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Theoretical Models for Reaction Dynamics in Polyatomic Molecular 
Systems 

William H. Miller 
Department of Chemistry, University of California, and 
Materials and Chemical Sciences Division, Lawrence Berkeley 
Laboratory, Berkeley, California 94720 USA 

ABSTRACT. The reaction path Hamiltonian based on the m1n1mum energy 
reaction path is reviewed. Another reaction path Hamiltonian, this 
one based on a straight line path from reactants to products, is also 
introduced. It is argued that the latter model provides a better 
description of H-atom transfer reactions, a process for which the 
former one is poor. A variety of quantum and classical dynamical 
approaches based on these Hamiltonians are surveyed. 

1. INTRODUCTION 

One of the fundamental goals of theoretical chemistry is the 
quantitative description of chemical reactions from first principles 
(" ab initio")·. One usually envisions accomplishing this in two 
steps, (1) determination or the (Born-Oppenheimer) potential energy 
surface by state-of-the-art ab initio quantum chemistry calculations, 
and (2) solution of the dynamical equations for nuclear motion on 
this potential surface. For the simplest chemical reactions A+BC + 

AB+C, where A, B, and C are all single atoms, this ts rapidly 
becoming a reality: quantum chemistry calculations continue to 
improve in accuracy, and there have recently been quite dramatic 
advances 2- 4 in quantum mechanical reactive scattering theory that 
provides the rigorous solutiQn to the nuclear dynamics. The goal of 
the work described in this paper, however, is to extend these 
capabilities to polyatomic molecular systems. 

The first part of the task, i.e., determination of the potential 
energy surface, at first seems almost insurmountable for a polyatomic 
molecular system because or the high dimensionality of the problem: 
tor anN atom system the potential (i.e., the Born-Oppenheimer 
electronic energy) depends on 3N-6 independent coordinates. If one 
were to try to map out the potential function !O a straight-forward 
way on a grid of coordinate values, then -1o3N ° points- i.e., this 
many quantum chemistry calculations of the electronic energy - would 
be required, clearly an impossible task for N greater than 3 or 4. 

To deal with this ~ituation one introduces the idea of a 
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reaction path.5-7 Section 2 utilizes the minimum energy path (MEP), 
i.e., the steepest descent path (in mass-weighted cartesian 
coordinates) that descends from the saddle point (i.e., the 
transition state) of the potential energy surface forward to products 
and backward to reactants. It seems intui·ti vely clear that this 
path, also called the "intrinsic" reaction path, passes through the 
most important part of the potential energy surface for the reaction 
through this transition state. A full-dimensional potential energy 
surface is obtained by computing the force constant matrix along the 
MEP, so that the model is that of a (multidimensional) harmonic 
valley about the reaction path in the many directions orthogonal to 
it. Section 2 describes this model more completely. 

The practically important feature of this reaction path model is 
that the necessary quantum chemistry calculatiogs are quite feasible 
by exploiting the analytic gradient methodology that has been 
developed in recent years. One thus begins the reaction path 
calculation at the saddle point of the PES -whose location, in fact, 
is made efficient by using analytic gradient calculations - and then 
follows the (negative) gradient vector step-by-step down to reactants 
and to products. Along this steepest descent path one also computes 
the force constant matrix. The important point is that this is a ~ 
dimensional process; i.e., one is computing the potential energy 
along a one-dimensional curve that snakes its way through a 3N-6 
dimensional space. The effort in doing this thus does not increase 
dramatically as the number of atoms in the system increases. 

Section 2 describes how a complete Hamiltonian can be 
constructed in terms of a.reaction coordinate, the distance along the 
MEP, and local normal coordinates for vibration perpendicular to the 
MEP (together with momentum variables conjugated to these 
coordinates). This is the reaction path Hamiltonian.5a 

Although a reaction path Hamiltonian based on the minimum energy 
reaction path is often an appropriate description of the reaction of 
interest, there are cases for which this is not so. A most important 
example of this is an H-atom transfer reaction •. For such reactions 
the minimum energy path has many sharp kinks as it passes from the 
transition state to the reactants and products minima; it is thus not 
a useful path on which to base the reac~ion path model. Section 3 
shows how a straight line reaction path is appropriate for these 
situations. 

Finally, Section 4 considers some of the dynamical treatments 
that can be based on these reaction path Hamiltonians. Statistical 
approximations, i.e., transition state-like theories, are the 
simplest, and they are easily applied in terms of the reaction path 
Hamiltonian. Several more dynamically rigorous approaches are also 
described. 

