
TOKIO on ClusterStor: Connecting Standard Tools
to Enable Holistic I/O Performance Analysis

Glenn K. Lockwood, Nicholas J. Wright
Lawrence Berkeley National Laboratory

{glock, njwright}@lbl.gov

Shane Snyder, Philip Carns
Argonne National Laboratory
{ssnyder, carns}@mcs.anl.gov

George Brown, Kevin Harms
Argonne National Laboratory

gbrown@anl.gov, harms@alcf.anl.gov

Abstract—At present, I/O performance analysis requires dif-
ferent tools to characterize individual components of the I/O
subsystem, and institutional I/O expertise is relied upon to trans-
late these disparate data into an integrated view of application
performance. This process is labor-intensive and not sustainable
as the storage hierarchy deepens and system complexity increases.
To address this growing disparity, we have developed the Total
Knowledge of I/O (TOKIO) framework to combine the insights
from existing component-level monitoring tools and provide a
holistic view of performance across the entire I/O stack.

A reference implementation of TOKIO, pytokio, is presented
here. Using monitoring tools included with Cray XC and
ClusterStor systems alongside commonly deployed community-
supported tools, we demonstrate how pytokio provides a
lightweight foundation for holistic I/O performance analyses
on two Cray XC systems deployed at different HPC centers.
We present results from integrated analyses that allow users
to quantify the degree of I/O contention that affected their
jobs and probabilistically identify unhealthy storage devices that
impacted their performance. We also apply pytokio to inspect the
utilization of NERSC’s DataWarp burst buffer and demonstrate
how pytokio can be used to identify users and applications who
may stand to benefit most from migrating their workloads from
Lustre to the burst buffer.

I. INTRODUCTION

The Total Knowledge of I/O (TOKIO) framework [1] con-
nects data from component-level monitoring tools across the
I/O subsystems of HPC systems. Rather than build a universal
monitoring solution and deploy a scalable data store to retain
all monitoring data, TOKIO connects to existing best-in-class
monitoring tools and databases, indexes these tools’ data, and
presents the data from multiple connectors in a single, coherent
view to downstream analysis tools and user interfaces.

At a high level, we propose three basic axioms of charac-
terizing storage and I/O subsystems today:
• I/O systems are complex systems that fail in complex

ways. High-performance parallel I/O is made possible by
increasingly complex I/O subsystems which attempt to sat-
isfy three orthogonal goals: (1) delivering high bandwidth
and low latency in a scalable fashion, (2) providing dura-
bility and persistence of data, and (3) enabling as much
POSIX compatibility as possible to enable portability. Being
complex systems, storage systems also fail in complex
ways; while an outright outage may be straightforward to
diagnose, the more complex failure modes, such as fail-
slow scenarios [2], require commensurately more complex

diagnosis procedures.
• Complex architectures beget a complex set of essential

tools. Storage systems are composed of software, mid-
dleware, and hardware created by a variety of different
technology providers who are the world’s experts in the
components they provide. As a result, they are also best
qualified to provide the tools that report on the performance
and well-being of those components.

• Broad expertise is required to gain insight from these
tools. Drawing insight from a diversity of tools that op-
erate on complex systems requires a combination of expert
knowledge of the entire I/O subsystem and well-defined and
composable analysis methods.

These three axioms speak to the need for I/O characteriza-
tion frameworks that take a holistic approach to performance
analysis and capture the full resolution of the available tele-
metric data on I/O subsystems while simultaneously providing
simpler, semantically relevant access to those data. Such a
framework would be built upon the following design criteria,
motivated by the three axioms of I/O characterization frame-
works:

1) Use existing tools already in production. A variety of
tools already exist to characterize individual components of
the I/O subsystem, and different HPC centers often already
have many of these tools in production. Using existing tools
not only leverages the component-specific expertise of the
individuals who created each tool, but it reduces the burden
of integrating the framework with HPC centers since it
builds upon the tools with which facilities staff are already
familiar.

2) Leave data where it is. Attempting to aggregate all
component-level telemetric data in a centralized data ware-
house often requires coercing the output data to fit a
schema, and this process can be lossy. Furthermore, the
overheads of maintaining a data warehouse suitable for
aggregating all monitoring data can be high if one is not
already deployed at an HPC facility. Thus, the framework
should meet the tools where they are and work with data as
it is natively generated. Organizing and querying the data
can be achieved by indexing the different data types and
data sources rather than replicating and normalizing them.

3) Make data as accessible as possible. The principal role
of the framework is to provide semantically sensible and

Fig. 1. TOKIO Architecture. tokio.connectors take input from component-
level monitoring tools in their native output formats and expose that data to
upstream analysis in standard data formats such as key-value pairs, pandas
DataFrames, and NumPy arrays. tokio.tools provide indices, site-specific
data placement information, and enhanced usability.

consistent access to the diversity of data generated by
component-level tools. Users should be able to request a
single logical quantity (such as bytes written to a storage
server) and be given the data in a standard data format
without having to understand the tool that collected that
data. Furthermore, the framework should not require es-
calated privileges to be useful; access controls are better
handled by the tools and data sources that the framework
indexes.

In previous work, we presented the Total Knowledge of I/O
(TOKIO) framework as a formalization of these requirements
on a conceptual basis and demonstrated the new insights
into I/O performance that such an approach enables [1]. In
this work, we present pytokio, a reference implementation of
the TOKIO framework implemented in Python 2, which is
available as a freely downloadable library. We also present
accompanying data analysis tools and services that the com-
munity can use to extract meaningful and holistic insights from
the data that is already produced on Cray XC and ClusterStor
platforms.

II. TOKIO ARCHITECTURE & IMPLEMENTATION

To meet the design criteria outlined in Section I, the TOKIO
framework is comprised of four layers as shown in Figure 1.
Each layer is then composed of modules which are largely
independent of each other to allow TOKIO to integrate with
whatever selection of tools a given HPC center has running in
production. That said, certain tools are de facto standards for
I/O performance analysis, and those tools will be highlighted
in the following architectural description as examples of how
TOKIO enables holistic analysis.

A. Component-level monitoring tools

Following design criterion #1, TOKIO builds upon whatever
monitoring and profiling tools are already in production at an
HPC facility. Although the tools and infrastructure supporting
them exist outside of the scope of TOKIO, we identify several
broad categories of metrics that are relevant to understanding
I/O performance.

1) Application behavior: The I/O patterns that a program
issues can affect performance dramatically regardless of the
underlying storage system. This behavior can be automatically
profiled using tools like Darshan [3], which is a link-time
library that transparently records concise, bounded statistics
about an application’s I/O behavior. It is commonly included
with all compiled applications at CUG member sites including
NERSC, ALCF, NCSA, and KAUST [1], [4]–[6]. Comple-
mentary information from client-side monitoring such as the
collection of file system client metric collection enabled by
RUR [7] also falls in this category.

In all cases, though, understanding application behavior can
yield insights into client-side caching and intra-node or intra-
application contention [8] that may not be quantifiable from
other parts of the I/O subsystem. However, the sensitivity
of application performance to jitter caused by continuous
performance monitoring on compute nodes results in these
application behavior data being scalar in nature; collecting
these data over time can be prohibitively disruptive.

2) Storage system traffic: The servers that manage file data
and metadata are inherently shared by all users of an HPC
system, and as a result, are intuitively susceptible to resource
contention from competing jobs. It follows that monitoring the
traffic and load on each storage system server is valuable for
identifying contention-related issues that may be beyond the
visibility of individual users and their jobs.

