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Abstract: Like other plant stresses, salinity is a central agricultural problem, mainly in arid or
semi-arid regions. Therefore, salt-adapted plants have evolved several adaptation strategies to
counteract salt-related events, such as photosynthesis inhibition, metabolic toxicity, and reactive
oxygen species (ROS) formation. European grapes are usually grafted onto salt-tolerant rootstocks
as a cultivation practice to alleviate salinity-dependent damage. In the current study, two grape
rootstocks, 140 Ruggeri (RUG) and Millardet et de Grasset 420A (MGT), were utilized to evaluate
the diversity of their salinity adaptation strategies. The results showed that RUG is able to maintain
higher levels of the photosynthetic pigments (Chl-T, Chl-a, and Chl-b) under salt stress, and hence
accumulates higher levels of total soluble sugars (TSS), monosaccharides, and disaccharides compared
with the MGT rootstock. Moreover, it was revealed that the RUG rootstock maintains and/or increases
the enzymatic activities of catalase, GPX, and SOD under salinity, giving it a more efficient ROS
detoxification machinery under stress.

Keywords: salinity; grapevines rootstocks; photosynthesis; ROS detoxification machinery; sugar
accumulation

1. Introduction

Plant stress is a central problem in agriculture, resulting in estimated global crop
production losses of 65–87% [1]. Soil salinity, which affects more than 833 million hectares
worldwide, mainly in arid or semi-arid regions, is of particular interest [2]. The adverse
consequences of salinity include a substantial decline in water quality and soil biodiver-
sity that raises the soil degradation rate. Under such circumstances, roughly 20–50% of
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irrigated land is classified as highly saline, resulting in estimated annual economic costs
of more than $27 billion [2,3]. Salinity mainly arises due to high levels of sodium (Na+)
and chloride (Cl−) ions in the soil’s water-soluble fraction, leading to hyperionic and
hyperosmotic stresses. It impairs key plant biological processes, including water and nutri-
ent acquisition, photosynthesis, amino acid and protein synthesis, and energy and lipid
metabolism. Subsequently, several salt-related events occur within stressed plants, such as
membrane disorganization, metabolic toxicity, reactive oxygen species (ROS) formation,
and photosynthesis inhibition [4,5].

Plants have evolved different adaptation strategies to counteract the detrimental
impacts of salt stress and are therefore categorized—based on their adaptability—as halo-
phytes and glycophytes [6]. Halophytes are salt-adapted and exhibit a high capacity to
cope with stable salty environments. In contrast, glycophytes are salt-sensitive and are
limited to inhabiting low-sodium ecosystems [7]. Salt adaptation mechanisms occur at
the cellular, molecular, and organismic (whole-plant) levels. For instance, NaCl-stressed
plants safeguard ion homeostasis via ion exclusion, compartmentalization, and selective
accumulation mechanisms [8–10]. In the same manner, plants have to maintain their os-
motic balance and redox homeostasis. Osmotic adjustment is achieved by synthesizing
and accumulating a wide range of compatible solutes, such as betaines, proline, amino
acids, and sugar alcohols [11]. ROS (e.g., H2O2 and O2

−) are inevitable by-products of
aerobic metabolism (e.g., photosynthesis, photorespiration, and respiration) that are gener-
ated in several cellular organelles (e.g., chloroplasts, mitochondria, and peroxisomes) [12].
However, ROS are a common feature of abiotic and biotic stress-associated events [13].
They perform a dual action based on their levels and production sites [14]. ROS act as
essential signaling molecules at low levels, while excessive ROS ultimately leads to cell
death [14,15]. Therefore, plants utilize different enzymatic and non-enzymatic antioxidative
defense mechanisms that strictly restrain ROS levels. Catalase (CAT), glutathione peroxi-
dase (GPX), ascorbate peroxidase (APX), and superoxide dismutase (SOD) are examples
of the enzymatic antioxidant mechanisms. However, proline (Pro), glutathione (GSH),
ascorbic acid (ASH), phenolic compounds, and alkaloids are examples of non-enzymatic
ROS-scavenging machinery [14,16].