2. THE REACTION PATH HAMILTONIANSa 

If {x
1

YJ ~ ~ , i • 1, ••• ,N, Y • x,y,z, denote the 3N mass-weighted 
cartes1an coordinates of the N atoms, then the steepest descent 
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path x (s) is determined by starting at the transition state (s=O) 
and in~egrating the following equation 

d ds !(S) II !' (s) . - (2.1) 

the solution of which is x (s). The parameter s is the reaction 
coordinate, the distance a2ong the path. (This is clear since it 
follows from Eq. (2.1) that 

ds • ld~l • It (dxiY) 2 , 
i y . 

(2.2) 

which is the usual definition of arc length.~ 
There have recently been several papers 0 that have explored in 

detail the mechanics of determining minimum ~nergy reactions paths. 
With the advent of analytic gradient methods in ab initio quantum 
chemistry it is rapidly becoming practical to carry out these 
calculations tor quite complex molecular systems. 

For positions x close to the reaction path one uses a standard 
Taylor's series expansion to approximate the potential energy 

where 

(2.4a) 

Q(s) • (~~)x • x (s) 
- - 0 

(2.4b) 

(2.4c) 

To define coordinates properly one must insure that the displacements 
!-!0(s) are perpendicular to the reaction path, and furthermore, 
conservation or total angular (and linear) momentum requires that 
they also be orthogonal to the directions which correspond to pure 
rotations (and translations). This is accomplished by introducing 
the projector P(s) that, at position s on the reaction path, projects 

• onto the 1 directions that corresponds to the 3 pure translations of 
the N atom system, the 3 pure rotations or the N atom system, and the 
direction along the reaction path, 
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(2.5) 

where {LiY k(s)} are the orthonormal vectors for these 7 
directions: k•3N-6 is chosen to be the direction along the reaction 
path, so that 

~3N-6(s) • !'(s); (2.6) 

explicit formulae for the vectors ~k(s), k•3N-7, ••• ,3N for pure 
rotations and translations have been given.5a 

One then diagonalizes the projected force constant matrix, 

(1-P(s))•K(s)•(1-P(s)); • • • • • 
(2.7) 

there are 7 zero eigenvalues, with the 7 eige~vectors given above, 
and 3N-7 non-zero eigenvalues, denoted {wk(s) }, with eigenvectors 
{k~(s)}, k•1, ••• ,3N-7. Displacements away from the reaction path, x­
!o(s), are then expressed as 

3N-7 
!-!o<s> • ·t ~k{s)Qk, 

k•1 
. (2.8) 

which guarantees that they are orthogonal to the reactive path and to 
the directions that are pure rotations and translations. The normal 
coordinates {Qk},k•1, ••• ,3N-7, are the amounts of displacement away 
from the reaction path in the 3N-7 independent directions that are 
perpendicular to it. The coordinates {s,Q1 , ••• ,Q3N_7 ) are thus the 
3N-6 coordinates that characterize the internal motion of the N atom 
system. In terms of them the potential energy of Eq. {2.3) takes the 
form 

3N-7 
V(s,{Qk}) • v

0
(s) + t 

k•1 
+ • • • • (2.9) 

The term v0(s) is often referred to as the reaction profile, i.e., 
the potential energy along the reaction path. The latter terms 
clearly have the form of a harmonic valley in displacements away from 
the reaction path, the frequencies of which vary with position along 
the path. 

In terms of the original 3N mass-weighted cartesian coordinates 
the Hamiltonian or the N atom system is 
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·• 

{2.10) 

where {piY} • 2 are the momenta conjugated to !· One wishes to 
express H in terms of the 3N-6 reaction path coordinates {s,{Qk}, 
k•1, ••• ,3N-7) and momenta (ps,{Pk} k•1, ••• ,3N-7) conjugate to them, 
and also the 6 coordinates and momenta that describe pure rotations 
and translations. This is a tedious procedure~ the details for which 
the reader is referred to the original paper.5a For the case of 
total angular momentum J•O the result is 

(2.11) 

where F • 3N-6 is the number of internal degrees of freedom, and the 
coupling functions are given in terms of the eigenvectors of the 
projected force constant matrix (and their derivative with respect to 
s) 

( 2 .• 1 2) 

where the prime denotes (i;J and "T" transpose. Bk,k'(s) is a skew­
symmetric matrix 

a consequence or which is that its diagonal elements are zero. 
Eqs. (2 11)-(2.13) fully specify the reaction path 

Hamiltonian.~a If all the coupling functions were ignored, it would 
have the simple rorm of a one-dimensional Hamiltonian for motion 
along the reaction path, 

(2.14) 

plus a sum of harmonic oscillators for motion perpendicular to it. 
(The s-dependence of the frequencies {wk(s)}, however, causes 
coupling between these motions.) The coupling functions Bk,k'(s) are 
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the primary cause of coupling, i.e., energy transfer, between the 
various degrees of freedom. Most important among these are the 
curvature coupling's Bk F(s) that occur in the denomination of Eq. 
(2.11) and couple norma! mode k directly to the reaction coordinate 
(labeled as mode F). Since 

one can show that 

~(s) a ~3N_6 (s) • !'(s), 

2 
• IC(S) , 

(2.15) 

(2.16) 

where ~e(s) is the curvature or the reaction path at position s along 
it. Thus Bk,F(s) is essentially a measure of how the total curvature 
~e(s) projects onto the various normal modes k, i.e., of which modes k 
the reaction path is "curving into" as one moves al_ong it. The modes 
k ror which Bk F(s) is large are strongly coupled to motion along the 
reaction path and exchange energy with it freely, and vice-versa if 
Bk i(s) is small. The values or s ror which Bk F(s) is large also 
tel one where along the reaction path the energy transfer will take 
place. 