Just as there are a variety of storage system implemen-
tations, there are a variety of implementation-specific tools
for collecting these data. On Cray ClusterStor systems, Lus-
tre Monitoring Tools (LMT) have historically collected this
data [9], and Cray’s newer Caribou and Seastream infras-
tructure is being positioned as the preferred alternative for
the future [10]. File system-specific tools for Cray DataWarp
systems do not yet exist, but NERSC has demonstrated that
collectd and Elasticsearch can collect and store device-level
load data to similar ends [11]. Unlike application behavior
data, collecting storage system traffic at high frequency results
in minimal perceptible jitter relative to the latency of typical
I/O operations. As a result, storage system traffic is commonly
recorded as time series data with an ideal sampling rate greater
than 1/60 Hz [12].

3) Storage system health: There are many circumstances
in which a component of a storage system is known to be in
an available but degraded state of performance as a result of
a temporary failure or condition. Conditions such as storage
device failovers (where a server may have to take on the load
of a failed partner server) or RAID rebuilds (where device
bandwidth is being consumed by reconstruction of data from

parity) can introduce significant, long-tail performance losses
to files that are striped across those degraded devices [13].

As with storage system traffic data, storage system health
data is often monitored using implementation-specific tools
that understand architecture-specific failures that degrade per-
formance. In the case of Lustre, the lctl dl -t command is
sufficient to identify failed-over OSTs from any Lustre client,
while lfs df provides information that implicates performance
loss due to high file system fullness. Similarly, DataWarp can
be monitored on a per-device basis using standard tools such
as smartctl or vendor-specific tools such as the Intel SSD
Data Center Tool (ISDCT) [14].

4) Job topology: The effects of locality on I/O perfor-
mance within high-diameter networks have been well docu-
mented [15]–[17], and modern high-radix topologies continue
to be susceptible to topology-induced performance varia-
tion [18]. Obtaining the topological mapping of a given job’s
compute nodes across a given network fabric requires several
different tools that combine job↔node mappings from the
system resource manager with the node↔coordinate mapping
from the system component which tracks global system state.

In practice, both of these tool sets are highly system-
specific; the job↔node mappings may be provided by a
resource manager such as Slurm [19] or ALPS [20], and
node↔topology mappings are provided by the Cray Service
Database. Fortunately, the relationship between nodes and
topological coordinates in the fabric is a relatively static
mapping, and it can be aggressively cached so long as that
cache is expired any time the fabric topology is altered.

5) Network traffic: The networks over which I/O transits,
including both the high-speed network and the back-end
storage network, are shared resources and therefore susceptible
to contention from other workloads. Unlike the storage system
traffic data, though, network traffic loads tend to be very
complex since they are a function of loads at both compute
and storage server endpoints as well as incidental traffic being
routed over the same links.

On Cray systems, the Gemini Counter Performance Dae-
mon [21], [22] or AriesNCL [23] can be used to collect
the performance counters available on Aries routers. In prac-
tice, the complexity and scale of these network traffic data
make them challenging to collect effectively. LDMS [24] has
emerged as a scalable infrastructure for collecting these data
system-wide, while PAPI has been demonstrated to collect
these data on a per-job basis [25].

B. TOKIO connectors

The foundational layer of TOKIO are connectors, which
are independent, modular components that provide an inter-
face between the individual component-level tools described
above and the higher-level TOKIO layers described later. Each
connector interacts with the native interface of a component-
level tool and provides data from that tool in the form of a
tool-independent interface.

As a concrete example, consider the LMT component-level
tool which exposes Lustre file system workload data through

a MySQL database hosted on the ClusterStor management
node [9]. The LMT database connector is responsible for es-
tablishing and destroying connections to this MySQL database
as well as tracking stateful entities such as database cursors.
It also encodes the schema of the LMT database tables, effec-
tively abstracting the specific workings of the LMT database
from the information that the LMT tool provides. In this sense,
a user of the LMT database connector can use a more seman-
tically meaningful interface (e.g., lmtdb.get mds data() to
retrieve metadata server loads) without having to craft SQL
queries or write any boilerplate MySQL code.

At the same time, the LMT database connector does not
modify the data retrieved from the LMT MySQL database
before returning it. As such, using the LMT database connector
still requires an understanding of the underlying LMT tool and
the significance of the data it returns. This design decision
restricts the role of connectors to being convenient interfaces
into existing tools that eliminate the need to write glue
code between component-level tools and higher-level analysis
functions.

All connectors also provide serialization and deserialization
methods for the tools to which they connect. This allows the
data from a component-level tool to be stored for offline anal-
ysis, shared among collaborators, or locally cached for rapid
subsequent accesses. Continuing with the LMT connector
example, the data retrieved from the LMT MySQL database
may be serialized to formats such as SQLite. Conversely, the
LMT connector is also able to load LMT data from these
alternative formats for use via the same downstream connec-
tor interface (e.g., lmtdb.get mds data()). This dramatically
simplifies some tasks such as publishing analysis data that
originated from a restricted-access data source or testing new
analysis code.

The pytokio implementation of TOKIO implements each
connector as a Python class. Connectors which rely on stateful
connections, such as those which load data from databases,
generally wrap a variety of database interfaces. Connectors
which operate statelessly, such as those that load and parse dis-
crete log files, are generally derived from Python dictionaries
and self-populate when initialized. Where appropriate, these
connectors also have methods to return different representa-
tions of themselves; for example, many connectors provide a
to dataframe() method that returns the requested connector
data as a pandas DataFrame.

The initial release of pytokio, version 0.9, includes the
connectors listed in Table I. The first six connectors listed
(CraySdb through Slurm) connect to component-level tools
that are either pre-installed on Cray XC and ClusterStor sys-
tems or commonly deployed open-source tools. The latter three
connectors (CollectdEs, NerscIsdct, and NerscJobsDb) rely on
third-party infrastructure and/or use non-default schemata or
encoding to represent data. That said, these three connectors
contain the logic necessary to create more generic connectors
for consuming output from sources like Elasticsearch (from
CollectdEs) or smartctl (from NerscIsdct). Finally, the Hdf5
connector provides an interface into the TOKIO Time Series

TABLE I
TOKIO CONNECTORS AVAILABLE IN PYTOKIO 0.9

Connector Parent Class Component-Level Tool Data Provided
CraySdb dict Cray Service Database Node network topology
Darshan dict Darshan 3.0 or newer Application-level I/O profiles
LfsOstMap dict Lustre lctl dl -t Failover status of OSTs and OSSes
LfsOstFullness dict Lustre lfs df Fullness of OSTs
LmtDb N/A MySQL with LMT schema Lustre server-side traffic
Slurm dict Slurm Job IDs, node lists, start/end times
Hdf5 h5py.File Multiple TOKIO services File system server-side time series

CollectdEs N/A Elasticsearch with collectd schema Burst buffer server-side traffic
NerscIsdct dict ISDCT w/ NERSC directory structure Burst buffer SSD SMART data
NerscJobsDb N/A MySQL with NERSC accounting schema System-wide job workload

tools.darshan

load_darshanlogs(jobid)

connectors.darshanconnectors.slurm

1. Job ID

2. Job start
time

3. Darshan
log path

4. Darshan
connector
instance

Job ID

Darshan
connector
instance

Input Output

Fig. 2. Darshan tools interface for converting a Slurm Job ID into Python
interfaces into one or more Darshan logs. User specifies a Slurm Job ID; the
Darshan tool retrieves the date this job ran from Slurm, and then uses this date
to find the location of any relevant Darshan logs in the site-wide Darshan log
repository. The tool then connects to each log and returns a dictionary-like
Darshan connector instance for each.

data format, a derivative of HDF5 that is used to store
file system traffic data in a connector-agnostic format. This
TOKIO Time Series format is described in more detail in
Section III-C.

