich 2012). Regeneration of dominant flora is particularly sensitive to changes in 
disturbance characteristics (Sousa 1984) and changes in community assembly after 
disturbance can have long-term effects on species composition and ecosystem function 
(Miller et al. 2012, Johnstone et al. 2016).  

Prior to European settlement, fires in frequent-fire forests burned at variable intensities 
across the landscape, which helped maintain species diversity (Noss et al. 2006). In Sierra 
Nevada mixed conifer forests, the historic fire regime helped to generate a wide range of 
resource availability by creating a variety of canopy gap sizes. In turn, this resource 
gradient supported recruitment of a diverse woody flora (Safford and Stevens 2017). Niche 
differentiation varied according to species’ differences in shade tolerance, drought 
resistance, and fire sensitivity (Parsons and DeBenedetti 1979; Fig. 1a). For example, the 
persistence of ponderosa pine (Pinus ponderosa Doug.) can be attributed to its abundant 
seed germination and rapid seedling growth in post-fire patches with mineral soil 
seedbeds, high light availability, and high evaporative demand (York et al. 2003, Bonnet 
et al. 2005, Annighöfer et al. 2019), along with its thick bark and high crown base, which 
improve survival in low- and moderate-severity fires (Schwilk and Ackerly 2001). On the 
other hand, regeneration of shade-tolerant tree species, predominately Sierra white fir 
(Abies lowiana Gord. & Glend.), prevails in unburned patches (Crotteau et al. 2013).  

Under today’s disturbance regime, defined by less frequent fire but larger stand-replacing 
patches (Stevens et al. 2017), the conditions that historically maintained species 
coexistence have changed. Not only do long fire-free periods favor shade-tolerant species 
(i.e., white fir) over intolerant species (i.e., ponderosa pine; Collins et al. 2011, Levine et al. 
2016; Fig. 1b), but increasingly prevalent stand-replacing fire may also promote fir 
dominance (Fig 1c).  

The goals of this paper are to a) introduce a conceptual framework for understanding 
how fir enrichment can result from multiple aspects of the modern fire regime in Sierra 
Nevada mixed-conifer forests (Fig. 1), and b) to quantify the effect of shrub competition 
on relative growth and mortality of dominant conifer species in stand-replacing fire 
patches. In severely burned patches, fir recruits at higher densities than pine (Nagel and 
Taylor 2005, Crotteau et al. 2013, Collins and Roller 2013, Lauvaux et al. 2016) but the 
drivers of this fir dominance are unknown and could be related to any of several phases of 
post-fire recovery – dispersal, germination, growth, or survival. The latter phases, growth 
and survival, are particularly understudied, as most research on post-fire recovery does 
not track individuals. Typically, studies on regeneration success rely on seedling counts in 
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the decade after fire (Welch et al. 2016, Young et al. 2019), but are missing the critical 
demographic transition between establishment and sexual maturity.  

Under a novel fire regime, competition with shrubs after fire may elevate the importance 
of seedling growth and survival in determining long-term species composition (Fig. 1b-c). 
In Sierra mixed conifer forest, shrubs typical of the montane chaparral plant community 
quickly revegetate severely burned patches via their ability to sprout or germinate from 
seed banks after fire, begin root expansion early in the growing season, outpace conifer 
growth, and tolerate extreme resource limitation (Kauffman and Martin 1991, McDonald 
and Fiddler 2010, Collins and Roller 2013). These shrub communities often form dense, 
continuous canopies one to two meters tall, lacking the environmental heterogeneity of 
smaller canopy gaps (Nagel and Taylor 2005). Heavy shrub cover is known to delay or 
preclude conifer recruitment in general and pine growth in particular (Zhang et al. 2006, 
Welch et al. 2016). This heavy competition with shrubs has been proposed as the reason 
for low pine densities in severely burned areas despite pine’s preference for the substrate 
conditions and high light availability created immediately after high-severity fire 
(Crotteau et al. 2013, Welch et al. 2016).   

While there is abundant research on shrub effects in ponderosa pine in managed 
plantations (e.g. McDonald and Abbott 1997, McDonald and Fiddler 2010), the nature of 
shrub/seedling interactions in post-high severity wildfire environments has not been 
closely examined. There are several aspects of plantations that make the research difficult 
to transfer to unmanaged wildfire footprints. Since nursery grown seedlings are larger and 
more vigorous than typical natural regeneration of similar age, planted seedlings in 
plantations bypass some shrub competition in the initial phase when competition with 
shrubs may be especially impactful, essentially getting a “head start” that can 
substantially alter the negative effects of shrub competition (McDonald and Fiddler 2010). 
For example, nine years after planting, nursery-grown ponderosa pine were found to 
exceed natural seedling size by 2.5 times under equal shrub competition and respond 
differently to resource limitation (McDonald et al. 2009). Importantly, planting usually 
follows site preparation, which can dramatically alter soil substrate, woody debris 
structure, shrub development, and any natural seedling regeneration that occurred prior 
to site preparation. Finally, traditional research on shrub effects examines single-species 
plantations, often of ponderosa pine (McDonald and Fiddler 2010). Both even-aged 
managed modern plantations and post-wildfire stands are likely to be much more diverse 
compared to the plantations used to develop competition control strategies in managed 
plantations (Van Mantgem et al. 2006). In order to understand succession in unmanaged 
wildfire footprints, data on mixed species stands of naturally regenerating conifers, 
including the effects of shrubs on shade tolerant species like white fir, are needed.  

Research on post-wildfire recruitment patterns has supported competing explanations of 
the underlying processes driving species composition and the role of shrubs (Gray et al. 
2005, Collins and Roller 2013, Tubbesing et al. 2019). Some studies indicate that montane 
chaparral inhibits conifer survival via moisture competition rather than shading (Conard 
and Radosevich 1982, Shainsky and Radosevich 1986, Royce and Barbour 2001, Plamboeck 
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et al. 2008, McDonald and Fiddler 2010), a process that may favor more drought-resistant 
species like pines over firs (Niinemets and Vallardes 2006). Other studies suggest that 
shrubs may facilitate seedling survival by moderating harsh microclimates, particularly 
when seedlings are young (Gray et al. 2005, North et al. 2005).  

To increase understanding of the impact of a novel fire regime on community assembly 
during the shrub-dominated stage of post-fire recovery, we performed in situ 
measurements of juvenile tree growth across a chronosequence of wildfires in the Sierra 
mixed conifer forest. We limited field sites to the interiors of large, stand-replacing 
patches characteristic of the contemporary fire regime (Stevens et al. 2017). We also 
evaluated the connection between growth rates and mortality for similarly aged trees to 
assess the influence that shrub suppression of tree growth may have on tree mortality 
rates. We measured live and dead trees in a nearby experimental forest where it was 
possible to locate a sufficiently large number of recently dead trees to analyze mortality. 
We used our demographic data on growth and mortality to assess the evidence for the 
"patch-driven" pathway outlined in our conceptual model (Fig. 1c), which stipulates that 
the shift toward less frequent but more severe fires has tilted post-fire recruitment 
dynamics in favor of the more shade-tolerant, fire-sensitive canopy tree species. 
Specifically, we tested two hypotheses: 1) Shrubs in wildfire footprints suppress the 
relative growth rates of ponderosa pine to a greater extent than white fir; 2) suppressed 
growth rates correlate with higher mortality rates of juvenile ponderosa pine and white 
fir. 

METHODS 

Study areas 

We focused on patches of stand-replacing fire (>90% tree basal area mortality) within fire 
footprints in the central Sierra Nevada. Forests in our study area experience a 
Mediterranean-type climate with wet winters and dry summers lasting 4-6 months. 
Forest composition is typical of mixed-conifer forests of the Sierra Nevada, which are 
dominated by ponderosa pine and Sierra white fir and also contain sugar pine (Pinus 
lambertiana Dougl.), Douglas-fir (Pseudotsuga menziesii Mirb.), incense-cedar 
(Calocedrus decurrens Torr.), and red fir (Abies magnifica A. Murr). Shrub patches are 
dominated by greenleaf manzanita (Arctostaphylos patula Greene), whitethorn ceanothus 
(Ceanothus cordulatus Kellogg), deerbrush (Ceanothus integerrimus Hook. & Arn.), 
mountain misery (Chamaebatia foliolosa Benth.), and tanoak (Notholithocarpus 
densiflorus Hook. & Arn.), with other shrub species in lower densities. 

Our site selection objective was to identify post-fire shrub fields across a range of fire 
footprint ages in order to capture gradients of shrub maturity, cover, and height. Because 
shrub-free areas are rare in stand-replacing fire patches of the Sierra Nevada (Young et al. 
2019), we quantified juvenile conifer growth across a gradient of shrub competition rather 
than comparing high-shrub areas to shrub-free areas. To ensure that environmental 
conditions were similar across sites, we limited sites to fire footprints that met the 
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following requirements: between the North and South forks of the American River; 
greater than 400 ha in size; 5-50 years old; within the Tahoe or Eldorado National Forests; 
not planted or herbicided following fire; and containing identifiable shrub fields 
surrounded by mixed conifer forest according to satellite imagery. We identified five fire 
footprints that met these criteria (Appendix S1: Table S1). At the time of first field 
measurements (2016) the fires ranged in age from 8 to 35 years.  

Within the five fire footprints, we located shrub patches using Google satellite imagery. 
We visited all accessible shrub-dominated patches that were greater than 1 ha in size, 
approximated using Google satellite imagery analyzed in QGIS 2.18.13. Only those shrub 
patches that contained juvenile conifers farther than 20 m from patch edge were 
measured (Fig. 2). Shrub patches ranged in size from approximately 1.5-1,116 ha (median 
9.8 ha).  

Because it was impractical to sample a sufficiently large number of dead trees in the 
shrub patches described above, mortality measurements were carried out at Blodgett 
Forest Research Station (BFRS), located near Georgetown, California, USA (38°520N; 
120°400W). BFRS has similar climate, elevation range, and species composition to the 
wildfire footprints described above. We focused on two study units that had high levels of 
shrub cover. These areas had been mechanically thinned and then prescribe burned in 
2002 as part of a long-term study (Collins et al. 2014). This management history promoted 
high densities of shrubs and conifer seedlings and saplings. We measured recent (3-year) 
vertical growth of live and dead juvenile conifers to evaluate how growth rates affect 
mortality probability. 

Field measurements 

Wildfire footprints. At each shrub patch, field crews located white fir and ponderosa 
pine seedlings and saplings 10-300 cm in height (hereafter referred to as juvenile conifers) 
located at least 20 m from live adult trees. Measurements were limited to these two 
species because of the scarcity of other species across shrub patches and the fact that 
white fir and ponderosa pine exemplify distinct differences in ecological strategy (e.g., 
shade tolerance, drought resistance, and fire sensitivity). This targeted sampling approach 
allowed for a larger sample size than gridded or random plot sampling because juvenile 
conifers were rare in most of the shrub patches. Though all conifers meeting our criteria 
that we encountered were sampled, it was impractical to perform exhaustive surveys of 
juvenile conifers in the shrub patches, so we do not know what proportion of total 
conifers in the shrub patches were surveyed. We chose 20 m from patch edge as our 
threshold for patch interiors because previous research has shown that our study species 
experience minimal edge effects at distances greater than 20 m from patch edges (York et 
al. 2003, 2004). Juvenile trees that appeared to have been affected by herbivory or physical 
disturbance were ignored.  

Juvenile conifers were tagged, GPS pinned, and measured for height and diameter. We 
then measured annual vertical growth based on distances between bud scars for the 2015, 
2016, and 2017 growing seasons. We chose to measure these three years of growth because 
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they were reliably identifiable using bud scars and because they represented a range of 
annual climatic conditions. The 2015 growing season concluded four years of drought in 
the Sierra Nevada and had record low April 1 snowpack (5% of normal), whereas the 
winter preceding the 2016 growing season had close to average precipitation. The 
following winter was exceptionally wet, with April 1 snowpack 175% of normal 
(https://wrcc.dri.edu/Climate/Monthly_Summaries).  

Shrub cover surrounding each juvenile conifer was measured for each shrub species using 
the line-intercept method along three-meter transects facing each of the four cardinal 
directions. We chose three meters for transect lengths because it represents the distance 
at which two-meter-tall shrubs (the approximate maximum shrub height in our study 
area) would block sunlight from reaching the base of the focal tree for all sunlight <33° 
from horizontal. Measurements were conducted in 2016 and 2017. We were unable to 
analyze diameter growth of juvenile conifers because measurements occurred in different 
seasons, and seasonally-driven diameter variation prevented analysis of year-to-year 
growth. 

Mortality study. To investigate how shrub suppression of juvenile conifer growth may 
affect survival, we estimated the relationship between vertical growth and probability of 
mortality for ponderosa pine and white fir. Growth declines are common predictors of 
gymnosperm mortality (Cailleret et al. 2017) and have been used to predict mortality for 
mature trees in the Sierra Nevada (e.g. Das et al. 2007) and for saplings in British 
Columbia (Kobe et al. 1995). We sampled from Blodgett Experimental Forest because it 
was impractical to sample a sufficiently large size of dead trees in the shrub patches 
described above. The Blodgett units we sampled from were majority Site Classes III (a 
measure of site productivity, Skovsgaard and Vanclay 2008) with some area in Site Class 
IV, making them similar to our fire footprints, which had 63% of samples in Site Class III 
and 22% of samples in Site Class IV.  

We surveyed live and dead juvenile tree densities across 275 plots making up 864 m2 of 
area and hundreds of trees, yet we found fewer than 30 dead trees of each species. To 
capture adequate sample sizes of dead trees, we combined this plot survey with targeted 
sampling of equal numbers live and dead trees for more detailed growth measurements. 
Thus, two types of data were gathered: 1) a survey of live and dead juvenile tree densities, 
and 2) growth rates of live and dead juvenile trees paired by species, proximity, and 
height.  

For the survey of live and dead tree densities, we placed evenly spaced 1-m radius circular 
plots on a 20x30 m grid across two study units at Blodgett Forest. In each plot, we 
counted live and dead white fir and ponderosa pine in each plot that were < 200 cm tall.  

To sample growth rates of paired live and dead juvenile trees, we walked along pre-
determined parallel lines running east-west in the two study units, each separated by 20 
m. As we walked, we searched for dead white fir and ponderosa pine juvenile trees < 200 
cm in height as we walked. When we located a dead juvenile tree, we measured its height, 
diameter, and the past three years of growth by measuring distance between bud scars. 
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We also photographed each tree and recorded details of its physical characteristics such 
as twig retention, bark status, and needle color to help estimate its year of death. We then 
located the nearest living conspecific tree whose height was within 10 cm of the height of 
the dead tree and performed the same measurements. We harvested the live and dead 
trees at soil level to perform dendrochronological measurements, which were used to 
help identify year of death (See Appendix S1).  

