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Abstract

Variable selection is vital to statistical data analyses. Many of procedures in use are ad

hoc stepwise selection procedures, which are computationally expensive and ignore stochastic

errors in the variable selection process of previous steps. An automatic and simultaneous variable

selection procedure can be obtained by using a penalized likelihood method. In traditional linear

models, the best subset selection and stepwise deletion methods coincide with a penalized least-

squares method when design matrices are orthonormal. In this paper, we propose a few new

approaches to selecting variables for linear models, robust regression models and generalized

linear models based on a penalized likelihood approach. A family of thresholding functions

are proposed. The LASSO proposed by Tibshirani (1996) is a member of the penalized least-

squares with the L1-penalty. A smoothly clipped absolute deviation (SCAD) penalty function is

introduced to ameliorate the properties of L1-penalty. A uni�ed algorithm is introduced, which

is backed up by statistical theory. The new approaches are compared with the ordinary least-

squares methods, the garrote method by Breiman (1995) and the LASSO method by Tibshirani

(1996). Our simulation results show that the newly proposed methods compare favorably with

other approaches as an automatic variable selection technique. Because of simultaneous selection

of variables and estimation of parameters, we are able to give a simple estimated standard error

formula, which is tested to be accurate enough for practical applications. Two real data examples

illustrate the versatility and e�ectiveness of the proposed approaches.
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1 Introduction

Consider the usual linear regression model

y = X� + "; (1.1)

where y is an n � 1 vector and X is an n � d matrix. As in the traditional linear regression

setup, we assume that yi's are conditionally independent given the design matrix. The ordinary

least-squares estimate is given by b� = (XTX)�1XTy. To attenuate possible excessive modeling

biases, a large number of predictors are usually introduced at the initial stage of modeling. To

enhance predictability and to select signi�cant variables, statisticians usually apply three standard

techniques, stepwise deletion, subset selection and ridge regression, to improve the least-squares

estimate. However, while they are practically useful, these techniques are ad hoc and subjective.

The selection procedures usually ignore stochastic errors inherited in the previous stage of variable

selections. Hence, their theoretical properties are somewhat hard to understand. In an attempt

to automatically and simultaneously select variables, Tibshirani (1996) proposed a new approach,

called LASSO, retaining good features of both subset selection and ridge regression. LASSO in fact

coincides with a soft-thresholding rule when design matrices are orthonormal. See also the bridge

regression proposed in Frank and Friedman (1993).

There are strong connections between penalized least-squares method and variable selection in

linear regression models. When design matrices are orthonormal, the stepwise backward deletion

and the best subset selection methods are equivalent to a hard-thresholding rule. The latter can

be regarded as a solution to a penalized least-squares problem, as shown in Section 2. Figures

1 (a) and (b) show that the hard-thresholding rule sets small coeÆcients to 0 and keeps large

coeÆcients intact, and the soft-thresholding rule sets small coeÆcients 0 and shrinks the estimate

by a constant. Thus, the hard-thresholding rule results in an unstable model in the sense that a

small change of data can lead to a very di�erent model. This can create excessive variabilities in

prediction. On the other hand, while the soft-thresholding rule is continuous, it always shifts an

estimate by a constant. This would cause lot of biases if the thresholding parameter is large. In

the same spirit of Bruce and Gao (1997), Fan (1999) outlines a few thresholding rules which aim at

improving the properties of both the hard and soft thresholding rules. These new rules can also be

regarded as penalized least-squares. In particular, a smoothly clipped absolute deviation (SCAD)

penalty function is proposed to improve the L1 and the hard-thresholding penalty functions.
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In this paper, we propose a few new approaches to selecting variables for various linear regression

models based on a penalized likelihood approach in various statistical contexts. A few new penal-

ization functions are introduced. A uni�ed algorithm is proposed to handle the situations when

penalized functions are not smooth enough. This yields a uni�ed variable selection procedure. A

standard error formula for estimated coeÆcients is obtained by using a sandwich formula, via the

proposed iterative algorithm. The formula is tested accurately enough for practical purpose, even

though the sample size is very moderate. The proposed procedures are compared with various other

variable selection approaches. The results indicate favorable performance of the newly proposed

procedures.

In Section 2, we discuss the relationship between thresholding rules and subset selection when

design matrices are orthonormal. We then in Section 3 extend the penalized likelihood approach

discussed in Section 2 to various linear regression models, including traditional linear regression

models, robust linear regression models and generalized linear models. Based on local quadratic

approximations, a uni�ed iterative algorithm for �nding penalized likelihood estimators is proposed

at the end of Section 3. The formulas for covariance matrices of estimated coeÆcients are also

derived in this section. We illustrate our proposed approaches by two real data examples in Section

4. Two data-driven methods for �nding unknown thresholding parameters are discussed in Section

5. Numerical comparisons and simulation studies are also given in this section. Finally some

discussion is given in Section 6.

2 Penalized least-squares and variable selection

There are strong connections between thresholding rules and subset selection in linear regression

models. In this section we assume that the columns of X in (1.1) are orthonormal. Then the

least-squares estimate in the full model is b� = XTy, a part of the orthogonal transform of the

vector y.