C. TOKIO tools

TOKIO tools are implemented on top of connectors as
an optional set of interfaces that are semantically closer to
how analysis applications may wish to access component-
level data. To this end, the TOKIO tools interfaces typically
serve two purposes: encapsulating site-specific information on
how certain data sources are indexed or where they may be
found, and providing higher-level abstractions atop one or
more connectors to mask the complexities or nuances of the
underlying data sources.

1) Encapsulating site-specific information: pytokio factors
out all of its site-specific knowledge from connectors into a
single site-specific configuration file. This configuration file is
composed of arbitrary JSON-encoded key-value pairs which
are loaded whenever pytokio is imported, and the specific

meaning of any given key is defined by whichever tool
accesses it. Thus, this site-specific configuration data does
not prescribe any specific schema or semantic on site-specific
information, and it does not contain any implicit assumptions
about which connectors or tools are available on a given
system.

To illustrate this more concretely, consider the case of the
Darshan component-level tool [3]. When deployed system-
wide, Darshan automatically saves users’ output logs to a pre-
defined, site-wide log repository. This repository is structured
such that logs are indexed by year, month, and day, and
Darshan encodes a variety of metadata (including the user
name, executable name, and job id) in each log file’s file name.
The Darshan tool contains the logic required to find Darshan
log files in this site-wide repository when given any or all of
these metadata attributes. The top-level directory of the site-
wide Darshan log repository (e.g., /global/darshanlogs/) is
site-specific and therefore stored in the pytokio configuration
file. However, the directory structure within that log repository
is dictated by Darshan itself, so the mapping between dates
and subdirectories is implemented within the Darshan tool. It
is then the responsibility of the Darshan connector to provide
an interface into an individual Darshan log file.

2) Providing higher-level abstractions atop connectors:
The other role of TOKIO tools are to combine site-specific
knowledge and multiple connectors to provide a simpler set
of interfaces that are semantically closer to a question that an
I/O user or administrator may actually ask. Continuing with
the Darshan tool example from the previous section, such
a question may be, “How many GB/sec did job #2468187
achieve?” Answering this question involves several steps:

1) Retrieving the start date for job id #2468187 from the
system workload manager or a job accounting database

2) Looking in the Darshan repository for logs that match
jobid=2468187 on that date

3) Running the “darshan-parser --perf” tool on the matching
Darshan log and retrieve the estimated maximum I/O
performance

pytokio provides connectors and tools to accomplish each
one of these tasks:

1) The Slurm connector provides get job startend()

which retrieves a job’s start and end times when given a
Slurm job id

2) The Darshan tool provides find darshanlogs() which
returns a list of matching Darshan logs when given a job
id and the date on which that job ran

3) The Darshan connector provides darshan parser perf()

which retrieves I/O performance data from a single Darshan
log

Because this is such a routine process when analyzing
application I/O performance, the Darshan tools interface im-
plements this entire sequence in a single, higher-level function
called load darshanlogs(). This function, depicted in Figure
2, effectively links two connectors (Slurm and Darshan) and
provides a single function to answer the question of “how well
did job #2468187 perform?” This greatly simplifies the process
of developing user-facing tools to analyze Darshan logs. Any
analysis tool which uses application I/O performance and op-
erates from job ids can replace hundreds of lines of boilerplate
code with a single function call into the Darshan tool, and it
alleviates users from having to understand the Darshan log
repository directory structure to quickly find profiling data for
their jobs.

3) Simplifying portability: TOKIO tools interfaces are also
what facilitate portable, highly integrated analyses and services
for I/O performance analysis. In the aforementioned examples,
the Darshan tools interface assumes that Slurm is the system
workload manager and the preferred way to get start and end
times for a job id. However, there is also a more generic
jobinfo tool interface which serves as a connector-agnostic
interface that retrieves basic job metrics (start and end times,
node lists, etc) using a site-configurable, prioritized list of
connectors.

Consider the end-to-end example shown in Figure 3. In this
case, an analysis application’s purpose is to answer the ques-
tion, “What was a job’s I/O performance?” To accomplish this,
the analysis takes a job id as its sole input and makes a single
call into the pytokio Darshan tool’s load darshanlogs(jobid)

function as previously described. The Darshan tool first uses
the jobinfo tool to convert the job id (1) into a start/end
time in a site-independent way. The jobinfo tool examines the
site configuration and determines that the Slurm connector is
the best way to convert the job id (2) into a job start/end
time (3), which is passed back to the Darshan tool (4). The
Darshan tool then uses the job start time to determine where
the job’s Darshan log is located in the site-specific repository,
and uses this log path (5) to retrieve a connector interface into
the log (6). The Darshan tool returns this connector interface
to the analysis application (7), which extracts the relevant
performance metric (8) and returns it to the end user.

Through this entire process, the analysis application’s only
interface into pytokio was a single call into the Darshan
tools interface. Beyond this, pytokio was responsible for
determining both the proper mechanism to convert a job id
into a job start time and the location of Darshan logs on the
system. Thus, this analysis application is entirely free of site-

tools.darshan

What was a job's I/O
performance?

connectors.darshanconnectors.slurm

(2) (3) (5) (6)

Job ID

tools.jobinfo

GB/sec

Si
te
-in
de
pe
nd
en
t

Si
te
-s
pe
ci
fic

(1)

(4)

(7)

(8)

Fig. 3. TOKIO tools interfaces to enable portability. An analysis application
answers the question, ”What was a job’s I/O performance,” and it accepts
the job’s ID as its sole input. The TOKIO tools interface abstracts all of
the site-specific information (such as how job ids are mapped to job start
times and where Darshan logs are saved) from the higher-level analysis
application. Thus, the analysis application can be run at any HPC center
without modification provided that center has pytokio installed and correctly
configured.

specific knowledge and can be run at any HPC center to obtain
I/O performance telemetry when given a job id. The only
requirement is that pytokio is installed at the HPC center, and
it is correctly configured to reflect that center’s site-specific
configurations.

III. ANALYSIS APPLICATIONS AND SERVICES

TOKIO’s connector and tool interfaces are simply mecha-
nisms to access I/O telemetry from throughout an HPC center.
As illustrated in Figure 3, a higher-level analysis application is
required to actually connect pytokio’s interfaces to meaningful
insight to an end-user. To demonstrate how such an analysis
application may be built on top of pytokio, pytokio includes a
number of example applications and services that broadly fall
into three categories: command-line interfaces into pytokio,
statistical analysis tools, and data and analysis services.

A. Command-line interfaces to pytokio

Many connectors and tools present methods and functions
that are valuable for users as-is. For example, being able
to retrieve application-level I/O performance telemetry with
a single job id (as was presented in Section II-C) is an
intrinsically useful operation. To expose such useful functions
directly to users without requiring that they write python,
pytokio includes a set of command-line tools that simply
convert command-line options into input arguments, pass these
arguments to a single pytokio function, and then return the
resulting output as ASCII to stdout.