Statistical Analysis 

Wildfire footprints. We calculated relative annual vertical growth rate of juvenile 
conifers using the formula: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 − ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1
 (1) 

Because we measured the distance between bud scars for the past three growing seasons 
for each tree, equation (1) was applied to each tree three times, using 2015, 2016, and 2017 
growth, except where mortality or other factors prevented measurement of all three years 
of growth. This resulted in multiple values of relative growth rate per tree. In the 
regression models described below, the natural log of relative growth rate was used as the 
response variable. We determined elevation, azimuth, and slope for each juvenile tree 
using a USGS digital elevation model (DEM; https://viewer.nationalmap.gov/basic/) with 
a cell size of 100 m2 in ArcMap 10.6.1. The remainder of analyses were performed using R 
3.6.1 (R Core Team 2019). We then calculated heat load and potential direct incident 
radiation using slope, folded aspect, and latitude (McCune and Keon 2002). We identified 
site productivity class for each seedling using a 250-m resolution site class raster 
produced from Forest Inventory and Analysis data (unpublished, Barry (Ty) Wilson, USFS 
Northern Research Station personal communication, 2019).  

We calculated the weighted mean shrub height surrounding each seedling using shrub 
cover by species as weights. We calculated a shrub competition index by multiplying 
cover by weighted mean height, aggregating data from the four transects, and then taking 
the square root to maintain a linear framework. The most common shrub species 
surrounding each focal tree was determined using cumulative shrub cover across the four 
transects.   

To identify predictor variables that may influence juvenile conifer growth, we performed 
variable selection using the R package VSURF (Genuer et al. 2010, 2015). The VSURF 
algorithm uses iterative random forest models, created from 2000 regression trees, to 
identify predictor variables that influence the response variable while minimizing 
redundancy between predictors and reducing model instability. Years since fire was used 
as a measure of maturity of reseeding shrub species, which we expected to affect shrub 
competition via root depth (Plamboeck et al. 2008). Before running VSURF, we 
normalized numeric variables by subtracting the mean and dividing by the standard 
deviation. Each year of growth (2015, 2016, 2017) was treated as a unique observation in 
VSURF. Trees that died before the conclusion of the study or that could not be located in 
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the second year of measurements had fewer observations. All predictor variables used as 
VSURF inputs are listed in Table 1. Initial height and diameter of the focal tree were 
included to account for size-related differences in biomass allocation in plants of the 
same species (Coleman et al. 1994). 

To quantify the influence of shrub competition on juvenile tree growth, we used the 
variables selected by VSURF to run a mixed effects linear regression model with natural 
log of relative growth rate as the response variable using the R package “nlme” (Pinheiro 
et al. 2019). Since there were multiple measurements of relative growth rate for different 
years on each tree, we used focal tree, shrub patch, and wildfire as nested random effects. 
Effects and confidence limits were visualized for individual predictor variables using the 
“effects” package (Fox and Weisberg 2018). We evaluated model fit using conditional R2 

(Rc2) and marginal R2 (Rm2) using the “MuMIn” package. While Rc2 represents the 
proportion of variation explained by both fixed and random effects, Rm2 represents the 
variation explained by the fixed effects alone (Nakagawa and Schielzeth 2013). We 
predicted that there may be an interaction between the height of juvenile conifer and 
shrub competition. We determined whether to include this interaction in the models for 
each species by comparing Rm2, effect sizes, and Akaike Information Criterion corrected 
for small sample sizes (AICc) with and without the interaction.  

Mortality study. To investigate the relationship between juvenile tree growth rates and 
mortality probabilities, we first quantified the differences in growth rates between live 
and dead trees from our paired samples and then combined these results with the plot 
survey of live and dead tree densities. We compared relative growth rates between live 
and dead juvenile trees using generalized linear models with a logit link and analysis of 
deviance tests. The response variable was live/dead status and the predictor variable was 
the natural log of mean annual relative growth rate from the previous three years using 
Equation (1). Size was not included in the model of mortality probability because studies 
have shown that sapling mortality is not influenced directly by size, but rather indirectly 
through the effect of size on growth (Kobe et al. 1995, Kobe and Coates 1997). 

To determine annual mortality rates from surveyed densities of live and dead trees, it was 
necessary to determine how long dead trees had been standing. We estimated year and 
season of death for each dead tree using a combination of dendrochronological data and 
physical characteristics (see Appendix S1). To investigate the relationship between growth 
rates and annual mortality probabilities, we used a resampling technique similar to the 
method used by Das et al. (2007). Mortality was simulated by combining survey results of 
live and dead juvenile tree densities and paired samples of live and dead growth rates as 
follows: We randomly sampled live and dead tree growth rates with replacement from the 
set of growth rates measured from the paired tree study. The number of dead trees 
sampled matched the number of dead trees whose growth rates were measured. The 
number of live trees sampled was determined by the ratio of live to dead trees found in 
the density survey, such that the simulated population mortality rate matched the 
empirically measured mortality rate. Finally, a logistic regression model of mortality in 
relation to growth was fit to these samples, and the parameter values were extracted. This 
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process was repeated 1,000 times for each tree species. Final parameter values were 
calculated as the mean across all simulations and confidence intervals were determined 
using the 25th and 975th ranked parameter values. 

RESULTS 

Wildfire footprints 

We analyzed growth from 123 white fir and 93 ponderosa pine individuals. Because of 
mortality and the difficulty re-locating trees, some trees did not have growth 
measurements for all three years; we analyzed 312 tree-year combinations for white fir 
and 251 for ponderosa pine. Shrub height weighted means ranged from 11 - 213 cm (mean 
85 cm) and cover ranged from 3% -142% with a mean of 78%. Total cover exceeded 100% 
in some cases due to independent measurements of each shrub species, in which multiple 
species may overlap. 

The variables that VSURF identified as predictors of juvenile tree growth are included in 
Table 2. The interaction between tree height and shrub competition was not included for 
either species (see Appendix S1). For pines, the linear mixed-effects model using these 
variables showed that the predictors with the strongest effect on juvenile growth were 
shrub competition, year of growth, years since fire, and tree height (Table 2). Increasing 
shrub competition was associated strongly with decreased pine growth (Table 2, Fig. 3). 
For white fir, tree height, slope, and elevation had the strongest effects on juvenile growth 
while shrub competition had a weak positive effect (Table 2, Fig. 3). Model fits were 
better for pine (Rc2 = 0.69; Rm2 = 0.62) than for fir (Rc2 = 0.40; Rm2 = 0.17). Years since fire, 
which was included as a proxy for shrub maturity, was associated with lower juvenile tree 
growth for both tree species (Table 2) and was not highly correlated with our index of 
shrub competition.  

The VSURF algorithm identified dominant shrub species as an important predictor of 
growth for pines but not for firs. Shrub species was therefore included in the mixed 
effects model for pines, though the likelihood ratio test for shrub species had a P-value of 
0.2 (Table 2). Juvenile pine relative growth rate was lowest near N. densiflorus and highest 
near the two Ceanothus species, C. cordulatus and C. integerrimus (Fig. 4). 

Mortality Study 

In our gridded survey of live and dead juvenile tree densities, we visited 275 1-m radius 
plots, for a total of 864 m2 of sampled area. Across those plots, we found 1,103 juvenile 
white fir, 25 of which were dead (2.3%) and 530 juvenile ponderosa pine, 6 of which were 
dead (1.1%). We measured growth rates of 80 pairs of live and dead white fir and 79 pairs 
of ponderosa pine. 

Live juvenile trees had significantly higher relative growth rates than dead juvenile trees 
for both pines and firs (analysis of deviance P < 0.0001 for pines and P = 0.0003 for firs; 
Appendix S1: Fig. S4). Simulations of population-level mortality using resampling showed 
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a strong negative relationship between growth and mortality probability for both species, 
with a steeper curve for ponderosa pine (Fig. 5).  

We applied predictions from the mortality study to results from the wildfire footprints to 
demonstrate how mortality may vary in response to shrub competition. We found that 
the ponderosa pine relative growth rate associated with maximum observed shrub cover, 
according to mixed-effects models predictions, was 0.10, which corresponds to a 
predicted annual mortality probability of 1.1%. At minimum observed shrub cover, the 
predicted pine growth rate was 0.27, which corresponds to a 0.1% mortality probability. 
For white fir, predicted relative growth rates at maximum and minimum shrub cover 
were 0.16 and 0.11, respectively, which correspond with annual mortality probabilities of 
0.72% and 1.1%.  

DISCUSSION 

We have presented a conceptual model (Fig. 1) positing that fir enrichment occurs under 
both of the two primary modes of the contemporary disturbance regime, which has 
shifted to feature far fewer but more severe fire events (Miller et al. 2009, Westerling 
2016, Collins et al. 2019). In areas with fire deficits, fir gains a relative advantage over pine 
due to its shade tolerance (“overstory-driven fir enrichment;” Fig. 1b), while in areas with 
large stand-replacing fire patches, fir enrichment results from both dispersal limitation 
and shrub competition (“patch-driven fir enrichment;” Fig. 1c). Previous research has 
documented overstory-driven fir enrichment and the effect that seed dispersal can have 
on patch-driven fir enrichment (Zald et al. 2008, Welch et al. 2016, Shive et al. 2018). Our 
research documented the second mechanism of patch-driven fir enrichment: shrub 
competition. We found meaningful differences in the responses of white fir and 
ponderosa pine to shrub competition in the post-fire environment, differences that confer 
a considerable demographic advantage to white fir (Fig. 3).  

Our results on the effects of shrub competition are of increasing important across the 
Sierra Nevada, where changes in montane chaparral distribution have mirrored changes 
in the fire regime. While chaparral was historically a more common component of the 
mixed conifer forest matrix (Collins et al. 2017), shrubs most commonly occurred in small 
canopy gaps (Knapp et al. 2013). Fire suppression has reduced the abundance of small 
canopy gaps (Lydersen et al. 2013) and increased large canopy openings (Stevens et al. 
2017). Native shrubs species have quickly revegetated these openings after severe wildfire, 
leading to the development of extensive patches of montane chaparral. Initiation rates of 
these patches are likely to continue increasing and growing in size as changes in the fire 
regime are exacerbated by climate change (Keyser and Westerling 2017, Hurteau et al. 
2019). 

We found that the dense shrub canopy characteristic of post-fire chaparral patches exerts 
strong competitive pressure on shade-intolerant tree species, resulting in a relative 
advantage for shade-tolerant firs (Fig. 3). While white fir showed only slight and variable 
changes in growth in response to shrub abundance, ponderosa pine consistently grew 



 

47 
 

much more slowly in areas with higher shrub competition. Furthermore, decreases in 
ponderosa pine growth were associated with strong increases in its mortality (Fig. 5), 
indicating that shrub competition decreases both growth and survival of the species.  

Fir enrichment in large post-fire shrub patches may lead to long-term changes in species 
composition that in turn could create a positive feedback in the fire regime. Firs lack 
traits that increase fire survival, making them more fire sensitive than pines (Schwilk and 
Ackerly 2001). Furthermore, fir dominance increases fine woody fuel loads, which 
contribute to fire risk (Lydersen et al. 2015, Cansler et al. 2019). Increased dominance of 
this fire-sensitive species may push the disturbance regime further toward high-intensity, 
high-severity fire. 

The degree of fir enrichment across all high-severity fire patches in the region will depend 
on several factors, including the extent and density of shrub competition arising in stand-
replacing patches. Under the maximum shrub competition found in this study, 
predictions of fir growth and survival exceeded those of pine, whereas under minimum 
shrub competition the reverse was true. We used a targeted sampling approach in which 
shrub competition was only measured near juvenile conifers. Thus, average shrub 
competition in the area is likely higher than what we measured because conifer densities 
tend to be lower under high shrub competition (Welch et al. 2016). Existing region-wide 
shrub data rely on coarse ocular measurements, making it difficult to compare these data 
to the detailed line intercept measurements taken in this study (Nagel and Taylor 2005, 
Welch et al. 2016, USDA Forest Service 2018). Furthermore, climatic drying and warming 
increases post-fire shrub abundance (Tepley et al. 2017, Young et al. 2019). Therefore, it is 
likely that regional shrub influences not only are stronger than measured in this study, 
but also may become increasingly important under future climate change. A regional 
investigation of shrub competition in stand-replacing fire patches would aid in 
understanding how forests will change under the modern fire regime and climate. 

Our results show that shrub competition is a driver of community assembly in post-fire 
environments. The nature of this shrub competition is not uniform, however, and likely 
depends upon site-specific variation in shrub maturity, light, moisture, and nutrient 
availability. For example, juvenile tree growth decreased with time since fire for both 
species, with stronger effects for ponderosa pine (Table 2). Time since fire, which was 
used as a proxy for shrub maturity, was not highly correlated with our index of shrub 
competition that combined shrub cover and height. Therefore, older shrubs compete 
with juvenile conifers more than younger shrubs independent of their aboveground 
volume, likely due to their greater root depth. 

The fact that shrub competition reduced growth for drought-resistant pine but not for 
shade-tolerant fir suggests that competition for light may be a stronger driver of post-fire 
species interactions than previously considered in this region. Our results may not apply 
to more southern portions of the Sierra Nevada, where strong moisture competition 
between conifer seedlings and Arctostaphylos shrubs has been found (McDonald and 
Abbott 1997, Plamboeck et al. 2008). While warm and dry conditions can increase 
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regeneration failure in some areas of California, the Rocky Mountains, and the American 
Southwest (Savage et al. 2013, Stevens-Rumann et al. 2018, Young et al. 2019), other factors 
may also be important in determining species shifts, particularly in more mesic 
environments. For pines, which are less sensitive to warming and drying than other 
species (Moran et al. 2019), shrub effects under a novel fire regime may be more 
important drivers of decreasing regeneration in our study area than changes in climate, 
though more research is needed on climate and shrub effects on regenerating pines. 

Shrub suppression of pine growth was weaker where Ceanothus cordulatus or C. 
integerrimus dominated compared to other shrub species, which may be due to that 
genus’s nitrogen-fixing ability (Fig. 4). In contrast, previous research has found higher 
ponderosa pine growth under Arctostaphylos than under Ceanothus, but this was likely 
due to higher cover of Ceanothus whereas our evaluation of shrub species effect 
controlled for shrub cover and height (Zhang et al. 2018). The lack of shrub species effect 
for white fir was consistent with other studies (Oakley et al. 2006). 

