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Abstract

Software signature derivation from sequential digital forensic analysis

by

Alexander J. Nelson

Hierarchical storage system namespaces are notorious for their immense size, which is

a significant hindrance for any computer inspection. File systems for computers start

with tens of thousands of files, and the Registries of Windows computers start with

hundreds of thousands of cells. An analysis of a storage system, whether for digital

forensics or locating old data, depends on being able to reduce the namespaces down

to the features of interest. Typically, having such large volumes to analyze is seen

as a challenge to identifying relevant content. However, if the origins of files can be

identified—particularly dividing between software and human origins—large counts of

files become a boon to profiling how a computer has been used. It becomes possible

to identify software that has influenced the computer’s state, which gives an important

overview of storage system contents not available to date.

In this work, I apply document search to observed changes in a class of forensic

artifact, cell names of the Windows Registry, to identify effects of software on storage

systems. Using the search model, a system’s Registry becomes a query for matching

software signatures. To derive signatures, file system differential analysis is extended

from between two storage system states to many sequences of states. The workflow

that creates these signatures is an example of analytics on data lineage, from branching

xvi



data histories. The signatures independently indicate past presence or usage of soft-

ware, based on consistent creation of measurably distinct artifacts. A signature search

engine is demonstrated against a machine with a selected set of applications installed

and executed. The optimal search engine according to that machine is then turned

against a separate corpus of machines with a set of present applications identified by

several non-Registry forensic artifact sources, including the file systems, memory, and

network captures. The signature search engine corroborates those findings, using only

the Windows Registry.
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Chapter 1

Introduction

There was only one student in the room, who was bending over a distant table

absorbed in his work. At the sound of our steps he glanced round and sprang

to his feet with a cry of pleasure. “I’ve found it! I’ve found it,” he shouted to

my companion, running towards us with a test-tube in his hand. “I have found

a re-agent which is precipitated by hæmoglobin, and by nothing else.” Had he

discovered a gold mine, greater delight could not have shone upon his features.

Sir Arthur Conan Doyle, A Study in Scarlet [14]

1.1 Background of the Problem

Analysis of storage systems is challenged by growing data volume. File systems

continue to grow, in counts of bytes, files, and directories. Volume and namespace

complexity obscure files from their owners once the files leave recent memory, though

there is a chance an owner can recall the purpose of a file on seeing it. In digital forensic
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analysis of a file system, where an analyst is inspecting files instead of the owner, the

analyst has no such luxury of familiarity, and no relent from subject media growth.

Table 1.1: Select caseload processing statistics from the FBI Regional Computer Forensics
Laboratory Program’s annual reports. The “Data processed” column is measured in terabytes,
not tebibytes.

Fiscal Year Data processed (TB) Examinations conducted Sources

2003 82 987 [46, 49, 50]
2004 229 1,304 [47, 49, 50]
2005 457 2,977 [48, 49, 50]
2006 916 3,633 [49, 50]
2007 1,288 4,634 [50]
2008 1,756 4,524 [51]
2009 2,334 6,016 [52]
2010 3,393 6,564 [53]
2011 4,687 7,629 [45, 54, 55]
2012 6,582 8,566 [54, 55]
2013 6,567 7,273 [55]

For digital forensic analysts, forensic caseload and ingested data are acceler-

ating. The US FBI’s Regional Computer Forensics Laboratory program releases case

workload statistics annually, with some counts excerpted in Table 1.1. If one makes

the simple division estimate of average data processed per examination, this ten year

window saw a growth from 83 GB processed per case in 2003, to 903 GB in 2013.

Table 1.2: Rough average files and directories (arithmetic means) of computer systems, according
to the Microsoft series of metadata studies. These are summary statistics of computers used at
a corporate campus for business, administration, and technical development purposes.

Year Files Directories Source

1998 13k – [13, Table 2]
2000 30k 2.4k [1, Section 3.1]
2004 90k 8.9k [1, Section 3.1]
2009 225k 36k [38, Section 4.3]
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Alongside the problem forensic analysts have with caseload, file system names-

pace size is exploding. The FBI does not release reports of metadata from their cases,

but measurements from Microsoft’s campus systems show the metadata growth direc-

tions. The Microsoft series of metadata studies show that, in a business setting, the

rough average number of files per system has grown from 13k to 225k between 1998 and

2009 (Table 1.2).

In forensic analysis of storage systems, a common early step is to triage files

for inspection. Many files can be recognized in the file systems by comparing content

hashes to hash lists [15]. The most common recognized-file scenarios are using hashes to

look for known contraband data [28], or to suppress known files bundled with software

[71, 34]. Intuition suggests that the software association list would recognize most of

file systems’ software content. However, a measurement of a substantial software-files

list showed only a 32.7% recognition rate among 36 million files from over two thousand

used hard drives [61]. If the software files were all recognized in the hash list, then 67.3%

of millions of files would have to have been created by people, which is unlikely; or they

would have been created as software-generated artifacts of user activity. Alternatively,

the premise that all software files were recognized can be false, and it is when considering

the definition of a “software file” on a system. In that study, the hash list is the National

Software Reference Library’s (NSRL) Reference Data Set (RDS), a collection of content

hashes of files derived from installation media [71]. One suspected reason behind the

low recognition rate is the semantic gap between the files the NSRL lists, and the files

put on systems when software is installed and used [61, Section 7].
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1.2 Statement of the Problem

To date, file system growth has been an ever-increasing hindrance in analyzing

computer storage. Considering where those files come from creates a new opportunity

to understand a computer. It should be possible to discover which programs have run on

a system, by associating files with their likely creating program. A manifest of software

used on a computer simultaneously describes its purpose up to the time of inspection,

and also indicates types of data one may expect to find when inspecting its contents.

Thus, the millions of artifacts on machines can be turned to investigators’ advantage.

The general problem addressed in this dissertation is taking the forensic fea-

tures of a subject machine, and recognizing what software was ever run on that machine

based on the present features. This model can only work if the features have been recog-

nized before, and more importantly, if the features have some notion of discriminatory

strength—effectively, a measure of distinctness. The Registry’s feature count quickly

moves this problem outside the ability of unassisted manual analysis. When taking

preliminary measurements for this document, installing and removing Adobe Reader

produced 54,000 total changes in the Registry, counting changes between four disk

snapshots. The Registry entries added by a program have the further challenge of being

potentially deceptive if happened upon; for example, consider this Registry key from a

Windows XP machine:

• \$$$PROTO.HIV\Software\Netscape\Netscape Navigator\

Suffixes\application/msexcel
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The product name “Netscape Navigator” appears in the path. An investigator

who only descends into the Registry to that middle key may conclude that Netscape was

on the system. However, the key was created by installing Microsoft Office, Professional

Edition 2003, and no Netscape product was placed on the system. These inter-product

references could confuse signatures for software products made without the context of

signatures for many other products.

Document search presents a model for this task, fitting constellations of fea-

tures to the cause of their instantiation. This thesis shows how to apply document

search to identify software presence. A subproblem is assigning many relevancy scores

to artifacts—e.g., how relevant a file is to any program, or whether it means nothing

for any software presence.

1.3 Purpose of the Study

There are many resources a computer has to identify the programs on it. For

instance, Microsoft Windows includes an Installed Programs feature, for listing and

removing software. However, such resources can be incomplete, or deliberately evaded

if a user or program is intent on covering their tracks. It is worthwhile understanding

what the forensic footprint of conspicuous software is—but to learn that, we must

necessarily learn what normal activity is as well. Hence, a side effect of this research

is coming to understand the forensic footprint of benign background noise, to be sifted

from software-indicative data.
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1.4 Theoretical Framework

A computer will have a set of programs, P , that have affected it. Each artifact

a is associated with none, one, or many of the programs p ∈ P . With A as the set

of artifacts, this implies an |A| × |P | artifact-to-program association matrix, where

entry (ai, pj) is some score of ai’s relevance to pj . This dissertation applies information

retrieval problem design to file system analysis, in order to populate that matrix.

To assemble the sets of artifacts of a program pj , this dissertation inspects

virtual machines instrumented to have only that program used on it after a baseline

operating system is installed. The inspection follows the design pattern of file system

differential analysis [21], following an algorithm to enumerate changes between two

states of a storage system. The virtual machine snapshots readily provide states for

differencing, and also provide a way to relate all of the change sets together, using the

snapshot histories as a relational data structure.

The change sets provide unwieldy numbers of artifacts, only some of which are

likely related to a program. Document search takes the change sets and assigns scores of

the association matrix. Simple counting is one type of search, but many other variants

exist [74].

1.5 Thesis Statement

By analyzing differences between two snapshots of the Microsoft Windows

Registry, it is possible to reliably infer the installation, use, or removal of a specific
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application, using signatures automatically generated from a training set of disk images.

1.6 Importance of the Study

The process that most immediately benefits from this research is forensic

triage. Automated production of a manifest of software ever used on a system would be

a boon to investigators, who today begin with little usage context on each system they

see. With separated installation and execution signatures, software run without being

installed can be flagged early in analysis. For instance, recognizing execution of a web

browser with no signs of installation may suggest some other device like a USB thumb

drive was used to house a portable browser instance. The investigator could then review

whether they have such a thumb drive in their possession.

This research makes it possible to use a Windows system’s Registry files to

report on software present and executed on the system, by using software signatures

made with document search. Those signatures can become a resource supplementing

already-available known-file sets. Combined with the National Software Reference Li-

brary’s (NSRL) Reference Data Set (RDS), this research closes the semantic gap between

installation media files and files expected to be found on subject machines.

1.7 Scope of the Study

This dissertation assumes the forensic inspection pattern of post-mortem stor-

age analysis. In post-mortem analysis, a subject machine is inspected after being pow-
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ered off, and no further changes are expected to occur within the machine. Further,

this dissertation only analyzes one class of artifacts: path names extracted from the

Windows Registry. The analysis does not include the contents of Registry values.

The study can also be performed on the Registry as extracted from RAM, but

that is left to future work. The search techniques can then further expand to generic

appearances of forensic artifacts. However, significant tailoring of the same design

pattern will be needed for each class of artifact.

This research does not inspect presence of software after attempted deletion.

However, some of the data used in the study has been used for that purpose [29], though

with a different class of artifact, file sector hashes.

Last, the design of this study focuses on optimizing binary classifier perfor-

mance against fixed inputs, i.e. against two corpora of virtual and physical machine

states. The data considered do not allow for statistical claims to be made, because the

tested data are drawn only once from the random population of machine states. Hence,

the results of this study are generalizable to the extent that these machines are represen-

tative of the total population of computer storage states of systems running Microsoft

Windows operating systems since the Registry was first introduced in Windows 95 [26].

The subject machine created specifically for this study is only representative

of machines insofar as it has a collection of applications installed, with some run once.

Most desktop systems that see normal use will have more applications installed, which

will be run many times with more of their functionality exercised by the end user.

However, the second data set studied—“M57-Patents” [72], described further
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in Section 3.2.3—is more representative of realistic computer use, as the machines were

used over the course of a calendar month by real people, though they were enacting

a fictional scenario. Consistency in evaluated performance between these two data

shows that the methodology can be generalized. This study’s scope does not include

a statistically strong evaluation. It is left to future work to apply to larger set of real

data, e.g. the Real Data Corpus [23].

1.8 Definition of Terms

This dissertation combines two topic areas: document search, and storage

system differential analysis [6, 21]. This thesis introduces new terminology to describe

the behaviors of the Windows Registry in Diskprint data inter-relationships.

1.8.1 Document search

The analyses of this work are based on a search engine that uses the Vector

Space Model (VSM) of document search [10, 74], a mechanism to measure similarity

of documents and queries by representing them as term vectors. There are at least

millions of possible, applicable variants of the VSM, that permute term weights, docu-

ment lengths, and other factors. However, Zobel and Moffat exhaustively evaluated over

100,000 effective variants on English document corpora with queries and relevancy pro-

vided, and found “no component or weighting scheme was shown to be consistently

valuable across all of the experimental domains” [74, Conclusions]. Hence, we se-

lect a “Stock-standard” VSM variant [74]: term-frequency, inverse-document-frequency
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weights (TFIDF) with cosine similarity. Future work can include seeking an optimal

weighting scheme among the parameter space of Zobel and Moffat.

This section introduces search nomenclature and constructions that will be

translated in later chapters to search forensic feature sets. As Zobel and Moffat enu-

merated a significant parameter space of constructing vector space models, the formulas

quoted here will use their symbols and definitions.

Table 1.3: Symbols of document and term statistics used to define vector space models. For
nomenclature consistent with the literature, definitions are as in Zobel and Moffat [74], some
verbatim.

Symbol Definition

N The number of documents.
t A term.
d A document.
q A query.
fd,t Absolute term frequency—i.e. count—of a term t within a document d.
ft The number of documents containing term t.
fq,t Absolute term frequency—i.e. count—of a term t within a query q.
D The set of documents.
T The set of distinct terms known to the vector space model.

Table 1.4: Symbols of components used to define vector space models, as various functions of
the statistics defined in Table 1.3. For nomenclature consistent with the literature, definitions
are as in Zobel and Moffat [74], some verbatim.

Symbol Definition

Sq,d The similarity of a query q with a document d.
wt Term weights, which are variants of inverse document frequency.
wd,t The weight of a term t within a document d—i.e. document-term weights and

query-term weights.
rd,t Relative term frequency—i.e. weighted count—of a term t within a document d.
Wd Length of document d.
Tq,d The terms in common between a document and query; formally, Tq ∩ Td.
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A VSM search engine returns a set of documents corresponding to a user

query, both of which are comprised of terms. Queries are measured against a corpus of

documents ingested by a search engine. The engine returns the documents relevant to

a query, ranked by their “nearness” to the query. “Nearness” is measured by treating

documents and queries as vectors in |T |-dimensional space, where T is the set of terms.

The vectors’ elements are weights, according to frequency of the terms and inverse

frequency of the terms among corpus documents. Tabulatory statistics of the corpus,

whose symbols are in Table 1.3, are combined by the weighting scheme, which uses the

symbols in Table 1.4.

The document-term weights wd,t within the TFIDF matrix are defined as:

wd,t = rd,t · wt (1.1)

Where the inverse document frequency wt is:

wt = log (1 +
N

ft
) (1.2)

And the relative term frequency rd,t is:

rd,t = fd,t (1.3)

The length of a document Wd is:
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Wd =

√∑
t∈Td

w2
d,t (1.4)

The length of a query is also usually defined as in Equation 1.4. However, in

this dissertation Wq needs to deviate from that typical definition. The typical definition

iterates over Td, whereas here the query length iterates over Tq ∩T , clarifying that T is

the set of terms known to the search engine, without any term associativity predictions

typically available to unknown natural-language terms [35]. This restriction is due to

the unusual situation of having queries with a high likelihood of having terms that were

not in the training data. The search engine needs to ignore these unknown query terms,

because their inverse document frequency according to the search engine’s knowledge is

undefined, needing to divide by the term frequency of 0. This is an issue that normally

does not arise in natural language search, which has estimation techniques for unknown

terms, such as part-of-speech estimation [67] and translation [9].

Finally, the combining function is the vector cosine:

Sq,d =

∑
t∈Tq,d(wq,t · wd,t)

Wq ·Wd
(1.5)

A cosine value, or similarity, of 1 is a perfect match, while 0 is orthogonal,

meaning no match at all. Another reason for only analyzing query terms in Tq ∩ T

is maintaining a consistent interpretation of similarity of totally-dissimilar documents:

Zobel and Moffat choose their similarity functions so when no terms are in common

between a query and a document, the similarity is zero [74, Section 2].
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Natural language search engines follow a few common strategies to reduce

search index size and make terms recognizable to the engine. First, common terms are

often ignored from documents and queries, by creating a stop list of terms to discard

from all engine operations. This removes significant burdens from the index, e.g. by not

tracking how many times “the” appears within a document. There are several strategies

used in natural language search to construct stop lists. A stop list can be the most com-

mon terms among some language corpora. For specific classification tasks, like finding

terms that indicate a message is spam or not, each term can have its information gain

measured, and be added to a stop list if the information gain is too low [10]. However,

information gain is suited for one classification task at a time. In this thesis, information

gain calculations would be redundant with TFIDF, so they are not performed; but the

most-common terms are identified and used in stop lists.

To address variants of terms that semantically resolve to a common idea, en-

gines will also stem terms in documents and queries. Stemming is converting terms

into more basic forms, so they can be detected in spite of light effects like misspellings

or conjugations. For example, a common topic for documents containing the words

“hunting” and “hunter” would be derived by stemming the two to “hunt.” A phonetic

example of stemming is doing human name search by Soundex encoding, a phonetic

spelling for names according to English pronunciation [62].
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1.8.2 File systems and the Windows Registry

Computer storage systems have centered for decades around the hierarchical

namespace design [63]. A disk is divided into partitions1, usually one to four, and

each partition is given a file system. Each file system then has a superblock with basic

metadata like a label and pointer to a root directory. From the root directory, the rest

of the file system attaches in a tree structure, or at least a directed acyclic graph if files

are allowed multiple names.

In brief, the Registry can be considered a special hierarchical file system [40].

Many of the Registry’s basic elements align straightforwardly with file system terminol-

ogy:

Hive A hive is a collection of Registry items. It is analogous to a partition on a hard

drive. A hive contains what amounts to a file system.

Hive file A hive is stored as a regular file in the NTFS file system. A typical Windows

system contains several hives. Table 1.5 shows hives that appear in a typical

Windows 8 system.

The global Registry namespace The Registry tree structure acts like a Windows

file system, where partitions are presented at letter-colon points (e.g. “C:”). Hives

mount their file systems at particular points in the namespace.

Cell A cell is analogous to a file, much in the same spirit as some file systems treat all

file system objects as files, be they directories, regular files, soft links, etc. In the

1For historical reasons, the terms “Volume” and “Partition” are often used interchangeably.
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Windows Registry, cells can be keys or values.

Key Keys are cells that can contain other keys or values. They are analogous to

directories. Each key also has a timestamp of when it was last modified.

Value Values are analogous to regular files. Values have an explicit type (such as

integer, or string list), but lack much of the metadata that file systems provide

files. The type is known to be overloaded as an additional arbitrary data field,

in at least one case by the Windows operating system: the SAM hive stores a

numeric user identifier as the type of the default value of the key \SAM\SAM\

Domains\Account\Users\Names\username [31].

Timestamp While some values store timestamps as their data, values themselves do

not have any timestamp fields. Keys store their own last-modified time.

Slack Like some file systems, the Registry does not erase content on receiving a deletion

command. The content is instead marked as being unallocated and left in place,

awaiting reclamation. Hence, one can recover deleted cells [66]. This dissertation

does not make use of deleted content, but the techniques presented here could be

expanded to use deleted Registry cells.

Other references on Registry structures [66, 44] and analysis [8] are available.

For this dissertation, it will suffice to understand hives, cells and values. Timestamps

and slack space analysis provide future opportunities for new or improved signature

construction unrealized here.
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Table 1.5: Some typical hives of a Windows 7 system. These hives are usual analysis subjects
in forensic investigations that require Windows Registry inspection [7, Table 4.1] [8, page 18].
A more extensive list of hives is given in Tables 3.8 and 3.9.