Perhaps the most immediately valuable tools of this category
are the command-line interfaces for each connector’s serial-
ization method, which allow specific component-level data to
be quickly serialized into a generic and portable format. For
example, the LMT connector allows the contents of the LMT
MySQL database to be serialized to a local SQLite file. By
serializing this data during a time period of interest, LMT

20
40Performance

(GiB/sec)

0.5

1.0Coverage Factor
(Bandwidth)

20

40
Maximum OSS CPU

Load (%)

10

20Average MDS CPU
Load (%)

0

50

Total Open Ops

(MOps)

Apr 27
Apr 29

May 01
May 03

May 05
May 07

May 09

32
35
37

Most Full OST

(% Used)

Fig. 4. UMAMI diagram of a simulated science campaign of BD-CATS [26]
simulations performed on ALCF’s Theta system. ”Coverage Factor (Band-
width)” is the fraction of global file system traffic originating from each BD-
CATS job and the remaining metrics represent server-side Lustre loads.

data can be analyzed long after the 24-hour window in which
LMT database retains data. Furthermore, because the data
is serialized to a standard and portable format, the SQLite
database file itself can be shared and analyzed on remote
systems for purposes of collaboration or reproducibility.

B. Statistical analysis tools

The modularity of TOKIO’s connectors and tools interfaces
make it a powerful foundation upon which more sophisticated,
integrated analyses can be performed. For example, pytokio
arose from a proof-of-concept study that presented the con-
cept of Unified Monitoring and Metrics Interface (UMAMI)
diagrams, a visualization that contextualizes I/O performance
with variation in other metrics across the I/O subsystem [1].
The tools required for a user to generate these diagrams is
included in pytokio as an example of such a statistical analysis.

Figure 4 is an example of such an UMAMI diagram that
shows a simulated science campaign where a large-scale parti-
cle physics analysis application, BD-CATS [26], was run once
per day over the course of two weeks on ALCF’s Theta system
and its Lustre file system. The topmost panel (“Performance
(GiB/sec)”) indicates that the job which ran on May 11
showed significantly less I/O performance (under 5 GiB/sec)
than previous days (40 GiB/sec). The poor I/O performance
on this date coincided with an extraordinarily high CPU
load on one or more Lustre OSSes (a high “Maximum OSS
CPU Load”), indicating the drastic performance loss could be
due to competing compute workloads on the Lustre storage
servers. Interestingly, for this series of application executions,
instances of increased server-side bandwidth contention (a low
“Coverage Factor (Bandwidth)”, e.g., on April 26 or May
6) did not coincide with marked decreases in performance,
though this is often speculated to be a leading cause for

I/O performance issues on HPC systems. This diagram in-
cludes data obtained through a number of pytokio connectors:
Darshan (Performance), LMT (Maximum OSS CPU Load,
Average MDS CPU Load, Total Open Ops) and Lustre health
(Most Full OST).

To simplify the process of gathering data from all of
these disparate sources of telemetry, pytokio includes the
summarize job command-line tool which gathers data about a
given job using every available connector. When given either
a list of job ids or a list of paths to Darshan log files (which
themselves encode job ids), summarize job infers the job start
and end times and uses these data to retrieve the relevant
Lustre system traffic and health data for the times during which
each job ran. It also retrieves the list of nodes used by each
job via the Slurm connector and calculates several metrics
representing the job’s placement on the dragonfly network. All
of this data is then flattened into a set of key-value metrics
for each job id, and the key-value pairs for all job ids are
compiled into a table of comma-separated values which is
returned to the user1. Each row of this CSV corresponds to a
single job, and each column contains a single metric produced
by summarizing the output of single connector.

This CSV output of summarize job is then used to gen-
erate the UMAMI diagram itself. The UMAMI diagram
shown in Figure 4 was generated using a Jupyter notebook,
tokio.analysis.umami.ipynb, which included in the pytokio
repository. This notebook does the following:
1) Loads the CSV file using pandas.read csv()

2) Performs basic filtering to discard job records which do not
correspond to the analysis of interest (e.g., if a single job id
generated multiple Darshan logs, but only one corresponds
to the full-scale simulation execution). Each job record
corresponds to a row in the original summarize job output
CSV.

3) Builds a set of UmamiMetric objects, each essentially rep-
resenting a vector of measurements of one metric over
time. Each metric corresponds to a column in the original
summarize job output CSV.

4) Creates a single Umami object (essentially an ordered dic-
tionary) and appends each UmamiMetric object

5) Generates the UMAMI diagram using UmamiMetric.plot()

The Jupyter notebooks included with pytokio are a conve-
nient way to explore data and perform ad-hoc performance
analysis with pytokio. These notebooks are examples of an
effective design pattern for building analysis capabilities atop
pytokio: a potentially useful analysis is first prototyped in note-
book format, and once the analysis methods are sufficiently
robust, they are converted into a standalone command-line tool
that can be used with a greater degree of automation.

C. Data and analysis services

Many component-level monitoring tools are designed for
system operators who perform real-time inspection of system

1This tool, as with many other pytokio components, uses pandas
DataFrames internally to represent tabular data. As such, pytokio can easily
output to other supported formats such as JSON.

9:55:35
9:55:40
9:55:45
9:55:55
9:56:00
9:56:05

...

...

t
i
m
e
s
t
a
m
p
s

 d
at

as
et

...

... 1.21 GiB/s 1.23 GiB/s ...

... 1.19 GiB/s 1.30 GiB/s ...

... 1.20 GiB/s 1.21 GiB/s ...

... 1.21 GiB/s 1.25 GiB/s ...

... 1.23 GiB/s 1.23 GiB/s ...

... 1.18 GiB/s 1.20 GiB/s ...

...

...

... 1.21 GiB/s 1.23 GiB/s ...

... 1.19 GiB/s 1.30 GiB/s ...

... 1.20 GiB/s 1.21 GiB/s ...

... 1.21 GiB/s 1.25 GiB/s ...

... 1.23 GiB/s 1.23 GiB/s ...

... 1.18 GiB/s 1.20 GiB/s ...

...

columns attribute

... OST0001 OST0002 OST0009 OST000a ...

readrates dataset

datatargets group

writerates dataset

columns attribute

Fig. 5. Organization of the datatargets group, which encode traffic to and
from file system data targets (Lustre OSTs, GPFS LUNs, or DataWarp NVMe
drives), in a TOKIO Time Series file. This example reflects read-rate and
write-rate data collected from LMT at its native 5-second sampling frequency
between 9:55:35 AM and 9:56:05 AM across two OSTs (0x0009 and 0x000a).

performance and health. Postmortem performance debugging
and long-term trend analysis with these tools can only be
performed if such real-time, component-level monitoring tools
are periodically polled and their outputs recorded so that an
historic record can be consulted at a later date. To address
this need, pytokio includes several infrastructure components
that simplify the process of creating services that automatically
poll and archive time-series data, and then serve such archived
data through a diversity of simple user interfaces.