Bunch grapes (Euvitis), mainly Vitis vinifera, are considered among the most econom-
ically important fruit species worldwide. Although grapes are moderately salt-tolerant,
they are more sensitive to Cl− toxicity than Na+ [17,18]. Grapes are ideally cultivated in hot
and semi-arid regions and hence are challenged by different types of water-related stresses,
such as salinity, which affects viticulture, impairing grape production and quality [19,20].
To alleviate salinity-dependent damage, European grapes are grafted onto salt-tolerant
rootstocks, such as those derived from winter grape (V. berlandieri) and sand grape (V.
rupestris) [17,21]. The current research aimed to evaluate the different effects of salinity on
two grape rootstocks, 140 Ruggeri (RUG) and Millardet et de Grasset 420A (MGT). The
two rootstocks are salt-excluders, exhibiting effective NaCl-exclusion capacity that reduces
salt accumulation in the leaves and berries of grafted V. vinifera scions [20,22]. However,
salt-exclusion capacity is not the only determining factor of salinity adaptation [15,23,24].
In this study, we performed a comparative physiological analysis of these two rootstocks
(RUG and MGT) under salinity and during recovery. Our research objective was to examine
the diversity of the physiological responses of RUG and MGT under gradually increased
salinity and during recovery and thereby come to understand the integral mechanisms
that function in parallel with salt exclusion in both rootstocks to alleviate salt-induced
damage. We measured photosynthetic pigments (Chl-T, Chl-a, and Chl-b) and sugars as
an indication of efficient photosystem activity and sugar/energy metabolism, respectively.
Moreover, redox homeostasis was investigated by evaluating the enzymatic activities of
CAT, GPX, and APX, as well as the content of Pro, along with two oxidative stress markers,
malondialdehyde (MDA) and H2O2.
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2. Results
2.1. Changes in Pigment Content in Response to Salt Stress

Two salt-excluder grapevine rootstocks, RUG and MGT, which differ in their adapt-
ability to salinity, were utilized to gain comprehensive insights into their physiological
responses to salt stress. The two rootstocks were watered daily with 30 mM NaCl solution
for 5 days. This procedure of gradual salt increase was used to avoid potential responses
due to osmotic shock [25]. Once the treated rootstocks had received their fifth, final dose
of 30 mM NaCl on day 5 of the treatment, we assumed that the salt concentration in the
soil solution was roughly 150 mM NaCl, and hence leaf samples were collected at 0.5, 2, 24,
and 48 h. A sample was gathered at time zero (time-0) before the fifth supplementation of
30 mM NaCl, while the control plants did not receive any salt treatment. For the recovery
experiment, both rootstocks were re-watered with potable water, and leaf samples were
collected at 4 and 12 days.

An evaluation of photosynthetic pigments revealed that the RUG and MGT root-
stocks exhibited discernible patterns, although both are salt-excluders [21] (Figure 1).
Under typical growth conditions (control), the basal levels of total chlorophyll (Chl-T) and
chlorophyll-a (Chl-a) were comparable in both rootstocks, while chlorophyll-b (Chl-b) was
significantly higher in the RUG leaves (Figure 1A–C). The RUG rootstock showed higher
levels of photosynthetic pigments under gradually increased salinity compared with the
MGT rootstock (~1.35–~1.95-fold at time-0). Generally, Chl-T, Chl-a, and Chl-b displayed
similar accumulation patterns in the salt-stressed RUG (Figure 1A–C). The significant
increase in photosynthetic pigments at time-0 remained stable during the short-term salt
stress (0.5–2 h) before increasing again during the long-term stress (24 h–48 h). By contrast,
the photosynthetic pigments of the salt-stressed MGT showed weak induction patterns.
The salt-stressed MGT also exhibited a delayed response; significant accumulations of
different chlorophyll components were observed after 2 h of the last NaCl application
compared to the control. Interestingly, all the photosynthetic pigments dropped during the
recovery time in both rootstocks, returning to their original control levels.

