
UC Davis
UC Davis Previously Published Works

Title
Metabolic engineering in woody plants: challenges, advances, and opportunities

Permalink
https://escholarship.org/uc/item/8j299218

Journal
aBIOTECH, 2(3)

ISSN
2096-6326

Authors
Yu, Shu
Bekkering, Cody S
Tian, Li

Publication Date
2021-09-01

DOI
10.1007/s42994-021-00054-1
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8j299218
https://escholarship.org
http://www.cdlib.org/


REVIEW

Metabolic engineering in woody plants: challenges, advances,
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Abstract Woody plant species represent an invaluable reserve of biochemical diversity to which metabolic
engineering can be applied to satisfy the need for commodity and specialty chemicals, pharmaceuticals,
and renewable energy. Woody plants are particularly promising for this application due to their low
input needs, high biomass, and immeasurable ecosystem services. However, existing challenges have
hindered their widespread adoption in metabolic engineering efforts, such as long generation times,
large and highly heterozygous genomes, and difficulties in transformation and regeneration. Recent
advances in omics approaches, systems biology modeling, and plant transformation and regeneration
methods provide effective approaches in overcoming these outstanding challenges. Promises brought
by developments in this space are steadily opening the door to widespread metabolic engineering of
woody plants to meet the global need for a wide range of sustainably sourced chemicals and materials.
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INTRODUCTION

Woody plants are resilient perennials defined by their
characteristic woody stems and large root systems.
Woody plants are a highly diverse group that is poly-
phyletic in origin and have both flowering and non-
flowering members. Many species of woody plants have
evolved since their origins around 380 million years
ago, and they have since come to dominate various
landscapes around the globe (Wilson et al. 2017). In
contrast to herbaceous plants that can employ the
strategy of escaping and avoiding stresses by dispersing
their seeds (Chelli-Chaabouni 2014; Sade et al. 2018),
perennial woody plants must tolerate stresses in the
areas they occupy. Woody plants invest a large amount
of energy in vegetative growth (e.g. producing wood)
and have well-developed xylem, phloem, and root

system that enable them to survive diverse environ-
ments and stress conditions. In this regard, some
monocot species such as palm, though lacking sec-
ondary growth characteristics of true wood, have sub-
stantial metabolic investment in vegetative growth that
affords them resilience comparable to true woody
plants.

Approximately 80% of the biomass on Earth is stored
in forests comprised of diverse woody plant flora. This
immense genetic diversity remaining in woody plants
serves as a precious deposit of untapped metabolic
pathways that provides raw materials for metabolic
engineering. The value and novelty of woody plant
metabolism are paralleled in scale by their immense
size and growth rate, raising promise for their use as a
sustainable platform for metabolic engineering (Fig. 1).
Because of the large biomass available from woody
plants after establishment, high yield of desirable bio-
products can be achieved—yields that can be further
expanded in some systems through short rotation
planting or coppicing schemes (Ragauskas et al. 2006).
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Perennial woody plant cultivation can operate with less
inputs, such as fertilizer, water, and labor, and can also
adapt to different environments including land too
marginal for conventional food crops, lowering their
impact on the global food system. Woody plants are
favored for biofuel production from lignocellulosic bio-
mass as it is not derived from food crops, also lowering
their strain on the global food system (Bryant et al.
2020; Choi et al. 2020). Moreover, the ecological bene-
fits of woody plants are also considerable—contributing
habitat, shade, erosion protection, and soil carbon
sequestration. This suite of advantages makes woody
plants a sound platform for metabolic engineering in the
sustainable bioeconomy of tomorrow.

Despite the broad advantages of leveraging woody
plant systems for metabolic engineering, they present
unique challenges also (Fig. 1). The life cycle of woody
plants is often long and prohibitive to engineering
approaches that require multiple generations. In addi-
tion, many valuable phytochemicals produced by woody
plants are low in accumulation—with some being syn-
thesized only in response to certain stimuli due to their
function in defense (Burlacu et al. 2020; Oleszek et al.
2019). The physiological and genetic understanding of
woody plant species is also generally exceeded by that
of more intensively studied herbaceous plants (Burlacu
et al. 2020). Finally, some woody plants are difficult to
transform and regeneration rates of many woody plants
following transformation remains low, adding difficulty
to engineering approaches that require genetic trans-
formation. Nonetheless, there is current progress in the
study of woody plant biology that alleviates these
inhibitions to metabolic engineering. In this review, we
will focus on current advances in woody plant metabolic
engineering that has met some of the pressing chal-
lenges to their implementation; in addition, promising

trajectories will also be discussed that chart the course
for woody plant metabolic engineering in the near
future.

