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Natural Language Processing 
Technologies in Radiology  
Research and Clinical Applications1

The migration of imaging reports to electronic medical record 
systems holds great potential in terms of advancing radiology re-
search and practice by leveraging the large volume of data continu-
ously being updated, integrated, and shared. However, there are 
significant challenges as well, largely due to the heterogeneity of 
how these data are formatted. Indeed, although there is movement 
toward structured reporting in radiology (ie, hierarchically itemized 
reporting with use of standardized terminology), the majority of 
radiology reports remain unstructured and use free-form language. 
To effectively “mine” these large datasets for hypothesis testing, a 
robust strategy for extracting the necessary information is needed. 
Manual extraction of information is a time-consuming and often 
unmanageable task. “Intelligent” search engines that instead rely 
on natural language processing (NLP), a computer-based approach 
to analyzing free-form text or speech, can be used to automate this 
data mining task. The overall goal of NLP is to translate natural hu-
man language into a structured format (ie, a fixed collection of ele-
ments), each with a standardized set of choices for its value, that is 
easily manipulated by computer programs to (among other things) 
order into subcategories or query for the presence or absence of a 
finding. The authors review the fundamentals of NLP and describe 
various techniques that constitute NLP in radiology, along with 
some key applications.
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After completing this journal-based SA-CME 
activity, participants will be able to:

 ■ Describe the set of technologies that 
compose present-day natural language 
processing in radiology.

 ■ List examples of how these technolo-
gies have been combined to achieve spe-
cific objectives in radiology research and, 
potentially, clinical practice.

 ■ Discuss current capabilities and pos-
sible future applications of use of natural 
language processing in radiology.

See www.rsna.org/education/search/RG.

SA-CME LEARNING OBJECTIVES

Introduction
Guidelines for diagnostic imaging reports stress the importance of 
clear communication (1). To this end, electronic medical record 
(EMR) systems have been adopted to expedite communication and 
reduce risk for communication errors (2). Beyond improving the 
quality of patient care, EMR systems hold the promise of significantly 
advancing clinical research and practice by enabling analysis of the 
wealth of data contained in radiology reports (3)—for example, for 
clinical decision support (CDS), quality assurance and performance 
monitoring, hypothesis testing, and patient eligibility screening. De-
spite the movement toward structured radiology reporting (4,5), such 
as the Breast Imaging Reporting and Data System, the vast majority of 
reports at present use unstructured narratives separated into sections 
(eg, history and findings). Thus, although EMR systems offer elec-
tronic access to radiology reports, the concepts and events recorded 
within them are encumbered by the inherent ambiguity of human 
language, making searches difficult to automate.

This copy is for personal use only. To order printed copies, contact reprints@rsna.org
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(for example) defines myocardial infarction by the 
unique alphanumeric code (or CUI) C0027051. 
It also includes synonymous terms for each 
concept (eg, “heart attack” and “cardiac infarc-
tion” for CUI C0027051) (7); specific semantic 
roles (types) for each concept (eg, disease, organ, 
or anatomic location); and relationships between 
concepts (eg, “is–a” relationships). Such a formal 
collection of concepts and their types and relation-
ships is referred to as an ontology. Other useful 
lexicons and ontologies for NLP in radiology are 
SNOMED-CT, which is included in the UMLS 
Metathesaurus; and RadLex, which offers further 
radiology-specific terms, including devices and 
imaging techniques (8).

In this article, we review the fundamentals 
of NLP and describe various techniques that 
constitute NLP in radiology, along with some key 
applications.

Fundamentals of NLP
The overall goal of using NLP in radiology is to 
determine which concepts are mentioned in a 
clinical report and in what capacity. For example, 
a user may wish to identify reports with a par-
ticular imaging finding for outcome validation 
studies or patient eligibility screening. As a first 
step, NLP analyzes the text to identify individual 
concepts and their modification by other terms. 
When this process has been completed, each indi-
vidual concept found in the text is ideally output 
as a separate item in a structured format (Fig 
3) that includes other important concepts that 
modify it (eg, anatomic location or chronicity). 
The primary NLP technologies used for this task 
are pattern matching and linguistic analyses. The 
second step is to determine whether the structured 
data extracted from a report contain one or more 
desired concepts and modifiers that indicate that 
the report possesses one or more specified char-
acteristics with a given certainty (eg, positive for 
a specific disease). This step can be achieved by 
using a set of clinical rules developed by an expert 
with domain knowledge or, alternatively, by us-
ing statistical or machine learning approaches to 
automatically infer rules and patterns from a set 
of data. Some of the technologies used for each of 
these steps are described in the following sections.

Pattern Matching
Pattern matching is the simplest, most funda-
mental technique for searching text and is an 
integral part of more complex NLP tasks. A 
pattern is a sequence of characters that can be 
matched, character for character, to a given text. 
For example, the pattern “he” can be matched 
twice in the sentence “He said hello.” To increase 
its generalizability, pattern matching makes use 

Natural language processing (NLP) is a com-
puter-based approach that analyzes free-form text 
or speech by using a set of theories and technolo-
gies, including linguistics (ie, the scientific study 
of language form, meaning, and context) and 
statistical methods that infer rules and patterns 
from data, to convert the text into a structured 
format of hierarchically itemized elements with a 
fixed organization and standardized terminology 
for each element, such that the text is easily que-
ried and manipulated (Fig 1) (6). Central to this 
process is the use of a standardized terminology 
for each concept that is of fundamental interest 
in a particular field. A concept is an intrinsically 
unique entity with an unambiguous meaning (eg, 
a specific disease such as myocardial infarction or 
a symptom such as chest pain) (Fig 2). Lexicons 
are collections of unique concepts accompanied by 
a preferred “term” (name) and a list of synonyms 
and derivational forms. One medical lexicon used 
in radiology is the UMLS Metathesaurus, which 

TEACHING POINTS
 ■ Natural language processing (NLP) is a computer-based ap-

proach that analyzes free-form text or speech by using a set 
of theories and technologies, including linguistics (ie, the sci-
entific study of language form, meaning, and context) and 
statistical methods that infer rules and patterns from data, 
to convert the text into a structured format of hierarchically 
itemized elements with a fixed organization and standard-
ized terminology for each element, such that the text is easily 
queried and manipulated.

 ■ As a first step, NLP analyzes the text to identify individual 
concepts and their modification by other terms. When this 
process has been completed, each individual concept found 
in the text is ideally output as a separate item in a structured 
format that includes other important concepts that modify 
it (eg, anatomic location or chronicity). The primary NLP 
technologies used for this task are pattern matching and 
linguistic analyses.