1) Archival service for real-time data sources: As de-
scribed earlier, LMT is a standard component of the Cray
ClusterStor software stack which retains high-resolution file
system traffic in a MySQL database. In its most common
configuration, LMT retains file system traffic measurements
(e.g., bytes read and written) on a per-OST basis every
five seconds, but purges this full-resolution data from the
MySQL database every 24 hours to prevent the database from
becoming untenably large and slow. To retain these data at full
resolution indefinitely, pytokio includes the archive lmtdb

tool which serializes time series data from the LMT database
into an indexed, portable file format called the TOKIO Time
Series format.

Based on HDF5, the TOKIO Time Series format organizes
time series data from different monitoring tools in their own
HDF5 groups, and one such group is schematically depicted
in Figure 5. This group (named datatargets) contains two
two-dimensional datasets (readrates and writerates) which
contain measurements sampled at a fixed frequency. Each row
of these datasets corresponds to a single point in time in the
time series (e.g., 9:55:35 AM), and each column corresponds
to a single component being measured (e.g., OST #0009).
To index these datasets in time, a single one-dimensional
timestamps dataset is also included in each HDF5 group

to describe the absolute times corresponding to each row
in the other datasets. Because data encoded in the TOKIO
Time Series format is stored at a fixed frequency for each
group, indexing data in time can be done arithmetically using
the first timestamp (to establish an absolute reference) and
the sampling frequency (to calculate a relative offset). The
columns of each dataset are labeled using an HDF5 dataset
attribute which can also be indexed.

The archive lmtdb tool that generates these TOKIO Time
Series files acts as a bridge between the LMT database
connector and the HDF5 connector. At a high level, it performs
data conversion when given a time range and a target LMT
database; this core function is supplemented by a thin in-
memory caching layer for performance and the logic necessary
to ensure the idempotency of updates to existing TOKIO Time
Series files.

To automate the archival of LMT data into this TOKIO Time
Series format, pytokio’s ClusterStor companion repository
contains a simple archival service that creates and maintains
a library of TOKIO Time Series files that are organized into a
date-indexed directory structure. It creates one TOKIO Time
Series file per calendar day, and at a configurable frequency,
checks to determine if the day’s TOKIO Time Series file is
more than an hour out of sync with the LMT database. If it
is, the pytokio archival service uses archive lmtdb to retrieve
an hour’s worth of new data, update the corresponding day’s
TOKIO Time Series file, and if necessary, roll over to a new
day’s file. This service is resilient to falling out of sync with
the LMT database due to interruptions in service and has
minimal dependencies, allowing it to be easily deployed on
any Cray ClusterStor platform. To date, pytokio and the LMT
archival service has been running in production on the Edison
XC-30 and Cori XC-40 systems at NERSC and the Theta XC-
40 system at the Argonne Leadership Computing Facility. At
NERSC, this archival service is deployed full-time using cron
jobs, while at the ALCF it is deployed as part of a broader
Jenkins-based continuous integration framework.

The pytokio archival service is sufficiently simple and
modular to be able to poll and archive the data from any
real-time monitoring tool. For example, NERSC also runs a
collectd archival service to retain file system traffic data from
the DataWarp burst buffer servers on Cori. These burst buffer
data are retrieved from NERSC’s Elasticsearch-based Data
Collect [11] and encoded in TOKIO Time Series files that are
schematically identical to those generated by archive lmtdb.
Similarly, Lustre failover and fullness data is archived every
five minutes using the Lustre LfsOstMap and LfsOstFullness
connectors described in Table I. In all of these cases, the date-
based indexing performed by the pytokio archival service is
used to enable the rapid lookup of data from these sources
for a given point in time, and in all cases, the archival service
runs from an unprivileged account.

2) Data services for archived data: The pytokio archival
service provides a mechanism by which high time resolution
data can be stored on a file system yet still be quickly
accessed via date-based file indexing. To make these data

more accessible to users, pytokio also provides an HDF5 tools
interface which serves a very similar function as the Darshan
tools interface described in Section II-C. Given a range of time
and a file system name, the tools.hdf5 interface locates the
correct TOKIO Time Series file(s) containing the date ranges
requested, loads the relevant datasets, and stitches the data
together into pandas DataFrames indexed by time.

While this functionality is exposed via the Python-based
tools.hdf5 interface, it is very simple to expose these capa-
bilities through a REST API as well. To demonstrate this,
pytokio includes a companion repository that demonstrates a
Flask-based application wrapper which exposes the aforemen-
tioned tools.hdf5 interface as a REST endpoint. Despite its
simplicity, this is an extremely powerful way to connect users
with I/O performance data; for example, JavaScript-based web
dashboards can query such a pytokio REST service for JSON-
encoded data, then display it as an interactive performance
plot using Highcharts or D3. Similarly, the UMAMI diagram
previously described (Figure 4) could be statically generated
and served on-demand to a web-based frontend to enable quick
diagnoses of poorly performing applications.

IV. CASE STUDIES

The pytokio package and its accompanying services de-
scribed in Sections II and III provide the interfaces and in-
frastructure necessary to explore I/O performance in a holistic
manner. To demonstrate this, we present several case studies
where pytokio has been applied to solve specific operational
problems or gain new insight into storage system behavior.
In all cases, file system traffic data archived using the pytokio
archival service is combined with data from other sources such
as Darshan to identify and confirm behavior that would other-
wise be ambiguous from a single component-level monitoring
tool.

A. Performance analysis of individual jobs

Answering the question of why I/O was slow for a user’s job
was one of the principal motivators behind developing pytokio,
and the UMAMI approach described in Section III-B goes a
long way towards answering this question. In the absence of a
series of jobs with similar I/O patterns from which an UMAMI
diagram can be assembled, though, the summarize job tool
can still provide useful metrics such as the degree to which the
user’s job experienced I/O contention with others (its coverage
factor [1]).

However, there are some causes of poor I/O performance
that are not well resolved by spatially reduced data as is
provided by summarize job. For example, a single slow Lustre
OST can dramatically impact overall I/O performance [13], but
detecting this condition requires examining the performance
of each OST individually. Because the specific malady of
a straggling OST is sufficiently common in highly parallel
Lustre systems, pytokio includes a darshan bad ost analysis
tool that attempts to statistically identify slow OSTs using the
per-file performance and OST mappings contained in Darshan
logs.

OS
T0

00
0

OS
T0

00
1

OS
T0

00
3

OS
T0

00
4

OS
T0

00
5

OS
T0

00
6

OS
T0

00
7

OS
T0

00
8

OS
T0

00
9

OS
T0

00
f

OS
T0

01
1

OS
T0

01
3

OS
T0

01
5

OS
T0

01
6

OS
T0

01
7

OS
T0

01
8

OS
T0

01
b

OS
T0

01
c

OS
T0

01
e

OS
T0

02
1

OS
T0

02
3

0.50
0.25
0.00
0.25
0.50

Co
rre

la
tio

n
be

tw
ee

n
pe

rfo
rm

an
ce

 a
nd

 O
ST

 ID

(a) Correlation between I/O performance and Lustre OST

OST0005
OST0009
OST000d
OST0011
OST0015
OST0019
OST001d
OST0021

10 1

100

101

Gi
B/

se
c

03:40
03:41

03:42
03:43

03:44
03:45

03:46
03:47

03:48
03:49

0

100

Overall
GiB/sec

(b) Per-OST performance over time

Fig. 6. (a) Correlation between per-file application I/O performance and
the OSTs to which each file was mapped (from Darshan); shading indicates
statistical significance, with darker bars being more significant. (b) Per-OST
I/O performance measured over the same time that the job in (a) was running
(from LMT). In both (a) and (b), OST0015 is identified as showing abnormally
poor performance.