File system path suffix

Users/username /AppData/Local/Microsoft/Windows/UsrClass.dat

Users/username /NTUSER.DAT

Windows/System32/config/COMPONENTS

Windows/System32/config/SAM

Windows/System32/config/SECURITY

Windows/System32/config/SYSTEM

Windows/System32/config/SOFTWARE

1.8.3 Diskprints and lineage sequences

This work measures the storage effects of software as it is used on systems.

Differential analysis [21] identifies what has changed from one system state to another;

but the design and choice of compared states is as necessary as the ability to compare

the states. This section addresses the basic design of the Diskprint data, the training

data for the search models. The Diskprint data provide a corpus of machine states

related by state lineage, which leads to sequential forensic analysis, an extension of

differential forensic analysis. Where most forensic analysis today considers a single

system state, differential analysis considers the changes of the entire computer from

one state to another. To borrow calculus terminology, it is the “first derivative” of a

forensic image with respect to time. Sequential analysis studies the “second derivative:”

similarities and dissimilarities between change sets. By defining a data structure for

forensic sequences, this work enables automated differential analysis, as system states

are better organized for automated comparison.
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1.8.3.1 NSRL Diskprints

The data on which the search models are trained are derived from the National

Software Reference Library (NSRL) Diskprint project [65]. The NSRL provides meta-

data summaries of gathered, purchased, and donated software. To date, the NSRL has

released its file content summaries as their Reference Data Set (RDS), a collection of

metadata—particularly hashes—of files derived from installation media. As of edition

2.51, the RDS currently houses approximately 23,000 software packages. The software

backing this hash set has not been installed, so there is a semantic gap between the

data backing the RDS and the data one encounters in an investigation.

In search of a better software identification process than hashing installation

media files, the NSRL team began the Diskprint project [65]. Diskprint-derived data

come from installing software from the NSRL in a controlled virtual environment, mea-

suring machine state at consistent times in an application’s lifecycle. These measure-

ments provide opportunity to take forensic measurements of RAM, storage, and network

data.

A software diskprint2 is a captured sequence of states of a machine, typically

of a virtual machine. Each state contains the snapshot contents of the virtual machine,

and is also bundled with a network capture since the last snapshot. The snapshots

are taken according to progress on a software lifecycle. For generic software signatures,

the lifecycle has these states to remain generically applicable to software packages,

2Software diskprint will often be simplified within this work to diskprint. When capitalized,
“Diskprint” will refer to the NSRL project.
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Figure 1.1: The software lifecycle captured by a diskprint. Each step has at least one virtual
machine snapshot taken. The search models in this thesis are built on only the last snapshot
taken in each lifecycle phase.

illustrated in Figure 1.1:

1. Baseline An operating system has been installed, and is ready for use.

2. Install An application has been installed.

3. Run The application has been run. In practice, diskprints often break Run into an

Open step, one or more Function steps to deal with mandatory software actions,

and a Close step signifying the software has been run once at least minimally.

4. Uninstall The application has been removed.

5. Reboot The machine has been re-booted.

In creating some of the diskprints, multiple snapshots were taken while in a

particular lifecycle phase, because there was some decision point the diskprint creator

wanted to capture. The analysis in this thesis is only based on the last snapshotted state

of each point in the software lifecycle. A training sequence derived from a diskprint

sequence will only be the states “Baseline,” “Last Install,” and “Last Close,” where

“Last” acknowledges that a state may have taken several decision-point snapshots to
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Figure 1.2: A sample lineage graph, showing the histories of two applications run on two baseline
virtual machines. Edges are in the direction of progress through the software lifecycle (Figure
1.1).

capture.

1.8.3.2 Lineage graph and sequence

A lineage graph is a forest, or set of graph-theoretic trees, relating diskprint

states to one another. Each tree represents the histories of a system that share a

common baseline, with directed edges denoting ancestry. The Diskprint data induce a

lineage graph scoped to applications installed on virtual machines. Figure 1.2 shows the

combinations of application and operating system by installing TrueCrypt and Firefox

on Windows XP and 7.

The workflow that analyzes the lineage graph frequently considers the nodes

and edges of the graph. Each node represents the state of a virtual machine, including

its network activity since the last state, its disk(s), and its RAM. An edge of the lineage
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graph points to a node’s immediate ancestor as collected by the Diskprint process.

A lineage sequence—which will often be simplified throughout this document

to “sequence”—is a subset of nodes of the lineage graph, with a set of edges defined to

join the nodes. The subset preserves the lineage ordering, but may “skip” some of the

recorded states for the sake of reducing state-change granularity.

1.9 Summary

Most user actions taken on a computer will affect the state of the storage

system. This dissertation uses document search to weigh the importance of those effects,

in order to recognize software usage. Search also provides a mechanism for determining

the importance of every artifact relative to each software presence query. This weighting

is a novel mechanism for weighing the millions of artifacts encountered in investigations,

and is human-scalable at investigation time.

This work makes the following contributions:

• A novel forensic application of document search.

• Design of the Diskprint controlled corpus of software execution.

• An extension of forensic differential analysis, to a workflow that can be derived

from the lineage graph of an evolving training corpus.

• A strategy for characterizing forensic features, from the Windows Registry in

particular, as important to some software package or important to none.
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Chapter 2

Review of the Literature

This chapter introduces the storage system analysis language and analytic

technique that are used for developing software signatures, Digital Forensics XML and

differential analysis. Other works on software signaure development, most of which

involve manual artifact classification, are covered for comparison.

2.1 DFXML and hierarchical storage analysis

There are many types of storage analysis tasks that do not require access to raw

storage data. For instance, storage system utilization, namespace depth surveying [1, 13,

38], and timelines need only file system metadata. Tree synchronization [21] and known

file recognition [15] need only minimal file content summaries. These analyses were key

motivations cited by Garfinkel in the design of Digital Forensics XML (DFXML) [17],

an object model and XML syntax for describing storage systems. DFXML functions as

an intermediary analytic format, fit for performing file system metadata analysis and
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exchanging results, without requiring access to the original disk image. This work uses a

child language of DFXML developed to perform the same role for the Windows Registry

[40].

DFXML is generated by a metadata extraction utility that walks a storage

system. The initial generator, the userspace tool fiwalk , is a wrapper around storage

system analysis functions provided by The SleuthKit [22]. fiwalk creates a storage

metadata manifest of a disk image, without requiring mounting the disk and potentially

exposing malformed or malicious file system content to the analysis machine’s kernel.

The DFXML model enumerates metadata for partitions and files. Its initial

design recorded the following:

• Partitions had file system type and physical location information recorded.

• Traditional file metadata, such as that found in inodes, was recorded in

<fileobject> elements. The traditional file metadata was augmented with some

NTFS specifics commonly used in The SleuthKit; and with content information,

including libmagic information, cryptographic checksums, and data locations. Lo-

cation data for file contents were recorded in <byte runs> elements for each file.

• Provenance of a DFXML file was included within the header, including information

about the generating utility, input file, and command line. From these data, the

DFXML file could be recreated at a later date if necessary.
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2.2 File system differencing

The key to deriving application footprints from post-mortem storage analysis

is understanding what changes took place between two times. The general problem form

here is differential analysis [17], observing the differences in two images, measured in

counts and attributes of features within the images. For example, in disk-level storage

analysis, a disk image would be an image, a file a feature, and a timestamp an attribute.

These terms are as defined by Garfinkel et al. [21]. In Registry analysis, we analyze the

same dimensions of Registry cells.

File system differencing is a multi-dimensional problem. The objective is to

find files that were created, deleted, modified, or renamed. Post-mortem file system

analysis has additional complicating factors. A file found in a disk at time t0 may be

found in the same disk at time t1, under a different identifier number, directory, name,

partition, data byte location, metadata byte location, or allocation status. Each of

these properties serves to help identify a file, and each can be independently mutated,

confusing the matching process. Fortunately, the situation is more straightforward for

the Registry.

File system differencing is a specialized instance of a general, cross-domain

differential analysis strategy [21]. The general strategy is similar to set-differencing

features found in images. Features have an identity attribute, potentially multiple

names, a location within the image, and other attributes. Features are matched on

identity and name, and once matched can be further analyzed for each changed attribute
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if desired. In storage analysis, this strategy applies straightforwardly for reporting

changes of disk partitions without inspecting partition content. For most file systems,

however, a difference set of two images cannot be produced by simply assembling a list

of names and a list of inodes. The general assembly and incremental removal to match

files and their names is fraught with complications from file-matching ambiguities that

storage systems typically present. Fortunately, these complications are absent from the

Registry.

2.2.1 RegXML and Registry differencing

The RegXML language represents the above metadata and value content, in

an XML syntax that overlaps with DFXML [40]. RegXML was designed to behave

much like DFXML, so the Registry could be analyzed similarly to file systems. The

RegXML programming interface is the basis of the Registry analysis software for the

experiments in this work. The programming interface provides a similar differential

analysis framework as with file systems.

Differencing Registry hives is similar to differencing file systems, but generally

less complicated because:

• Registry hives have less metadata per cell than file systems have per node.

• Registry cells are not generally moved from one location to another.

• Registry keys are not renamed.

Thus, Registry differencing can generally be done with set subtraction. This
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is mainly due to the simple identity mechanism of Registry cells.

Garfinkel et al. implemented differential analysis in a program, idifference.py

[21]. The analysis in this dissertation is built on a variant of that tool, rdifference.py,

an implementation of Registry differencing at the hive level. When run by itself, the

hive differencing program rdifference.py reports:

• New and deleted hive cells, including cells that have precisely matching full paths

(i.e. a cell being fully duplicated, including name).

• Values with modified content or type.

• Keys with changed modification times (mtimes), from which one may partially

infer a changed value’s mtime.

When used as a library, rdifference.py provides the sets of added, removed,

and matched cells for further analysis.

This dissertation only considers Registry cells added from step to step. Set

differencing suffices to compute these changes, so the topic of differencing Registry

contents will not be explored further in this document.

2.3 Software signature development

File system metadata is a frequent, and in many circumstances the best or

only, data for determining how a system was used. Early metadata-based forensic

inspection includes recognizing when executable files’ checksums had changed from pre-

viously recorded states, as in Tripwire [33], an early intrusion detection tool.
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File system metadata provides many dimensions of data one can use to devise

behavioral or software signatures. Geiger evaluated anti-forensic tools for their com-

pleteness in removing forensically interesting file system artifacts [24]. One result of his

research was a set of signatures of tool usage, based on his manual observation of pat-

terns in file names and contents. Geiger reported these signatures in English, but most

of the software traits could have a pattern-recognizer written from the description, such

as file name and extension patterns. Geiger’s signatures cover a broader scope of data

than inspected in this dissertation, but relied on a human to determine the worthwhile

patterns, whereas this dissertation uses document search to develop signatures.

Davis et al. approached the problem of developing software signatures, sharing

developed signatures of data concealment programs—encryption, steganography, and

data tools—by inspecting storage artifacts after distinct stages of use. They created

and tested signatures of tool installation and execution by deploying tools on physical

machines, with each deployment starting from a consistent baseline operating system

image [12, Section 5]. After installation, execution, and removal, they would shut down

the system and image the drive. There was no report of repeating an action to catch

behavioral variances. The Diskprint data performed similar minimal data generation

actions, but the data would differ in two significant ways using virtual machine snap-

shots instead of physical machines. First, Windows shutdown artifacts would not be

integrated into each data capture. Second, artifacts in virtual machines would have

some likelihood of not being flushed from RAM.

The methodology of Davis et al. included unspecified strategies for identifying
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significant artifacts, with overlapping artifacts like shared libraries handled by allowing

a user to specify a scalar “Confidence” threshold. Confidence was calulated based on an

unspecified function of matched artifacts. Tools were reported as installed or executed

by their signature-matching engine if the signature match surpassed the user-requsted

threshold. This dissertation also reports software installation and execution, but uses

document search to calculate artifact relevance scores and match sofware signatures by

artifact sets, and draws benefits from repeating software lifecycle phase captures.

Kälber et al. produce “file system fingerprints” of software usage, using only

timestamps from file system metadata, and an automated repetitive state capture frame-

work [32]. Their goal was to capture the effects of specific user actions, such as email

and instant messaging activity, so the software signatures are an intermediary result to-

wards their goal. Their signatures comprised of sets of files expected to have clustered

timestamps if an action were taken. They constructed the signatures by performing

an action in a virtual machine, creating a GUI script that could repeat their interface

actions, and then running the script and capturing system state one hundred times. The

files named in the signatures were the set-intersection of files with updated timestamps,

among only the one hundred repeated operations. The Diskprint data don’t enjoy the

same depth of repetitions, but they do have a greater breadth of software selection feed-

ing the search models. The intersection among repetitions is one option that the search

models use to combine grouped signature elements, but other options are explored in

Section 3.3.3.5. Last, Kälber et al. had a difficulty with files including varying patterns,

particularly the Mozilla pattern of using a random-character profile name in the file
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Figure 2.1: A previously proposed software lifecycle model. Reproduced from Davis et al. [12].

path: Those files could not be used in a signature without the investigator providing

a wild cards framework. This dissertation addresses that problem by analyzing path

components instead of whole paths, further described in Section 3.3.3.4.

2.4 Software lifecycle

The software lifecycle the Diskprint project takes focuses on a single version

of software. Other work in signature development acknowledges the evolving states of

software, particularly around updating. For instance, Davis et al. [12] use the software
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lifecycle depicted in Figure 2.1. Unlike the linear Diskprint lifecycle of Figure 1.1, this

model adds an “Update” state.

Davis et al. did not address the update state beyond that figure, but there is a

larger effort around representing the identity of software, including deployed state, ven-

dor updates, and independent patching, called Software ID (“SWID”) Tags [69]. SWID

tags represent an installed instance of software with more precise version information

than a version string, by incorporating authoring information; manifests of installed files

and Registry entries; and supplemental product references, like patches. The granularity

that patch references provides can help future work in software signatures distinguish

behavioral artifacts between different versions of software, which is likely to matter if

one is scanning for known-vulnerable software. If software vendors, package managers,

and compiler tool chains move to automatically produce and provide SWID, then one

of the questions posed in this thesis—was product x installed—will be easier to answer

on systems in the future. However, SWID does not necessarily make detecting records

of software execution easier; nor does it automatically help identify presence of software

that exists today, unless signatures are developed, such as by methods inspected in this

thesis.
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Chapter 3

Research Methods

3.1 Research Design

This research starts with sequences of virtual machine snapshots, and from

them derives software signature search engines. This first requires a framework to

process related virtual machine states, in order to get difference data to ingest into

a search engine. The design of the search engine is extensively parameterized, due

to a number of design decisions that arise when considering how to combine the dif-

ference data into signatures. Ultimately, the search engine is converted from a Vec-

tor Space Model to a Signature Searcher, which passes a Registry to an underlying

Vector Space Model, and uses signature similarity scores to return a set of triples:

(Application,Applicationstate,Present), with the third element a Boolean response.

Overall, the evaluation strategy is to demonstrate the best point in the con-

figuration parameter space for Signature Searchers, judging by the Searcher correctly
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identifying software presence. The most effective combinations of parameters are sought

by a full-factorial experiment [5] that tests all combinations of parameter values. The

evaluation operates on two data sets. First, a controlled virtual machine has soft-

ware installed, with snapshots taken after individual package installations and execu-

tions are complete. Search results from each machine state can then be compared

to the ground truth for that state, where the ground truth is a set of quadruples:

(MachinestateID ,Application,Applicationstate,Present).

By comparing Searchers’ reports of software installation and execution with

the ground truth history of software usage, the Seachers are given binary classifier

evaluation, measuring effects on precision and recall. At times, precision and recall will

be combined into F1 (their harmonic mean, 2pr
p+r ), as a single-number ranking measure

of the Searcher’s “Correctness.” There will also be some consideration of counts of

signatures produced per model. The ground truth is explicitly enumerated, so a Searcher

response on an application-state presence in a machine state outside ground truth is

discarded from the evaluation.

After evaluation against the control virtual machine’s states, the Searcher op-

erates on an independently-produced corpus of disk images, the M57 “Patents” scenario

[72], attempting to reproduce a software presence report from the research literature.

This dissertation compares against Roussev et al. [60], which also analyzed the M57

Patents scenario. The Signature Searchers make use of the Windows Registry, while

Roussev et al. made use of the file system, captured system RAM, and in some cases net-

work captures. The Signature Searchers produce the same application presence results,
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using only one forensic data source of the examination subjects.

3.2 Participants

The experiments of this thesis include three different data sets. First is the

training data, the Diskprint data set produced by the NSRL team [71]. The first Sig-

nature Searcher evaluation is run against a Windows virtual machine instrumented

specifically for this study. That machine has a set of applications, with snapshots taken

as software was installed and executed. The second evaluation runs the top Signature

Searchers according to the instrumented machine’s states, and sees if they are equally

performant against the M57-Patents corpus [72]. Though there are in total four ma-

chines used in the evaluation—not counting the training data—they are grouped into

two sets, according to their sources of ground truth. The instrumented machine has

a fully enumerated set of application installations and execution at each snapshotted

state. The M57 corpus has an independently-produced set of application installations

and execution.

3.2.1 Training data: NSRL Diskprints

Diskprints were created on baseline operating system states that contain a pri-

mary, administrator-level user that performs the software interactions; and a secondary

user, not to be directly used. The secondary user is to help identify artifacts from soft-

ware that purposefully affects each individual user’s configurations, and artifacts that

include some small pertuburations. For example, some Mozilla software creates paths
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in the user data directory that include a random string in a directory name.

Table 3.1: Application diskprint tallies, with versions as reported by NSRL practice, e.g. as
recorded in software physical packaging [71]. A diskprint is a sequence of snapshots that capture
a virtual machine as it installs, runs, and uninstalls an application. A number greater than 1
indicates a diskprint was repeated, with the same user actions taken with the same application
on the same operating system. No prints other than a baseline were produced for 64-bit Windows
8. Continued in Table 3.2.

Count on OS & arch.
XP Vista 7 8

Application Version 32 32 64 32 64 32

7-Zip 9.2 3 0 0 0 0 0
Adobe Acrobat Reader 3.0 Copyright 1995-1996 0 1 0 0 0 0
Adobe Dynamic Media Solutions 2.2002 0 1 0 0 0 0
Adobe Photoshop Elements 10 c. 2001-2011 0 0 0 1 0 0
Adobe Photoshop Elements 12 c. 2001 - 2013 0 0 0 0 0 1
Adobe Photoshop Lightroom 4 c. 2012 0 0 1 0 0 0
Brother HL-2170W HL-2170W 3 0 0 0 0 0
Eraser 6.0.10.2620 0 0 0 1 0 0
Faronics Deep Freeze Standard 7.10.020.3176 0 0 0 1 1 0
Firefox 32.0.2 3 0 0 3 3 3
Google Chrome 28.0.1500.95 1 0 0 1 1 0
Google Chrome 4 0 1 0 0 0 0
HxD Hex Editor 1.7.7 0 0 0 1 0 0
Invisible Secrets 2.1 3 0 0 1 0 0
Limewire Basic 4.09.39 0 1 1 0 0 0
Microsoft Flight Simulator 2004 A
Century of Flight

2003 0 0 0 1 0 0

Microsoft Office Home and Student
2010

2010 0 0 1 0 0 0

Microsoft Office Professional 2007 Version 2007 0 0 0 1 1 0
Microsoft Office Professional Edition
2003

2003 1 0 0 1 1 0

Tables 3.1 and 3.2 list the applications that have had diskprints produced,

along with the number of times these applications were printed. The numbers in the

remainder of this document stem from these applications.
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Table 3.2: Continuation of Table 3.1.