 ■ The second step is to determine whether the structured data 
extracted from a report contain one or more desired con-
cepts and modifiers that indicate that the report possesses 
one or more specified characteristics with a given certainty 
(eg, positive for a specific disease). This step can be achieved 
by using a set of clinical rules developed by an expert with 
domain knowledge or, alternatively, by using statistical or 
machine learning approaches to automatically infer rules and 
patterns from a set of data.

 ■ In general, the use of concepts identified by linguistic NLP 
as features in a machine learning–based classification algo-
rithm can often yield better results compared with simple 
text features such as word n-grams, since a concept is likely 
to be more strongly associated with a desired classification 
compared with each individual synonymous term that can 
be used to describe it.

 ■ Extraction of key information from free-text radiology reports 
with NLP has been used to enable large-scale testing of CDS, 
quality assurance and performance monitoring, and appro-
priate use of imaging, as well as to facilitate patient eligibility 
screening for clinical trials and hypothesis testing.



178 January-February 2016 radiographics.rsna.org

Figure 1. Chart illustrates how NLP as understood in present-day radiology is a collection of various techniques 
that aim to extract information from natural language (eg, analyze a radiology report to extract concepts of 
interest and put them in a structured format) but that also use this output to (for example) index reports in 
a searchable database, provide patient- or report-level classification, or summarize findings in simpler natural 
language. CT = computed tomography, CTPA = CT pulmonary angiography.

“pneumonitis” share the common stem “pneu-
mon.” This stem can be matched to a multitude 
of terms that are most likely related to concepts 
involving the lungs. Although knowledge of the 

of so-called regular expressions, or sequences 
of characters and special symbols that explicitly 
define a character pattern to be searched for. 
The special symbols add multiple degrees of 
freedom to the search pattern specification (eg, 
by means of wildcards, character classes, quanti-
fiers, and boundary matchers). In the program-
ming language Java, for example, in the pattern “\
bembol[a-z]*\b,” “\b” represents a word bound-
ary, “[a-z]” refers to any lowercase letter, and 
“*” means “match [a-z] zero or more times.” 
Thus, the pattern will match any word that starts 
with “embol,” such as “embolus” and “emboli.” 
Another example would be “\bdila(?:ta)?tion\b,” 
which would match text containing either “dila-
tion” or “dilatation,” as might be stated in con-
nection with (for example) the aorta.

A strength of regular expression pattern match-
ing in medical NLP lies in the fact that terms 
related to a given concept often share a common 
root, or stem. For example, “pneumonia” and 

Figure 2. Medical ontology (in this ex-
ample, Systematized Nomenclature of 
Medicine–Clinical Terms [SNOMED-CT]) 
shows a unique concept and its description. 
SNOMED-CT provides a unique code for the 
concept (22298006) and its preferred name 
(myocardial infarction), the Unified Medical 
Language System (UMLS) concept unique 
identifier (CUI) and semantic type (disease 
or symptom), a list of synonyms (eg, cardiac 
infarction) for this concept, and relationships 
with other concepts.
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Figure 4. Diagram illustrates a pattern matching process designed to extract report dates. A regular expression 
(upper left) is designed to detect the date in the header of each report stored in our EMR system. Reports have a 
header that consists of a numeric string (the EMR number) enclosed by the character “|” and followed by a date 
(upper right). When the pattern matching process encounters a character sequence that matches this pattern, 
the date is displayed (bottom).

Figure 3. Diagram illustrates Text Analysis and Knowledge Extraction (cTAKES), an NLP system designed spe-
cifically for extracting information from clinical text. Text from a radiology report when input into cTAKES is 
analyzed to produce a list of individual concepts identified from a terminology of medical terms (in this example, 
both SNOMED-CT code and UMLS Metathesaurus CUI). Each concept is also assigned a “polarity” based on 
whether cTAKES recognizes the finding mentioned as present or absent (eg, no evidence of infarction is assigned 
a polarity of −1). A degree of certainty is also assigned. In this example, because of the word “probable,” the 
corresponding concept is coded as uncertain.

stem of interest allows one to perform more 
general searches, the inverse process—word stem-
ming—is also useful in NLP. Word stemming uses 
the knowledge of language morphology to reduce 
a given word to its root. In this manner, reports 
can be standardized by (for example) replacing 
each word with its stem. The aggregate of stems in 
a report can then be more readily searched for the 
stems related to the concept of interest (9–11).

Another common use of pattern matching 
is to break text into “chunks” and “tokens,” or 
conceptually meaningful subparts. Subparts can 
be report sections, individual sentences, or words. 
For example, word segmentation (breaking text 
into individual words) can be performed on the 
basis of pattern matching spaces and punctua-
tion, or a single text file containing concatenated 
reports from a set of patients can be broken 
into individual reports with a regular expression 

designed to find the individual report “header.” 
Figure 4 shows the regular expression designed 
to find the EMR number and extract the date 
for the output format of the EMR system at our 
institution.

Regular expression pattern matching is often 
used to accomplish limited linguistic analyses 
(described in the following section). One example 
of a linguistic task would be to determine whether 
a concept contained in a sentence is described 
as being present, absent, uncertain, or an alter-
association (ie, pertaining to a different subject, 
such as the history of a family member) (12). A 
more limited task would be to detect whether 
a concept falls within the scope of a negation 
phrase. For example, the NegEx algorithm uses 
pattern matching to search for negation lexical 
cues within a small number of words before and 
after the mention of a UMLS sign, symptom, or 
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Figure 6. A challenge in NLP is that ambiguous terms can be interpreted in more than one way depend-
ing on the context in which they are used. For example, this diagram shows how the word “ventricle” 
can refer to two distinct concepts in the UMLS Metathesaurus terminology. Beyond distinct UMLS CUIs, 
these particular concepts also have distinct semantic types, broad categories of concepts that are de-
scribed in the UMLS Semantic Network. Each concept may be assigned to one or more semantic types.

Figure 5. Diagram illustrates the syntactic analysis of the sentence “The gallbladder is surgically ab-
sent.” Each word (except “The”) is assigned a part-of-speech designation using grammatical rules. Lin-
guistic NLP systems often perform such analyses to identify sentence subparts that might correspond to 
specific medical concepts.

disease concept, such as the word “no” preced-
ing the mention of “myocardial infarction” or 
the word “negative” succeeding it. This simple 
method has a specificity of 94.5% and a sensitiv-
ity of 77.8% for detecting negations (13).

Linguistic Approach
Linguistic NLP systems treat words as symbols 
that have been put together based on grammati-
cal rules that define what associations between 
symbols are meaningful—for example, using 
their part-of-speech designation (eg, verb, noun, 
adjective) (Fig 5). A computer algorithm uses this 
knowledge, both syntactic (ie, the rules that con-
trol the arrangement of words in a sentence) and 
semantic (ie, knowledge regarding the different 
meanings of words in the context of a sentence), 
to infer what concepts are mentioned and how 
each concept modifies other concepts.