With multiple drivers of fir enrichment in post-fire environments (Fig. 1c), each affected 
by several interacting site factors that are in turn affected by shifts in fire regime and 
climate, field research alone is insufficient to predict long-term forest succession. The 
results from our study can be combined with existing data on post-fire dispersal and 
establishment patterns to develop an individual-based modeling framework. Such a 
framework has the advantage of allowing for parsing of individual demographic processes 
and species interactions, which would allow us to explore under what conditions the 
alternatives in Fig. 1 occur.  

Though ponderosa pine is considered a fire-adapted species in frequent-fire forests, the 
shift toward infrequent, stand-replacing fire favors firs over pines. Species coexistence in 
mixed conifer forests was historically driven by differences in functional traits adapted to 
niches within a heterogeneous forest mosaic. As forest heterogeneity gives way to larger, 
more homogenous patches of either dense forest or stand-replacing fire, the traits 
adaptive to regeneration success are shifting to favor firs. Traits that historically allowed 
ponderosa pine to outcompete white fir under the endemic low/mixed-severity fire 
regime, such as thick bark and high crowns, are poorly suited to the dominant stressors of 
the novel fire regime. Our results highlight the role that shrub dominance of stand-
replacing patches plays in this favoring of firs over pines.  
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TABLES 
Table 1. Predictor variables included as inputs to VSURF, a variable selection method 
based on random forests  

Category Variable 

Shrub competition 
variables of interest 

Shrub competition,  �cover (cm) ∗ height (cm) 

Dominant shrub species 

Years since fire 

Growing site 
environmental 
control variables 

Elevation  

Slope  

Heat load 

Potential incident radiation 

Site class 

Year of growth (2015, 2016, 2017) 

Tree-level control 
variables 

Juvenile conifer height before growth 

Juvenile conifer basal diameter in 2016 
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Table 2. Mixed effects model results. For each conifer species, predictor variables are 
listed in descending order of importance according to single-term deletion likelihood 
ratio tests. The last column shows P-values from those tests. Numeric variables were 
normalized before model runs by subtracting the mean and dividing by the standard 
deviation to make coefficients comparable. For factor variables, treatment contrasts were 
used, in which the first factor level coefficient is set to 0 and all other levels’ values are 
relative to the first level. Random effects are not included in this table.  

Variable Factor level Direction Coefficient P-value 

Ponderosa pine 

Juvenile conifer height  (−) -0.41 < 0.0001 
Years since fire  (−) -0.34 < 0.0001 
Shrub competition, 
�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑐𝑐𝑐𝑐) ∗ ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 (𝑐𝑐𝑐𝑐) 

 
(−) -0.23 < 0.0001 

Year of growth 
2015 0 0 

< 0.0001 2016 (+) 0.19 
2017 (−) -0.13 

Juvenile conifer basal 
diameter 

 (+) 0.30 0.0007 

Heat load  (−) -0.11 0.089 

Dominant shrub  
species 0-3 m  
 

Arctostaphylos spp. 0 0 

0.205 

Ceanothus cordulatus (+) 0.16 
Ceanothus integerrimus (+) 0.26 
Chamaebatia foliolosa (+) 0.07 
Notholithocarpus 
densiflorus (−) -0.10 

Other (+) 0.26 

White fir 

Juvenile conifer height  (−) -0.22 0.0005 

Slope  (−) -0.20 0.0005 
Elevation  (+) 0.27 0.0006 
Incident radiation  (−) -0.29 0.001 

Years since fire  (−) -0.27 0.013 
Shrub competition 
�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑐𝑐𝑐𝑐) ∗ ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 (𝑐𝑐𝑐𝑐) 

 
(+) 0.08 0.146 

Heat load  (−) -0.005 0.964 
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FIGURES 
Figure 1. Conceptual diagram of the effects of the shifting fire regime on species 
composition in mixed-conifer forests of the Sierra Nevada. The present study examines 
the right-most downward pathway, namely the potential for shrub competition following 
stand-replacing fire to favor understory-tolerant firs over understory-intolerant pines. 
The dashed arrow pointing from path-driven fir enrichment to large stand-replacing 
patches is a hypothesized linkage requiring more research, though it is supported by 
literature on flammability of white fir compared to ponderosa pine. 
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Figure 2. Study area in the northern Sierra Nevada. The overview map shows study area 
location within California, USA. Wildfire footprint data was gathered at shrub patches 
(red), while mortality data was gathered at Blodgett units (orange) within Blodgett Forest 
Research Station (green). Wildfire footprints are labeled in black.  
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Figure 3. Predicted juvenile relative growth in relation to shrub environment for a) 
ponderosa pine, and b) white fir. Predicted relative growth estimates are generated 
across mean values of other continuous predictors and weighted averages of categorical 
predictors (Fox and Weisberg 2018).  Shaded areas represent 95% pointwise confidence 
envelopes.  

 

  

a b 
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Figure 4. Relative ponderosa pine growth rate in relation to dominant shrub species 
within 3 m. Estimates are generated across mean values of other continuous predictors 
and weighted averages of categorical predictors (Fox and Weisberg 2018).  Error bars 
represent 95% confidence intervals.  
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Figure 5. Simulation results showing probability of mortality in relation to relative 
growth rate for a) ponderosa pine and b) white fir. Dotted lines represent 95% confidence 
intervals.  
 

  

a 
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In Chapter 2, I showed that shrub competition affects pine growth and mortality more 
strongly than it affects firs. I hypothesized that these species differences may contribute 
to regional fir enrichment related to the shifting fire regime. In order to fully test my 
hypothesis, longer-term analyses were needed. In Chapter 3, I applied the findings of 
Chapter 2 to a forest growth simulation model. The model allowed me to test whether the 
differences shown in Chapter 2 led to differential outcomes between fir and pine during 
the period between conifer seedling establishment and emergence above the shrub 
canopy. My simulation model also allowed me to test how different shrub species affect 
the relative success of fir and pine. These analyses expand and refine upon the findings of 
Chapter 2.  
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CHAPTER 3 Forest succession in an altered 
fire regime: the role of shrub 
neighborhood dynamics  

 

 

Carmen L. Tubbesing, Derek J. N. Young, Robert A. York, Scott L. Stephens, and John J. 
Battles   

 

ABSTRACT 

As fire regimes shift in Western North America, patches of stand-replacing fire are 
becoming larger. Long-term succession in these patches is not well understood. There is 
concern that competition with rapidly reestablishing shrubs, combined with dispersal 
limitation, may delay or impede conifer recovery and potentially shift tree composition 
toward shade-tolerant species. However, tree-shrub interactions and shrub neighborhood 
dynamics have not been closely examined. To investigate the patterns and processes 
determining long-term forest succession after severe wildfire, we developed a data-driven 
simulation model that we use to predict conifer emergence above the shrub canopy. Our 
model results showed that ponderosa pine (Pinus ponderosa) emerged at a faster rate 
than white fir (Abies lowiana) under whitethorn ceanothus (Ceanothus cordulatus) and 
deerbrush (Ceanothus integerrimus), and at a similar rate under greenleaf manzanita 
(Arctostaphylos patula). Across all shrub species, ponderosa pine had a relative advantage 
over fir in the period between conifer establishment and peak shrub competition, 
requiring a mean of 18 ± 2 years for 50% of individuals to emerge compared to 21 ± 1 years 
for white fir. Fir emergence rates then surpassed those of pine, leading to similar overall 
emergence by the end of the simulation: 82% ± 6% for pine and 83% ± 5% for fir. These 
results show that, on balance, shrub neighborhood dynamics do not produce an 
ecological filter favoring firs, but that emergence patterns are sensitive to shrub species. 
Further modeling based on this data-driven simulation framework could improve 
understanding of other important components of post-fire succession, including the 
understudied process of conifer seedling establishment under shrubs.  

 

 



 

65 
 

INTRODUCTION 

Forest disturbance patterns are changing worldwide due to severe fire, insect outbreaks, 
and other threats. Altered disturbance regimes often lead to the formation of a 
recalcitrant layer of shade-intolerant, rapidly regenerating understory species (Royo and 
Carson 2006). This layer can be thought of as an ecological filter, as it may delay the 
recovery of slower growing species by influencing light availability, moisture, litter 
structure, and/or microclimate (George and Bazzaz 1999). If the recalcitrant layer affects 
tree species differently, it may influence the composition of the overstory canopy. The 
herb and shrub stratum can act as a sieve, selectively filtering out tree seedlings ill 
adapted to establish, grow, and survive beneath it (Landuyt et al. 2019). Shrub layers can 
offset the increased light availability created by canopy gaps, leading to low post-
disturbance seedling survival (Beckage et al. 2005). Depending on the strength of the 
filter and how it differentially affects tree species, the understory may preclude, delay, or 
alter long-term forest succession (Royo and Carson 2006).  

The role of disturbance-induced shrub and herb layers is becoming increasingly 
important in western North America, where fire regimes are shifting in response to 
climate change and decades of wildfire exclusion (Taylor et al. 2016, Hessburg et al. 2019). 
In forests that historically experienced frequent, heterogenous fire, fire severity and 
homogeneity have increased (Miller and Safford 2012). Small patches of stand-replacing 
fire were characteristic of the historic fire regime (Collins and Stephens 2010), but 
modern stand-replacing patch sizes often exceed the historical range of variability and are 
continuing to increase in size with successive fire seasons (Miller et al. 2009, 2012, Stevens 
et al. 2017, Steel et al. 2018). In the Sierra Nevada, changes in montane chaparral 
distribution have mirrored changes in the fire regime. Though chaparral was historically a 
common component of the mixed conifer forest matrix (Collins et al. 2017), shrubs 
generally occurred in the understory or in small canopy gaps (Knapp et al. 2013). Fire 
suppression has reduced small canopy gaps and increased large canopy openings 
(Lydersen et al. 2013, Stevens et al. 2017), which native shrubs quickly revegetate, leading 
to the development of extensive patches of montane chaparral. Future fires are likely to 
contain increasingly large high-severity patches as changes in the fire regime are 
exacerbated by climate change (Keyser and Westerling 2017, Hurteau et al. 2019). 

Large, continuous patches of shrubs may act as an ecological filter via their effects on 
regenerating conifers. Heavy shrub cover is known to delay or preclude conifer 
recruitment in general and pine growth in particular (Zhang et al. 2006, Welch et al. 
2016). In severely burned patches, fir recruits at higher densities than pine (Nagel and 
Taylor 2005, Van Mantgem et al. 2006, Crotteau et al. 2013, Collins and Roller 2013, 
Lauvaux et al. 2016) even though pines are well adapted to germinate and quickly grow in 
post-fire abiotic conditions, characterized by exposed mineral soil, high light availability, 
and high evaporative demand (York et al. 2003, Bonnet et al. 2005, Annighöfer et al. 2019). 
Several factors may contribute to post-fire fir enrichment, including pre-fire species 
composition, dispersal limitation (Clark et al. 1999, Shive et al. 2018), and shrub effects 
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(Nagel and Taylor 2005, Tubbesing et al. 2020). In post-fire patches with particularly 
delayed forest recovery, vulnerability to severe reburn may increase due to the structure 
and flammability of shrubs, generating a positive feedback cycle that may shift burned 
areas to a non-forested alternative stable state (Coppoletta et al. 2015).  

Despite increased research interest in the recovery of high severity burn patches, the 
successional dynamics in these patches are poorly understood. It is unknown which 
demographic process(es) may alter or impede long-term tree recovery. Regenerating 
conifers in shrub patches are difficult to study because they are generally rare, slow 
growing, and challenging to locate, inhibiting detailed long-term studies (Collins and 
Roller 2013, Welch et al. 2016). The majority of recent research on the topic relies on one-
time surveys of juvenile conifers within a decade after fire followed by correlative analysis 
of tree densities in relation to site variables (Collins and Roller 2013, Coppoletta et al. 
2015, Welch et al. 2016, Shive et al. 2018, Young et al. 2019). Information about individual 
processes or longer-term patterns is limited. Though competition with montane 
chaparral likely affects conifer growth and mortality, there is little understanding of shrub 
canopy development or individual species interactions. Differences in shrub height and 
cover may strongly influence conifer success; studies have shown that conifers 
establishing immediately after disturbance have greater overstory recruitment, while 
those that establish longer after disturbance have lower height growth, potentially due to 
shrub growth and expansion (Tepley et al. 2017).While there is abundant research on 
shrub effects in ponderosa pine in managed plantations (e.g. McDonald and Abbott 1997, 
McDonald and Fiddler 2010), there are several aspects of plantations that make the 
research difficult to transfer to unmanaged wildfire footprints, including the use of 
nursery-grown seedlings (McDonald et al. 2009), site preparation, and monospecific 
stands, often of pine (McDonald and Fiddler 2010). In order to understand succession in 
unmanaged wildfire footprints, research is needed on mixed species stands of naturally 
regenerating conifers without shrub control or site preparation.  

This study specifically tests for shrub filter effects in the stage between seedling 
establishment and emergence of conifers above the shrub canopy, which complements 
previous studies of densities of established seedlings (Collins and Roller 2013, Coppoletta 
et al. 2015, Welch et al. 2016, Shive et al. 2018, Young et al. 2019). We examined whether 
the shrub filter at this stage precludes, delays, or alters long-term forest succession. 
Previous work on shrub effects during this stage has shown that shrubs reduce pine 
growth and survival but not fir growth, indicating that the shrub filter may alter, rather 
than preclude or delay, long-term succession (Tubbesing et al. 2020). Here we expand 
upon previous work to further examine the hypothesis that the shrub filter contributes to 
fir enrichment.  

To understand the patterns and processes of forest recovery in shrub-dominated, post-
fire landscapes, we developed a statistical simulation model informed by field 
measurements. Simulation models allow for estimations of long-term processes by 
synthesizing several data sources and demographic relationships (Pacala et al. 1996, 
Coates et al. 2003, Uriarte et al. 2009). We developed an individual-tree simulation model 
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inspired by the principles of SORTIE-ND whereby field measurements, statistical 
estimators, and models were designed in tandem to optimize projections of demographic 
rates and patch dynamics (Pacala et al. 1996). Because we used complete data sets in 
parameter development, we were able to incorporate uncertainty into model runs by 
bootstrapping the analyses used to develop individual parameters. We were also able to 
initialize the model with empirically observed combinations of variables, including 
microsite environmental conditions. Since the field data used to develop the model was 
measured during three very different climate years, we incorporated realistic variability in 
tree growth as it relates to precipitation.  