2.1 Thresholding and variable selection

The backward stepwise deletion algorithm in the linear models is to delete a variable, one at a time,

with the smallest absolute t-value. For the orthonormal design matrix, this corresponds to delete

the variable with the smallest absolute value of estimated coeÆcients. When a variable is deleted,
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the remaining columns of design matrix X are still orthonormal and the estimated coeÆcients

remain unchanged. So in the second step, the algorithm deletes the variable that has the second

smallest estimated coeÆcient in the full model. If the stepwise backward deletion is carried out m

times, the remaining variables are those with the largest n�m values of jb�j. This is equivalent to
using a hard thresholding rule with a thresholding parameter between the mth and (m+1)th order

statistics of jb�j.
The soft-thresholding rule can be viewed similarly. Denote by z = XTy and assume that

" � N(0; �2In) in model (1.1). Then z is a multivariate normal random vector with independent

components. This allows us to consider a Gaussian white noise model:

zi = �i + "i with "i � N(0; �2) for i = 1; � � � ; d: (2.1)

Suppose that the �'s in (2.1) are sparse so that they can reasonably be modeled as an i.i.d. realiza-

tion from a double exponential distribution with a scale parameter �1. Then the Bayesian estimate

is the minimizer of
1

2

dX
i=1

(zi � �i)
2 + �

dX
i=1

j�ij; (2.2)

where � = �
2
=�1.

Minimization of (2.2) is equivalent to minimizing (2.2) component-wise. The solution to the

above problem yields the soft-thresholding rule (Figure 1(b))

b
�j = sgn(zj)(jzj j � �)+: (2.3)

This connection was observed by Donoho, Johnstone, Hoch and Stern (1992) and formed the core

of the LASSO method introduced by Tibshirani (1996). If the L1-penalty in (2.2) is replaced by

the Lq-penalty, it results in bridge regression proposed by Frank and Friedman (1993) and carefully

studied by Fu (1998). Particularly, when q = 2, it leads to the usual ridge regression.

2.2 Penalized least-squares and variable selection

Consider a general form of penalized least-squares:

1

2

dX
j=1

(zj � �j)
2 + �

dX
j=1

pj(j�j j): (2.4)

The penalty functions pj(�) in (2.4) are not necessarily the same for all j. For example, one may

wish to keep important predictors in a parametric model and hence is not willing to penalize their
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corresponding parameters. For simplicity of presentation, we will assume that the penalty functions

for all coeÆcients are the same, denoted by p(j�j). Furthermore, we denote �p(j�j) by p�(j�j) as

p(j�j) can be allowed to depend on �. Extensions to the case with di�erent thresholding functions

do not involve any extra diÆculties.

The minimization problem of (2.4) is equivalent to minimizing componentwise the penalized

least-squares problem:
1

2
(z � �)2 + p�(j�j): (2.5)

The solution to (2.5) is necessarily a thresholding when the minimum of the function j�j+�p0�(j�j) >

0 is positive. This is because the derivative function has no zero crossing for small values of jzj.

See Figure 2. The solution is continuous in jzj only when the minimum of � + �p
0(�) over � � 0 is

attained at 0, as shown in Figure 2. When p�(j�j) = �j�jq as in the bridge regression (Frank and

Friedman, 1993), the solution is continuous only when q � 1. However, when q > 1, the minimum

of � + p
0

�(�) is zero and hence it does not correspond to a thresholding rule. The only continuous

solution with a thresholding in this family is the L1 penalty, but this comes at a price of shifting

the resulting estimator by a constant � (see Figure 1 (b)).

In the discussion of Antoniadis (1999), Fan observed that the penalized least-squares estimator

with the penalty function p(j�j) = j�jI(j�j � �) + �=2I(j�j > �) leads to the hard-thresholding rule

b
� = zI(jzj > �): (2.6)

This penalty function does not over penalize the large value of j�j. In his response, Antoniadis

(1999) improves Fan's proposal by using the following hard thresholding penalty function:

p�(j�j) = �
2
� (j�j � �)2I(j�j < �): (2.7)

With the clipped L1-penalty function

p�(�) = �min(j�j; �) (2.8)

the solution is a mixture of soft and hard thresholding rule (Figure 1(c)):

b
� = sgn(z)(jzj � �)+I(jzj � 1:5�) + zI(jzj > 1:5�): (2.9)
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2.3 Smoothly clipped absolute deviation penalty

All of penalty functions introduced so far do not satisfy both mathematical conditions imposed in

the last paragraph for a continuous and thresholding rule. The continuous di�erentiable penalty

function de�ned by

p
0(�) = I(� � �) +

(a�� �)+

(a� 1)�
I(� > �) for some a > 2 and � > 0; (2.10)

improves the properties of the L1-penalty and the hard-thresholding penalty function given by

(2.7) (see Figure 4 and discussion below) . We will call this penalty function as smoothly clipped

absolute deviation (SCAD) penalty. This corresponds to a quadratic spline function with knots at

� and a�. This penalty function leaves large value of � not excessively penalized and makes the

solution continuous. The resulting solution is given by

b
� =

8><
>:

sgn(z)(jzj � �)+; when jzj � 2�;

f(a� 1)z � sgn(z)a�g=(a � 2); when 2� < jzj � a�;

z; when jzj > a�:

(2.11)

See Figure 1(d). This solution is due to Fan (1999). For simplicity of presentation, we will call all

procedures using the SCAD penalty as SCAD.