In contrast, the amount of total carotenoids observed in the MGT was roughly twice
that observed in the RUG under typical growth conditions. However, under gradually
increasing salinity, the carotenoid levels significantly dropped in both rootstocks (at time-0;
Figure 1D). Interestingly, the RUG was able to restore its initial carotenoid levels after
2 h of the salt addition process and maintain them for 24 h before a second drop at 48 h.
Perplexingly, this was not the case for the MGT, which showed insignificant changes in
its carotenoid levels during 48 h of salt stress. During recovery, both rootstocks displayed
similar amounts of carotenoids; these levels were equal to the basal levels in the RUG,
but not in the MGT (Figure 1D). In general, the Chl-T, Chl-a, and Chl-b showed evident
salt-dependent trends in the RUG, but not in the MGT (Figure 1A–C).

2.2. Under Salt Stress, RUG Accumulated More Soluble Sugars Than MGT

Sugars are considered among the most crucial regulators of many physiological pro-
cesses, including photosynthesis, flowering, and senescence, as well as responses to dif-
ferent abiotic stresses [26]. In both rootstocks, the total soluble sugar (TSS), glucose (Glu),
fructose (Fru), and sucrose (Suc) contents showed roughly inconsistent patterns throughout
the salinity treatment and during recovery (Figure 2). For instance, the TSS significantly
decreased in the RUG under gradually increasing salinity, then stabilized at around 5 mg/g
FW (from time-0 to 2 h post-treatment), before increasing to its initial levels at 48 h, and
subsequently dropping again during the recovery course. In contrast, the TSS in the MGT
showed no significant change under the salinity treatment and during recovery, except
when a slight reduction occurred at 12 d of recovery (Figure 2A).
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Figure 1. Chlorophyll and carotenoid contents of the two grapevine rootstocks during salt treatment
and recovery. (A) Total chlorophyll (Chl-T); (B) chlorophyll a (Chl-a); (C) chlorophyll b (Chl-b);
and (D) total carotenoid contents of Ruggeri 140 (RUG) and MGT-420A (MGT) grapevine root-
stocks subjected to salt treatment and recovery. Values represent the mean of three biological
replicates ± standard error (SE). The letters were alphabetically ordered in an ascendant manner,
where “a” always represented the lowest significant value. Values with same letters were not
significantly different.
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Figure 2. Soluble sugar contents of the two grapevine rootstocks during salt treatment and recovery.
(A) Total soluble sugar (TSS); (B) glucose (Glu); (C) fructose (Fru); and (D) sucrose (Suc) contents
of Ruggeri 140 (RUG) and MGT-420A (MGT) grapevine rootstocks subjected to salt treatment and
recovery. Values represent the mean of three biological replicates ± standard error (SE). The letters
were alphabetically ordered in an ascendant manner, where “a” always represented the lowest
significant value. Values with same letters were not significantly different.
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Similarly, the levels of Glu and Fru decreased throughout progressive salinity increase
in the RUG (until time-0, Figure 2B,C). Interestingly, both monosaccharides re-established
their initial levels at 48 h of salinity despite their contradictory patterns during the first 24 h
post salt deposition. During the recovery time, the levels of both Glu and Fru declined and
showed different kinetics. Overall, the TSS and Fru showed roughly similar patterns in the
RUG under salinity and during recovery (Figure 2A,C). On the other hand, the patterns of
Glu and Fru were comparable in the MGT, exhibiting fluctuations during the stress and
recovery times (Figure 2B,C).

Finally, the level of the sucrose (Suc), which is composed of glucose and fructose
subunits, showed different kinetics in both rootstocks (Figure 2D). In the RUG, Suc accu-
mulation did not considerably alter during the salt treatment, but then its level sharply
declined and increased at 4 d and 12 d of recovery, respectively. In the MGT, however,
Suc levels showed a severe reduction throughout the gradual increase in salinity, and this
was followed by a slight increase within the first 24 h after salt supplementation and a
subsequent decrease at 48 h of stress (Figure 2D). During the subsequent recovery days,
the Suc content slightly re-elevated, but it did not reach its initial level. Our data revealed
that the RUG accumulated higher levels of TSS, monosaccharides, and disaccharides at late
stages of salinity than the MGT.