Count on OS & arch.
XP Vista 7 8

Application Version 32 32 64 32 64 32

Mozilla Firefox beta 19.0b2 1 0 0 1 1 0
Mozilla Thunderbird 2 2004-2007 3 0 0 0 0 0
Norton AntiVirus 2012 with Antispy-
ware

c. 2011 0 0 1 0 0 0

Python 2.6.4 1 1 0 0 0 0
SDelete 1.61 0 0 0 1 1 0
Safari 5.1.7 1 0 0 1 1 0
Skype 6.1.0.129 1 0 0 1 1 0
StreetFinder Travel Navigation Soft-
ware

c. 2003 0 1 1 0 0 0

TeamViewer 9.0.25942 1 0 0 1 1 0
TrueCrypt 6.3a 3 0 0 0 0 0
TurboTax Deluxe Plus State 5 0 1 1 0 0 0
TurboTax Premier For Tax Year 2013 c. 2013 0 0 0 1 0 1
Ultimate Packer for eXecutables for
Windows 32-bit

3.09 0 0 0 1 1 0

WinZip 17 Pro c. 2012 0 0 0 3 3 0
Winrar 5.00 Beta 6 0 0 0 1 1 0
Wireshark 1.8.0 0 0 0 3 1 0
World of Warcraft c. 2004 0 0 0 1 0 0
XP Advanced Keylogger 2.1 1 0 0 0 0 0
Yahoo Messenger 11.5 0 0 0 1 0 0
mozilla Firefox 2 Copyright 2004-2007 0 1 1 0 0 0
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Table 3.3: Appearance order of applications’ installation and running on the experimental sub-
ject virtual machine. The “1st appearance” column is the numbered snapshot of the virtual
machine, where the baseline OS was snapshot 0.

Application Version Lifecycle phase 1st appearance

XP Advanced Keylogger 2.1 Install 2
Wireshark 1.8.0 Install 3
HxD Hex Editor 1.7.7 Install 4
Invisible Secrets 2.1 Install 5
Mozilla Firefox beta 19.0b2 Install 6
Python 2.6.4 Install 7
Mozilla Thunderbird 2 2004-2007 Install 8
TrueCrypt 6.3a Install 9
Microsoft Office Professional Edi-
tion 2003

2003 Install 10

Winrar 5.00 Beta 6 Install 11
SDelete 1.61 Install 12
Winrar 5.00 Beta 6 Run 12
WinZip 17 Pro c. 2012 Install 13
WinZip 17 Pro c. 2012 Run 13
Mozilla Firefox beta 19.0b2 Run 13
Eraser 6.0.10.2620 Install 14
Eraser 6.0.10.2620 Run 16
TrueCrypt 6.3a Run 17
Invisible Secrets 2.1 Run 18
SDelete 1.61 Run 19
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Table 3.4: Ground truth of applications installation and running on the experimental subject
virtual machine. Because document grouping and software version matching affect the definition
of ground truth, other variants of this table exist, but may be impractical to typeset. Here,
document grouping is by application, with each application version considered distinct. The
numbers in the header row are the snapshot number of the experimental subject machine,
where in snapshot 1 no application had been installed or used, snapshot 2 had the Keylogger
installed, etc.

Application I/R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Keylogger I X X X X X X X X X X X X X X X X X X X
Wireshark I X X X X X X X X X X X X X X X X X X
HxD I X X X X X X X X X X X X X X X X X
Inv. Secs. I X X X X X X X X X X X X X X X X
Firefox I X X X X X X X X X X X X X X X
Python I X X X X X X X X X X X X X X
Thunderbird I X X X X X X X X X X X X X
TrueCrypt I X X X X X X X X X X X X
Office I X X X X X X X X X X X
Winrar I X X X X X X X X X X
Winrar R X X X X X X X X X
SDelete I X X X X X X X X X
Firefox R X X X X X X X X
Winzip R X X X X X X X X
Winzip I X X X X X X X X
Eraser I X X X X X X X
Eraser R X X X X X
TrueCrypt R X X X X
Inv. Secs. R X X X
SDelete R X X

36



3.2.2 The experimental subject virtual machine

The experimental subject machine was a Windows 7, 64-bit virtual machine.

The virtual machine had no network interface provided.

State one of the virtual machine was defined as the baseline state. Each state

of the machine had some action taken as in the Diskprint data creation: attaching an

installation media image and installing it, or running an application.

Table 3.3 lists the applications placed and run on the subject virtual machine.

The ground truth of applications on the machine was then set to be a cumulative

application-state set, where if an application was run at time t1, it was considered run

at time t2, etc. Table 3.4 illustrates the appearance order of application installations

and executions on the subject virtual machine. An application-state not within this

table has a presence record of False in ground truth intead of null, as the machine was

instrumented with precise knowledge of application usage.

3.2.3 The M57-Patents corpus

“M57-Patents” is a digital forensic training scenario, comprising of a set of

four users in a fictitious company, using physical computers for a calendar month [72].

The users in the scenario commit various simulated crimes, and for trainees to solve the

case, the scenario developers captured disk images, RAM, and network traffic daily over

the course of the month’s work weeks. To date, it is the most substantial, documented,

longitudinal whole-system forensic research corpus.

Roussev et al. analyzed the scenario’s images and reported on software pres-
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Table 3.5: Applications and versions that Roussev et al. observed in the M57-Patents corpus
[60, pages S67–S68]. The “First apperance” table cells contain two pieces of information: the
scenario day where the application first appeared, and by what data source the application
was discovered. Files on the disk that indicated application usage were found by similarity-
hashing against RAM (“R”), network traffic (“N”), or by some other unspecified inspection
(“-”). For example, the Cygnus hex editor was found on Charlie’s machine on November 24th,
finding files in RAM with similarity hashing. Some applications were listed without version
information (denoted with “-”). AVG was noted as “updated,” believed present before, but the
first appearance was not reported in the text.

First appearance
Application Version Charlie Jo-new Pat

7-Zip - 11-24/-
Adobe Reader 9 11-19/R
AVG - 12-03/R
Brother printer driver - 11-30/R
Cygnus Hex Editor Free Edition 11-24/R
Firefox - 11-16/R
Invisible Secrets 2.1 11-19/NR
Java - 11-16/R
MDD 1.3 11-16/R
Python - 11-16/R
RealVNC 4 12-07/R
TrueCrypt 6.3a 12-03/R
Win32dd - 12-07/R
XP Advanced KeyLogger - 12-03/R
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Table 3.6: Applications that Roussev et al. observed in the M57-Patents corpus [60, pages S67–
S68], with versions provided by embedded metadata of executable files. exiftool [25] extracted
the metadata. First-observed dates are given according to presence of files in the file system—not
the Registry. Presence in the baseline machine state (the “start” of November 12) is denoted
“Base”. Program presence not listed by Roussev et al. was not sought. Cells with a “(+)”
annotation show a greater discovered appearance window than Roussev et al. reported.

First appearance
Application Version Charlie Jo-new Pat

7-Zip 4.65 11-24
Adobe Reader 9.2.0.124 11-19
AVG Internet Security 9.0.0.706 (+) Base
Brother printer driver 1.07 11-30
Cygnus Free Edition 1.00.101 11-24
Firefox 3.5.5 (+) 11-12
Invisible Secrets 2.1.0.1 11-19
Java(TM) Platform SE 6 U17 6.0.170.4 (+) Base
MDD 1, 3, 0, 0 11-16
Python 2.6.1 (+) Base
VNC Server Free Edition 4.1.3 12-07
TrueCrypt 6.3a 12-03
Win32dd (none) 12-07
XP Advanced Keylogger V 2.1 12-03
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Table 3.7: Applications that Roussev et al. observed in the M57-Patents corpus [60, pages
S67–S68], re-cast as gound truth definitions for Signature Searchers. Ground truth is denoted
as the date followed by a diskprint-matching character, with “I” denoting program installed on
and after this date, “R” denoting program run, and “-” denoting that NIST did not produce
a diskprint for the program. Python used in the Pat machine was embedded in an installation
of OpenOffice. The Brother printer driver did not have an execution diskprint created, due to
lack of hardware. The key logger on Pat’s machine was excluded from ground truth judgements,
positive or negative, after Dec. 7, due to it being removed in the scenario.

First appearance
Application Charlie Jo-new Pat

7-Zip 11-24/IR
Adobe Reader 11-19/IR
AVG Internet Security Base/-
Brother printer driver 11-30/I
Cygnus Free Edition 11-24/-
Firefox 11-12/IR
Invisible Secrets 11-19/IR
Java(TM) Platform SE 6 U17 Base/-
MDD 11-16/-
Python Base/IR
VNC Server Free Edition 12-07/-
TrueCrypt 12-03/IR
Win32dd 12-07/-
XP Advanced Keylogger 12-03/IR
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ence using their similarity hash-based methodology [60]. They used disk state, RAM

state, and in some cases network captures. Table 3.5 gives the applications and ver-

sions they reported. To confirm the application report, Table 3.6 provides the versions

of those applications, by my manual inspection of the file systems and extracting the

metadata embedded within executable files with exiftool [25]. The Signature Searcher

evaluation against the M57 data uses Table 3.7 for ground truth. An application instal-

lation or execution that appears within the scenario on a day di has a presence of False

in the ground truth for days before di, and True on di onward unless removed. If the

application is removed on dj , its presence is null in ground truth, as this dissertation is

not studying the “Decay rate” of storage artifacts. Applications not listed in Table 3.7

are null in ground truth, to not influence the classification results.

3.3 Instrumentation

This section describes the steps taken to convert virtual machine states, to

document search models, to software signature recognizers. First, the analytic frame-

work that constructs the differences receives some explanation, as it has proven to be a

productive design extension to forensic differential analysis. That framework provides

the change sets that become software signatures in a search engine. Next, the parameter

space for converting the change sets into signature documents is enumerated. Last, the

strategies for identifying background noise culminate in a stop list parameter, which

needs to interact with other Signature Searcher design parameters.
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3.3.1 A framework for analyzing data lineage graphs

Once evidence is acquired in a digital forensic case, pre-processing steps are

typically necessary for analysis to begin. These steps usually include hashing disk

contents for evidence integrity, extracting files and hashing them, and extracting text

into a search engine [59, 18]. These steps are examples of a forensic workflow, which

generally can be considered a series of steps taken on source or intermediary data. Often,

these workflows are concerned with a computer’s state at only a single point in time.

To develop software signatures, a workflow must be able to relate multiple

points in time to one another, for the sake of enumerating what has changed between

those points in time. This section presents the workflow that produces forensic fea-

ture difference sets, making use of the lineage data provided by the Diskprint virtual

machines’ histories.

3.3.1.1 Single-state forensic workflows

A common forensic setting is receiving a computer for analysis, that has not

been seen before. This single system state is then fed through some “ingest engine” that

executes a workflow. For this document, we consider a workflow to be the automated

steps taken starting from some set of input data, with each step having a clear set

of inputs and outputs. For example, Figure 3.1 illustrates a workflow similar to what

Roussev et al. used to identify software in the M57-Patents scenario. Their strategy

was to extract executable files from the file system, and then use similarity hashing to

determine which files had been loaded into RAM, indicating software execution.
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Figure 3.1: A forensic analysis workflow similar to what Roussev et al. used to identify software
in machines where disk and RAM were captured [60]. Arrows indicate data flow. First the
disk image and RAM state are extracted from the input system. A file extractor extracts all
executable-related files (*.exe, *.dll, etc). Then the similarity hasher sdhash [58] uses fuzzy
hashing to determine which files appeared in system RAM.

A single-state workflow needs only a single system state to derive all of its

results. The workflow in Figure 3.1 could even be executed with the make utility [37],

as the only varying factor is the single system state at the beginning. However, for

software signatures, a workflow that can identify changes between multiple states is

necessary.

3.3.1.2 A dependency graph processing strategy

When considering multiple states of a subject machine, more options become

available in forensic workflow development. A single-state workflow can be run on each

state without any additional creativity. However, with a lineage tree, we can relate

virtual machine snapshots together and automatically assign differencing operations to

run. This takes the current practice of forensic differential analysis to forensic sequence

analysis.

The Diskprint data have lineage trees tying virtual machine states to one an-
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other. In the abstract, a lineage tree describes a history of states. In the tree, a state is

a node, and a directed edge indicates ancestry. A state has one immediate ancestor, but

can beget multiple points if a virtual machine rolled back to it to take actions starting

from a common snapshot. A multi-state workflow executes several types of operations

on those states:

Node operations A node operation relies on the data of a single state, e.g. extracting

files from a disk image.

Edge operations An edge operation relies on data derived from two states, e.g. com-

paring sets of files between two disk images.

Sequence operations An operation on a non-branching subgraph of the lineage tree

relies on data derived from a node of the subgraph, and its ancestors up to and

including some other node. Sequence operations can follow subsets of a linear

sequence of the graph, which would be desirable if some virtual machine snapshots

are taken at too fine a granularity.

Graph operations An operation on a subgraph of the lineage tree—e.g. that describe

all states spawning from a particular baseline—operates on all the nodes and/or

edges in the subgraph.

The next section describes how Registry differences are extracted from Diskprint

sequences. The extraction workflow works on the node, edge, and sequence levels of the

lineage graph. The rest of this chapter is devoted to the graph-level analytic task of

devising an optimal Registry search engine.
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3.3.1.3 The Diskprint extraction workflow

The software signatures of this work are based on analysis of the differences in

Windows Registry state between each of the virtual machine snapshots. The differences

are gathered with the following workflow:

1. Extract file system metadata from each disk state, storing the metadata in DFXML.

2. Given file system metadata, which shows the location of file contents on disk,

extract Registry hive files and convert them to the analytic format RegXML [40].

The tool RegXML Extractor [41] handles the hive extraction and hive content

conversion.

3. Compute the differences between hives from state to state, using rdifference.py .

4. Export all differences to a central database [42] for graph-level analysis that is out

of scope of the extraction workflow.

The diskprint lineage graph creates a programmatically-accessible relationship

between system states, making it possible to execute difference operations only after

their dependent prior tasks are completed. Figure 3.2 shows the workflow analyzing the

differences between three Registry hive sets, and producing two sets of cells added since

their respective prior snapshotted states. This is how the all the levels of lineage graph

operations appear in the workflow, as illustrated and/or as implemented:

Node level Some Registry results are derived at the lineage graph’s node level, by

feeding hives into a tool (RegRipper [8]). These results do not require the context
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Figure 3.2: Diskprint workflow producing several results derived from “edge”-level analysis.
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of other disk states.

Edge level Registry differences are illustrated here as being derived between two lin-

eage nodes’ results, but the way the workflow is implemented has the Registry

differences extracted as a sequence-level operation (described next) which is log-

ically equivalent. File system difference results are implemented as an edge-level

operation, but these results are out of scope of this thesis.

Sequence level Between-node Registry differences are implemented as one script that

reads all node-level RegXML Extractor results at once, instead of collecting results

of one script run per lineage edge.

The workflow’s current implementation is built on Bash and Python scripts,

with data centralized in a Postgres database, and parallel processing handled by GNU

Parallel [64].

3.3.2 Document search-based software signatures

Section 1.8.1 introduced concepts and nomenclature for document search, as

the terms are normally used in human language document search. This section adapts

search concepts to software signatures built from forensic features, focusing on cells

extracted from the Windows Registry as a feature class. After an illustration of how an

English language search engine is constructed, an elementary software signature search

engine is constructed. Challenges arise in the elementary construction, and the next

sections provide search model parameters to address those challenges.
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3.3.2.1 An example natural language search engine

For a collection of documents D, a set of users desires the ability to do keyword

searches over those documents. A developer constructs a search engine, making these

design decisions:

• The documents shall be treated as Bags of Words, with each document an “un-

ordered collection of words with no relationships, either syntactic or statistical,

between them” [10]. Word order is ignored after constructing n-grams. If the

developer chooses n-gram length n = 1, word order will not matter at all.

• The words shall be filtered to words not on a stop list of common English words

(“the,” “it,” etc.).

• The words shall be stemmed by a set of rules to remove suffixes, such as the Porter

stemmer [56].

• The words will be transferred into n-grams, which are the search terms.

• The document matrix of the engine shall store TFIDF weights for terms, as defined

by Equation 1.1.

• The similarity metric matching queries with documents shall be the vector cosine.

The developer then takes the documents, processed into lists of n-grams absent

sentence punctuation, and ingests them into the engine. The search engine is then

presented with a query:
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“the quick brown fox jumps quickly”

The engine converts this to a vector of terms, using the same stop list, stem,

and n-gram rules: <brown: 1, fox: 1, jump: 1, quick: 2>. Using the vector

cosine, this document’s nearness is scored against each document vector in the TFIDF

matrix, and the results are returned ranked in decreasing score order. The user browses

the documents, likely finding those truly relevant to the query higher in the ranked re-

sults. The performance of this engine would be measured according to a pre-determined

ground-truth relevancy definition of documents returned from queries. For example, one

performance measure may be the “Precision at N ,” the precision of the top N docu-

ments.

3.3.2.2 An example forensic feature search

In this example, an examination for installed and used software is requested

for an analysis of a subject desktop machine. The requester suspects a set of software

packages is present. To determine which of those packages are on the subject machine,

a team of analysts creates diskprints of much of the software in the collection, one

print per package, with each package printed on an operating system similar to the

subject machine. They intend to search for the characteristic changes that happen when

software is installed, by comparing the Registry differences between the diskprints with

the Registry entries found on the subject machine.

Using the Diskprint machines’ snapshots and the forensic workflow described

in Section 3.3.1.3, a change set of added Registry cells is constructed for each software
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package’s installation, and another for the software execution since installation. If a

piece of software was installed or run on the subject machine, a similar set of Reg-

istry cells should be present. An analyst constructs a search engine to determine what

software status the set of all present cells indicates. The analyst makes these decisions:

• A Registry cell’s entire path shall be a term.

• The paths on the baseline diskprint operating system image will comprise a stop

list of terms generic to the operating system, and hence analysis-subject machine,

instance.

• Each change set shall be a document.

• The search engine is otherwise constructed as the previous example’s engine for

natural-language documents: TFIDF document-term weighting, with the vector

cosine for measuring similarity to queries.

• The set of all Registry paths in the subject machine shall be the query.

The analogy to natural language document search diminishes at this point,

as the ratio of query length to average document length is comically disproportionate.

A similarly-scaled natural language query would be finding the “most Shakespearean”

employee in a company, by concatenating all of Shakespeare’s works into a file, and

using that file as a query against all of the company’s individual emails.

Evaluation also differs from natural language search evaluation. In natural

languages, the engine’s objective is to provide an ordered set of relevant documents, but
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the ultimate objective is often partially satisfiable if the user leaves better-informed.

The goal in software recognition is declaring presence or absence of software usage,

a Boolean question. However, search scores range as real numbers between 0 and 1.

For conversion to binary responses (the software is installed, or is not installed), some

threshold needs to be established for software presence.

The most significant characteristic of the input data in this example is that

each print was only performed once. This allows the model to treat a change set

as synonymous with a document in the search engine. If the input data advance in

complexity beyond singleton prints, the design space of the model expands significantly.

