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Abstract

Patients with bone metastases may experience debilitating pain, neurological

conditions, increased risk of pathological fractures, and death. A deeper under-

standing of the bone microenvironment, the molecular biology of cancer types prone

to metastasis, and how bone physiology promotes cancer growth, may help to

uncover targeted treatment options. The purpose of this paper is to outline the

current concepts relevant to topics including bone remodeling, angiogenesis, and

immunomodulation as it relates to metastatic bone disease.
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1 | INTRODUCTION

Metastatic bone disease (MBD) is the primary cause of morbidity and

mortality in patients with cancer.1–5 While metastasis may occur to

different organs, bone is the most common site of metastasis in

certain cancers. The most common origins of primary cancers

associated with bone metastases are prostate (34%), breast (22%),

and lung (20%).6 Patients with MBD may subsequently develop

debilitating bone pain, possible nerve root or spinal cord impinge-

ment, potentially lethal hypercalcemia, and are at increased risk for

pathological fractures.3,7 Table 1 demonstrates the 5‐year survival

rates of patients with metastatic disease.6

Given the profound impact that MBD can have on patients’

quality of life and life expectancy, it is crucial for healthcare providers

to have a thorough understanding of the molecular biology implicated

in the development of bone metastases.3,9,10 Knowledge of the

microarchitecture and related molecular physiology of bones and

cancer cells may function as a foundation for the development of

potential therapeutic options.3,7 The microenvironment of bones

involves a dynamic interplay of several different types of cells

including osteocytes, osteoblasts, osteoclasts, hematopoietic and

immune cells, stromal cells, adipocytes, fibroblasts, and endothelial

cells. 9 The extracellular matrix (ECM) helps to facilitate cell

attachment and communication along with promoting cell growth,

movement, and other functions. These cells and their support

structures have crucial functions including remodeling, hematopoie-

sis, immune modulation, tissue regeneration, and disease patho-

genesis. Figure 1 illustrates the pathways of the normal physiological

functions that occur in the bone microenvironment as compared to

the pathways for MBD executed by cancer cells.

The purpose of this review is to outline current concepts in the

existing literature regarding the unique microenvironment of bone

and how MBD interacts with this environment to lead to cancer

progression. The secondary goal of this paper is to potentially

generate ideas regarding future therapeutic options by analyzing

this pathway.

2 | BONE REMODELING

Bone remodeling occurs throughout life in response to physical or

biomechanical stress and metabolic demands.11,12 Osteoblasts

produce the organic ECM of bones that consists of type I collagen

and non‐collagenous proteins.12 The inorganic ECM consists of bone

mineral hydroxyapatite, which is obtained from diet and synthesized

by molecules secreted by bone cells.12 By contrast, osteoclasts are

multinucleated cells that are responsible for the resorption of bone.12

In healthy individuals, the interplay of these cell types involves a
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balance of bone resorption and formation and is regulated by many

different signaling pathways including the receptor activator of NF‐

kB ligand (RANKL), osteoprotegerin (OPG), Pth, Wnt, and Bmp

signaling.13 Parathyroid hormone stimulates osteoblasts to secrete

RANKL, which then subsequently activates the osteoclast precur-

sor.14–16 OPG acts as a competitive inhibitor of RANKL, and thus

blocks the activation of osteoclasts.17,18 Osteocytes are terminally

differentiated bone cells embedded in the mineralized matrix, and the

most abundant cell type in the bone. These cell types play a critical

role in mechanosensing and regulation of bone metabolism in

response to physical cues. For example, under high load, the

expression of sclerostin (SOST) and Dkk1, two WNT signaling

antagonists is repressed, eliciting an anabolic response. Reciprocally,

when osteocytes express high levels of SOST, Wnt signaling is

inhibited, thereby suppressing bone formation19 (Figure 2).

In general, for some cancers, such as breast cancer, metastasis to

the bone can be exacerbated by osteoporosis, and strong clinical data

exists in support of osteoporosis as a risk factor for cancer bone

metastases.20 Towards this end, antiosteoporosis drugs have been

used to blunt the bone loss in patients with cancer bone metastasis.