Our modeling approach also allowed us to parse the relative importance of individual 
processes through sensitivity analyses. We used sensitivity analyses to examine 
differences among tree species, shrub species, and three dimensions of shrub 
neighborhood: 1) initial shrub cover and height, 2) shrub growth trajectories over time, 
and 3) how a given cover and height of each shrub species affected conifer growth, as 
determined by linear modeling. This last dimension was termed the “shrub neighborhood 
species coefficient.” The first and third of these shrub dimensions were derived from field 
data detailed in Tubbesing et al. (2020). To parameterize shrub growth trajectories over 
time, we combined data sources from regional surveys and developed height and cover 
curves in relation to time since fire.  

The objective of this paper is to use data-driven simulation modeling to evaluate conifer 
growth and survival in an increasingly prevalent landscape component, namely shrub-
dominated high severity fire patches, during the period between establishment and 
emergence above the shrub canopy. Specifically, we asked: 

1) Does shrub neighborhood act as an ecological filter favoring fir emergence over 
that of pine? 

2) How do shrub neighborhood effects on the timing and magnitude of conifer 
emergence vary among shrub and conifer species? 

3) What dimensions of shrub neighborhood influence species differences in 
emergence effects? 

METHODS 

Study areas 

We focused on patches of stand-replacing fire (> 90% tree basal area mortality) within 
fire footprints in the central Sierra Nevada. Forests in our study area experience a 
Mediterranean-type climate with wet winters and dry summers lasting 4-6 months. 
Forest composition is typical of mixed-conifer forests of the Sierra Nevada, which are 
dominated by ponderosa pine (Pinus ponderosa Doug.) and Sierra white fir (Abies lowiana 
Gord. & Glend.) together with lower abundances of sugar pine (Pinus lambertiana 
Dougl.), Douglas-fir (Pseudotsuga menziesii Mirb.), incense-cedar (Calocedrus decurrens 
Torr.), and red fir (Abies magnifica A. Murr). Shrub patches are dominated by greenleaf 
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manzanita (Arctostaphylos patula Greene), whitethorn ceanothus (Ceanothus cordulatus 
Kellogg), deerbrush (Ceanothus integerrimus Hook. & Arn.), bush chinquapin 
(Chrysolepis sempervirens Kellogg), and a shrub form of tanoak (Notholithocarpus 
densiflorus Hook. & Arn.), with other shrub species in lower densities.  

All data were collected on US National Forest Service land. We focused on high severity 
burn patches within wildfire footprints that had not experienced post-fire land 
management such as shrub cover reduction or tree planting. Our study region 
experienced frequent fire prior to fire exclusion, with low- to moderate-severity fires 
occurring with a median return interval of 15 years (Stephens and Collins 2004, Krasnow 
et al. 2016). Modern fires in the region are larger and have large contiguous areas of high 
severity. For example, the 2014 King Fire burned 39,545 ha, including one continuous 
13,683-ha high-severity burn patch (DA says to add linear dimensions here) (Jones et al. 
2016). 

Modeling approach 

Our simulation model of post-fire recovery trajectories combines shrub-conifer functional 
relationships with regional data on shrub characteristics and growth. We used an 
individual-tree, data-driven modeling approach inspired by SORTIE-ND (Uriarte et al. 
2009). As in the SORTIE family of models, field surveys to parameterize demographic 
processes for our model were conducted in tandem with model development. These field 
surveys are described in Tubbesing et al. (2020). In summary, juvenile conifer vertical 
growth was measured in relation to shrub competition within a 3 m radius surrounding 
each tree in five fire footprints ranging from 8 to 35 years old. Additionally, recent growth 
of similarly aged juvenile live and dead trees was measured in a nearby managed stand to 
evaluate the relationship between conifer growth and mortality probability.  

In Tubbesing et al. (2020), these field data were used to develop two demographic linear 
models: 1) vertical conifer growth in relation to shrub neighborhood, site characteristics, 
and tree size, 2) mortality probability in relation to recent growth. For the present study, 
we added a third linear model: conifer diameter in relation to conifer height and shrub 
neighborhood. This diameter model was required because conifer diameter was a 
predictor of vertical growth in the simulation, in accordance with variable selection 
results to develop the vertical conifer growth model. We also incorporated uncertainty 
into the analyses by bootstrapping each of the three linear models 1,000 times. Parameter 
estimates from a single bootstrap sample were used for each simulation run. We ran the 
simulation model 1,000 times to generate output distributions that reflected uncertainty 
in the empirical demographic relationships. 

To parameterize shrub development over time in the simulations, we developed two 
types of deterministic models from regional field survey data: 1) generalized additive 
models (GAMs) of shrub height over time for individual shrub species, and 2) a linear 
model of shrub cover over time across all shrub species of interest.  
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Our simulation calculated each tree’s growth and mortality at each year based on its 
unique characteristics such as size, species, and shrub neighborhood (Figure 1). During 
the initialization stage, plant characteristics and microsite characteristics were randomly 
selected with replacement from field data gathered at eight years post-fire. Then, at each 
yearly time step, shrub cover and shrub height were estimated based on deterministic 
models derived from regional field data. Climate year was assigned based on a historical 
climate record. Conifer vertical growth was then estimated from a bootstrap sample of 
the vertical conifer growth linear model. Next, conifer diameter was estimated from the 
conifer diameter linear model, again using one bootstrap sample. Conifer mortality was 
assigned based on the probability of mortality estimated from a bootstrapped mortality 
model using height growth as the predictor. Finally, the tree was determined to have 
emerged if it was alive and half or more of its crown exceeded its neighborhood shrub 
height. Trees that had emerged or died were removed from the analysis before the 
calculations were repeated for the next yearly time step. Emergence was summarized 
across years for 1,000 simulation runs and the entire process was repeated for several 
shrub neighborhood scenarios. We focused shrub-species-specific analyses on deerbrush, 
manzanita, and whitethorn ceanothus because they are common shrub species often 
encountered by forest managers (Welch et al. 2016) and because they were prevalent in 
our data, allowing for robust analyses. All analyses and model development were 
performed in R 3.6.2 (R Core Team 2019). 

Parameter development 

Shrub dynamics. We synthesized data on shrub cover and height in Sierra Nevada fire 
footprints to develop growth curves by shrub species. We combined data from Tubbesing 
et al. (2020), Welch et al. (2016), Young et al. (2019), Shive et al. (2018) and unpublished 
data collected by the Andrew Latimer lab at the University of California, Davis. We 
limited analysis to plots that met the following criteria: no shrub release treatments (e.g. 
mastication) following fire according to the Forest Activity Tracking System (FACTS) 
database, no remnant overstory trees < 20 m from plot center, high fire severity (> 75% 
basal area mortality), and containing shrub species found during conifer growth 
measurements in Tubbesing et al. (2020) (Appendix S1: Figure S1).  

To develop shrub height growth curves over time, we separately analyzed plots 
dominated by each of the four common shrub species as well as an “other” category. We 
lumped Arctostaphylos patula and A. viscida because of their similar growth forms and 
low density of A. viscida. For each shrub species category, we developed generalized 
additive models using natural cubic regression spline with four knots using plot-level 
shrub height as the response variable and years since fire as the predictor (GAMs; Zuur et 
al. 2009).  

To evaluate shrub cover change over time, we analyzed only data collected for Tubbesing 
et al. (2020) because the shrub cover measurement methods varied among studies. 
Preliminary analysis showed that trends in shrub cover were more linear and more similar 
across shrub species than for shrub height. Thus, we lumped all shrub species and used 
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linear regression rather than GAMs. We included shrub height in the linear regression 
model and used a square root transformation to ensure the normality of residuals.  

Conifer vertical growth. Our methods for developing relationships between shrub 
competition and conifer growth were based on Tubbesing et al. (2020), which used linear 
mixed effects models with model selection based on random forests. However, unlike in 
that study, we included interactions between shrub competition and juvenile conifer 
height in our mixed effects modeling to account for different competition effects as trees 
emerge from the shrub canopy. This interaction was not included in the previous study 
because it did not strongly alter the results, having the smallest effect size of all covariates 
for both tree species (Appendix S1: Figure S3) and small effects on the Akaike Information 
Criterion corrected for small sample sizes (AICc): including the interaction increases AICc 
by 1.85 for white fir and reduces AICc by 3.8 for ponderosa pine. For the present study, we 
included the interaction because we were specifically interested in changes in shrub 
neighborhood effects as trees emerge from the shrub layer. We performed bootstrapping 
of mixed effects model fits for each conifer species by randomly sampling observations 
with replacement and rerunning the models, repeating this process 1,000 times. These 
bootstrap results were used in the simulation to evaluate model uncertainty.  

Conifer diameter. Since conifer diameter was a predictor of vertical growth in the 
simulation, a method of predicting conifer diameter throughout the simulation was 
required. We used the fire footprint data gathered in Tubbesing et al. (2020) to 
parameterize conifer diameter estimations. We predicted that tree height as well as shrub 
competition may influence diameter: taller trees will have larger diameters, but under 
higher shrub competition a given height may be associated with a smaller diameter due 
to etiolation (Weber et al. 2017). We used linear regression models of juvenile conifer 
diameter in relation to tree height and our index of shrub competition 
(�𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 ∗ 𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) for the year 2017. We used AICc model selection to 
determine whether to include shrub competition and the interaction between height and 
shrub competition. For both fir and pine, the best model included height, shrub 
competition, and their interaction (Appendix S1: Table S1). As with conifer vertical growth 
models, we used bootstrapping with 1,000 resamples to evaluate uncertainty in model fits 
(Appendix S1: Figure S5). 

Conifer mortality. Our methods for predicting conifer mortality probability are detailed 
in Tubbesing et al. (2020) and summarized here. Mortality was analyzed by combining a) 
survey results of a gridded plot network of live and dead juvenile tree densities with b) 3-
year vertical growth rates from paired live and dead juvenile trees found during targeted 
sampling. We created 1,000 bootstrapped realizations by randomly sampling live and 
dead tree growth rates with replacement to match the live/dead ratio found in population 
surveys, and then fit a logistic regression model to each bootstrapped population.  

Climate years. Though we did not directly incorporate climate variables into our 
analysis, annual variation in climate was accounted for by way of the mixed effects model 
predicting juvenile ponderosa pine growth, which included a term for measurement year 
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(2015, 2016, 2017). The effect of year was likely due to widely differing climate conditions: 
The 2015 growing season had record low April 1 snowpack (5% of normal), whereas the 
winter preceding the 2016 growing season had close to average precipitation, and the 
following winter was exceptionally wet, with April 1 snowpack 175% of normal 
(https://wrcc.dri.edu/Climate/Monthly_Summaries). To incorporate realistic climate 
variability into the simulations, we grouped historical years 1970-2014 into one of three 
categories depending on which of our three measurement years most closely matched its 
total September-August precipitation (PRISM Climate Group 2020). We used coefficients 
from our three measurement years in proportion to their frequency in the historical 
record, as described below. 

Base model 

We initialized the base model by randomly selecting 200 juvenile trees from the fire 
footprint data of the American River Complex Fire. Because our field sampling was not 
fully randomized, we weighted the sampling probabilities by the frequency of conifer and 
shrub species combinations found in regional surveys (Welch et al. 2016), limiting survey 
data to plots measured 5-8 years following fire and meeting study specifications as 
described above for shrub height growth. Each tree retained its original data for height, 
diameter, shrub neighborhood, and environmental control variables (i.e. elevation, slope, 
heat load, and incident radiation). In other words, the simulation was initialized with 
empirically observed combinations of each variable. While the regional field survey data 
included areas with dominant deerbrush ceanothus, deerbrush was never the dominant 
shrub for trees sampled in American River Complex Fire footprint. To accommodate this 
gap in our base model, we initialized deerbrush height by randomly selecting deerbrush 
height values from the same subset of Welch et al. (2016) as was used for weighting 
initialization sampling. To initialize deerbrush cover and the traits of conifers co-located 
with deerbrush, we sampled from our whitethorn data. We chose whitethorn because 
deerbrush is congeneric with whitethorn and the two species had similar cover in the 
Welch database (Appendix S1: Figure S3). Though deerbrush was not dominant in any of 
our American River Complex Fire observations, it was dominant in many of our 
observations at older fires, which allowed us to parameterize deerbrush neighborhood 
coefficients. Aside from the deerbrush adjustments made for the initialization stage, we 
used empirically derived, species-specific simulation parameters for growth and 
competition coefficients for all shrub species, as described above. 

At each yearly time step of the simulation, individual trees were assigned vertical growth 
values. To incorporate uncertainty into our conifer growth parameterization, for each 
simulation we randomly selected one bootstrapped sample of each conifer species and 
used the coefficients from that sample’s mixed effects model. The growth model inputs 
included the focal tree’s local shrub and environmental conditions and “climate year.” We 
populated climate years in the simulation using historical data starting at 1970 in 
chronological order. At each yearly time step, the climate year effect was assigned to 
either 2015, 2016, or 2017 based on which of those three years best matched the 



 

72 
 

precipitation of the historical year. The tree was then assigned a diameter using a 
randomly selected linear model chosen from the bootstrap results for conifer diameter. 

Each tree was next assigned to either survive or die. We randomly selected one 
bootstrapped mortality population and used the coefficients from that population’s 
logistic regression  model for each iteration of the simulation. After each tree was 
assigned a mortality probability, it was also assigned a random number from 0-1 drawn 
from a uniform distribution. If that random number was below the mortality probability, 
the tree “died” and was removed from the simulation.  

Over the course of each simulation, shrub cover and height surrounding each tree 
changed according to the shrub cover linear model and species-specific vertical growth 
GAM models. We adjusted shrub cover and height predictions relative to the starting 
shrub cover and height measured at that tree, such that the shapes of growth curves 
matched model predictions, but the intercepts differed based on empirical starting 
conditions.  

Finally, for each yearly time step we calculated whether each tree had emerged above its 
local shrub canopy. Emergence was defined as half or more of the tree crown exceeding 
the average shrub height at location i: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1 if    ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖 − 0.5 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖 > ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖 (1) 

Crown length was determined by multiplying height by live crown ratio. This ratio was 
calculated from Forest Inventory and Analysis (FIA) data for California (1994-2017). 
Specifically, we estimated live crown ratio for white fir (N = 685) and ponderosa pine (N = 
196) as the mean of small trees  (3 m > height > 1.5 m) in the database derived from FIA 
data.  If a tree was determined to have emerged, it was recorded and removed from the 
simulation. 