This tool first estimates per-file I/O bandwidths by dividing
the total bytes read/written to each file by the time the
application spent performing I/O to that file. It then uses data
from Darshan’s Lustre module [27] to map these performance
estimates to the OSTs over which each file was striped. With
the list of OSTs and performance measurements correspond-
ing to each OST, the Pearson correlation coefficient is then
calculated between performance and each individual OST.

Figure 6a shows the result this correlation analysis for a
slow-running job that performed file-per-process I/O to files
with a stripe width of 1 on NERSC Edison’s “scratch3” Lustre
file system. For almost all OSTs, the correlation between per-
formance and OST ID wavers around zero, indicating minimal
correlation. However, OST0015 stands out in stark contrast;
it correlates strongly and negatively with performance. This
inverse relationship between file I/O performance and files
existing on this OST suggests that this OST is in an unhealthy
state and is not delivering the same level of performance as
its peers.

To confirm that OST0015 is indeed behaving abnormally
relative to its peers, spatially resolved bandwidth measure-
ments from the LMT connector can be retrieved using the
pytokio LMT tool and rendered using a heatmap visualization
notebook provided with pytokio. The result of this temporally
and spatially resolved OST performance is shown in Figure 6b.
Whereas almost all OSTs during this job’s write phase were
able to complete their I/O between 3:43 AM and 3:44 AM,
OST0015 shows a long tail of performance, with relatively
little I/O activity between 3:43 AM and 3:44 AM but I/O ac-
tivity still occurring as late as 3:48 AM. Using both statistical

0%
50%

100%
150%
200%
250%
300% Cori LustreRead

Write

Sep 03 2017

Oct 0
1 2017

Nov 01 2017

Dec 01 2017

Jan 01 2018

Feb 01 2018

Mar 01 2018

Apr 01 2018
0%

50%
100%
150%
200%
250%
300% Cori Burst Buffer 0

13
27
40
54
67
81

0.0
0.8
1.5
2.3
3.0
3.8
4.5

W
ee

kl
y

I/O
 (%

 T
ot

al
 C

ap
ac

ity
)

W
ee

kl
y

I/O
 (P

iB
)

Fig. 7. Total I/O traffic read and written to Cori’s Lustre file system
(top, obtained from LMT) and DataWarp burst buffer (bottom, obtained from
SMART data) per week. Left axis expresses I/O volumes normalized to the
total capacity of each storage system; right axis shows the absolute I/O
volumes in PiB (250 bytes). Overall read/write ratios are 0.568 (Lustre) and
0.429 (Burst Buffer).

analysis of Darshan data and a visualization of high-resolution
LMT data, the poor performance of this job can be confidently
attributed to a poorly performing OST.

While this method is a useful user-facing tool for perfor-
mance analysis, it can also be a valuable tool for systems en-
gineers. A number of HPC facilities perform automated, daily
I/O benchmarks to establish baseline levels of performance
variation[1], [28]. Automatically inspecting the Darshan logs
from these performance probes using darshan bad ost en-
ables the detection of more complex, fail-slow scenarios
caused by individual component degradations [2]. Automat-
ically running darshan bad ost with appropriate correlation
and significance thresholds allows HPC operators to be alerted
whenever a Darshan log is generated that implicates a subset
of OSTs as causing overall performance degradation.

B. User engagement for burst buffers

DataWarp-based burst buffers enable users to dynamically
provision high-performance flash storage in the form of scratch
instances that provide private, ephemeral parallel file sys-
tems [29]. Although this enables much higher, more reliable
performance than a globally shared Lustre file system, users
must consciously incorporate DataWarp into their application
workflows to realize these benefits. The “opt-in” nature of
DataWarp, NERSC’s steady stream of new users, and a general
lack of awareness of I/O issues results in a number of NERSC
users continue to rely exclusively on Cori’s Lustre file system
for their I/O-intensive workloads despite the potential benefits
of Cori’s burst buffer.

To determine how well balanced the utilization of the
Lustre file system and DataWarp burst buffer are, NERSC
uses a pytokio-based service that provides automated reporting
on the total I/O traffic reported by both storage systems.
Figure 7 shows the amount of bytes read from and written
to both Cori’s Lustre file system and burst buffer on a weekly
basis. The burst buffer sees traffic equivalent to 120% of its
total capacity moved every week on average, while Cori’s
Lustre file system averages 39%. Because Cori’s Lustre is

ayounkin

22.6%

msimpler

17.7%

mbillips
8.1%

jphillis 6.1%

hstuddard
5.2%

others

40.2%

Fig. 8. Top five I/O users on the Cori Lustre file system during April 2018 as
measured by Darshan. Data only reflects I/O performed by MPI applications
that produced valid Darshan logs. User names shown are pseudonyms.

> 17× more capacious than its burst buffer, though, these I/O
volumes reflect a significant disparity–the burst buffer sees
1.85 PiB/week of traffic, while the Lustre file system sees
10.6 PiB/week. Furthermore, Cori’s Lustre capacity fills at a
rate of ≈ 10% of its weekly write volume, indicating that a
significant amount of this Lustre traffic is for temporary data
that is not retained.

These data confirm that, despite the availability of Cori’s
burst buffer, Cori’s Lustre file system still experiences a
significant amount of scratch-like I/O traffic. In addition, the
write volumes for the burst buffer in Figure 7 reflect an average
of 0.117 drive writes per week, while the SSDs in Cori’s burst
buffer are rated for 70 drive writes per week. Thus, we can
conclude that Cori’s Lustre file system still has a significant
amount of scratch-like I/O it can shed to the burst buffer, and
the burst buffer has more than enough endurance to sustain
such an increase in its workload.

To identify workloads that may be good candidates for mi-
gration to Cori’s burst buffer, NERSC continuously monitors
the application I/O load data targeting Lustre. A pytokio-based
service scans and indexes the Darshan logs generated by user
jobs on Cori on a daily basis at NERSC to simplify the process
of identifying jobs that perform significant I/O to a specific
file system. pytokio also includes the darshan scoreboard

command-line tool that enables simple querying of these
Darshan log indices to determine which applications and
users are generating the highest I/O traffic. Combining these
tools results in a daily, weekly, or monthly “scoreboard” that
identifies the individuals producing the most significant I/O
to each storage system. An example of such a scoreboard is
shown in Figure 8, which reveals that almost 60% of the I/O
traffic captured by Darshan is generated by five users.

Simultaneously, NERSC continuously monitors the file sys-
tem traffic data targeting Cori’s burst buffer to monitor its
utilization and wear rate. With these two pytokio-derived
services, NERSC staff receive regular automated reports that
indicate (1) which users are responsible for the largest fraction
of I/O traffic to Lustre, and (2) when the burst buffer is not
being heavily utilized. With this information, staff are able
to engage with specific users about migrating their workload

to use the burst buffer, effecting significant impact on both
improving performance for major I/O workloads and reducing
the load on the Lustre file system for other users.

C. Identifying major factors affecting performance

Daily I/O benchmarks can be used to develop a quantita-
tive understanding of how different components of the I/O
subsystem affect I/O performance. Applying summarize job

to collect all available telemetry associated with daily bench-
marks provides a series of performance snapshots and the
factors that contributed to that performance. By applying
simple correlation analysis–calculating the Pearson correlation
between I/O performance (measured by Darshan) and every
other measured metric–pytokio can be used to shed light on
how sensitive I/O performance is to changes in different parts
of the I/O subsystem.