2.3. Under Salinity, RUG Maintained More Efficient Redox Homeostasis Than MGT

To establish an association between the diversity in salinity adaptation and the ability
to scavenge ROS, markers for both oxidative damage and redox homeostasis were moni-
tored during the salinity and recovery courses in both rootstocks (Figure 3). For oxidative
damage, the content of the well-established oxidative stress biomarker malondialdehyde
(MDA) was measured (Figure 3A). Both the RUG and MGT showed comparable MDA
levels under salinity treatment and during recovery, with few exceptions. In the RUG,
the level of MDA during salinity and recovery remained constant at around the control
level. However, in the MGT, the initial level of MDA was twice as high as that found at
time-0 and during the first 24 h of salt addition (0 h–24 h; Figure 3A). It then increased
significantly at 48 h of salinity and during recovery, and during this time it was consistent
with the MDA level in the RUG (48 h and 4 d–12 d; Figure 3A). These data indicate that
MDA cannot be considered as a stress marker in the two rootstocks under our experimental
conditions. Both rootstocks showed a substantial increase in hydrogen peroxide (H2O2)
content, the most stable ROS, during the first 0.5 h of salt addition (~1.8-fold). However, the
H2O2 accumulation patterns of the two rootstocks started to differentiate at 2 h of salinity,
increasing significantly in the MGT, but reducing in the RUG (Figure 3B). In general, the
H2O2 patterns were inconsistent between the two rootstocks, showing higher levels at 2 h
and 24 h of salinity, as well as at 4 d of recovery in the MGT than in the RUG at the same
time points. In summary, our data show that the RUG was more efficient in constraining
the increase in H2O2 under salt stress than the MGT.

For redox homeostasis, plants utilize a battery of enzymatic and non-enzymatic an-
tioxidants. Interestingly, the levels of the non-enzymatic antioxidant proline overlapped in
both the RUG and the MGT, which exhibited a strong increase in proline content only at
48 h of salinity (Figure 3C). The data indicate that proline is not a distinctive adaptation
factor in either of the two rootstocks. On the other hand, the patterns of the enzymatic
antioxidants (e.g., catalase, GPX, and SOD) were perplexing (Figure 3D–F). For instance,
the catalase activity showed insignificant changes in the RUG leaves at time-0 and during
the first 48 h of salt stress (0 h–48 h; Figure 3D) before starting to drop significantly, reaching
its basal level at day 4 of recovery, but being restored at 12 d (Figure 3D). In contrast,
catalase activity in the MGT leaves exhibited varied pattern under salinity. For instance,
catalase activity declined considerably in the salt-stressed MGT leaves at time-0 (~43%),
then gradually increased by up to ~1.8-fold relative to the control at 2 h post salt deposition,
before stabilizing roughly around its basal levels at 48 h and during the recovery process
(Figure 3D). The GPX activity, however, slightly declined in the salt-stressed RUG before
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being restored to its initial control levels at 48 h of salinity and 12 d of recovery (Figure 3E).
In contrast, the MGT leaves exhibited a robust and sharp reduction in their GPX activity
compared with those of the control plants during the first 24 h of NaCl application (~83%
reduction). The GPX activity in the MTG then partially recovered at 48 h, reaching levels
similar to those of its counterpart, the RUG (Figure 3E). Interestingly, the GPX activity
patterns in the RUG and MGT during the recovery process were inverted. The SOD activity
pattern was roughly similar to that of GPX activity in both rootstocks, but with different
kinetics (Figure 3F). In the RUG, SOD activity did not significantly respond to salt stress
before showing a ~1.5-fold increase at 48 h of salinity compared with the levels observed in
the control and those observed at previous salt-stressed time points. In the salt-stressed
MGT, however, the SOD activity pattern was nearly comparable to the GPX activity pattern
(Figure 3E,F). This was also the case during the recovery process, during which the GPX
and SOD activity patterns were similar.
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salt treatment and recovery. (A) Malondialdehyde (MDA); (B) H2O2; (C) proline; (D) catalase;
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represent the mean of three biological replicates ± standard error (SE). The letters were alphabetically
ordered in an ascendant manner, where “a” always represented the lowest significant value. Values
with same letters were not significantly different.