• Hive root cell names change between operating systems, or system architecture

(e.g. 32-bit or 64-bit). If multiple operating systems are used within the training

data, then the paths need to be normalized in some way to capture what may

semantically be the “same” Registry cell, under a different root path. Normalizing

path prefixes is analogous to stemming in natural language search.

• If a diskprint for a piece of software is performed multiple times, and each print is

used for model training, then documents cannot be defined as change sets. Arti-

facts that are truly discriminatory within the change sets lose their distinctiveness

among signatures if the first and second print of an application are independent

signatures. Meanwhile, unrelated background noise that only appears in one of

the signatures by accident suddenly becomes a key indicator—of a wrong answer.

Similarity to the “Important” elements of grouped change sets is the target func-
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tion.

Overall, several vector space model design issues arise when using training data

more complex than in the example search engine of this section. In particular, combining

data changes fundamental capabilities of the model, such as whether signatures can be

of an application universal across Windows versions, or if they must be tailored to

applications on each Windows version of interest. The next sections are devoted to

treating each of these design questions, and more, as model parameters.

3.3.3 Model parameters from print repetition

This section explores strategies to combine change sets. Building a search-

based model on only the added cells of one diskprint per application would be unre-

liable: all system state changes would be included, with no way to tell from just the

changes whether they were caused by user-software actions or unrelated activity. Other

diskprints can be added to reinforce the single-print data, representing the same soft-

ware, at the same lifecycle phase, with the same user actions. Variances will occur in

the prints, some by scheduled system processes, some input variation like a different

operating system or software version. In the end, the software signature search engine

design should follow the principle of more data improving the models. As discussed pre-

viously, this has not been the case in other digital forensics research based on statistical

machine learning, e.g. in file fragment data type classification [20].

The forensic features from added-cell change sets need to be combined some-

how, and there are several decisions to be made when combining features. The set of
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decisions made defines a single vector space model, which will have some performance

characteristics that we can rank to choose the best model parameter set. Some of the

decisions made with these models have incidental benefits to addressing problems with

background noise infecting the signatures. Each of the following sections of this chapter

explores one of the model parameters:

• Training sequences

• Operating system grouping

• Path normalization

• Signature document terms and n-gram construction

• Vector combinator

• Threshold selector

• Software version grouping

• Stop lists

• Interactions between stop lists and n-grams

3.3.3.1 Training sequences

Tables 3.1 and 3.2 showed that some of the applications were printed once on

an operating system, and some were printed multiple times. Different subsets of all of

the diskprints can be used to train a search model. The evaluation will consider three:
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installclose The first simply uses all of the diskprint baseline-install -close sequences.

repeated The second subset only trains search models on applications that were printed

on the same operating system repeatedly—i.e. the “3” records in Tables 3.1 and

3.2. This reduces the set of signatures that can be made, but removes chances

for spurious data to unduly influence signatures, as each supplied diskprint will

have a built-in notion of consistently-appearing cells. On the other hand, it may

be that the singleton application prints will provide more instances of in-common

cells that should be ignored. Hence, training on only repeated diskprint sequences

simultaneously gains and loses background noise identification support.

experiment1 The third subset is the “Experiment One” subset, of only diskprint se-

quences that were used in the developed experimental subject machine (Section

3.2.2). The applications are listed in Table 3.3. This subset will show the relative

strength of training models on only the applications one expects to find on a sub-

ject machine. Overall, false positives should decrease as there is less to mistakenly

recognize; but once again, the extra support for identifying background noise will

be lost.

3.3.3.2 Operating system grouping

An important design question for the software signatures is the influence of the

operating system. Does one search for signs of an application, tailored to an operating

system version; or does one search with a signature that is operating system agnostic?
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(a) Data supplying a signature of Truecrypt installation on all Windows versions, with boldfacing
indicating included data to be combined.
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(b) Data supplying a signature of Truecrypt installation on Windows 7, with boldfacing indi-
cating included data.

Figure 3.3: A sample lineage graph, showing the histories of two applications run on two baseline
virtual machines. Edges denote virtual machine progression to the next snapshot, and the
accompanying change data between snapshots. Two kinds of signatures are derivable from this
lineage: signatures for an application, without regard of the underlying operating system; and
signatures of an application for each operating system.
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The training diskprints can be grouped by only application, or by application

and operating system. For example, if the application Firefox is printed on two operating

systems, to group by application is to group both operating systems’ prints into one

signature document; grouping by operating system and application would make two

documents. The illustration in Figure 3.3 can represent four signatures, or eight.

Document grouping shows how much impact the baseline operating system has

on the created signature. Some cells will appear consistently regardless of the operat-

ing system version. However, determining the better of one signature that is operating

system agnostic, versus one signature tailored for each operating system, requires mea-

surement. This also has an impact on the work required to create signatures, such as

needing to update signatures of each target application for every new release of the

Windows operating system.

3.3.3.3 Path normalization

Cell path normalization is analogous to stemming in natural-language search

engines. It is used primarily to address features that appear in every operating system,

and potentially resolving issues with Registry prefix strings not matching. This concern

comes from the root cells of hives having a different name depending on the version of

Windows being inspected.

To compare cell paths across Windows versions, I “Normalize” the paths ac-

cording to the hive’s role in the system. The normalization strategy is to replace all of

the root cell names with a single string distinct to the class of hive, effectively making
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Table 3.8: Groupings, or “general types,” of hives, for user hives. There are two types of hives
that each user will have, “NTUSER.DAT” and “UsrClass.dat.” This table reports other places
in the file system where hives with those names appear. The parenthetical remarks denote the
class assigned to these hives for path normalization, such as a “Default” NTUSER.DAT found in
Windows XP.

File system path suffix Hive type

Documents and Settings/Default User/NTUSER.DAT NtUser (default)
Documents and Settings/LocalService/Local

Settings/Application Data/Microsoft/Windows/UsrClass.dat

UsrClass (Loc. Svc.)

Documents and Settings/LocalService/NTUSER.DAT NtUser (Loc. Svc.)
Documents and Settings/NetworkService/Local

Settings/Application Data/Microsoft/Windows/UsrClass.dat

UsrClass (Net. Svc.)

Documents and Settings/NetworkService/NTUSER.DAT NtUser (Net. Svc.)
Users/Default/NTUSER.DAT NtUser (default)
WINDOWS/repair/ntuser.dat NtUser (repair)
Windows/ServiceProfiles/LocalService/NTUSER.DAT NtUser (Loc. Svc.)
Windows/ServiceProfiles/NetworkService/NTUSER.DAT NtUser (Net. Svc.)
Windows/System32/config/systemprofile/ntuser.dat NtUser (config)
Other NTUSER.DAT NtUser (user)
Other UsrClass.dat UsrClass (user)

Table 3.9: Groupings, or “general types,” of hives, for system hives.

File system path suffix Hive type

WINDOWS/repair/sam Sam (repair)
WINDOWS/repair/security Security (repair)
WINDOWS/repair/software Software (repair)
WINDOWS/repair/system System (repair)
WINDOWS/system32/config/COMPONENTS Components (config)
WINDOWS/system32/config/SAM Sam (config)
WINDOWS/system32/config/SECURITY Security (config)
WINDOWS/system32/config/software Software (config)
WINDOWS/system32/config/system System (config)
Windows/System32/config/SAM Sam (config)
Windows/System32/config/SECURITY Security (config)
Windows/System32/config/SOFTWARE Software (config)
Windows/System32/config/SYSTEM System (config)
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Table 3.10: Counts of hives of each class (as defined in Tables 3.8 and 3.9), contributed by
each operating system. Some hive classes are specific to an operating system, like the “Repair”
classes of hives only appearing in Windows XP. The counts in this table are of hives found in the
diskprint training sequences. How many were successfully processed for analysis is a separate
question, measured in Section 4.1.

XP/32 V/32 V/64 7/32 7/64 8/32 8/64
NtUser (user) 328 54 50 187 143 51 16
NtUser (config) 0 55 51 183 139 53 17
NtUser (default) 178 55 51 179 135 53 17
NtUser (repair) 178 0 0 0 0 0 0
NtUser (Loc. Svc.) 178 55 51 183 139 53 17
NtUser (Net. Svc.) 178 55 51 183 139 53 17
UsrClass (user) 326 54 50 183 139 51 16
UsrClass (Loc. Svc.) 178 0 0 0 0 15 0
UsrClass (Net. Svc.) 178 0 0 0 0 15 0
Components (config) 0 55 51 183 139 53 17
Security (config) 181 55 51 183 139 53 17
Security (repair) 178 0 0 0 0 0 0
System (config) 181 55 51 183 139 53 17
System (repair) 178 0 0 0 0 0 0
Sam (config) 181 55 51 183 139 53 17
Sam (repair) 178 0 0 0 0 0 0
Software (config) 181 55 51 183 139 53 17
Software (repair) 178 0 0 0 0 0 0
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the prefix of all cell paths for a hive “Class” consistent. Tables 3.8 and 3.9 present how

the hives are grouped into classes for this research, and Table 3.10 counts how often

each of the types appears in the training diskprints. For an example on what a cell path

looks like after normalizing, the “$$$PROTO.HIV” at the root of an XP System hive is

replaced with “ NORMROOT SYSTEM CONFIG .”

Table 3.11: Number of cell paths found overlapping between various baseline operating systems.
Generated from exhaustive listings of all cells in the last slice of each baseline sequence, without
running preinstalled applications. Windows XP (32-bit) is repeated because it had already been
diskprinted twice, and the repetition’s overlap illustrates consistency in cell paths. Paths are
exactly as found from parsing the hive files.

XP (1) XP (2) Vista-32 Vista-64 7-32 7-64 8-32 8-64

XP (1) 115,482 111,779 0 0 0 0 0 0
XP (2) 116,075 0 0 0 0 0 0

Vista-32 344,484 62 0 0 60 60
Vista-64 536,317 0 0 60 60

7-32 475,720 63 0 0
7-64 622,326 0 0
8-32 456,109 288,126
8-64 661,560

Table 3.12: Path prefixes for the Windows ShutdownTime value cell, under the first of two
mirrored ControlSet keys in the System hive. Each of these prefixes starts from the root of
the hive namespace, descending only to the parent key of ControlSet001\Control\Windows\
ShutdownTime.

Version Arch. Absolute prefix

XP 32 \$$$PROTO.HIV

Vista 32 \CMI-CreateHive{C619BFE8-791A-4B77-922B-F114AB570920}
Vista 64 \CMI-CreateHive{3406549D-D5AD-434A-9894-E927ABEC8146}

7 32 \CMI-CreateHive{F10156BE-0E87-4EFB-969E-5DA29D131144}
7 64 \CMI-CreateHive{2A7FB991-7BBE-4F9D-B91E-7CB51D4737F5}

8 32 \CsiTool-CreateHive-{00000000-0000-0000-0000-000000000000}
8 64 \CsiTool-CreateHive-{00000000-0000-0000-0000-000000000000}
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Table 3.13: Counts of overlapping cells within hives of Windows 8 32-bit and 64-bit.

1,325 Users/Default/NTUSER.DAT
3,271 Users/nsrl-user/NTUSER.DAT
1,394 Windows/ServiceProfiles/LocalService/NTUSER.DAT
1,341 Windows/ServiceProfiles/NetworkService/NTUSER.DAT

37,117 Windows/System32/config/COMPONENTS
153 Windows/System32/config/SAM
167 Windows/System32/config/SECURITY

197,494 Windows/System32/config/SOFTWARE
49,852 Windows/System32/config/SYSTEM

61 Windows/System32/config/systemprofile/ntuser.dat

Table 3.11 shows why the string prefix issue needs addressing: without normal-

izing, signatures built from the raw, full Registry paths of one operating system can’t

work on another operating system. The table shows the pairwise intersections of Reg-

istry paths, for each operating system against all others. Without any modifications

to Registry cell paths, the paths are overwhelmingly distinct to the major operating

system release and architecture (32-bit or 64-bit). This is due to each hive containing

a string in its root cell name, distinct to the hive’s role in the Registry namespace. For

illustration, the ShutdownTime key appears in all Windows versions’ System hives, and

Table 3.12 lists their common-path prefixes.

Windows 8 is the one operating system with overlaps between architectures.

Those overlaps are spread throughout most of the hives typically inspected during

forensic investigations. Table 3.13 shows the overlap tallies between the Windows 8

architecture versions. Between other operating system versions, the instances of un-

der one hundred cells overlapping (e.g. between Vista and Windows 8) are all in the

“systemprofile” account’s ntuser.dat hive.
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Table 3.14: Cell paths found overlapping between various baseline operating systems. The same
Registries as in Table 3.11 are presented, except paths are normalized here.

XP (1) XP (2) Vista-32 Vista-64 7-32 7-64 8-32 8-64

XP (1) 218,843 212,028 60,788 57,659 57,349 54,940 48,562 46,162
XP (2) 219,084 61,789 58,656 58,436 55,934 49,278 46,861

Vista-32 348,607 248,176 162,163 158,193 119,974 117,065
Vista-64 540,419 157,009 248,238 115,895 193,237

7-32 482,279 315,247 164,071 154,402
7-64 628,867 154,602 257,082
8-32 460,159 293,895
8-64 665,631

Normalizing cell paths enables comparison across Windows versions. The same

baseline cell distinctness from Table 3.11 is shown, “Path-normalized,” in Table 3.14.

3.3.3.4 Signature document terms

An initial perceived advantage of using Registry paths as terms within sig-

nature documents is the automatic scoring of terms bestowed by the TFIDF matrix.

Each path could be scored as useful to each software signature or not, with a real value

between 0 and 1. However, some points of fragility arise with this strategy:

• Some paths include a cell named by a varying pattern created at install time.

For example, the UsrClass.dat root key will vary per user (including “Admin-

istrator”) and system. Table 3.15 shows the UsrClass root keys for the three

M57-Patents Windows XP machines.

• If subtrees of the Registry are moved between versions of Windows, signatures

built before the move was implemented would not match on systems running on
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the later Windows version.

Table 3.15: Names of UsrClass.dat for the Windows XP machines in the M57-Patents scenario.
If a signature is built on whole paths without normalizing as in Section 3.3.3.3, none of the cells
in this hive can be used because of this varying root name. The exact cell path after the root
will not be found on another system.

System Account UsrClass.dat root

Charlie Charlie \S-1-5-21-682003330-329068152-1644491937-1003 Classes

Charlie Administrator \S-1-5-21-682003330-329068152-1644491937-500 Classes

Jo Jo \S-1-5-21-583907252-527237240-1606980848-1003 Classes

Jo Administrator \S-1-5-21-583907252-527237240-1606980848-500 Classes

Pat Pat \S-1-5-21-1292428093-1645522239-1547161642-1003 Classes

Pat Administrator \S-1-5-21-1292428093-1645522239-1547161642-500 Classes

In short, while whole Registry paths are easy to explain when inspecting sig-

nature hits, they may prove too fragile to match against subject systems. One solution

to matching components of the paths is to change the semantic mapping from linguistic

search: instead of treating paths as terms, treat them as sentences of path components,

using n-grams of components as terms. For illustration, consider the example key from

the Introduction, that was measured to be useful in a Microsoft Office 2003 signature

from one of the constructed Signature Searchers:

• \$$$PROTO.HIV\Software\Netscape\Netscape Navigator\

Suffixes\application/msexcel

A unigram-based vector space model would convert that path into these terms:

• $$$PROTO.HIV

• Software
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• Netscape

• Netscape Navigator

• Suffixes

• application/msexcel

Some concerns are evident from this example of converting a Registry path to

unigrams. First, some confusion could ensue from seeing particular names in unrelated

products—here, “Netscape Navigator” in the path is an indicator of Microsoft Of-

fice. Bigrams, such as “Suffixes\application/msexcel,” or trigrams, could be used

instead to maintain a window of the original tree structure.

Second, there is a mild encoding difficulty with Registry path delimiter char-

acters. The forward slash is a legal character in key names, so care must be taken to

store paths with backslash delimiters. However, backslashes cannot be assumed to be a

delimiter in an arbitrary Registry cell path, because the backslash is a legal character

in value names, and is used frequently in representing file system paths (e.g. starting

with “C:\”) as value names. This adds a processing step for n-gram search models in

this research, that cell parents need to be tracked.

Third, there is potentially an over-representation of the components that ap-

pear closer to the hive files’ roots, possibly meriting some kind of stop-listing rule.

However, this actually brings Registry search closer to linguistic search. In natural lan-

guages, term rankings follow a Zipfian distribution [35], as illustrated in Figure 3.4a for

the Brown corpus of English language, nonfiction text documents. The most-common
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(a) Distribution of unigrams in the Brown corpus, as provided by
the Natural Language Tool Kit [4].

(b) Distribution of unigrams, bigrams, trigrams, and whole paths
in the Registry of the last state of the experimental virtual machine
used in the evaluation chapter.

Figure 3.4: English vs. Registry term distributions.
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terms in the distribution are usually added to stop lists [10]. That won’t work if terms

are whole Registry paths, as the bottom line of Figure 3.4b shows that the distribution

of Registry paths across all of the change sets is far from Zipfian in shape. However, if

the terms are derived from path components, those distributions are closer to Zipfian,

as the whole of Figure 3.4 illustrates.

The analysis of term distribution could continue at this point to fitting direc-

tory depth distributions, as done by Douceur, Agrawal, et al. in file system namespace

depth analyses [13, 1]. However, none of the search mechanisms employed in this work

specifically require the distribution to fit any particular distribution. A long tail of the

distribution is all that this search application requires, and measurement in the evalua-

tion chapter will show whether it is better for that tail to be utterly flat—as with whole

paths—or to retain some descending curve.

It is possible that the last n of the path components may be sufficient for

signatures, instead of all of the path. The evaluation will also consider these options.

3.3.3.5 Vector combinator

Each of the following sections that describes a model follows the same pat-

tern: Each model creates a corpus of documents. Each term is a Registry cell path—or

derivation from a path—added by some change set or sets. Each document is a com-

bination of the cells of all of the change sets, grouped by application, lifecycle phase,

and possibly operating system and/or application version. Where the models differ is

in their assignment of values to a document vector, d, by applying a combinator. See
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Table 3.16: Symbols used to define the models of repeated diskprints. D and T are re-cast from
Table 1.3.

Symbol Definition

σ A signature ID, identifying application; phase of software lifecycle; and if the model
is so configured, operating system and/or application version.

P The set of all Registry cell paths observed in the training data. Note that this is not
scoped to known cell paths; paths not used in the models can exist in investigation
subject machines.

T The set of all terms derived from Registry cell paths in P.
Sσ The set of all change sets that are to be grouped into the signature σ.
D The set of all signature documents. Documents are constructed from change sets

in Sσ.
s A change set, s ∈ Sσ. A change set is represented as a vector of integers in |T |-

dimensional space.

Table 3.16 for the definitions of in-common symbols used to define these models. In the

following definitions of combinators for documents’ terms, let i ∈ T .

Definition 3.1 (Intersection combinator). Each document is a vector of binary values.