The thresholding rule in (2.8) involves two unknown parameters � and a. In practice, we

could search the best pair (�; a) over two dimensional grids using some criteria, such as cross-

validation and generalized cross-validation (Craven and Wahba, 1977). Such an implementation

can be computationally expensive. Motivated by the soft-thresholding, we assume that for given a

and �, the prior for � is a normal distribution with zero mean and variance a�. We computed the

Bayesian risk via numerical integration. Figure 3(a) depicts the Bayesian risk as a function of a

under the squared loss, for the universal thresholding � =
p
2 log(d) (see Donoho and Johnstone,

1994) with d = 20; 40; 60 and 100, and Figure 3(b) is for d = 512, 1024, 2048 and 4096 . From

Figures 3(a) and 3(b), the Bayesian risks achieve their minimums when a � 3:7. It can be seen

from these two �gures that the Bayesian risks are not very sensible with the values of a. This choice

gives pretty good practical performance for various variable selection problems. Indeed, from the

simulations in Section 5.3, the choice of a = 3:7 works similarly to that chosen by the GCV method.
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2.4 Performance of thresholding rules

To gauge the performance of the four thresholding rules, Figure 3(c) depicts their L2 risk functions

R(b�; �) = E�(b� � �)2 under the Gaussian model Z � N(�; 1). To make the scale of thresholding

parameters roughly comparable, we took � = 2 for the hard thresholding rule, and adjusted the

values of � for other thresholding rules so that their estimated values are the same when z = 3. The

SCAD performs favorably comparing with the other three rules. This can also be understood via

their corresponding penalty functions plotted in Figure 4. It is clear that the SCAD retains good

mathematical properties of the other three thresholding penalty functions. Hence, it is expected to

perform the best.

3 Variable selection via penalized likelihood

The methodology in the previous section can be directly applied to many other statistical contexts.

In this section we consider general linear regression models, robust linear models and likelihood

based generalized linear models. From now on, we assume that the design matrix X = (xij) is

standardized so that each column has mean zero and variance one.

3.1 Penalized least-squares and likelihood

In classical linear regression models, the least-squares estimate is obtained via minimizing the sum

of squared residual errors. Therefore (2.4) can be naturally extended to the situation in which

design matrices are not orthonormal. Similar to (2.4), a general form of penalized least-squares is

1

2n

nX
i=1

(yi � xTi �)
2 +

dX
j=1

p�(j�j j)

or equivalently

1

2
(y�X�)T (y�X�) + n

dX
j=1

p�(j�j j): (3.1)

Minimizing (3.1) with respect to � leads to a penalized least-squares estimator of �.

It is well known that the least-squares estimate is not robust, one can consider the outlier-

resistant loss functions such as the L1-penalty or more general Huber's  -function (see Huber
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(1981)). Therefore instead of minimizing (3.1), we minimize

nX
i=1

 (jyi � xi�j) + n

dX
j=1

p�(j�j j): (3.2)

with respect to �. This results in a robust least-squares estimator.

For generalized linear models, statistical inferences are based on underlying likelihood functions.

The penalized maximum likelihood estimator can be used to select signi�cant variables. Assume

that the collected data (xi; Yi) are independent samples. Conditioning on xi, Yi has a density

fi(g(x
T
i �); yi), where g is a known link function. Denoted by `i = log fi, the conditional log-

likelihood of Yi. A general form of penalized likelihood is

�

nX
i=1

`i(g(x
T
i �); yi) + n

dX
j=1

p�(j�j j): (3.3)

To obtain a penalized maximum likelihood estimator of �, we minimize (3.3) with respect to � for

some thresholding parameter �.

3.2 A uni�ed algorithm

Finding solutions for minimization problems in (3.1), (3.2) and (3.3) is not an easy task. Tibshirani

(1996) proposed algorithm of solving constrained least-squares problems for LASSO, while Fu

(1998) provided a shooting algorithm for LASSO. We in this section propose a uni�ed algorithm

for minimization problems (3.1), (3.2) and (3.3) via local quadratic approximations. The �rst term

in (3.1), (3.2) and (3.3) may be regarded as a loss function of �. Denote it by `(�). Then, the

expressions (3.1), (3.2) and (3.3) can be written in a uni�ed form as

`(�) + n

dX
j=1

p�(j�j j): (3.4)

The clipped L1 penalty p�(x) in (2.8) is not di�erentiable. However it can be locally approximated

by a quadratic function as follows. Suppose that we are given an initial value �0 that is close to the

minimizer of (3.4). Then the penalty p�(j�j j) can be locally approximated by fp�(j�j0j)=�
2
j0g�

2
j for

�j � �j0 when �j0 is not very close to 0, otherwise, set b�j = 0 (see Figure 4(c)). When p�(j�j j) is

di�erentiable except at the point zero, it can be locally approximated by the quadratic function as

[p�(j�j j)]
0 = p

0

�(j�j j)sgn(�j) � fp
0

�(j�j0j)=j�j0jg�j ;
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when �j > 0. In other words,

p�(j�j j) � p�(j�j0j) +
1

2
p
0

�(j�j0j)(�
2
j � �

2
j0); for �j � �j0:

In the algorithm below, we always use the second type of approximation whenever p�(j�j j) has

the derivative function except at point 0. Figure 4 shows the above two approximations for a few

di�erent values of �j0. A drawback of this approximation is that once a coeÆcient is shrunk to

zero, it will retain zero. However, this method reduces signi�cantly computational burden.

If `(�) is L1 loss as used in (3.2), then it does not have continuous second order partial derivatives

with respect to �. However,  (jy � xT�j) in (3.2) can be analogously approximated by f (y �

xT�0)=(y�x
T�0)

2g(y�xT�)2, as long as the initial value �0 of � is close to the minimizer. When

the some of the residuals jy � xT�0j are small, this approximation is not very good. See Section

3.3 for some slight modi�cation of this approximation.