GOALS AND PROGRESS OF METABOLIC
ENGINEERING OF WOODY PLANTS

Improving the growth performance and disease
resistance properties of woody plants

To mitigate biotic and abiotic stresses, woody plants
produce a variety of specialized metabolites that belong
to many chemical classes including (but not limited to)
terpenoids, alkaloids, simple phenolics, coumarins, tan-
nins, and lignins. There have been several examples of
successful metabolic engineering efforts centered on the
accumulation of such compounds in woody plants
(Table 1). Proanthocyanidins (PAs) are phenolic
metabolites that can induce plant defense mechanisms
and protect plants from pathogens (Ullah et al. 2017;
Wang et al. 2017). Overexpression of a transparent testa
2 (TT2)-like transcription factor MYB115 in poplar
enhanced the biosynthesis of PAs by positively regulat-
ing PA biosynthetic genes, which led to lessened disease
symptoms when leaves were inoculated with the fungal
pathogen Dothiorella gregaria (Wang et al. 2017).
Resveratrol is a phenolic phytoalexin with protective
roles for plants that is also an antioxidant associated
with human health benefits. Metabolic engineering of
piceid, a resveratrol glucoside, has been achieved in
apple (Malus domestica) in two studies despite piceid
not occurring naturally in apple (Kobayashi et al. 2000;
Rühmann et al. 2006). In one example, expression of the
stilbene synthase gene from grapevine (Vitis vinifera) in
apple resulted in the accumulation of piceid in

Fig. 1 Prospects and current challenges of leveraging woody plants in metabolic engineering
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Table 1 Feasible targets for metabolic engineering within more commonly studied woody plant species

Plant family Major metabolite classes
for metabolic
engineering

Physiological role Engineering examples

Euphorbiaceae Curcins Biotic stress resistance Jatropha curcas: Gu et al. (2015)

Fatty acids/lipids Carbon and energy
reserve

Jatropha curcas: Maravi et al. (2016), Qu et al. (2012)

Myrtaceae Monoterpenes Defense Eucalyptus camaldulensis: Ohara et al. (2010)

Lignin Structural support,
defense

Hybrid eucalyptus: Sykes et al. (2015)

Glycinebetaine Abiotic stress tolerance Eucalyptus globulus: Matsunaga et al. (2012)

Salicaceae Lignin Structural support,
defense

Hybrid poplar: Baucher et al. (1996), Coleman et al. (2008),
Huntley et al. (2003), Van Acker et al. (2014), Van
Doorsselaere et al. (1995), Voelker et al. (2011)

Carbohydrates Carbon and energy
reserve

Hybrid poplar: Coleman et al. (2007), Lee et al. (2009); White
poplar: Park et al. (2004)

Proanthocyanidins Defense Hybrid aspen: Mellway and Constabel (2009); Chinese white
poplar: Wang et al. (2017), Yuan et al. (2012)

Stilbenoids Biotic stress resistance White poplar: Giorcelli et al. (2004); Hybrid aspen: Seppänen et al.
(2004)

Glutamine Nitrogen assimilation Hybrid poplar: Jing et al. (2004)

Glutathione Defense Hybrid poplar: Koprivova et al. (2002)

Bioplastic (PHB) Not natural in woody
plants

Hybrid poplar: Dalton et al. (2011)

Phenylpropenes Attractant and defense Hybrid aspen: Koeduka et al. (2013)

Actinidiaceae Carotenoids Photosynthesis, fruit
color

Kiwifruit: Kim et al. (2010)

Stilbenoids Biotic stress resistance Kiwifruit: Kobayashi et al. (2000)

Rosaceae Stilbenoids Biotic stress resistance Apple: Rühmann et al. (2006), Szankowski et al. (2003)

Polyamines Abiotic stress tolerance Common pear: Wen et al. (2008)

Flavonoids Defense and coloration Apple: Rihani et al. (2017)

Anthocyanins Abiotic stress
tolerance, fruit color

Apple: Espley et al. (2007)