We repeated the simulation 1,000 times, running each iteration until all trees had either 
died or emerged above the shrub canopy. The sample of initial trees, growth parameters, 
diameter model, and mortality parameters differed slightly for each iteration. We 
calculated average cumulative proportion of initial trees that had emerged by year and 
the standard deviation of this value. As trees died, we did not adjust the denominator for 
the emergence calculation. Thus, by the conclusion of the simulation, when all trees had 
either emerged or died, the proportion of trees that died was equal to one minus 
proportion emerged. We compared the number of years required to reach 50% 
emergence (“Q50”) between ponderosa pine and white fir, as well as the final proportion 
emerged. We then converted proportion emerged to density of trees per square meter 
based on juvenile tree densities by species found in our subset of the Welch et al. (2016) 
database. 
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Shrub species effects on conifer emergence 

To evaluate shrub species effects, we ran simulation scenarios in which only conifers 
found under a single shrub species were used to initialize the model, implementing the 
same adjustments for deerbrush as described above. We repeated the simulation 1,000 
times each for manzanita, deerbrush, and whitethorn, starting with 200 conifers in each 
simulation. We calculated Q50 and the average cumulative proportion of initial trees that 
had emerged by year, as we did for the base model. 

We then investigated how individual dimensions of shrub species differences affected 
long-term recovery. To do this, we first ran a model similar to the base model but with all 
trees assigned the shrub species competition coefficient of one shrub species. The 
competition coefficient is the effect of shrub competition on conifer growth for a given 
shrub cover and height and is determined from linear regression modeling, as shown in 
Appendix S1: Figure S3. For the “Competition coefficient” scenarios, initial shrub cover 
and height and shrub growth over time were based on observed shrub species, but the 
competition coefficient was assigned to only one shrub species. We then ran scenarios in 
which competition coefficients were returned to their values in the base model, but initial 
shrub cover and height were assigned to an individual species. This allowed us to evaluate 
how starting shrub conditions affect long-term recovery trajectories. Finally, we evaluated 
how species-specific shrub development patterns affected recovery. To do so, we 
modified the base model by assigning all shrubs the GAM-based growth patterns of a 
single shrub species and allowed the other components of shrub species competition to 
vary by species. 

RESULTS 

Shrub development over time 

For all focal shrub species, height increased after fire before leveling off and beginning to 
decrease within 10-25 years after fire (Figure 2). The GAM models predict an earlier and 
higher peak shrub height for deerbrush (Ceanothus integerrimus) than for any other 
shrub species. Maximum height was second highest for manzanita (Arctostaphylos patula 
and A. viscida). For shrub cover, we found a significant positive relationship between 
years since fire and shrub cover (Appendix S1: Figure S2).  

Base model 

In the base model, ponderosa pine emergence rates exceeded those of white fir until ~15 
years after fire, at which point pine emergence flattened and fir emergence accelerated 
(Figure 3). Pine required an average of 18 years to reach 50% emergence (Q50), while Q50 
for fir was 21 years (116% greater; Table 1). Both species showed decreasing relative growth 
rates over time, with variation by climate year for ponderosa pine (Figure S7). Ending 
proportions of pine and fir emergence were similar (82 ± 6% and 83 ± 5%, respectively; 
Table 1). In other words, since simulations ended only after all trees had either emerged 
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or died, 18% ± 6% of pines died and 17% ± 5% of firs died. Pine and fir simulation lengths 
were also similar, with pines reaching complete mortality or emergence at 37.1 ± 2.8 years 
and fir taking 35 ± 3.2 years (Table 1).  

Despite the similar proportional success of pine and fir, densities of emerged white fir 
exceeded those of pine for the majority of the simulation period. Fir had higher maximum 
density (0.11 ± 0.006 tree/m2 for fir, 0.07 ± 0.005 tree/m2 for pine; Figure 3b). The 
difference between proportional results and density results is due to higher initial 
seedling densities of fir than pine. 

Shrub species effects on conifer emergence 

Single-shrub species models showed strong differences between emergence rates for the 
three shrub species of interest. Emergence occurred fastest and with highest maximum 
values for whitethorn, followed by deerbrush (Figure 4). Ponderosa pine’s advantage over 
white fir was evident in final emergence results in the whitethorn and deerbrush models 
(whitethorn: 98 ± 3% for pine, 85 ± 5% for fir; deerbrush: 85 ± 7% for pine, 75 ± 7% for fir) 
but in the manzanita model final emergence of pine was nearly equal that of fir (62 ± 12% 
for pine, 64 ± 10% for fir). Other shrub species beyond these three were included in the 
base model but not modeled individually due to lower data availability per species, which 
is why the base model resulted in similar emergence for pine and fir. For all three shrub 
species, pine emergence was faster than fir during the first 5-15 years of the simulation, 
after which fir emergence rates reached or exceeded those of pine. Because of this early 
pine advantage, Q50 values were lower for pine than for fir across all three species (Figure 
4). With the exception of pine under whitethorn, simulation duration was similar across 
species combinations: pine reached complete emerged or mortality in 26.4 ± 2.7, 37.9 ± 
2.0, and 35.6 ± 3.9 years for whitethorn, manzanita, and deerbrush, respectively, while fir 
duration was 32.7 ± 3.9, 36.0 ± 2.9, and 37.0 ± 3.2 years under the same species.   

The simulations that parse individual dimensions of shrub neighborhood dynamics 
showed that shrub cover, height, and growth influenced emergence more strongly than 
shrub species competition coefficients (Figure 5). When all trees were assigned initial 
shrub cover and height values of deerbrush, both fir and pine emergence was severely 
dampened and nearly 50% of pines died (Figure 5c-d). The model adjusting only shrub 
development trajectory parameters showed the strong effect of manzanita growth on 
emergence in years 10-30 after fire, particularly for white fir (Figure 5e-f). Adjusting only 
the shrub competition coefficients resulted in more similar patterns across shrub species 
(Figure 5a-b).    

DISCUSSION 

Our model results indicated that shrub filter effects on regenerating conifers depend on 
shrub species. We sought to determine whether the shrub layer acts as an ecological filter 
by precluding, delaying, or altering conifer recovery. We found that manzanita delays 
recovery while whitethorn and deerbrush alter it by favoring ponderosa pine over white 
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fir, though not dramatically (Figure 4). Interestingly, when all shrub species were 
combined (including more than the three mentioned above), rates of emergence above 
the shrub canopy were similar for white fir and ponderosa pine. This indicates that shrubs 
overall delay, rather than alter, conifer emergence. However, pine and fir experienced 
peak emergence rates at different points throughout the simulation (Figure 3). The shrub 
layer may act as a stronger filter at other stages in post-fire succession, such as 
establishment. Though the proportions of pine and fir that emerged were similar, 
densities of emerged pine fell far below those of fir due to differences in established 
seedling densities at the start of the simulation (Figure 3b).  

By decomposing three dimensions of shrub competition and performing sensitivity tests 
on each one, we showed that shrub growth patterns are important drivers of post-fire 
succession. While shrub neighborhood species coefficients – i.e. the degree a species 
reduces conifer growth for a given shrub height and cover – affected conifer emergence 
(Figure 5b), shrub height and cover development were also critical (Figure 5 c-f). Shrub 
growth trajectory sensitivity tests showed that manzanita had the strongest growth 
trajectory effect (Figure 5c,d). Though deerbrush reached greater maximum heights than 
manzanita (Figure 2), most deerbrush height growth occurred before the start of the 
simulation. Thus, initializing the simulation with deerbrush cover and height resulted in 
large reductions in emergence (Figure 5e,f).  

This study’s findings contradict the hypothesis that shrub competition produces an 
overall advantage for fir over pine during post-fire emergence. Though ponderosa pine 
growth is more strongly affected by shrub competition than fir growth (Tubbesing et al. 
2020), these differences do not appear to translate to decreased emergence rates for pine. 
Pine growth rates rarely fell low enough for mortality probability to sharply rise. Our 
mortality model predicted that pine mortality rate exceeds 2% per year only after pine 
relative annual growth falls below 7.7%. In our simulations, mean pine growth fell below 
this threshold at 21 years after fire (Figure S7). By this time, nearly 60% of pines had 
escaped shrub competition by emerging above the shrub canopy. Rapid emergence was 
particularly evident under whitethorn, where 76% of pines had emerged by 15 years post-
fire (Figure 4b).  

We examined important stages within the complex process of post-fire succession. To 
reach maturity, regenerating conifers must overcome several potential bottlenecks, 
including dispersal, establishment, survival, emergence, and reproductive maturation. 
Emergence can be broken down into two substages: emergence during shrub layer 
development and under a mature shrub layer. We found that ponderosa pine has a 
relative advantage over white fir during shrub layer development, while the reverse is true 
under the mature shrub layer, and the degree of relative advantage depends upon shrub 
species at each substage (Figure 6).  

The fact that the relative advantage of pine and fir reversed throughout shrub 
development is consistent with the life history strategies of those two species. While 
ponderosa pine exemplifies a shade-intolerant strategy, including rapid growth under 
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high light, white fir growth is less affected by shading and exceeds pine growth rates at 
low light (Niinemets and Vallardes 2006, Zald et al. 2008, Tubbesing et al. 2020). The gap 
between pine and fir emergence was highest at earlier stages in the model (~ years 10-20) 
and narrowed by the conclusion of the simulations (Figure 4). This timing corresponded 
with peak shrub height, which occurred between 10 and 25 years, depending on species 
(Figure 2). As shrub heights peaked, pine emergence flattened and was exceeded by fir 
emergence rates, likely due to increased shading.  

Early pine emergence was particularly rapid under whitethorn (Figure 4), which had the 
lowest heights among the three shrub species of interest (Figure 2). Low shrub heights 
likely led to rapid early pine emergence in two ways: 1) lower heights produced weaker 
competition with conifers, and 2) lower heights reduced the threshold at which a juvenile 
pine was considered emerged. Sensitivity analyses showed that manzanita shrub growth 
trajectories decreased emergence for both fir and pine. Deerbrush initial shrub height and 
cover did the same. Whitethorn displayed neither of these effects. These results suggest 
that whitethorn’s lower heights did contribute to rapid conifer emergence.  

Differences in shrub neighborhood species coefficients, which measure shrub effects on 
conifer emergence for a given height and cover, may be due to differences in leaf area 
density or may reflect differences in belowground interactions. The neighborhood 
coefficients for the two Ceanothus species reduced pine emergence less than that of 
manzanita, which may be due in part to nitrogen-fixing abilities in the Ceanothus genus. 
Previous allometric research has indicated that, for a given crown area, leaf biomass and 
total biomass are highest for manzanita, low for whitethorn, and lowest for deerbrush 
(Huff et al. 2018). These allometric differences match the pattern we found in shrub 
neighborhood species coefficients (Figure 5b). However, the results of previous shrub 
allometry studies are difficult to compare to our findings because they analyze shrubs as 
individuals (McGinnis et al. 2010, Huff et al. 2017, 2018), whereas we measured shrubs as a 
continuous layer because shrub crowns often overlapped and interlocked. Huff et al. 
(2018) also ignore shrub height as a predictor of biomass, relying only on crown area, 
despite height being a significant predictor of shrub biomass (McGinnis et al. 2010). More 
detailed analyses of the predictors of competitive ability for individual shrub species 
would help improve our model.  

Our sensitivity test results show that understanding shrub development trajectories is 
critical to understanding post-fire conifer recovery. Our data syntheses showed that, for 
all species, shrub height declined after peaking. Previous research has found similar 
patterns of shrub growth followed by decline in the second decade and have attributed 
the decline to increased competition from overstory trees (Tepley et al. 2017). However, 
very little overstory shading was observed in our study sites. Shrub declines may also be 
related to age-related stand decline or senescence (Hilbert and Larigauderie 1990). Since 
most data on shrub height after 15 years comes from only a few fire footprints (Figure S1), 
more research on shrub recovery trajectories will be an important step toward a better 
understanding of post-fire succession in the Sierra Nevada.  
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Improved understanding of climate effects on post-fire succession would also help 
contextualize our results. We parameterized climate year effect using historical 
precipitation records rather than expected future conditions because of uncertainty in 
how climate change will affect precipitation patterns. We hope that future applications of 
our simulation model will add complexity to the climate component in order to better 
predict future climate change impacts, as climate may influence height dominance of our 
study species (Young et al. 2019).  Furthermore, the three measurement years used to 
build our linear models predicting conifer growth overlapped with the end of a multi-year 
severe drought. Though we captured growth during an average and a wet year following 
the drought, growth may still have been affected by drought lag effects. 

We found that in the base model, which used weighted averages of all shrub species, 
ponderosa pine and white fir emerged in approximately the same ratio in which they 
existed at eight years post-fire, when the simulation began. Given previous findings of 
higher post-fire fir than pine recruitment (Nagel and Taylor 2005, Crotteau et al. 2013, 
Collins and Roller 2013, Lauvaux et al. 2016), fir enrichment is likely driven by a different 
stage of post-fire succession (Figure 6). Unfortunately, the effects of shrub competition 
on conifer seedling establishment are difficult to study and poorly understood. We found 
ponderosa pine juveniles under significantly lower shrub competition than white fir, but 
because of our targeted sampling design it is difficult to make inferences based on this 
observation. Experimental work has shown that shrubs suppress post-fire seedling 
recruitment under normal weather conditions but has found no significant differences in 
shrub effects between ponderosa pine and white fir (Werner et al. 2019). Future detailed 
measurement of seedling establishment in the early years after fire would help identify 
whether establishment alters long-term conifer species composition. 

CONCLUSION 

We synthesized several data sources into a Monte Carlo simulation model predicting 
post-fire recovery. By strongly grounding each model step in empirical data, we 
represented realistic distributions of long-term outcomes. We found that some shrub 
species favor the emergence of ponderosa pine relative to white fir, but across all shrub 
species pine and fir experienced similar success rates. Since white fir began at much 
higher seedling densities than ponderosa pine, fir outnumbered pine by the simulations’ 
end (Figure 3b). If higher pine than fir densities are desired, active management may be 
required. Management could include planting pine seedlings and/or controlling shrubs 
surrounding juvenile pines, particularly manzanita because it most strongly suppresses 
pine growth.   

More research is needed on the factors leading to fir enrichment after fire. Legacy effects 
of logging and fire suppression may be partly responsible for higher initial fir seedling 
densities, as there are higher densities of firs than pines in nearby surviving forests to 
serve as parent trees. Firs also distribute seed farther than pines (Clark et al. 1999). 
Establishment rates of fir and pine under shrubs remain an important missing piece. The 
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simulation model presented here could be expanded by adding dispersal, establishment, 
adult tree competition, and/or sexual maturation to create a spatially explicit model that 
captures additional potential post-fire succession bottlenecks.  
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TABLES 
Table 1. Emergence rates for ponderosa pine and white fir according to the base model. 
Q50 is defined as the number of years required for 50% of trees to emerge above the shrub 
layer. Lower and upper bounds are derived from emergence curves ±1 standard deviation 
from the mean. 