Now assume that the log-likelihood function is smooth with respect to � so that its �rst two

partial derivatives are continuous. Thus the �rst terms in (3.4) can be locally approximated by

a quadratic function. Therefore the minimization problem (3.4) can be reduced to a quadratic

minimization problem and the Newton-Raphson algorithm can be used. In particularly, when

p
0

�(j�j) has the �rst derivative except at the point 0, (3.4) can be locally approximated (except a

constant term) by

`(�0) +r`(�0)
T (� � �0) +

1

2
(� � �0)

T
r

2
`(�0)(� � �0) +

1

2
n�T��(�0)�; (3.5)

where

r`(�0) =
@`(�0)

@�
; r

2
`(�0) =

@
2
`(�0)

@�@�T
; ��(�0) = diagfp0�(j�10j)=j�10j; � � � ; p

0

�(j�d0j)=j�d0jg:

The quadratic minimization problem (3.5) yields the solution

�1 = �0 � fr
2
`(�0) + n��(�0)g

�1
fr`(�0) + nU�(�0)g; (3.6)

where U�(�0) = ��(�0)�0. When the algorithm converges, and the second type of approximation

is used, the estimator satis�es the condition

@`(b�0)

@�j
+ np

0

�(j
b
�j0j)sgn(b�j0) = 0;
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the penalized likelihood equation, for non-zero elements of b�0. Speci�cally, for the penalized least-

squares problem (3.1), the solution can be found by iteratively using the following ridge regression:

�1 = fXTX+ n��(�0)g
�1XTy:

Similarly we obtain the solution for (3.2) by iterating

�1 = fXTWX+
1

2
n��(�0)g

�1XTWy:

where W = diagf (jy1 � xT1 �0j)=(y1 � xT1 �0)
2
; � � � ;  (jyn � xTn�0j)=(yn � xTn�0)

2g.

Like in the maximum likelihood estimation (MLE) setting, with good initial value �0, the one-

step procedure can be as eÆcient as the fully iterative procedure, namely, the penalized maximum

likelihood estimator, when one uses the Newton-Raphson algorithm (See Bickel (1975)). Now

regarding �(k�1) as a good initial value at the k-th step, the next iteration can also be regarded as

a one-step procedure and hence the resulting estimator can still be as eÆcient as the fully iterative

method. See Robinson (1988) for theory on the di�erence between the MLE and k-step estimators.

Therefore estimators obtained by the aforementioned algorithm after a few iterations can always be

regarded as a one-step estimator, which is as eÆcient as the fully iterative method. In this sense,

one does not have to iterate the algorithm above until it converges as long as the initial estimators

are good enough. The estimators from the full models can be used as initial estimators, as long as

they are not excessively overly parameterized.

3.3 Standard formula

The standard errors for estimated parameters can be directly obtained because we are estimating

parameters and selecting variables at the same time. Following the conventional technique in the

likelihood setting, the corresponding sandwich formula in (3.6) can be used as an estimator for the

conditional covariance of the estimates b�, conditioning on fx1; � � � ;xng. That is,
dcov(b�) = fr

2
`(b�) + n��(b�)g�1dcovfr`(b�)gfr2

`(b�) + n��(b�)g�1
: (3.7)

This formula is tested to have good accuracy for moderate sample sizes.

When the L1-loss is used in the robust regression, some slight modi�cations are needed in the

aforementioned algorithm and its corresponding sandwitch formula. For  (x) = jxj, the diagonal

elements of W are fjrij
�1g with ri = yi � xTi �0. Thus, for a given current value of �0, when some
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of residuals frig are close to 0, these points receive too much weights. Hence, we replace the weight

by (an + jrij)
�1. In our implementations, we took an as 2n�1=2 quantile of the absolute residuals

fjrij; i = 1; � � � ; ng. Thus, the constant an is changing from iteration to iteration.

3.4 Testing convergence of the algorithm

We now demonstrate that our algorithm converges to the right solution. To this end, we took

a 100 dimensional vector � consisting of 50 zeros and other nonzero elements being generated

from N(0; 52) and used a 100 � 100 orthonormal design matrix X. We then generated a response

vector y from the linear model (1.1). We chose an orthonormal design matrix for our testing

case, because the penalized least-squares has a closed form mathematical solution so that we can

compare our output with the mathematical solution. Our experiment did show that the proposed

algorithm converged to the right solution. It took MATLAB codes 0.27, 0.39, 0.16 seconds for the

penalized least-squares with SCAD, L1 and hard-thresholding penalties to converge. The numbers

of iterations are respectively 30, 30 and 5 for the penalized least-squares with the SCAD, L1 and

the hard-thresholding penalty. In fact, after 10 iterations, the penalized least-squares estimators

are already very close to the true one.

4 Examples

In this section we consider two real data examples. We �rstly apply the proposed penalized least-

squares approaches to an environmental data set, collected in Hong Kong from January 1, 1994

to December 31, 1995 (Courtesy of Professor T. S. Lau), which consists of daily measurements

of pollutants and other environmental factors. We also apply the proposed penalized likelihood

method to analyze another data set: Burns data, collected by General Hospital Burn Center at the

University of Southern California.

Example 4.1. For the environmental data set, one is interested in studying the association between

levels of pollutants and the number of daily total hospital admissions for respiractionary problems

on every Monday from January 1, 1994 to December 31, 1995. In this data set we used 114

observations and took the response variable Y as the number of daily total admissions. Seven

covariates were considered: three binary seasonal covariates: Spring S1, Summer S2 and Autumn
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S3, and four continuous covariates for daily measurements of pollutants and time: the level of

pollutants Sulfur Dioxide X1, Nitrogen Dioxide X2, and dust X3 and time T . We then included

all quadratic terms and interaction terms of the four continuous covariates. This gives a total of

17 predictor variables. Before using the penalized least-squares method, the response variable Y

and all 17 covariates were standardized individually. We �tted a linear regression model without

intercept as both response and predictors were normalized. The thresholding parameter � is chosen

by generalized cross-validation (see Section 5.2 below). They are 0.0785, 0.0157 and 0.0157 for the

penalized least-squares with the SCAD, L1 (LASSO) and hard thresholding penalties, respectively.

