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ABSTRACT OF THE DISSERTATION

Exploring Visual Structures in Deep Representation Learning

by

Weijian Xu

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Zhuowen Tu, Chair
Professor Hao Su, Co-Chair

Deep representation learning has dominated almost every task in computer vision and

achieves superior performance. In deep representation learning, deep neural networks are trained

on massive data to provide rich visual representations. However, general-purpose neural networks

are not fully aware of visual structures, which limit their generalizability on specific vision tasks

(e.g., skeleton detection and line segment detection) or under particular scenarios (e.g., few-shot

settings). To tackle the aforementioned limitation, we find it natural and essential to enhance the

deep representation with visual structures.

This dissertation concentrates on three visual structures: geometric structure, part structure,

xiv



and multi-scale structure. We then present four examples to study these visual structures in deep

representation learning. First, we focus on object skeleton detection and introduce geometric

structure in objective function design. Second, we encode part structure in a convolutional neural

network for the few-shot image classification. Third, we build a generic vision Transformer with

a co-scale structure for image recognition and instance-level prediction. Finally, we present a

Transformer model with a multi-scale structure in line segment detection.
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Chapter 1

Introduction

As humans, our brain receives abundant information from our perception of the world.

Notably, the visual perception system in our brain provides the most complex signals: numerous

photoreceptor cells on the retina transform lights into electrical impulses, which are subsequently

processed by the visual cortex. Being the largest system in human brain, the visual cortex decodes

the dispersed impulses into a series of complex and hierachical visual structures. The visual

structures range from low-level visual cues such as corners and edges to high-level visual concepts

like objects [Vis22]. The decoded visual structures are then summarized and eventually enable us

to understand the world. As the bridge between raw impulses and advanced visual understanding,

visual structures play an extremely crucial role in a vision system.

Following the understanding of human visual perception, computer vision has witnessed

rapid progress in recent decades. Inspired by human vision, researchers in computer vision have

developed delicate hand-crafted feature descriptors including SIFT [Low04] and HoG [DT05].

These feature descriptors establish concrete visual structures such as edge directions and keypoints

before building more complex visual structures with histograms. In addition, the vision models

are empowered with better flexibility by the growing progress in machine learning. As a result,

the feature descriptors and machine learning techniques lead to a classical learning-based pipeline

1



for vision tasks. This pipeline first extracts rich features from images using hand-craft feature

descriptors; it then applies a relatively light model (e.g., logistic regression) for task prediction.

However, the classical learning-based pipeline has limitations. First, feature descriptors

require a careful design with abundant domain knowledge, which is difficult. Second, the hand-

crafted feature descriptors may not generalize well in extremely diverse scenes (e.g., scenes for

image recognition and object detection). Third, the machine learning model in the pipeline has

limited capacity in modeling complex feature distributions.

In recent years, deep representation learning has gradually addressed the limitations

above and dominated the field of computer vision. This learning paradigm aims to obtain learned

feature representation within deep neural networks using large-scale visual datasets, which is of

great capacity and flexibility to cope with diverse scenarios. However, general-purpose neural

networks (e.g., multi-layer perceptrons) typically do not generalize well on vision tasks. It is

commonly believed that we still need to incorporate specific domain knowledge into the deep

representation learning pipeline design. Such domain knowledge can guide the representation

towards our expectations and occasionally mitigate optimization difficulties. This dissertation

narrows the domain knowledge to visual structures, which reveals crucial structural information

from the visual data. With the visual structures embedded, we can establish more interpretable

and better-performing deep learning pipelines. We hope that our results can shed some light on

building practical learning-based models for vision applications.

In the following sections, we first introduce a typical deep representation pipeline for

vision tasks. We then demonstrate two mainstream categories of deep neural networks on which

this dissertation mainly works. Furthermore, we show examples of visual structures to embed

into deep representation learning. Finally, we present the overview of this dissertation.

2



1.1 Deep Representation Learning Pipeline

Deep representation learning usually consists of three main components: Model, data, and

objectives. The deep representation is learned within the model by optimizing the objectives on

model predictions from training data. We further discuss these three components in the following

paragraphs.

Model. The most distinctive part of the deep representation learning pipeline lies in

its model, that is, deep neural networks. Deep neural networks consist of a stack of linear and

non-linear operations, which possesses many parameters and enables the modeling of learnable

hierarchical features. In vision tasks, two variants of deep neural networks, convolutional neural

networks (CNNs) [LBBH98] and vision Transformers [DBK+21], are widely used. For a specific

vision task, we can tailor the deep neural networks to enhance awareness of designated visual

structures and achieve better representation.

Data. Deep representation learning usually requires large-scale datasets. For example,

image recognition datasets such as ImageNet [DDS+09] have more than 1 million annotated

images; object detection and instance segmentation datasets such as COCO [KFF15] include more

than 200 thousand data points. The large datasets and their corresponding annotations allow the

deep models to learn rich and generalizable features. It is noteworthy that it might be challenging

to collect massive data in some fields (e.g., medical imaging). Thus, learning deep representation

under data-limited scenarios (e.g. few-shot and zero-shot settings) has also received increasing

attention. These data-limited scenarios could benefit more from embedded visual structures in the

pipeline since the prior knowledge in visual structures can serve as regularization and mitigate

overfitting issues.

Objectives. The objectives in deep representation learning guide the update of predic-

tions and parameters from the model during optimization. Specifically, in supervised scenarios,

the objectives typically measure a certain distance between model predictions and ground-truth an-

3



notations. For example, the cross-entropy loss for classification tasks implies a Kullback–Leibler

divergence; the L1 loss for regression tasks measures an absolute deviation. In vision tasks, we

may further strengthen the objectives by introducing statistical properties or visual structures:

focal loss [LGG+17] adapts the standard cross-entropy loss to focus on hard misclassified exam-

ples; weighted cross-entropy [XT15] bridges the large gap between the edge and background

pixels; weighted Hausdorff distance [RGCD19] reflects the geometric difference between sets of

points.

1.2 Deep Neural Networks

1.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) [LBBH98] are prevalent variants of deep neural

networks in computer vision. In CNNs, convolutional layers replace linear layers to preserve

translation equivariance and reduce parameters. The translation equivariance is a favorable

property for visual data like images, while the parameter reduction eases the optimization of CNN

models.

The recent resurgence of CNNs starts from the seminal work AlexNet [KSH12], which

achieves unbelievable performance on image classification. Following AlexNet, there is a

rapid development of CNN architecture design for classification task, including VGG [SZ15],

GoogLeNet [SLJ+15], and ResNet [HZRS16]. It is noteworthy that the learned network from

image classification can provide a general visual representation for other tasks. In the meanwhile,

the powerful CNNs are gradually applied to a broad range of vision tasks, such as edge detec-

tion [XT15], object detection [GDDM14, Gir15, RHGS15, LGG+17], semantic segmentation

[LSD15, RFB15, CPK+17], and instance segmentation [HGDG17].
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1.2.2 Transformers

Transformers [VSP+17] has achieved great success in natural language processing. Trans-

formers have a stack of encoders and decoders, which operate on sequences of tokens and

transform the sequences using attention mechanisms. Specifically, attention mechanisms aggre-

gate all tokens from a sequence with dynamic weights. Thus, Transformers have the superb

capability in modeling rich global relations among tokens, which is a key factor of their success

in many language tasks [VSP+17, RNSS18, DCLT19].

Lately, Transformers has been employed in computer vision and caught great attention.

There are two main directions to adopt Transformers for vision tasks. The first direction applies

the Transformer encoders to patch-level image tokens. The Transformer encoders can obtain

generic visual feature presentation with better non-local information. Representative works in

this direction are ViT [DBK+21], PVT [WXL+21], and Swin [LLC+21]. The second direction

primarily uses the Transformer decoders to learn instance-level (query) tokens. Each query token

progressively gathers the features of a specific instance during the decoding procedure and finally

predicts the properties of this instance. This token-to-instance paradigm significantly simplifies

the traditional feature-to-instance pipeline [?] that has heavy post-processing steps. This paradigm

was firstly introduced to object detection by DETR [CMS+20], and then employed in many other

tasks including video instance segmentation [WXW+21], line segment detection [XXCT21], and

human pose estimation [LWZ+21].

1.3 Examples of Visual Structures in Deep Representation

This dissertation concentrates on three types of visual structures in deep representation:

geometric structures, part structures, and multi-scale structures.

Geometric structures in visual representation refer to geometric objects (e.g., points and

lines) and their geometric properties (e.g., the distance between points and shape of objects). The
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mainline of research using geometric structures focuses on direct geometric object extraction

from images. For example, line segment detection [XBW+19], wireframe detection [ZQM19,

XBW+19], and vanishing point detection [ZQHM19]. Another line of research introduces

awareness of geometric properties for better features or objectives, such as geometry-aware

layer in 3D point completion [YRW+21], and weighted Hausdorff distance in object localization

[RGCD19]. This second line of research receives less attention, but it is still worth exploring.

Part structures disassemble an object to spatially exclusive components, in which each

component is called a part. Prior to deep learning era, part structures are broadly used in

object detection and recognition [FPZ03, FH05, FGMR09]. In deep representation learning, part

structures are extensively studied in fine-grained classification [SR15, PHZ17, GLY19, QLL19] In

addition, part structures are increasingly explored in part segmentation [HJL+19], object detection

[ZZW+17], video object segmentation [CTH+18], and human pose estimation [KSJ+20].

Multi-scale structures create a hierarchical set of features with decreasing spatial reso-

lutions and expanding contexts. In convolutional neural networks, multi-scale structures have

already deeply rooted in backbone architectures [KSH12, SZ15, SLJ+15, HZRS16]. Furthermore,

the fusion of multi-scale features provides additional contexts that benefit dense prediction tasks,

including edge detection [XT15], object detection [LDG+17], semantic segmentation [CPK+17],

and pose estimation [WSC+20]. In contrast, early Transformers in vision [DBK+21, CMS+20,

TCD+21] stick to a single-scale design. Recent works [WXL+21, LLC+21] have shifted to

multi-scale structures and demonstrated extraordinary performance on multiple vision tasks.

1.4 Overview of This Dissertation

This dissertation consists of two parts to study visual structures in deep representation

learning. The first part investigates the geometric and part structures in convolutional neural

networks (chapter 2 and 3). The second part investigates the multi-scale structures in Transformers
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(chapter 4 and 5). We present a brief introduction for each chapter as follows.

Chapter 2 presents an objective function reflecting geometric structures in object skeleton

detection. Recent approaches in skeleton detection are based primarily on the holistically-nested

edge detector (HED) that is learned in a fundamentally bottom-up fashion by minimizing a pixel-

wise cross-entropy loss. Here, we introduce a new objective function inspired by the Hausdorff

distance that carries both global and local shape information. This new objective function is

made differentiable and employed in an end-to-end neural network framework. On several widely

adopted skeleton benchmarks, our method achieves state-of-the-art results under the standard

F-measure. This sheds some light towards directly incorporating shape and geometric constraints

in an end-to-end fashion for image segmentation and detection problems — a viewpoint that has

been mostly neglected in the past.

Chapter 3 introduces a part structure in few-shot image recognition. Specifically, we make

an effort to enhance structured features by expanding CNNs with a constellation model, which

performs cell feature clustering and encoding with a dense part representation; the relationships

among the cell features are further modeled by an attention mechanism. With the additional

constellation branch to increase the awareness of object parts, our method is able to attain the

advantages of the CNNs while making the overall internal representations more robust in the

few-shot learning setting. Our approach attains a significant improvement over the existing

methods in few-shot learning on the CIFAR-FS, FC100, and mini-ImageNet benchmarks.

Chapter 4 demonstrates an improved multi-scale structure — co-scale mechanism — for

vision Transformers. In this work, we present Co-scale conv-attentional image Transformers

(CoaT), a Transformer-based image classifier equipped with co-scale and conv-attentional mecha-

nisms. First, the co-scale mechanism maintains the integrity of Transformers’ encoder branches

at individual scales, while allowing representations learned at different scales to effectively com-

municate with each other; we design a series of serial and parallel blocks to realize the co-scale

mechanism. Second, we devise a conv-attentional mechanism by realizing a relative position
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embedding formulation in the factorized attention module with an efficient convolution-like

implementation. CoaT empowers image Transformers with enriched multi-scale and contextual

modeling capabilities. On ImageNet, relatively small CoaT models attain superior classification

results compared with similar-sized convolutional neural networks and image/vision Transform-

ers. The effectiveness of CoaT’s backbone is also illustrated on object detection and instance

segmentation, demonstrating its applicability to downstream computer vision tasks.

Chapter 5 builds a Transformer model with the multi-scale structure in line segment

detection. Our method takes advantages of having integrated tokenized queries, a self-attention

mechanism, and encoding-decoding strategy within Transformers by skipping standard heuristic

designs for the edge element detection and perceptual grouping processes. We equip Transformers

with a multi-scale encoder/decoder strategy to perform fine-grained line segment detection under

a direct endpoint distance loss. This loss term is particularly suitable for detecting geometric

structures such as line segments that are not conveniently represented by the standard bounding

box representations. The Transformers learn to gradually refine line segments through layers of

self-attention. In our experiments, we show state-of-the-art results on Wireframe and YorkUrban

benchmarks.

Chapter 6 concludes the dissertation and provides further discussions.
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Chapter 2

Geometry-Aware Skeleton Detection

2.1 Introduction

An object skeleton is a compact visual representation that captures the centerline and the

symmetric axis of an object [Blu73]. A wide range of computer vision applications have adopted

the skeleton representation in their systems, including pose estimation [WZX17, WRKS16,

SFC+11], object segmentation [JCLY17, LGY98], scene text detection [CWRL19], and char-

acter recognition [WL18]. It is generally observed that an object skeleton exhibits both global

(e.g. medial axis [SSDZ99, ZY96, SP08]) and local (e.g. continuity, local symmetry, and junctions

[EG02, Lin98b]) geometric properties.

Object skeleton extraction is a long standing problem in computer vision. Early ap-

proaches [Lin98a, LSD13, JH01, YB04] are based on classic image processing techniques using

morphological operators. Learning-based approaches, particularly the ones based on deep con-

volutional neural networks (CNNs), have become increasingly popular. A number of recent

methods [SZJ+16, SZJ+17, KCJ+17, ZSG+18, LKQY18, WXT+19] build their skeleton extrac-

tion systems on top of the holistically-nested edge detector (HED) [XT15], making use of a

balanced cross-entropy loss within a deeply-supervised [LXG+15] fully convolutional neural
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networks (FCN) [LSD15] framework. These skeleton extraction algorithms demonstrate various

properties focusing on different aspects, e.g. scale separation and aggregation [SZJ+16, SZJ+17],

structural architecture design [KCJ+17, ZSG+18, LKQY18], and rich intermediate representation

[WXT+19].

HED was originally designed to perform end-to-end edge detection. It adopts an image-

to-image prediction framework by learning a family of nested edge features beyond image

gradients. The weighted cross-entropy loss in HED is customized for edge detection, creating a

performance gap when applied to skeleton detection. The pixel-wise cross-entropy loss is most

effective for the semantic labeling [CPK+17] and edge detection task [XT15], making dense

pixel-wise prediction based primarily on local image contents. A skeleton, however, observes

strong geometric properties with structural information capturing the long-range contextual

shape information (e.g. symmetry). Figure 2.1 shows a typical example where the result by a

standard HED-based skeleton detector [ZSG+18] outputs a blurry skeleton for the main body of

the elephant. In addition, a pixel-wise loss makes an independence assumption for each pixel,

rendering violations to the global and local geometric constraints that are commonly observed

for object skeletons. HED-based models learn rich hierarchical edge features, but the learning

process is not made geometry-aware explicitly. Existing methods in this domain instead rely on a

separate post-processing step [ZSG+18] which often has a limited scope of success and cannot

correct large mistakes. Figure 2.1 again shows an failure case where significant false positive and

false negative are present, which is difficult to be fixed by a standard post-processing algorithm.

Motivated by the above observations, we develop a new convolutional neural network

based skeleton detector (named as GeoSkeletonNet) by introducing a geometry-aware objective.

Specifically, the training objective (still learned end-to-end) consists of a weighted Hausdorff

distance and a geometrically weighted cross-entropy loss, providing the global and local geometric

constraints. In addition, an extra patch-based point loss is added to the overall objective in order

to employ the local geometric constraints. Our proposed algorithm mitigates the limitation
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Image and Ground-truth Previous HED-based Method GeoSkeletonNet

Figure 2.1: Qualitative comparison between a HED-based skeleton detection method [ZSG+18]
and our proposed method. Left: an input image and its ground-truth skeleton. Middle: predicted
skeleton map (the first row) and a superimposed version with the ground-truth in the input image
(the second row); the yellow dashed circle indicates an unsatisfactory area with a blurry effect
on elephant’s back; purple rectangles show some false positives. Right: predicted skeleton map
(the first row) by our method and a superimposed version with the ground-truth in the input
image (the second row).
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in the existing skeleton detection methods [SZJ+16, SZJ+17, ZSG+18, LKQY18] that do not

take into account explicit geometric constraints in training. Figure 2.1 shows the advantage of

our geometry-aware framework when compared with a standard learning-based object skeleton

extraction system.

The main properties of our GeoSkeletonNet are summarized as follows: (1) we propose

to incorporate a geometry-aware objective property within an end-to-end the skeleton detection

framework, (2) we adopt a weighted Hausdorff distance and design a geometrically weighted cross-

entropy loss, while utilizing a patch-based point loss for local constraints, (3) GeoSkeletonNet

demonstrates state-of-the-art results on five skeleton detection benchmarks, outperforming recent

competing methods in this domain [SZJ+16, SZJ+17, ZSG+18, LKQY18, KCJ+17, WXT+19].

2.2 Related Work

The task of skeleton detection has been long studied [Blu73], both in computer vision

[Lin98a] and medical imaging [SP08]. We refer to a recent paper [WXT+19] for a relative

comprehensive discussion about the literature in this subject. Here, we primarily discuss some

recent deep learning based skeleton detection algorithms.

Existing Skeleton Detection Methods. Most recent skeleton detection algorithms

[SZJ+16, KCJ+17, LKQY18, ZSG+18, WXT+19] are built on top of the holistically-nested

edge detector (HED) [XT15]. Shen et al. [SZJ+16] propose to enforce the side output of deep

supervision with a specific receptive field to match the skeleton at the corresponding scale. Ke et

al. [KCJ+17] attempt to apply bi-directional residual learning to side outputs, aiming at a larger

receptive field. Liu et al. [LKQY18] generalize the residual unit in [KCJ+17] by employing the

linear span unit, which improves the expressiveness of side outputs. Zhao et al. [ZSG+18] design

a hierarchical fusion architecture in the deep supervision to further enrich the representation of

side outputs. However, all above approaches merely modify the network structure, especially the
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deeply supervised part, yet still suffer from the side effects of the pixel-wise loss. Recently, Wang

et al. [WXT+19] propose to change the skeleton prediction from the probability-based map to the

flux-based vector field. The flux representation encodes the local geometric relationship between

image pixels and skeletal points, but this representation is difficult to learn accurately, which

leads to many discontinuities in the predicted skeleton map after post-processing. In contrast, our

approach keeps the probability-based skeleton map, while injecting the local and global geometric

relation between the prediction and the ground-truth into the objective function, which boosts the

overall performance and maintain the visual continuity.

Geometry-Aware Distances in Vision. In computer vision, geometry-aware distances

has been widely adopted, especially in object matching [DJ94], face recognition [JKF01] and

image retrieval [GWJ+14]. In the deep learning era, geometry-aware distances have been

employed in tasks such as 3D object reconstruction [FSG17] and object localization [RGCD19]:

Fan et al. attempts to build a shape reconstruction framework based on point cloud representation,

which minimizes the Chamfer distance and the Earth-mover distance between the prediction and

the ground-truth. Ribera et al. [RGCD19] proposes to relax the Hausdorff distance and optimize

it on the location probability map in the object localization task. Inspired by [RGCD19], we

adopt the weighted Hausdorff distance in the objective function for skeleton detection. Besides,

we augment the objective with a geometrically weighted cross-entropy loss and a patch-based

point loss, which provides additional global and local geometric constraints.