Vitaceae Stilbenoids Biotic stress resistance Grape: Coutos-Thévenot et al. (2001), Fan et al. (2008)

Strigolactones Growth regulation Grape: Ren et al. (2020)

Rubiaceae Alkaloids Defense Coffee: Ogita et al. (2004), Ogita et al. (2003)

Theaceae Alkaloids Defense Tea tree: Mohanpuria et al. (2011a), Mohanpuria et al. (2011b)

Arecaceae Bioplastic (PHB) Not natural in woody
plants

African oil palm: Parveez et al. (2015)

Pinaceae� Lignin Structural support,
defense

Monterey pine: Wagner et al. (2009), Wagner et al. (2007), Wagner
et al. (2011)

Rutaceae Monoterpenes Abiotic stress
tolerance, insect
attraction

Sweet orange: Rodrı́guez et al. (2018)

Sesquiterpenes Defense Sweet orange: Alquézar et al. (2021)

Carotenoids Photosynthesis, fruit
color

Sweet orange: Pons et al. (2014)

Asteraceae Natural rubber Defense Guayule: Placido et al. (2019)

Juglandaceae Ammonium Nitrogen assimilation Persian walnut: Liu, (2021)

Caricaceae Stilbenoids Biotic stress resistance Papaya: Zhu et al. (2004)
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transgenic apple fruits (Rühmann et al. 2006). Although
piceid has implications in phytopathology, these piceid-
accumulating apple plants were not subjected to
pathogen stress to test their disease resistant
properties.

Engineering of volatile organic compounds (VOCs) is
similarly applied to the protection of woody plants from
pests and pathogens by disrupting their interactions
with the host plant (Pickett and Khan 2016). In one
example, orange (Citrus sinensis) was engineered to
produce less limonene (major VOC in oil glands of
mature orange fruit) and instead accumulate increased
monoterpene alcohols that share the common biosyn-
thetic precursor geranyl pyrophosphate with limonene,
increasing resistance to fungal pathogens that would
otherwise lower yields and shelf life (Rodrı́guez et al.
2018). Overexpressing the Arabidopsis b-caryophyllene
synthase gene in sweet orange leaves caused large
emissions of a VOC b-caryophyllene. As b-caryophyllene
functions as a repellent of Diaphorina citri, the trans-
genic orange plants showed reduced attraction to D.
citri, an insect vector of the notorious crop disease
‘‘Huanglongbing’’, in olfactometric behavioral assays and
the choice behavioral test, demonstrating the potential
of this approach for controlling Huanglongbing (Alque-
zar et al. 2021).

Phytohormones, despite their complex crosstalk, are
also logical targets for metabolic engineering of woody
plants due to their mediation of many processes
including growth, stress tolerance, and phenology
(Fenn and Giovannoni 2021). Auxins, gibberellins,
brassinosteroids, cytokinins, jasmonic acid, salicylic
acid, and ethylene can have their biosynthesis altered
to change the biomass accumulation and architecture
of woody plants to better suit agronomic usage or
improve product quality (Dubouzet et al. 2013; Osak-
abe et al. 2011). Work in poplar has produced multiple
successful examples—with hormone signaling being
modified to produce fast growing, narrow trees
amenable to usage in close stands (Mauriat and Moritz
2009; Nieminen et al. 2008). Ethylene biosynthesis, for

example, has also been suppressed in apple to produce
fruits with longer shelf life (Dandekar et al. 2004).
However, complex crosstalk in hormone signaling can
result in deleterious pleiotropic effects when hormone
signaling is manipulated. Work on transgenic poplar
demonstrates this, as lines overexpressing abscisic acid
responsive element proteins displayed increased
drought tolerance at the expense of biomass accumu-
lation (Yu et al. 2019). Existing knowledge of hormonal
signaling networks can be leveraged in woody plants
to optimize growth and the value of the desired pro-
duct while attempting to mitigate pleiotropic effects
brought on by crosstalk. One such approach could be
targeting specific transcription factors or receptors
implicated in the hormone signaling rather than the
hormone synthesis itself.