The coupling functions Bk k'(s) ror k and k' < F couple modes k 
and k' directly. As seen rrom'the definition, Eq. (2.12), Bk k'(s) 
is the amount that the change in ~k(s) with s projects onto ~~ 1 (s); 
i.e., it is a kind or cor1olis-like interaction caused by the 
spiraling or the eigenvectors ~k(s) about the reaction path. 

The reaction path Hamiltonian or Eq. (2.~1) can be generalized 
to deal with non-zero total angular momentum. a The rotational 
Hamiltonian which is added to Eq. (2.11) is 

J ( 2 2) 2 ( 2 2) 2 2 Hrot(K,qK) • A(s) J -K cos qK + B(s) J -K sin~ + C(s)K , (2.17) 

where A(s), B(s), and C(s) are the three rotation constants of the N­
atom system at position s along the reaction path; K and qK are the 
action-angle variables which characterize the internal rotation 
degree or freedom, and J is the (conserved) total angular momentum. 
There are also rotation-vibration coupling terms that are not given 
here. 
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reaction path and exchange energy with it freely, and vice-versa if 
Bk i(s) is small. The values or s ror which Bk,F(s) is large also 
tel one where along the reaction path the energy transfer will take 
place. 

The coupling functions Bk k, (s) ror k and k' < F couple modes k 
and k' directly. As seen rrom'the definition, Eq. (2.12), Bk k'(s) 
is the amount that the change in ~k(s) with s projects onto ~k,(s); 
i.e., it is a kind or coriolis-like interaction caused by the 
spiraling or the eigenvectors ~k(s) about the reaction path. . 

The reaction path Hamiltonian or Eq. (2.11) can be generalized 
to deal with non-zero total angular momentum.5a The rotational 
Hamiltonian which is added to Eq. (2.11) is 

H;
0

t(K,qK) • A(s)(J2-K2 )cos2qK + B(s)(J2-K2 )sin2~ + C(s)K2
, (2.17) 

where A(s), B(s), and C(s) are the three rotation constants of the N­
atom system at position s along the reaction path; K and qK are the 
action-angle variables which characterize the internal rotation 
degree or freedom, and J is the (conserved) total angular momentum. 
There are also rotation-vibration coupling terms that are not given 
here. 
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Often it is adequate to make an "almost symmetric top" 
approximation to the rotational Hamiltonian. This corresponds to 
averaging Eq. (2.17) over the angle variable, giving 

(2.18) 

so that K, as well as J, is now a conserved quantity (assuming that 
the rotation-vibration coupling terms are also neglected). Within 
this approximation Eq. (2.18) simply adds a centrifugal potential to 
Eq. ( 2. 11); 1. e., Eq. ( 2. 11 ) is modified only by the replaqement 

This permits angular momentum effects to be accounted for 
(approximately) in a very simple way. 

3. LINEAR REACTION PATH 

For many purposes the minimum energy reaction path described in the 
previous Section is excellent; It has been successfully applied to a 
large number of reactions, 11 - 2 and will undoubtedly be the method of 
choice in the future in many situations. 

There is one process, however, tor which the minimum energy path 
is not a good description, namely an H-atom transfer process. This 
is the polyayomic version or a heavy + light-heavy mass 
combination, 3 e.g., 

C1 + HC1 + C1H + C1, (3.1) 

tor which the minimum energy path is extremely sharply curved in the 
appropriately mass-weighted coordinates. A very curved reaction path 
means that the curvature coupling elements {Bkl(s)} in Eq. (2.11) are 
very large ror some modes k, and this causes s ngularities in the 
Hamiltonian because the denominator in the first term can vanish for 
small displacements Qk away from the reaction path. 

The situation is even more severe tor a polyatomic system than 
it is ror the simple atom-diatom system Eq. (3.1) This is because 
there will be many modes that are lower in frequency than H-atom 
motion, and one can prove in general that the minimum energy path 
always approaches a potential minimum al~ng the normal mode or lowest 
frequency (or the appropriate symmetry). For an H-atom transfer, 
therefore, the minimum energy path begins at the transition state 
being primarily H-atom motion, but abruptly switches to heavy atom 
motion further down the path. In general, many or these abrupt 
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switches (local Fermi resonances) occur, so that the minimum energy 
path will have many "kinks" on its journey from the transition state 
to the reactant (and product) potential minimum. This is clearly not 
a useful path on which to base the reaction dynamics. 