  Ponderosa pine White fir 

Q50 (years) 18 ± 2 21 ± 1 

Total emergence (%) 82 ± 6 83 ± 5 

Simulation duration 
(years) 37.1 ± 2.8 35 ± 3.2 
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FIGURES 

 

Figure 1. Diagram illustrating the data-driven simulation modeling framework. Ovals 
represent deterministic model parameterization, including initialization by bootstrap 
sampling of field data, climate year based on the historical record, and shrub height and 
growth curves fit to regional field survey data. Green boxes represent linear models 
derived from field data. Orange, purple, and green solid arrows represent linear model 
inputs while dashed green arrows represent outputs. Teal circles represent the conifer 
dynamics predicted by the linear models. Conifer height and diameter measurements 
come directly from field data for the first year of the simulation, represented in the 
purple arrow originating at “Initial plant characteristics,” and come from modeled results 
for subsequent years, represented by the green arrows. Neighborhood shrub height, 
derived from deterministic shrub height curves, is combined with conifer mortality and 
height to determine emergence at each year in the simulation (thick blue-grey arrows).   
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Figure 2.  Shrub height GAMs.  Shaded areas show standard error estimates.  
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Figure 3. Base model predictions of juvenile ponderosa pine and white fir emergence 
above the shrub canopy over time, shown as a) proportion of initial juvenile trees that 
emerged above the shrub canopy, and b) density of trees that emerge above the shrub 
canopy. Shading shows time ±1 standard deviation.   

a 
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Figure 4. Conifer emergence above the shrub canopy for single-shrub species models, 
shown as the proportion of initial juvenile trees that emerge over time ±1 standard 
deviation for (a) white fir and (b) ponderosa pine. Points and error bars show the number 
of years required for 50% of initial trees to emerge, termed Q50.  

a b 
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Figure 5. Simulation results for shrub species sensitivity tests. Lines and shading show 
mean emergence above the shrub canopy over time ±1 standard deviation. Points and 
error bars show Q50, defined as the number of years before 50% of initial trees emerge 
above the shrub canopy. In panel (a), all white fir results are shown together in gray 
because there was no difference in shrub neighborhood species coefficients for white fir. 
The dotted line in (f) illustrates that the lower bound of emergence never reaches 50%.  
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Figure 6. Conceptual diagram illustrating the relative advantage of ponderosa pine 
(brown) versus white fir (blue-grey) at stages throughout post-fire forest development. 
The size of each circle represents the approximate relative effect of each process on that 
species. The large box delineates patterns found in this study. The colored boxes 
illustrate how patterns vary under each of the three dominant shrub species. The 
question marks above “Seedling establishment” illustrate that species differences in 
germination and establishment rates in post-fire shrub fields are understudied.   
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Conclusion 
In this dissertation, I explored how forest regeneration is affected by a changing 
disturbance regime and the management strategies used to mitigate it. I showed how 
forest heterogeneity is important in predicting regeneration patterns. As forests and 
forest fires become more homogenous in the Sierra Nevada, management strategies that 
help foster patchy forests will be critical in ensuring future post-fire regeneration.  

In the case of post-fire recovery at Last Chance, as described in Chapter 1, pre-fire fuel 
reduction treatments increased post-fire seedling regeneration, likely via their effects on 
neighborhood fire severity. Fir seedling densities were highest in patchy burned areas, 
where bare mineral soil was located near extant adult trees that could serve as seed 
sources. Forest treatments were important not just in their ability to reduce fire severity, 
but in their ability to make fire effects more heterogeneous.  

This finding is important in informing forest management. Given the widespread 
incorporation of the SPLATs concept into land management planning for frequent-fire 
forests, empirical testing of landscape treatment networks is critical. The natural 
experiment created when the American Fire burned through half of the Last Chance 
study site allowed us to quantify treatments’ effects on wildfire resistance and forest 
recovery given real-world constraints on treatment placement. More importantly, this 
natural experiment confirmed the value of landscape fuel treatments. We found that 
treatments on 18% of the fireshed noticeably decreased landscape-level fire severity, and 
that treatments locally increased fir seedling densities. The combination of high initial 
post-fire seedling densities and small stand-replacing patches in the treatment fireshed 
bodes well for long-term integrity of the mixed-conifer forests within the American Fire. 
More widespread use of strategically placed treatment networks could help bring wildfire 
effects closer to historical norms, facilitate long-term recovery from fire, and restore 
heterogeneous, resilient forest structures.  

Chapter 1 showed encouraging results highlighting the effects of fuel treatments on 
seedling regeneration. However, I found much stronger regeneration of firs than pines. In 
Chapter 2, I explored how the novel, more homogenous fire regime affects the balance 
between firs and pines. I hypothesized that fir enrichment occurs in both unburned areas 
and severely burned areas, both of which are increasing in prevalence under the novel fire 
regime. Abundant research has documented fir enrichment in unburned forests due to 
fire exclusion and historical logging practices. Fir enrichment following severe wildfire is 
more difficult to document. Several processes must be studied in order to determine 
whether long-term fir enrichment may occur. In Chapter 2, I studied two important 
processes affecting fir enrichment: shrub effects on fir and pine growth rates, and the 
relationship between growth and mortality for fir and pine. My results supported the 
hypothesis of fir enrichment in severely burned areas. 

To further examine the fir enrichment hypothesis, in Chapter 3 I combined my field 
results from Chapter 2 with other data sources to develop a Monte Carlo simulation 
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model predicting post-fire recovery. By strongly grounding each model step in empirical 
data, I represented realistic distributions of long-term outcomes. I found that some shrub 
species favor the emergence of ponderosa pine relative to white fir, but across all shrub 
species pine and fir experienced similar success rates. Since white fir began at much 
higher seedling densities than ponderosa pine, fir outnumbered pine by the simulations’ 
end. Thus, shrubs could be filtering out pines, but the dynamics included in my 
simulation model do not contain the root cause of the pine filter.  

The results of Chapter 3 highlight a different type of forest heterogeneity: differences in 
shrub species. Individual shrub species had unique effects on long-term success of pines 
versus firs. When all shrub species were included in the model, pines and firs experienced 
similar emergence above the shrub canopy. When only a single shrub species was 
included, pine and fir emergence was less equal. This highlights the importance of 
heterogeneous species mixtures. It appears that maintaining shrub species diversity will 
improve forest resilience under the novel fire regime and ensure survival of multiple tree 
functional types.  

More research is needed on the factors determining post-fire regeneration and potentially 
leading to fir enrichment after fire. Legacy effects of logging and fire suppression may be 
partly responsible for higher initial fir seedling densities, as there are higher densities of 
firs than pines in nearby surviving forests to serve as parent trees. Firs also distribute seed 
farther than pines. Establishment rates of fir and pine under shrubs remain an important 
missing piece. As is common in research, my dissertation opened more questions than it 
answered, but the themes introduced in this body of work will help guide my research for 
years to come.    
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CHAPTER 1 Appendix 
 

Additional methods details 

FARSITE input layer development 

To develop vegetation layers for FARSITE, we first divided the study area into 1363 
polygons defined by similarities in forest structural and terrain features derived from 
multispectral aerial imagery and LiDAR (Su et al., 2016b). We then assigned each polygon 
vegetation data from field plots, using the gradient-nearest-neighbor method (Ohmann 
and Gregory, 2002). The gradient space was defined by multivariate analysis of field-
measured plot variables including treatment type, vegetation type, canopy cover, relative 
density of big trees, and a suite of topographic metrics. To recreate the fine-scale 
heterogeneity observed in the field, we identified all plots ranked in the 95th percentile in 
terms of similarity to each polygon and then randomly assigned three of those plots to 
the polygon. Stand structure layers, including canopy cover, canopy base height, canopy 
height, and canopy bulk density were derived from FVS outputs for each polygon. The 
fuel model for each polygon was selected using multiple regression tree analyses of field-
measured surface fuels and forest structure, as described in Collins et al. (2011) (Fry et al., 
2015).  

Topographic FARSITE model inputs were derived from LiDAR data. Ignition location and 
hourly weather data from the actual American Fire were used (Duncan Remote 
Automated Weather Station, located 11 km from study area). Crown fire using the Scott 
and Reinhardt (2001) method was enabled, as well as spot-fire growth with an ignition 
frequency of 2% and a two-minute ignition delay. 

Identifying drivers of post-fire seedling densities. 

To determine what plot-scale biophysical characteristics influenced post-fire seedling 
densities, we used AICc model selection. For all models, belt transect area was used as an 
offset variable because we counted seedlings over differently sized belt transects for 
different plots depending on seedling densities. 

We used hurdle models to analyze pine seedling densities because the data were zero-
inflated. We used “hurdle” in the R package “pscl,” which performs a binomial GLM on 
the zero-only observations and a negative binomial GLM on the non-zero observations 
(Jackman, 2017; Zeileis et al., 2008). We used the same set of predictor variables for both 
the binomial and negative binomial portions of the hurdle model for all pine model runs.  

Shrub cover, bare mineral soil, and tree basal area were square root transformed to 
approximate normality in the residuals. We then standardized all continuous variables by 
subtracting the mean and dividing by the standard deviation for easier comparison of 
coefficients. We lumped unburned and low plot fire severity for the interaction between 
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plot fire severity and neighborhood fire severity to avoid errors due to zero variance in 
neighborhood fire severity at zero plot-scale fire severity. One plot was left out of the 
analysis because of field measurement error resulting in missing post-fire shrub cover 
data. 

Treatment effects on seedling densities. 

We identified what treatment each plot had experienced using a combination of data 
sources. First, field observers noted treatment type during 2013 measurements. Second, 
we considered treatment polygons supplied by the US Forest Service American River 
Ranger District (Fig. 1). Where these two data sources differed (12 plots) we closely 
examined field data for changes in tree densities, shrub cover, ground fuels, and litter 
between pre-treatment and post-treatment measurements. Lastly, we confirmed our 
treatment assignments using remotely sensed change detection maps, produced by 
determining areas where differences between pre-treatment and post-treatment maps 
surpassed threshold values denoting structural change (e.g., > 10% reduction in canopy 
cover or mean tree height), identifying areas that were potentially thinned (Su et al., 
2016a). Post-treatment sampling indicated that several plots within the prescribed fire 
polygons lacked evidence of fire. 

We used GLMs with likelihood ratio tests to evaluate treatment effects on seedling 
densities. We again standardized all continuous variables by subtracting the mean and 
dividing by the standard deviation. We again used GLMs with a negative binomial 
distribution and logarithmic link function for the fir analysis and hurdle models for pines, 
with an offset for sample area for all models.  

We chose which pre-treatment variables to include in these analyses based on the results 
of Step 1. For firs, we included pre-treatment shrub cover and pre-treatment tree basal 
area because the post-fire analogs of those two variables were in at least one of the top 
three models with < 2 AICc and were possible to calculate from pre-treatment data. For 
pines, we included pre-treatment shrub cover, pre-treatment tree basal area, and pre-
treatment pine basal area for the same reasons. In other words, the effect of treatment on 
seedling densities was tested by performing a likelihood ratio test between the following 
treatment and null models for each species group: 

Fir treatment model:  

Seedling density ~ Pre-treatment shrub cover + Pre-treatment tree basal area + 
Fire*Treatment 

Fir null model: 

Seedling density ~ Pre-treatment shrub cover + Pre-treatment tree basal area + Fire 

Pine treatment model:  

Seedling density ~ Pre-treatment shrub cover + Pre-treatment pine basal area + Pre-
treatment tree basal area + Fire*Treatment 
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Pine null model: 

Seedling density ~ Pre-treatment shrub cover + Pre-treatment pine basal area + Pre-
treatment tree basal area + Fire 

Treatment effects on drivers of seedling densities.   

We separately tested the effects of treatment on each plot characteristic that was 
included in either the best fir or best pine model from Step 1. We used transformations 
where necessary to increase normality of the residuals, as indicated in Table 3. For tree 
basal area, shrub cover, and pine parent potential, we included a binary variable for 
whether the plot was inside the fire perimeter and an interaction between that variable 
and treatment. For neighborhood fire severity and local fire severity, we excluded plots 
outside the fire perimeter.  

Supplementary results  

Results of seedling density analysis for all seedling species combined. Seedling 
densities for all species combined were best explained by the seedling driver model (Step 
1) with shrub cover, basal area, plot-scale fire severity, neighborhood fire severity, the 
interaction between plot-scale and neighborhood-scale fire severity, and the interaction 
between fire severity and basal area. Pseudo R2 for this model was 0.59.  Treatments had a 
positive effect on seedling densities according to the likelihood ratio test performed in 
Step 2 (P < 0.001). Pre-treatment shrub cover and pre-treatment basal area were included 
in the treatment and null models when testing for treatment effects. 



 
 

 

Table A.1. Coefficients for the effects of standardized post-fire plot biophysical characteristics on seedling densities for firs, 
for the best fir seedling driver model from Step 1. For the factor variables (plot fire severity, parent potential, and 
interactions), the coefficients for each group are listed using the sum-to-zero constraint.  

Shrub 
cover 

Basal 
area 

Neighborhood 
fire severity 

Plot fire severity 
(unburned, low, 
moderate, high) 

Basal area/plot fire 
severity interaction 
(unburned, low, 
moderate, high) 

Neighborhood/plot fire severity 
interaction (unburned+low, 
moderate, high) 

-0.72 0.76 -0.47 -1.8, -1.4, 0.10, 3.1 1.72, -1.56, -0.03, -0.12 0.51, -0.79, 0.28 
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Table A.2. Coefficients for the effects of standardized post-fire plot biophysical characteristics on seedling densities for 
pines, for the best pine seedling driver hurdle model from Step 1.  