Enhancing the nutritional quality of woody plant
products and the production of pharmaceutical
and specialty chemicals

Many tree fruits contain essential nutrients such as
folate and ascorbic acid while also producing many
nutraceutical compounds such as flavonoids, polyphe-
nols, and carotenoids (Karasawa and Mohan 2018).
Metabolic engineering of fruit nutritional quality and
postharvest metabolic processes not only serves to add
value to the consumable product, but also to improve
health worldwide. There have been several initial
successes in metabolic engineering of fruit nutritional
quality in common fruit-bearing woody species
(Table 1). Downregulating the expression of MdMYB44,
a regulator of fruit acidity in apple, increased the
accumulation of malate (a key flavor component) in
transient transgenic apple calli (Jia et al. 2021). Sugar
accumulation in apple was promoted by suppressing
aldose-6-phosphate reductase, a key enzyme promoting
sorbitol biosynthesis from glucose-6-phosphate in
apple (Li et al. 2018). Apple engineered to constitu-
tively overexpress a regulator of anthocyanin biosyn-
thesis, the MdWRKY11 transcription factor,

Table 1 continued

Plant family Major metabolite classes
for metabolic
engineering

Physiological role Engineering examples

Ebenaceae Glycinebetaine Abiotic stress tolerance Japanese persimmon: Gao et al. (2000)

Sorbitol Abiotic stress
tolerance, biotic
stress resistance

Japanese persimmon: Gao et al. (2001)

Engineering successes for each target are shown
�Gymnosperm
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demonstrated high anthocyanin accumulation and red
coloration in fruit flesh (Liu et al. 2019; Pons
et al.2014). In another study, sweet orange was engi-
neered with an RNAi construct to inhibit b-carotene
hydroxylase activity, resulting in higher accumulation
of b-carotene (a provitamin A carotenoid) in the fruit
due to its reduced conversion to xanthophylls. This
RNAi construct was transformed alongside of a
FLOWERING LOCUS T (FT) overexpression cassette to
considerably shorten the seed-to-seed time in the
resulting lines (Pons et al. 2014).

Beyond nutritional compounds, woody plants syn-
thesize a wealth of health-promoting medicinal com-
pounds. Many such medicinal compounds are
economic targets for metabolic engineering (Table 1)
in addition to the outstanding examples of the anti-
cancer drug paclitaxel from pacific yew tree (Taxus
brevifolia) and the vaccine adjuvant QS-21 from Quil-
laja saponaria. Some chemical classes represented in
woody plants used in herbalism are quinoline alkaloids
(Such as those from the cinchona tree: cinchonine,
cinchonidine, quinidine, and the antimalarial agent
quinine){Dey, 2020 #281}, isoquinoline alkaloids (such
as the anticancer and antiviral compound berberine
from Berberis species), purine alkaloids (including
caffeine from coffee trees, theophylline from tea plants
and theobromine from cacao plants), benzophenones
(the major bioactive compounds in mango leaves
which are used to treat diabetes), and flavonoids (Dey
et al. 2020; Neag et al. 2018; Zhang et al. 2019).
Metabolic engineering is also central to the effort of
increasing yields of specialty chemicals, such as com-
ponents of fragrance and essential oils. For instance,
with an aim of improving overall monoterpene pro-
duction, the Perilla frutescens limonene synthase was
overexpressed in Eucalyptus camaldulensis with a
plastidic or cytosolic localization, resulting in over a
threefold increase in limonene production alongside of
increased accumulation of two other major monoter-
penes, which are valued components of Eucalyptus
essential oils (Ohara et al. 2010). On the other hand,
‘‘undesirable’’ metabolites can be reduced in woody
plants through metabolic engineering. Transgenic cof-
fee (Coffea arabica and C. canephora) expressing an
RNAi construct suppressing 7-N-methylxanthine
methyltransferase showed up to a 50% reduction in
caffeine content in embryonic tissues and plantlets—
opening the door to naturally decaffeinated coffee
(Ogita et al. 2004).