2.3 Method

2.3.1 Problem Formulation

Consider a training dataset {(Xk,Γk),k = 1,2, ...,K}, where Xk and Γk respectively refer

to the k-th input image and its corresponding ground-truth skeleton. Note that Γk is an explicit

vectorized representation encoding the object centerline. K is the total number of training
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images. In the literature, Γ was represented in various forms, e.g. the medial axis [SP08] or

the shock graph [SSDZ99] representation. The simplest form of Γk can be in a parametric

representation Γk = (i(s), j(s) : s ∈ [0,1]) where (i(s), j(s)) indicates each 2D skeleton point

(i(s), j(s)) parameterized by s. For notational simplicity, we drop k by considering only one

image X in the training set, {(X,Γ)}.

To facilitate our training process, skeleton Γ is converted into a label map:

Y = (y(i, j);(i, j) ∈ Λ), where y(i, j) = 1 if pixel (i, j) is on the skeleton, and y(i, j) = 0 otherwise.

Thus, our training set is simplified to {(X,Y)}, where X refers to the input image and Y denotes

the corresponding ground-truth label map. For X, its image lattice that includes all the pixels is

defined as Λ = {(i, j), i = 1..Height, j = 1..Width} where Height and Width refer to the height

and width of image X respectively.

2.3.2 Geometry-Aware Objective Function

Revisit the Weighted Cross-Entropy Loss

Given a training image X together with its ground-truth label map Y, our goal is to

learn, in an end-to-end fashion, a neural network model to predict Ŷ = (ŷ(i, j);(i, j) ∈ Λ) where

ŷ(i, j) ∈ {0,1} that is as faithful as possible to the ground-truth Y = (y(i, j);(i, j) ∈ Λ). We further

define a positive set Y+ = {(i, j);y(i, j) = 1} and a negative set Y− = {(i, j);y(i, j) = 0}, to have

separate notations for the skeleton and background pixels.

To make the learning process differentiable, the hard prediction map Ŷ is relaxed by a soft

probability map P = (p(i, j);(i, j) ∈ Λ). Typically, a neural network model can be learned through

a pixel-wise cross-entropy loss between the predicted probability map P and the ground-truth

Y. Specifically, in [SZJ+16, SZJ+17, KCJ+17, ZSG+18, LKQY18], a weighted cross-entropy
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(WC) proposed by [XT15] is used to tackle the problem of an imbalanced dataset:

LWC =−β ∑
a∈Y+

log pa− (1−β) ∑
a∈Y−

log(1− pa), (2.1)

where β = |Y−|/|Λ| and 1−β = |Y+|/|Λ|. However, the pixel-wise loss in Equation 2.1 basically

evaluates all pixels independently and is absent of explicit geometric constraints, which are

important prior for tasks like skeleton extraction. A result obtained by such a loss is illustrated in

Figure 2.1, showing problems in localization, precision, and structural consistency.

Weighted Hausdorff Distance

To combat the problem described above, we introduce geometry-aware loss in training

to take into account both global and local geometry of the learned skeletons. Following our

previous notations, let Y+ and Ŷ+ be the set of skeleton pixels for the ground-truth and prediction

respectively. We adopt a Hausdorff distance (HD) to capture the geometric relation between these

two sets. For two point sets Ŷ+ and Y+, the Hausdorff distance is computed as:

DH = max(max
b∈Ŷ+

min
a∈Y+

d(b,a),max
a∈Y+

min
b∈Ŷ+

d(a,b)). (2.2)

where d(a,b) is the Euclidean distance between point a and b. To increase the robustness of

the Hausdorff distance measure against the outliers due to the max operation, a variant of the

Hausdorff distance, the average Hausdorff distance (AHD) is adopted:

DAH =
1∣∣∣Ŷ+∣∣∣ ∑

b∈Ŷ+

min
a∈Y+

d(b,a)+
1
|Y+| ∑

a∈Y+

min
b∈Ŷ+

d(a,b). (2.3)

Adding geometric constraints such as Equation 2.2 and 2.3 to a problem that exhibits a strong

shape prior seems to be natural step to take. However, making geometry-aware loss in an end-

to-end learning framework has been under-explored, due primarily to the difficulty in making
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the loss differentiable through back-propagation. In this work, we combat this issue by adopting

a weighted Hausdorff distance (WHD) that was originally proposed in [RGCD19] for object

detection/localization:

DWH =
1

|Ỹ+|+ ε
∑
b∈Λ

pb min
a∈Y+

d(b,a)+
1
|Y+| ∑

a∈Y+

min
b∈Λ

d(a,b)+ ε

(pb)α + ε/dmax
, (2.4)

where |Ỹ+| = ∑b∈Λ pb is an estimate of the number of positive skeletal points in prediction. ε

is a small positive number (e.g. 10−6) to avoid zero numerator and denominator and dmax is the

length of diagonal of the skeleton map. When pb takes one of the two extreme values ∈ {0,1},

the weighted Hausdorff distance reduces to the average Hausdorff distance [RGCD19]. Note

the difference between our method and that in [RGCD19] where the main focus of [RGCD19]

is to use a WHD to better localize the object whereas our motivation is to employ WHD as a

geometry-aware loss for end-to-end learning of image-to-image prediction.

The weighted Hausdorff distance enjoys the benefit of capturing a shape constraint beyond

pixel-wise prediction, encouraging both local and global shape match between the predicted and

the ground-truth skeletons. This is a much needed property in the current end-to-end skeleton

learning frameworks but remains largely absent in the previous literature.

Patch-based Point Loss

Including the WHD in the objective function reduces the blurry artifacts and makes the

predictions better localized. However, directly training on WHD is unstable and disconnected

skeleton segments are still present. To address this issue, we add an additional patch-based point

loss (PPL) term. PPL aims to minimize the difference between the number of points in P above

a specified threshold λT and the number of points in Y. To prevent the predicted skeleton from

becoming too thick and to enforce local geometric regularities, we apply the proposed point loss

in a patch-wise manner.
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We divide the image into patches in a grid like manner with the patch size M×M. Each

patch coordinate set Λi, j can be represented as a strict subset of Λ such that Λ =
⋃

Λi, j. p̃b

represents the probability at the position b if it greater than λT , else it is 0. Thus, the patch-based

point loss term LPPL is formulated as:

LPPL = ∑
Λi, j

∣∣∣∣∣∣ ∑
b∈Λi, j

p̃b−
∣∣Λi, j∩Y+

∣∣∣∣∣∣∣∣ . (2.5)

Geometrically Weighted Cross-Entropy Loss

Based on the weighted Hausdorff distance in Equation 2.4, we further adapt the weighted

cross-entropy in Equation 2.1 to incorporate geometric awareness. For the predicted probabilities

corresponding to negative ground-truth points, we scale each pixel-wise cross-entropy term by

multiplying with a geometric distance between current point and its nearest positive point in the

ground-truth:

LGWC =−β ∑
a∈Y+

log pa− (1−β) ∑
b∈Y−

min
a∈Y+

d(a,b)γ log(1− pb). (2.6)

where γ is a hyper-parameter to adjust the effect of distance. The second term in LGWC resembles

the first term in DWH, which brings similar benefits such as removing unwanted blurs and

background noise. In practice, this geometrically weighted cross-entropy loss works significantly

well in enhancing the overall performance.

Combining the weighted Hausdorff distance, patch-based point loss and the geometrically

weighted cross-entropy loss, the final objective function L is represented as:

L = λ1DWH +λ2LPPL +λ3LGWC. (2.7)
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Figure 2.2: Schematic illustration of the network architecture of our GeoSkeletonNet framework.

2.3.3 Network Architecture

Figure 2.2 displays the neural network architecture for our model. We follow the network

design from [WXT+19]: The VGG-16 [SZ15] network is used as the feature backbone for fair

comparison with other approaches. On top of the last convolutional layer (conv5 3) of VGG

network, the atrous spatial pyramid pooling (ASPP) [CPK+17] is applied to enlarge the receptive

field. Then, to construct a multi-scale intermediate feature map, we fuse the ASPP output and

VGG side outputs (conv3 3, conv4 3, conv5 3) after 1x1 convolutions and bilinear up-sampling

kernels. We convert the intermediate feature map to a single channel probability map with original

image size as prediction.

2.4 Experiments

2.4.1 Datasets

We evaluate our method on five major datasets for skeleton detection: SK-LARGE

[SZJ+17], SK-SMALL [SZJ+16], SYM-PASCAL [KCJ+17], SYMMAX300 [TK12] and WH-

SYMMAX [SBHZ16]. Images in SK-LARGE and SK-SMALL are selected from MS COCO

dataset [KFF15] with single object, while the ones in SYM-PASCAL may have multiple objects.
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Figure 2.3: Qualitative comparison with the existing methods. We show four examples from
four benchmark datasets including (a), (b), (c) and (d) that are from SK-LARGE, SK-SMALL,
WH-SYMMAX and SYM-PASCAL respectively. The skeleton maps are the predictions by the
competing method and ours, before the non-maximum suppression operation (NMS).

SYMMAX300 and WH-SYMMAX are adapted from the BSDS dataset [MFTM01] and the

Weizmann Horse dataset [BU02] respectively.

2.4.2 Evaluation Protocol

PR Curve and F-measure ODS. After obtaining the predicted probability map P from

the network, we apply the standard non-maximum suppression (NMS) to P and threshold it by

δ ∈ {0.01, ...,0.99} to create the actual skeleton map Ŷδ. We evaluate the performance of the

model by the precision-recall (PR) curve of Ŷδ in the dataset over all thresholds. In addition, the

optimal F-measure on the PR curve, named as F-measure at optimal dataset scale (ODS), is used
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as evaluation metric as well.

2.4.3 Implementation Details

Training Settings. We build our network and pipeline in PyTorch and run the experiments

on NVIDIA TITAN X GPUs. In the experiments, we use the Adam optimizer with the learning

rate of 0.0001 and momentum coefficients β1 = 0.9,β2 = 0.999. Batch size is set as 1 due to the

GPU memory limitation, but we track the average gradients every 10 batches and update the

weights once, which indicates an equivalent batch size of 10. In the loss terms, we set α = 4,

ε = 10−6, as recommended by [RGCD19], and γ = 0.5 due to the ablation study. In LPPL, the

patch size M = 32 and the threshold λT = 0.95. Besides, during training, we optimize the model

on LGWC (i.e. λ1 = λ2 = 0,λ3 = 1) for 30 epochs and then fine-tune the model on DWH +LPPL

(i.e. λ3 = 0,λ1 = λ2 = 0.01) for 5 epochs. The 2-stage procedure leads to a more stable training

process.

Resolution Normalization. In most of the skeleton datasets, the images have quite

scattered resolutions, which bring a long series of various scales and increase the difficulty in

model training. Therefore, in the training stage before data augmentation, we resize the image

and ground-truth from size H×W to
√

KH
W ×

√
KW
H , which keeps the original aspect ratio and

normalize the number of pixels to a fixed value K. We also apply a standard thinning algorithm

[ZS84] on the resized ground-truth to avoid unnecessary thickness. In test stage, we still feed the

normalized image into network to obtain the prediction, then resize the prediction map back to

H×W for evaluation. We use K = 180,000 for the SYM-PASCAL dataset and K = 60,000 for

the other datasets.

Data Augmentation. We employ the standard data augmentation following [SZJ+16] in

training stage: The original image is resized to 3 scales (0.8x, 1.0x, 1.2x), rotated with 4 angles

(0◦, 90◦, 180◦, 270◦) and then flipped to 3 directions (none, left-to-right, up-to-down).
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Table 2.1: Test F-measure ODS comparison on all skeleton datasets. The best numbers are in
bold.

Methods SK-LARGE SK-SMALL WH-SYMMAX SYM-PASCAL SYMMAX300

MIL [TK12] 0.353 0.392 0.365 0.174 0.362
HED [XT15] 0.497 0.541 0.732 0.369 0.427

RCF [LCH+17] 0.626 0.613 0.751 0.392 -
FSDS [SZJ+16] 0.633 0.623 0.769 0.418 0.467

LMSDS [SZJ+17] 0.649 0.621 0.779 - -
SRN [KCJ+17] 0.678 0.632 0.780 0.443 0.446
LSN [LKQY18] 0.668 0.633 0.797 0.425 0.480
Hi-Fi [ZSG+18] 0.724 0.681 0.805 0.454 -

DeepFlux [WXT+19] 0.732 0.695 0.840 0.502 0.491

GeoSkeletonNet 0.757 0.727 0.849 0.520 0.501
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Figure 2.4: Precision-recall curves on four skeleton datasets.
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Figure 2.5: Qualitative comparison on the role of modules.

2.4.4 Comparison with the State-of-the-art

As indicated in Table 2.1, our method outperforms the current state-of-the-art by a decent

margin on all datasets in terms of F-measure ODS. Compared to the recently proposed DeepFlux

[WXT+19], our GeoSkeletonNet improves by 2.5%, 3.2% and 1.8% on the SK-LARGE, SK-

SMALL and SYM-PASCAL datasets respectively, under a similar network design. The PR curve

shown in Figure 2.4 also indicates a clear performance boost.

In Figure 2.3, we provide a qualitative comparison between our method and the current

approaches. In Figure 2.3 (a), (b) and (c), our method significantly reduces the blurry effect in the

previous HED-based methods [SZJ+16, ZSG+18]. Meanwhile, our method avoids the occasional

dis-continuities in DeepFlux with acceptable sacrifice of accurate localization (e.g. in (a), our

predicted skeleton has a thicker junction near the knee while maintaining the whole leg complete).

Figure 2.3 (d) reveals a failure case: Our method is not able to detect the skeleton of the screen,

but still tries to reduce false positive predicted points as possible. In contrast, both FSDS and

DeepFlux generate a noisy background.
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2.4.5 Ablation Study

Table 2.2: Quantitative comparison on the role of modules.

Baseline AvgGrad ResNorm GWC WHD+PPL F-measure ODS

✓ 0.712

✓ ✓ 0.724

✓ ✓ ✓ 0.741

✓ ✓ ✓ ✓ 0.753

✓ ✓ ✓ ✓ 0.746

✓ ✓ ✓ ✓ ✓ 0.757

Role of Modules. We conduct an ablation analysis to understand the role of modules in

performance contribution. Table 2.2 shows the F-measure ODS on SK-LARGE dataset under

multiple module settings of the model. Average gradients (AvgGrad), resolution normalization

(ResNorm) and geometrically weighted cross-entropy loss (GWC) greatly contribute to the final

performance. Especially, the ResNorm brings the substantial 1.8% improvement, which reflects

the difficulty of training on images with various scales.

In addition, Figure 2.5 compares the qualitative results of different module settings.

Visually, AvgGrad and ResNorm slightly refine the results from baseline. On the contrary, GWC

mitigates the blurry effect by a large margin, which shows the benefits of geometric awareness.

Weighted Hausdorff distance (WHD) and patch-based point loss (PPL) further makes the predicted

skeleton thinner and provides a better localization.

It is noteworthy that we do not separate the WHD and PPL in the performance analysis

on the role of modules. The reason is that directly training on WHD is unstable: WHD is able

to provide better localization in the predicted skeleton, but it sometimes generates unexpected

disconnection or thickness after certain epochs and leads to a performance drop. Thus, we

employ the PPL to stablize the WHD training and always evaluate the performance when both
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loss terms are turned on. Besides, we also do not include an inference speed comparison since

AvgGrad, GWC and WHD+PPL do not affect the time of inference. Only ResNorm will bring a

bit overhead, but it is neglectable.

Influence of Distance Hyperparameter γ. We further analyze the influence of the

distance hyperparameter γ in geometrically weighted cross-entropy loss (GWC). When γ→ 0,

the GWC reduces to the weighted cross-entropy loss (WC).

Table 2.3: Influence of distance hyper-parameter γ.

Distance Hyper-parameter γ = 0.125 γ = 0.25 γ = 0.5 γ = 1.0

F-measure ODS 0.746 0.751 0.753 0.745

Table 2.3 shows that γ = 0.5 provides the best F-measure ODS in the GWC ablation

setting (Baseline + AvgGrad + ResNorm + GWC). Thus, we set γ = 0.5 in all other experiments.

2.5 Conclusion

In this work, we have developed an end-to-end skeleton detection method that employs

geometric awareness. Specifically, we devise a geometry-aware objective function to compute

the global similarity between the predicted skeleton map and the ground truth in an end-to-

end learning framework. A weighted Hausdorff distance (WHD) is adopted. In addition, we

propose a patch-based point loss (PPL) to mitigate the instability in optimizing WHD and

capture local features. Furthermore, we adapt the weighted cross-entropy into a geometric form,

which significantly boosts the performance of skeleton detection. Evaluation on five standard

skeleton detection benchmarks demonstrates the advantages of our proposed method, consistently

outperforming the current state-of-the-art methods. In the future, we would like to explore the

possibilities of the geometry-aware objective in wider fields, such as semantic segmentation and
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object detection.
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Chapter 3

Constellation Nets for Few-Shot Learning

3.1 Introduction

Tremendous progress has been made in both the development and the applications of

the deep convolutional neural networks (CNNs) [KSH12, SZ15, SLJ+15, HZRS16, XGD+17].

Visualization of the internal CNN structure trained on e.g. ImageNet [DDS+09] has revealed the

increasing level of semantic relevance for the learned convolution kernels/filters to the semantics

of the object classes, displaying bar/edge like patterns in the early layers, object parts in the

middle layers, and face/object like patterns in the higher layers [ZF14]. In general, we consider

the learned convolution kernels being somewhat implicit about the underlying objects since they

represent projections/mappings for the input but without the explicit knowledge about the parts in

terms of their numbers, distributions, and spatial configurations.

On the other hand, there has been a rich history about explicit object representations

starting from deformable templates [YHC92], pictorial structure [FH05], constellation models

[WWP00, FPZ03, STFW05, FFFP06], and grammar-based model [ZM07]. These part-based

models [WWP00, FH05, FPZ03, STFW05, ZM07] share three common properties in the al-

gorithm design: (1) unsupervised learning, (2) explicit clustering to obtain the parts, and (3)
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modeling to characterize the spatial configuration of the parts. Compared to the CNN architec-

tures, these methods are expressive with explicit part-based representation. They have pointed

to a promising direction for object recognition, albeit a lack of strong practice performance on

the modern datasets. Another line of object recognition system with the part concept but trained

discriminatively includes the discriminative trained part-based model (DPM) [FGMR09] and the

spatial pyramid matching method (SPM) [LSP06]. In the context of deep learning, efforts exist to

bring the explicit part representation into deep hierarchical structures [STT12].

The implicit and explicit feature representations could share mutual benefits, especially in

few-shot learning where training data is scarce: CNNs may face difficulty in learning a generalized

representation due to lack of sufficient training data, whereas clustering and dictionary learning

provide a direct means for data abstraction. In general, end-to-end learning of both the implicit

and explicit part-based representations is a viable and valuable means in machine learning. We

view convolutional features as an implicit part-based representation since they are learned through

back-propagation via filtering processes. On the other hand, an explicit representation can be

attained by introducing feature clustering that captures the data abstraction/distribution under a

mixture model.

In this work, we develop an end-to-end framework to combine the implicit and explicit

part-based representations for the few-shot classification task by seamlessly integrating constella-

tion models with convolution operations. In addition to keeping a standard CNN architecture, we

also employ a cell feature clustering module to encode the potential object parts. This procedure

is similar to the clustering/codebook learning for appearance in the constellation model [WWP00].