For example, bisphosphonates, have been shown to reduce osteo-

lysis, improve bone microarchitecture, and inhibit the progression of

cancer bone metastasis, but these results have been met with limited

success in clinical trials.21 Similarly, denosumab, an antibody targeting

RANKL, has been shown to slow down the progression of MBD22;

however, no treatment to date has been shown to directly eliminate

cancer cells in focal bone lesions.

What continues to puzzle scientists is how the cancer‐bone

microenvironment dynamically interacts. While it is clear that the

function of osteoblasts has significant implications with regard to

tumor‐induced bone disease (TIBD), what remains to be determined

is whether the bone microenvironment before metastasis drives this

process, or whether the microenvironment rapidly shifts to a new

molecular state once it is colonized by tumor cells. Furthermore,

clinical data suggest that osteoblastic activity is reduced in lytic

pathologies or increased in blastic pathologies, but phenotypes can

also be compounded by the complementary osteoclast activity.23 In

particular since, osteoblasts are directly involved in regulating

osteoclast activity through the production of macrophage colony‐

stimulating factor (M‐CSF) and RANKL. Tumor cells can also secrete

factors that further stimulate osteoblastic expression of M‐CSF and

RANKL. This leads to a vicious cycle of increased generation and

activation of osteoclasts and therefore increased bone destruc-

tion.24,25 In order for tumor cells to evolve the ability to participate in

this pathway, there must be physical contact between osteoblasts

and tumor cells to promote growth of metastatic cancer cells.24

Osteoclasts also have a role in TIBD through their lytic

destruction of bone.26 In normal conditions, bone resorption is a

tightly regulated process that involves a balance of signals from

osteoblasts with regulation from the RANK/RANKL/OPG path-

ways.27 This balance may be disrupted in TIBD, which can lead to

an hyperactivation of osteoclasts. Unregulated osteoclastic activity

then results in lytic bone lesions with weakened biomechanical

strength. The clinical sequelae elicit an increased risk of fracture with

even physiologic loads at the sites of disease in bone.28 In contrast to

TABLE 1 Average 5‐year survival estimates after diagnosis of
metastatic disease by primary cancer type.8

Primary cancer type 5‐year survival (%)

Colon 14

Rectum 17

Lung 7

Melanoma 30

Breast 29

Prostate 31

Kidney 14

Bladder 6

F IGURE 1 Outline of key anatomical and physiological functions of bones along the pathway of metastatic mechanisms of cancer cells that
lead to metastatic bone disease.
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the formation of lytic lesions, pancreatic carcinoma bone metastases

and sometimes breast carcinoma metastases are associated with the

development of blastic bone lesions. Russo et al.27 described that in

these diseases the cancer cells primarily utilize their ability to

promote osteoclast activation to enter the bone microenvironment.

Table 2 outlines types of MBD with commonly exhibited osteoblastic

and/or osteolytic lesions.

The role of osteocytes in MBD has been less defined in the

literature.46 It has been shown, however, that the release and

expression of adenosine nucleotides, CCL5, and matrix metallo-

proteinases from osteocytes can stimulate the growth of meta-

static prostate carcinoma bone lesions.47,48 Furthermore, SOST, a

Wnt antagonist discussed above, that is primarily expressed by

osteocytes, when genetically deleted in an immune‐deficient

mouse model of early multiple myeloma (MM) it prevented MM‐

induced bone disease.49 However, the role of SOST in TIBD

remains unresolved, as other studies have shown that SOST

deficient osteoblasts promote invasion of prostate cancer cells50

and also that a high bone mass bone microenvironment is more

prone to tumorigenesis.

A recent study by Sun et al.51 found that upregulated SOST

expression was associated with breast cancer bone metastases and

worse survival of breast cancer patients. When they silenced SOST

expression in a mouse cell line (SCP2) with high bone metastatic

potential, they observed a significant reduction in metastases

presented to the bone, which is consistent with the results observed

with MM mentioned above.49 Similarly, when they treated SCP2

tumor‐bearing mice with a small‐molecule compound (S6) targeting

SOST, the treatment reduced the rates of bone metastasis,

suggesting that SOST inhibition has the potential to blunt bone

metastasis and should be further explored as a potential therapeutic

for the treatment of bone metastasis in breast cancer.51

Pharmaceutical companies have developed some therapeutics

that target the pathways for activation of bone remodeling in MBD.