0 

0 

(O) (Ill 

Figure 1. Sketch of contour plots tor two characteristic potential 
energy surfaces. The solid lines indicate the minimum energy path 
from the transition state down to reactants and to products, and the 
broken line is the straight line path from reactants to products. 

As an alternative a linear reference path b~tween the reactant 
and product potential minima has been suggested. . Fig. 1 shows a 
sketch or two potential surfaces for a two-dimensional model of a 
symmetric H-atem transfer. Fig. 1a applies qualitatively to H-atem 
transfer in malonaldehyde 

.. 
H, 

0 0 
U I 

,c ~c, 
H 'c H 

I 
H 

(3. 2) 

where the two modes are the H-atem motion (s) and the 0-0 stretch 
(Q), while Fig. 1b is illustrated by the double H-atem transfer in 
the formic acid dimer, 

H-C 

0-H 
/ 

~0 

o, 
C-H 

/ 
H-0 

.. 
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where the two relevant modes for the picture are the asymmetric H­
atom motion (s) and the asymmetric o-c-o vibration (Q). In both 
cases the solid curves indicate the minimum energy path and the 
broken curve the straight line path. In the case of the Fig.- 1a the 
straight line path misses the transition state by a large distance, 
but this is actually physically correct; i.e., the mosv~important 
path for tunneling in this situation "cuts the corner" of the 
potential surface. For the case in Fig. 1b the straight line path 
actually passes through the transition state. 

The form or Hamiltonian based on this straight line reaction 
path is constructed in a similar way as that in Section II. The 
reaction, or reference path !o(s) is now, however, given by (again in 
mass-weighted cartesian coordinates) 

xo(s) • Y.z(X +x ) + s(x -x )/lx -x I' - -p -r -p -r -p -r (3. ~) 

rather than by following the minimum energy path, where !p and !r are 
the (mass-weighted) cartesian coordinates or the products and 
reactants, respectively (i.e., the geometries of these local minima 
on the pot.ential energy surface). For Eq. (3. ~) to apply it is 
necessary that the 3N cartesian coordinates !p and !r be defined in 
consistent coordinate sr~tems. These conditions have been worked out 
and are easy to insure. 

The Hamiltonian for this linear reaction path is now constructed 
in precisely the same manner as Section II; the.projected force 
constant matrix is diagonalized to obtain the 3N-7 non-zero 
frequencies {wk(s)} and corresponding eigenvectors {bk(s)}, 
k•1, ••• ,3N-7. The resulting Hamiltonian differs from Eq. (2.11) in 
only two ways. First, since the reaction path is straight, the 
curvature coupling element Bk,F(s) are all zero. Second, since the 
linear path is not the minimum energy path, the linear term in the 
potential, Eq. (2.3), is not zero, 

(3. 5a) 

(3.5b) 

The Hamiltonian is thus given by 
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(3. 6) 

Finally, in this case it is also possible to eliminate the 
coriolis coupling elements Bk k'(s) in Eq. (3.6) by making a linear 
transformation or the coordinates {Qk} amongst themselves.5b The 
price paid for this is that the quadratic term in the potential 
involving the coordinate {Qk}, the last term in Eq. (3.6), becomes 
non-diagonal. The details of this deriyation are omitted here, but 
the final result for the Hamiltonian is 5 

+ (3.7) 

Here P and Q are actually not the same quantities as in Eq. (3.6), 
but related~to them by a linear transformation; t(s) and K(s) in Eq. 
(3.7) are similarly related by a linear transformation to.those in 
Eq. (3.6). . 

The advantage of Eq. (3.7) over (3.6) is that the coupling 
between modes k and k' is in the potential energy 1n Eq. (3.7) (via 
the k~k' elements of Kk k'(s)), while it occurs in the kinetic energy 
(via the Bk,k'(s) elements) in Eq. (3.6). Eqs. (3.6) and (3.7) may 
thus be termed "adiabatic" and "diabatic" representations, 
respectively, of the vibrar5onal modes, in analogy with the situation 
for vibronic Hamiltonians. 

4. DYNAMICAL MODELS 

With a Hamiltonian one can begin to describe dynamics, and this 
section considers some of the dynamical models that have been based 
on the reaction path Hamiltonian, beginning with the simplest 
approaches and proceeding to more rigorous ones. 