The cell feature clustering process generates a dense distance map. We further model the relation

between cells using a self-attention mechanism, resembling the spatial configuration design in the

constellation model [WWP00]. Thus, we name our method constellation networks (Constella-

tionNet). We demonstrate the effectiveness of our approach on standard few-shot benchmarks,

including FC100 [ORLL18], CIFAR-FS [BHTV19] and mini-ImageNet [VBL+16] by showing
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a significant improvement over the existing methods. An ablation study also demonstrates the

effectiveness of ConstellationNet is not achieved by simply increasing the model complexity using

e.g. more convolution channels or deeper and wider convolution layers (WRN-28-10 [ZK16])

(see ablation study in Table 3.3 and Figure 3.2 (e)).

3.2 Related Work

Few-Shot Learning. Recently, few-shot learning attracts much attention in the deep

learning community [SSZ17, LMRS19]. Current few-shot learning is typically formulated as a

meta-learning problem [FAL17], in which an effective feature embedding is learned for general-

ization across novel tasks. We broadly divide the existing few-shot learning approaches into three

categories: (1) Gradient-based methods optimize feature embedding with gradient descent during

meta-test stage [FAL17, BHTV19, LMRS19]. (2) Metric-based methods learn a fixed optimal

embedding with a distance-based prediction rule [VBL+16, SSZ17]. (3) Model-based methods

obtains a conditional feature embedding via a weight predictor [MRCA18, MYMT18]. Here

we adopt ProtoNet [SSZ17], a popular metric-based framework, in our approach and boost the

generalization ability of the feature embeddings with explicit structured representations from the

constellation model. Recently, [TWH19] proposes a compositional regularization to the image

with its attribute annotations, which is different from out unsupervised part-discovery strategy.

Part-Based Constellation/Discriminative Models. The constellation model family

[WWP00, FH05, FPZ03, STFW05, FFFP06, ZM07] is mostly generative/expressive that shares

two commonalities in the representation: (1) clustering/codebook learning in the appearance and

(2) modeling of the spatial configurations. The key difference among these approaches lies in how

the spatial configuration is modeled: Gaussian distributions [WWP00]; pictorial structure [FH05];

joint shape model [FPZ03] ; hierarchical graphical model [STFW05]; grammar-based [ZM07].

These constellation models represent a promising direction for object recognition but are not
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practical compared with deep learning based approaches. There are also discriminative models:

The discriminatively trained part-based model (DPM) [FGMR09] is a typical method in this vein

where object parts (as HOG features [DT05]) and their configurations (a star model) are learned

jointly in a discriminative way. The spatial pyramid matching method (SPM) [LSP06] has no

explicit parts but instead builds on top of different levels of grids with codebook learned on top of

the SIFT features [Low04]. DPM and SPM are of practical significance for object detection and

recognition. In our approach, we implement the constellation model with cell feature clustering

and attention-based cell relation modeling to demonstrate the appearance learning and spatial

configuration respectively.

Parts models are extensively studied in fine-grained image classifications and object

detection to provide spatial guidance for filtering uninformative object proposals [SR15, PHZ17,

ZZW+17, GLY19, QLL19]. Related to our work, Neural Activation Constellations (NAC)

[SR15] introduces the constellation model to perform unsupervised part model discovery with

convolutional networks. Our work is different from NAC in three aspects: (1) The algorithmic

mechanisms behind [SR15] and ours are different. [SR15] implements a traditional Gaussian-

based constellation module to model the spatial configuration and part selection on top of a

fixed pre-trained CNN. However, in our ConstellationNet, our part representation and spatial

configuration are modeled by cell feature clustering and self-attention based cell relation module,

which is general-purpose, modularized and recursive. (2) In [SR15] , the constellation module

is optimized in an EM-like algorithm, which is separate from the CNN optimization. Our

constellation modules are seamlessly integrated into the current CNNs and jointly optimized with

them. (3) Our ConstellationNet uses the dense cell features from the CNN feature maps, which

considers all positions from the images as potential parts and models their relation. However,

(Simon et al. 2015) extracts sparse part representations (i.e. it uses at most one part proposal per

channel and selects even less parts later), which may not fully utilize the rich information from

the CNN feature maps.
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Element-wise Sum

Figure 3.1: Illustration of our ConstellationNet pipeline where the bottom part is the network
architecture based on Conv-4 backbone, and the top part shows the constellation model. Our
proposed ConstellationNet consists of “Constell.” modules that perform explicit cell feature
clustering with self-attention for joint relation modeling.

3.3 Few-Shot Learning

In a standard classification problem, we aim to learn a model trained on the dataset Dbase

that can generalize its classification ability to unseen test set Dnovel belonging to same categories.

In few-shot classification problem, we encourage Dbase and Dnovel to be formed from different

categories to emphasize model’s generalization ability on novel categories, where we denote

training categories as Cbase, test categories as Cnovel, and Cbase∩Cnovel =∅ to ensure the fairness.

In the training stage (a.k.a. meta-train stage), metric-based few-shot learning approaches

[SSZ17, VBL+16, ORLL18] usually learn a feature extractor φ(x) on the dataset Dbase to obtain

generic feature embedding by optimizing the loss L(φ):

L(φ) = E{(x,y)}∼Dbaseℓ
(
{(φ(x),y)}

)
(3.1)

where {(x,y)} is a sampled mini-batch of data points and ℓ(·) is usually an episodic few-shot loss
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[VBL+16] or a standard cross-entropy loss [CLX+21].

In the inference stage (a.k.a. meta-test stage), a typical few-shot benchmark evaluates

the model on K-way, N-shot classification tasks T drawn from Dnovel, where each task has a

support set and a query set, i.e. T = (T supp,T query). The support set T supp contains K classes

and each class has N images (e.g. K = 5, N ∈ {1,5}). Following [SSZ17], the prediction ŷ′ of a

query image x′ ∈ T query is given by the label of nearest prototype ck from T supp under a cosine

similarity d(·, ·):

ŷ′ = argmax
k

d
(

φ(x′),ck

)
, ck =

1
N ∑

(x,y)∈T supp, y=k
φ(x). (3.2)

An extended description of the few-shot learning framework can be found from Appendix A.1.1.

The generalization ability of the feature extractor φ(x) is improved in terms of training scheme

(e.g. episodic learning [VBL+16]), network design (e.g. task condition [ORLL18]) or objective

function (e.g. learnable distance [SYZ+18]). In our method, we propose a novel network design

by inserting constellation models into CNNs and strengthen the intermediate features.

3.4 Constellation Model

The concept of constellation has been introduced to the few-shot learning scenario in early

years [FFFP06], in which the appearance and the shape are independently learned in a mixture

model. In our work, we revisit the constellation model in an end-to-end learning framework:

First, we define the cell feature as the individual local feature at a position in the feature map (see

Figure 3.1). We then employ cell feature clustering to model the underlying distribution of input

cell features, implying a part discovery procedure. We further obtain the distance map of the cell

features from clustering and then perform cell relation modeling to build spatial relationship.
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3.4.1 Cell Feature Clustering

In convolutional neural networks (CNNs), the convolutional filters are learned to detect

the discriminative patterns from low-level to high-level through back-propagation [ZF14]. In fact,

the backward signal in the back-propagation is not necessarily needed to obtain a pattern detector.

With the feature map in the forward step of the CNN, we are able to cluster the individual features

at each location of the feature map (a.k.a. cell features) into multiple centers and employ the

cluster centers as filters [CN12, KDDD15]. Assume we obtain a convolutional feature map U with

batch size B, spatial size H×W and channels C. We disensemble the feature map U∈RB×H×W×C

into a cell features set U = {u1,u2, ...,un} where n = BHW and ui ∈RC is a cell feature. Naively,

we can conduct a k-means algorithm on input cell features U to solve the clustering objective:

min∑
i

∑
k

mik||ui−vk||22 s.t. mik ∈ {0,1}, ∑
k

mik = 1 (3.3)

where V = {v1,v2, ...,vK} is a set of cluster centers and mik indicates if the input cell feature

ui is assigned to cluster center vk. The clustering-based filters V can model the underlying cell

feature distributions and capture the most frequent features, which can be explicitly interpreted as

meaningful part patterns/part types. The hard assignment map mi = (mi1,mi2, ...,miK) of input

cell feature ui onto the cluster centers can be used as a part-based representation, providing

alternative information to the next layer in the CNN.

However, there are two issues remaining unsolved in the naive design: Firstly, CNNs

are typically optimized in a stochastic gradient descent (SGD) manner. Thus, in each forward

step, only a mini-batch of images are proceeded to provide cell features, which implies that the

cluster centers cannot extract the global feature distribution across the whole dataset. Secondly,

the hard assignment map has limited information due to its discrete representation. Therefore,

inspired by [Scu10], we design a mini-batch soft k-means algorithm to cluster the cell features

approximately:
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• Initialization. Randomly initialize global cluster centers V = {v1,v2, ...,vK} and a counter

s = (s1,s2, ...,sK) = 0.

• Cluster Assignment. In forward step, given input cell features U = {u1,u2, ...,un}, we

compute the distance vector di = (di1,di2, ...diK) between input cell feature ui and all

cluster centers V . We then compute the soft assignment mik ∈ R and generate the current

mini-batch centers v′k:

dik = ||ui−vk||22, mik =
e−βdik

∑ j e−βdi j
, v′k =

∑i mikui

∑i mik
(3.4)

where β > 0 is an inverse temperature.

• Centroid Movement. We formulate a count update ∆s = ∑i mi by summing all assignment

maps mi = (mi1,mi2, ...miK). The current mini-batch centers v′k are then updated to the

global centers vk with a momentum coefficient η:

vk← (1−η)vk +ηv′k, η =
λ∆sk

sk +∆sk
(3.5)

• Counter Update. Counter s is updated and distance vectors {di} are reshaped and returned:

s← s+∆s (3.6)

With gradually updating global cluster centers, the above algorithm is able to address the

issue of limited data in a mini-batch. In addition, we reshape the distance vectors {di} of all input

cell features to a distance map D ∈ RB×H×W×K . Each distance vector di can be seen as a learned

cell code in codebook (dictionary) learning, which encodes a soft assignment of the visual word

(i.e. cell feature) onto the codewords (i.e. cluster centers) and implies a part representation. The

distance map D then can be viewed as a cell code map that represents a spatial distribution of
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identified parts, which is passed to following layers. Empirically, it is observed that when ui

and vk are L2 normalized, the training procedure is more stable and the Euclidean distance dik

is equivalent to a cosine similarity up to an affine transformation. Details of the cell feature

clustering can be found in Appendix A.1.9.

3.4.2 Cell Relation and Spatial Configuration Modeling

Before the deep learning era, traditional constellation models [FFFP06] decompose visual

information into appearance and shape representation. The appearance of different parts in the

image is treated independently while the shape of parts is assumed to have spatial connections.

In our constellation model, we establish the spatial relationship among the individual part-

based representations at a different location from the distance map as well. Specifically, we

apply the self-attention mechanism [VSP+17] to build the spatial relationship and enhance the

representation instead of using probabilistic graphical models in prior work [FFFP06].

In cell relation modeling, we add a positional encoding P ∈ RB×H×W×C following

[CMS+20] for spatial locations to the distance map D and obtain the input feature map FI

for query and key layers. For value layer, we directly flatten the distance map D to another input

feature map F′I:

FI = SpatialFlatten(D+P) ∈ RB×HW×K, F′I = SpatialFlatten(D) ∈ RB×HW×K (3.7)

The input feature maps FI,F′I are transformed into query, key and value {Fq, Fk, Fv} ⊂

RB×HW×K by three linear layers {Wq, Wk, Wv} ⊂RK×K and further computes the output feature

FA:

[Fq,Fk,Fv] = [FIWq,FIWk,F′IW
v] (3.8)

FA = Att(Fq,Fk,Fv) = softmax
(

Fq(Fk)⊤√
K

)
Fv (3.9)
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The softmax of dot product between query and key matrix Fq(Fk)⊤ ∈ RB×HW×HW calculates

the similarity scores in the embedding space among features across the spatial dimension. This

encodes the spatial relationship of input features and leads to an enhanced output feature repre-

sentation FA. Besides,
√

K in the denominator is to stabilize the gradient. In practice, we adopt a

multi-head attention to model the feature relation in the embedding subspaces:

FMHA = MultiHeadAtt(Fq,Fk,Fv) = [F1, ...,FJ]W, F j = Att(Fq
j ,F

k
j,F

v
j) (3.10)

In a J-head attention, the aforementioned similarity scores in the K′ = K
J dimensional embedding

subspace are calculated using the query, key and value from j-th head, i.e. {Fq
j , Fk

j, Fv
j} ⊂

RB×HW×K′ . The output features F j of each head are computed following Eq. 3.9. All the

output features {F1, ...,FJ} are concatenated back into K dimension embedding and further

processed with a linear layer W ∈ RK×K to generate multi-head output features FMHA. Such

multi-head attention settings could provide more diverse feature relation without introducing

extra parameters.

3.4.3 Integrate Constellation Model with CNNs

Our constellation model has the capability to capture explicit structured features and

encodes spatial relation among the cell features. The output features yield informative visual

cues which are able to strengthen the convolutional features. Thus, as shown in Figure 3.1,

we place the constellation model after the convolution operation to extract its unique explicit

features and concatenate them with the original convolutional feature map. A following 1×1

convolutional layer is used on the concatenated features to restore the channels of convolutional

feature map. In Table 3.3, we provide evidence that merging features from constellation model to

the CNN backbone can significantly improve the representation ability. In contrast, increasing

channels in CNNs alone to double the parameters (second row in Table 3.3) can only improve the
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performance marginally. Optionally, we found it is useful to adopt auxiliary loss when training

the constellation model in deeper networks (e.g. ResNet-12). On top of each constellation model,

we conduct a standard classification to acquire additional regularization.

3.4.4 Why Clustering and Self-attention?

As described in Section 3.1 and 3.2, classical constellation models [FPZ03, FH05] extract

parts with their spatial relationship; they are expressive but do not produce competitive results

on modern image benchmarks. CNN models [KSH12, HZRS16] attain remarkable results on

large-scale image benchmarks [DDS+09] but they are limited when training data is scarce. We

take the inspiration from the traditional constellation models, but with a realization that overcomes

their previous modeling limitations.

The main contribution of our work is a constellation module/block that performs cell-wise

clustering, followed by self-attention on the clustering distance map + positional encoding.

This separates our work from previous attempts, e.g. non-local block work [WGGH18] in which

long-range non-linear averaging is performed on the convolution features (no clustering, nor

positional encoding for the spatial configuration). The main properties of our constellation

block include: (1) Cell based dense representation as opposed to the sparse part representation

in [WWP00] to make the cells recursively modeled in the self-attention unit in a modularized

and general-purpose way. (2) Clustering to generate the cell code after clustering (codebook

learning) that attains abstraction and is not dependent on the CNN feature dimensions. (3)

Positional encoding (as in [CMS+20]) for cells to encode the spatial locations. (4) Tokenized

representation as expressive parts (code/clustering distance map + positional encoding) for the

cells. (5) Self-attention to jointly model the cell code and positional encoding to capture the

relationship between the parts together with their spatial configurations.
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3.5 Experiment

3.5.1 Datasets

We adopt three standard benchmark datasets that are widely used in few-shot learning,

CIFAR-FS dataset [BHTV19], FC100 dataset [ORLL18], and mini-ImageNet dataset [VBL+16].

Details about dataset settings in few-shot learning are in Appendix A.1.2.

3.5.2 Network with Multi-Branch

We build ConstellationNet on two ProtoNet variants, namely Conv-4 and ResNet-12,

which are commonly used in few-shot learning. Details of networks and the optimization are in

Appendix.

We develop a new technique, Multi-Branch, to optimize standard classification loss and

prototypical loss simultaneously. We find the two training schemes, standard classification scheme

and prototypical scheme, can be a companion rather than a conflict. Details of these two schemes

can be found from Appendix A.1.1. Different from standard network backbone used in prior

works, our embedding φ(x) is separated into two branches after a shared stem (Y-shape). Details

of our multi-branch design are elaborated in A.1.10. The detailed ablation study is described in

Table 3.3.

Feature Augmentation. During the meta-testing stage, we discover that concatenating

features before average pooling to the final output can improve classification accuracy. The

advantage of this technique is that no additional training and model parameters are introduced.

3.5.3 Results on Standard Benchmarks

Table 3.1 and 3.2 summarize the results of the few-shot classification tasks on CIFAR-FS,

FC100, and mini-ImageNet, respectively. Our method shows a notable improvement over several

38



strong baselines in various settings. ConstellationNet significantly improves the performance

on shallow networks (Conv-4). In Table 3.2, our model outperforms SIB [HMX+20] 1-shot by

0.6% and 5-shot by 5.6%. In Table 3.1, our model outperforms MetaOptNet [LMRS19] by 5.95%

in 1-shot and 6.24% in 5-shot. For deep networks with rich features, the constellation module

still contributes to the performance, showing its complementary advantage to convolution. Our

ResNet-12 model beats [LMRS19] 1-shot result by 2.7% on FC100, 3.4% on CIFAR-FS, and

1.72% on mini-ImageNet. The consistent improvement over both shallow and deep networks

across all three datasets shows the generality of our method. Our ConstellationNet is orthogonal

to the margin loss based methods [LCL+20, LHL+20], and we also do not use extra cross-

modal information [XROOP19, LHL+20]. On the contrary, our model enhances the embedding

generalization ability by incorporating its own part-based representation. Additionally, to verify

the orthogonality of our method, we adapt the negative margin loss following [LCL+20] to our

Conv-4 models in Appendix A.1.8. We observe ConstellationNet with negative margin brings

0.52% improvement to ConstellationNet, and obtains 6.93% gain compared with baseline on

mini-ImageNet.

3.6 Model Analysis

3.6.1 Architecture Alternatives

In Table 3.3, we first study the role of each module in ConstellationNet, where the number

of parameters is controlled approximately equivalent to the baseline’s size. Our constellation

model brings 6.41% and 2.59% improvements over baseline on 1-shot Conv-4 and ResNet-

12 results. Combined with our multi-branch training procedure, the model further improves

additional 1.34% and 1.26% on 1-shot Conv-4 and ResNet-12, respectively. Finally, feature

augmentation from penultimate layer to final output embedding brings additional 0.45% and

0.27% improvements on two variants.
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Table 3.1: Comparison to prior work on mini-ImageNet. Average 5-way classification
accuracies (%) on mini-ImageNet meta-test split are reported with 95% confidence intervals.
Results of prior works are adopted from [LMRS19] and original papers. † used extra cross-
modal information.

Model Backbone mini-ImageNet 5-way

1-shot 5-shot
Meta-Learning LSTM [RL17] Conv-4 43.44 ± 0.77 60.60 ± 0.71
Matching Networks [VBL+16] Conv-4 43.56 ± 0.84 55.31 ± 0.73
Prototypical Networks [SSZ17] Conv-4 49.42 ± 0.78 68.20 ± 0.66
Transductive Prop Nets [LLP+19] Conv-4 55.51 ± 0.86 69.86 ± 0.65
MetaOptNet [LMRS19] Conv-4 52.87 ± 0.57 68.76 ± 0.48
Negative Margin [LCL+20] Conv-4 52.84 ± 0.76 70.41 ± 0.66

ConstellationNet (ours) Conv-4 58.82 ± 0.23 75.00 ± 0.18

SNAIL [MRCA18] ResNet-12 55.71 ± 0.99 68.88 ± 0.92
TADAM [ORLL18] ResNet-12 58.50 ± 0.30 76.70 ± 0.30
TapNet [YSM19] ResNet-12 61.65 ± 0.15 76.36 ± 0.10
Variational FSL [ZZN+19] ResNet-12 61.23 ± 0.26 77.69 ± 0.17
MetaOptNet [LMRS19] ResNet-12 62.64 ± 0.61 78.63 ± 0.46
CAN [HCB+19] ResNet-12 63.85 ± 0.48 79.44 ± 0.34
SLA-AG [LHS20] ResNet-12 62.93 ± 0.63 79.63 ± 0.47
Meta-Baseline [CLX+21] ResNet-12 63.17 ± 0.23 79.26 ± 0.17
AM3 [XROOP19] † ResNet-12 65.21 ± 0.30 75.20 ± 0.27
ProtoNets + TRAML [LHL+20] ResNet-12 60.31 ± 0.48 77.94 ± 0.57
AM3 + TRAML [LHL+20] † ResNet-12 67.10 ± 0.52 79.54 ± 0.60
Negative Margin [LCL+20] ResNet-12 63.85 ± 0.81 81.57 ± 0.56

ConstellationNet (ours) ResNet-12 64.89 ± 0.23 79.95 ± 0.17

We also test the baseline model with extra channels in the Table 3.3. The new model only

shows slight improvements over original baseline, and is outperformed by our ConstellationNet

with a large margin. We also obtain WRN-28-10 baseline results to validate our improvement.