For example, the humanized monoclonal antibody denosumab, which

is commonly used for preventing osteoporosis, has the ability to

inhibit osteoclast function via the neutralization of RANKL. Gul

et al.52 concluded that denosumab significantly reduced the risk of

fractures by 50% in breast cancer patients and 62% in prostate

cancer patients.52

Bisphosphonates are part of the management of patients with

MBD by harnessing their anti‐resorptive activity, impairing the

outgrowth of bone metastases, and immunomodulatory effects.21,53

Namely, bisphosphonates can be directly incorporated into non‐

hydrolyzable analogs of ATP, which promotes osteoclast apoptosis,

while also providing a promising immunomodulatory therapy to

further treat MBD.54,55 Diel et al.56 conducted a randomized

controlled trial evaluating patients with primary breast carcinoma

with disease in the bone marrow who were chosen to either receive

clodronate or standard follow‐up. They concluded that the incidence

of both osseous and visceral metastases was significantly lower in the

clodronate group compared with the control group.56

F IGURE 2 Bone remodeling pathway involving osteocytes, osteoblasts, and osteoclasts regulated by RANKL and OPG. NF‐κB, nuclear
factor kappa B; OPG, osteoprotegerin; RANKL, receptor activator of NF‐kB ligand.

TABLE 2 Types of metastatic bone disease with associated
osteoblastic and/or osteolytic lesions.

Primary
cancer type

Prevalent lesions
in humans Xenograft models

Lung Osteolytic,

Osteoblastic29,30
Osteolytic,

Osteoblastic30

Breast Osteolytic,
Osteoblastic31,32

Osteolytic,
Osteoblastic33

Thyroid Osteolytic34,35 Osteolytic36

Colorectal Osteolytic37,38 Osteolytic39

Renal Osteolytic40,41 Osteolytic42

Prostate Osteoblastic43,44 Osteolytic,
Osteoblastic45
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Treatment with radium‐223, a radioisotope emitting α‐particles,

targets osteoblastic lesions.57,58 This mechanism works by using

exogenous radium‐223 which is chemically related to calcium and is

deposited by activated osteoblasts adjacent to cancer cells.59,60 This

proximity results in selective cytotoxicity to cancer cells. This allows

the delivery of high‐energy radiation to bone metastases while

minimizing toxicity to other cells within the bone micro-

environment.61 Parker et al.62 demonstrated that radium‐223 yielded

an improved overall survival versus the placebo for patients with

metastatic prostate cancer (14.0 vs. 11.2 months, p = 0.002).

3 | ANGIOGENESIS

There is a complex vascular system linking bone to the bone marrow

and greater circulatory system, which has significant implications

with regard to promoting MBD. H‐type endothelial cells, which

express high levels of the platelet endothelial cell adhesion molecule

CD31 and the type I integral membrane glycoprotein endomucin,

form blood vessels within the bone. L‐type endothelial cells in the

bone marrow have low levels of CD31 and endomucin expression

and these form the sinusoids that connect to the central vein.63,64

The microenvironment of L‐type vessels is hypoxic relative to that of

H‐type vessels.64 While hypoxia in general promotes high bone

mass.64 It is believed that this hypoxic microenvironment promotes

cancer growth and suboptimal bone remodeling.65,66

In metastatic bone cancer, angiogenesis begins as cancer cells

activate pericytes locally to increase production of vascular en-

dothelial growth factor (VEGF), which promotes neo angiogenesis

locally.63 These initiate a stem cell‐like population of tumor cells that

have the potential for de novo angiogenesis. The histone deacetylase

inhibitor entinostat is currently being evaluated in models of breast

cancer to target this mechanism in primary tumors.67 In addition to

vasculogenic mimicry, tumor cells may utilize vessel co‐option to

access the blood supply within the bone microenvironment.68,69

Vessel co‐option involves the cancer cells targeting existing blood

vessels for their own supply. These mechanisms disrupt the normal

pathways of angiogenesis to the advantage of the tumor cells.

Increasing their vascular capacity increases the metabolic capacity of

the tumor and promotes tumor growth.