The value of a in the SCAD was set to be 3.7. To �nd the best subset, we searched exhaustively

over all possible subsets and selected the subset with best BIC score. The computational time

for each of the three penalized least-squares including searching the unknown parameter � over 15

grids via generalized cross-validation was less than 2 seconds; while it spent more than 4 minutes

in searching for the best subset. With the selected �, the penalized least-squares estimators were

obtained at the 17th, 9th and 7th step of iterations for the SCAD, LASSO and hard thresholding,

respectively. We also computed the �ve-step estimators, it took us less than one second, yet the

di�erences between the full iteration estimator and �ve-step estimator were less than one percent.

Estimated coeÆcients and standard errors for the transformed data are presented in Table 1.

From Table 1, the performance of the SCAD is very good. Comparing with the best subset

selection, the SCAD included terms X3, X
2
2 and X2X3 rather than X2. These three predictors

X3, X
2
2 and X2X3 are quite signi�cant in the least-squares estimate, while X2 is not. Furthermore

X2 is also deleted by LASSO, and X3 and X2
2 are selected by LASSO. Comparing with LASSO,

the SCAD selected variables X2X3 instead of S3 excluded also by the best subset selection. The

estimated coeÆcients of T and T
2 were shrunk too much by the LASSO. See Example 5.3 for

further remark on this. Compared with the penalized least-squares with the hard thresholding

penalty, the SCAD excluded terms S3 and TX3 that are not statistically signi�cant.

From Table 1, we may exclude the predictor S3 because the weather in Hong Kong is not

signi�cantly di�erent between Autumn and Winter. All interactions between time and pollutant

factors are not signi�cant. All predictors related with Sulfur Dioxide are not statistically signi�cant.

However, it should be noted that time and Sulfur Dioxide pollutant may have interaction. Both

Nitrogen Dioxide and dust are important factors to the number of daily total admissions.
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Example 4.2 We in this example apply the proposed penalized likelihood methodology to the

Burns data. The data set consists of 981 observations. The binary response variable Y is 1 for those

victims who survived their burns and 0 otherwise. Covariates X1 = age, X2 = sex, X3 =log(burn

area +1) and binary variable X4 = Oxygen (0 normal, 1 abnormal) were considered. Quadratic

terms of X1 and X3, and all interaction terms were included. The intercept term was added and the

logistic regression model was �tted. The unknown parameter � was chosen by generalized cross-

validation. They are 0.6932, 0.0015 and 0.8062 for the penalized likelihood estimates with the

SCAD, L1 and hard-thresholding penalties respectively. The constant a in the SCAD was taken as

3.7. It took about 2 minutes for �nding each of the three penalized likelihood including searching

for the thresholding parameter � via generalized cross-validation, while it spent more than �ve

hours in searching the best subset! With the selected �, the penalized likelihood estimator was

obtained at the 6th, 28th and 5th step iterations for the penalized likelihood with SCAD, L1 and

hard-thresholding penalties, respectively. We also computed ten-step estimators it took us less than

50 seconds for each penalized likelihood estimator, and the di�erences between the full iteration

estimators and the ten-step estimators are less than one percent. The estimated coeÆcients and

standard errors for the transformed data, based on the penalized likelihood estimators, are reported

in Table 2.

From Table 2, the best subset procedure chooses 5 out of 13 covariates, while the SCAD chooses

4 covariates. The di�erence between them is that the best subset keeps X4. LASSO chooses the

quadratic term of X1 and X3 rather than their linear terms. It also selects an interaction term

X2X3, which may not be statistically signi�cant. It seems again that LASSO shrinks coeÆcients

noticeably large. In this example, the penalized likelihood with the hard thresholding penalty

retains too many predictors. Particularly, it selects variables X2 and X2X3. This may not very

reasonable as gender should not play an important role in determining the survival probability of

a victim.

5 Simulations

5.1 Prediction and model error

The prediction error is de�ned as the average error in prediction Y given x for future cases not

used in the construction of a prediction equation. There are two regression situations, X-random
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and X-controlled. In the case that X is random, both Y and x are randomly selected. In the

controlled situation, design matrices are selected by experimenters and only y is random. For ease

of presentation, we consider only the X-random case.

In X-random situations, the data (xi; Yi) are assumed a random sample from its parent dis-

tribution (x; Y ). Then, if b�(x) is a prediction procedure constructed using the present data, the

prediction error is de�ned as

PE(b�) = EfY � b�(x)g2;
where the expectation is only taken with respect to the new observation (x; Y ). The predictor error

can be decomposed as

PE(b�) = EfY �E(Y jx)g2 +EfE(Y jx)� b�(x)g2:
The �rst component is inherent due to stochastic errors. The second component is due to lack of �t

to an underlying model. This component is called model error and is denoted by ME(b�): The size
of the model error re
ects performances of di�erent model selection procedures. If Y = xT� + ";

where E("jx) = 0; then ME(b�) = (b� � �)TE(xxT )(b� � �).

5.2 Selection of thresholding parameters

To implement the methods described in Sections 2 and 3, we need to estimate the thresholding

parameters � and a. Denote by � the tuning parameters to be estimated, i.e., � = (�; a) for the

SCAD, while � = � for other thresholdings. Here we discuss two methods of estimating �: �vefold

cross-validation and generalized cross-validation, as suggested by Breiman (1995), Tibshirani (1996)

and Fu (1998).