A term is included in the vector IFF it appears in all change sets of the document

grouping. In the formula, the inner min verifies presence, while the outer min handles

conversion to binary.

di = min(1, min
s∈Sσ

si)

Definition 3.2 (Union combinator). Each document is a vector of binary values. A

term is included in the vector IFF it appears in any change sets of the document

grouping.

di = min(1,max
s∈Sσ

si)

Definition 3.3 (Summation combinator). Each document is a vector of non-negative
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integers. The value for each term is the number of times that term appears in the

change sets of the document grouping.

di =
∑
s∈Sσ

si

Definition 3.4 (Sumint combinator). This combinator is as the summation combinator,

except only terms that appear in the intersection are summed. Other terms are excluded.

di = min(1, min
s∈Sσ

si) ·
∑
s∈Sσ

si

Pre-evaluation discussion of combinators

With repeated prints, consider for the document vector d the unit vector of

magnitude one that is parallel to d. The summation model will continue to “point” in

the same direction of the commonly occurring cells, presumably the strongest signature

elements. A cell that appears rarely, or by a non-repeating pattern, will contribute little

to change the unit vector’s direction. For the union model, the unit vector’s direction

will be strongly affected by every newly occurring cell, since they are all given equal

weight. The intersection model will be unaffected by non-recurring cells, but will have

a reduced overall signature if a cell ever fails to reoccur.

The summation and intersection models focus on identifying the “correct” di-

rections of the resulting document vectors. Their vectors favor repeated terms. The

union model allows many wrong terms—suspected background noise—to enter docu-
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ments, and provides all terms equal weight in the unit vector direction. Hence, the

union model is expected to perform the worst of the three, acting as a strawman model

parameter.

The “Sumint” model—short for “Sum of intersection”—is expected to perform

well. It combines the recognition of the most-repeated terms that the summation model

provides, while removing the influence of inconsistently-appearing terms by discarding

all terms outside of the intersection.

3.3.3.6 Threshold selector

To this point, we have only described the search engines, and construction of

their documents. A search engine ranks documents by their similarity to a query, and

similarity is a score between 0 and 1. That score by itself is not an affirmation that a

signature is a hit or miss. The score requires some notion of a threshold value, after

which it can be interpreted as an affirmation of a signature hit.

The models constructed in this work operate on the assumption that there is

not a universal threshold score, above which a signature match is a hit. This decision

stems from the expected variance in signature sizes. Some software is expected to create

a hefty presence in the Registry, such as an office software suite or a web browser, both

of which set up a significant support infrastructure that is centered on the Registry.

Meanwhile, other software may be designed to have a minimal impact on the Registry.

One universal threshold score that accounts for the spectrum of Registry reliance is

assumed impractical.
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Forgoing a universal score, we instead create a Signature Searcher that bundles

a search engine with a set of threshold scores for each of its signature documents. The

Searcher thus operates as one binary classifier per signature document, returning a hit

for each document similarity that passes the threshold value.

To determine what the threshold for each application is, the change sets that

formed the search engines’ documents are used to query the engine. Each change set

then has a similarity score for the signature document that it trained. From this set of

similarity scores, the minimum, average, or maximum score is selected as a threshold

score for the signature document. This threshold represents the engine turned back

onto the training data, after each signature has been influenced by all of the training

data for other applications.

3.3.3.7 Software version grouping

Software frequently changes behaviors as later versions are released, poten-

tially changing the detectable system footprint as well. Therefore, there is an option

in constructing the search models: they can search for characteristics of each version of

a software package; or instead they can identify artifacts that appear anywhere in the

application’s history.

It is possible that creating one signature per version of an application will

cause weaker signatures, when measured by deploying against a future machine with a

potentially newer version of a target software product. Before measuring in the evalu-

ation chapter, let us suppose ten versions of an application are ingested into a search
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engine that creates a different signature per version. The “core” features that appear in

each version will have significantly reduced inverse document frequency weights, from

appearing in ten signatures. Measurements of the models will show whether this loss of

signal strength in the core features is a good trade to make for being able to identify a

specific version of interest, which may be a desired engine feature.

Unfortunately, there is a logistical difficulty in naming the signatures that

would need to be resolved in order to group software version change sets together. Some

name needs to be encoded to unify a software package’s versions. Because of the coding

logistics involved, the software version grouping parameter is instead implemented as

two modes. In both, each application version has an independent signature developed.

• In the “Grouped” mode, a signature’s ground truth definition is relaxed to allow

matching other versions. For example, a signature for Firefox 2 would be expected

to match a machine that had Firefox 38 on it.

• In the “Distinct” mode, a signature does not match the same application at a

different version.

These modes affect the selection of the model threshold described in Section

3.3.3.6, and determining true- and false-positive classifications in the evaluation.

3.3.4 Background noise and stop lists

The Diskprint data collection process intentionally interacts little with the

guest virtual machine’s internals. For instance, no kernel hooks are placed, or real-time
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virtual machine introspection [2, 27] performed. Disk image states are captured whole.

One consequence of this methodology is that the artifacts collected lack attribution

to generating processes. “Noise” from operating system procedures affect the storage

system state at the same time that the subject application is running and creating its

own effects. This creates the undesirable situation that this background noise can enter

into the signature of a software package without any relation to the package, triggering

false positive recognitions of software usage.

The purpose of this section is to identify this “background noise,” to classify

Registry paths or path components as noise or not. The paths populate stop lists, to

exclude the paths from model construction and from queries, but the stop lists have

interactions with other model parameters of the previous chapter.

There are two types of background noise, considering the context of a user

executing some process:

Passive An unrelated system activity, like a scheduled software update check, creates

storage artifacts.

Active The process execution creates artifacts that are generic to any process being

run.

An example of active background noise comes from an early implementation

of the search models in this dissertation [43]. A steganography application, “Invisible

Secrets,” showed a similarity spike on two machines in the M57-Patents [72] corpus.

However, only one of the scenario machines truly had the application installed. The
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diskprint change set had incorporated background noise from Notepad, causing a false-

positive match because the system without “Invisible Secrets” had used Notepad for

some unrelated reason. For illustration, some of the Registry cells that were part of the

signature were as follows:

• \$$$PROTO.HIV\Microsoft\Windows\CurrentVersion\App Management\

ARPCache\Invisible Secrets 2.1 is1

• \$$$PROTO.HIV\Software\Microsoft\Windows\CurrentVersion\Explorer

\UserAssist\75048700-EF1F-11D0-9888-006097DEACF9\Count\

HRZR EHACNGU:P:\Cebtenz Svyrf\Vaivfvoyr Frpergf 2.1\havaf000.rkr

– (The ROT13 portion decodes to: UEME RUNPATH:C:\Program Files\

Invisible Secrets 2.1\unins000.exe.)

• \$$$PROTO.HIV\Software\Microsoft\Notepad\iWindowPosX

• \$$$PROTO.HIV\Software\Microsoft\Windows\ShellNoRoam\BagMRU\0\0\0

Clearly, the first two cells are better signature component candidates than the

last two cells that respectively belong to Notepad and a Windows most-recently used

list mechanism. However, the latter two cells appeared in the training data and were not

filtered in this model construction, so when the same generic cells appeared in the M57

sequence, a match appeared. One key issue that allowed this noise to appear is that the

generic cells would appear only infrequently in the training data—particularly the last

cell, which is a “Shellbag” with a rotating name pattern and is populated by typical
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user file interaction activities [73]. Few diskprints at the time included file interactions,

so the scarcity of appearances across all the training data then was mistaken as an

application-specific effect. This was from an early development stage when models were

trained from single prints, and makes clear the importance of repeated and slightly-

varying training data.

3.3.4.1 Noise from baseline continuations

The baseline operating system images contain artifacts that are not associated

with any of the not-yet installed applications. It is possible to identify passive and

active background noise by employing the baseline states for simple prints.

To identify passive noise, the baseline operating systems were left running idle

for periods of hours to days.

To identify active noise, some of the preinstalled applications—e.g. Notepad,

Calculator—were printed, omitting an “Installation” step. The diskprint for these ap-

plications booted the virtual machine, ran the built-in application, and then shut down.

3.3.4.2 Symmetric differences

Repeating prints provides one straightforward mechanism to identify candi-

dates for background noise. If a diskprint of an application is taken twice, with snap-

shots taken for the same user actions, a change set s1 can be logically grouped with its

corresponding change set in the second run, s2. Then, the set of consistently added cells

seeds a new set: the inconsistently added cells. In set theory, this set is called the Sym-

73



metric Difference [70]. Any cells inconsistently added by multiple applications could be

considered background noise, or could simply be irregularly created by an application.

A fourth combinator, unfit for training models but that can be used for building stop

lists, creates stop lists from grouped diskprints: terms that are in the union of terms

that have appeared, but outside of the intersection.

Definition 3.5 (Symmetric Difference combinator). Each document is a vector of bi-

nary values. A term is included in the vector IFF it appears in the symmetric difference

[70] of change sets of the document grouping.

di = min(1,max
s∈Sσ

si)−min(1, min
s∈Sσ

si)

The inconsistently-appearing terms stoplist is inspired by observing that some

early signatures had picked up Registry entries that appeared to be Most Recently Used

lists, clearly ephemeral and not clearly related. For example, an early signature for the

steganographic application “Invisible Secrets” included this path:

• \$$$PROTO.HIV\Software\Microsoft\Windows\ShellNoRoam\BagMRU\0\0\0

That same path happened to appear in test images where the software was

known to not be present, creating false positives. Since observing that path, inconsistently-

appearing terms have become a stop list parameter option.

The symmetric difference stop lists identify both active and passive background

noise, without distinguishing between the two. These stop lists interact with earlier stop

list decisions, so are treated as an independent parameter in the model constructions.
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3.3.4.3 Stop lists and n-grams

If a Signature Searcher uses n-grams of path components instead of whole

paths, the application of a stop list built from whole paths becomes confused. These

options emerge:

Raw filter The paths of the stop list can filter change sets and queries before decon-

structing path components into n-grams.

n-gram blacklist The paths of the stop list can be broken into n-grams, and those

n-grams can be used as a blacklisting stop list.

n-gram threshold The paths of the stop list can be broken into n-grams, and those

n-grams can be used as a subtraction vector. This way, an n-gram can be in

the query calculation if it is more present in the signature and query than in the

subtraction vector. The subtraction values in the baseline dimensions are likely

to become overwhelming from stop list input data, but this option may interact

best with the symmetric difference-incorporating stop list models.

3.3.4.4 Summary

This section presented two vector space model parameters that specifically

attempt to address background noise. First, several strategies construct stop lists from

the training data. Some source the stop list data from the baseline images. One option

built on symmetric differences sources data from repeated prints, treating as suspect

the data that don’t appear consistently. Second, once the stop lists are constructed,
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their use in the querying process has to accomodate models that use path component

n-grams.

The original search models [43] tried to make use of in-common data of many

Registries to determine what cells were signatory of applications. Only having single

diskprints of each application hampered the ability to determine valuable cells from

background noise. Now, with more data in hand, and strategies to combine the data,

the search models are more capable of determining both the unimportant common data,

and the unimportant rare data.

3.4 Research Procedures

The overall production of a Signature Searcher starts with related virtual ma-

chine states. Section 3.3.1.3 covered the workflow that takes the Diskprint virtual ma-

chine states and their lineage graph, and performs the Registry-differencing operations

on the lineage graph’s nodes and edges. That section left “Graph-level analysis,” i.e.

relationships between lineage edges, for later discussion, to which we now come. The

Registry differences from the Diskprint data are combined into Signature Searchers,

from any combination of the parameters described in Sections 3.3.3 and 3.3.4. The

research procedure is now identifying the best values of these parameters. This section

goes through the Searcher construction process.

In a production Signature Searcher scenario, these steps would go into building

a Searcher:
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Ground truth From the training diskprint sequences, the ground truth is constructed

from the lineage graph. As in the description of the evaluation subject machine,

ground truth is cumulative: Once an application is installed, the next machine

states are also flagged as having the application installation signature as present

in ground truth.

Cell parents A database of cell parents is constructed for each virtual machine state.

In the full evaluation, this is simplified to one database per corpus. This database

is necessary because Registry paths cannot be broken into components by the

backslash character, as that character is a legal name in Value cells. It may be

possible for a backslash to be inserted in a Key cell name by a misbehaving pro-

gram as well, but that has not occurred in any of the data used in this dissertation.

Stop list The stop lists get constructed, mostly from baseline sequences’ states. An

implementation nuance is that this step has some backtracking from TFIDF ma-

trix construction, using the null-stoplist term frequency matrices, to construct the

symmetric difference stop lists.

TFIDF matrix The TFIDF engine gets constructed from the change sets of the train-

ing sequences.

Queries The queries of the training sequences’ machines get built.

Query scores The queries are run against the VSMs, producing a list of (document , score)

pairs.
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Signature Searcher The threshold matching score of each signature is selected from

the training machines and their paired documents’ search scores. A Signature

Searcher is then constructed by attaching to the TFIDF engine the dictionary

mapping signatures to threshold scores.

Table 3.17: Graph-level analysis execution order and direct parameter interaction, starting from
the virtual machine disk images and Registry deltas computed by the Diskprint Workflow in
Section 3.3.1.3. Dependencies in the third column are references to other steps that need to be
completed in full. In the case of symmetric difference stop list construction, a particular instance
of another step needs to be completed. Each Searcher parameter that directly influences a step
is noted with a bullet. Since the symmetric stop lists use TFIDF matrix construction, some
stop lists are only influenced by some parameters, denoted with circles.
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1 Training disks
2 Registry deltas 1
3 Ground truth • •
4 Cell parents 1 •
5 Stop list 4 (6) • • • ◦
6 TFIDF matrix 2, 4, 5 • • • • • • •
7 Queries 1, 4, 5 • • • • •
8 Query scores 6, 7
9 Signature Searcher 3, 8 •

The above steps proceed nearly in that order, but some parallel construction is

possible. For instance, the queries can all be independently generated once a stop list is

constructed. Table 3.17 shows the step dependencies that can be used for dependency-

ordered parallel execution. Figure 3.5 illustrates the execution order. Also, since most

steps are affected by one or more of the model construction parameters, Table 3.17

78



shows the parameter interactions.

To evaluate the Searchers, for each machine in each corpus, the Registry of

that machine is extracted, converted into a query as with the training queries, and

run against the Searcher, with a set of document-query “Hits” reported. Each query-

document score is compared to the threshold, with scores passing thresholds reported

as “Hits” according to the Searcher. The constructed Searcher’s hits are compared to

ground truth for the machine’s corpus, and tabulated to compute true and false positives

and negatives. Per Searcher, these results are summarized as a precision, recall and F1

score, and inspected as described in the next section.

The entire construction and evaluation process was implemented with custom

modules written in Python. The motivation to write a custom TFIDF engine stemmed

from being able to control the TFIDF selection from the Zobel and Moffat Vector Space

Model design space [74], along with non-standard stop list interaction allowances taken

at various stages of implementation.

3.5 Data Analysis

The objective of laying out the parameter space of the previous section is to

identify the parameters that create the most successful Signature Searchers. Two ex-

periments carry out this exploration. The first is a binary classifier evaluation that

compares the parameter effects on software recognition performance. This experiment

identifies the best parameter values and best models, according to the Diskprint training
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Figure 3.5: Data flow of Signature Searcher construction. With diskprint disk image sequences
as input, their Registry deltas become search queries and TFIDF search engine matrices. Ground
truth associations—of which signature documents should be “hits” for queries—establish thresh-
olds of similarity scores. That set of thresholds, paired with a TFIDF matrix, is a Signature
Searcher. This data flow shows the steps taken from disk image set to Signature Searcher, in-
cluding an extra stop list construction for Signature Searchers that use inconsistently-appearing
Registry cells—symmetric differences—in their stop lists.
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data and evaluation subject machine. The second experiment compares the top mod-

els against the M57-Patents corpus, demonstrating which model parameters perform

consistently. The second experiment needs little further description, but the first has

important conventions taken and made, and is due some explanation.

The first experiment measures the parameter space against the evaluation sub-

ject machine where ground truth is known, with ground truth illustrated in Table 3.4.

The general design of the evaluation against this machine’s states is a nine-factor, full

factorial experiment design [5]. Each Signature Searcher is treated as a binary classifier,

where a querying Registry has a set of ground truth software signatures that should be

returned in the query results as hits. The full factorial experiment measures the effect

of each factor on precision, recall, and signature tally—relative to the other values for

that parameter. The measurement of a parameter variable X’s value x1 is computing

the average score of each response variable (precision, recall, and F1) over all Signature

Searchers that have X = x1, and comparing to the average for X = x2, for each xi X can

assume. This will be presented as main effects plots [5], as in Figure 4.10 on page 106.

The plots show which individual parameter values perform the best, averaging across

all Signature Searchers, one Searcher for each combination of parameter values.

The reason for considering signature tally is that some early measurements

showed that the precision and recall scores could be “gamed” by Signature Searchers

that reported nearly perfect precision and recall scores, by providing signatures for only

a few applications. Hence, the evaluation will balance signature tally with precision and

recall.
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Other measures of “Correctness” in binary classifier evaluation involve accu-

racy, and plotting recall versus sensitivity instead of precision versus recall. However,

in the Signature Searchers’ case, precision and recall is the more appropriate inspection

target because the ground truth contains a significant bias towards condition-negative

[11]. This ground truth bias is because only a subset of the application signatures are

expected to be found in the analyzed corpora.

One cumbersome point of the inspection is naming the Signature Searchers.

Each Searcher can be uniquely identified by the nine parameter values selected to create

it, but a nonuple name is impractical to print. In order to identify a Searcher, a name

will be constructed from its parameter values, much as in Zobel and Moffat’s evaluation

of vector space models in an eight-dimensional parameter space [74]. They used an

eight-character string, with each position dedicated to a parameter and populated with

the parameter value based on an enumerated order of the values. If a parameter X had

three values, they would be identified as A, B, and C. A different parameter Y with two

values would have them be identified as A and B. Then a model built with the third

value of X and the second of Y would have a name starting with CB, and so on for the

other six dimensions. For the Signature Searchers, Tables 3.18 through 3.26 enumerate

the nine parameters’ values for this same type of name scheme, but not repeating code

letters. A name string then matches the pattern “***-*-**-***,” with the parameters

in this order:

1. Document grouping.
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2. Application version grouping.

3. Path normalization.

4. n-gram length.

5. n-gram stop list strategy.

6. Training sequence.

7. Vector combinator.

8. Stop list.

9. Threshold selector.

Table 3.18: Document grouping (Section 3.3.3.2).

Value Description

A app By application, grouping operating systems together.
B osapp By operating system and application, creating a signature per op-

erating system.

Table 3.19: Application version matching (Section 3.3.3.7).

Value Description

C distinct Applications of different versions not allowed to match.
D grouped Applications of different versions allowed to match.

This results in a 2 · 2 · 2 · 7 · 3 · 3 · 3 · 4 · 3 = 18, 144-run experiment, with

one run performed for each combination of the factor values. Instead of a full-factorial
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Table 3.20: Path normalization (Section 3.3.3.3).

Value Description

E raw All cell paths used in models exactly as extracted from hive files.
F normalized Cell paths normalized according to containing hive class, as in Ta-

bles 3.8 and 3.9.

Table 3.21: n-gram length (Section 3.3.3.4). A path component is one level of a Registry path,
e.g. foo\bar has components foo and bar.

Value Description

WP all Whole cell path used as term.
A1 1 Cell path broken into individual components, contributes each com-

ponent once as a term. (A path with n components contributes n
terms.)

A2 2 Cell path broken into all in-order pairs of components, with each
pair contributed once as a term. (A path with n components con-
tributes n-1 terms.)