Studies are currently investigating the role of vasculature in bone

metastasis in waking dormant disseminated tumor cells.70 Dormant

micrometastases can remain inactive for decades after primary tumor

detection, possibly linked to senescence. Ghajar et al.70 demon-

strated that stable endothelial cells in the bone marrow, located in

close proximity to breast cancer cells, secrete thrombospondin‐1 to

induce tumor quiescence. They discovered that once angiogenesis is

stimulated, these endothelial cells reduce the levels of TSP‐1 and

rather increase the production of proteins to awaken the dormant

tumor cells and cause growth.70 This suggests that these tumor cells

remain dormant until they have created a microenvironment

advantageous to their continued growth and success via their control

of angiogenesis. Acknowledging and addressing these microvascular

pathways will shed light on potential therapeutic targets to reduce

the ability of tumor cells to take advantage of the body's natural

pathways.

3.1 | The contribution of hypoxia

Bone is a hypoxic microenvironment with low oxygen partial

pressures (7–29mmHg).71 Hypoxia regulates bone remodeling via

the HIF transcription factors, along with producing factors including

RANKL, VEGF, and CSF‐1 to promote osteoclast formation.72,73

Hypoxia also facilitates a malignant phenotype of cancer cells in a

HIF‐1α‐dependent manner to promote the production of VEGF and

angiopoietin‐2. The hypoxic microenvironment also regulates the

immunosuppressive functions of tumor‐associated macrophages,

myeloid‐derived suppressor cells and regulatory T cells, which

promote cancer growth.65,66 Moreover, HIF‐1α activation augments

the suppression of effector and cytotoxic T cells and mediates the

upregulation of programmed death‐ligand 1 (PD‐L1) expression in

myeloid‐derived suppressor cells, which leads to T cell tolerance and

exhaustion.74,75 This, in turn, helps tumor cells evade the immune

response and regulation.

3.2 | Bone marrow adipocytes (BMAs) and cancer
metabolism

The presence of BMAs increases with aging and obesity.76 They help

to regulate fatty acid responses77 and secrete cytokines and protein

signals which regulate bone remodeling. The presence of BMAs has

been linked to formation of bone metastases by providing energy for

tumor cells, enhancing tumor cell proliferation, and promoting

resistance to chemotherapy and radiotherapy.78 Cancer cells and

adipocytes have a dynamic interaction. Cancer cells are able to alter

adipocyte phenotype and certain adipokines, which further impacts

cancer cell molecular biology.79 For example, leptin has been shown

to promote bone resorption, which promotes cancer cell growth in

the bone marrow, whereas adiponectin has a negative effect on

tumor growth.80 BMAs may also secrete IL‐6 which enhances the

growth of bone metastases by promoting osteoblastic production of

RANKL, leading to osteoclast formation. BMAs are also thought to

promote cancer growth via VEGF secretion and subsequent

enhanced angiogenesis.81 The expression of lipid transporters has

been shown to be upregulated in prostate cancer cells which may be

reflective of changes in the glycolytic activity of cancer cells82

(Figure 3).

3.3 | Tumor‐induced alterations of the ECM

The ECM of the bone is essential for cellular functions including cell

differentiation and signaling pathways.83 This involves a network of

collagen, noncollagenous proteins, and hydroxyapatite crystals.84–87
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Tumor cells alter the structure of the normal ECM and transform it

into a disorganized network via the production of thick fibronectin

fibrils.88,89

Osteopontin, a protein found in the ECM of bone, functions as a

regulator of tissue regeneration, inflammation and bone mineraliza-

tion.90 It closely interacts with osteoblasts, osteoclasts, macrophages,

endothelial cells, and fibroblasts. Tumor cells facilitate bone

metastases by disrupting this protein. This concept has been

demonstrated in a preclinical model that tested a knockdown of

osteopontin in breast cancer cells, leading to a reduction of

proliferation, invasiveness, and bone metastases. Unfortunately,

efforts to inhibit osteopontin therapeutically have resulted in

unwarranted side effects such as promoting atherosclerosis, so

further research is needed.90 Similarly, metastatic cancer cells may

secrete the matrix metalloproteinases (MMPs) MMP‐2 and MMP‐9

which play a role in altering bone turnover and promoting metastatic

growth.91 Dong et al.92 detected that MMP‐9 activity peaked 2

weeks after the colonization of bone by prostate cancer cells, which

was then linked with a wave of osteoclast recruitment. MMP‐9‐

specific inhibitors may, therefore, yield promising therapeutic targets

in bone metastasis.