4.1. Transition State Theory and Related Models 

The simplest dynamical models are statistical ones, and to define 
them in the most general way it is useful to introduce the 
microcanonical tlux, i.e., the avera'ge flux for a given total energy 
(and, more generally, for a given total angular momentum). For the 
reaction path Hamiltonian or Section 2, the microcanonical flux 
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through a dividing surface that is perpendicular to the reaction path 
at distance s0 along it is defined by 

where s, the velocity along the reaction path, is given by Hamilton's 
equations 

(4.2) 

the step function h(s) 

• s > 0 
h<s> • 1 • 0 s < 0 

ensures that Eq. (4.1) is the "one-way flux" through the dividing 
surface. With the reaction path Hamiltonian it is a straightforward 
calculation to show that Eq. (4.1) and (4.2) give 

F-1 
N(E,s) • [E-V

0
(s)]F-t/{{F-1)! n wk(s)} (4.3) 

k•1 

where s 0 has now been replaced simply by s. Remarkably, therefore, 
none or the coupling functions Bk k'{s) appear in the microcanonical 
flux; they have not been neglectea in the calculation, they simply do 
not appear in the final result. {If the minimum energy path is not 
the reference path for the reaction path Hamiltonian, as for the 
linear reference path considered in the latter path of Section 3, 
then Eq. (4.3) is modified by the replacement 

(4.4) 

where {fk(s)} are the coefficients or the terms in the potential 
energy that are linear in the coordinates {Qk}.) 

Transition ~tate theory corresponds to looking ror the minimum 
(with respect to s) flux, 17 the main bottleneck to the reaction, 
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NTST(E) • min N(E,s) 
s 

(4.5) 

The microcanonical rate constant, for example, is given in terms of 
N(E), the cumulative reaction probability- which is approximated in 
transition state theory by the minimum or the microcanonical flux -
by 

k(E) • N(E)/[2wMp(E)], (4.6a) 

where p(E) is the density or reactant states 

(4.6b) 

A calculation similar to that which leads to Eq. (4.3) gives p(E) as 

F-1 
p(E) • (2wM)-1(/2n/r(F-Yz)) fds [E-V0(s)]F-3/ 2/ IT Mwk(s), (4.7) 

k·l 

where the limits or the s integration are the classical turning 
points (the roots ot v0Cs) • E). 

The canonical, i.e., thermally averaged rate constant, is given 
by the ratio or the Boltzmann averages or N(E) and p(E), 

k(T) • N(T)/2wMQ0 (T), (4.8) 

where 

• 
N(T) • JdE exp(-E/kT)N(E) (4.9a) 

• 
Q0(T) • fdE exp(-E/kT) p(E); (4.9b) 

Q0(T), ot course, is the reactant partition function. From Eq. (4.7) 
one can obtain the following expressing tor Q0(T), 
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(4.10) 

A useful, though somewhat less rigorous result can be obtained by 
computing N(T,s), i.e., the Boltzmann average of N(E,s), Eq. (4.1)­
(4.3), before one minimizes this quantity with respect to s, and then 
minimizing N(T,s) with respect to s. The Boltzmann average of Eq. 
(4.3) can be evaluated explicitly, giving 

(4.11) 

where s is now chosen to be the value which minimizes N(T,s). This 
result, combined with Eq. (4.8), gives the well-known Eyring version 
of transition state theory 

where 

* k(T) • kT Q (T) exp(-V*/kT), 
h Q

0
(T) 

* F-1 kT 
Q (T) • n Kw(s)' 

k•1 

s being chosen as the value which minimizes the rate. 

(4.12) 

If there are several local minima or N(E,s) as a function of s, 
then this corresponds to several "bottlenecks" or the reactive 
flux. If one assumes that microcanonical equilibrium is established 
locally in the regions between these bottlenecks- e.g., by the 
existence or long-lived inter~ediates - then one can derive a 
"unified" statistical model. 1 ~.5b This model approximates the 
cumulative reaction probability as 

2M+1 
N(E) • ( I 

k•l • 3 ••• 

1 2M 
Nk(E) - I k•2,4 ••• 

(4.13) 

where for k•1,3,5, ••• , 2M+1, {Nk(E)} are the local minima of N(E,s), 

14 



.. 

and for k•2,4, ••• , 2M they are the local maxima separating the local 
minima. 

To apply these statistical theories one thus only needs the 
potential energy along the reaction path v0 (s) and the frequencies 
{wk(s)} of the transverse modes. To locate the extrema of the flux 
N(E,s) as a function of s one can show5b that the equation 

aN(E,s)/as • 0 

is equivalent to the following one 

E • W(s) 

which involves the energy-independent function 

F-1 wk' (s) 
W ( s) • V O ( s ) - V O' ( s )( F-1 ) I t wk ( s ) • 

k•1 

(4.14) 

(4.15a) 

(4.15b) 