While making ResNet baselines deeper and wider, our ConstellationNet still outperforms this

strong baseline. In Figure 3.2 (e), we further study whether the performance gap between

ConstellationNet and baseline can be reduced by simply altering the baseline’s model complexity

using e.g. more convolution channels. Although the trend of baseline accuracy increases when

increasing the model parameter number gradually, the performance gap is still significant. This

validates our concept that modeling hierarchical part structures can greatly benefit features

learned from convolution operation, and obtain a more robust feature representation. In addition,
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Table 3.2: Comparison to prior work on FC100 and CIFAR-FS. Average 5-way classification
accuracies (%) on CIFAR-FS and FC100 meta-test split are reported with 95% confidence
intervals. Results of prior works are adopted from [LMRS19] and original papers.

Model Backbone CIFAR-FS 5-way FC100 5-way

1-shot 5-shot 1-shot 5-shot
MAML [FAL17] Conv-4 58.9 ± 1.9 71.5 ± 1.0 - -
Prototypical Networks [SSZ17] Conv-4 55.5 ± 0.7 72.0 ± 0.6 - -
Relation Networks [SYZ+18] Conv-4 55.0 ± 1.0 69.3 ± 0.8 - -
R2D2 [BHTV19] Conv-4 65.3 ± 0.2 79.4 ± 0.1 - -
SIB [HMX+20] Conv-4 68.7 ± 0.6 77.1 ± 0.4 - -

ConstellationNet (ours) Conv-4 69.3 ± 0.3 82.7 ± 0.2 - -

Prototypical Networks [SSZ17] ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
TADAM [ORLL18] ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4
MetaOptNet-RR [LMRS19] ResNet-12 72.6 ± 0.7 84.3 ± 0.5 40.5 ± 0.6 55.3 ± 0.6
MetaOptNet-SVM [LMRS19] ResNet-12 72.0 ± 0.7 84.2 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

ConstellationNet (ours) ResNet-12 75.4 ± 0.2 86.8 ± 0.2 43.8 ± 0.2 59.7 ± 0.2

Table 3.3: Effectiveness of modules. Average classification accuracies (%) on mini-ImageNet
meta-test split. We compare our ConstellationNet with alternative architectures including the
baseline and the modified baseline with extra channels based on Conv-4 and ResNet-12. We
also include a baseline with WideResNet-28-10 [ZK16] backbone for comparison.

Baseline
Cell Cell Multi Feature Extra 1x1 #Params Conv-4 ResNet-12Feature Relation

Clustering Modeling Branch Augment Channels Convolution Conv-4/Res-12 1-shot 5-shot 1-shot 5-shot

✓ 117K/8.0M 50.62 ± 0.23 68.40 ± 0.19 60.77 ± 0.22 78.76 ± 0.17
✓ ✓ 222K/16M 51.76 ± 0.22 69.54 ± 0.18 61.45 ± 0.22 79.33 ± 0.16
✓ ✓ 146K/8.3M 53.34 ± 0.23 70.61 ±0.19 62.24 ± 0.23 79.55 ± 0.16
✓ ✓ 184K/9.7M 55.92 ± 0.23 73.02 ± 0.18 62.75 ± 0.23 79.21 ± 0.17
✓ ✓ ✓ 192K/8.4M 55.46 ± 0.23 72.52 ± 0.18 61.54 ± 0.24 76.51 ± 0.18
✓ ✓ ✓ 200K/8.4M 57.03 ± 0.23 74.09 ± 0.18 63.36 ± 0.23 79.72 ± 0.17
✓ ✓ ✓ ✓ 200K/8.4M 58.37 ± 0.23 74.52 ± 0.18 64.62 ± 0.23 79.60 ± 0.17
✓ ✓ ✓ ✓ ✓ 200K/8.4M 58.82 ± 0.23 75.00 ± 0.18 64.89 ± 0.23 79.95 ± 0.17

WRN WideResNet-28-10

✓ ✓ 36.5M 61.54 ± 0.25 79.41 ± 0.23

applying self-attention on the distance map (6-th row: 57.03% on Conv-4, 1-shot) achieves better

performance than directly applying it to the original cell features (i.e. convolutional feature map)

(4-th row: 55.92% on Conv-4, 1-shot). We also tried to replace the cell feature clustering module

with a 1x1 convolution layer (output dimension is equal to the number of clusters) (5-th row:

55.46% on Conv-4, 1-shot). It is worse than our results (6-th row) as well. We observe that the

1x1 convolution layer is less expressive than the cell feature clustering module, making it difficult
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to extract enough context information during cell relation modeling.

3.6.2 Modules Analysis

Figure 3.2: Modules analysis. (a, b, c, d) We study the effectiveness of changing the number of
clusters, the number of heads in attention layer, and the layer indices with constellation based
on Conv-4, (e) We demonstrate the performance gain of our ConstellationNet is unmatched by
increasing the model complexity of our baselines. All experiments are done on mini-ImageNet.

In Figure 3.2 (a), we vary the number of clusters adapted in all layers to observe the

performance change. We found that increasing the number of clusters improves the accuracy in

general, and set clusters to 64 is optimal in terms of both model size and classification performance.

Figure 3.2 (b) shows the number of attention heads does not effect performance as much as the

number of cluster, and 8-head attention obtains 1.80% performance gain on the 1-shot setting

compared to 1-head attention. In Figure 3.2 (c, d), we also study the effectiveness of clustering

algorithm applied to different layers. The results show both early features and high-level features

benefit from introducing clusters algorithm into the original CNN architecture.

3.6.3 Visualization

Figure 3.3 demonstrates the visualization of cluster centers in each layer of Conv-4 model

on mini-ImageNet. In the upper part of the figure, each image shows patches corresponding to

the nearest cell features to a cluster center (i.e. with lowest Euclidean distance). It is observed

that clusters in early layers (e.g. layer 1,2) represent simple low-level patterns while the clusters
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Unicycle wheels
(w/ human legs)
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Layer 1 Layer 2 Layer 3 Layer 4

Figure 3.3: Visualization of cluster centers. (Upper) We visualize four cluster centers in
each layer by showing patches associated with cell features that have the nearest distance to the
clustering center. (Lower) Identifying parts from two cluster centers in layer 4: Left one with
green box represents various types of legs. Right one with red box mostly shows beetles and
bird’s head, sharing a dotted structure.

in high layers (e.g. layer 3,4) indicate more complex structures and parts. In the lower part of the

figure, we choose two cluster centers from layer 4 for further interpretation: The left one with

green box could possibly represent legs since it consists of various types of legs from human,

dog and other animals. The right one with the red box shows most nearest cell features to this

cluster center are parts with bird’s head or beetles, which share a dotted structure (i.e. black dots

on beetles / eyes on bird’s head).

The left side of Figure 3.4 shows the visualization of cell features that are assigned to

different clusters. For each image, we extract the assignment maps corresponding to three cluster

centers generated in the last constellation module of Conv-4 and find multiple cell features with

the highest assignments within each assignment map. The locations of cell features are projected

back in the original image space, marked by three different colors of “·” in the raw image to show

three different feature clusters. For a given class of images, the same cluster centers are selected
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Figure 3.4: Visualization of the cells assignment and attention maps. (Left) Each color
represents a cluster, and each point, marked as “·”, represents a cell assigned to a cluster center.
We demonstrate 6 samples for each class (bird, dog and tank). (Right) We visualize attention
maps of one query feature (at the location of red point in left part) with all key features. The
middle part shows the attention maps corresponding to 8 heads in the multi-head attention. The
right part shows an overlapped map of all attention maps.

for comparison across 6 samples. As shown in Figure 3.4, we observe part information of each

class is explicitly discovered. For the bird category, we can see different parts in each image,

including head (cyan “·”), body (purple “·”) and tail (yellow “·”). For the dog category, we see

parts including heads (red “·”), legs (green “·”) and body (blue “·”). For the tank category, we see

parts like track (light blue “·”) and turret (pink “·”).

The right side of Figure 3.4 visualizes the attention maps in the cell relation model. We

use the last constellation module in the ResNet-12 model for visualization since it captures

high-level features that better represent parts. We choose one query feature at the center of the

object and show its attention map to all key features. The middle part of the figure shows the

attention maps corresponding to 8 heads in the multi-head attention. It is observed that some

parts are identified such as head (second map in first row), legs (first two map in second row),

buttock (first map in first row) and body (second map in the second row). A merged attention

map by overlaying all 8 attention maps is presented at right part of the figure. It indicates that all

the attention heads together can extract the features of the whole object, which would be useful

for final classification.
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3.7 Conclusion

In this work, we present ConstellationNet by introducing an explicit feature clustering

procedure with relation learning via self-attention. We implement a mini-batch soft k-means

algorithm to capture the cell feature distribution. With integrated implicit (standard CNN modules)

and explicit (cell feature clustering + cell relation modeling) representations, our proposed

ConstellationNet achieves significant improvement over the competing methods on few-shot

classification benchmarks.
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Part II

Multi-Scale Structures in Transformers
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Chapter 4

Co-Scale Conv-Attentional Transformers

4.1 Introduction

A notable recent development in artificial intelligence is the creation of attention mecha-

nisms [XBK+15] and Transformers [VSP+17], which have made a profound impact in a range of

fields including natural language processing [DCLT19, RNSS18], document analysis [XLC+20],

speech recognition [DXX18], and computer vision [DBK+21, CMS+20]. In the past, state-of-

the-art image classifiers have been built primarily on convolutional neural networks (CNNs)

[LBBH98, KSH12, SLJ+15, SZ15, HZRS16, XGD+17] that operate on layers of filtering pro-

cesses. Recent developments [TCD+21, DBK+21] however begin to show encouraging results

for Transformer-based image classifiers.

In essence, both the convolution [LBBH98] and attention [XBK+15] operations address

the fundamental representation problem for structured data (e.g. images and text) by modeling

the local contents, as well as the contexts. The receptive fields in CNNs are gradually expanded

through a series of convolution operations. The attention mechanism [XBK+15, VSP+17] is,

however, different from the convolution operations: (1) the receptive field at each location or token

in self-attention [VSP+17] readily covers the entire input space since each token is “matched”
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Figure 4.1: Model Size vs. ImageNet Accuracy. Our CoaT model significantly outperforms
other image Transformers. Details are in Table 4.2.

with all tokens including itself; (2) the self-attention operation for each pair of tokens computes

a dot product between the “query” (the token in consideration) and the “key” (the token being

matched with) to weight the “value” (of the token being matched with).

Moreover, although the convolution and the self-attention operations both perform a

weighted sum, their weights are computed differently: in CNNs, the weights are learned during

training but fixed during testing; in the self-attention mechanism, the weights are dynamically

computed based on the similarity or affinity between every pair of tokens. As a consequence,

the self-similarity operation in the self-attention mechanism provides modeling means that are

potentially more adaptive and general than convolution operations. In addition, the introduction of

position encodings and embeddings [VSP+17] provides Transformers with additional flexibility

to model spatial configurations beyond fixed input structures.

Of course, the advantages of the attention mechanism are not given for free, since the

self-attention operation computes an affinity/similarity that is more computationally demanding

than linear filtering in convolution. The early development of Transformers has mainly focused

48



on natural language processing tasks [VSP+17, DCLT19, RNSS18] since text is “shorter” than

an image, and text is easier to tokenize. In computer vision, self-attention has been adopted to

provide added modeling capability for various applications [WGGH18, XLCT18, ZJK20]. With

the underlying framework increasingly developed [DBK+21, TCD+21], Transformers start to

bear fruit in computer vision [CMS+20, DBK+21] by demonstrating their enriched modeling

capabilities.

In the seminal DEtection TRansformer (DETR) [CMS+20] algorithm, Transformers

are adopted to perform object detection and panoptic segmentation, but DETR still uses CNN

backbones to extract the basic image features. Efforts have recently been made to build image

classifiers from scratch, all based on Transformers [DBK+21, TCD+21, WXL+21]. While

Transformer-based image classifiers have reported encouraging results, performance and design

gaps to the well-developed CNN models still exist. For example, in [DBK+21, TCD+21], an input

image is divided into a single grid of fixed patch size. In this work, we develop Co-scale conv-

attentional image Transformers (CoaT) by introducing two mechanisms of practical significance

to Transformer-based image classifiers. The contributions of our work are summarized as follows:

• We introduce a co-scale mechanism to image Transformers by maintaining encoder

branches at separate scales while engaging attention across scales. Two types of build-

ing blocks are developed, namely a serial and a parallel block, realizing fine-to-coarse,

coarse-to-fine, and cross-scale image modeling.

• We design a conv-attention module to realize relative position embeddings with convolu-

tions in the factorized attention module that achieves significantly enhanced computation

efficiency when compared with vanilla self-attention layers in Transformers.

Our resulting Co-scale conv-attentional image Transformers (CoaT) learn effective representations

under a modularized architecture. On the ImageNet benchmark, CoaT achieves state-of-the-art

classification results when compared with the competitive convolutional neural networks (e.g.
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EfficientNet [TL19]), while outperforming the competing Transformer-based image classifiers

[DBK+21, TCD+21, WXL+21], as shown in Figure 4.1.

4.2 Related Works

Our work is inspired by the recent efforts [DBK+21, TCD+21] to realize Transformer-

based image classifiers. ViT [DBK+21] demonstrates the feasibility of building Transformer-

based image classifiers from scratch, but its performance on ImageNet [RDS+15] is not achieved

without including additional training data; DeiT [TCD+21] attains results comparable to convolution-

based classifiers by using an effective training strategy together with model distillation, removing

the data requirement in [DBK+21]. Both ViT [DBK+21] and DeiT [TCD+21] are however based

on a single image grid of fixed patch size.

The development of our co-scale conv-attentional Transformers (CoaT) is motivated by

two observations: (1) multi-scale modeling typically brings enhanced capability to representation

learning [HZRS16, RFB15, WSC+20]; (2) the intrinsic connection between relative position

encoding and convolution makes it possible to carry out efficient self-attention using conv-like

operations. As a consequence, the superior performance of the CoaT models shown in the

experiments comes from two of our new designs in Transformers: (1) a co-scale mechanism that

allows cross-scale interaction; (2) a conv-attention module to realize an efficient self-attention

operation. Next, we highlight the differences of the two proposed modules with the standard

operations and concepts.

• Co-Scale vs. Multi-Scale. Multi-scale approaches have a long history in computer vision

[Wit84, Low04]. Convolutional neural networks [LBBH98, KSH12, HZRS16] naturally

implement a fine-to-coarse strategy. U-Net [RFB15] enforces an extra coarse-to-fine

route in addition to the standard fine-to-coarse path; HRNet [WSC+20] provides a further

enhanced modeling capability by keeping simultaneous fine and coarse scales throughout
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the convolution layers. In a parallel development [WXL+21] to ours, layers of different

scales are in tandem for the image Transformers but [WXL+21] merely carries out a fine-to-

coarse strategy. The co-scale mechanism proposed here differs from the existing methods

in how the responses are computed and interact with each other: CoaT consists of a series

of highly modularized serial and parallel blocks to enable attention with fine-to-coarse,

coarse-to-fine, and cross-scale information on tokenized representations. The joint attention

mechanism across different scales in our co-scale module provides enhanced modeling

power beyond existing vision Transformers [DBK+21, TCD+21, WXL+21].

• Conv-Attention vs. Attention. Pure attention-based models [RPV+19, HZXL19, ZJK20,

DBK+21, TCD+21] have been introduced to the vision domain. [RPV+19, HZXL19,

ZJK20] replace convolutions in ResNet-like architectures with self-attention modules for

better local and non-local relation modeling. In contrast, [DBK+21, TCD+21] directly

adapt the Transformer [VSP+17] for image recognition. Recently, there have been works

[Bel21, CZT+21] enhancing the attention mechanism by introducing convolution. Lamb-

daNets [Bel21] introduce an efficient self-attention alternative for global context modeling

and employ convolutions to realize the relative position embeddings in local context model-

ing. CPVT [CZT+21] designs 2-D depthwise convolutions as the conditional positional

encoding after self-attention. In our conv-attention, we: (1) adopt an efficient factorized

attention following [Bel21]; (2) extend it to be a combination of depthwise convolutional

relative position encoding and convolutional position encoding, related to CPVT [CZT+21].

Detailed discussion of our network design and its relation with LambdaNets [Bel21] and

CPVT [CZT+21] can be found in Section 4.4.1 and 4.4.2.
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4.3 Revisit Scaled Dot-Product Attention

Transformers take as input a sequence of vector representations (i.e. tokens) x1, ...,xN ,

or equivalently X ∈ RN×C. The self-attention mechanism in Transformers projects each xi

into corresponding query, key, and value vectors, using learned linear transformations W Q,

W K , and WV ∈ RC×C. Thus, the projection of the whole sequence generates representations

Q,K,V ∈ RN×C. The scaled dot-product attention from original Transformers [VSP+17] is

formulated as :

Att(X) = softmax
(

QK⊤√
C

)
V (4.1)

In vision Transformers [DBK+21, TCD+21], the input sequence of vectors is formulated

by the concatenation of a class token CLS and the flattened feature vectors x1, ...,xHW as image

tokens from the feature maps F ∈ RH×W×C, for a total length of N = HW + 1. The softmax

logits in Equation 4.1 become not affordable for high-resolution images (i.e. N≫C) due to its

O(N2) space complexity and O(N2C) time complexity. To reduce the length of the sequence,

ViT [DBK+21, TCD+21] tokenizes the image by patches instead of pixels. However, the coarse

splitting (e.g. 16×16 patches) limits the ability to model details within each patch. To address

this dilemma, we propose a co-scale mechanism that provides enhanced multi-scale image

representation with the help of an efficient conv-attentional module that lowers the computation

complexity for high-resolution images.