The proteoglycan heparan sulfate is also important for the

structure and function of the ECM and therefore has been targeted

by tumor cells in MBD. These proteoglycans have the ability to bind

to bone‐related proteins through specific heparin binding domains.

Tumor cells may target this function to promote bone metastases.

Other important proteoglycans include, perlecan and glypicans,

which function to modulate the homing, colonization and migration

of tumor cells.93

3.4 | Immunomodulation in bone metastases

Another important process in MBD is immunomodulation. As with

other important processes, tumor cells have developed ways to take

advantage of this key physiologic response to promote tumor growth

and bone mestastases.94 The specific cells involved in immunomo-

dulation in bone metastases are described below and in Table 3.

CD8+ T cells are effector or cytotoxic cells primarily responsible

for directly killing infected host cells, producing cytokines, regulating

the immune response, and killing tumors by mechanisms including

apoptosis and cell cytotoxicity. Regulatory T cells, however, promote

effector T cell tolerance and exhaustion, stimulate tumor growth.94,95

Programmed cell death protein 1 (PD‐1) is located on T cells and

functions to block T cells from killing other cells, including tumor

cells, when bound to programmed death‐ligand 1 (PD‐L1). Tumor

cells take advantage of this system to avoid T cell targeting.102

Mature B cells may differentiate into plasma cells and release

antibodies specific for pathogenic or tumor antigens causing an

immune response that targets the tumor. However, if B cells

accumulate at tumor sites, they may secrete immunosuppressive

cytokines such as IL‐10 which will promote tumor growth.96,97

Macrophages promote wound healing, regulate adaptive immu-

nity, and eliminate infectious agents. Classically activated macro-

phages, M1, are activated by factors such as interferon‐gamma

F IGURE 3 Pathway by which tumor cells release VEGF to
promote angiogenesis and create their own blood supply. VEGF,
vascular endothelial growth factor.

TABLE 3 Normal function of immune cells in the bone and the impact of cancer.

Cell type Normal function Role in cancer

T cells94,95 Cytotoxic properties, produce cytokines

and regulate the immune response

Regulatory T cells cause effector T cell tolerance and exhaustion,

promoting tumor growth

B cells96,97 Differentiate into plasma cells and release
antibodies

Can accumulate in tumor cells and secrete immunosuppressive
cytokines like IL‐10 that promote tumor growth

Macrophages96,98 Activated by interferon‐gamma that are
cytotoxic role in innate immunity

Tumor‐associated macrophages and metastasis‐associated
macrophages promote tumor growth

Myeloid‐derived suppressor
cells99,100

Premature immune cells that suppress
both innate and adaptive immune
responses

Decreasing immune surveillance, remodeling the tumor
microenvironment, establishing a premetastatic niche, and
promoting the epithelial‐to‐mesenchymal transition in tumor cells

Natural killer101 Cytotoxic cells that secrete cytokines such
as IFN‐γ

Number of NK cells is decreased in prostate cancer.

Abbreviations: IFN, interferon; IL, interleukin.
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(IFN‐γ) and have tumoricidal activity. However, alternatively acti-

vated macrophages, M2 are associated with tumor‐associated

macrophages (TAMs) and metastasis‐associated macrophages

(MAMs), which express both M1 and M2 markers.96,98

Myeloid‐derived suppressor cells (MDSCs) includes immature

macrophages, granulocytes, dendritic cells, and myeloid progenitor

cells. These cells can be divided into those that are morphologically

similar to monocytes or polymorphonuclear cells. It is believed that

MDSCs can aid tumor growth and metastases by decreasing immune

surveillance, remodeling the tumor microenvironment, establishing a

premetastatic niche, and promoting the epithelial‐to‐mesenchymal

transition in tumor cells.99,100

Natural Killer cells (NK cells) are cytotoxic cells that secrete

cytokines such as IFN‐γ that can alter the immune response.

The number of NK cells was decreased in a mouse model of prostate

cancer and associated with an overall reduction in metastasis.101

Of note, Robertson et al.103 demonstrated the role of the ECM

with regard to immunomodulation of tumor cells. It was demon-

strated that Collagen 4 induces both massive overgrowth and

suppression of immune mediated tumor clearance, which was not

linked with an upregulation of regulatory T cells or T cell exhaustion.