To find the various extrema of the microcanonical flux one thus needs 
only to plot the function W(s). and look to see where it is equal to 
the energy E. This is a simple way to see how the reaction 
"mechanism" changes with energy. Typically, for example, at low 
energy E there is only one bottleneck, i.e., one minimum in the flux, 
so that ordinary transition state theory is a good approximation, 
while at higher energies there may be several minima. This latter 
situation is a herald, even within this statistical description, of 
more complex dynamics, i.e., "recrossing trajectories", which cause 
the breakdown of simple transition state theory. 17 

4.2 Semiclassical Perturbation-Infinite Order Sudden Approximation 

Going beyond statistical approximations to more dynamically based 
treatments opens the door to a wide variety or possibilities, from 
simple approximate models to more accurate treatments that are 
capable (with sufficient effort) of arbitrary accuracy. Here I note 
one particularly simple approximate model that has been developed and 
applied to a variety of different dynamical phenomena, namely the 
semiclassical perturbation-infinite order sudden (SCP-IOS) model. 19 

The ~8P-IOS model is the semiclassical approximation of Miller 
and Smith applied to the reaction-path Hamiltonian. It has the 
appealing feature that it behaves qualitatively correctly both in the 
adiabatic limit, which is the situation if the transverse vibrational 
motion is much faster than motion along the reaction coordinate, and 
also in the sudden limit, which is the case if reaction-coordinate 
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motion is much faster than transverse vibrational motion. For the 
case of a col~fnear atom-diatom reaction i~ becomes the Hofacker­
Levina model. 

To illustrate how simple it is to apply, e.g., the probability 
of the vibrational transition (n1, •••• ~i_ 1 ) + (n• 1, ••• ,n'F-l) in the 
transverse vibrational modes during mot on from s 1 to s 2 along the 
reaction path is given by 

(4.16a) 

where :J Ank is the regular Bessel function of order Ank, and the 
"collision integrals" Yk are given by 

with 

~k(s) • ~~~' ~k(s')/{2[E-Vn(s')]}~ 
s, -

(4.16b) 

The collision integral Yk is a measure or how much vibrational 
excitation is induced in mode k during motion from s 1 to s 2: the 
Bessel function JAn~,c<Yk)2 has its maximum at Ank • Yk' so that Yk is 
the most probable vrbrational quantum number change. A typical 
application of this expression would be to predict the product state 
distribution of an exothermic chemical reaction: with ~ 1 • 0, s 1 • 0, 
and s 2 • •, Eq. {4.16) gives the distribution of product internal 
degrees or freedom. Clearly the modes with the larger coupling 
element Bk F will be the ones excited most durlng motion from the 
transition'state {s1 • 0) to products {s2 • •). Conversely, s 1 • -• 
and s 2 • 0 and n2 • 0 corresponds to the ,time-reversed situation. In 
this case the modes k tor which yk is large are the most errective 
promoting modes for the reaction: i.e., vibrational energy initially 
in such a mode will be converted with high probability into energy 
along the reaction coordinate at the transition state. 
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Figure 2. Transition probability for the 0 + 1 vibrational 
excitation of H2 by collision with He, as a function of total 
energy. H2 is modeled as a Morse oscillator. QM and SCP denote the 
essentially exact quantum mechanical results computed for this 
collinear system, and the present results of the SCP-IOS reaction 
path model. 

Fig. 2 shows an example or the SCP-IOS model, i.e., Eq. (4.16), 
applie?

9
to vibrational excitation of H2 by collision with He 

atoms. One sees that this simple dynamical model based on the 
reaction path Hamiltonian does an extremely good job of describing 
vibrational inelasticity. 

The SCP-IOS approximation has also been used to describe the 
effects or the curvatur.e coupling elements on tunneling probabilities 
in chemical reactions. For example, the probability of tunneling 
through a simple barrier is given within the SCP-IOS model by 

(4.17a) 

where 

-2e 
P e 0 

0 • ( 4. 17b) 

(4.17c) 



Bk' F(s) 

lwk(s) 
coshok (s). (4.17d) 

Po is the usual one-dimensional WKB tunneling probability, and the 
effect of curv~ture coupling is contained in the multiplicative 
factors I 0 (ek) , one for each mode k. Io is the Bessel function of 
imaginary argument which is an exponentially increasing function; 
i.e., 

r0 Co)
2 

- 1 

2 2ek 
I0 Cek) - e /(2nek) 

ror e >> 0. Curvature coupling thus increases the tunneling 
proba~il i ty. 

to·•~--~~-~~--~ 0. 10 0. I 5 0.20 0.25 
E0 (tV I 

(4.18) 

Figure 3. Reaction probability ror collinear H+H2+H2+H on the 
Porter-Karplus potential energy surface. EQ denotes the exact 
quantum mechanical values, VAZC the results or the vibrationally 
adiabatic zero curvature approximation, and the points the results of 
the present SCP-IOS reaction path model. 