In addition to syntax and semantics, natural 
language is based on other components such 

as phonetics, morphology (the formation and 
internal structure of words), and pragmatics 
(pairing words or sentences with concepts for 
which they would be appropriate) (14). How-
ever, because the use of language in clinical 
reports is more limited than that in general 
text (13), most NLP systems in radiology 
achieve sufficient accuracy with the syntactic 
and semantic approaches only. Instead, the 
major shortcomings are ambiguity, wherein 
an expression can be interpreted in two or 
more distinct ways depending on context (Fig 
6); incorrect grammar usage in a fast-paced 
environment; and misspellings. Despite these 
challenges, linguistic NLP systems theoretically 
offer more complete information than pattern 
matching–based systems and have thus been 
preferred whenever complex (eg, temporal, 
anatomic) relationships are of interest (15).

One example of a linguistic NLP package used 
in radiology is Medical Extraction and Encoding 
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Figure 7. Simplified example of the structured format gener-
ated by an NLP system (MedLEE) as a result of processing the 
text “increased consolidation of the left lower lobe compat-
ible with atelectasis or pneumonia.” MedLEE has been used 
to extract information from radiology reports for a variety of 
research and CDS purposes. (Reprinted, with permission, from 
reference 18.)

(MedLEE) (16), originally developed at New York 
Presbyterian Hospital to process chest radiogra-
phy reports using semantic grammar (17,18). Its 
output is a list of findings, along with any modi-
fiers for those findings, returned in a structured 
format. Fields include temporal, anatomic, and 
certainty modifiers for each finding (Fig 7), whose 
values can be obtained from existing terminologies 
(eg, the UMLS Metathesaurus) and custom-built 
dictionaries developed for specific tasks. The open-
source NLP package cTAKES similarly relies 
on significant linguistic components (19,20) in 
conjunction with statistical and machine learning 
approaches (discussed in the following section).

Linguistic analysis does not recognize medi-
cal concepts in a terminology such as the UMLS 
Metathesaurus in and of itself. For example, 
“myocardial infarction” and “heart attack” refer 
to the same disease concept but could be consid-
ered distinct findings; one is an “infarction” in 
the “myocardium” anatomic location, the other 
an “attack” in the “heart” anatomic location (17). 
Matching these findings to a standardized termi-
nology, wherein both would result in identification 
of the same disease concept of myocardial infarc-
tion, requires an additional, nontrivial step. Fried-
man et al (17) summarized techniques for achiev-
ing this task and developed the approach used in 
MedLEE, wherein a standardized terminology is 
first analyzed to generate a structured format for 
each variation of each concept in the terminology, 
including synonyms and multiword variations. 
Each of these structures is stored and directly 
compared with those extracted by MedLEE from 
a given text. The National Library of Medicine’s 
MetaMap is a similar, freely available tool that also 
relies on NLP to identify UMLS Metathesaurus 
concepts mentioned in text (21). MetaMap works 

by generating all possible variants of a finding en-
countered in the text (eg, replacing an occurrence 
of “eye” with “ocular,” “oculus,” and “optic”) and 
then scoring each variant against all concepts con-
tained in the terminology, with the highest-scoring 
concept being identified as the match.

Statistical and  
Machine Learning Approaches
Statistical and machine learning methods infer 
rules and patterns directly from data. They are 
deeply interwoven into all aspects of NLP. For ex-
ample, statistical methods are used in a cTAKES 
component to predict whether a concept such as a 
disorder is described as present, absent, possible, 
or part of past medical or family history. Another 
example is the Statistical Assertion Classifier 
(StAC) algorithm, which achieves similar results as 
NegEx but with no linguistic knowledge, instead 
using a machine learning algorithm to “learn” 
what negations are by examining reports for which 
a human has previously determined whether a 
negation is present (22). Uses of machine learning 
to achieve linguistic tasks are typically hidden from 
the user. Instead, the reader will most often di-
rectly encounter a discussion of machine learning 
methods whenever NLP output is used to predict 
a document- or patient-level classification.

Many methods can be used to accomplish the 
classification task. The simplest strategy is to use 
a clinical “logic rule” that is “true” when a report 
contains a combination of findings. For example, 
if pneumonia, pneumonitis, infiltrates, or con-
solidations and other opacities are identified in a 
chest radiography report by an NLP system, the 
report is likely positive for pneumonia (23). Such 
clinical rules are developed on the basis of expert 
knowledge and can be readily understood and 
extended by others; however, they are often cum-
bersome to generate, since they must synthesize 
a multitude of concepts and all of their sensible 
combinations. Statistical and machine learning 
methods perform classification tasks by analyzing 
data to automatically determine what features are 
associated with (for example) a positive versus a 
negative result (Fig 8).

There are three elements in statistical and 
machine learning methods: features, training data, 
and models. Features are any characterizations of 
the subjects of analysis. For example, if one wishes 
to infer a rule for obesity, body weight and height 
are relevant features. One of the simplest and most 
useful features in NLP is the n-gram (ie, n consec-
utive words in a text). For instance, unigrams (n = 
1) are the individual words in a text, and bigrams 
(n = 2) are every pair of consecutive words. By 
examining the n-grams in a text, it is possible to 
guess the topic and, thus, classify it. For example, 
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Figure 8. Diagram illustrates how machine learning algorithms are an integral part of linguistic NLP systems. Most important, these 
algorithms, such as support vector machine (SVM) or maximum entropy (MaxEnt) models, are used for patient- or report-level clas-
sification. They rely on analyzing a set of features used to describe each training example to determine a model that best separates 
positive (class = 1) from negative (class = −1) examples. Features are typically thought of as vectors whose entries can be as simple 
as the frequency with which individual words appear in each example, but they can also be based on the structured information 
extracted from each example using linguistic NLP systems. Following this model training, the trained classifier is applied to a new text 
of unknown classification by extracting the same features used to train it. SVC = superior vena cava.

“consolidations” is likely to appear in a chest radi-
ography report that is positive for pneumonia, but 
the likelihood that the report identifies pneumonia 
is reduced if the consolidations are described as 
“chronic” and, similarly, is increased if they are 
concerning for “infection.” Although n-grams are 
powerful features used in many practical systems 
such as speech recognition, concepts identified 
by NLP can be more predictive as features, since 
NLP reduces synonymous findings to standard-
ized names (15). However, this is not always the 
case because words that are relevant for some 
characterizations may not have concepts, such 
as the words “if” and “further,” which have been 
found to be highly predictive for identifying re-
ports with follow-up recommendations (24), thus 
missing important features.