A3 3 Cell path broken into all in-order triplets of components, with each
triplet contributed once as a term. (A path with n components
contributes n-2 terms. )

L1 last1 Last component of the path contributed as a term.
L2 last2 Last two components of the path contributed as a term.
L3 last3 Last three components of the path contributed as a term.

Table 3.22: n-gram interaction strategy with stop lists (Section 3.3.4.3).

Value Description

G raw filter Stop list constructed from cell paths.
H n-gram black list Stop list constructed from path component black lists when Reg-

istry paths are broken into n-grams.
I n-gram threshold Stop list constructed from path component thresholds when Reg-

istry paths are broken into n-grams.
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Table 3.23: Training sequence (Section 3.3.3.1).

Value Description

J installclose The data training the Searcher were all install-through-application-
close diskprint sequences.

K repeated The data training the Searcher were all diskprint sequences that
were performed multiple times. Referring to the manifest of se-
quences printed in Tables 3.1 and 3.2 these would be all the se-
quences, excluding the “1” entries.

L experiment1 A control selection of diskprint sequences: Only diskprint sequences
of applications used on the evaluation subject machine. Perfor-
mance is expected to be overall better with this set, but the a
priori knowledge is unrealistic in practice.

Table 3.24: Vector combinator (Section 3.3.3.5). The union combinator was not evaluated,
though it could serve as a control, being expected to perform the worst.

Value Description

M intersection A term’s query or document dimension is 1 if the term is present
in each change set to be combined, 0 otherwise.

N summation A term’s query or document dimension is the count of appearances
in the combined change sets.

O sumint A term’s query or document dimension is the product of the inter-
section and summation value for that term.

Table 3.25: Stop list (Section 3.3.4).

Value Description

P none No stop list.
Q baseline Information from the baseline machines’ installation and idle run-

ning was used.
R bp Information from the baseline machines and running preinstalled

applications was used.
S bps The baseline and preinstalled application data were joined with

cells that appeared in the symmetric differences of applications that
had been printed more than once, as described in Section 3.3.4.2.
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Table 3.26: Threshold selector (Section 3.3.3.6).

Value Description

T min The minimum search score against the training machines in the
ground truth of a signature was used.

U avg The average search score against the training machines in the
ground truth of a signature was used.

V max The maximum search score against the training machines in the
ground truth of a signature was used.

evaluation, however, two of the factors will have more qualitative analysis done first, for

their fundamental effects on the interpretation of model results: The document grouping

involving operating systems or not; and the n-gram length, focusing on whether cell

paths should be broken into n-grams or not.

After measuring the Signature Searcher factors against the controlled machine,

the second experiment measures recall against the M57-Patents applications reported

by Roussev et al., using the ground truth defined in Table 3.7. This experiment will not

focus on precision, because the total set of applications installed on the M57 images is

a superset of what Roussev et al. reported. We focus only on reproducibility of their

results, using only the Registry where they used similarity hashing with files with intact

names (for file extensions), RAM, and at times network capture.

3.6 Assumptions of the Study

The Diskprint data generation frequently assumed that Registry artifacts were

steadily flushed from RAM. If the assumption is false, the impact would be that Reg-
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istry cells created for a snapshot would not be picked up from the disk state until the

subsequent snapshot. Example effects would be incorrectly attributing a cell associated

with software installation with software execution, or missing a software execution cell.

This assumption can be difference-tested in future studies against the in-RAM Registry

state from the virtual machines.

The evaluation subject machine described in Section 3.2.2 had a baseline op-

erating state that had been networked. To deploy software on the machine, networking

was disabled. It was assumed that Registry artifacts would be created regardless of

network effects. The Diskprint sequences were created with networking enabled.

The Diskprint data are used twice in training Signature Searchers, once for

building the TFIDF matrices, and again for determining signature thresholds. The

objective is to check the similarity of a training machine to its newly-appeared Reg-

istry paths, given the context of all other training machines. However, using the same

machines can introduce a risk of over-fitting the Searchers to the training data. This

concern can be addressed by independently creating another set of machines, at least

one for each application and operating system desired. This can also be measured as

another design parameter. However, for now this is left to future study, as any overfit-

ting can be indirectly observed by comparing Signature Searcher performance between

the two subject data sets in the evaluation.
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3.7 Limitations of the Study

The Diskprint training data do not have much repetition when they are re-

peated, because the current process is time consuming. Methods exist to create far

greater sets of repetitions once an initial diskprint is performed, such as done by Kälber

et al. [32], though their method still requires manual labor required to create the initial

print for scripting. The current study includes some variance within the training data,

though it could include more.

The study’s design limits the ability to make statistical claims with the main

effects analysis. The evaluation runs one experiment many times, on fixed data from two

sources: the evaluation subject machine, and the M57-Patents corpus. Typically, in a

full-factorial analysis, an experiment is run with the factors as input variables, measuring

their response on a sample from a larger population. Due to a lack of randomness in

the fixed input of the corpora, this study’s parameter effect claims can only be in

performance ranking versus other parameter values. This limitation is part of a larger

problem regarding the lack of annotated data in digital forensics, discussed in the Future

Research section. If the problem of data availability were solved, a further philosophical

challenge arises in defining what a representative sample of computer system states

would be. That challenge is outside of the scope of this thesis. However, the basic

research task of this thesis—demonstrating feasibility of document search-based software

signatures—is still demonstrable with these limitations.

88



3.8 Summary

This study converts the Vector Space Model commonly used in document

search into a binary classifier, which takes as input an entire Registry and outputs

a set of applications believed to have been installed and/or run. Search provides a way

to automatically assign relevancy scores to forensic artifacts, a different strategy from

the manual artifact classification undertaken in prior work. There are nine dimensions

of options to assemble these Signature Searchers, which are enumerated in Tables 3.18

through 3.26. The evaluation will compare the optimal selection of Signature Searcher,

according to an instrumented machine, against a corpus of machines that fit a signifi-

cantly longer usage life than the instrumented machine.
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Chapter 4

Research Findings

This chapter presents the Precision-Recall oriented evaluation of the Signa-

ture Searchers. At first, the evaluation plots include the “Control” Searcher training

sequence-set “experiment1,” which show Signature Searchers’ performance when they

are trained precisely on the applications included in the evaluation subject machine.

The evaluation then drops the control set in order to inspect successful parameter com-

binations between the evaluation subject machine and the M57-Patents corpus, without

perfect a priori selection of training data.

Since the forensic process taken to go from virtual machine states to Searchers

involves several steps, first the processing integrity of the workflow is measured.

4.1 Extraction workflow processing statistics

Each of the three data sets—Searcher training, the evaluation machine states,

and M57—has a set of virtual machine images that need their contents extracted in
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order to perform experiments. The extraction workflow analyzed each of the disk im-

ages, running Fiwalk and RegXML Extractor to extract the Registry content. Because

forensic extraction is not yet a perfected science, there is a survival curve to measure

at each step of the workflow. A survival curve is usually used to illustrate how many

subjects remain within an experiment until its conclusion. In the extraction workflow,

artifacts may not reach a state where they can be analyzed because data can be lost at

each workflow step from some process failing. In particular, the points of concern are:

• Failure to parse the file system with Fiwalk [22];

• Failure to extract files with the metadata extracted by Fiwalk ;

• Failure to parse extracted hive files with hivexml [30]; and

• Failure to parse hivexml -generated XML—e.g. due to binary data causing XML

parsing to fail (parsing failed consistently with Python’s ElementTree library [57]

and the xmllint XML integrity-checking tool [68]); and

• Failure to convert the XML of hivexml to RegXML [40].

Table 4.1 provides the counts of the forensic survival curve for each of the

training diskprint images, the experiment virtual machine states, and the M57-Patents

corpus. This is an update of the RegXML Extractor functional evaluation table, which

had measured XML conversion and processing statistics for M57 and another data

corpus [40, Table 2].
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Table 4.1: Summary of data extracted from disk images into Signature Searchers. Points in the
process where data can be lost to further analysis, e.g. translating between hivexml output and
RegXML [40], have a minus sign annotation.

Training Evaluation M57

Media images 181 21 79
Images with successful hive metadata extraction 181 21 79
Hives found 2,346 231 1,297
Hives extracted with matching SHA-1 2,322 231 1,297
(-) Hives extracted with SHA-1 discrepancy 24 0 0
Hives that hivexml could process 2,328 231 1,292
(-) Hives that hivexml could not process 18 0 5
(-) Hivexml files that xmllint could not process 0 0 0
(-) Hivexml files that dfxml.py could not process 0 0 0
(-) Cells discarded from dfxml.py failing 0 0 0
Total images in end analysis 181 21 79
Total hives in end analysis 2,328 231 1,292
Total cells in end analysis 79,458,145 14,190,751 28,055,999

For currently-unknown reasons, some of the hives failed a checksum verification

after extraction, even though they were all allocated. The version of RegXML Extractor

used in the analysis has what could be considered (with some generosity) a feature,

where processing those hives was attempted regardless of the failed extraction. Six

of those hives succeeded in further processing, and since none of the hives that failed

extraction were deleted files, the results from those six hives are in scope for inclusion

in the study.

The hivexml failures merit further attention here, in case some flaw in hivexml

prevents an entire class of hives from being analyzed. Table 4.2 breaks out the hivexml

failures by file path, also including the number of successfully processed hives to show

whether issues are systematic. A systematic failure would be all hives failing to parse.

This had occurred earlier in the research due to an out-of-date version of hivexml that
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failed due to a character encoding issue. Now, all the hive failures are accompanied by

an outnumbering number of successes in all cases but the Terry NTUSER hives found

on the “Pat” Windows XP machine later in the scenario. Those failed Terry hives

were files that had been reallocated, and the deleted files had been overwritten by Pat’s

operating system. These failed hives have no impact on the analysis, since the study is

scoped to analyze only not-deleted data.

Table 4.2: Report of which hives, by file path, hivexml failed to parse. For magnitude refer-
ence, the number of successful parsings by hivexml are reported alongside the number of failed
parsings. Failures among the diskprint data are due to non-ASCII data appearing in the XML,
causing integrity checking and processing libraries—xmllint and ElementTree—to fail.

Corpus Hive file path Successes Failures

m57 Documents and Settings/Terry/NTUSER.DAT 5 5
training Documents and Settings/nsrl-admin/NTUSER.DAT 48 1
training Users/nsrl-user/NTUSER.DAT 97 5
training Users/nsrl/NTUSER.DAT 28 2
training WINDOWS/system32/config/software 45 4
training Windows/System32/config/SOFTWARE 126 6

4.2 Overall Signature Searcher results

A general inspection of correctness levels of the Signature Searchers can start

with visualizing precision and recall effects. Figure 4.1 plots a point in Precision-Recall

space [11] for each Searcher, measuring precision and recall against the evaluation sub-

ject machine. Histograms along the axes show the overall distribution of the Searchers’

precision and recall. This inspection shows some Searchers attain perfect precision, and

some perfect recall, but none attained both.
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Figure 4.1: Scatter plot of precision-recall scores of Signature Searchers measured against the
evaluation subject machine states, with axis histograms. Each point is a single Signature
Searcher, as determined by parameter selection (Tables 3.18–3.26). The goal point in precision-
recall space is (1, 1), representing perfect precision—no false positives—and perfect recall—where
every document that should have been returned as a match was returned as a match. This figure
shows many Searchers attain perfect precision or perfect recall.
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The “experiment1” control set has the potential to show unrealistic perfor-

mance advantages from its diskprint training selection. To show the influence of the

“experiment1” control set, Figure 4.2 shows where Searchers fall in precision-recall

space, breaking out by the set of diskprints used to train each Searcher. Figure 4.4

shows the evaluation excluding the Searchers trained on the “experiment1“ set. The

Searchers that have perfect precision or recall, and the highest of the other scoring fac-

tor, are not trained on the “experiment1” training set. Hence, inspection of the best

perfect-precision models (and best perfect-recall models) is unaffected by the control

training set.

Table 4.3: Number of documents for a Signature Searcher, according to training data and group-
ing of documents by just application or by application and operating system. The “experiment1”
training set is provided here for reference, but not included in Figures 4.3 or 4.5.

Sequence set Document grouping Document count

experiment1 app 26
experiment1 osapp 44
installclose app 79
installclose osapp 135
repeated app 15
repeated osapp 23

To gauge whether any of the Searchers are using a small number of signatures

for their scores, Figures 4.3 and 4.5 inspect substantive document counts, where a sub-

stantive document is a software signature containing more than zero terms. The number

of substantive documents will always be less than or equal to the number of documents

that can be produced, so while Figure 4.5 shows the substantive counts, Figure 4.3 shows

the proportion of the possible documents per Signature Searcher that are substantive.
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Figure 4.2: Scatter plot of precision-recall scores of Signature Searchers measured against the
evaluation subject machine states, broken out by training sequences. For the evaluation subject
machine, using only repeated diskprints enables perfect recall. Perfect precision was more often
attained with the “installclose” training sequences.
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Figure 4.3: For each Signature Searcher, its F1 measured with the evaluation subject machine
states versus its proportion of signature documents that are non-zero in length (i.e. have some
number of terms with non-zero TFIDF weight). This plot does not include Searchers trained
on the “experiment1” diskprint set. The Searchers’ proportions of non-zero signatures almost
entirely fell between 80 and 100%. The highest-F1 Searchers had the highest proportion of
non-zero signatures.
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Figure 4.4: Scatter plot of precision-recall scores of Signature Searchers measured against the
evaluation subject machine states, with axis histograms. Unlike Figure 4.1, this plot excludes
Searchers trained on the “experiment1” training set.
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Figure 4.5: For each Signature Searcher, its F1 measured with the evaluation subject machine
states versus its count of signature documents that are non-zero in length (i.e. have some
number of terms with non-zero TFIDF weight). This plot does not include Searchers trained
on the “experiment1” diskprint set. This figure, and the document counts in Table 4.3, give
context to the proportions in Figure 4.3.
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Figure 4.6: The precision for each Signature Searcher, measured with the evaluation subject
machine states versus its proportion of signature documents that are non-zero in length (i.e.
have some number of terms with non-zero TFIDF weight). This plot does not include Searchers
trained on the “experiment1” diskprint set. This plot is as Figure 4.3 for F1, but shows that
perfect precision is achievable with most proportions of non-zero documents.

100



0 20 40 60 80 100 120 140
Count of nonzero documents

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

Figure 4.7: The precision of each Signature Searcher, measured with the evaluation subject
machine states versus its count of signature documents that are non-zero in length (i.e. have
some number of terms with non-zero TFIDF weight). This plot is as Figure 4.5 for F1, but
shows that perfect precision is achievable with Searchers of all clusters of document counts.
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Figure 4.8: The recall for each Signature Searcher, measured with the evaluation subject machine
states versus its proportion of signature documents that are non-zero in length (i.e. have some
number of terms with non-zero TFIDF weight). This plot does not include Searchers trained on
the “experiment1” diskprint set. This plot is as Figure 4.3 for F1, but shows that perfect recall
was only attained with Searchers that had no zero-length documents in their construction.
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Figure 4.9: The recall of each Signature Searcher, measured with the evaluation subject machine
states versus its count of signature documents that are non-zero in length (i.e. have some number
of terms with non-zero TFIDF weight). This plot is as Figure 4.5 for F1, but shows that perfect
recall was only attained with Searchers that have a low number of documents.
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Since the precision-recall overview shows none of the Searchers simultaneously attained

perfect precision and recall, precision and recall get the same substantive document

inspection in Figures 4.6 through 4.9.

The substantive signature figures show a few characteristics arise based on how

many of the possible signatures a Signature Searcher could produce do get produced.

• Figure 4.5 shows the F1 scores have a higher-reaching F1 range for Searchers

with a higher ratio of substantive signatures. However, Figure 4.3 shows that

the highest F1 scores only occur when the substantive signature count is smaller.

Thus, if using F1 as the metric of Searcher correctness, the most-correct Searchers

have the second-fewest signatures, according to the count clustering.

• If instead prioritizing precision, nearly any count or ratio of substantive signatures

will do. Figures 4.6 and 4.7 show perfect-precision Searchers appear in all clusters

of signature counts and ratios.

• The Searchers that favor perfect recall are more selective. Those Searchers produce

only substantive signatures (per Figure 4.8) and are based on the fewest signatures

(per Figure 4.9).

For context on why the substantive signature counts group into clusters in

Figure 4.5 (as well as 4.7 and 4.9), consider that from the parameter space, two fac-

tors directly affect the count of signatures: The training sequence, and the document

grouping. From Tables 3.1 and 3.2, the counts of diskprints performed show the upper
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limit of the number of documents per parameter pairing. Table 4.3 gives the maximum

number of documents expected.

4.3 Main effects inspection

Figure 4.10 provides a main effects plot [5] of all of the Signature Searchers

run against the evaluation subject machine. Each plot compares the average value

of a response variable—precision, recall, and F1 in the top, middle, and bottom row,

respectively—for each parameter value when grouping all of the Signature Searchers

with those parameter values. For instance, with the document grouping variable (“Docs

by”), grouping by application instead of operating system with application shows an

increase in precision, decrease in recall, and overall decrease in F1.
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Figure 4.11 also provides a main effects plot, measuring the Signature Searchers

against the M57-Patents corpus. Comparing the average precision and recall scores of

each parameter value when measuring against M57, the relative average performance—

i.e. which parameter value has the higher average score—changes for these parameters:

• Document grouping favors per-application grouping in recall, and thus in gen-

eral since precision already favors per-application grouping. With the evaluation

subject machine, operating system grouping has better recall.

• Version grouping still favors grouping application versions, but by a much more

narrow margin.

• Whole-path terms now provide the worst average precision, and unigrams the

best, a reversal from the evaluation subject machine.

• The evaluation subject machine average precision was best when using the “exper-

iment1” control sequence set. Within M57, the control set had average precision

on par with the other sequence sets.

The main effects plots show which parameter values perform the best on av-

erage, considering the few well-performing models alongside the much more numerous

poorly-performing models. To illustrate the score distributions, Figure 4.12 shows the

cumulative histogram scores of all of the Searchers’ performance measures against both

corpora. Note that precision’s upper-right gap in both corpora show that false positives

are a surpassable challenge with the right Searcher parameters, perfected for 8.9% and

1.3% of all the Searchers against the evaluation subject machine and M57, respectively.
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(f) M57 F1.

Figure 4.12: Cumulative histograms of precision (top), recall (middle), and F1 (bottom) scores
for the Signature Searchers run against the evaluation machine states (left) and M57 data (right).
Note that the apparent discontinuities at precision=1 are gaps between the penultimate scores
and the scores of 1 that some Searchers attained.
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4.4 Parameter inspection

This section onward excludes the Signature Searchers built on the “experi-

ment1” set of diskprint training sequences.

Average parameter value performance, as shown in the main effects plots, is

one method of determining how best to build a Signature Searcher. However, it may also

prove produent to identify the current best Searchers, according to inherently desirable

characteristics. For instance, two of the parameters affect basic interpretation questions

for the Signature Searchers. The document grouping determines whether Searchers are

better built for applications paired with an operating system, or can be built on any

operating system. The n-gram parameter inspection will show whether whether there is

a consistently performant Searcher configuration that uses whole Registry paths, which

would simplify reporting for an investigator.