For the well-studied test case, the collinear H+H2 reaction, for 
example, Fig. 3 shows the reaction probability as a function or 
initial translational energy.5c One sees that Po (i.e., VAZC) is a 
factor of -50-100 too small, but the· SCP-IOS model, i.e., Eq. (4.17), 
brings it to within a factor of 2 of the correct value. 

The SCP-IOS model has also been used to determine the degree ~f 
mode specificity in state-selected unimolecular decomposition. 22 ' 2 
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If there were no coupling between the various modes of the polyatomic 
system, then the unimolecular decomposition would clearly be mode 
specific: i.e., different initial states with essentially the same 
total energy would decay at diffe~ent rates because they would have 
various amount of energy in the reaction coordinate and there would 
be no energy transfer among the various degrees of freedom. 
Conversely, to the extent that coupling between the modes causes 
efficient energy transfer among them, one expects more statistical 
behavior, i.e., the rate of decomposition depending essentially only 
on the total energy of the initial state and not on the particular 
initial state that is prepared. The degree of mode specificity in 
the state-specific unimolecular decay rates is thus a sensitive 
measure of the intermode coupling and thus a direct test of the way 
that the SCP-IOS, or any othe,r model, is able to describe this. 

4.3 Dynamical Methods for 'System' Coupled to a Harmonic 'Bath' 

The Hamiltonian that results with the linear reaction path described 
in Section 3, namely that given by Eq. {3.7), is sufficiently simple 
that it lends itself to special dynamical treatments. It has the 
generic form 

H • Hsys + Hbath + Hooupling' ( 4. 19a) 

where Hsys is the Hamiltonian for the "system" of interest, i.e., the 
reaction coordinat-e, 

Hbath is the Hamiltonian of a harmonic "bath" that is of less 
interest, 

(4.19b) 

(4.19c) 

where the rorce constant matrix has here been assumed to be 
independent or the reaction coordinate, and Hcoupling is the term 
that couples the system and bath, 

(4.19d) 

All strategies ror dealing with such Hamiltonians involve trying to 
eliminate the bath to as large an extent as possible and concentrate 
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attention on the system, while not altogether neglecting the effect 
of the bath on the system. 

At the level of classical mechanics, for example, it is possible 
to solve the equations of motion for the bath exactly and obtain the 
following generalized Langevin equation24 for the system, 

- I 

s(t) •- v0 (s(t)) 

F-1 I 

+ t fk (s(t))(Qk(O)cos(wkt)+Pk(O)sin(wkt)/wk] 
k•1 

F-1 I t 
+ r fk (s(t)) Jdt 1 fk(s(t 1 ))sin(wk(t-t 1 ))/wk' 

k•1 0 
(4.20) 

where the first term is the force originating from the local 
potential v0(s), the second term is the so-called "random force" that 
involves the initial conditions of the bath degrees of freedom, and 
the third term is the non-local "friction" on the'reaction 
coordinate. Eq. (4.20) is dynamically exact, i.e., one has 
"eliminated" the bath and obtained a one-dimensional equation of 
motion tor the system alone (albeit a complicated equation because it 
includes the effect ot the bath on the system). 

To carry out an analogous procedure in quantum mechanics 
requires use of the Feynman path integral 25 version of quantum 
mechanics. I will mention here only schematically how this is 
done. The path integral is an expression tor the kernel of the time 
evolution operator 

52 
• Jos(t) 

-iH(t2-t1)/M 
<s 2921 e Is 1 g1 > 

i•[s(t),Q(t)] e - • (4.21) 
51 

The integration symbols in Eq. (4.21) indicate a functional integral 
over all paths s(t) and 9(t) with the boundary conditions s(t 1) • s 1, 
s(t 2) • s 2 , 9<t 1) • 91 , and 9<t2) • 92 , respectively.· •[s,gJ is the 
classical action functional for a path s(t),Q(t). Because the 
Hamiltonian has the simple form of Eq. ( 4.1 9), the action functional 
has the analogous form 

•[s(t),Q(t)] • • [s(t)J••b th[Q(t)J•• li [s(t),Q(t)]. (4.22) - sys a - coup ng - · 

Furthermore, because the SchrOdinger equation for the time-dependent 
forced harmonic oscillator is analytically solvable, one can evaluate 
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the Jo~ path integral analytically, so that Eq. (4.21) takes the form 

-iH(t2-t1 )/M 
<s2g2je ls,g,> • 

s2 i~ [s(t)] 
Jos(t)e sys K Q Q [s(t)], 

s s2-2's1-1 
1 

where the influence functional K, 
Q 

(4.23a) 

K Q Q [s(t)] a 
s2-2's1-1 

f
-2 i~bath[g(t)] i~coupling[s(t),g(t)] 
og<t )e e , 

g, 
(4.23b) 

is a known25 exactly calculable functional of the path s(t). Eq. 
(4.23a) is thus a path integral for only one degree of freedom -
analogous to Eq. (4.20), the classical equation of motion for only 
one degree of freedom - though it is a complicated one-dimensional 
quantum mechanical problem because it includes the effects of the 
bath on the system (through the influence functional K). 