For completeness, we now describe the details of the cross-validation procedures. Denote

`fb�(�)g by the �rst term in (3.4) replacing � by its estimate b� obtained when the tuning pa-

rameters � are used. Then `fb�(�)g can be regarded as a measure of goodness of �t. The �vefold

cross-validation procedure is as follows: Denote the full training set by T , and cross-validation

training and test set by T � T
� and T �, for � = 1; � � � ; 5: For each � and �, we �nd the estimator

b�(�)
(�) of � using the training set T � T

� . Let `�fb�(�)g be the `fb�(�)g for test set T � . Form the

cross-validation criterion as

CV(�) =
5X

�=1

`�f
b�(�)g:

13



We �nd a b� that minimizes CV(�).

The second method is the generalized cross-validation. For linear regression models, we update

the solution by

�1(�) = fXTX+ n��(�0)g
�1XTy:

Thus the �tted value by of y is XT
fXTX+ n��(�0)g

�1XTy, and

PXf
b�(�)g = XT

fXTX+ n��(b�)g�1XT

can be regarded as a projection matrix. De�ne the number of e�ective parameters in the penalized

least-squares �t as e(�) = tr[PXf
b�(�)g]: Therefore the generalized cross-validation statistic is

GCV(�) =
1

n

`fb�(�)g
f1� e(�)=ng2

and b� = argmin�fGCV(�)g. Similarly the corresponding generalized cross-validation statistics can

be de�ned for robust regression models and likelihood based linear models.

5.3 Simulation study

In the following examples, we numerically compare the proposed variable selection methods with or-

dinary least-squares, ridge regression, best subset selection and non-negative garrote (see Breiman

(1995)). All simulations are conducted using MATLAB codes. We directly used the constraint

least-squares module in MATLAB for �nding non-negative garrote estimate. As recommended in

Breiman (1995), a �ve-fold cross-validation was used to estimate the tuning parameter for the non-

negative garrote. For other model selection procedures, both �ve-fold cross-validation and general-

ized cross-validation were used for estimating thresholding parameters. However, their performance

are similar. Therefore we only present the results based on the generalized cross validation.

Example 5.1.(Linear regression)

In this example we simulated 100 data sets consisting of n observations from the model (Tib-

shirani, 1996)

Y = xT� + �";

where � = (3; 1:5; 0; 0; 2; 0; 0; 0)T and the components of x and " are standard normal. The corre-

lation between xi and xj is �
ji�jj with � = 0:5. This is a model used in Tibshirani (1996). Firstly
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we chose n = 40 and � = 3. Then we reduced � to 1 and increased the sample size to 60. The

model error of the proposed procedures are compared to that of the least-squares estimator. The

Median of Relative Model Errors (MRME) over 100 simulated data sets are summarized in Table

3. The top panel of Figure 5 depicts the boxplots of the relative model errors.

From Figure 5 and Table 3, it can be seen that when noise level is high and sample size is small,

LASSO performs the best and it signi�cantly reduces both model error and model complexity; while

ridge regression only reduces model error. The other variable selection procedures also reduce model

error and model complexity. However, when the noise level is reduced, the SCAD outperforms the

LASSO and other penalized least-squares. Ridge regression performs very poorly. The best subset

selection method performs quite similarly to the SCAD. The nonnegative garrote performs quite

well in various situations. Comparing with the �rst two rows in Table 3, one can see that the choice

of a = 3:7 is very reasonable. Therefore we used it for other examples in this paper.

We now test the accuracy of our standard error formula (3.7). The median of absolute deviation

divided by 0:6745, denoted by SD in Table 4, of 100 estimated coeÆcients in the 100 simulations can

be regarded as the true standard error. The median of the 100 estimated SDs, denoted by SDm,

and the median of absolute deviation error of 100 estimated standard errors divided by 0:6745,

denoted by SDmad, gauge the overall performance of the standard error formula (3.7). Table 4

presents only the results for non-zero coeÆcients when the sample size n = 60. The results for

the other two cases with n = 40 are similar. Table 4 suggests that the sandwich formula performs

surprisingly well.

Example 5.2. (Robust regression)

In this example, we simulated 100 data sets consisting of 60 observations from the model

Y = xT� + ";

where � and x are the same as those in Example 1. The " is drawn from the standard normal

distribution with 10% outliers from the standard Cauchy distribution. The simulation results are

summarized in Table 5. Figure 5(d) presents the boxplots of the relative model errors. From Table

5, it can be seen that the SCAD outperforms somewhat other procedures. The true and estimated

standard deviations of estimators via sandwich formula (3.7) are shown in Table 6. It indicates

that the performance of the sandwich formula is very good.
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Example 5.3. (Logistic regression)

In this example, we simulated 100 data sets consisting of 200 observations from the model

Y � Bernoulli(p(xT�)); where p(u) = exp(u)=(1 + exp(u)), and the �rst six components of x

and � are the same as those in Example 1. The last two components of x are independently

identically distributed as a Bernoulli distribution with probability of success 0:5. All covariates

are standardized. Model errors are computed via 1000 Monte Carlo simulations. The summary

of simulation results is depicted in Tables 7 and 8. Figure 5(e) shows the boxplots of the relative

model errors. From Table 7, it can be seen that the performance of the SCAD is much better than

other two penalized likelihood estimates. From Figure 5(e), the variations of the relative model

errors of the four procedures are almost same. It can be seen from Table 8 that our standard error

estimator works well.

We would like to remark that the estimated SDs for L1-penalized likelihood estimator (LASSO)

are consistently smaller than the SCAD and the penalized likelihood method with the hard-

thresholding procedure, yet its overall MRME is larger than that of the SCAD. This implies that

the biases in the L1-penalized likelihood estimators are large. This remark applies to all of our

examples. Indeed, it can be seen from Table 2 that all coeÆcients were shrunk noticeably large by

LASSO.