The main effects plots suggests that Searchers that make signatures for appli-

cations, agnostic of operating system, overall have stronger performance metrics, save

recall with the evaluation subject machine. Likewise with Searchers built on unigrams,

save precision with the evaluation subject machine. To visualize the independent ef-

fects of these two parameters deeper than a main effects plot, Figures 4.13 and 4.14

show where each Searcher falls in Precision-Recall space, with Figure 4.13 showing the

document grouping breakout and 4.14 the n-gram breakout.1 Those figures show that

the average performance scores are not necessarily indicators of the best parameter val-

ues, since for example the Searchers that grouped by application performed on average

1For completeness, Appendix A provides the breakouts of the other parameters.

110



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Precision-Recall scatter plot
Breakout: Docs by

app osapp

Figure 4.13: Scatter plot of precision and recall of Signature Searchers measured with the
evaluation subject machine states, broken out by document grouping. The clump of plusses on
the right show tailoring signatures to operating systems increases recall.
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Figure 4.14: Scatter plot of precision and recall of Signature Searchers measured with the
evaluation subject machine states, broken out by n-gram length, with “all” denoting Registry
paths were not broken into n-grams.
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better, but were not the best performing for precision or recall.

To test for top and consistent Signature Searcher performance, a ranking eval-

uation measures both the evaluation subject machine’s states, and the M57 corpus.

Since Searchers performed perfectly for only precision or recall and not both, there will

be a ranking for those who would prioritize precision, and another for recall.

Tables 4.4 and 4.5 show the top twenty Searchers for the two parameters’

values, ranked by precision percentile against the evaluation subject machine. Tables 4.6

and 4.7 do the same for recall.2 To show consistency with the M57 data and the reported

results of Roussev et al., the tables also show whether a top-ranking Searcher against

the evaluation subject machine is also in a top percentile of the Searchers run against

M57. The number of documents reported is the number of substantive signatures. The

number of runs reported is the number of machine states tested against a document in

the ground truth of the respective corpus. Figure 4.12 relates the absolute scores and

the score percentiles.

Figure 4.12 showed there were different amounts of Searchers that attained

perfect precision and recall in both corpora—in particular, that more Searchers attained

perfect precision. That is reflected in the top rankings of consistent Searchers. If the

Searcher configuration priority is on recall, then there were no Searchers that had perfect

recall between both corpora, as shown by the top entries of Tables 4.6 and 4.7 not having

a recall of 1.0 for both corpus columns. If instead the Searcher production priority is

on precision, then there are a number of searchers that attain a perfect precision score

2Searcher ID codes are in Tables 3.18 through 3.26 (pages 83–86).
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Table 4.4: The top twenty Signature Searchers built on grouping by application (top table) vs.
application and operating system (bottom table). Ranking is determined by precision against
the evaluation subject machine, and compared to precision in M57.

Searcher ID # docs. # runs Eval. precision M57 precision
Eval. M57 Prec. Percentile Prec. Percentile

Grouping signatures by application
ADF-WP-IJ-NSU 76 1448 3152 1.0 91.1 1.0 98.7
ACF-L1-IJ-OSU 68 1294 2806 1.0 91.1 1.0 98.7
ADF-L1-IJ-OSU 68 1294 2806 1.0 91.1 1.0 98.7
ACF-WP-IJ-OSU 67 1277 2783 1.0 91.1 1.0 98.7
ADF-WP-IJ-OSU 67 1277 2783 1.0 91.1 1.0 98.7
ACF-L1-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADF-L1-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACE-L1-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADE-L1-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACE-L1-IJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADE-L1-IJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACF-L2-HJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ADF-L2-HJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ACF-L2-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADF-L2-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACE-L2-HJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ADE-L2-HJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ACE-L2-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADE-L2-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACF-L2-IJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7

Grouping signatures by application and operating system
BDE-A1-GK-NQU 23 437 943 1.0 91.1 0.2 90.2
BDE-WP-HJ-MPU 133 2527 5453 1.0 91.1 0.19 89.6
BDE-WP-HJ-OPU 133 2527 5453 1.0 91.1 0.19 89.6
BDE-WP-IJ-MPU 133 2527 5453 1.0 91.1 0.19 89.6
BDE-WP-IJ-OPU 133 2527 5453 1.0 91.1 0.19 89.6
BDE-WP-GJ-MPU 133 2527 5453 1.0 91.1 0.19 89.6
BDE-WP-GJ-OPU 133 2527 5453 1.0 91.1 0.19 89.6
BDE-A1-HK-OPV 23 437 943 1.0 91.1 0.16 87.4
BDE-A1-IK-OPV 23 437 943 1.0 91.1 0.16 87.4
BDE-A1-GK-OPV 23 437 943 1.0 91.1 0.16 87.4
BDE-A3-HK-NPV 23 437 943 1.0 91.1 0.16 87.4
BDE-A3-IK-NPV 23 437 943 1.0 91.1 0.16 87.4
BDE-A3-GK-NPV 23 437 943 1.0 91.1 0.16 87.4
BDE-WP-HJ-NPU 133 2527 5453 1.0 91.1 0.16 86.9
BDE-WP-IJ-NPU 133 2527 5453 1.0 91.1 0.16 86.9
BDE-WP-GJ-NPU 133 2527 5453 1.0 91.1 0.16 86.9
BDF-A3-HK-OPV 23 437 943 1.0 91.1 0.09 79.9
BDF-A3-IK-OPV 23 437 943 1.0 91.1 0.09 79.9
BDF-A3-GK-OPV 23 437 943 1.0 91.1 0.09 79.9
BCE-L3-HJ-MPU 133 2527 5453 1.0 91.1 0.0 0.0
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Table 4.5: The top twenty Signature Searchers built on n-grams (top table) vs. using whole Reg-
istry paths (bottom table). Ranking is determined by precision against the evaluation subject
machine, and compared to precision in M57.

Searcher ID # docs. # runs Eval. precision M57 precision
Eval. M57 Prec. Percentile Prec. Percentile

Breaking Registry paths into n-grams for signature terms
ACF-L1-IJ-OSU 68 1294 2806 1.0 91.1 1.0 98.7
ADF-L1-IJ-OSU 68 1294 2806 1.0 91.1 1.0 98.7
ACF-L1-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADF-L1-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACE-L1-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADE-L1-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACE-L1-IJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADE-L1-IJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACF-L2-HJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ADF-L2-HJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ACF-L2-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADF-L2-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACE-L2-HJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ADE-L2-HJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ACE-L2-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ADE-L2-HJ-OSU 67 1273 2747 1.0 91.1 1.0 98.7
ACF-L2-IJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ADF-L2-IJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ACE-L2-IJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7
ADE-L2-IJ-MSU 67 1273 2747 1.0 91.1 1.0 98.7

Using whole Registry paths as signature terms
ADF-WP-IJ-NSU 76 1448 3152 1.0 91.1 1.0 98.7
ACF-WP-IJ-OSU 67 1277 2783 1.0 91.1 1.0 98.7
ADF-WP-IJ-OSU 67 1277 2783 1.0 91.1 1.0 98.7
ACF-WP-HJ-MSU 65 1235 2665 1.0 91.1 1.0 98.7
ADF-WP-HJ-MSU 65 1235 2665 1.0 91.1 1.0 98.7
ACF-WP-HJ-OSU 65 1235 2665 1.0 91.1 1.0 98.7
ADF-WP-HJ-OSU 65 1235 2665 1.0 91.1 1.0 98.7
ACF-WP-IJ-MSU 65 1235 2665 1.0 91.1 1.0 98.7
ADF-WP-IJ-MSU 65 1235 2665 1.0 91.1 1.0 98.7
ACF-WP-GJ-MSU 65 1235 2665 1.0 91.1 1.0 98.7
ADF-WP-GJ-MSU 65 1235 2665 1.0 91.1 1.0 98.7
ACF-WP-GJ-OSU 65 1235 2665 1.0 91.1 1.0 98.7
ADF-WP-GJ-OSU 65 1235 2665 1.0 91.1 1.0 98.7
ADF-WP-IK-NSU 15 270 651 1.0 91.1 1.0 98.7
ADF-WP-IK-NST 15 270 651 1.0 91.1 1.0 98.7
ACF-WP-IJ-ORT 67 1275 2765 1.0 91.1 0.45 96.2
ACF-WP-IJ-OST 67 1277 2783 1.0 91.1 0.45 96.2
ACF-WP-HJ-MRT 66 1254 2706 1.0 91.1 0.45 96.2
ACF-WP-HJ-ORT 66 1254 2706 1.0 91.1 0.45 96.2
ACF-WP-IJ-MRT 66 1254 2706 1.0 91.1 0.45 96.2
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Table 4.6: The top twenty Signature Searchers built on grouping by application (top table) vs.
application and operating system (bottom table). Ranking is determined by recall against the
evaluation subject machine, and compared to recall in M57.

Searcher ID # docs. # runs Eval. recall M57 recall
Eval. M57 Rec. Percentile Rec. Percentile

Grouping signatures by application
ADF-A2-HK-NPT 15 285 615 0.72 98.8 0.74 98.0
ADF-A2-IK-NPT 15 285 615 0.72 98.8 0.74 98.0
ADF-A2-GK-NPT 15 285 615 0.72 98.8 0.74 98.0
ADF-A3-HK-NPT 15 285 615 0.72 98.8 0.74 98.0
ADF-A3-IK-NPT 15 285 615 0.72 98.8 0.74 98.0
ADF-A3-GK-NPT 15 285 615 0.72 98.8 0.74 98.0
ADF-A2-HJ-NPT 77 1463 3157 0.71 98.7 0.86 99.3
ADF-A2-IJ-NPT 77 1463 3157 0.71 98.7 0.86 99.3
ADF-A2-GJ-NPT 77 1463 3157 0.71 98.7 0.86 99.3
ADF-A1-HJ-NPT 77 1463 3157 0.71 98.7 0.84 99.1
ADF-A1-IJ-NPT 77 1463 3157 0.71 98.7 0.84 99.1
ADF-A1-GJ-NPT 77 1463 3157 0.71 98.7 0.84 99.1
ADE-A1-IK-NQT 15 285 615 0.7 98.7 0.29 81.9
ADE-A1-HK-MPT 15 285 615 0.68 98.5 0.79 98.5
ADE-A1-IK-MPT 15 285 615 0.68 98.5 0.79 98.5
ADE-A1-GK-MPT 15 285 615 0.68 98.5 0.79 98.5
ADE-A2-HK-MPT 14 266 574 0.67 98.2 0.69 96.7
ADE-A2-IK-MPT 14 266 574 0.67 98.2 0.69 96.7
ADE-A2-GK-MPT 14 266 574 0.67 98.2 0.69 96.7
ADF-L1-HK-OPT 14 266 574 0.66 97.8 0.56 94.4

Grouping signatures by application and operating system
BCF-L1-HK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDF-L1-HK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCE-L1-HK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDE-L1-HK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCF-L1-IK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDF-L1-IK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCE-L1-IK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDE-L1-IK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCF-L1-GK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDF-L1-GK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCE-L1-GK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDE-L1-GK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCF-A1-HK-NPU 23 437 943 1.0 99.7 0.43 86.9
BCF-A1-HK-NPV 23 437 943 1.0 99.7 0.43 86.9
BCF-A1-HK-NPT 23 437 943 1.0 99.7 0.43 86.9
BDF-A1-HK-NPU 23 437 943 1.0 99.7 0.43 86.9
BDF-A1-HK-NPT 23 437 943 1.0 99.7 0.43 86.9
BCE-A1-HK-NPU 23 437 943 1.0 99.7 0.43 86.9
BCE-A1-HK-NPT 23 437 943 1.0 99.7 0.43 86.9
BDE-A1-HK-NPU 23 437 943 1.0 99.7 0.43 86.9
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Table 4.7: The top twenty Signature Searchers built on n-grams (top table) vs. using whole
Registry paths (bottom table). Ranking is determined by recall against the evaluation subject
machine, and compared to recall in M57.

Searcher ID # docs. # runs Eval. recall M57 recall
Eval. M57 Rec. Percentile Rec. Percentile

Breaking Registry paths into n-grams for signature terms
BCF-L1-HK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDF-L1-HK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCE-L1-HK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDE-L1-HK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCF-L1-IK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDF-L1-IK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCE-L1-IK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDE-L1-IK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCF-L1-GK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDF-L1-GK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCE-L1-GK-NPT 23 437 943 1.0 99.7 0.47 90.5
BDE-L1-GK-NPT 23 437 943 1.0 99.7 0.47 90.5
BCF-A1-HK-NPU 23 437 943 1.0 99.7 0.43 86.9
BCF-A1-HK-NPV 23 437 943 1.0 99.7 0.43 86.9
BCF-A1-HK-NPT 23 437 943 1.0 99.7 0.43 86.9
BDF-A1-HK-NPU 23 437 943 1.0 99.7 0.43 86.9
BDF-A1-HK-NPT 23 437 943 1.0 99.7 0.43 86.9
BCE-A1-HK-NPU 23 437 943 1.0 99.7 0.43 86.9
BCE-A1-HK-NPT 23 437 943 1.0 99.7 0.43 86.9
BDE-A1-HK-NPU 23 437 943 1.0 99.7 0.43 86.9

Using whole Registry paths as signature terms
ADF-WP-HK-NPT 15 285 615 0.65 97.3 0.57 94.7
ADF-WP-IK-NPT 15 285 615 0.65 97.3 0.57 94.7
ADF-WP-GK-NPT 15 285 615 0.65 97.3 0.57 94.7
BDF-WP-HK-NPT 23 437 943 0.59 95.8 0.14 72.9
BDF-WP-IK-NPT 23 437 943 0.59 95.8 0.14 72.9
BDF-WP-GK-NPT 23 437 943 0.59 95.8 0.14 72.9
BDE-WP-HK-NQT 23 437 943 0.59 95.8 0.0 0.0
BDE-WP-HK-NPT 23 437 943 0.59 95.8 0.0 0.0
BDE-WP-IK-NQT 23 437 943 0.59 95.8 0.0 0.0
BDE-WP-IK-NPT 23 437 943 0.59 95.8 0.0 0.0
BDE-WP-GK-NQT 23 437 943 0.59 95.8 0.0 0.0
BDE-WP-GK-NPT 23 437 943 0.59 95.8 0.0 0.0
ACF-WP-HK-NPT 15 285 615 0.55 94.2 0.37 85.3
ACF-WP-IK-NPT 15 285 615 0.55 94.2 0.37 85.3
ACF-WP-GK-NPT 15 285 615 0.55 94.2 0.37 85.3
ADF-WP-HJ-NPT 77 1463 3157 0.53 93.9 0.61 95.0
ADF-WP-IJ-NPT 77 1463 3157 0.53 93.9 0.61 95.0
ADF-WP-GJ-NPT 77 1463 3157 0.53 93.9 0.61 95.0
BCF-WP-HK-NPT 23 437 943 0.5 91.2 0.14 72.9
BCF-WP-IK-NPT 23 437 943 0.5 91.2 0.14 72.9
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Table 4.8: Counts of Searchers that had a precision of 1.0 for both the evaluation subject machine
and the M57-Patents corpus, broken out by document grouping.

Docs. by Count

app 51
osapp 0

Table 4.9: Counts of Searchers that had a precision of 1.0 for both the evaluation subject machine
and the M57-Patents corpus, broken out by n-gram length.

n-grams Count

all 15
1 0
2 8
3 4

last1 8
last2 12
last3 4

in both corpora. Table 4.4 shows more are consistent if selecting for signatures built

for applications, not tailored to operating systems. If tailoring for operating systems,

inconsistent performance between corpora is apparent from the precision of 0.2 for

M57. Table 4.8 confirms this, showing that no operating system-tailored Searchers had

consistent precision of 1.0 between both corpora, while about fifty application-grouped

Searchers had consistent precision of 1.0. For precision ranking and n-grams, fifteen

whole-path Searchers had consistent precision of 1.0 between both corpora, the most of

any individual value of the n-gram breakout parameter.

For more illustration of consistency between the two corpora, Figure 4.15 plots

the F1 of each Signature Searcher against both corpora. Many Searchers exhibited com-
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Figure 4.15: Scatter plot of F1 of each Signature Searcher measured against the evaluation sub-
ject machine states (along the x axis) and the M57-Patents corpus (along the y axis). Distance
from the y = x line indicates a Searcher is more overfit towards one of the corpora. Many
Searchers showed they could correctly identify application presence for one of the corpora, but
not at all for the other, being along the y = 0 or x = 0 lines. Some Searchers perform consistently
well for both corpora, appearing in the upper-right corner.
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Figure 4.16: Scatter plot of precision of each Signature Searcher measured against the evaluation
subject machine states (along the x axis) and the M57-Patents corpus (along the y axis). The
evaluation subject machine tended to higher precision scores than the M57 corpus.
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Figure 4.17: Scatter plot of recall of each Signature Searcher measured against the evaluation
subject machine states (along the x axis) and the M57-Patents corpus (along the y axis). The
M57 corpus tended to have higher recall scores than the evaluation subject machine, though the
bias is not as pronounced as in Figure 4.16.
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plete inconsistency between the two corpora, having an F1 score of 0 for one corpus but

not the other. Figure 4.15 shows again that neither corpus had Searchers that attained

perfect precision and recall. Figures 4.16 and 4.16 show a little more information, how-

ever. Considering the identity axis y = x, there are biases in the lower end of the

identity axis, with precision favoring the evaluation subject machine, and recall slightly

favoring the M57-Patents corpus.
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Chapter 5

Conclusions, Discussion, and

Suggestions for Future Research

5.1 Summary

The evaluation showed document search can create effective software signa-

tures based on Registry artifacts, but an investigator would need to tune a Searcher’s

construction differently, depending on prioritizing fewer false positives or fewer false

negatives. Searchers built for applications, agnostic to the trained operating system,

have a higher consistent precision between the developed evaluation subject machine

and the software observed in the M57 Patents corpus. Other parameter decisions are

less straightforward. There are Searchers built for whole-path terms, as well as n-grams

for terms, that have perfect precision for both the evaluation subject machine and the

M57-Patents corpus.
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If prioritizing recall, rankings by percentile suggest that, again, Searchers built

for applications without tailoring to operating systems are the more consistently per-

formant choice (see Table 4.6). The last unigram of paths seem to be more consistent

as well, based on the percentiles that appear in the top twenty Searchers for n-gram

breakouts. The whole-path Searchers vary to the point of including a 0-recall Searcher.

Since Signature Searchers based on Registry path components proved more

consistently performant in some cases, there is a challenge to address in results presen-

tation. Section 5.3.1 covers this, after the report of configurations of Signature Searchers

that appear to be optimal according to relative average performance.

5.2 Analytic conclusions

The main effects plot (Figure 4.10) against the evaluation machine provides

rankings of parameter values. Unfortunately, the study design does not allow performing

statistical significance tests, so significance here is only approximated by being able to

observe a slope in the line joining average-points, and by seeing if the M57 main effects

plot (Figure 4.11) arrived at a different better-on-average conclusion. The averages’

comparisons show the following ID patterns suggest the best Searcher configurations.

First, prioritizing for precision:

Document grouping – app Cross-operating-system signatures had the better aver-

age precision for both corpora.

Application version grouping – grouped Signatures for a version of an application
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should be allowed to match signatures of other versions.