3. Discussion

The present study aimed to discriminate the salt adaptation strengths of two salt-
excluder grapevine rootstocks, RUG and MGT. However, because of its drought adaptation
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capacity, RUG was expected to have a more efficient salt adaptation mechanism. It is well
documented that excessive salt accumulation in plant cells results in many physiological
disorders, including photosynthesis inhibition. Therefore, salt-tolerant plants have to
maintain high photosynthetic efficiency under salinity. Indeed, the RUG exhibited a
significant accumulation of Chl-T, Chl-a, and Chl-b, and its induction patterns were roughly
the same as those of the MGT under gradually increasing salinity. Similarly, salt-excluder
grapevine rootstock 1103 Paulsen maintained higher chlorophyll levels than the MGT
rootstock [27]. These elevations in Chl-T, Chl-a, and Chl-b in the RUG vanished during
the recovery process in both rootstocks, indicating an apparent association between the
robust increases in the photosynthetic pigments and the salinity adaptation qualities of the
RUG (an association that was weaker in the MGT). Obviously, the photosynthetic pigments
convert solar energy into chemical energy (sugars) and thereby govern the growth and
development of higher plants [5,28]. Interestingly, the TSS levels differed significantly in
both rootstocks under non-stressful conditions; however, the RUG accumulated higher
amounts of monosaccharides (Glu and Fru) than the MGT, which maintained more elevated
levels of disaccharides (Sac). Unexpectedly, the induction of photosynthetic pigments did
not result in a pronounced accumulation of sugars to a level reflective of the significant
increases in Chl-T, Chl-a, and Chl-b in the RUG during the first hours of salinity. On the
contrary, the levels of TSS, Glu, and Fru decreased throughout the stress progression in the
RUG before returning to their initial levels during long-term stress. This could be attributed
to the reduction in stomatal conductance during salinity, which deprived the chloroplasts of
atmospheric CO2 and hence lowered the rate of photosynthetic carbon assimilation [29,30].
In addition, the metabolomic profiling of the Cabernet grapevine under salinity showed
that the abundance of 22 sugar metabolites was significantly differentiated, of which
Glu was decreased, while Fru was unchanged [29]. In fact, low sugar levels promote
photosynthesis and reserve mobilization and export, whereas high sugar accumulation
leads to carbohydrate storage and growth [31]. However, under stress, plants have to
prioritize defense over growth and development [32].

Like other plant stresses, salinity results in increased free radicals and, subsequently,
MDA accumulation. The overproduction of MDA and electrolyte leakage are symptoms of
membrane damage stemming from salinity [33]. Interestingly, this was not the case in the
current study, as both rootstocks showed comparable levels of MDA under salinity and
during the recovery process. However, the H2O2 content increased significantly during the
gradual application of salt in both rootstocks, and a distinctive pattern emerged after 0.5 h
of stress. While MGT stabilized the levels of H2O2, the RUG was able to effectively decrease
its H2O2 levels, particularly at 2 h of stress and at 4 d of recovery. Apparently, both root-
stocks have evolved efficient ROS scavenging machinery, but different adaptation qualities.
Therefore, the capacity of non-enzymatic antioxidants (proline content) and the enzymatic
activity profiles of CAT, GPX, and SOD were examined in both rootstocks. In addition to its
antioxidant contribution, proline plays several physiological and biochemical roles, such
as osmoprotection and photosynthesis improvement [34,35]. However, proline has been
excluded from being a distinctive adaptation factor, despite its substantial accumulation in
the RUG and MGT leaves after 48 h of salt deposition.