There is currently a great deal of effort being expended (and 
progress being made!) in learning how to ca~ry out quantum 
calculations using path integral methods. 2b 2~. As has been 
indicated, this progress is all very relevant to the linear reaction 
path model described in Section 3. Using path integrals, for 
example, allows one to evaluate the flux-flux autocorrelation 
function29a Cf(t), 

Cf(t) • tr{F exp[-(B/2-it/M)H]F exp[-(B/2+it/M)HJ} (4.24a) 

where F is the "flux-through-a-surface" operator; the Boltzmann rate 
constant is given (exactly!) by the integral of this correlation 
function, 

• 
k(T) • Q0(T)-l fctt Cf(t), 

0 
(4.24b) 

Q0(T) being the reactant partition function. Several applications 
using this methodology to compute thermal rate constants have been 
reported, some for simple A+BC gas phase reacdions and some for 
diffusion of H atoms on solid surfaces.29b,c, ,e 

Other, less rigorous theoretical treatments can also be usefully 
applied to the system-bath Hamiltonian of Eq. (4.19). One of the 
most useful of these is the time-dependent self consistent field 
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(TDSCF) approximation.30-34 Here the time dependent wave function is 
written as a product of factors ("orbitals"), one for each degree of 
freedom, 

F-1 
~(s,g,t) • x<s,t) n ~k(Qk,t). 

k•1 
(4.25) 

Substituting this ansatz for the wavefunction into the time-dependent 
SchrOdinger equation leads to equations for the bath orbitals 
~k(Qk,t) that can be solved exactly, and to the followin~4one­dlmensional SchrOdinger equation for the system orbital, 

where 

iM ax<s,t) • 
at 

F-1 
{H -sys t fk(s)[Qkcos(wkt) + Pksin(wkt)/wk] 

k•1 

t 
Jdt'fk(t')sin(wk(t-t'))/wk}x<s,t), 
0 . 

(4.26) 

(4.27a) 

( 4. 27b) 

(4.27c) 

One recognizes Eq. (4.26), the one-dimensional SchrOdinger equation 
for the system orbital x(s,t), to be directly analogous to the 
classical equation or motion, Eq. (4.20); in Eq. (4.27) Qk and Pk are 
the expectation values or the coordinate and momentum operators with 
the initial orbital for mode k, ~k(Qk,O), and f(t) is the expectation 
value of the operator fk(s) with the system orbital x(s,t). Note 
that Eq. (4.26) is a non-linear SchrOdinger equation because the 
function x<s,t) appears in the definition of f(t'); Eq. (4.26) would 
thus have to be solved iteratively. 

An ~~en better approximation is the multiconfiguration TDSCF 
approach which expands the wavefunction as sums or products or the 
type in Eq. (4.25). This is particularly necessary if the 
wavefunction is composed or physically distinct parts as, for 
example, for the case a (multidimensional) double well potential 
function characteristic of an isomerization reaction. 
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Another very useful way of treating the system-bath Hamiltonian 
of Eq. (4.1~) is via a basis set of shifted oscillator wave­
functions. This has been seen to give an excellent description of 
coupling effects on double well isomerization reactions. The reader 
is referred to the original papers for the specifics of this 
approach • 

5. CONCLUDING REMARKS 

Use of a reaction path, either the minimum energy path or the linear 
path, with a local harmonic approximation to the potential energy 
about it allows one to overcome the intimidating problem of dealing 
with a potential energy surface in 3N-6 dimensional space. The 
minimum energy path will be useful for describing many, but not all 
reactions. It is not useful, for example, for H-atom transfer 
reactions, but the linear reaction path described in Section 3 should 
treat these processes quite well. 

Wlth either of these model Hamiltonians there may be cases when 
the local harmonic approximation to modes away from the reaction path 
may fail. If this happens for only a few of the modes then one can 
readily correct the situation simply by including higher order terms 
(i.e., cubic, quartic, etc.) in the potential in these few 
coordinates. . 

A variety of dynamical approaches are available for determining 
the reaction dynamics that result from these Hamiltonians. Section 4 
has surveyed some of these, concentrating primarily on quantum 
mechanical methods. Classical trajectory methods are also always 
possible, and for other than H-atom transfer reactions should be 
adequate for most phenomena. The trajectories may be determined by 
"integrating out" the harmonic bath, i.e., Eq. (4.20), or probably 
simpler by integrating the trajectories in the full F~3N-6 
dimensional space. 

These two types of reaction path Hamiltonians, and a large array 
of dynamical tools should allow one to carry out realistic 
calculations to model a variety of dynamical processes in polyatomic 
systems. 
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