Example 5.4. (Poisson log-linear regression)

In this example, we simulated 100 data sets consisting of 60 observations from the model

Y � Poissonf�(xT�)g; where �(u) = exp(u), x is the same as that in Example 5.3, and � =

(1:2; 0:6; 0; 0; 0:8; 0; 0; 0)T . Model errors were obtained by 1000 Monte Carlo simulations. Tables 9

and 10 show the simulation results. Figure 5(f) depicts the boxplots of the relative model errors.

From Figure 5(f), the variations of the relative model errors of the four procedures are almost same.

In terms of model errors, the performance of the best subset selection method and the SCAD are

much better than the other two. Table 10 shows that the standard error estimator works very

reasonably.
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6 Discussions

We propose a variable selection method via penalized likelihood approaches. A family of penalty

functions are introduced. The methods are shown to be e�ective and the standard errors are

estimated with good accuracy. A uni�ed algorithm is proposed for minimizing penalized likelihood

function, which is usually a sum of convex and concave functions. Our algorithm is backed up

by statistical theory and hence gives estimators with good statistical properties. Comparing with

the best subset method, which is very time consuming, the newly proposed methods are much

faster, more e�ective and have strong theoretical backup. They select variables simultaneously via

optimizing a penalized likelihood and hence the standard errors of estimated parameters can be

estimated accurately. The LASSO proposed by Tibshirani (1996) is a member of this penalized

likelihood family with L1-penalty. It has good performance when noise to signal ratio is large, but

the bias created by this approach is noticeably large. See also the remarks in Example 5.3. The

newly proposed penalty function, called Smoothly Clipped Absolute Deviation (SCAD) penalty

function, gives the best performance in selecting signi�cant variables without creating excessive

biases. The approach proposed here can be applied to other statistical contexts without any extra

diÆculties.
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Table 1. Estimated coeÆcients and standard errors for Example 4.1

Method LS best subset SCAD LASSO hard

S1 0.39 (0.03) 0.40 (0.03) 0.35 (0.09) 0.35 (0.09) 0.34 (0.10)

S2 0.14 (0.04) 0.23 (0.03) 0.17 (0.07) 0.16 (0.09) 0.18 (0.11)

S3 -0.09 (0.03) 0 (�) 0 (�) -0.06 (0.07) -0.08 (0:10)

T 1.57 (0.13) 1.71 (0.11) 1.77 (0.33) 1.21 (0.21) 1.93 (0.36)

X1 -0.12 (0.12) 0 (�) 0 (�) 0 (�) 0 (�)

X2 -0.20 (0.18) 0.44 (0.03) 0 (�) 0 (�) 0 (�)

X3 0.64 (0.17) 0 (�) 0.77 (0.33) 0.17 (0.09) 0.87 (0.34)

T
2 -0.92 (0.11) -1.12 (0.11) -1.18 (0.33) -0.63 (0.21) -1.16 (0.33)

X
2
1 -0.07 (0.08) 0 (�) 0 (�) 0 (�) 0 (�)

X
2
2 0.67 (0.30) 0 (�) 0.84 (.33) 0.23 (0.10) 0.80 (0.33)

X
2
3 0.05 (0.15) 0 (�) 0 (�) 0 (�) 0 (�)

TX1 0.24 (0.07) 0 (�) 0 (�) 0 (�) 0 (�)

TX2 0.12 (0.15) 0 (�) 0 (�) 0 (�) 0 (�)

TX3 -0.39 (0.11) 0 (�) 0 (�) 0 (�) -0.23 (0:23)

X1X2 -0.25 (0.20) 0 (�) 0 (�) 0 (�) 0 (�)

X1X3 0.18 (0.17) 0 (�) 0 (�) 0 (�) 0 (�)

X2X3 -0.66 (0.36) 0 (�) -1.10 (0.59) 0 (�) -1.03 (0.59)

Table 2. Estimated coeÆcients and standard errors for Example 4.2

Method MLE best subset SCAD LASSO hard

intercept 5.51 (0.75) 6.12 (0.57) 6.09 (0.29) 3.70 (0.25) 5.88 (0.41)

X1 -8.83 (2.97) -12.15 (1.81) -12.24 (0.08) 0 (�) -11.32 (1.1)

X2 2.30 (2.00) 0 (�) 0 (�) 0 (�) 2.21 (1.41)

X3 -2.77 (3.43) -6.93 (0.79) -7.00 (0.21) 0 (�) -4.23 (0.64)

X4 -1.74 (1.41) -0.29 (0.11) 0 (�) -0.28 (0.09) -1.16 (1.04)

X
2
1 -0.75 (0.61) 0 (�) 0 (�) -1.71 (0.24) 0 (�)

X
2
3 -2.70 (2.45) 0 (�) 0 (�) -2.67 (0.22) -1.92 (0.95)

X1X2 0.03 (0.34) 0 (�) 0 (�) 0 (�) 0 (�)

X1X3 7.46 (2.34) 9.83 (1.63) 9.84 (0.14) 0.36 (0.22) 9.06 (0.96)

X1X4 0.24 (0.32) 0 (�) 0 (�) 0 (�) 0 (�)

X2X3 -2.15 (1.61) 0 (�) 0 (�) -0.10 (0.10) -2.13 (1.27)

X2X4 -0.12 (0.16) 0 (�) 0 (�) 0 (�) 0 (�)

X3X4 1.23 (1.21) 0 (�) 0 (�) 0 (�) 0.82 (1.01)
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Table 3. Simulation results for linear regression models

Method MRME(%) Aver. no. MRME(%) Aver. no. MRME(%) Aver. no.

of 0 Coe�. of 0 Coe�. of 0 Coe�.

n = 40; � = 3 n = 40; � = 1 n = 60; � = 1

SCAD1 72.90 4.41 54.81 4.29 47.54 4.37

SCAD2 69.03 4.58 47.25 4.34 43.79 4.42

LASSO 63.19 3.60 63.19 3.51 65.22 3.56

Hard 73.82 4.28 69.72 3.93 71.11 4.02

Ridge 83.28 0 95.21 0 97.36 0

Best subset 68.26 4.85 53.60 4.54 46.11 4.73

Garrote 76.90 2.89 56.55 3.35 55.90 3.38

Note that the value of a SCAD1 is obtained by generalized cross-validation,

while the value of a in SCAD2 is 3.7.