Figure 9 shows the results of such a correlation analysis over
two file-per-process workloads. The overall I/O bandwidth, as
estimated by Darshan, was compared to the nine component-
level measurements listed in the table. Although most of
correlations between each metric and the four workloads were
found to be statistically insignificant (p-value > 10−5 for ≈
315 observations each), these results identify the following
notable relationships.

All four workloads correlate positively with the band-
width coverage factor. That is, performance tends to be higher
when the file system is not providing bandwidth to multiple
workloads simultaneously. While this finding is intuitive, the
fact that the correlation coefficients are all well short of 1.0
indicate that bandwidth contention is far from the only source
of performance loss.

Fast write workloads correlate with high coverage fac-
tors for open(2) operations. Assuming that the coverage
factor for open(2) operations is inversely proportional to the
metadata load of the file system, this is also intuitive; in both
write workloads, files must be created before they can be
written, whereas read workloads simply have to open existing
files. It follows that write workloads, which are more metadata-
intensive, are more sensitive to competing metadata-intensive
workloads.

Write performance correlates positively with average
OSS CPU load, with smaller-transfer sizes (IOR) correlating
more strongly than larger (HACC). This is an important
example of correlation not implying causation because high
OSS CPU load is actually a result of high write performance
in this case; higher OSS CPU loads do not cause better perfor-
mance. The reason for these relationships is likely influenced
by ClusterStor’s use of GridRAID, which uses the CPU to
calculate parity on writes but does not verify parity on reads.
Furthermore, calculating GridRAID parity on HACC’s large
writes may be more efficiently pipelined than IOR’s smaller
writes, resulting in HACC performance correlating with high
CPU load less strongly than IOR.

Write performance correlates negatively with failed-over
OSTs to a much greater degree than read performance. This
is likely related to GridRAID as well, because an OSS that

is hosting a failed-over partner’s OST must calculate twice as
much parity on writes. By comparison, read performance is
impacted much less significantly because it is not bound by
the rate at which the OSS CPUs can calculate parity. If the
OSS CPUs were more capable and parity calculations were
not the performance-limiting factor on writes during failover,
the correlation between write performance and failover state
would have been likely to more closely resemble that of read
performance.

Read performance shows some sensitivity to job topology
while write performance does not. Although the low-diameter
dragonfly network on Cray XC systems is designed to make
performance independent of topology, Lustre Fine Grained
Routing [17] can limit path diversity between compute nodes
and LNET gateways. In the case of reads, this limited path
diversity can lead to network incasts that result in network con-
gestion near compute nodes and overall performance degrada-
tion. In the case of writes, this is not true; compute nodes
broadcast their write data to fine-grained routing groups that
are topologically scattered, avoiding incasts. Although the ex-
act cause for the positive correlation between read performance
and job spread is not clear, the asymmetry between read and
write paths and the fewer number of global links surrounding
closely packed jobs are likely to contribute to this correlation.

While the correlation between high read performance and
large job spread is a novel finding, the other correlations
are largely intuitive. That said, this analysis demonstrates
how pytokio enables the quantiative, holistic analysis of au-
tomated I/O benchmark data and reveals more insight into
I/O performance overall than any single component is able
to provide. Figure 9 clearly shows that many factors affect
I/O performance, but no single metric is a direct indicator.
Different I/O patterns and read or write behavior contribute
to different sensitivities between performance and the various
components of the I/O subsystem.

V. CONCLUSION

The Total Knowledge of I/O (TOKIO) framework and its
reference implementation, pytokio, provide a simple, mod-
ular approach to the holistic analysis of I/O performance.
Connector interfaces retrieve data from the best-in-class I/O
monitoring tools already installed on Cray XC and ClusterStor
systems. In addition, site-independent abstractions in TOKIO’s
tools interfaces enable the creation of portable analysis tools
that can be applied by users and administrators to understand
performance at many levels of the I/O subsystem.

pytokio’s archival data service extends these capabilities by
allowing real-time, operations-focused diagnostic tools such
as LMT to serve as sources of long-term, high-resolution
time series data. Retaining these time series data in the
portable TOKIO Time Series file format enables retrospective
performance analyses that uncover a variety of new insights
about storage systems. Several analyses have been illustrated
with example tools built on pytokio: darshan bad ost detects
straggling Lustre OSTs based on Darshan and LMT data,
darshan scoreboard identifies specific users and applications

IOR
Write

HACC
Write

IOR
Read

HACC
Read

Coverage Factor (Bandwidth) +0.3954 +0.3944 +0.4881 +0.3987
Coverage Factor (opens) +0.3006 +0.3551 +0.2034 +0.1503
Average MDS CPU Load -0.2241 -0.2081 +0.0408 +0.0369
Average OSS CPU Load +0.5131 +0.3266 +0.1999 +0.0659

Peak MDS CPU Load -0.2226 -0.2438 -0.0249 +0.0068
Peak OSS CPU Load +0.1091 -0.0124 -0.0700 -0.0995

OST Fullness -0.1834 -0.1553 +0.1211 +0.0697
Number of failed-over OSTs -0.4304 -0.4209 -0.1064 -0.0677

Average Job Radius -0.0140 +0.0301 +0.3510 +0.4061

Fig. 9. Pearson correlation between application I/O performance and other metrics collected by pytokio on NERSC’s Cori system. Each value is shaded
according to the magnitude of the positive or negative correlation, and values printed in bold are statistically significant (p-value < 10−5) whereas other values
are not. The IOR benchmarks used 4,096 processes to read and write 16 TiB of data using 4 MiB transfers. The HACC benchmarks used 4,096 processes to
read and write 8 TiB of data using ≈ 128 MiB transfers. Data reflects daily benchmark results obtained between February 14, 2017 and February 15, 2018.

that are good candidates for migration to burst buffers, and
more complex analysis implemented in Jupyter notebooks
demonstrate that components of the Cray XC and ClusterStor
infrastructure correlate with poor I/O performance.

Because pytokio is BSD-licensed, new connectors to site-
specific tools can be developed to suit the needs of different
centers as well. Full pytokio source code, complete with a
comprehensive suite of tests, documentation, and example
analyses are all included in the core package repository.
Furthermore, the pytokio archival data service for Cray XC and
ClusterStor are also freely available and specifically designed
for easy deployment on any Cray systems.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contracts
DE-AC02-05CH11231 and DE-AC02-06CH11357 (Project:
A Framework for Holistic I/O Workload Characterization,
Program manager: Dr. Lucy Nowell). This research used
resources and data generated from resources of the National
Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231 and the Argonne Leadership Computing
Facility, a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

REFERENCES

[1] G. K. Lockwood, W. Yoo, S. Byna, N. J. Wright, S. Snyder, K. Harms,
Z. Nault, and P. Carns, “UMAMI: A Recipe for Generating Meaningful
Metrics through Holistic I/O Performance Analysis,” in Proceedings
of the 2nd Joint International Workshop on Parallel Data Storage
& Data Intensive Scalable Computing Systems - PDSW-DISCS ’17.
New York, New York, USA: ACM Press, 2017, pp. 55–60. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3149393.3149395

[2] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, G. Grider,
P. M. Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci,
K. Webb, P. Alvaro, H. B. Runesha, M. Hao, and H. Li,
“Fail-slow at scale: Evidence of hardware performance faults in
large production systems,” pp. 1–14, 2018. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/gunawi

[3] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and
K. Riley, “24/7 Characterization of petascale I/O workloads,”
in 2009 IEEE International Conference on Cluster Computing
and Workshops. IEEE, 2009, pp. 1–10. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5289150

[4] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms,
M. Prabhat, S. Byna, and Y. Yao, “A Multiplatform Study of I/O
Behavior on Petascale Supercomputers,” in Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’15, 2015, pp. 33–44. [Online]. Available:
http://doi.acm.org/10.1145/2749246.2749269

[5] B. Hadri, S. Kortas, S. Feki, R. Khurram, and G. Newby, “Overview
of the KAUST’s Cray X40 System - Shaheen II,” in Proceedings of the
2015 Cray User Group, 2015.