 
Plot fire severity 
(unburned, low, 
moderate, high) 

Post-fire pine basal area 

non-zeros -0.13, -0.87, 0.31, 0.69 0.05 

zeros 13.5, -6.56, -3.7, -3.27 0.08 
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Table A.3. Model rankings for fir post-fire plot biophysical characteristics. Evidence ratio is the Akaike weight divided by the 
maximum Akaike weight. 
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Model AICc ∆AICc Akaike 
weight 

Evidence 
ratio 

Shrub cover + Basal area*Plot fire severity + Neighborhood fire severity*Plot fire 
severity 

961.74 0 0.21 1 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Neighborhood fire 
severity*Plot fire severity 

962.95 1.21 0.11 0.55 

Shrub cover + Basal area + Plot fire severity + Neighborhood fire severity*Plot fire 
severity 

963.72 1.98 0.08 0.37 

Shrub cover + Basal area*Plot fire severity + Neighborhood fire severity 964.03 2.29 0.07 0.32 

Shrub cover + Basal area*Plot fire severity + Fir basal area + Neighborhood fire 
severity*Plot fire severity 

964.13 2.39 0.06 0.3 

Shrub cover + Plot fire severity + Neighborhood fire severity*Plot fire severity 964.98 3.25 0.04 0.2 

Shrub cover + Plot fire severity + Fir basal area + Neighborhood fire severity*Plot fire 
severity 

965.16 3.42 0.04 0.18 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Neighborhood fire 
severity*Plot fire severity 

965.42 3.68 0.03 0.16 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Fir basal area + 
Neighborhood fire severity*Plot fire severity 

965.45 3.71 0.03 0.16 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Neighborhood fire 
severity 

965.52 3.78 0.03 0.15 

Shrub cover + Plot fire severity + Bare mineral soil + Neighborhood fire severity*Plot 
fire severity 

965.61 3.87 0.03 0.14 

Shrub cover + Basal area + Plot fire severity + Fir basal area + Neighborhood fire 
severity*Plot fire severity 

966.17 4.44 0.02 0.11 

Shrub cover + Plot fire severity + Bare mineral soil + Fir basal area + Neighborhood 
fire severity*Plot fire severity 

966.32 4.58 0.02 0.1 

Shrub cover + Basal area*Plot fire severity + Fir basal area 966.37 4.64 0.02 0.1 
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Basal area + Plot fire severity + Neighborhood fire severity*Plot fire severity 966.49 4.76 0.02 0.09 

Shrub cover + Basal area*Plot fire severity + Fir basal area + Neighborhood fire 
severity 

966.51 4.77 0.02 0.09 

Shrub cover + Basal area + Plot fire severity + Neighborhood fire severity 967.15 5.41 0.01 0.07 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Fir basal area 967.6 5.86 0.01 0.05 

Shrub cover + Plot fire severity + Neighborhood fire severity 967.86 6.13 0.01 0.05 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Fir basal area + 
Neighborhood fire severity*Plot fire severity 

967.93 6.19 0.01 0.05 

Basal area*Plot fire severity + Neighborhood fire severity*Plot fire severity 967.98 6.24 0.01 0.04 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Fir basal area + 
Neighborhood fire severity 

968.07 6.33 0.01 0.04 

Basal area*Plot fire severity 968.35 6.61 0.01 0.04 

Basal area + Plot fire severity + Fir basal area + Neighborhood fire severity*Plot fire 
severity 

968.66 6.92 0.01 0.03 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Neighborhood fire 
severity 

968.74 7.01 0.01 0.03 

Shrub cover + Plot fire severity + Fir basal area + Neighborhood fire severity 968.75 7.01 0.01 0.03 

Shrub cover + Plot fire severity + Bare mineral soil + Neighborhood fire severity 968.81 7.07 0.01 0.03 

Basal area + Plot fire severity + Bare mineral soil + Neighborhood fire severity*Plot 
fire severity 

968.84 7.1 0.01 0.03 

Shrub cover + Basal area + Plot fire severity 969.39 7.65 0 0.02 

Shrub cover + Basal area + Plot fire severity + Fir basal area + Neighborhood fire 
severity 

969.58 7.84 0 0.02 

Basal area*Plot fire severity + Fir basal area + Neighborhood fire severity*Plot fire 
severity 

969.73 8 0 0.02 

Basal area*Plot fire severity + Neighborhood fire severity 969.77 8.03 0 0.02 

Shrub cover + Plot fire severity + Bare mineral soil + Fir basal area + Neighborhood 
fire severity 

969.93 8.19 0 0.02 
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Plot fire severity + Fir basal area + Neighborhood fire severity*Plot fire severity 969.94 8.2 0 0.02 

Basal area*Plot fire severity + Fir basal area 970.26 8.52 0 0.01 

Bare mineral soil + Basal area*Plot fire severity + Neighborhood fire severity*Plot fire 
severity 

970.45 8.72 0 0.01 

Bare mineral soil + Basal area*Plot fire severity 970.67 8.93 0 0.01 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil 970.85 9.11 0 0.01 

Basal area + Plot fire severity + Bare mineral soil + Fir basal area + Neighborhood fire 
severity*Plot fire severity 

971.06 9.32 0 0.01 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Fir basal area + 
Neighborhood fire severity 

971.23 9.49 0 0.01 

Shrub cover + Basal area + Plot fire severity + Fir basal area 971.76 10.02 0 0.01 

Plot fire severity + Bare mineral soil + Fir basal area + Neighborhood fire 
severity*Plot fire severity 

971.79 10.05 0 0.01 

Basal area*Plot fire severity + Fir basal area + Neighborhood fire severity 971.85 10.11 0 0.01 

Bare mineral soil + Basal area*Plot fire severity + Neighborhood fire severity 972.21 10.47 0 0.01 

Shrub cover + Plot fire severity + Fir basal area 972.28 10.54 0 0.01 

Bare mineral soil + Basal area*Plot fire severity + Fir basal area + Neighborhood fire 
severity*Plot fire severity 

972.29 10.55 0 0.01 

Basal area + Plot fire severity + Neighborhood fire severity 972.63 10.89 0 0 

Bare mineral soil + Basal area*Plot fire severity + Fir basal area 972.63 10.89 0 0 

Shrub cover + Plot fire severity 972.7 10.96 0 0 

Basal area + Plot fire severity 972.73 10.99 0 0 

Shrub cover + Plot fire severity + Bare mineral soil + Fir basal area 973.24 11.5 0 0 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Fir basal area 973.28 11.54 0 0 

Shrub cover + Neighborhood fire severity 973.74 12 0 0 

Bare mineral soil + Basal area*Plot fire severity + Fir basal area + Neighborhood fire 
severity 

974.34 12.6 0 0 
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Basal area + Plot fire severity + Bare mineral soil 974.85 13.12 0 0 

Basal area + Plot fire severity + Bare mineral soil + Neighborhood fire severity 974.87 13.14 0 0 

Basal area + Plot fire severity + Fir basal area 974.92 13.18 0 0 

Basal area + Plot fire severity + Fir basal area + Neighborhood fire severity 974.93 13.19 0 0 

Shrub cover + Fir basal area + Neighborhood fire severity 975.5 13.76 0 0 

Shrub cover + Basal area + Neighborhood fire severity 975.59 13.85 0 0 

Plot fire severity + Neighborhood fire severity*Plot fire severity 975.68 13.95 0 0 

Shrub cover + Bare mineral soil + Neighborhood fire severity 975.88 14.14 0 0 

Shrub cover + Basal area + Fir basal area + Neighborhood fire severity 975.88 14.14 0 0 

Plot fire severity + Bare mineral soil + Neighborhood fire severity*Plot fire severity 976.89 15.15 0 0 

Basal area + Plot fire severity + Bare mineral soil + Fir basal area 977.1 15.36 0 0 

Plot fire severity + Fir basal area + Neighborhood fire severity 977.16 15.42 0 0 

Basal area + Plot fire severity + Bare mineral soil + Fir basal area + Neighborhood fire 
severity 

977.22 15.48 0 0 

Shrub cover + Bare mineral soil + Fir basal area + Neighborhood fire severity 977.6 15.87 0 0 

Shrub cover 977.79 16.05 0 0 

Shrub cover + Basal area + Bare mineral soil + Neighborhood fire severity 977.86 16.12 0 0 

Plot fire severity + Fir basal area 978 16.26 0 0 

Shrub cover + Basal area + Bare mineral soil + Fir basal area + Neighborhood fire 
severity 

978.21 16.47 0 0 

Shrub cover + Fir basal area 978.69 16.95 0 0 

Plot fire severity + Bare mineral soil + Fir basal area + Neighborhood fire severity 978.97 17.23 0 0 

Plot fire severity + Bare mineral soil + Fir basal area 979.69 17.95 0 0 

Shrub cover + Basal area 979.88 18.14 0 0 

Shrub cover + Bare mineral soil 979.89 18.15 0 0 

Shrub cover + Basal area + Fir basal area 980.54 18.81 0 0 
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1Shrub cover + Bare mineral soil + Fir basal area 980.91 19.17 0 0 

Shrub cover + Basal area + Bare mineral soil 982.07 20.33 0 0 

Shrub cover + Basal area + Bare mineral soil + Fir basal area 982.8 21.06 0 0 

Plot fire severity 984.32 22.58 0 0 

Plot fire severity + Bare mineral soil 985.51 23.77 0 0 

Fir basal area + Neighborhood fire severity 1003.06 41.32 0 0 

Fir basal area 1003.29 41.55 0 0 

Bare mineral soil + Fir basal area + Neighborhood fire severity 1003.78 42.05 0 0 

Bare mineral soil + Fir basal area 1004.31 42.57 0 0 

Basal area + Fir basal area + Neighborhood fire severity 1005.28 43.54 0 0 

Basal area + Fir basal area 1005.41 43.67 0 0 

Neighborhood fire severity 1005.76 44.02 0 0 

Basal area + Bare mineral soil + Fir basal area + Neighborhood fire severity 1005.98 44.24 0 0 

Basal area + Neighborhood fire severity 1006.15 44.41 0 0 

Basal area + Bare mineral soil + Fir basal area 1006.31 44.57 0 0 

Basal area 1006.36 44.62 0 0 

Basal area + Bare mineral soil + Neighborhood fire severity 1006.61 44.87 0 0 

Bare mineral soil + Neighborhood fire severity 1007.05 45.31 0 0 

Basal area + Bare mineral soil 1007.52 45.79 0 0 

Bare mineral soil 1009.62 47.88 0 0 

Shrub cover + Basal area*Plot fire severity NA NA NA NA 

Plot fire severity + Neighborhood fire severity NA NA NA NA 

Shrub cover + Plot fire severity + Bare mineral soil NA NA NA NA 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity NA NA NA NA 

Plot fire severity + Bare mineral soil + Neighborhood fire severity  NA NA NA NA 



 
 

 
 

Table A.4. Model rankings for pine post-fire plot characteristics. Evidence ratio is the Akaike weight divided by the 
maximum Akaike weight.  
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Model AICc ∆AICc Akaike 
weight 

Evidence 
ratio 

Plot fire severity + Pine basal area 578.46 0 0.24 1 

Shrub cover + Basal area + Pine basal area 578.88 0.43 0.2 0.81 

Shrub cover + Basal area + Plot fire severity + Pine basal area 580.09 1.64 0.11 0.44 

Shrub cover + Plot fire severity + Pine basal area 580.5 2.05 0.09 0.36 

Basal area + Plot fire severity + Pine basal area 580.97 2.51 0.07 0.28 

Shrub cover + Basal area + Pine basal area + Neighborhood fire severity 581.3 2.84 0.06 0.24 

Plot fire severity + Bare mineral soil + Pine basal area 582.48 4.02 0.03 0.13 

Shrub cover + Basal area + Bare mineral soil + Pine basal area 582.58 4.12 0.03 0.13 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Pine basal area 582.79 4.34 0.03 0.11 

Shrub cover + Basal area*Plot fire severity + Pine basal area 583.08 4.63 0.02 0.1 

Plot fire severity + Pine basal area + Neighborhood fire severity 583.21 4.76 0.02 0.09 

Basal area + Plot fire severity + Bare mineral soil + Pine basal area 583.5 5.04 0.02 0.08 

Shrub cover + Basal area + Plot fire severity + Pine basal area + Neighborhood fire 
severity 

584.12 5.66 0.01 0.06 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Pine basal area 584.71 6.25 0.01 0.04 

Shrub cover + Basal area + Bare mineral soil + Pine basal area + Neighborhood fire 
severity 

585.07 6.61 0.01 0.04 

Shrub cover + Plot fire severity + Bare mineral soil + Pine basal area 585.12 6.66 0.01 0.04 

Shrub cover + Plot fire severity + Pine basal area + Neighborhood fire severity 585.22 6.76 0.01 0.03 

Basal area + Plot fire severity + Pine basal area + Neighborhood fire severity 585.69 7.23 0.01 0.03 

Basal area*Plot fire severity + Pine basal area 586.58 8.12 0 0.02 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Pine basal area + 
Neighborhood fire severity 

586.92 8.46 0 0.01 
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Plot fire severity + Bare mineral soil + Pine basal area + Neighborhood fire severity 587.47 9.01 0 0.01 

Basal area + Plot fire severity + Bare mineral soil + Pine basal area + Neighborhood fire 
severity 

588.45 10 0 0.01 

Shrub cover + Basal area*Plot fire severity + Pine basal area + Neighborhood fire severity 588.65 10.19 0 0.01 

Bare mineral soil + Basal area*Plot fire severity + Pine basal area 589.41 10.95 0 0 

Shrub cover + Pine basal area + Neighborhood fire severity 589.51 11.05 0 0 

Shrub cover + Pine basal area 589.72 11.27 0 0 

Shrub cover + Bare mineral soil + Pine basal area 589.98 11.52 0 0 

Plot fire severity + Pine basal area + Neighborhood fire severity:Plot fire severity + 
Neighborhood fire severity 

590 11.55 0 0 

Shrub cover + Plot fire severity 590.01 11.55 0 0 

Shrub cover + Plot fire severity + Bare mineral soil + Pine basal area + Neighborhood fire 
severity 

590.06 11.61 0 0 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Pine basal area + 
Neighborhood fire severity 

590.21 11.75 0 0 

Plot fire severity 590.98 12.53 0 0 

Shrub cover + Bare mineral soil + Pine basal area + Neighborhood fire severity 591.4 12.95 0 0 

Plot fire severity + Bare mineral soil 591.94 13.49 0 0 

Basal area*Plot fire severity + Pine basal area + Neighborhood fire severity 592.43 13.97 0 0 

Basal area + Plot fire severity + Pine basal area + Neighborhood fire severity:Plot fire 
severity + Neighborhood fire severity 

592.51 14.05 0 0 

Shrub cover + Plot fire severity + Bare mineral soil 592.61 14.15 0 0 

Basal area + Pine basal area 593.61 15.15 0 0 

Shrub cover + Plot fire severity + Neighborhood fire severity 594.13 15.67 0 0 

Shrub cover + Basal area + Plot fire severity + Pine basal area + Neighborhood fire 
severity:Plot fire severity + Neighborhood fire severity 

594.2 15.74 0 0 

Plot fire severity + Bare mineral soil + Pine basal area + Neighborhood fire severity:Plot 
fire severity + Neighborhood fire severity 

594.24 15.78 0 0 
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Shrub cover + Plot fire severity + Pine basal area + Neighborhood fire severity:Plot fire 
severity + Neighborhood fire severity 

594.46 16 0 0 

Shrub cover + Basal area 594.47 16.01 0 0 

Basal area + Plot fire severity + Bare mineral soil + Pine basal area + Neighborhood fire 
severity:Plot fire severity + Neighborhood fire severity 