Table 4. Standard deviations of estimators for linear regression models (n = 60)

b
�1

b
�2

b
�5

Method SD SDm(SDmad) SD SDm(SDmad) SD SDm(SDmad)

SCAD1 0.166 0.161 (0.021) 0.170 0.160 (0.024) 0.148 0.145 (0.022)

SCAD2 0.161 0.161 (0.021) 0.164 0.161 (0.024) 0.151 0.143 (0.023)

LASSO 0.164 0.154 (0.019) 0.173 0.150 (0.022) 0.153 0.142 (0.021)

Hard 0.169 0.161 (0.022) 0.174 0.162 (0.025) 0.178 0.148 (0.021)

Best subset 0.163 0.155 (0.020) 0.152 0.154 (0.026) 0.152 0.139 (0.020)

Table 5. Simulation results for robust linear models

Method MRME(%) Aver. no. of 0 Coe�.

SCAD (a=3.7) 35.52 4.71

LASSO 52.80 4.29

Hard 47.22 4.70

Best subset 41.53 5.03

Table 6. Standard deviations of estimators for robust regression models

b
�1

b
�2

b
�5

Method SD SDm(SDmad) SD SDm(SDmad) SD SDm(SDmad)

SCAD 0.167 0.171 (0.018) 0.185 0.176 (0.022) 0.165 0.155 (0.020)

LASSO 0.158 0.165 (0.022) 0.159 0.167 (0.020 0.182 0.154 (0.019)

Hard 0.179 0.168 (0.018) 0.176 0.176 (0.025) 0.157 0.154 (0.02)

Best subset 0.198 0.172 (0.023) 0.185 0.175 (0.024) 0.199 0.152 (0.023)
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Table 7. Simulation results for logistic regression

Method MRME(%) Aver. no. of 0 Coe�.

SCAD(a=3.7) 26.48 5.02

LASSO 53.14 3.76

Hard 59.06 4.27

Best subset 31.63 4.85

Table 8. Standard deviations of estimators for logistic regression

b
�1

b
�2

b
�5

Method SD SDm(SDmad) SD SDm(SDmad) SD SDm(SDmad)

SCAD (a = 3:7) 0.571 0.538 (0.107) 0.383 0.372 (0.061) 0.432 0.498 (0.065)

LASSO 0.310 0.379 (0.037) 0.285 0.284 (0.019) 0.244 0.287 (0.019)

Hard 0.675 0.561 (0.126) 0.428 0.400 (0.062) 0.467 0.421 (0.079)

Best subset 0.624 0.547 (0.121) 0.398 0.383 (0.067) 0.468 0.412 (0.077)

Table 9. Simulation results for Poisson log-linear regression

Method MRME(%) Aver. no. of 0 Coe�.

SCAD(a=3.7) 48.00 3.61

LASSO 60.93 3.60

Hard 70.07 3.66

Best subset 33.96 4.71

Table 10. Standard deviations of estimators for linear regression models

b
�1

b
�2

b
�5

Method SD SDm(SDmad) SD SDm(SDmad) SD SDm(SDmad)

SCAD (a = 3:7) 0.080 0.079 (0.014) 0.093 0.084 (0.016) 0.079 0.072 (0.016)

LASSO 0.086 0.078 (0.013) 0.101 0.082 (0.016) 0.083 0.074 (0.017)

Hard 0.084 0.080 (0.015) 0.100 0.086 (0.019) 0.081 0.075 (0.020)

Best subset 0.081 0.079 (0.016) 0.080 0.083 (0.018) 0.079 0.068 (0.016)
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Figure 1: Plot of thresholding estimators (with � = 2) against the least-squares estimate. (d)

corresponds to the SCAD (2.11) with a = 3:7.
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Figure 2: A plot of � + p
0

�(�) against � (� > 0). For a small value z1 > 0, the derivative function

� + p
0

�(�) � z1 is above zero and hence the solution to the penalized least-squares problem (2.5) is

zero. The minimizer is continuous in z only when the minimum of � + p
0

�(�) is attained at zero.
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Figure 3: Risk functions of proposed procedures under the quadratic loss. (a) and (b) are posterior

risk functions of the penalized smoothly clipped-L1 estimator under the prior � � N(0; a�) using

the universal thresholding � =
p
2 log(d) for 4 di�erent values d; the solid, dashed, dashdot and

dotted lines are for d = 20; 40; 60 and 100, respectively. The caption for (b) is similar to those for

(a) with the solid, dashed, dashdot, dotted lines for d = 512, 1024, 2048 and 4096, separately. (c)

Risk functions of the four di�erent thresholding rules. The solid, dashed, dashdot and dotted lines

are for minimum SCAD, hard, mixture and soft thresholding rules.
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Figure 4: Four penalties p�(�) and their quadratic approximations. The values of � are the same

as those in Figure 3(c).
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Figure 5: Boxplots of relative model errors. From left to right, the order in the top panel is SCAD1,

SCAD2, LASSO, hard, ridge, best subset and nonnegative garrote. The order from left to right in

the bottom panel is SCAD (a=3.7), LASSO, hard and best subset.
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