Statistical and machine learning methods re-
quire a second element: training data that include 
a criterion standard classification (the “correct 
answer”). These data are then used to establish 
a link between the features and the class. A large 
number of criterion standard labels, although de-
sirable for ensuring stability of the fitted model, 
may not be realistic due to the cost associated 
with manual chart review. In practice, the num-
ber of training data for different learning tasks 
may vary; typically, however, a few hundred data 
are sufficient for most tasks (25), provided that 
the number of candidate features is not exceed-

ingly large (eg, <100). Care must also be taken 
in the choice of data because the performance of 
the resulting classifier may depend on the train-
ing set (eg, favoring the majority class of training 
examples) (9)—for instance, yielding a classifier 
that will more readily produce a false-negative 
result than a false-positive result, if the training 
examples are mostly negative ones.

The third element of statistical and machine 
learning is the model used to relate the class of 
interest to the features. One category of models 
is based on probability theory. A simple model 
that is often used in document classification is the 
naïve Bayes model, which assumes that the values 
of the features are independent from each other 
once the class is fixed (conditional independence). 
Under this assumption, the joint probability of the 
observed features can easily be calculated, and the 
class that maximizes this joint probability is chosen 
as the prediction. Despite its simplicity, use of the 
naïve Bayes model with n-grams can be difficult 
to outperform in many scenarios, even with more 
advanced techniques. Another category of mod-
els seeks to establish a more direct link between 
features and class in the form of a mathematic 
function, wherein the function parameters are esti-
mated from the training data in a procedure called 
“model fitting.” One such model is known as lo-
gistic regression, whose result is a number between 
0 and 1 that can be interpreted as the probability 
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that the document belongs to a given class. The 
classification is not limited to a binary format, and 
the multiclass logistic regression is also known as 
the maximum entropy classifier. Another powerful 
classification model that has become very popu-
lar in recent years is the support vector machine, 
which implicitly maps the features to a much 
higher dimensional space so as to derive many 
complex features automatically from the existing 
one, giving the model much better adaptivity. Both 
the maximum entropy and support vector ma-
chine models are often encountered in radiology 
NLP applications (22,24,26–29).

Although machine learning–based techniques 
offer the promise of fully automated organiza-
tion and extraction of information from radiology 
reports, there are pitfalls to avoid when using these 
models. For instance, it is generally undesirable 
to use all possible features, such as all words or n-
grams in the reports being analyzed, because using 
too many uninformative features causes the model 
to overly adapt to the training data, a phenomenon 
known as overfitting. Another issue is that fitted 
models may not be portable; if, for example, the 
language pattern of reports at a medical institution 
is different from that of the training data (eg, the 
reports use different terms or are simply longer), 
the distribution of the features may be different, 
and the method may need to be retrained before 
application at the new institution. Finally, a poten-
tial disadvantage is that the model cannot always 
be as easily evaluated by a human as can (for 
example) a set of clinical logic rules.

Applications of NLP in Radiology
Most applications of NLP in radiology use a 
combination of the aforementioned technologies, 
typically in the form of a cascade (pipeline). For 
example, simple pattern matching might first be 
used to separate report sections and sentences 
and potentially retain only those that are relevant 
to the task. Subsequently, linguistic NLP can be 
used to (for example) detect concepts and modi-
fiers such as negations. Finally, a carefully crafted 
clinical logic rule or a statistical or machine learn-
ing algorithm is typically applied to group reports 
into desired classes. Although the technologies 
are very different, they can (as mentioned earlier) 
be used to achieve the same tasks. For example, 
pattern matching or machine learning can be used 
for linguistic tasks, whereas linguistic NLP tools 
most often rely on some machine learning and 
certainly pattern matching components. Similarly, 
classification can be as simple as pattern matching 
for a single keyword or concept. In the following 
sections, we review results that have been achieved 
in radiology with NLP and demonstrate how the 
different technologies were used to achieve them.

Chest Radiography and CT
One of the first explorations of NLP in radiology 
was by Knirsch et al (30), who compared MedLEE 
with expert review in identifying chest radiogra-
phy reports that were suspicious for tuberculosis 
in patients with a subsequent positive culture. An 
agreement of 89%–92% was achieved by focus-
ing on whether six selected keywords (eg, “infil-
trate”) appeared in the report (30). The system was 
incorporated into a CDS infrastructure for imple-
menting respiratory isolation protocols, yielding 
improved isolation rates compared with the clinical 
protocol. MedLEE also enabled one of the earliest 
large-scale applications of NLP in radiology for the 
testing of four hypotheses, such as the observations 
that (a) lung cancer occurs more commonly in the 
right lung, and (b) the frequency of bullet and stab 
wounds decreased along with the reduction in U.S. 
crime rates in 889,921 chest radiography reports 
obtained over a 10-year period (31). The system 
had a sensitivity of 81% and a specificity of 99% for 
identifying 24 abnormal findings in a subset of 150 
reports (31), results that were considered similar to 
those achieved with human coders. This study also 
found that NLP was more accurate than financial 
discharge ICD-9-CM (International Classification 
of Diseases, Ninth Revision, Clinical Modifica-
tion) coding for pneumothorax: Over a period of 1 
month, financial discharge coding had a sensitivity 
of 17% versus 100% for NLP, whereas both had 
nearly 100% specificity compared with expert as-
signment (31). Despite its limitations, ICD-9-CM 
is often used to identify patient cohorts for epidemi-
ologic, cost, and outcome analyses. NLP can deliver 
significant advantages in this arena (32,33). Dublin 
et al (34) leveraged a linguistic NLP system named 
ONYX to identify chest radiography reports that 
could not be immediately classified as consistent 
or inconsistent with pneumonia but that instead 
required manual review because of complex state-
ments (eg, those indicating change in status, such 
as an improving or resolved infiltrate). The system 
classified 88% of 5000 reports as consistent or in-
consistent with pneumonia with a sensitivity of 75% 
and a specificity of 95%, classifying the remaining 
reports as requiring manual review (34).

As mentioned earlier, machine learning ap-
proaches can often achieve results similar to those 
of expert knowledge. This was shown in one 
study in the setting of classifying chest radiogra-
phy reports for the presence of acute lung injury, 
a diagnosis that is rarely reported explicitly but 
rather is identified on the basis of multiple clini-
cal features (29). In one arm of the study, reports 
were scored on the basis of a weighted sum of 
keywords provided by experts. Keywords were de-
tected using pattern matching in conjunction with 
NegEx to exclude negations, since those would 
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have otherwise resulted in negative findings such 
as “no pulmonary edema” being matched with 
the expert-provided keyword “pulmonary edema.” 
In the other arm, a machine learning algorithm 
was trained using word unigrams and character 
n-grams ranging from one to 14 characters. In a 
study by Solti et al (35), machine learning with 
six-character n-grams performed as well as or bet-
ter than the expert-provided keywords in 857 re-
ports. An example of a six-character sequence that 
machine learning ranked high for positive reports 
was “y opac,” likely analogous to the term “patchy 
opacities” that experts identified as an important 
keyword (35).