Path normalization Path normalization by design is consequential for signatures that

combine whole paths from different operating systems. However, averaged across

all the Signature Searchers, there is not a clear best choice.

n-gram length – not all-bigrams n-gram length has no consistent best average be-

tween the two corpora. All-bigrams was a consistently lower option.

n-gram stop list strategy – n-gram blacklist Blacklisting all n-grams derived from

stop listed Registry paths had precision fairly consistent with the threshold op-

tion. However, the threshold option is more likely to have varying performance

based on the number of baseline operating systems provided for stop lists, so the

blacklist option is selected here.

Training sequence – repeated The M57 main effects doesn’t favor any selection of

sequences for precision. However, the evaluation subject machine performed better

when restricted to repeated training sequences.

Vector combinator No combinator clearly performed best for precision.

Stop list – none Having any stop list lessened precision, for both corpora.

Threshold selector – min The score selector improved precision with the permis-

siveness of the threshold selector, with the minimum selector having the best

average precision for both corpora.

And then, prioritizing for recall:
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Document grouping The two corpora, on average, disagree on whether it is better

to tailor application signatures to operating systems or to train a cross-operating-

system signature.

Application version grouping – grouped As for precision prioritization, signatures

for a version of an application should be allowed to match signatures of other

versions.

Path normalization As for precision prioritization, there is not a clear best choice.

n-gram length – 1 Whole Registry paths make for the worst average recall score.

The corpora both have the highest recall for all-unigram models.

n-gram stop list strategy – raw filter Filtering on whole Registry paths, before

splitting the path into n-grams, provided the best average recall score.

Training sequence – installclose Including all training sequences, even singleton

prints, improved recall for both corpora.

Vector combinator – summation The summation combinator had the best average

recall for both corpora.

Stop list – none The empty stop list had the best average recall for both corpora.

Threshold selector – min As for precision prioritization, the minimum-score selec-

tor provided the best recall.
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Table 5.1: The top twenty Signature Searchers, according to the evaluation subject machine
states, the M57-Patents corpus, and the consistently-highest precision values of the main effects
inspections. Ranking is determined by average precision between the two corpora, with the
average taken by the harmonic mean.

Searcher ID # docs. # runs Eval. precision M57 precision
Eval. M57 Prec. Percentile Prec. Percentile

According to evaluation subject machine
ADF-WP-IJ-NSU 76 1448 3152 1.0 91.1 1.0 98.7

According to M57
ADF-WP-IJ-NSU 76 1448 3152 1.0 91.1 1.0 98.7

According to main effects of both corpora
ADF-L3-HK-OPT 13 247 533 0.73 89.1 0.44 96.1
ADF-L3-HK-MPT 13 247 533 0.76 89.6 0.41 95.7
ADE-L3-HK-MPT 13 247 533 0.76 89.6 0.41 95.7
ADE-L3-HK-OPT 13 247 533 0.65 87.3 0.44 96.1
ADF-WP-HK-MPT 13 247 533 0.82 90.4 0.33 94.8
ADF-WP-HK-OPT 13 247 533 0.82 90.4 0.33 94.8
ADF-L2-HK-MPT 13 247 533 0.42 76.6 0.49 97.0
ADE-L2-HK-MPT 13 247 533 0.42 76.6 0.49 97.0
ADE-WP-HK-NPT 15 285 615 0.54 84.1 0.37 95.3
ADF-WP-HK-NPT 15 285 615 0.56 84.9 0.33 95.0
ADF-L3-HK-NPT 15 285 615 0.62 86.4 0.29 93.9
ADE-L3-HK-NPT 15 285 615 0.62 86.4 0.29 93.9
ADF-L1-HK-MPT 14 266 574 0.5 80.3 0.32 94.7
ADE-L1-HK-MPT 14 266 574 0.5 80.3 0.32 94.7
ADF-L1-HK-OPT 14 266 574 0.45 78.4 0.32 94.7
ADE-L1-HK-OPT 14 266 574 0.45 78.4 0.32 94.7
ADE-A1-HK-OPT 15 285 615 0.51 82.8 0.29 93.9
ADF-L2-HK-OPT 13 247 533 0.42 76.6 0.33 94.9
ADE-L2-HK-OPT 13 247 533 0.42 76.6 0.33 94.9
ADE-A1-HK-MPT 15 285 615 0.53 83.7 0.27 93.3
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Table 5.2: The top Signature Searchers, according to the evaluation subject machine states, the
M57-Patents corpus, and the consistently-highest recall values of the main effects inspections.
Ranking is determined by average recall between the two corpora, with the average taken by
the harmonic mean. While Table 5.1 shows the top twenty, the searcher ID pattern suggested
by the main effects plots for recall had a more narrow selection, reducing the parameter space
to just four choices.

Searcher ID # docs. # runs Eval. recall M57 recall
Eval. M57 Rec. Percentile Rec. Percentile

According to evaluation subject machine
BCF-L1-HK-NPT 23 437 943 1.0 99.7 0.47 90.5

According to M57
ADF-A2-HL-NPT 26 494 1066 0.7 98.7 0.92 99.8

According to main effects of both corpora
ADF-A1-GJ-NPT 77 1463 3157 0.71 98.7 0.84 99.1
BDF-A1-GJ-NPT 133 2527 5453 0.68 98.5 0.66 96.0
ADE-A1-GJ-NPT 77 1463 3157 0.48 91.1 0.86 99.3
BDE-A1-GJ-NPT 133 2527 5453 0.68 98.5 0.38 85.6

These top values suggest the best Signature Searchers for precision would have

the ID pattern AD*-{WP,A1,A3,L2,L3}-HK-*PT, and for recall, *D*-A1-GJ-NPT. Table

5.1 shows the top Searchers according to the precision pattern, and Table 5.2 shows

the same for recall. For comparison, they include the top Searcher according to the

evaluation subject machine, and according to M57. The Searcher ID pattern derived

from main effects for recall provides for fewer Searcher suggestions.

Tables 5.1 and 5.2 show that the top-performing Searchers vary in their level

of agreement with the best-average Searcher parameters. Table 5.1 shows that the main

effects suggestions for parameter values provide weaker-precision Searchers, supported

by few substantive signatures. Yet, Table 4.8 (and others) had shown that there were

more Searchers that attained perfect precision between both corpora. For recall, the

best-average Searcher parameters performed well in rankings, the majority being over
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96th-percentile.

For these two corpora, the main effects measurement showed better ability to

find high-recall Searchers than high-precision Searchers. Further study—or in case over-

fitting, evaluation data—will be needed to identify the discrepancy between Searchers

with the best precision and the Searchers with the on-average best parameter choices.

5.3 Discussion

5.3.1 Reporting software presence and justifying terms

To an investigator, the important results of any of the Signature Searchers is

not only the initial estimated presence guess made by the Searcher, but the supporting

evidence for that guess. To that end, there is an HTML-formatted report generator

that formats Signature Searcher results, providing a table of “Yes” and “No” guesses for

each trained software package. Each guess links to a supporting term table, where each

Registry path of the subject image is reported, along with each path’s corresponding

weights. This way, the Searcher emphasizes the signatory value of each path. Due to

n-gram models being among the top performers, there are report design considerations

to consider to make this research operational.

When a model is built that doesn’t use paths as terms, but instead path com-

ponent n-grams, a new challenge arises in term vs. path signatory value. Investigators

may or may not find a component n-gram’s signature weight to be informative, but they

are likely to desire some score of the Registry path from which the term was derived.
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Investigators need to be able to make reports as semantically close to the subject hard

drive as possible, and a Registry path, found in a hive at some file path, suffices as a

common-ground unit of explanation.

There is a straightforward solution to explain the signatory value of a Registry

path, when the search model is built on whole paths as terms. The TFIDF weight

of the path within each signature is readily available, and becomes the score in a hit

for that application. However, when the model is built on path components instead

of paths, there is need of an aggregation strategy to tabulate a path’s importance.

One strategy could be summing all the terms derived from a path as the path’s score

and presentation sorting field, boldfacing the portions of the path with a high TFIDF

score for the particular signature. This would be analogous to Keyword-in-Context

snippets used in natural language search results presentation [35]. Other options are

available, such as simply sorting the source Registry paths, but ultimately determining

the most useful presentation would require a usability study that is out of scope of this

dissertation.

Figure 5.1 provides a screenshot of a prototype generated report. The report’s

summary section shows the Registry triage aspect of signature search, giving yes and

no answers to believed software presence and usage. Each table of paths justifies, or

shows the insufficient justification, for claiming an application influenced the machine.

These evidence tables help emphasize the distinction between a negative response and

an absent response to software presence. A Signature Searcher’s “Yes” affirms software

influence presence, but its “No” does not affirm software influence absence. The tables
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Signature Searcher results
Input signature searcher

signature_searcher_training/data_training/sequences_installclose
/paths_normalized/docs_by_app/repetitions_intersection/stop_list_bp
/versions_grouped/score_selector_min/signature_searcher.pickle

Input query
data_evaluation/paths_normalized/docs_by_app/stop_list_bp/experiment1-15.db

Summary
These applications' signatures were considered to match against the input Registry, indicating the
software was present and/or run.

Application name Version Installed Run
Microsoft Office Professional Edition 2003 2003 Yes No
Mozilla Firefox beta 19.0b2 Yes No
Python 2.6.4 Yes No
Microsoft Office Professional 2007 Version 2007 Yes No

Evidence for signature matches
Each signature match has supporting evidence presented here. Note that in some models, paths are
translated.

Python; 2.6.4; Install

The similarity threshold for this application is 0.27333600455280677, and the input query scored
0.3548175960767987. The signature and query had 456 terms in common, with the following weights
(listed in descending TFIDF weight order):

Signature weight Query
weight Term

7.554588851677638 1 __NORMROOT_SOFTWARE_CONFIG__\Classes\.py
7.554588851677638 1 __NORMROOT_SOFTWARE_CONFIG__\Classes\.py\Content Type
7.554588851677638 1 __NORMROOT_SOFTWARE_CONFIG__\Classes\.py\Default
7.554588851677638 1 __NORMROOT_SOFTWARE_CONFIG__\Classes\.pyc
7.554588851677638 1 __NORMROOT_SOFTWARE_CONFIG__\Classes\.pyc\Default
7.554588851677638 1 __NORMROOT_SOFTWARE_CONFIG__\Classes\.pyo

Signature Searcher results file:///Volumes/Pegasus/NSRL/docs/trunk/Presentations/201503...

Figure 5.1: Screenshot of Signature Searcher report.

of evidentiary Registry paths’ scores can help an investigator conclude software influ-

ence absence, particularly if the “Most relevant” paths in the subject machine appear

dubious.

5.4 Suggestions for Future Research

5.4.1 Strengthening generalizability of findings

In this study, the generalizability of the Signature Searchers’ best parameter

values is only demonstrated by performance consistency between the two evaluation
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corpora. Generalizability may be better determined by analyzing more substantial

corpora, but here the field of digital forensics is challenged by—with all due irony—

data availability. The Real Data Corpus is the most substantial research corpus of real

computer use available today, with over two thousand disk images [23], but it suffers

from a total lack of ground truth in all but basic characterizing dimensions like disk

image size. Creating sizeable, realistic, and annotated corpora remains a significant

research challenge.

5.4.2 Search function tuning

Instead of what Zobel and Moffat refer to as the “Standard formulation” of

raw counts, Croft et al. suggest using the “Logarithmic formulation” rd,t = 1 + log fd,t.

“Retrieval experiments have shown that to reduce the impact of these frequent terms, it

is effective to use the logarithm of the number of term occurrences in tf weights rather

than the raw count” [10, page 241]. Among the VSM parameter space, this tuning

for equation 1.3, or further use of logarithms in term frequency and inverse document

frequency [3], seem to be the most prudent tuning parameters to inspect. However,

Zobel and Moffat offer a parameter space of 1.5 million search variants on top of the

extensive construction parameter space already explored in this dissertation. Some

inspection strategy will be necessary to further improve the search formulation.
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5.4.3 Alternate difference basis for term sources

This thesis is scoped to analyze the set of Registry cells added from diskprint

state to diskprint state. Some of the analysis in this research had been performed on an

erroneous calculation of “added” cells. The error arose in some code in the Diskprint

workflow that computed all of the differences for a sequence—including cell removals and

content or metadata modifications—in one script invocation. (The invocation occurred

just prior to the Postgres export illustrated on the right in Figure 3.2 on page 46.)

Cells that were truly added between states were identified as added, but other cells

were erroneously identified as added as well. The error is corrected in the analysis

now, by using a simplified added-cell derivation script. However, the analysis on the

erroneous difference sets made for intriguing results. Many of the Searchers built on the

erroneous added-cell sets attained perfect F1 scores for either of the evaluation corpora,

though none managed both simultaneously. This indicates that some characteristic

of the erroneous cell sets, when identified, may make for stronger software signature

recognition.

Because this thesis is scoped to added cells, the results here are only derived

from added cells. Future research can incorporate cells of other differential-analytic

sources. The incorrectly-computed difference data is available along with the other

resources for this thesis.
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5.4.4 Registry differential analysis model variants

Garfinkel et al. [21] described several types of differential results. In particular,

feature sets can be changed by adding new features, removing old features, modifying

features’ content or properties, and renaming old features. This dissertation analyzed

a model based on added features in depth, but for symmetry’s sake with the prior

differential analysis work, it is also possible to develop models based on deleted and

changed content.

5.4.4.1 Subtractive model variant

Where the additive model focused on presence of cells added since a baseline

system state, the subtractive model variant would rely on absence since the baseline

state. Using the TFIDF VSM, a term is a cell path removed from the baseline image,

and a change set is the collection of all those cell paths. Removal from the previous

image would likely cause great confusion from well-garbage-collected temporary paths.

Under this construction, the most irrelevant documents for any given query—i.e. with

cosines near or at 0—may be the strongest-indicated software effects.

Unfortunately, the subtractive model rests on a strong assumption that likely

will render it ineffective. For general usage, a general, minimal set of cells expected to

be in all Registries would be necessary. This likely demands signatures be tailored to

each operating system.

I expect constructing subtractive model variants to be a multiplicatively inten-

sive process, as applications may need to be printed once for each Windows version and
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architecture of interest. I also suspect that scoring by low vector nearness will produce

confusing results. Overall, I expect the additive model—built on cell presence, rather

than absence—to provide more generally useful results than the subtractive variant,

even when considering uninstalled software.

5.4.4.2 Mutative model variant

Differential analysis allows us to make note of metadata changes to cells, be-

tween a pre- and post-image. However, a Registry is unlikely to start from a universal

constant state, where each value stores the same data. Since we are designing our search

models on the assumption that all changes will have already happened by the time of

investigation, and no prior value states will be visible, we must work only with what

is present in the post image. Value data is unlikely to be predictable in aggregate.

However, value data types, and further, cell types (key or value) may indicate Registry

effects. Also, the presence or absence of data is a Boolean measure that can be taken,

and has been shown to work in de-anonymization work in the past. For instance, the

Netflix study collapsed user numeric scores to Boolean score presence, and still was able

to de-anonymize users [39]. We can note presence or absence of value data and key

timestamps.

A mutative model variant would act much like the additive model, integrating

structural information into the term definition. The additive model makes use of cell

paths as terms. The mutative model would use cell paths, grouped with their cell type,

data type and nullness if the cell is a value, and timestamp nullness if the cell is a key.
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The terms would be all paths of cells that change their types since the previous image,

paired with the structural and data state.

5.4.5 Alternate data sources

The design pattern of using search to score forensic artifacts is applicable to

many classes of artifact. In this document, the Registry acted as a particular file system

type. File system artifacts, like file metadata or file content hashes, can fit in the same

framework. Any data type that fits the general forensic differential analysis framework

can fit in the search framework. For example:

• If analyzing file system metadata, file paths can be used much as Registry paths

were in this document.

• If analyzing generic file contents, hash sets can be constructed for entire files, or for

file sectors [19]. The NSRL Reference Data Set (RDS) of file hashes can be used to

establish a TFIDF-based scoring system for hashes, but only for installation media

files. Without the search score, using the RDS to identify known files on subject

systems could also be used to identify some indicators of software presence, but

with the overall accuracy of the “Union”-based search model, which will provide

low-precision information.

• Some files are strictly associated with software execution, such as Windows prefetch

files [16]. Observing the appearance of these files in a system can correlate with

other features of software execution.
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• RAM structures can be tied to software execution actions by differential analysis

in memory. An artifact matching function is necessary so changes in structures

can be established. The Differential Analysis of Malware in Memory work provides

one example of this design pattern [36].

There has been preliminary analysis on sector hashes for software identification,

using file system differences produced by the workflow of Section 3.3.1.3 [29].

5.5 Data and code availability

The NSRL Diskprint virtual machines are not planned to be published, because

in some cases they are diskprints of proprietary software. The raw hives will not be

published either, in case licensing data for those applications is included. However, file

system metadata extractions and Registry cell metadata extractions of the Diskprint

data are available on the NSRL website. The Diskprint workflow, Registry analysis

code, generated figures, and source of this thesis are available as Git repositories. The

page at this URL lists the locations of resources used to support this work: https:

//users.soe.ucsc.edu/~ajnelson/research/nelson_dissertation/.

5.6 Conclusion

This study set out to convert the voluminous metadata one encounters on

a Windows system into a practical profile of computer usage. The metadata of the

Windows Registry—just cell paths, without inspecting data—proved sufficient to iden-
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tify software presence and usage, by assigning per-software-package scores to Registry

path data, using a document search model normally used to match short natural lan-

guage queries to documents. While initially the study sought to assign relevancy scores

to entire Registry paths, measurements instead favored scoring path components. It

also proved detrimental to exclude data from Windows systems without any additional

software installed on top of the operating system—in other words, unlike in natural

languages, it is worthwhile to include every term for scoring. This search methodology

was able to reproduce a report of software present and used on a corpus of systems,

where the previous report had used system RAM and files identified with file system dif-

ferential analysis. While the previous study used differential analysis, this study made

use of sequential differential analysis to organize a forensic processing framework.

Looking forward, there are challenges in automation and scale. However, this

study shows that meeting those challenges will turn every entry in the voluminous

Windows Registry into actionable insight of a system’s usage history.
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Appendix A

Supplementary Figures

Figures 4.2, 4.13 and 4.14 are scatter plots of every combination of Signature

Searcher parameters, illustrating the performance of Searchers that hold different pa-

rameter values. This appendix provides the broken-out scatter plots for the other six

parameters.
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Figure A.1: Scatter plot of precision and recall of Signature Searchers measured with the eval-
uation subject machine states, broken out by application version grouping. Unlike Figure 4.2,
this plot does not have the “experiment1” control set.
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Figure A.2: Scatter plot of precision and recall of Signature Searchers measured with the eval-
uation subject machine states, broken out by application version grouping.
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Figure A.3: Scatter plot of precision and recall of Signature Searchers measured with the eval-
uation subject machine states, broken out by path normalization.
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Figure A.4: Scatter plot of precision and recall of Signature Searchers measured with the eval-
uation subject machine states, broken out by n-gram stop list interaction strategy.
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Figure A.5: Scatter plot of precision and recall of Signature Searchers measured with the eval-
uation subject machine states, broken out by vector combinator.
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Figure A.6: Scatter plot of precision and recall of Signature Searchers measured with the eval-
uation subject machine states, broken out by stop list.
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Figure A.7: Scatter plot of precision and recall of Signature Searchers measured with the eval-
uation subject machine states, broken out by threshold selector.
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