This presented a model to reverse the immune‐cold tumor types that

can evade immunotherapeutics.103

4 | THE ROLE OF THE SYMPATHETIC
NERVOUS SYSTEM

The health of the microarchitecture of bones has connections with

the sympathetic nervous system. Pathologic fractures and pain from

bone lesions can lead to direct activation of the sympathetic nervous

system.104,105 Furthermore, many types of tumors have been shown

to have a growth advantage secondary to stress stimuli via activation

of the sympathetic nervous system.106 Severe emotional stress from

the experience of pain increases SNS activity, which causes the

release of adrenergic compounds like norepinephrine and epinephr-

ine. This results in activated osteoblasts to release RANKL and IL‐6

which affect bone processes such as inflammation, cell trafficking,

and bone resorption, which are important for the development of

MBD.106–108 Treatments for bone pain include denosumab and

bisphosphonates which have been shown to reduce bone pain in part

through the reduction in osteoclast activity. Similarly, anti‐cathepsin

K treatment can reduce bone pain.109

5 | METASTATIC MECHANISMS OF
CANCER CELLS

One of the main prognostic factors that affects the management of

cancer is the presence of metastatic dissemination of tumors.110,111

Traditionally, evidence of tumor dissemination is detected with

clinical exam, laboratory abnormalities and imaging modalities.

Additionally, providers may detect occult or impending metastases

by analyzing the presence of disseminated tumor cells (DTCs) in

lymph nodes or bone marrow or circulating tumor cells (CTCs) in the

peripheral blood.111,112 Past research has demonstrated that patients

who have undergone complete removal of the primary tumor,

but also have detectable CTCs or DTCs may have overt metastases

in the future, which may indicate the need for maintained systemic

therapies.

Epithelial–mesenchymal transition (EMT) seems to promote the

release of cancer cells into the bloodstream, but complete EMT is not

mandatory given that CTCs from patients with breast or prostate

cancer readily express epithelial markers, such as EpCAM and

keratins.113

DTCs are typically detected in the bone marrow even in the

absence of metastases to lymph nodes or visceral organs. However, it

remains unclear if the bone marrow acts as a reservoir for DTCs to

mature and then disseminate or alternatively, if the presence of

DTCs in the bone marrow indicates that cancer cells can already

disseminate to other organs.114 Conventional Ficoll gradient centrif-

ugation is typically the method of choice for the isolation of DTCs

from bone marrow.115 The long latency periods between cancer

diagnosis and metastatic relapse in patients with early‐stage breast

cancer probably reflect DTC dormancy and resistance to adjuvant

chemotherapy.116

In comparison, CTCs are found more commonly in peripheral

blood, acting as a vector for the dissemination of tumor cells to other

sites.117 The detection of these cells is useful in prognostication and

their presence indicates possible distant, overt metastases. Develop-

ing a blood test for multiple sampling has been described as a method

of monitoring therapeutic success.118 This, however, has associated

challenges because CTCs are relatively rare and existing techniques

lack the sensitivity to isolate CTCs for further analysis. Even if one

were able to isolate the CTCs, it is difficult to differentiate these from

nontarget hematopoietic cells therefore, leading to an increased risk

of false positives.119

Analyses of CTCs present in peripheral blood and DTCs that

have extravasated into the circulation from the bone marrow, have

provided important mechanistic insights into the early steps of

metastatic progression in humans.120 DTCs can target the bone

marrow early during the development of the primary tumor, as

demonstrated by the presence of bone marrow DTCs even in

patients with small breast or prostate tumors without detectable

metastases years before metastatic relapse.121

6 | CONCLUSION

Cancer metastasis has serious implications with regard to patients’

prognosis and treatment options, along with contribution to higher

morbidity and mortality rates. MBD is a subset in which primary

cancers, typically originating from the prostate (34%), breast (22%),

and lung (20%), spread to the bone. Afflicted patients present with

progressive bone pain with an increased risk of pathological fractures

and a diminished life expectancy. The microenvironment of bones,
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involving dynamic bone remodeling, angiogenesis, and immunomo-

dulation, for example, makes for a particularly suitable setting for

cancer to grow and spread. The purpose of this paper was to outline

current concepts relevant to the microenvironment of bones and

MBD, along with how therapeutic options may be designed to

address this microbiology. Future studies are warranted to further

identify hereditary or epigenetic factors in preclinical and clinical

studies that can act as targets for personalized treatment of cancer.
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