4.4 Conv-Attention Module

4.4.1 Factorized Attention Mechanism

In Equation 4.1, the materialization of the softmax logits and attention maps leads to

the O(N2) space complexity and O(N2C) time complexity. Inspired by recent works [CLD+21,

SZZ+21, Bel21] on linearization of self-attention, we approximate the softmax attention map
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N ⇥ C

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

Depthwise Conv

reshape

<latexit sha1_base64="gCWcveOpRcv7c4laoKcpyWoAeYU=">AAAB+nicbVC7TsMwFHV4tZRXCiOLRYXEVCUMwEalLhVTkehDaqPKcZ3WquNE9g1VFfonsDCAECtfwsY3sLOC+xig5UiWj865V/fe48eCa3CcD2tldW19I5PdzG1t7+zu2fn9uo4SRVmNRiJSTZ9oJrhkNeAgWDNWjIS+YA1/UJ74jVumNI/kDYxi5oWkJ3nAKQEjdex8pQ08ZBo35n+5YxecojMFXibunBQuv+6/PzNXw2rHfm93I5qETAIVROuW68TgpUQBp4KNc+1Es5jQAemxlqGSmDFeOl19jI+N0sVBpMyTgKfq746UhFqPQt9UhgT6etGbiP95rQSCCy/lMk6ASTobFCQCQ4QnOeAuV4yCGBlCqOJmV0z7RBEKJq2cCcFdPHmZ1E+L7lnRvXYKJQfNkEWH6AidIBedoxKqoCqqIYqG6AE9oWfrznq0XqzXWemKNe85QH9gvf0Af/mX5g==</latexit>

H ⇥W ⇥ C

reshape

concat

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

<latexit sha1_base64="5ewkXw24Xj/axQ4aqODOZAF40uU=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhF09SwX5gG8pmu2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gXJ/57SeujYjVA04S7kd0qEQoGEUrPd6RHoqIG1Lvlytu1Z2DrBIvJxXI0eiXv3qDmKURV8gkNabruQn6GdUomOTTUi81PKFsTIe8a6mido2fzS+ekjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J442dCJSlyxRaLwlQSjMnsfTIQmjOUE0so08LeStiIasrQhlSyIXjLL6+S1kXVu6p695eVmpvHUYQTOIVz8OAaanALDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MHjDmQIQ==</latexit>

N ⇥ C

Factorized
Attention

Convolutional 
Relative Position

Encoding

Convolutional Relative Position Encoding

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P…

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="Kk581vKii6sNAjwOjTO0Dq5wlPA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBBI8V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iJOE+xEdKBEKRtFK7e6QYnbXnPbKFbfqzkFWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8mmpmxqeUDaiA96xVNGIGz+b3zslZ1bpkzDWthSSufp7IqORMZMosJ0RxaFZ9mbif14nxfDGz4RKUuSKLRaFqSQYk9nzpC80ZygnllCmhb2VsCHVlKGNqGRD8JZfXiXNi6p3VfUeLis1N4+jCCdwCufgwTXU4B7q0AAGEp7hFd6csfPivDsfi9aCk88cwx84nz8JUY/q</latexit>

ÊV

Convolutional Relative Position Encoding

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P…

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ <latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

<latexit sha1_base64="Kk581vKii6sNAjwOjTO0Dq5wlPA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBBI8V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iJOE+xEdKBEKRtFK7e6QYnbXnPbKFbfqzkFWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8mmpmxqeUDaiA96xVNGIGz+b3zslZ1bpkzDWthSSufp7IqORMZMosJ0RxaFZ9mbif14nxfDGz4RKUuSKLRaFqSQYk9nzpC80ZygnllCmhb2VsCHVlKGNqGRD8JZfXiXNi6p3VfUeLis1N4+jCCdwCufgwTXU4B7q0AAGEp7hFd6csfPivDsfi9aCk88cwx84nz8JUY/q</latexit>

ÊV

<latexit sha1_base64="boTMl6NO5OSwzJIJRP1dMHzPyuI=">AAAB9XicbVC7SgNBFJ31mcRX1NJmMAgWEnYt1DJgY5mAeUCyCbOzs8mQ2dll5q4alm1s/AUbC0XsxH+x82t08ig08cCFwzn3cu89Xiy4Btv+spaWV1bX1nP5wsbm1vZOcXevoaNEUVankYhUyyOaCS5ZHTgI1ooVI6EnWNMbXo795g1TmkfyGkYxc0PSlzzglICRurVu2gF2BykP+1nWK5bssj0BXiTOjJQq+Qf//fv+pNorfnb8iCYhk0AF0brt2DG4KVHAqWBZoZNoFhM6JH3WNlSSkGk3nVyd4SOj+DiIlCkJeKL+nkhJqPUo9ExnSGCg572x+J/XTiC4cFMu4wSYpNNFQSIwRHgcAfa5YhTEyBBCFTe3YjogilAwQRVMCM78y4ukcVp2zspOzaRhoyly6AAdomPkoHNUQVeoiuqIIoUe0TN6sW6tJ+vVepu2LlmzmX30B9bHDwxQloE=</latexit>

Qimg
<latexit sha1_base64="q8NZ5bgOf7WwavqP5IGTEcO0Ll8=">AAAB9XicbVC5TgMxEPVyhnCFo6OxiJCool0KoCMSBZRBIoeUbCKv4yRWbO/KngXCav+DhgKEKKHhS+go+ROco4CEJ4309N6MZuYFkeAGXPfLmZtfWFxazqxkV9fWNzZzW9sVE8aasjINRahrATFMcMXKwEGwWqQZkYFg1aB/PvSrN0wbHqprGETMl6SreIdTAlZqVppJA9gdJFx207SVy7sFdwQ8S7wJyZ993H9fvO0mpVbus9EOaSyZAiqIMXXPjcBPiAZOBUuzjdiwiNA+6bK6pYpIZvxkdHWKD6zSxp1Q21KAR+rviYRIYwYysJ2SQM9Me0PxP68eQ+fUT7iKYmCKjhd1YoEhxMMIcJtrRkEMLCFUc3srpj2iCQUbVNaG4E2/PEsqRwXvuOBdufmii8bIoD20jw6Rh05QEV2iEiojijR6QE/o2bl1Hp0X53XcOudMZnbQHzjvP3Illso=</latexit>

V img

<latexit sha1_base64="12kkXleLSgTMdECDKCmjbYibHmU=">AAAB6HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1UDsDFlomYB6QBJmd3E3GzM4uM7NCXPIFNhaK2PoBVn6JnaV/4uRRaOKBC4dzzuU+/FhwbVz3y8ksLC4tr2RXc2vrG5tb+e2dmo4SxbDKIhGphk81Ci6xargR2IgV0tAXWPf7FyO/fodK80hem0GM7ZB2JQ84o8ZKlfJNvuAW3THIPPGmpHD+cf99+b6X2vxnqxOxJERpmKBaNz03Nu2UKsOZwGGulWiMKevTLjYtlTRE3U7Hiw7JoVU6JIiULWnIWP3dkdJQ60Ho22RITU/PeiPxP6+ZmOCsnXIZJwYlmwwKEkFMREZXkw5XyIwYWEKZ4nZXwnpUUWbsb3L2Cd7syfOkdlz0TopexS2UXJggC/twAEfgwSmU4ArKUAUGCA/wBM/OrfPovDivk2jGmfbswh84bz/KCJCW</latexit>

P

*
<latexit sha1_base64="Kk581vKii6sNAjwOjTO0Dq5wlPA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBBI8V7Ae0oWy2m3bpZpPuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iJOE+xEdKBEKRtFK7e6QYnbXnPbKFbfqzkFWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8mmpmxqeUDaiA96xVNGIGz+b3zslZ1bpkzDWthSSufp7IqORMZMosJ0RxaFZ9mbif14nxfDGz4RKUuSKLRaFqSQYk9nzpC80ZygnllCmhb2VsCHVlKGNqGRD8JZfXiXNi6p3VfUeLis1N4+jCCdwCufgwTXU4B7q0AAGEp7hFd6csfPivDsfi9aCk88cwx84nz8JUY/q</latexit>

ÊV

<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥

Sum
<latexit sha1_base64="MKq8PXcJJiL/m/XT3LLhDVvOKjw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDoqE226p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKuqWhOPZtRNy6pQeibVxpZDM1N8TY5pYO0oi15lQHNhFbyr+57UzjK/DsVBphlyx+aI4kwQ1mb5OesJwhnLkCGVGuFsJG1BDGbqAii6EYPHlZdI4rwSXleD+oly9yeMowDGcwBkEcAVVuIMa1IHBIzzDK7x52nvx3r2PeeuKl88cwR94nz+4I486</latexit>⇥ Multiplication * Convolution
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Figure 4.2: Illustration of the conv-attentional module. We apply a convolutional position
encoding to the image tokens from the input. The resulting features are fed into a factorized
attention with a convolutional relative position encoding.

by factorizing it using two functions φ(·),ψ(·) : RN×C→ RN×C′ and compute the second matrix

multiplication (keys and values) together:

FactorAtt(X) = φ(Q)

(
ψ(K)⊤V

)
(4.2)

The factorization leads to a O(NC′+NC+CC′) space complexity (including output of φ(·),ψ(·)

and intermediate steps in the matrix product) and O(NCC′) time complexity, where both are

linear functions of the sequence length N. Performer [CLD+21] uses random projections in φ

and ψ for a provable approximation, but with the cost of relatively large C′. Efficient-Attention

[SZZ+21] applies the softmax function for both φ and ψ, which is efficient but causes a significant

performance drop on the vision tasks in our experiments. Here, we develop our factorized attention

mechanism following LambdaNets [Bel21] with φ as the identity function and ψ as the softmax:

FactorAtt(X) =
Q√
C

(
softmax(K)⊤V

)
(4.3)
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Figure 4.3: CoaT model architecture. (Left) The overall network architecture of CoaT-Lite.
CoaT-Lite consists of serial blocks only, where image features are down-sampled and processed
in a sequential order. (Right) The overall network architecture of CoaT. CoaT consists of serial
blocks and parallel blocks. Both blocks enable the co-scale mechanism.

where softmax(·) is applied across the tokens in the sequence in an element-wise manner and the

projected channels C′=C. In LambdaNets [Bel21], the scaling factor 1/
√

C is implicitly included

in the weight initialization, while our factorized attention applies the scaling factor explicitly.

This factorized attention takes O(NC+C2) space complexity and O(NC2) time complexity. It is

noteworthy that the proposed factorized attention following [Bel21] is not a direct approximation

of the scaled dot-product attention, but it can still be regarded as a generalized attention mechanism

modeling the feature interactions using query, key and value vectors.

4.4.2 Convolution as Position Encoding

Our factorized attention module mitigates the computational burden from the original

scaled dot-product attention. However, because we compute L = softmax(K)⊤V ∈ RC×C first, L

can be seen as a global data-dependent linear transformation for every feature vector in the query

map Q. This indicates that if we have two query vectors q1,q2 ∈ RC from Q and q1 = q2, then
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their corresponding self-attention outputs will be the same:

FactorAtt(X)1 =
q1√

C
L =

q2√
C

L = FactorAtt(X)2 (4.4)

Without the position encoding, the Transformer is only composed of linear layers and self-

attention modules. Thus, the output of a token is dependent on the corresponding input without

awareness of any difference in its locally nearby features. This property is unfavorable for vision

tasks such as semantic segmentation (e.g. the same blue patches in the sky and the sea are

segmented as the same category).

Convolutional Relative Position Encoding. To enable vision tasks, ViT and DeiT [DBK+21,

TCD+21] insert absolute position embeddings into the input, which may have limitations in mod-

eling relations between local tokens. Instead, following [SUV18], we can integrate a relative

position encoding P = {pi ∈ RC, i =−M−1
2 , ..., M−1

2 } with window size M to obtain the relative

attention map EV ∈ RN×C; in attention formulation, if tokens are regarded as a 1-D sequence:

RelFactorAtt(X) =
Q√
C

(
softmax(K)⊤V

)
+EV (4.5)

where the encoding matrix E ∈ RN×N has elements:

Ei j = 1(i, j)qi ·p j−i, 1≤ i, j ≤ N (4.6)

in which 1(i, j) = 1{| j−i|≤(M−1)/2}(i, j) is an indicator function. Each element Ei j represents

the relation from query qi to the value v j within window M, and (EV )i aggregates all related

value vectors with respect to query qi. Unfortunately, the EV term still requires O(N2) space

complexity and O(N2C) time complexity. In CoaT, we propose to simplify the EV term to ˆEV

by considering each channel in the query, position encoding and value vectors as internal heads.
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Thus, for each internal head l, we have:

E(l)
i j = 1(i, j)q(l)i p(l)j−i, ˆEV (l)

i = ∑ j E(l)
i j v(l)j (4.7)

In practice, we can use a 1-D depthwise convolution to compute ˆEV :

ˆEV (l)
= Q(l) ◦Conv1D(P(l),V (l)), (4.8)

ˆEV = Q◦DepthwiseConv1D(P,V ) (4.9)

where ◦ is the Hadamard product. It is noteworthy that in vision Transformers, we have two types

of tokens, the class (CLS) token and image tokens. Thus, we use a 2-D depthwise convolution

(with window size M×M and kernel weights P) and apply it only to the reshaped image tokens

(i.e. Qimg,V img ∈ RH×W×C from Q,V respectively):

ˆEV img
= Qimg ◦DepthwiseConv2D(P,V img) (4.10)

ˆEV = concat( ˆEV img
,0) (4.11)

ConvAtt(X) =
Q√
C

(
softmax(K)⊤V

)
+ ˆEV (4.12)

Based on our derivation, the depthwise convolution can be seen as a special case of relative

position encoding.

Convolutional Relative Position Encoding vs Other Relative Position Encodings. The

commonly referenced relative position encoding [SUV18] works in standard scaled dot-product

attention settings since the encoding matrix E is combined with the softmax logits in the attention

maps, which are not materialized in our factorized attention. Related to our work, the main results

of the original LambdaNets [Bel21] use a 3-D convolution to compute EV directly and reduce

the channels of queries and keys to CK where CK <C, but it costs O(NCCK) space complexity

and O(NCCKM2) time complexity, which leads to relatively heavy computation when channel
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Figure 4.4: Schematic illustration of the serial block in CoaT. Input feature maps are first
down-sampled by a patch embedding layer, and then tokenized features (along with a class
token) are processed by multiple conv-attention and feed-forward layers.

sizes CK,C are large. A recent update in LambdaNets [Bel21] provides an efficient variant with

depth-wise convolution under resource constrained scenarios. Our factorized attention computes

ˆEV with only O(NC) space complexity and O(NCM2) time complexity, aiming to achieve better

efficiency.

Convolutional Position Encoding. We then extend the idea of convolutional relative

position encoding to a general convolutional position encoding case. Convolutional relative

position encoding models local position-based relationships between queries and values. Similar

to the absolute position encoding used in most image Transformers [DBK+21, TCD+21], we

would like to insert the position relationship into the input image features directly to enrich the

effects of relative position encoding. In each conv-attentional module, we insert a depthwise

convolution into the input features X and concatenate the resulting position-aware features back to

the input features following the standard absolute position encoding scheme (see Figure 4.2 lower

part), which resembles the realization of conditional position encoding in CPVT [CZT+21].
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Figure 4.5: Schematic illustration of the parallel group in CoaT. For “w/o Co-Scale”, tokens
learned at the individual scales are combined to perform the classification but absent intermediate
co-scale interaction for the individual paths of the parallel blocks. We propose two co-scale
variants, namely direct cross-layer attention and attention with feature interpolation. Co-scale
with feature interpolation is adopted in the final CoaT-Lite and CoaT models reported on the
ImageNet benchmark.

CoaT and CoaT-Lite share the convolutional position encoding weights and convolutional

relative position encoding weights for the serial and parallel modules within the same scale. We

set convolution kernel size to 3 for the convolutional position encoding. We set convolution kernel

size to 3, 5 and 7 for image features from different attention heads for convolutional relative

position encoding.

The work of CPVT [CZT+21] explores the use of convolution as conditional position

encodings by inserting it after the feed-forward network under a single scale ( H
16 × W

16 ). Our work

focuses on applying convolution as relative position encoding and a general position encoding

with the factorized attention.

Conv-Attentional Mechanism The final conv-attentional module is shown in Figure 4.2:

We apply the first convolutional position encoding on the image tokens from the input. Then,

we feed it into ConvAtt(·) including factorized attention and the convolutional relative position

encoding. The resulting map is used for the subsequent feed-forward networks.
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Table 4.1: Architecture details of CoaT-Lite and CoaT models. Ci represents the hidden
dimension of the attention layers in block i; Hi represents the number of attention heads in
the attention layers in block i; Ri represents the expansion ratio for the feed-forward hidden
layer dimension between attention layers in block i. Multipliers indicate the number of conv-
attentional modules in block i.

Blocks Output
CoaT-Lite CoaT

Tiny Mini Small Medium Tiny Mini Small

Serial Block
(S1) 56×56

 C1 = 64
H1 = 8
R1 = 8

×2

 C1 = 64
H1 = 8
R1 = 8

×2

 C1 = 64
H1 = 8
R1 = 8

×3

 C1 = 128
H1 = 8
R1 = 4

×3

 C1 = 152
H1 = 8
R1 = 4

×2

 C1 = 152
H1 = 8
R1 = 4

×2

 C1 = 152
H1 = 8
R1 = 4

×2

Serial Block
(S2) 28×28

 C2 = 128
H2 = 8
R2 = 8

×2

 C2 = 128
H2 = 8
R2 = 8

×2

 C2 = 128
H2 = 8
R2 = 8

×4

 C1 = 256
H1 = 8
R1 = 4

×6

 C2 = 152
H2 = 8
R2 = 4

×2

 C2 = 216
H2 = 8
R2 = 4

×2

 C1 = 320
H1 = 8
R1 = 4

×2

Serial Block
(S3) 14×14

 C3 = 256
H3 = 8
R3 = 4

×2

 C3 = 320
H3 = 8
R3 = 4

×2

 C3 = 320
H3 = 8
R3 = 4

×6

 C1 = 320
H1 = 8
R1 = 4

×10

 C3 = 152
H3 = 8
R3 = 4

×2

 C3 = 216
H3 = 8
R3 = 4

×2

 C1 = 320
H1 = 8
R1 = 4

×2

Serial Block
(S4) 7×7

 C4 = 320
H4 = 8
R4 = 4

×2

 C4 = 512
H4 = 8
R4 = 4

×2

 C4 = 512
H4 = 8
R4 = 4

×3

 C1 = 512
H1 = 8
R1 = 4

×8

 C4 = 152
H4 = 8
R4 = 4

×2

 C4 = 216
H4 = 8
R4 = 4

×2

 C1 = 320
H1 = 8
R1 = 4

×2

Parallel Group

 28×28
14×14
7×7


 C4 = 152

H4 = 8
R4 = 4

×6

 C4 = 216
H4 = 8
R4 = 4

×6

 C1 = 320
H1 = 8
R1 = 4

×6

#Params 5.7M 11M 20M 45M 5.5M 10M 22M

4.5 Co-Scale Conv-Attentional Transformers

4.5.1 Co-Scale Mechanism

The proposed co-scale mechanism is designed to introduce fine-to-coarse, coarse-to-fine

and cross-scale information into image Transformers. Here, we describe two types of building

blocks in the CoaT architecture, namely serial and parallel blocks, in order to model multiple

scales and enable the co-scale mechanism.

CoaT Serial Block. A serial block (shown in Figure 4.4) models image representations

in a reduced resolution. In a typical serial block, we first down-sample input feature maps by a

certain ratio using a patch embedding layer, and flatten the reduced feature maps into a sequence

of image tokens. We then concatenate image tokens with an additional CLS token, a specialized

vector to perform image classification, and apply multiple conv-attentional modules as described

in Section 4.4 to learn internal relationships among image tokens and the CLS token. Finally, we

separate the CLS token from the image tokens and reshape the image tokens to 2-D feature maps
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for the next serial block.

CoaT Parallel Block. We realize a co-scale mechanism between parallel blocks in

each parallel group (shown in Figure 4.5). In a typical parallel group, we have sequences of

input features (image tokens and CLS token) from serial blocks with different scales. To enable

fine-to-coarse, coarse-to-fine, and cross-scale interaction in the parallel group, we develop two

strategies: (1) direct cross-layer attention; (2) attention with feature interpolation. In this work,

we adopt attention with feature interpolation for better empirical performance. The effectiveness

of both strategies is shown in Section 4.6.4.

Direct cross-layer attention. In direct cross-layer attention, we form query, key, and

value vectors from input features for each scale. For attention within the same layer, we use

the conv-attention (Figure 4.2) with the query, key and value vectors from current scale. For

attention across different layers, we down-sample or up-sample the key and value vectors to

match the resolution of other scales, which enables fine-to-coarse and coarse-to-fine interaction.