[6] J. P. White, R. Brunner, A. Kot, G. Bauer, B. Bode, J. Enos,
W. Kramer, M. Innus, M. D. Jones, R. L. DeLeon, N. Simakov, J. T.
Palmer, S. M. Gallo, T. R. Furlani, and M. Showerman, “Challenges
of Workload Analysis on Large HPC Systems,” in Proceedings of the
Practice and Experience in Advanced Research Computing 2017 on
Sustainability, Success and Impact - PEARC17, vol. Part F1287. New
York, New York, USA: ACM Press, 2017, pp. 1–8. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3093338.3093348

[7] T. Butler, “Using Resource Utilization Reporting to Collect DVS Usage
Statistics,” in Proceedings of the 2014 Cray User Group, 2014.

[8] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing Variability in the IO Performance
of Petascale Storage Systems,” in 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis, no. November. IEEE, nov 2010, pp. 1–12. [Online].
Available: http://ieeexplore.ieee.org/document/5644883/

[9] J. Keopp and H. Longley, “Cray Lustre File System Monitoring,” in
Proceedings of the 2014 Cray User Group, 2014.

[10] C. Flaskerud, “Project Caribou Streaming Telemetry for Sonexion,”
Proceedings of the 2017 Cray User Group, 2017.

[11] C. Whitney, T. Davis, and E. Bautista, “NERSC Center-wide Data
Collect,” in Proceedings of the 2016 Cray User Group, 2016.

[12] S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross,
S. Snyder, and S. M. Wild, “Analysis and Correlation of
Application I/O Performance and System-Wide I/O Activity,” in
2017 International Conference on Networking, Architecture, and
Storage (NAS). IEEE, aug 2017, pp. 1–10. [Online]. Available:
http://ieeexplore.ieee.org/document/8026844/

[13] S. Byna, A. Uselton, D. Knaak, and Y. H. He, “Lessons Learned from
a Hero I/O Run on Hopper,” in Proceedings of the 2013 Cray User
Group, Napa, CA, 2013.

[14] “Intel SSD Data Center Tool,” 2017. [Online]. Available:
https://www.intel.com/content/www/us/en/support/articles/000006289

[15] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka,
“Topology-aware data movement and staging for I/O acceleration
on Blue Gene/P supercomputing systems,” in Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis on - SC ’11. New York,

New York, USA: ACM Press, 2011, p. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2063384.2063409

[16] H. Bui, H. Finkel, V. Vishwanath, S. Habib, K. Heitmann,
J. Leigh, M. Papka, and K. Harms, “Scalable Parallel I/O on
a Blue Gene/Q Supercomputer Using Compression, Topology-
Aware Data Aggregation, and Subfiling,” in 2014 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing. IEEE, feb 2014, pp. 107–111. [Online]. Available:
http://ieeexplore.ieee.org/document/6787260/

[17] D. A. Dillow, G. M. Shipman, S. Oral, Z. Zhang, and Y. Kim,
“Enhancing I/O throughput via efficient routing and placement for large-
scale parallel file systems,” in 30th IEEE International Performance
Computing and Communications Conference. IEEE, nov 2011, pp.
1–9. [Online]. Available: http://ieeexplore.ieee.org/document/6108062/

[18] M. Mubarak, P. Carns, J. Jenkins, J. K. Li, N. Jain, S. Snyder, R. Ross,
C. D. Carothers, A. Bhatele, and K.-L. Ma, “Quantifying I/O and
Communication Traffic Interference on Dragonfly Networks Equipped
with Burst Buffers,” in 2017 IEEE International Conference on Cluster
Computing (CLUSTER), vol. 2017-Septe. IEEE, sep 2017, pp. 204–215.
[Online]. Available: http://ieeexplore.ieee.org/document/8048932/

[19] D. M. Jacobsen, J. F. Botts, and Y. H. He, “SLURM. Our Way.” in
Proceedings of the 2016 Cray User Group, 2016.

[20] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The Application
Level Placement Scheduler,” in Proceedings of the 2006 Cray User
Group, 2006.

[21] K. Pedretti, C. Vaughan, R. Barrett, K. Devine, and K. S.
Hemmert, “Using the Cray Gemini Performance Counters,” in
Proceedings of the 2013 Cray User Group, Napa, CA, 2013.
[Online]. Available: http://www.osti.gov/scitech/biblio/1063364-using-
cray-gemini-performance-counters

[22] J. Brandt, E. Froese, A. Gentile, L. Kaplan, B. Allan, and E. Walsh,
“Network Performance Counter Monitoring and Analysis on the Cray
XC Platform,” in Proceedings of the 2016 Cray User Group, 2016.

[23] “Aries Network Performance Counters Monitoring Li-
brary,” United States, 2014. [Online]. Available:
http://www.osti.gov/scitech/servlets/purl/1232554

[24] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,
M. Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The Lightweight
Distributed Metric Service: A Scalable Infrastructure for Continuous
Monitoring of Large Scale Computing Systems and Applications,”
in SC14: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, nov 2014, pp. 154–165.
[Online]. Available: http://ieeexplore.ieee.org/document/7013000/

[25] T. Groves, Y. Gu, and N. J. Wright, “Understanding Performance
Variability on the Aries Dragonfly Network,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER), vol.
2017-Septe. IEEE, sep 2017, pp. 809–813. [Online]. Available:
http://ieeexplore.ieee.org/document/8049022/

[26] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić,
V. Roytershteyn, M. J. Anderson, Y. Yao, P. Dubey et al., “Bd-cats:
big data clustering at trillion particle scale,” in High Performance
Computing, Networking, Storage and Analysis, 2015 SC-International
Conference for. IEEE, 2015, pp. 1–12.

[27] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J.
Wright, “Modular hpc I/O characterization with darshan,” in Proceed-
ings of the 5th Workshop on Extreme-Scale Programming Tools. IEEE
Press, 2016, pp. 9–17.

[28] N. A. Simakov, J. P. White, R. L. DeLeon, A. Ghadersohi,
T. R. Furlani, M. D. Jones, S. M. Gallo, and A. K. Patra,
“Application kernels: HPC resources performance monitoring and
variance analysis,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 17, pp. 5238–5260, dec 2015. [Online].
Available: http://doi.wiley.com/10.1002/cpe.3564

[29] D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and N. J.
Wright, “Architecture and Design of Cray DataWarp,” in Proceedings
of the 2016 Cray User Group, London, 2016. [Online]. Available:
https://cug.org/proceedings/cug2016 proceedings/includes/files/pap105.pdf