Providing sources of renewable energy

Woody plants are a key second-generation biofuel—
serving as a feedstock for both bioethanol and biodiesel
production (Carriquiry et al. 2011). Two of the most
desirable characteristics of woody plants for biofuel
production are rapid growth rate and ability to be
coppiced. Hybrid poplar (Populus spp.) and willow
(Salix spp.) grow quickly and tolerate coppicing well,
making them good targets of metabolic engineering for
biofuel production. As high lignin content constrains the
effectiveness of chemical pulping and of lignocellulosic
ethanol production, ideal woody feedstocks for this
process would also have optimal cellulose and lignin
compositions and benefit from the redirection of
metabolites away from lignin biosynthesis (Mahon and
Mansfield 2019; Van Acker et al. 2014). The benefits of
redirecting metabolic flux are potentially twofold: the
energy demands of lignin biosynthesis can be lowered
while simultaneously increasing the ease that valuable
compounds can be harvested from the woody plant
material. Suppression of enzymes responsible for lignin
precursor production in transgenic poplar decreased
the accumulation of insoluble lignin (Bjurhager et al.
2010; Coleman et al. 2008; Van Acker et al. 2014). In
one study, this also increased the presence of soluble
products including many phenylpropanoid glycosides
(Coleman et al. 2008). In another study, this reduction
of insoluble lignin fraction improved the ethanol yield of
the fermented biomass, but with reduced biomass yield
(Van Acker et al. 2014). As such, modifying lignin
metabolism is a promising frontier to facilitate chemical
production in woody plants, though the trade-off
between the lignin reduction and sustained growth of
the plants warrants further investigation.

Oil producing woody species such as palm (Elaeis
guineensis) and Jatropha curcas are promising sources
of biodiesel (Carriquiry et al. 2011). Current efforts are
underway to engineer palm trees with enhanced pro-
duction of oleic acid and with generally reduced satu-
rated fatty acids (Rasid et al. 2020). In J. curcas,
triacylglycerol (TAG) catabolism was suppressed by
downregulating a lipase via RNAi, resulting in higher
storage lipid accumulation in seeds (Kim et al. 2014).
TAG accumulation in J. curcas seeds was also increased
by overexpressing Arabidopsis diacylglycerol acyltrans-
ferase 1, a committed step in TAG biosynthesis (Maravi
et al. 2016). Finally, RNAi cassettes have also been
leveraged in J. curcas to stably lower the expression of
toxic curcin proteins in the seeds, addressing the safety
concerns of jatropha processing (Gu et al. 2015). These
approaches highlight possibilities in long-lived oil
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producing species as transformation and regeneration
tools become more standardized and widely
implemented.

DEVELOPMENT OF MODEL SYSTEMS AND OMICS
AND SYSTEMS BIOLOGY TOOLS TO EXPEDITE
METABOLIC ENGINEERING OF WOODY PLANTS

Utility of model systems and omics approaches
in metabolic engineering of woody plants

With the availability of various genetic, genomic, and
biochemical tools, poplar have emerged as suit-
able model systems for woody plant biology, particu-
larly for important tree-specific traits such as crown
size, trunk diameter, and wood density. Multiple anno-
tated, high coverage genome sequences exist for Populus
species, such as P. trichocarpa, P. deltoides, P. trem-
ula 9 alba hybrid, P. euphratica, and P. tremula (Osak-
abe et al. 2016; Tuskan et al. 2018). A subset of these
genomes and a standardized gene expression atlas of
P. trichocarpa are also integrated into the Phytozome
platform for easier exploration (Goodstein et al. 2012).
The availability of reference genomes expediate the
sequencing-based methylome analysis to study the
epigenetic control of metabolism. For example, high
coverage genome-wide cytosine methylation maps and
transcriptomic profiling of P. trichocarpa stems in dif-
ferent developmental stages were generated and com-
pared to understand the roles of methylation in wood
formation (Zhang et al. 2020). Whole-genome rese-
quencing of outcrossing woody plants including poplar
can be leveraged to map agronomically important loci
using the recently developed OutcrossSeq method
(Chen et al. 2021). In this method, a pair of founder
parents are sequenced with high resolution, with pro-
geny individuals from the founder cross sequenced at
low coverage to produce haplotypes suitable for genetic
mapping using fastGWA (Jiang et al. 2019). OutcrossSeq
was validated on a biparental cross in walnut (Juglans
regia) and can be extended to metabolic phenotypes
that are potential targets of metabolic engineering not
only in walnut, but also in other highly heterozygous
woody plant species for which a reference genome
exists (Chen et al. 2021).