On the other hand, the enzymatic activities of CAT, GPX, and SOD may represent plau-
sible distinguishing factors, although they showed perplexing patterns in both rootstocks
under salinity. The lower activities of GPX and SOD (and to some extent CAT) in the MGT
compared with the RUG during the first 24 h of the gradual increase in salinity suggest
that both rootstocks differ mainly in their capacity to maintaining their antioxidant systems
under stress. Hence, RUG was more robust in redox homeostasis than MGT under salt
stress. However, further analyses are required to elucidate the different adaptive capacity
levels of both rootstocks, particularly at the anatomical, molecular, and cellular levels, as
well as the involvement of other (non)-enzymatic antioxidants.
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4. Materials and Methods
4.1. Plant Materials

Leaf samples were collected from 3-year-old Vitis hybrids, 140 Ruggeri (140 Ru; V.
berlandieri X V. rupestris) and Millardet et de Grasset 420A (MGT; V. berlandieri X V. riparia),
grown at the experimental vineyard of the Florida A&M University (Tallahassee, FL,
USA). These two hybrid rootstocks were selected according to their diversity in salinity
adaptation [22]. Salt stress was applied gradually by irrigating the plants with 30 mM NaCl
daily for five days until a final concentration of 150 mM NaCl was reached. Once the plants
received their fifth dose of NaCl, samples were collected from the mature and healthy
leaves (3rd to 4th leaf). For the salinity time course, the leaf samples were collected at 0.5, 2,
24, and 48 h after the application of the fifth dose of NaCl. Leaves collected just before the
addition of the fifth salt treatment were considered time-zero samples. The control plants
were not treated with salt. The salt-treated rootstock plants were flushed with salt-free
pure water for the recovery experiment, and leaf samples were collected 4 and 8 days after
treatment. All samples were immediately frozen in liquid nitrogen and stored at −80 ◦C
for further analysis.

4.2. Chlorophyll and Carotenoid Contents

The photosynthetic pigment concentrations were quantified as destructive traits. Ex-
traction was carried out using dimethyl sulfoxide (DMSO) solvent [36]. Briefly, 50 mg leaf
tissue was homogenized with 1.5 mL DMSO. The reactions were incubated in a water bath
at 65 ◦C for one hour and cooled at room temperature for 30 min. After filtration, the mix-
ture was shaken and the absorbance was measured at λ = 665 for the Chl-a, λ = 648 nm for
the Chl-b, and λ = 480 for the β-carotene using a microplate reader (ACCURIS SmartReader;
Edison, NJ, USA) blanked with DMSO. Concentrations were estimated for each biological
replicate in triplicate (n = 9) and expressed as mg/g fresh weight. The Chl-a, Chl-b, and
β-carotene contents were calculated using the following equations:

Chlorophyll a (mg/g) = 12.47 (A665) − 3.62 (A648) × V/1000 × W

Chlorophyll b (mg/g) = 25.06 (A648) − 6.50 (A665) × V/1000 × W

Cx+c = (1000 (A480) − 1.29Ca − 53.78Cb)/220.

Cx+c: Concentration of xanthophylls and carotenes; Ca: Chl-a; Cb: Chl-b.

4.3. Quantification of Reactive Oxygen Species (ROS) Content

The reactive oxygen species were assessed according to the method outlined by
Islam et al. [37]. Briefly, 1 mL of 50 mM KPO4

− buffer (pH 7.8) was added to 100 mg of
fresh powdered leaf tissue. The mixture was centrifuged at 12,000× g for 10 min at 4 ◦C. To
determine the H2O2 levels, the extracted solution was mixed with 0.1% titanium chloride
in 20% (v/v) H2SO4 and then centrifuged at 10,000× g for 5 min. The absorbance was
measured at λ = 410 nm using a microplate reader (ACCURIS SmartReader; Edison, NJ,
USA). The H2O2 level was calculated using an extinction coefficient of 0.28 µmol−1 cm−1.