We then perform cross-attention, which extends the conv-attention with queries from the current

scale with keys and values from another scale. Finally, we sum the outputs of conv-attention and

cross-attention together and apply a shared feed-forward layer. With direct cross-layer attention,

the cross-scale information is fused in a cross-attention fashion.

Attention with feature interpolation. Instead of performing cross-layer attention directly,

we also present attention with feature interpolation. First, the input image features from different

scales are processed by independent conv-attention modules. Then, we down-sample or up-

sample image features from each scale to match the dimensions of other scales using bilinear

interpolation, or keep the same for its own scale. The features belonging to the same scale are

summed in the parallel group, and they are further passed into a shared feed-forward layer. In this

way, the conv-attentional module in the next step can learn cross-scale information based on the

feature interpolation in the current step.
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4.5.2 Model Architecture

CoaT-Lite. CoaT-Lite, Figure 4.3 (Left), processes input images with a series of serial

blocks following a fine-to-coarse pyramid structure. Given an input image I ∈ RH×W×C, each

serial block down-samples the image features into lower resolution, resulting in a sequence of

four resolutions:F1 ∈R
H
4 ×W

4 ×C1 , F2 ∈R
H
8 ×W

8 ×C2 , F3 ∈R
H
16×W

16×C3 , F4 ∈R
H
32×W

32×C4 . In CoaT-Lite,

we obtain the CLS token in the last serial block, and perform image classification via a linear

projection layer based on the CLS token.

CoaT. Our CoaT model, shown in Figure 4.3 (Right), consists of both serial and parallel

blocks. Once we obtain multi-scale feature maps {F1,F2,F3,F4} from the serial blocks, we pass

F2,F3,F4 and corresponding CLS tokens into the parallel group with three separate parallel blocks.

To perform classification with CoaT, we aggregate the CLS tokens from all three scales.

Model Variants. In this work, we explore CoaT and CoaT-Lite with several different

model sizes, namely Tiny, Mini, Small and Medium. Architecture details are shown in Table 4.1.

For example, tiny models represent those with a 5M parameter budget constraint. Specifically,

these tiny models have four serial blocks, each with two conv-attentional modules. In CoaT-Lite

Tiny architectures, the hidden dimensions of the attention layers increase in later blocks. CoaT

Tiny sets the hidden dimensions of the attention layers in the parallel group to be equal, and

performs the co-scale mechanism within the six parallel groups. Mini, small and medium models

follow the same architecture design but with increased embedding dimensions and increased

numbers of conv-attentional modules within blocks.
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Table 4.2: CoaT performance on ImageNet-1K validation set. Our CoaT models consistently
outperform other methods while being parameter efficient. ConvNets and ViTNets with similar
model size are grouped together for comparison. “#GFLOPs” and Top-1 Acc are measured at
input image size. “*” results are adopted from [WXL+21].

Arch. Model #Params Input #GFLOPs Top-1 Acc.

ConvNets EfficientNet-B0 [TL19] 5.3M 2242 0.4 77.1%
ShuffleNet [ZZLS18] 5.4M 2242 0.5 73.7%

ViTNets DeiT-Tiny [TCD+21] 5.7M 2242 1.3 72.2%
CPVT-Tiny [CZT+21] 5.7M 2242 - 73.4%
CoaT-Lite Tiny (Ours) 5.7M 2242 1.6 77.5%
CoaT Tiny (Ours) 5.5M 2242 4.4 78.3%

ConvNets EfficientNet-B2[TL19] 9M 2602 1.0 80.1%
ResNet-18∗ [HZRS16] 12M 2242 1.8 69.8%

ViTNets PVT-Tiny [WXL+21] 13M 2242 1.9 75.1%
CoaT-Lite Mini (Ours) 11M 2242 2.0 79.1%
CoaT Mini (Ours) 10M 2242 6.8 81.0%

ConvNets EfficientNet-B4 [TL19] 19M 3802 4.2 82.9%
ResNet-50∗ [HZRS16] 25M 2242 4.1 78.5%
ResNeXt50-32x4d* [XGD+17] 25M 2242 4.3 79.5%

ViTNets DeiT-Small [TCD+21] 22M 2242 4.6 79.8%
PVT-Small [WXL+21] 24M 2242 3.8 79.8%
CPVT-Small [CZT+21] 22M 2242 - 80.5%
T2T-ViTt-14 [YCW+21] 22M 2242 6.1 81.7%
Swin-T [LLC+21] 29M 2242 4.5 81.3%
CoaT-Lite Small (Ours) 20M 2242 4.0 81.9%
CoaT Small (Ours) 22M 2242 12.6 82.1%

ConvNets EfficientNet-B6 [TL19] 43M 5282 19 84.0%
ResNet-101∗ [HZRS16] 45M 2242 7.9 79.8%
ResNeXt101-64x4d∗ [XGD+17] 84M 2242 15.6 81.5%

ViTNets PVT-Large [WXL+21] 61M 2242 9.8 81.7%
T2T-ViTt-24 [YCW+21] 64M 2242 15 82.6%
DeiT-Base [TCD+21] 86M 2242 17.6 81.8%
CPVT-Base [CZT+21] 86M 2242 - 82.3%
Swin-B [LLC+21] 88M 2242 15.4 83.5%
Swin-B [LLC+21] 88M 3842 47 84.5%
CoaT-Lite Medium (Ours) 45M 2242 9.8 83.6%
CoaT-Lite Medium (Ours) 45M 3842 28.7 84.5%
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Table 4.3: Object detection and instance segmentation results based on Mask R-CNN on
COCO val2017. Experiments are performed under the MMDetection framework [CWP+19].
“*” results are adopted from Detectron2.

Backbone
#Params

(M)
w/ FPN 1× w/ FPN 3×
APb APm APb APm

ResNet-18* 31.3 34.2 31.3 36.3 33.2
PVT-Tiny [WXL+21] 32.9 36.7 35.1 39.8 37.4
CoaT-Lite Mini (Ours) 30.7 41.4 38.0 42.9 38.9
CoaT Mini (Ours) 30.2 45.1 40.6 46.5 41.8
ResNet-50* 44.3 38.6 35.2 41.0 37.2
PVT-Small [WXL+21] 44.1 40.4 37.8 43.0 39.9
Swin-T [LLC+21] 47.8 43.7 39.8 46.0 41.6
CoaT-Lite Small (Ours) 39.5 45.2 40.7 45.7 41.1
CoaT Small (Ours) 41.6 46.5 41.8 49.0 43.7

Table 4.4: Object detection and instance segmentation results based on Cascade Mask
R-CNN on COCO val2017. Experiments are performed using the MMDetection framework
[CWP+19].

Backbone
#Params

(M)
w/ FPN 1× w/ FPN 3×
APb APm APb APm

Swin-T [LLC+21] 85.6 48.1 41.7 50.4 43.7
CoaT-Lite Small (Ours) 77.3 49.1 42.5 48.9 42.6
CoaT Small (Ours) 79.4 50.4 43.5 52.2 45.1

Table 4.5: Object detection results based on Deformable DETR on COCO val2017. DD
ResNet-50 represents the baseline result using the official checkpoint. ResNet-50 and our
CoaT-Lite as DD backbones are directly comparable due to similar model size.

Backbone
Deformable DETR (Multi-Scale)

AP AP50 AP75 APS APM APL

DD ResNet-50 [ZSL+21] 44.5 63.7 48.7 26.8 47.6 59.6
DD CoaT-Lite Small (Ours) 47.0 66.5 51.2 28.8 50.3 63.3
DD CoaT Small (Ours) 48.4 68.5 52.4 30.2 51.8 63.8

4.6 Experiments

4.6.1 Experiment Details

Image Classification. We perform image classification on the standard ILSVRC-2012

ImageNet dataset [RDS+15]. The standard ImageNet benchmark contains 1.3 million images

in the training set and 50K images in the validation set, covering 1000 object classes. Image

cropping sizes are set to 224×224. For fair comparison, we perform data augmentation such
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as MixUp [ZCDLP18], CutMix [YHO+19], random erasing [ZZK+20], repeated augmentation

[HBNH+20], and label smoothing [SVI+16], following identical procedures in DeiT [TCD+21].

All experimental results for our models in Table 4.2 are reported at 300 epochs, consistent

with previous methods [TCD+21]. All models are trained with the AdamW [LH19] optimizer

under the NVIDIA Automatic Mixed Precision (AMP) framework. The learning rate is scaled as

5×10−4× global batch size
512 .

Object Detection and Instance Segmentation. We conduct object detection and

instance segmentation experiments on the Common Objects in Context (COCO2017) dataset

[LMB+14]. The COCO2017 benchmark contains 118K training images and 5K validation images.

We evaluate the generalization ability of CoaT in object detection and instance segmentation with

the Mask R-CNN [HGDG17] and Cascade Mask R-CNN [CV19]. We use the MMDetection

[CWP+19] framework and follow the settings from Swin Transformers [LLC+21]. In addition,

we perform object detection based on Deformable DETR [ZSL+21] following its data processing

settings.

For Mask R-CNN optimization, we train the model with the ImageNet-pretrained back-

bone on 8 GPUs via AdamW optimizer with learning rate 0.0001. The training period contains 12

epochs in 1× setting and 36 epochs in 3× setting. For Cascade R-CNN experiments, we use three

detection heads, with the same optimization and training period as Mask R-CNN. For Deformable

DETR optimization, we train the model with the pretrained backbone for 50 epochs, using an

AdamW optimizer with initial learning rate 2×10−4, β1 = 0.9, and β2 = 0.999. We reduce the

learning rate by a factor of 10 at epoch 40.

4.6.2 CoaT for ImageNet Classification

Table 4.2 shows top-1 accuracy results for our models on the ImageNet validation set

comparing with state-of-the-art methods. We separate model architectures into two categories:

convolutional networks (ConvNets), and Transformers (ViTNets). Under different parameter
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budget constraints, CoaT and CoaT-Lite show strong results compared to other ConvNet and

ViTNet methods.

4.6.3 Object Detection and Instance Segmentation

Tables 4.3 and 4.4 demonstrate CoaT object detection and instance segmentation results

under the Mask R-CNN and Cascade Mask R-CNN frameworks on the COCO val2017 dataset.

Our CoaT and CoaT-Lite models show clear performance advantages over the ResNet, PVT

[WXL+21] and Swin [LLC+21] backbones under both the 1× setting and the 3× setting. In

particular, our CoaT models bring a large performance gain, demonstrating that our co-scale

mechanism is essential to improve the performance of Transformer-based architectures for

downstream tasks.

We additionally perform object detection with the Deformable DETR (DD) framework in

Table 4.5. We compare our models with the standard ResNet-50 backbone on the COCO dataset

[LMB+14]. Our CoaT backbone achieves 3.9% improvement on average precision (AP) over the

results of Deformable DETR with ResNet-50 [ZSL+21].

4.6.4 Ablation Study

Effectiveness of Position Encodings. We study the effectiveness of the combination of

the convolutional relative position encoding (CRPE) and convolutional position encoding (CPE)

in our conv-attention module in Table 4.6. Our CoaT-Lite without any position encoding results

in poor performance, indicating that position encoding is essential for vision Transformers. We

observe great improvement for CoaT-Lite variants with either CRPE or CPE, and the combination

of CRPE and CPE leads to the best performance (77.5% top-1 accuracy), making both position

encoding schemes complementary rather than conflicting.
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Table 4.6: Effectiveness of position encodings. All experiments are performed with the CoaT-
Lite Tiny architecture. Performance is evaluated on the ImageNet-1K validation set.

Model CPE CRPE Top-1 Acc.

CoaT-Lite Tiny ✗ ✗ 68.8%
✗ ✓ 75.0%
✓ ✗ 75.9%
✓ ✓ 77.5%

Effectiveness of Co-Scale. In Table 4.7, we present performance results for two co-scale

variants in CoaT, direct cross-layer attention and attention with feature interpolation. We also

report CoaT without co-scale as a baseline. Comparing to CoaT without a co-scale mechanism,

CoaT with feature interpolation shows performance improvements on both image classification

and object detection (Mask R-CNN w/ FPN 1×). Attention with feature interpolation offers a

clear advantage over direct cross-layer attention due to less computational complexity and higher

accuracy.

Table 4.7: Effectiveness of co-scale. All experiments are performed with the CoaT Tiny
architecture. Performance is evaluated on the ImageNet-1K validation set and the COCO
val2017 dataset.

Model #Params Input #GFLOPs Top-1 Acc. @input APb APm

CoaT w/o Co-Scale 5.5M 2242 4.4 77.8% 41.6 37.9
CoaT w/ Co-Scale

- Direct Cross-Layer Attention 5.5M 2242 4.8 77.0% 42.1 38.3
- Attention w/ Feature Interp. 5.5M 2242 4.4 78.3% 42.5 38.6

Computational Cost. We report FLOPs, FPS, latency, and GPU memory usage in

Table 4.8. In summary, CoaT models attain higher accuracy than similar-sized Swin Transform-

ers, but CoaT models in general do have larger latency/FLOPs. The current parallel groups in

CoaT are more computationally demanding, which can be mitigated by reducing high-resolution

parallel blocks and re-using their feature maps in the co-scale mechanism in future work. The

latency overhead in CoaT is possibly because operations (e.g. layers, position encodings, upsam-

ples/downsamples) are not running in parallel.
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Table 4.8: ImageNet-1K validation set results compared with the concurrent work Swin
Transformer[LLC+21]. Computational metrics are measured on a single V100 GPU.

Model #Params Input GFLOPs FPS Latency Mem Top-1 Acc. Top-5 Acc.

Swin-T [LLC+21] 28M 2242 4.5 755 16ms 222M 81.2% 95.5%
CoaT-Lite Small (Ours) 20M 2242 4.0 634 32ms 224M 81.9% 95.6%
CoaT Small (Ours) 22M 2242 12.6 111 60ms 371M 82.1% 96.1%

Swin-S [LLC+21] 50M 2242 8.7 437 29ms 372M 83.2% 96.2%
Swin-B [LLC+21] 88M 2242 15.4 278 30ms 579M 83.5% 96.5%
CoaT-Lite Medium (Ours) 45M 2242 9.8 319 52ms 429M 83.6% 96.7%

Swin-B [LLC+21] 88M 3842 47.1 85 33ms 1250M 84.5% 97.0%
CoaT-Lite Medium (Ours) 45M 3842 28.7 97 56ms 937M 84.5% 97.1%

4.7 Conclusion

In this work, we present a Transformer based image classifier, Co-scale conv-attentional

image Transformer (CoaT), in which cross-scale attention and efficient conv-attention operations

have been developed. CoaT models attain strong classification results on ImageNet, and their

applicability to downstream computer vision tasks has been demonstrated for object detection

and instance segmentation.
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Chapter 5

Line Segment Detection Using

Transformers without Edges

5.1 Introduction

Line segment detection is an important mid-level visual process [Mar82] useful for solving

various downstream computer vision tasks, including segmentation, 3D reconstruction, image

matching and registration, depth estimation, scene understanding, object detection, image editing,

and shape analysis. Despite its practical and scientific importance, line segment detection remains

an unsolved problem in computer vision.

Although dense pixel-wise edge detection has achieved an impressive performance

[XT15], reliably extracting line segments of semantic and perceptual significance remains

a further challenge. In natural scenes, line segments of interest often have heterogeneous

structures within the cluttered background that are locally ambiguous or partially occluded.

Morphological operators [SB97] operated on detected edges [Can86] often give sub-optimal

results. Mid-level representations such as Gestalt laws [EG02] and contextual information

[Tu08] can play an important role in the perceptual grouping, but they are often hard to be
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Figure 5.1: Pipeline comparison between: (a) holistically-attracted wireframe parsing (HAWP)
[XWB+20] and (b) our proposed LinE segment TRansformers (LETR). LETR is based on a general-
purpose pipeline without heuristics-driven intermediate stages for detecting junctions and generating line
segment proposals.

seamlessly integrated into an end-to-end line segment detection pipeline. Deep learning tech-

niques [KSH12, LSD15, HZRS16, XT15] have provided greatly enhanced feature representation

power, and algorithms such as [ZQM19, XBW+19, XWB+20] become increasingly feasible in

real-world applications. However, systems like [ZQM19, XBW+19, XWB+20] still consist of

heuristics-guided modules [SB97] such as edge/junction/region detection, line grouping, and

post-processing, limiting the scope of their performance enhancement and further development.

In this work, we skip the traditional edge/junction/region detection + proposals + percep-

tual grouping pipeline by designing a Transformer-based [VSP+17, CMS+20] joint end-to-end

line segment detection algorithm. We are motivated by the following observations for the Trans-

former frameworks [VSP+17, CMS+20]: tokenized queries with an integrated encoding and

decoding strategy, self-attention mechanism, and bipartite (Hungarian) matching step, capable

of addressing the challenges in line segment detection for edge element detection, perceptual

grouping, and set prediction; general-purpose pipelines for Transformers that are heuristics

free. Our system, named LinE segment TRsformer (LETR), enjoys the modeling power of a

general-purpose Transformer architecture while having its own enhanced property for detecting

fine-grained geometric structures like line segments. LETR is built on top of a seminal work,
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DEtection TRansformer (DETR) [CMS+20]. However, as shown in Section 5.4.4 for ablation

studies, directly applying the DETR object detector [CMS+20] for line segment detection does

not yield satisfactory results since line segments are elongated geometric structures that are not

feasible for the bounding box representations.

Our contributions are summarized as follows.

• We cast the line segment detection problem in a joint end-to-end fashion without explicit

edge/junction/region detection and heuristics-guided perceptual grouping processes, which

is in distinction to the existing literature in this domain. We achieve state-of-the-art results

on the Wireframe [HWZ+18] and YorkUrban benchmarks [DEE08].

• We perform line segment detection using Transformers, based specifically on DETR

[CMS+20], to realize tokenized entity modeling, perceptual grouping, and joint detection

via an integrated encoder-decoder, a self-attention mechanism, and joint query inference

within Transformers.

• We introduce two new algorithmic aspects to DETR [CMS+20]: first, a multi-scale en-

coder/decoder strategy as shown in Figure 5.2; second, a direct endpoint distance loss term

in training, allowing geometric structures like line segments to be directly learned and

detected — something not feasible in the standard DETR bounding box representations.

5.2 Related Works

5.2.1 Line Segment Detection

Traditional Approaches. Line detection has a long history in computer vision. Early

pioneering works rely on low-level cues from pre-defined features (e.g. image gradients). Typi-

cally, line (segment) detection performs edge detection [Can86, MFM04, DTB06, DZ13, XT15],

followed by a perceptual grouping [GVZ95, SB97, EG02] process. Classic perceptual grouping
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frameworks [BHR86, BWR89, NCSG11, LYLL15, VGJMR08] aggregate the low-level cues to

form line segments in a bottom-up fashion: an image is partitioned into line-support regions by

grouping similar pixel-wise features. Line segments are then approximated from line-support

regions and filtered by a validation step to remove false positives. Another popular series of line

segment detection approaches are based on Hough transform [DH72, GVZ95, MGK00, FS03]

by gathering votes in the parameter space: the pixel-wise edge map of an image is converted into

a parameter space representation, in which each point corresponds to a unique parameterized

line. The points in the parameter space that accumulate sufficient votes from the candidate edge

pixels are identified as line predictions. However, due to the limitations in the modeling/inference

processes, these traditional approaches often produce sub-optimal results.

Deep Learning Based Approaches. The recent surge of deep learning based approaches

has achieved much-improved performance on the line segment detection problem [HWZ+18,

XBW+19, ZQM19, ZLB+19, XWB+20] with the use of learnable features to capture extensive

context information.