One advantage of using linguistic NLP to 
detect concepts defined in standardized medi-
cal terminologies as features for the subsequent 
classification task is that concepts can be quickly 
applied and reused by others. Elkin et al (23) used 
the Multi-threaded Clinical Vocabulary Server 
with SNOMED-CT coding to identify pneumonia 
in chest radiography and CT reports by using a 
simple logic rule query that consolidated con-
cepts relevant to pneumonia, including infiltrates, 
consolidations, and other pulmonary densities. 
Compared with manual review, this approach had 
a high sensitivity (100%) and specificity (98%) 
(23). Mendonça et al (18) used MedLEE to iden-
tify cases of health care–associated pneumonia by 
extending a logic rule query previously developed 
to detect the mention of acquired pneumonia in 
adult chest radiography reports. The final query, 
consolidating 38 findings and modifier-finding 
combinations, differentiated health care–associated 
pneumonia with high specificity (99%) but only 
moderate sensitivity (71%) compared with chart 
review in 1277 neonates admitted to an intensive 
care unit over a 2-year period (18). The majority 
of false-positive results were due to negative mi-
crobiology cultures despite correct NLP identifi-
cation of radiographic findings corresponding to 
pneumonia. In contrast, misclassifications traced 
to the NLP system were primarily due to gram-
matical errors, misspellings, and abbreviations, 
which remain a difficult problem for NLP.

Another advantage of linguistic NLP is that 
it allows the combining of findings from diverse 
EMR data. Friedman et al (36) categorized pa-
tients with community-acquired pneumonia into 
one of five risk classes by independently analyzing 
both discharge summaries and chest radiography 
reports using MedLEE. The overall system had 
80% accuracy for categorizing patients into the 
correct risk class and 100% accuracy for categoriz-
ing them into a risk class no more than one risk 
class above or below the correct one (36). NLP 
accuracy was higher for chest radiography reports 
(96%) than for discharge summaries (93%), likely 

due to the smaller variability of potential findings 
in radiography reports, as well as the difficulty of 
extracting numeric data such as vital signs from 
discharge summaries, a task that had an accuracy 
of only 85% (36). Correctly identifying numeric 
findings also remains a difficult problem for NLP.

Despite the advantages of linguistic NLP, 
limited linguistic analyses using pattern matching 
and statistical and machine learning techniques 
can offer similar accuracies for well-defined tasks. 
Fiszman et al (37) used a system called SymText 
to detect acute bacterial infection in chest radiog-
raphy reports to replace a keyword search (“pne-
moni*,” “aspirati*,” “infiltr*”) previously used in 
a CDS system that aids in selection of appropriate 
antibiotics in conjunction with laboratory and 
microbiologic data. SymText was developed to 
process chest radiography reports for extraction of 
76 different radiographic findings and 89 differ-
ent disease concepts using a word unigram–based 
statistical model (Bayesian network) designed 
with syntactic, semantic, and clinical knowledge. 
A logic rule of findings extracted by SymText 
was used to determine the presence or absence of 
pneumonia in 292 reports. Compared with clas-
sification by a majority vote of three physicians, 
this system had 95% sensitivity and 85% specific-
ity, compared with 94% and 91%, respectively, for 
consensus interpretation by four physicians and 
83% and 74%, respectively, for simple keyword 
searches performed with pattern matching (37).

Pulmonary Embolism
A recent application of NLP has been to classify 
CT pulmonary angiography report findings with 
respect to pulmonary embolism disease outcome, 
such as severity based on thrombus location (eg, 
central versus subsegmental). Chapman et al (38) 
developed an application called peFinder for clas-
sification of disease presence, chronicity, and cer-
tainty, as well as examination technical quality. The 
peFinder application is based on an extension of 
NegEx to detect lexical cues other than negations 
and define how each cue modifies a preceding or 
succeeding concept. This simple system had high 
sensitivity (86%–98%) and specificity (89%–93%) 
for each task except chronicity (60% and 99%, 
respectively) (38). Yu et al (15) used an NLP sys-
tem called Narrative Information Linear Extrac-
tion (NILE) that combines linguistic and machine 
learning approaches to improve identification of 
pulmonary embolism location. Although many 
full-linguistic NLP packages such as MedLEE 
and cTAKES can identify the anatomy mentioned 
with a finding, pulmonary embolism presents a 
particular challenge because of the relevance of the 
inherently nested anatomic structure of the vascu-
lature (Fig 9). Using NILE’s output as features in 
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Figure 9. Chart illustrates a simplified example of the structured format generated 
by the NILE NLP system, which combines linguistic and clinical knowledge. NILE can 
identify concepts and recognize the anatomic relationships between location modifiers 
and these concepts. This information can then be used to classify pulmonary embolism 
into (for example) central, segmental, or subsegmental categories.

a machine learning classifier, the system was able 
to achieve a receiver operating characteristic area 
under the curve of 0.998 to detect the presence of 
pulmonary embolism, 0.945 to detect acute pul-
monary embolism, and 0.945 and 0.987 to detect 
central and subsegmental pulmonary embolisms, 
respectively (15).

Both of these studies compared the use of lin-
guistic NLP-extracted features versus word n-grams 
for machine learning–based classification. Although 
the use of word n-grams was also effective in detect-
ing the presence of pulmonary embolism, linguistic 
NLP was superior for chronicity and location, 
tasks that require understanding of temporal and 
anatomic relationships. In general, use of concepts 
identified by linguistic NLP as features in a ma-
chine learning–based classification algorithm can 
often yield better results compared with simple text 
features such as word n-grams because a concept is 
likely to be more strongly associated with a de-
sired classification compared with each individual 
synonymous term that can be used to describe 
it. However, for certain tasks, the benefit may be 
less pronounced. For example, machine learn-
ing–based classification of acute orbital fractures 
in emergency department CT reports obtained in 
3710 consecutive patients who presented with blunt 
orbital trauma was only slightly improved with use 
of linguistic NLP to extract features (sensitivity 
of 93.3% versus 92.5% and specificity of 96.9% 
versus 93.3%, respectively) (26).