Phenotypic data are critical when using the growing
collection of woody plant genomic information to
unravel the function of structural and regulatory genes
for metabolic engineering. Plant phenomics is increas-
ingly capable of meeting this need for phenotypic
information because of recent advances in computing
power and applications of computer vision. Classical

image-based methods are useful for phenotyping smal-
ler, more easily managed woody plant species such as
grape (Underhill et al. 2020) and Camellia sinensis
(Hazra et al. 2018). Image-based approaches for ana-
lyzing canopy growth from ground level are also avail-
able for tree species. A maintained online repository of
these image-based tools can be found at Quantitative-
plant.org (Lobet et al. 2013). Camera-equipped
unmanned aerial vehicles (UAVs) can capture pheno-
types otherwise inaccessible from the ground. Use of
infrared cameras expands the collection to phenotypes
available to researchers to spectral indices that can
serve as suitable proxies for chemical composition.
These include the modified simple ratio for chlorophyll
content (Wu et al. 2008), anthocyanin reflectance index
for anthocyanin pigment compounds (Gitelson et al.
2001), and the photochemical reflectance index for light
absorbing compounds such as xanthophylls and car-
otenoids (Peñuelas et al. 2011). A clear limitation for
implementing common phenomics tools into metabolic
engineering efforts is their restriction to visible pheno-
types. Subtle changes in metabolic flux are unlikely to
result in clear changes in color or morphology. However,
the association of a clear morphological or phenological
phenotype with a controlled metabolic change raises the
possibility of leveraging phenomics-based approaches
as a fast, low-cost way to screen whole plots of woody
plants. Ongoing work in this area will expand the
availability and validation of spectral indices that are
correlated with chemical content—thus affording more
utility to the UAV-based systems that are already an
asset to woody plant management.

Knowledge of both genetic and phenotypic data for
species such as poplar opens the door to functional
genomics in woody plants, which informs metabolic
engineering. Genetic polymorphisms including common
and rare variants have been identified in accessions
covering wide latitudinal range of Populus species
(Geraldes et al. 2013; Piot et al. 2020). Genome-wide
association studies (GWAS) have taken advantage of
these accessions to understand quantitative traits and,
combined with the metabolic and phenomic data, to
study the genetic regulation of metabolites (Geraldes
et al. 2013; Piot et al. 2020). Systems biology approa-
ches have integrated genetic and multi-omics informa-
tion to uncover key players such as biosynthetic genes
and transcription factors involved in the regulatory
network (Myburg et al. 2019). In one application, inte-
grated omics analysis was applied to transgenic poplar
lines in which 21 lignin pathway genes were perturbed
to predict traits associated with wood formation for
improved lignin and wood properties in tree species
(Wang et al. 2018a). Extensions of this work could be
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found in other metabolites linked to plant performance
such as phenolics, carotenoids, and lipids.

Metabolic flux analysis examines intracellular carbon
flows and constitutes an integral component of systems
biology modeling. The long-distance transportation of
metabolites through the extended vascular system of
woody plants makes simulation of whole-plant meta-
bolism using single cell models more challenging. Thus,
modifications to the pipelines established in herbaceous
model plants is needed (Junker 2014; Zhang et al.
2018). Work in poplar has nonetheless taken advantage
of metabolic flux analysis to unpack the metabolic
response to low nitrogen, elucidating a higher flux
through the tricarboxylic acid (TCA) cycle and lower
flux into nitrogen storage proteins under reduced
nitrogen (Zhang et al. 2018). In another interesting
example in woody plants, metabolic flux in transgenic
poplar with suppressed isoprene synthase was com-
pared to wild-type plants. This work found substantially
reduced isoprene emission and increases in metabolic
investment into chlorophyll and carotenoid pigments in
the transgenic plants (Ghirardo et al. 2014). Overall, this
plethora of genetic and omics information in Populus
species enables exploratory studies of woody plant
functional genomics even prior to experimental design
in other woody systems. These pipelines and their
findings can thus be transferred from woody model
systems to other less-studied woody plants.

Application of gene editing tools propelled
by advances in transformation and regeneration
of woody plants