One typical family of methods is junction-based pipelines: Deep Wireframe Parser

(DWP) [HWZ+18] creates two parallel branches to predict the junction heatmap and the line

heatmap, followed by a merging procedure. Motivated by [RHGS15], L-CNN [ZQM19] simpli-

fies [HWZ+18] into a unified network. First, a junction proposal module produces the junction

heatmap and then converts detected junctions into line proposals. Second, a line verification

module classifies proposals and removes unwanted false-positive lines. Methods like [ZQM19]

are end-to-end, but they are at the instance-level (for detecting the individual line segments). Our

LETR, like DETR [CMS+20], has a general-purpose architecture that is trained in a holistically

end-to-end fashion. PPGNet [ZLB+19] proposes to create a point-set graph with junctions as

vertices and model line segments as edges. However, the aforementioned approaches are heavily

dependent on high-quality junction detection, which is error-prone to various imaging conditions

and complex scenarios.
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Figure 5.2: Schematic illustration of our LETR pipeline: An image is fed into a backbone
network and generates two feature maps, which are then used by the coarse and the fine encoder
respectively. Initial line entities are then first refined by the coarse decoder with the interaction
of the coarse encoder output, and then the intermediate line entities from the coarse decoder
are further refined by the fine decoder attending to the fine encoder. Finally, line segments are
detected by feed-forward networks (FFNs) on top of line entities.

Another line of approaches employs dense prediction to obtain a surrogate representation

map and applies a post-process procedure to extract line segments: AFM [XBW+19] proposes an

attraction field map as an intermediate representation that contains 2-D projection vectors pointing

to associated lines. A squeeze module then recovers vectorized line segments from the attraction

field map. Despite a relatively simpler design, [XBW+19] demonstrates its inferior performance

compared with junction-based approaches. Recently, HAWP [XWB+20] builds a hybrid model of

AFM [XBW+19], and L-CNN [ZQM19] by computing line segment proposals from the attraction

field map and then refining proposals with junctions before further line verification.

In contrast, as shown in Figure 5.1, our approach differs from previous methods by

removing heuristics-driven intermediate stages for detecting edge/junction/region proposals and

surrogate prediction maps. Our approach is able to directly predict vectorized line segments while

keeping competitive performances under a general-purpose framework.
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5.2.2 Transformer Architecture

Transformers [VSP+17] have achieved great success in the natural language process-

ing field and become de facto standard backbone architecture for many language models

[VSP+17, DCLT19]. It introduces self-attention and cross-attention modules as basic building

blocks, modeling dense relations among elements of the input sequence. These attention-based

mechanisms also benefit many vision tasks such as video classification [WGGH18], semantic

segmentation [FLT+19], image generation [ZGMO19], etc. Recently, end-to-end object detection

with Transformers (DETR) [CMS+20] reformulates the object detection pipeline with Transform-

ers by eliminating the need for hand-crafted anchor boxes and non-maximum suppression steps.

Instead, [CMS+20] proposes to feed a set of object queries into the encoder-decoder architecture

with interactions from the image feature sequence and generate a final set of predictions. A

bipartite matching objective is then optimized to force unique assignments between predictions

and targets.

We introduce two new aspects to DETR [CMS+20] when realizing our LETR: 1) multi-

scale encoder and decoder; 2) direct distance loss for the line segments.

5.3 Line Segment Detection with Transformers

5.3.1 Motivation

Despite the exceptional performance achieved by the recent deep learning based ap-

proaches [ZQM19, XBW+19, XWB+20] on line segment detection, their pipelines still involve

heuristics-driven intermediate representations such as junctions and attraction field maps, raising

an interesting question: Can we directly model all the vectorized line segments with a neural

network? A naive solution could be simply regarding the line segments as objects and building

a pipeline following the standard object detection approaches [RHGS15]. Since the location
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Figure 5.3: Bounding box representation. Three difficult cases to represent line segments using
bounding box diagonals. Red lines, black boxes, and gray dotted boxes refer to as line segments, the
corresponding bounding boxes, and anchors respectively.

of 2-D objects is typically parameterized as a bounding box, the vectorized line segment can

be directly read from a diagonal of the bounding box associated with the line segment object.

However, the limited choices of anchors make it difficult for standard two-stage object detectors to

predict very short line segments or line segments nearly parallel to the axes (see Figure 5.3). The

recently appeared DETR [CMS+20] eliminates the anchors and the non-maximum suppression,

perfectly meets the need of line segment detection. However, the vanilla DETR still focuses on

bounding box representation with a GIoU loss. We further convert the box predictor in DETR into

a vectorized line segment predictor by adapting the losses and enhancing the use of multi-scale

features in our designed model.

5.3.2 Overview

In a line segment detection task, a detector aims to predict a set of line segments from

given images. Performing line segment detection with Transformers removes the need of explicit

edge/junction/region detection [ZQM19, XWB+20] (see Figure 5.1). Our LETR is built purely

based on the Transformer encoder-decoder structure. The proposed line segment detection process

consists of four stages:

(1) Image Feature Extraction: Given an image input, we obtain the image feature map
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Figure 5.4: Line entity representation. For each row, we show how a same line entity predicts
line segments with same property in three different indoor/outdoor scenes. The top line entity is
specialized for horizontal line segments in the middle of the figure, and the bottom one prefers
to predict vertical line segments with a various range of lengths.

x ∈ RH×W×C from a CNN backbone with reduced dimension. The image feature is concatenated

with positional embeddings to obtain spatial relations. (2) Image Feature Encoding: The flattened

feature map x ∈ RHW×C is then encoded to x′ ∈ RHW×C by a multi-head self-attention module

and a feed forward network module following the standard Transformer encoding architecture. (3)

Line Segment Detection: In the Transformer decoder networks, N learnable line entities l ∈RN×C

interact with the encoder output via the cross-attention module. (4) Line Segment Prediction: Line

entities make line segment predictions with two prediction heads built on top of the Transformer

decoder. The line coordinates are predicted by a multi-layer perceptron (MLP), and the prediction

confidences are scored by a linear layer.

Self-Attention and Cross-Attention. We first visit the scaled dot-product attention

popularized by Transformer architectures [VSP+17]. The basic scaled dot-product attention

consists of a set of m queries Q ∈ Rm×d and a set of n key-value pairs notated as a key matrix

K ∈ Rn×d and a value matrix V ∈ Rn×d . Here we set Q, K, V to have same feature dimension d.
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The attention operation F is defined as:

F = Att(Q,K,V ) = softmax(
QKT
√

d
)V (5.1)

In our encoder-decoder Transformer architecture, we adopt two attention modules based

on the multi-head attention, namely the self-attention module (SA) and cross-attention (CA)

module (see Figure 5.2). The SA module takes in a set of input embeddings notated as x =

[x1, ...,xi] ∈ Ri×d , and outputs a weighted summation x′ = [x′1, ...,x
′
i] ∈ Ri×d of input embeddings

within x following Eq.5.1 where F = Att(Q = x,K = x,V = x). The CA module takes in two sets

of input embeddings notated as x = [x1, ...,xi] ∈ Ri×d , z = [x1, ...,x j] ∈ R j×d following Eq.5.1

where F = Att(Q = z,K = x,V = x).

Transformer Encoder in LETR is stacked with multiple encoder layers. Each encoder

layer takes in image features x ∈ RHW×c from its predecessor encoder layer and processes it with

a SA module to learn the pairwise relation. The output features from SA module are passed into

a point-wise fully-connected layer (FC) with activation and dropout layer followed by another

point-wise fully-connected (FC) layer. Layer norm is applied between SA module and first FC

layer and after second FC layer. Residual connection is added before the first FC layer and after

the second FC layer to facilitate optimization of deep layers.

Transformer Decoder in LETR is stacked with multiple decoder layers. Each decoder

layer takes in a set of image features x′ ∈ RHW×C from the last encoder layer and a set of line

entities l ∈ RN×C from its predecessor decoder layer. The line entities are first processed with a

SA module, each line entity l ∈ RC in l attends to different regions of image feature embeddings

x′ via the CA module. FC layers and other modules are added into the pipeline similar to the

Encoder setting above.

Line Entity Interpretation. The line entities are analogous with the object queries in

DETR [CMS+20]. We found each line entity has its own preferred existing region, length, and
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orientation of potential line segment after the training process (shown in Figure 5.4). We discuss

line entities together make better predictions through self-attention and cross-attention refinement

when encountering heterogeneous line segment structures in Section 5.4.4 and Figure 5.5.

5.3.3 Coarse-to-Fine Strategy

Different from object detection, line segment detection requires the detector to consider

the local fine-grained details of line segments with the global indoor/outdoor structures together.

In our LETR architecture, we propose a coarse-to-fine strategy to predict line segments in

a refinement process. The process allows line entities to make precise predictions with the

interaction of multi-scale encoded features while having an awareness of the holistic architecture

with the communication to other line entities. During the coarse decoding stage, our line entities

attend to potential line segment regions, often unevenly distributed, with a low resolution. During

the fine decoding stage, our line entities produce detailed line segment predictions with a high

resolution (see Figure 5.2). After each decoding layer at both coarse and fine decoding stage,

we require line entities to make predictions through two shared prediction heads to make more

precise predictions gradually.

Coarse Decoding. During the coarse decoding stage, we pass image features and

line entities into an encoder-decoder Transformer architecture. The encoder receives coarse

features from the output of Conv5 (C5) from ResNet with 1
32 original resolution. Then, line entity

embeddings attend to coarse features from the output of the encoder in the cross-attention module

at each layer. The coarse decoding stage is necessary for success at fine decoding stage and its

high efficiency with less memory and computation cost.

Fine Decoding. The fine decoder inherits line entities from the coarse decoder and

high-resolution features from the fine encoder. The features to the fine encoder come from the

output of Conv4 (C4) from ResNet with 1
16 original resolution. The line entity embeddings decode

feature information in the same manner as the coarse decoding stage.
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5.3.4 Line Segment Prediction

In the previous decoding procedure, our multi-scale decoders progressively refine N initial

line entities to produce same amount final line entities. In the prediction stage. Each final entity l

will be fed into a feed-forward network (FFN), which consists of a classifier module to predict

the confidence p of being a line segment, and a regression module to predict the coordinates

of two end points p̂1 = (x̂1, ŷ1), p̂2 = (x̂2, ŷ2) that parameterizes the associated line segment

L̂ = (p̂1, p̂2).

Bipartite Matching. Generally, there are many more line entities provided than actual

line segments in the image. Thus, during the training stage, we conduct a set-based bipartite

matching between line segment predictions and ground-truth targets to determine whether the

prediction is associated with an existing line segment or not: Assume there are N line segment

predictions {(p(i), L̂(i)); i = 1, ...,N} and M targets {L( j); j = 1, ...,M}, we optimize a bipartite

matching objective on a permutation function σ(·) : Z+→ Z+ which maps prediction indices

{1, ...,N} to potential target indices {1, ...,N} (including {1, ...,M} for ground-truth targets and

{M+1, ...,N} for unmatched predictions):

Lmatch =
N

∑
i=1

1{σ(i)≤M}
[
λ1d(L̂(i),L(σ(i)))−λ2 p(i)] (5.2)

σ
∗ = argmin

σ
Lmatch (5.3)

where d(·, ·) represents L1 distance between coordinates and 1{·} is an indicator function. Lmatch

takes both distance and confidence into account with balancing coefficients λ1,λ2. The optimal

permutation σ∗ is computed using a Hungarian algorithm, mapping M positive prediction indices

to target indices {1, ...,M}. During the inference stage, we filter the N line segment predictions

by setting a fixed threshold on the confidence p(i) if needed due to no ground-truth provided.

78



5.3.5 Line Segment Losses

We compute line segment losses based on the optimal permutation σ∗ from the bipartite

matching procedure, in which {i;σ∗(i)≤M} represents indices of positive predictions.

Classification Loss. Based on a binary cross-entropy loss, we observe that hard examples

are less optimized after learning rate decay and decide to apply adaptive coefficients inspired by

focal loss [LGG+17] to the classification loss term Lcls:

L(i)
cls =−1{σ∗(i)≤M}α1(1− p(i))γ log p(i) (5.4)

−1{σ∗(i)>M}α2 p(i)
γ
log(1− p(i)) (5.5)

Distance Loss. We compute a simple L1-based distance loss for line segment endpoint

regression:

L(i)
dist = 1{σ∗(i)≤M}d(L̂(i),L(σ∗(i))) (5.6)

where d(·, ·) represents the sum of L1 distances between prediction and target coordinates. The

distance loss is only applied to the positive predictions. Note that we remove the GIoU loss from

[CMS+20] since GIoU is mainly designed for the similarity between bounding boxes instead of

line segments. Thus, the final loss L of our model is formulated as:

L =
N

∑
i=1

λclsL
(i)
cls +λdistL

(i)
dist (5.7)

5.4 Experiments

5.4.1 Datasets

We train and evaluate our model on the ShanghaiTech Wireframe dataset [HWZ+18],

which consists of 5000 training images and 462 testing images. We also evaluate our model on
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(a) AFM
[XBW+19]

(b) LCNN
[ZQM19]

(c) HAWP
[XWB+20]

(d) LETR (ours) (e) Ground-Truth

Figure 5.5: Qualitative evaluation of line detection methods. From left to right: the columns
are the results from AFM [XBW+19], LCNN [ZQM19], HAWP [XWB+20], LETR (ours) and
the ground-truth. From top to bottom: the top two rows are the results from the Wireframe test
set, and the bottom two rows are the results from the YorkUrban test set.
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the YorkUrban dataset [DEE08] with 102 testing images from both indoor scenes and outdoor

scenes.

Through all experiments, we conduct data augmentations for the training set, including

random horizontal/vertical flip, random resize, random crop, and image color jittering. At the

training stage, we resize the image to ensure the shortest size is at least 480 and at most 800

pixels while the longest size is at most 1333. At the evaluation stage, we resize the image with

the shortest side at least 1100 pixels.

5.4.2 Implementation

Networks. We adopt both ResNet-50 and ResNet-101 as our feature backbone. For an

input image X ∈ RH0×W0×3, the coarse encoder takes in the feature map from the Conv5 (C5)

layer of ResNet backbone with resolution x ∈ RH×W×C where H = H0
32 ,W = W0

32 ,C = 2048. The

fine encoder takes in a higher resolution feature map (H = H0
16 ,W = W0

16 ,C = 1024) from the Conv4

(C4) layer of ResNet. Feature maps are reduced to 256 channels by a 1x1 convolution and are fed

into the Transformer along with the sine/cosine positional encoding. Our coarse-to-fine strategy

consists of two independent encoder-decoder structures processing multi-scale image features.

Each encoder-decoder structure is constructed with 6 encoder and 6 decoder layers with 256

channels and 8 attention heads.

Optimization. We train our model using 4 Titan RTX GPUs through all our experiments.

Model weights from DETR [CMS+20] with ResNet-50 and ResNet-101 backbone are loaded

as pre-training, and we discuss the effectiveness of pre-training in Section 5.5. We first train

the coarse encoder-decoder for 500 epochs until optimal. Then, we freeze the weights in the

coarse Transformer and train the fine Transformer initialized by coarse Transformer weights for

325 epochs (including a 25-epoch focal-loss fine-tuning). We adopt deep supervision [LXG+15,

XT15] for all decoder layers following DETR [CMS+20]. FFN prediction head weights are

shared through all decoder layers. We use AdamW as the model optimizer and set weight decay
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as 10−4. The initial learning rate is set to 10−4 and reduced by a factor of 10 every 200 epochs for

the coarse decoding stage and every 120 epochs for the fine prediction stage. We use 1000 line

entities in all reported benchmarks unless specified elsewhere. To mitigate the class imbalance,

we also reduce the classification weight for background/no-object instances by a factor of 10.

Table 5.1: Comparison to prior work on Wireframe and YorkUrban benchmarks. Our
proposed LETR reaches state-of-the-art performance except sAP10 and sAP15 slightly worse
than HAWP [XWB+20] in Wireframe. FPS Results for LETRs are tested on a single Tesla
V100. Results for other prior works are adopted from HAWP paper.

Method
Wireframe Dataset YorkUrban Dataset FPS

sAP10 sAP15 sF10 sF15 APH FH sAP10 sAP15 sF10 sF15 APH FH

LSD [VGJMR08] / / / / 55.2 62.5 / / / / 50.9 60.1 49.6
DWP [HWZ+18] 5.1 5.9 / / 67.8 72.2 2.1 2.6 / / 51.0 61.6 2.24
AFM [XBW+19] 24.4 27.5 / / 69.2 77.2 9.4 11.1 / / 48.2 63.3 13.5
L-CNN [ZQM19] 62.9 64.9 61.3 62.4 82.8 81.3 26.4 27.5 36.9 37.8 59.6 65.3 15.6
HAWP [XWB+20] 66.5 68.2 64.9 65.9 86.1 83.1 28.5 29.7 39.7 40.5 61.2 66.3 29.5
LETR (ours) 65.2 67.7 65.8 67.1 86.3 83.3 29.4 31.7 40.1 41.8 62.7 66.9 5.04

Figure 5.6: Precision-recall (PR) curves. PR curves of sAP15 and APH for DWP[HWZ+18],
AFM[XBW+19], L-CNN[ZQM19], HAWP[XWB+20] and LETR (ours) on Wireframe and
YorkUrban benchmarks.

5.4.3 Evaluation Metric

We evaluate our results based on two heatmap-based metrics, APH and FH , which are

widely used in previous LSD task[ZQM19, HWZ+18], and Structural Average Precision (sAP)

which is proposed in L-CNN [ZQM19]. On top of that, we evaluate the result with a new metric,

Structural F-score (sF), for a more comprehensive comparison.
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Heatmap-based metrics, APH , FH : Prediction and ground truth lines are first converted

to heatmaps by rasterizing the lines, and we generate the precision-recall curve comparing each

pixel along with their confidence. Then we can use the curve to calculate FH and APH .

Structural-based metrics, sAP[ZQM19], sF: Given a set of ground truth line and a set

of predicted lines, for each ground-truth line L, we define a predicted line L̂ to be a match of

L if their L2 distance is smaller than the pre-defined threshold ϑ ∈ {10,15}. Over the set of

lines matched to L, we select the line with the highest confidence as a true positive and treat the

rest as candidates for false positives. If the set of matching lines is empty, we would regard this

ground-truth line as false negative. Each predicted line would be matched to at most one ground

truth line, and if a line isn’t matched to any ground-truth line, then it is considered as a false

positive. The matching is recomputed at each confidence level to produce the precision-recall

curve, and we consider sAP as the area under this curve. Considering FH as the complementary

F-score measurement for APH , we evaluate the F-score measurement for sAP, denoted as sF, to

be the best balanced performance measurement.

5.4.4 Results and Comparisons

We summarize quantitative comparison results between LETR and previous line segment

detection methods in Table 5.1. We report results for LETR with ResNet-101 backbone for

Wireframe dataset and results with ResNet-50 backbone for York dataset. Our LETR achieves

new state-of-the-art for all evaluation metrics on YorkUrban Dataset [DEE08]. In terms of

heatmap-based evaluation metrics, our LETR is consistently better than other models for both

benchmarks and outperforms HAWP [XWB+20] by 1.5 for APH on YorkUrban Dataset. We

show PR curve comparison in Figure 5.6 on sAP15 and APH for both Wireframe [HWZ+18]

and YorkUrban benchmarks. In Figure 5.6, we notice the current limitation of LETR comes

from lower precision prediction when we include fewer predictions compare to HAWP. When

we include all sets of predictions, LETR predicts slightly better than HAWP and other leading
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methods, which matches our hypothesis that holistic prediction fashion can guide line entities

to refine low confident predictions (usually due to local ambiguity and occlusion) with high

confident predictions.

We also show both Wireframe and YorkUrban line segment detection qualitative results

from LETR and other competing methods in Figure 5.5. The top two rows are indoor scene

detection results from the Wireframe dataset, while the bottom two rows are outdoor scene

detection results from the YorkUrban dataset.