Conversely, whenever NLP can provide a 
benefit for machine learning–based classification, 

even limited linguistic analysis can suffice (eg, us-
ing pattern matching to determine “high-value” 
features). In one study, accuracy for each of three 
classification tasks in thromboembolic diagnoses 
(presence, CT technique, and clinically relevant 
incidental findings) was uniformly increased re-
gardless of the machine learning algorithm used 
(naïve Bayes model, support vector machine, 
or maximum entropy) when pattern matching 
was used to identify relevant concepts and their 
relationships (eg, “nodule” as a condition and 
“lingula” as an anatomic structure) (28). The 
authors of that study also used an NLP-based 
automated anonymization tool named MEDINA 
(MEDical Information Anonymization) to iden-
tify and replace patient and physician information 
and to shift dates by a uniform random number 
(28). Such use of NLP is of particular relevance 
to research because one could potentially develop 
a technique to preserve temporal information in 
the collective EMR data of each individual pa-
tient being de-identified. Other investigators have 
relied on manual or purpose-written software to 
achieve patient-linked de-identification (26).

A direct application of NLP for detection 
of pulmonary embolism–positive reports is the 
validation of new clinical algorithms. One study 
confirmed the recommendations of a prospec-
tive European trial to improve the low specificity 
of d-dimer for determining appropriate use of 
CT pulmonary angiography for ruling out acute 
pulmonary embolism in aging populations (39). 
Using an NLP framework named GATE (General 
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Architecture for Text Engineering) with an ac-
curacy of 98% in detecting pulmonary embolism 
compared with manual review, the authors were 
able to quickly validate two age-adjusted d-dimer 
cutoffs in a U.S. population (39). Dunne et al (40) 
used the same NLP system to assess the effect on 
the use and yield of CT pulmonary angiography 
in inpatients with suspected pulmonary embolism 
before and after implementation of a CDS system 
that uses evidence-based guidelines to assist in 
making the decision to order a study. Ideally, ef-
fective CDS systems will not only decrease the 
number of studies performed but also increase 
the diagnostic yield by eliminating unneces-
sary examinations. Application of NLP stands to 
quickly confirm these benefits. The authors tested 
this hypothesis in the 31-month period follow-
ing CDS implementation, reporting a 12.3% 
decrease in monthly orders for CT pulmonary 
angiography, along with a nonsignificant increase 
in monthly yield of 16.3% (40). The nonsignifi-
cance of increase in yield may have been due 
to a concurrent campaign to promote venous 
thromboembolism prophylaxis for hospitalized 
patients at the authors’ institution, which may 
have decreased disease prevalence.

Cancer
NLP was used early on in oncology for detection 
of findings suspicious for breast cancer in mam-
mography reports (41) and cancer-related find-
ings in chest radiography reports (42). The latter 
application is another example of the extensibility 
of classification systems based on expert-created 
logic rules using linguistic NLP. The authors 
extended a logic rule–based commercial NLP 
system designed to extract billing codes from 
reports (LifeCode; A-Life Medical, San Diego, 
Calif) with rules for findings and modifiers rel-
evant to cancer. The system correctly identified 
4347 of 5139 findings in 500 reports in 6 min-
utes, compared with 20 hours for manual coding 
by a board-certified internist (42).

NLP can also be used for more granular tasks 
than extraction of diagnoses. Two important 
examples that have been explored are cancer 
progression and recurrence. Cheng et al (9) used 
NLP to classify brain tumor progression in 778 
consecutive follow-up magnetic resonance (MR) 
imaging reports (238 patients) that referenced a 
prior CT or MR imaging study (Fig 10). Classifi-
cations of status (progressed, stable, or regressed), 
magnitude of change (mild, moderate, or marked), 
and certainty of change (uncertain, possible, 
or probable) were performed by separate NLP 
systems; status classification was performed with 
a powerful machine learning algorithm (support 
vector machine) by using word stems plus nega-

tions detected by NegEx as features to detect 
the individual tumors being described in each 
report. This allowed the remaining two tasks to be 
constrained to within one sentence of each tumor 
status finding and accomplished with a simple pat-
tern matching approach. This cascaded approach 
yielded a sensitivity and specificity of 80.6% and 
91.6%, respectively, for overall status classification; 
79.3% and 89.4%, respectively, for magnitude 
classification; and 68.6% and 85.9%, respectively, 
for certainty classification. Similarly, Carrell et al 
(43) used cTAKES to consolidate pathology and 
radiology reports plus clinical notes to detect can-
cer recurrence in women with early-stage invasive 
breast cancer. A custom-built dictionary with 1360 
entries was created for pathologic findings. The 
dictionary for radiology reports and clinical notes 
included 4891 findings and more complex logic 
query rules necessary to integrate indirect evi-
dence, such as a change in imaging findings over 
time. The system was able to reduce the number 
of patient charts that had to be manually reviewed 
to identify confirmed cases of breast cancer recur-
rence by 90%, while missing 8% of recurrent 
cases, similar to manual review (43).

Recommendation Practices and 
Communication of Critical Results
Some of the largest-scale applications of NLP 
in radiology to date have been the assessment of 
recommendations for additional imaging. Dreyer 
et al (25) developed an NLP system named Lexi-
con Mediated Entropy Reduction (LEXIMER) 
to classify reports based on whether they contain 
clinically important findings and recommenda-
tions. LEXIMER uses linguistic stemming to 
reduce each sentence to its root meaning and em-
piric principles to assign an “importance” weight 
to each resulting phrase (eg, later phrases in 
the impression section of a report have a higher 
likelihood of summarizing results in prior phrases 
and thus may have higher value). Trained using a 
machine learning approach on 200 CT and MR 
imaging reports, the system achieved a sensitivity 
and specificity of 98.9% and 94.9%, respectively, 
for detection of clinically important findings, and 
of 98.2% and 99.9%, respectively, for detection 
of recommendations for additional imaging in 
1059 consecutive radiology reports across all 
major imaging modalities and subspecialties in a 
single hospital radiology department (25).

This system was used for the largest NLP-
based analysis of rates of recommendations for 
additional imaging with respect to 11 factors, in-
cluding radiologist experience, imaging modality, 
and body part examined, in 5.9 million radiology 
reports spanning multiple imaging modalities over 
13 years in a large urban academic radiology de-
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Figure 10. Retrieval of information regarding tumor progression from unstructured brain MR imaging reports. (a) Diagram il-
lustrates the desired classification scheme for extracting structured information regarding disease status, magnitude of change, 
and significance of change. (b) Diagram illustrates how an NLP system is developed for a classification task using machine 
learning– and/or rule-based methods. SVM = support vector machine. (Fig 10 reprinted, with permission, from reference 9.)

partment (44). In addition to observing a doubling 
of the proportion of examinations that contained 
at least one recommendation for additional imag-
ing during the study period (from 6% to 12%), 
the authors assessed correlations with imaging 
modality, body area examined, ordering service, 
and radiologist specialty (44). Such information 
can be used for quality improvement, performance 
quantification, and (potentially) feedback for 
individual radiologists on their recommendation 
rates. An extension of LEXIMER to extract the 
recommended time frame and suggested imaging 
technique for follow-up (with an estimated accu-
racy of 94.3% and 93.2%, respectively) found that 
12.5% of 4.2 million reports generated between 
1995 and 2004 at one institution contained a 

recommendation for subsequent action, 71.4% of 
which were for further imaging (45). The increase 
in recommendations for high-cost CT, MR imag-
ing, and sonography (21%) outpaced the increase 
in volume of these examinations (14.4%) (45).