4.4. Lipid Peroxidation Content

Lipid peroxidation content was assessed in relation to MDA production in the tissue
samples using the commercially available Lipid Peroxidation (MDA) Assay Kit (Abcam,
Waltham, MA, USA). The assay was performed according to the protocol, along with the
optional step for enhanced sensitivity. Briefly, 0.1 g tissue powder was added to 1 mL
extracting solution. The mixture was centrifuged at 8000× g for 10 min at 4 ◦C. Next, 0.2 mL
of the supernatant was removed, mixed with 0.6 mL of TBA, and moderately shaken. The
reactions were incubated at 95 ◦C for 30 min and then centrifuged at 10,000× g for 10 min
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at 25 ◦C. The absorbance was measured at λ = 532 and 600 nm using a microplate reader
(ACCURIS SmartReader; Edison, NJ, USA) to determine the MDA concentration [38].

4.5. Determination of Proline Content

The proline content was measured according to the method outlined by Lee et al. [39],
though with a slight modification. Briefly, 100 mg of fresh powdered leaf tissue was
extracted using 3% sulfosalicylic acid. After centrifugation, the supernatants were mixed
with a ninhydrin solution containing acetic acid and 6 M H3PO4 (v/v, 3:2) and boiled
at 100 ◦C for 60 min. Toluene was then added to the mixture, which was subsequently
incubated for 30 min at room temperature. The absorbance was determined at λ = 520 nm
using a microplate reader (ACCURIS SmartReader; Edison, NJ, USA) and calculated using
L-proline (1–100 µg).

4.6. Soluble Sugar Analyses

The soluble sugars were extracted according to the method outlined by Islam et al. [40].
Briefly, the soluble sugars were extracted from 100 mg samples of the fresh ground leaf
tissue using 1 mL of 80% ethanol. This was followed by vortexing and centrifugation at
12,000× g for 10 min. The supernatant was collected, and this extraction step was repeated
twice. The glucose, sucrose, and fructose contents were assessed using the Megazyme
Sucrose/D-Fructose/D-Glucose Assay Kit (Megazyme, Highland, UT, USA) in accordance
with the manufacturer’s protocol. The total soluble sugar was determined by adding up
the glucose, fructose, and sucrose content values of in each sample.

4.7. Antioxidative Enzymes Activity Assays

To quantify the antioxidant enzymes, 100 mg of fresh ground leaf tissue was homog-
enized in 50 mM potassium phosphate buffer (pH 7.0) and centrifuged at 12,000× g for
10 min. The supernatant was used for the measurement of the total protein content and
for the enzyme activity assays. The total protein was quantified according to the Bradford
assay using bovine serum albumin (BSA) as a standard. The activity of the superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzymes was assayed
according to the method outlined by Cavalcanti et al. [41] using assay kits from BioVision
Inc. (Milpitas, CA, USA) in accordance with the manufacturer’s instructions. The SOD
activity was expressed as inhibition rate (%) per mg of protein. One unit of CAT was
expressed as the amount of CAT that decomposed 1.0 nmol of H2O2 min−1. The amount of
GPx that caused a decrease of 1.0 nmol of NADPH min−1 was expressed as one unit.

4.8. Statistical Analyses

The statistical analyses were performed via a multivariate ANOVA using IBM SPSS
Statistics software (version 22.0). The results were expressed as the mean ± SE of three
independent replicates. Different letters indicate significant differences between different
treatments and genotypes according to Duncan’s test (p < 0.05). The letters were alphabeti-
cally ordered in an ascendant manner, where “a” always represented the lowest significant
value. Values with same letters were not significantly different.

5. Conclusions

This study demonstrated, on a physiological level, the differences in the salinity adap-
tation mechanisms of two grapevine rootstocks. Although RUG and MGT are considered
salt-excluder rootstocks, the highly tolerant rootstock RUG showed a greater capacity for
maintaining the photosynthetic pigments (Chl-T, Chl-a, and Chl-b) under salinity, and
subsequently accumulated higher amounts of TSS, monosaccharides, and disaccharides as
a source of energy, compared with the MGT rootstock. In addition, the ROS detoxification
machinery seemed to be more efficient in the RUG than in the MGT under salt stress.
Therefore, the adoption of such salt-excluder rootstocks as RUG in commercial vineyards
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situated in arid or semi-arid regions would help improve grapevine productivity, paving
the way for sustainable agriculture under salinity stress.
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