5.5 Ablation Study

Compare with Object Detection Baselines. We compare LETR results with two object

detection baseline where the line segments are treated as 2-D objects within this context in Table

5.2. We see clear limitations when using bounding box diagonal for both Faster R-CNN and

DETR responding to our motivation in Section 5.3.1.

Table 5.2: Comparison with object detection baselines on Wireframe [HWZ+18].

Method sAP10 sAP15 sF10 sF15

Faster R-CNN 38.4 40.7 51.5 53.0
Vanilla DETR 53.8 57.2 57.2 59.0
LETR (ours) 65.2 67.7 65.8 67.1

Effectiveness of Multi-Stage Training. We compare the effectiveness of different

modules in LETR in Table 5.3. During the coarse decoding stage, LETR reaches 62.3 and 65.2

for sAP10 and sAP15 with encoding features from the C5 layer of ResNet backbone, and 63.8 and

66.5 with the one from C4 of ResNet backbone. The fine decoder reaches 64.7 and 67.4 for sAP10

and sAP15 by improving the coarse prediction with fine-grained details from high-resolution

features. We then adjust the data imbalance problem with focal loss to reach 65.2 and 67.7 for

sAP10 and sAP15.

As shown in Figure 5.7 (a), we found it is necessary to train the fine decoding stage after
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the coarse decoding stage converges. Training both stages together as a one-stage model results a

significant worse performance after 400 epochs.

Effect of Number of Queries. We found a large number of line entities is essential to

the line segment detection task by experimenting on a wide range of the number of line entities

(See Figure 5.7 (c)), and using 1000 line entities is optimal for the Wireframe benchmark which

contains 74 line segments in average.

Table 5.3: Effectiveness of modules. Ablation study of the architecture design and learning
aspects in the proposed LETR on Wireframe dataset. (C) indicates the indexed feature used for
coarse decoder; (F) indicates the indexed feature used for fine decoder.

Coarse Decoding Fine Decoding Focal Loss Feature Index sAP10 sAP15

✓ C5(C) 62.3 65.2
✓ C4(C) 63.8 66.5
✓ ✓ C5(C), C4(F) 64.7 67.4
✓ ✓ ✓ C5(C), C4(F) 65.2 67.7

Stage 1

Stage 2

Stage 1

Stage 2

Figure 5.7: (a) Multi-stage vs. single-stage training. We compare results training coarse and
fine layers in single stages and multi-stages (b) Number of decoding layers. We evaluate the
performance of outputs from each decoding layer. The 1-6 layers are coarse decoder layers and
7-12 layers fine decoder layers. (c) Number of line entities. We test LETR (coarse decoding
stage only) with different numbers of line entities on Wireframe.

Effect of Image Upsampling. All algorithms see the same input image resolution

(640×480 typically). However, some algorithms try more precise predictions by upsampling

images. To understand the impact of upsampling, we train and test HAWP and LETR under

multiple upsampling scales. In Table 5.4 below, higher training upsampling resolution improves
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both methods. LETR obtains additional gains with higher test upsampling resolution.

Table 5.4: Effectiveness of upsampling with Wireframe dataset. LETR uses ResNet-101
backbone. * Our LETR-512 resizes original image with the shortest size in a range between 288
and 512 † Our LETR-800 resizes original image with the shortest size in a range between 480
and 800.

Train Size Test Size sAP10 sAP15 sF10 sF15

HAWP 512 512 65.7 67.4 64.7 65.8
HAWP 832 832 67.7 69.1 65.5 66.4
HAWP 832 1088 65.7 67.1 64.3 65.1
LETR 512* 512 61.1 64.1 63.1 64.8
LETR 800† 800 64.3 67.0 65.5 66.9
LETR 800† 1100 65.2 67.7 65.8 67.1

Effectiveness of Pretraining. We found model pretraining is essential for LETR to obtain

state-of-the-art results. With DETR pretrained weights for COCO object detection [LMB+14],

our coarse-stage-only model converges at 500 epochs. With CNN backbone pretrained weights

for ImageNet classification, our coarse-stage-only model converges to a lower score at 900 epochs.

Without pretraining, LETR is difficult to train due to the limited amount of data in the Wireframe

benchmark.

Table 5.5: Effectiveness of pretraining. We train LETR (coarse decoding stage only) with
two variants. ImageNet represents LETR with ImageNet pretrained ResNet backbone. COCO
represents LETR with COCO pretrained DETR weights.

Method Epochs sAP10 sAP15 sF10 sF15

ImageNet 900 58.4 62.0 62.4 64.6
COCO 500 62.3 65.2 64.3 65.9

5.6 Visualization

We demonstrate LETR’s coarse-to-fine decoding process in Figure 5.8. The first two

columns are results from the coarse decoder receiving decoded features from the C5 ResNet

layer. While the global structure of the scene is well-captured efficiently, the low-resolution

features prevent it from making predictions precisely. The last two columns are results from
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the fine decoder receiving decoded features from the C4 ResNet layer and line entities from

the coarse decoder. The overlay of attention heatmaps depicts more detailed relations in the

image space, which is the key to the detector performance. This finding is also shown in Figure

5.7(b), where the decoded output after each layer has consistent improvement with the multi-scale

encoder-decoder strategy.

Coarse Layer 1 Coarse Layer 6 Fine Layer 1 Fine Layer 6

sAP15=0.51sAP15=0.49sAP15=0.49sAP15=0.37

Figure 5.8: Visualization of LETR coarse-to-fine decoding process. From top to bottom: The
1st row shows line segment detection results based on line entities after different layers and the
2nd row shows its corresponding overlay of attention heatmaps. From left to right: The 1st , 2nd ,
3rd , 4th columns are coarse decoder layer 1, coarse decoder layer 6, fine decoder layer 1, fine
decoder layer 6, respectively.

5.7 Conclusion

In this work, we presented LETR, a line segment detector based on a multi-scale en-

coder/decoder Transformer structure. By casting the line segment detection problem in a holisti-

cally end-to-end fashion, we perform set prediction without explicit edge/junction/region detection

and heuristics-guided perceptual grouping processes. A direct endpoint distance loss allows

geometric structures beyond bounding box representations to be modeled and predicted.
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Chapter 6

Conclusion

This dissertation explores a wide range of visual structures in convolutional neural net-

works and Transformers in computer vision.

In convolutional neural networks, we discuss the geometric structure in object skeleton

detection and the part structure in few-shot learning. In object skeleton detection, we introduce a

geometry-aware objective function that provides global and local geometric constraints, often

ignored in prior approaches. In few-shot image recognition, we devise an end-to-end framework

with constellation modules that implements an explicit part representation. We observe that the

explicit part representation and implicit feature representation from CNN filters can share mutual

benefits in few-shot recognition.

In Transformers, we concentrate on multi-scale structures in a generic vision Transformer

model and a specific line segment detection method. First, we present a co-scale mechanism in

vision Transformer that allows the representations of different scales to communicate effectively.

This co-scale mechanism collaborating with conv-attention obtains superb performance on image

classification and many downstream tasks. Second, we introduce a multi-scale Transformer that

progressively refines line segments from coarse to fine. This Transformer can detect accurate line

segments without heavy heuristic designs in prior works.
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Though there have been extensive studies that utilize certain visual structures to improve

representation in deep learning, it is still difficult to identify proper visual structures and embed

them in a principled way. We list several open questions as follows:

Large-Scale Visual Pretraining. Our visual structures are usually designed for a fixed

and constrained data scenario. However, with the visual datasets of rapidly increased size, we

may need to reduce several structures in the current neural network design, or add some different

structures. As an early attempt, ViT [DBK+21] shows that a large vanilla Transformer is enough

to encode rich visual representation without inductive biases from commonly considered visual

structures. However, it remains unclear which visual structures should still be essential when the

model is trained on very large-scale datasets.

Multi-Task Learning. Currently, visual structures for deep representation typically

target a single task. However, an ultimate goal in computer vision and machine learning is to

build a unified model for as many tasks as possible. In this context, we have two future directions

in the design of visual structures: (1) we devise visual structures that meet the common need of

all tasks; (2) we collect visual structures for every task and combine them. These future directions

can also benefit self-supervised representation learning, which aims for feature transferability to

numerous downstream tasks.

Adversarial Robustness. Neural networks are known to be vulnerable to adversarial

attacks [SZS+13]. Much progress has been made to improve the adversarial robustness of deep

neural networks, but there is still no complete solution. Thus, it would be intriguing to explore

if the issues of adversarial examples can be mitigated by certain visual structures. Such visual

structures may not necessarily bring a theoretical guarantee on adversarial robustness, but the

resulting models with these visual structures are nevertheless valuable for many areas such as

face recognition.
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Appendix A

Constellation Nets for Few-Shot Learning

A.1 Appendix

A.1.1 Few-Shot Learning Framework

In this section, we introduce background concepts of meta-learning and elaborate the

few-shot learning framework used in our ConstellationNet.

Meta-Learning in Few-Shot Classification. Current few-shot learning is typically

formulated as a meta-learning task [FAL17], in which an dataset Dbase is used to provide

commonsense knowledge and a dataset Dnovel for the few-shot classification. Dbase has the

classes Cbase which are disjoint from the Cnovel in Dnovel to ensure fairness. There are two stages,

meta-training and meta-test, in the meta-learning framework: In meta-training stage, we attempt

to train a model to learn generic features from Dbase. In meta-test stage, we adapt the model on

the limited training split from Dnovel and evaluate the performance of the model on the test split.

ProtoNet-Based Framework. In our ConstellationNet, we adopt ProtoNet [SSZ17]

as the base few-shot learning framework. In ProtoNet, the dataset Dnovel is represented by a

series of K-way N-shot tasks {T } where each task consists of a support set and a query set, i.e.

T = (T supp,T query). The support set T supp contains K classes and each class has N examples
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from the training split of Dnovel, which are used to adapt the model in meta-test stage. The query

set T query from the test split of Dnovel is then used to evaluate the model.

The ProtoNet attempts to learn a generic feature extractor φ(x) on image x, and represent

a class k by the prototype ck, which is the average feature of examples from support set T supp

with this class:

ck =
1
|N| ∑

(x,y)∈T supp,y=k
φ(x) (A.1)

During the meta-test stage, we use the prototypes to compute the probability pk of a query

example x′ ∈ T query on class k and predict its label y′:

pk = p(y = k|x′,T supp) =
exp(d(φ(x′),ck))

∑k′ exp(d(φ(x′),ck′))
, y′ = argmax

k
pk. (A.2)

where d(·, ·) is a cosine similarity function (different from the Euclidean distance in [SSZ17]).

During the meta-training stage, there are two different training schemes: The prototypical

scheme from ProtoNet uses an episodic learning strategy that also formulates the dataset Dbase as

a series of tasks {T }. The negative log-likelihood loss L(φ) is optimized:

ℓ(T supp,T query) = E(x′,y′)∈T query− log p(y = y′|x′,T supp), (A.3)

L(φ) = ET =(T supp,T query)∼Dbaseℓ(T supp,T query). (A.4)

Another way is the standard classification scheme [CLX+21]: It simply uses Dbase as a

standard classification dataset {(x,y)} consisting of Q classes in total. Thus, a cross-entropy loss

L(φ) is optimized:

L(φ) = E(x,y)∼Dbase− log
exp(wy ·φ(x))

∑q exp(wq ·φ(x))
(A.5)

where wq is the linear weight for class q. In our ConstellationNet, we use the standard classifica-
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tion scheme at default. For the experiment with multi-branch network, we use the prototypical

scheme and standard classification scheme for separate branches.

A.1.2 Datasets

The CIFAR-FS dataset [BHTV19] is a few-shot classification benchmark containing 100

classes from CIFAR-100 [KH09]. The classes are randomly split into 64, 16 and 20 classes as

meta-training, meta-validation and meta-testing set respectively. For each class, it contains 600

images of size 32×32. We adopt the split from [LMRS19]. The FC100 dataset [ORLL18] is

another benchmark based on CIFAR-100 where classes are grouped into 20 superclasses to void

the overlap between the splits. The mini-ImageNet dataset [VBL+16] is a common benchmark

for few-shot classification containing 100 classes from ILSVRC-2012 [DDS+09]. The classes are

randomly split into 64, 16 and 20 classes as meta-training, meta-validation and meta-testing set

respectively. For each class, it contains 600 images of size 84×84. We follow the commonly-used

split in [RL17], [LMRS19] and [CLX+21]. In all experiments, we conduct data augmentation

for the meta-training set of all datasets to match [LMRS19]’s implementation.

A.1.3 Network Backbone

Conv-4. Following [LMRS19], we adopt the same network with 4 convolutional blocks.

Each of the 4 blocks has a 3×3 convolutional layer, a batch normalization layer, a ReLU activation

and a 2×2 max-pooling layer sequentially. The numbers of filters are 64 for all 4 convolutional

layers.

ResNet-12. Following [CLX+21], we construct the residual block with 3 consecutive

convolutional blocks followed by an addition average pooling layer where each convolutional

block has a 3×3 convolutional layer, a batch normalization layer, a leaky ReLU activation, and

max-pooling layers. The ResNet-12 network has 4 residual blocks with each filter size set to 64,
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128, 256, 512, respectively.

WRN-28-10. WideResNet expands the residual blocks by increasing the convolutional

channels and layers [ZK16]. WRN-28-10 uses 28 convolutional layers with a widening factor of

10.

A.1.4 Constellation Module Configuration

To achieve the best performance with constellation modules, we do not always fully enable

them after all the convolutional layers. For Conv-4, we use constellation modules after all four

convolutional layers, but the cell relation modeling module is disabled in first two constellation

modules due to the high memory consumption. For ResNet-12, we enable the constellation

modules after the convolutional layer 1,7,8,9 and disable the relation modeling module in the

first constellation module. We use the deep supervision in ResNet-12 to stablize the training of

constellation modules.

A.1.5 Self-Attention Settings

We follow the common practice in [VSP+17] to set the attention layer with residual

connections, dropout and layer normalization. The sine positional encoding follows settings in

[CMS+20].

A.1.6 Training Details

Optimization Settings. We follow implementation in [LMRS19], and use SGD optimizer

with initial learning rate of 1, and set momentum to 0.9 and weight decay rate to 5×10−4. The

learning rate reduces to 0.06, 0.012, and 0.0024 at epoch 20, 40 and 50. The inverse temperature

β is set to 100.0 in the cluster assignment step, and λ is set to 1.0 in the centroid movement step.
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A.1.7 Ablation Study on the Number of Clusters

Table A.1: Ablation study on the number of clusters for random and similar classes. We
investigate how similarities of images in the training dataset affect the optimal number of clusters.
The first group of experiments use training dataset with 30 similar classes while the second
group use 30 random classes from FC100 dataset, all of which performed on ResNet-12 with
Constellation module.

# Clusters Similar Classes Random Classes

1-shot 5-shot 1-shot 5-shot

8 38.9 ± 0.2 52.8 ± 0.2 40.9 ± 0.2 54.5 ± 0.2
16 39.1 ± 0.2 51.8 ± 0.2 40.9 ± 0.2 54.9 ± 0.2
32 38.7 ± 0.2 52.3 ± 0.2 40.9 ± 0.2 54.7 ± 0.2
64 38.8 ± 0.2 52.3 ± 0.2 41.2 ± 0.2 54.9 ± 0.2
128 38.8 ± 0.2 52.1 ± 0.2 40.8 ± 0.2 54.7 ± 0.2

Table 4 studies the number of clusters needed for random and similar classes. The result

shows the optimal number of clusters are less affected by the number of clusters but more affected

by the similarity between classes. Less number of clusters are needed for dataset with classes of

high similarity, which aligns with our intuition, limited number of patterns exist in this dataset so

that small number of clusters are enough to represent its part-based information.

FC100 training dataset consists of 60 classes that are grouped evenly into 12 superclasses.

In the random classes group, the training dataset includes 6 randomly selected super-classes

(i.e., 30 classes) and models are trained with 8, 16, 32, 64 and 128 number of clusters. The

highest accuracy occurs at 16 clusters (1-shot: 39.12% in ResNet-12). In the similar classes

group, 30 classes are randomly sampled from the original training dataset and we repeat the same

experiments as above. The highest accuracy occurs at 64 clusters (1-shot: 41.22% in ResNet-12),

which is much more than the 16 clusters used for images from similar classes.

A.1.8 Additional Experiments with Negative Margin

Table A.2 studies the use of negative margin loss [LCL+20] on our Conv-4 models. In the

negative margin loss, we use the inner-product similarity, the temperature coefficient β = 1.0 and
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Table A.2: Additional experiments with the use of negative margin. Average classification
accuracies (%) on mini-ImageNet meta-test split. We compare our ConstellationNet and baseline
with and without the negative margin loss based on Conv-4.

Baseline Cell Feature Cell Relation Negative Conv-4

Clustering Modeling Margin 1-shot 5-shot

✓ 50.62 ± 0.23 68.40 ± 0.19
✓ ✓ 51.42 ± 0.23 68.84 ± 0.19
✓ ✓ ✓ 57.03 ± 0.23 74.09 ± 0.18
✓ ✓ ✓ ✓ 57.55 ± 0.23 74.49 ± 0.18

the negative margin m =−0.5, which attains the best performance improvement on our models.

Besides, we do not have the fine-tune step during meta-test. Our baseline with the negative

margin loss obtains 0.80% improvement on 1-shot and 0.44% improvement on 5-shot compared

with the baseline. Similarly, our ConstellationNet with the negative margin loss achieves 0.52%

improvement on 1-shot and 0.40% improvement on 5-shot. The consistent improvement of

negative margin loss on the baseline and our ConstellationNet indicates that our constellation

module is orthogonal to the negative margin loss, and both modules can boost the performance

on few-shot classification.

A.1.9 Clarification on Clustering Procedure

In this section, we add more clarification on our cell feature clustering procedure in Sec.

3.4.1: During the training stage, the global cluster centers V = {vk} are updated by the computed

clustering centers {v′k} in current mini-batch. Each update to a cluster center vk is weighted by a

momentum coefficient η determined by the value of an associated counter sk, since we would

like to avoid large adjustment from the current mini-batch in order to stabilize the global cluster

centers. Besides, the mini-batches of examples are randomly drawn from the dataset following

[Scu10], without specialized design to optimize clustering learning. During the evaluation stage,

we fix the global cluster centers V in the forward step of our model, avoiding the potential

information leak or transduction from the test mini-batches.
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A.1.10 Multi-Branch Details

Our embedding φ(x) is separated into two branches after a shared stem (Y-shape), which

is defined as φ(x) = {φcls(x),φproto(x)} and φcls(x) = gcls( f stem(x)), φproto(x) = gproto( f stem(x)).

Two branches φcls(x),φproto(x) are trained by standard classification and prototypical schemes

separately in a multi-task learning fashion. During the testing time, φcls(x) and φproto(x) are

concatenated together to compute distance between support prototypes and query images.

For our ConstellationNet, we split the network into two branches after the second convo-

lutional blocks (Conv-4) or the second residual blocks (ResNet-12). We keep the shared stem

identical to the network backbone and reduce the channels of two separate branches to match the

parameter size of the model without multi-branch.

A.1.11 Connection with Capsule Networks

A notable development to learning the explicit structured representation in an end-to-

end framework is the capsule networks (CapsNets) [SFH17]. The line of works on CapsNets

[SFH17, HSF18, KSTH19, TSGS20] intends to parse a visual scene in an interpretable and

hierarchical way. [SFH17] represents parts and objects in vector-based capsules with a dynamic

routing mechanism. [TSGS20] uses a stacked autoencoder architecture to model the hierarchical

relation among parts, objects and scenes. Here our ConstellationNet maintains part modeling by

enabling the joint learning of the convolution and constellation modules to simultaneously attain

implicit and explicit representations.
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