NLP-based identification of recommendations 
in radiology reports is also driven by quality assur-
ance efforts to ensure expedient communication. 
Yetisgen-Yildiz et al (24) noted that miscommuni-
cation is the second most common cause of radi-
ologist malpractice suits and developed a cascade 
of linguistic and machine learning methods to 
determine the likelihood that a sentence contained 
a recommendation. They compared unigrams 
with and without their part-of-speech assignment 
and the report sections in which they appeared as 
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features. With use of all features, the system had a 
sensitivity of 64.6% and an accuracy of 99.7% in 
800 reports representing various imaging modali-
ties at one medical center, and the system was 
only marginally better than use of unigrams alone 
(62.8% sensitivity, 99.7% accuracy) (24). Impor-
tantly, this work assessed how class prevalence in 
the machine learning training set affected perfor-
mance. Specifically, a training dataset containing 
roughly equal numbers of positive and negative 
examples yielded high sensitivity and low positive 
predictive value (97.3% and 25.1%, respectively), 
whereas with a training dataset with the expected 
prevalence of positive examples (1:165 ratio of 
sentences positive for recommendations in that 
study), sensitivity was negatively impacted but 
positive predictive value rose significantly (64.6% 
and 82.0%, respectively) (24). Reliance on the 
training set characteristics is one caveat associated 
with machine learning approaches and one reason 
why logic query rules based on expert knowledge 
are sometimes favored over machine learning.

Dutta et al (46) explored the related challenge 
of ensuring communication of incidental findings 
in radiology studies ordered in the emergency de-
partment. An initial attempt using keyword pattern 
matching to detect discharge imaging recommen-
dations unrelated to the chief complaint achieved 
high sensitivity (98.6%) but low specificity (74%); 
when extended with logic rules to ensure that at 
least one keyword from two or more designated 
categories (eg, both the word “followup” and 
the word “CT”) appeared in the same sentence, 
sensitivity was reduced to 88.9% and specificity 
increased to 98.2% (46). When the list of keywords 
was extended to reduce false-negative results and 
negation exclusion was added to reduce false-
positive results, sensitivity and specificity were 
more balanced at 97.2% and 95.2%, respectively 
(46). Using their final system, the authors discov-
ered that only 49% of discharge-relevant imaging 
recommendations made over a 32-day period in 
a tertiary care center with 24-hour emergency 
department radiology coverage were documented 
in the discharge paperwork (46).

A related quality assurance application of 
NLP concerns communication of critical find-
ings to health care providers. Lakhani et al (47) 
developed NLP algorithms to detect nine such 
findings (acute pulmonary embolism, cholecys-
titis, appendicitis, ectopic pregnancy, testicular 
torsion, new or tension pneumothorax, unex-
plained intraperitoneal free air, increasing or 
new intracranial hemorrhage, and malpositioned 
enteric and endotracheal tubes) in radiology 
reports. An extensive algorithm for each finding, 
using regular-expression pattern matching for 
relevant word stems and combinations of words 

in proximity (eg, the word “pulmonary” near the 
word “embolism”), had an average accuracy of 
93.3% across the findings (range, 81%–100%) 
(47). The technique was combined with an NLP 
algorithm to detect documentation of com-
munication and was used to analyze 9.3 million 
radiology reports in a single institution, revealing 
that documentation of communication rose from 
19% to more than 72% from 1990 to 2011, start-
ing in 1997. Further analysis revealed that one of 
nine radiologists had a significantly lower rate of 
documenting communication for three selected 
findings (48).

The simpler task of automatic report indexing 
using NLP has significant applications in education 
(described in the following section) but can also be 
powerful for limited tasks. Many indexing tools use 
simple pattern matching to identify reports con-
taining expanded versions of the query terms pro-
vided by a user, in conjunction with use of NegEx 
to exclude negative reports. Query expansion is 
readily performed using synonyms from lexicons 
such as RadLex to (for example) automatically 
search for “renal cyst” in addition to “kidney cyst” 
when the latter query is entered. One such tool, 
known as Information from Searching Content 
with an Ontology-Utilizing Toolkit (iSCOUT), 
was used to identify abdominal CT reports with 
a finding of a renal mass over a 1-year period at 
a teaching hospital to assess radiologists’ adher-
ence to management guidelines and institutional 
communication policies for this finding (49). The 
estimated positive predictive value from a subset of 
the reports identified by iSCOUT was 93.6% (49). 
Analysis of 97 reports (all 57 reports containing a 
critical finding and 40 reports randomly selected 
from those with a noncritical finding) revealed 
lower adherence to recommendation guidelines 
(73%) and communication policies (84.2%) for 
critical than for noncritical results (100% and 
100%, respectively) (49).

Education
Enhancing access to training and imaging finding 
repositories is an ideal application of indexing 
radiology reports using NLP. Early on, Hersh et 
al (50) described the modification of a pattern 
matching NLP system to index radiology images 
using UMLS Metathesaurus concepts. As is often 
the case with pattern matching systems, exclud-
ing matches to uncommon semantic types for 
radiology (eg, chemical substances) and adding 
negation detection increased the positive predic-
tive value significantly, but only from 14% to 
30%, highlighting the difficulty of this important 
task (50). Do et al (11) described a similarly 
simple NLP application using word stemming–
based pattern matching and negation detection to 
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search reports for RadLex terms and to subse-
quently retrieve the images corresponding to a re-
port from a picture archiving and communication 
system on demand. Rather than attempting to 
achieve highly accurate matches, for educational 
purposes, reports matching a user query were 
ranked in order of relevance to the search term, 
much like the ranking given to Web pages by 
Google. More recently, Dang et al (51) developed 
a similar system called Render, which integrates 
the more powerful LEXIMER NLP engine to 
achieve more relevant results for a given search.