594.51 16.06 0 0 

Bare mineral soil + Pine basal area 594.73 16.27 0 0 

Basal area + Plot fire severity 594.95 16.49 0 0 

Shrub cover + Basal area + Plot fire severity 595.07 16.62 0 0 

Plot fire severity + Neighborhood fire severity 595.25 16.79 0 0 

Basal area + Bare mineral soil + Pine basal area 595.28 16.82 0 0 

Bare mineral soil + Basal area*Plot fire severity + Pine basal area + Neighborhood fire 
severity 

595.33 16.87 0 0 

Pine basal area + Neighborhood fire severity 595.49 17.04 0 0 

Bare mineral soil + Pine basal area + Neighborhood fire severity 595.65 17.19 0 0 

Basal area + Pine basal area + Neighborhood fire severity 595.73 17.28 0 0 

Plot fire severity + Bare mineral soil + Neighborhood fire severity 596.45 17.99 0 0 

Pine basal area 596.69 18.23 0 0 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Pine basal area + 
Neighborhood fire severity:Plot fire severity + Neighborhood fire severity 

596.81 18.35 0 0 

Basal area + Plot fire severity + Bare mineral soil 596.89 18.43 0 0 

Shrub cover + Plot fire severity + Bare mineral soil + Neighborhood fire severity 596.94 18.48 0 0 

Shrub cover + Neighborhood fire severity 596.95 18.5 0 0 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil 597.13 18.67 0 0 

Shrub cover + Basal area + Neighborhood fire severity 597.4 18.94 0 0 

Basal area + Bare mineral soil + Pine basal area + Neighborhood fire severity 597.66 19.2 0 0 

Shrub cover 598.08 19.63 0 0 

Shrub cover + Bare mineral soil 598.29 19.84 0 0 
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Shrub cover + Basal area + Bare mineral soil 598.78 20.32 0 0 

Shrub cover + Bare mineral soil + Neighborhood fire severity 599.02 20.57 0 0 

Shrub cover + Plot fire severity + Bare mineral soil + Pine basal area + Neighborhood fire 
severity:Plot fire severity + Neighborhood fire severity 

599.43 20.97 0 0 

Shrub cover + Basal area + Plot fire severity + Neighborhood fire severity 599.61 21.16 0 0 

Basal area + Plot fire severity + Neighborhood fire severity 599.65 21.19 0 0 

Shrub cover + Basal area*Plot fire severity + Pine basal area + Neighborhood fire 
severity:Plot fire severity + Neighborhood fire severity 

601.73 23.28 0 0 

Shrub cover + Basal area + Bare mineral soil + Neighborhood fire severity 601.85 23.39 0 0 

Basal area + Plot fire severity + Bare mineral soil + Neighborhood fire severity 601.85 23.39 0 0 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Neighborhood fire 
severity 

601.9 23.44 0 0 

Basal area*Plot fire severity + Pine basal area + Neighborhood fire severity:Plot fire 
severity + Neighborhood fire severity 

602.08 23.62 0 0 

Plot fire severity + Neighborhood fire severity:Plot fire severity + Neighborhood fire 
severity 

602.25 23.8 0 0 

Shrub cover + Plot fire severity + Neighborhood fire severity:Plot fire severity + 
Neighborhood fire severity 

603.09 24.64 0 0 

Plot fire severity + Bare mineral soil + Neighborhood fire severity:Plot fire severity + 
Neighborhood fire severity 

603.29 24.83 0 0 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Pine basal area + 
Neighborhood fire severity:Plot fire severity + Neighborhood fire severity 

603.52 25.07 0 0 

Bare mineral soil + Basal area*Plot fire severity + Pine basal area + Neighborhood fire 
severity:Plot fire severity + Neighborhood fire severity 

604.74 26.28 0 0 

Basal area 605.33 26.88 0 0 

Bare mineral soil 606.02 27.56 0 0 

Shrub cover + Plot fire severity + Bare mineral soil + Neighborhood fire severity:Plot fire 
severity + Neighborhood fire severity 

606.16 27.71 0 0 

Shrub cover + Basal area*Plot fire severity 606.18 27.72 0 0 
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Bare mineral soil + Neighborhood fire severity 606.55 28.1 0 0 

Basal area*Plot fire severity 606.81 28.35 0 0 

Basal area + Neighborhood fire severity 607.09 28.63 0 0 

Neighborhood fire severity 607.22 28.77 0 0 

Basal area + Plot fire severity + Neighborhood fire severity:Plot fire severity + 
Neighborhood fire severity 

607.22 28.77 0 0 

Basal area + Bare mineral soil 607.7 29.25 0 0 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity 608.43 29.98 0 0 

Shrub cover + Basal area + Plot fire severity + Neighborhood fire severity:Plot fire 
severity + Neighborhood fire severity 

609.13 30.68 0 0 

Basal area + Plot fire severity + Bare mineral soil + Neighborhood fire severity:Plot fire 
severity + Neighborhood fire severity 

609.21 30.76 0 0 

Bare mineral soil + Basal area*Plot fire severity 609.53 31.08 0 0 

Basal area + Bare mineral soil + Neighborhood fire severity 609.72 31.27 0 0 

Shrub cover + Basal area*Plot fire severity + Neighborhood fire severity 611.37 32.91 0 0 

Shrub cover + Basal area + Plot fire severity + Bare mineral soil + Neighborhood fire 
severity:Plot fire severity + Neighborhood fire severity 

611.62 33.16 0 0 

Basal area*Plot fire severity + Neighborhood fire severity 612.22 33.76 0 0 

Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Neighborhood fire 
severity 

613.69 35.23 0 0 

Bare mineral soil + Basal area*Plot fire severity + Neighborhood fire severity 615.13 36.68 0 0 

Basal area*Plot fire severity + Neighborhood fire severity:Plot fire severity + 
Neighborhood fire severity 

621.43 42.97 0 0 

Shrub cover + Basal area*Plot fire severity + Neighborhood fire severity:Plot fire severity 
+ Neighborhood fire severity 

623.08 44.62 0 0 

Bare mineral soil + Basal area*Plot fire severity + Neighborhood fire severity:Plot fire 
severity + Neighborhood fire severity 

624.16 45.71 0 0 



 
 

 
 

 Shrub cover + Bare mineral soil + Basal area*Plot fire severity + Neighborhood fire 
severity:Plot fire severity + Neighborhood fire severity 

625.69 47.24 0 0 

109 



 
 

110 
 

CHAPTER 2 Appendix 
 

A. Fires sampled 

Table S1. Fires sampled 

Fire Year Years since fire 
(from 2016) 

Wildfire 
size (ha) 

Patches Patch 
elevation (m) 

American River Complex 2008 8 4,452 4 1605 - 1929 
Freds 2004 12 3,116 4 1334 - 1815 
Star 2001 15 6,783 3 1583 - 1723 
Cleveland 1992 24 9,947 2 1388 - 1580 
Wrights 1981 35 1,619 1 2080 - 2107 

 

B. Estimating juvenile conifer time of death for mortality study 

In order to simulate juvenile conifer survival rates at the population level, it was necessary 
to match calendar years between vertical growth segments of live and dead trees. This 
matching required us to estimate the timing of juvenile conifer death.  

We used ring width measurements to assist in the aging of dead trees. For each tree, a 
“cookie” was cut at 10 cm height. If fewer than 3 rings were visible in this cookie, a 
replacement cookie was taken from the base of the seedling where it was cut at ground 
level. Annual radial increments were measured along 3 radial transects of the cookie to 
the nearest 0.01 mm using a dissecting microscope and a sliding stage micrometer. We 
averaged yearly growth increments across the three transects to create a series for each 
tree and then detrended these series using the horizontal-line method, which subtracts 
the mean of each series from each ring width (Speer 2009). More complex detrending 
methods (e.g. negative exponential curves; Speer 2009) were inappropriate for these data 
because of the short length of the series and absence of age-related growth declines.  

We plotted average growth indices for live trees of each species (Fig. S1). We then 
compared each dead white fir detrended series to this growth pattern. We began with 
white fir because it displayed distinct patterns in radial increments across years, which 
ponderosa pine did not, as shown in Fig. S1. For individual dead white fir that showed 
clear alignment with the species-specific growth pattern shown in Fig. S1B, we assigned a 
year of death. However, not all dead trees could unambiguously be assigned a year of 
death by matching patterns in growth. As an alternative, we aggregated physical 
characteristics such as the extent of needle and bark retention as well as needle color for 
individuals with a known date of death. We used these  
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physical characteristics along with the stage of apical bud development at time of death 
to assign the calendar year that corresponded with the last vertical growth segment of 
each tree. Using these estimates, we averaged yearly growth indices for all dead white fir 
to verify that their patterns matched the patterns obtained from the live trees (i.e., 
comparing Fig S1B to Fig. S2B).  

Finally, we estimated year of death for each ponderosa pine using the criteria established 
for white fir and again compared yearly trends to those of live trees (i.e., Fig S1A vs. Fig 
S2A). The similarity in species-specific annual growth patterns between live trees and 
dead trees supports the contention that our age of death assignments were reasonably 
accurate.  

 

  

Figure S1. Mean detrended annual radial increments for live tree a) ponderosa pine and b) 
white fir. Dotted lines represent ± 2 standard errors. 
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C. Mortality simulation sensitivity analysis 

To verify that any potential error in the year of death estimates described above did not 
bias our results, we tested the sensitivity of the mortality simulations to variation in year 
of death. We repeated the simulations described in the paper, but with the following 
modifications to seedling ages before the logistic regression step: each tree’s year of death 
was randomly re-assigned to within one year of its estimated death year, limited to the 
most recent 3 years. In other words, a tree estimated to have died in 2016 was randomly 
assigned to have died in 2015, 2016, or 2017, while a tree estimated to have died in 2015 
was randomly assigned to either 2015 or 2016 and a tree assigned to 2017 was randomly 
assigned to either 2016 or 2017. These random assignments were repeated for each 
iteration of the simulation, which we ran 1000 times as in the main analysis. Results 
closely matched results from the main analysis (Fig. S3), showing that simulation results 
were robust to variation in year of death estimations.   

Figure S2. Mean detrended annual radial increments for dead tree a) ponderosa pine and 
b) white fir based on estimate time of death. Dotted lines represent ± 2 standard errors. 
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Figure S3. Results of mortality simulation sensitivity analysis. Panels (A) and (B) show 
simulation results using static death year assignments for pine and fir, respectively, and 
are identical to the figures shown in the results section of the paper. Panels (C) and (D) 
show simulation results using randomized death year assignments as described above for 
pine and fir, respectively. The similarities between the top and bottom panels show that 
results were not sensitive to errors in year of death assignments. 
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D. Evaluation of interactions in wildfire footprint growth models 

The interaction between tree height and shrub competition was not included in the pine 
mixed effects model because it had a small effect on Rm2 (0.63 vs. 0.62), a smaller effect 
size than the other predictors, and caused a relatively small decrease in AICc (362.9 to 
359.1).  

The same interaction was not included in the fir mixed effects model because it increased 
AICc (from 641.0 to 642.9) and barely increased Rm2 (from 17.1 to 17.2). 

E. Filling in missing height values 

For 19 of the 563 growth measurements, height before growth was not measured but was 
instead estimated using other height data for those trees and a linear regression model. 
When the 19 measurements were taken – in June 2016 – 2016 vertical growth was not 
measured because trees had not yet completed that season’s growth. Instead, we 
measured 2015 vertical growth and the overall height of the seedling. But, for those 19 
trees, we failed to measure height at the start of 2015 vertical growth.  

We estimated 2016 growth in order to subtract it from total growth and calculate initial 
height. We created a linear regression model of 2016 growth using the predictor variables: 
tree species, 2015 growth, the interaction of those two variables, and date of 
measurement. When applied to trees with 2016 growth measurements taken during the 
same time period, the adjusted R2 of this model was 0.71.  
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F. Supplemental figures 

 

 

 

  

Figure S4. Relative growth rates for live and dead juvenile A) ponderosa pine and B) 
white fir 

A B 



 
 

116 
 

G. Literature Cited 

Speer, J. H. 2009. Fundamentals of Tree-Ring Research. 

 

  



 
 

117 
 

CHAPTER 3 Appendix 
 

A. Parameter development 

Shrub growth 

Figure S1. Shrub data sources by fire 
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Figure S2. Shrub cover over time. The tan line shows the effect of time since fire on shrub 
cover according to the linear model that was used in simulations. Shaded areas represent 
95% confidence intervals. Points represent observations, jittered to improve visibility. 
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Conifer vertical growth  

Figure S3. Mixed effects model coefficients from bootstrap sampling of ponderosa pine 
growth. Points represent means across 1,000 samples and error bars represent standard 
deviations. Numeric variables were normalized before model runs by subtracting the 
mean and dividing by the standard deviation to make coefficients comparable. For factor 
variables, treatment contrasts were used, in which the first factor level coefficient is set to 
0 and all other levels’ values are relative to the first level. Random effects are not 
included in this table. 
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Figure S4. Mixed effects model coefficients from bootstrap sampling of white fir growth. 
Points represent means across 1,000 samples and error bars represent standard 
deviations. Numeric variables were normalized before model runs by subtracting the 
mean and dividing by the standard deviation to make coefficients comparable. For factor 
variables, treatment contrasts were used, in which the first factor level coefficient is set to 
0 and all other levels’ values are relative to the first level. Random effects are not 
included in this table. 
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Conifer diameter  

Table S1. AICc results for model selection of conifer diameter 

Species Model AICc ∆AICc 
White fir Height * shrub competition 138.31 0 

White fir Height + shrub competition 140.07 1.76 

White fir Height 154.25 15.94 

White fir Shrub competition 326.3 187.99 

Ponderosa pine Height * shrub competition 164.35 0 

Ponderosa pine Height + shrub competition 167.93 3.58 

Ponderosa pine Height 199.55 35.2 

Ponderosa pine Shrub competition 344.66 180.31 
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Figure S5. Linear effects model coefficients from bootstrap sampling of diameter for a) 
white fir and b) ponderosa pine. Points represent means across 1,000 samples and error 
bars represent standard deviations. Numeric variables were normalized before model 
runs by subtracting the mean and dividing by the standard deviation to make coefficients 
comparable.  
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Figure S6. Shrub cover (%) results from Welch et al. 2016, filtered to areas measured 5-8 
years following fire, severely burned areas, and those > 20 m from the nearest surviving 
adult tree. CEIN3 is deerbrush ceanothus and CECO is whitethorn ceanothus. Red dots 
show mean values. Based on these results, we initialized the deerbrush areas of the 
simulation model using cover from whitethorn samples.  
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C. Results 

 

Figure S7. Ponderosa pine relative growth rate in relation to years since fire. Error bars 
represent the standard deviation of simulation means. 
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