Conclusion
Automated extraction of key information from 
free-text radiology reports with NLP has been 
used to enable large-scale testing of CDS, qual-
ity assurance and performance monitoring, and 
appropriate use of imaging, as well as to facilitate 
patient eligibility screening for clinical trials and 
hypothesis testing. Trained personnel can per-
form the requisite information extraction task 
at the cost of significant amounts of time and 
resources; thus, use of NLP in conjunction with 
statistical and machine learning classification 
algorithms is an attractive alternative.

Certainly, radiology reports introduce unique 
challenges for NLP. For example, if ambiguous 
terms such as “suggestive of” are mentioned and 
are accepted as favoring the diagnosis of a finding, 
an automated system’s balance of sensitivity and 
specificity may be altered with a bias, whereas an 
expert may be able to consistently infer disposition 
from context (43). Ambiguity of abbreviations is 
another example. The drive toward structured re-
porting in radiology is poised to enhance NLP ac-
curacy and thus presents exciting opportunities in 
terms of what can potentially be achieved. In breast 
imaging, for example, extraction of the Breast Im-
aging Reporting and Data System final assessment 
category for positive versus negative classification 
by NLP using a simple pattern matching technique 
achieved a sensitivity of 100% and a positive pre-
dictive value of 96.6% at one center (52), arguably 
better results than those achieved with many of the 
applications described earlier.

Nonetheless, numerous NLP systems have 
already been used for radiology report classi-
fication, with an accuracy often similar to that 
of humans. NLP stands to simplify large-scale 
hypothesis testing of millions of existing imaging 
reports in a matter of minutes, an achievement 
that would otherwise not be possible. However, 
the field is still nascent, so that the choice of 
technologies and how they are selected and cas-
caded depends largely on the tools available at 
each institution and the expertise and knowledge 
of the developer of a system, rather than on the 

underlying requirements of the application itself. 
It remains important to explore the effects of 
these choices because in some cases similar tasks 
may be achieved with similar accuracies but with 
use of entirely different techniques. For example, 
simple pattern matching had an accuracy of 97% 
in detecting recommendations for additional im-
aging for incidental findings in 1635 emergency 
department radiology reports (46), whereas an 
arguably complex system achieved an accuracy 
of 99.6% in detecting recommendations for 
subsequent action in 1059 consecutive reports 
across all imaging modalities in an academic 
hospital radiology department (25). The Table 
lists and describes a number of tools that have 
been discussed in this article. Increased aware-
ness of the applications of NLP in radiology may 
help drive future research to establish optimal 
approaches for specific applications and to 
achieve better accuracy for increasingly granular 
tasks, such as determining anatomic relation-
ships and temporal changes.
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Resources for NLP in Radiology

Resource Description

RadLex Comprehensive lexicon for indexing and retrieval of radiology information resources that 
replaces the ACR Index for Radiological Diagnoses (available at http://www.radlex.org)

SNOMED-CT Comprehensive multilingual clinical terminology of clinical findings, symptoms, diagno-
ses, procedures, body structures, organisms and other causes, substances, pharmaceu-
ticals, devices, and specimens; concepts are organized in a hierarchy, and relationships 
that link concepts are also included (available at http://www.ihtsdo.org/snomed-ct)

UMLS Compilation of tools and resources including the Metathesaurus, a large comprehensive 
ontology of biomedical and health care–related concepts and relationships combining 
various sources such as SNOMED-CT; developed by the National Library of Medi-
cine; facilitates implementation of NLP in biomedical data analysis and informatics 
research (available at https://www.nlm.nih.gov/research/umls/)

MedLEE NLP system developed at New York Presbyterian Hospital for extracting and encoding 
clinical information in medical narratives including radiology reports, discharge sum-
maries, and pathology reports; a commercial system based on this technology is avail-
able from Health Fidelity, Palo Alto, Calif (http://healthfidelity.com)

cTAKES Open-source NLP system that processes clinical notes to identify types of named entities 
(drugs, diseases and disorders, signs and symptoms, anatomic sites, and procedures); 
source code can be modified to develop customized tools (available at http://ctakes 
.apache.org)

Apache OpenNLP Machine learning–based tool kit that supports common NLP tasks (available at http://open 
nlp.apache.org/)

MetaMap Program for mapping biomedical text to UMLS Metathesaurus concepts; also used for 
semi- and fully automatic indexing of biomedical literature at the National Library of 
Medicine (available at http://metamap.nlm.nih.gov)

LEXIMER Machine learning NLP system developed at Massachusetts General Hospital; trained to 
identify and classify information in radiology reports, including findings and recom-
mendations; has been licensed to Nuance (Burlington, Mass) and included in the Rad-
Cube for Radiology tool (available at http://www.nuance.com/for-healthcare/index.htm)

NegEx Pattern matching–based NLP tool used to detect the negation status of an indexed phrase 
in a sentence (available at https://code.google.com/p/negex/)

iSCOUT NLP toolkit that can search for specific terms in a file containing concatenated radiology 
reports, using a lexicon such as RadLex to expand the user search term to synonyms 
and other related terms (available at http://sourceforge.net/projects/iscout/)

WEKA Open-source environment for data mining using machine learning algorithms; can be 
used as a stand-alone program or called from Java language programs (available at 
http://www.cs.waikato.ac.nz/ml/index.html)

MALLET Package for statistical NLP, document classification, clustering, topic modeling, informa-
tion extraction, and other machine learning applications for general texts (available at 
http://mallet.cs.umass.edu/)

eHOST Open-source tool for manual annotation of clinical texts; supports encoding standard 
clinical vocabularies such as SNOMED-CT (available at http://code.google.com/p/ehost)

Stanford University  
NLP

Comprehensive list of tools and resources for statistical NLP; includes the Stanford Log-
linear Part-of-Speech Tagger (available at http://nlp.stanford.edu/links/statnlp.html)

SMILE Text Ana- 
lyzer/Stemmer

Simple online part-of-speech tagger and word stemming–based algorithms (available at 
https://smile-pos.appspot.com/ and http://smile-stemmer.appspot.com)

Porter stemming  
algorithm

Widely used algorithm for English word stemming (available at http://tartarus.org/~martin/
PorterStemmer/index.html)

Protégé Freely distributed open-source vocabulary management tool with tools for viewing and 
editing annotations (available at http://protege.stanford.edu/)

BRAT Freely available open-source tool for collaborative structured annotation of text (available 
at http://brat.nlplab.org/)

MEDINA Application for de-identifying French EMRs (available at https://medina.limsi.fr/index- 
en.html)

Note.—ACR = American College of Radiology, eHOST = Extensible Human Oracle Suite of Tools, MAL-
LET = MAchine Learning for LanguagE Toolkit, MEDINA = Medical Information Anonymization, WEKA = 
Waikato Environment for Knowledge Analysis.
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