Metabolic engineering often involves manipulating gene
expression and function in plants. As a widely used gene
editing technology, clustered regularly interspaced short
palindromic repeats/CRISPR-associated protein 9
(CRISPR-Cas9) endonuclease systems have been used in
woody plants such as poplar (Populus tomentosa Carr.),
mandarin orange (Citrus reticulata), apple, pear (Pyrus
communis), and grape (Charrier et al. 2019; Fan et al.
2015; Osakabe et al. 2016; Sandhya et al. 2020; Wang
et al. 2018b). A great advantage of (modified) CRISPR-
Cas9 is that multiple genes and gene homoeologs (in
polyploid species) can be edited simultaneously in
woody plants where pyramiding multiple gene muta-
tions/overexpression by crossing is often not feasible
(Armario Najera et al. 2019). In addition, homozygous
mutations are possible as early as the T0 generation, and
the otherwise low likelihood of this occurring can be
improved using two or more guide RNAs targeting the
same gene—an approach that has been successfully
applied in multiple woody plants including poplar and

grape (Fan et al. 2015; Wang et al. 2018b). Recently,
Cas9-derived base editors have been developed and
validated in poplar hybrids, which further expand the
usage of CRISPR-Cas9 system in high efficient and pre-
cise genome editing in woody plants (Li et al. 2021). The
expansion of CRISPR-Cas9 application to woody plants
allows also more thorough exploration of biosynthetic
enzymes and their regulation, which are currently
understudied.

Despite the promise of gene editing technology, the
transformation and regeneration of woody plants are
challenging which poses a bottleneck to the application
of CRISPR-Cas9 technologies in woody plants. To this
end, methods for transforming and regenerating other-
wise recalcitrant woody species are steadily being
developed. Agroinfiltration into aerial tissues has been
used successfully to derive stable transformants in
woody plants such as poplar (Stettler et al. 1996), Eu-
calyptus spp. (Spokevicius et al. 2005; Tournier et al.
2003), oil palm (Masani et al. 2018; Yarra et al. 2019),
grape (Das et al. 2002; Li et al. 2008), Pinus taeda
(Wenck et al. 1999), and others. Infiltration of
Agrobacterium into seedling tissues or extracted
embryos has also proven successful in species such as
peach and eastern white pine (Pinus strobus) (Ricci
et al. 2020; Tang et al. 2007). Poor regeneration fre-
quencies from aerial tissue remain an issue, however,
for many woody plant species, and the success in
regenerating woody plants from leaves has been found
to be dependent on the genetic background in a few
species (Stettler et al. 1996; Tournier et al. 2003).

Besides aerial tissues, hairy root tissue has proven to
be an asset for genetic transformation of woody plants.
Inoculating wounded plants with Agrobacterium rhizo-
genes induces the formation of hairy roots that can be
cultured and regenerated into viable plants (Tepfer
1990). In purple willow (Salix purpurea), transforma-
tion efficiencies using hairy root culture far exceeded
aerial tissues, showing efficiencies over 80% alongside
of higher regeneration rates (Gomes et al. 2019). Highly
effective transformation and regeneration protocols
using hairy roots induced by A. rhizogenes have been
demonstrated in several systems including Eucalyptus
(Plasencia et al. 2016), Poplar (Yoshida et al. 2015), and
Camellia sinensis (Alagarsamy et al. 2018). The efficacy
of this method combined with the ability to introduce
multi-gene cassettes using A. rhizogenes will make it a
staple in woody plant genetic and metabolic
engineering.

To promote regeneration of woody plant tissues,
plant developmental regulators, which are transcription
factors involved in reprograming cell fates, makes the
metabolic engineering possible in some difficult to

� The Author(s) 2021

aBIOTECH (2021) 2:299–313 305



regenerate woody plants (Ikeuchi et al. 2019). Overex-
pressing developmental genes such as GROWTH-REG-
ULATING FACTOR 4 (GRF4), GRF-INTERACTING FACTOR
1 (GIF1), LEAFY COTYLEDON 1 (LEC1), WUSCHEL, and
BABY BOOM (BBM) successfully improved the regener-
ation of Arabidopsis (Boutilier et al. 2002; Lotan et al.
1998; Luo and Palmgren 2021; Zuo et al. 2002). Similar
strategies have also been tested in woody plants
through ectopic expression of GRF–GIF chimeras in
citrus (Debernardi et al. 2020); LEC2 and BBM in
Theobroma cacao (Florez et al. 2015; Shires et al. 2017);
and BBM in Poplar (Deng et al. 2009), among others.
Manipulating developmental regulators should be done
with caution; however, as they may affect the develop-
ment of newly generated transgenic plants. In T. cacao,
in spite of the significant improvement in early stages of
embryogenesis, homologous overexpression of BBM in
cotyledons led to the occurrence of abnormal cotyledon
development (Florez et al. 2015). An interesting new
development in multiple dicotyledonous plant species
including grape is that combinations of developmental
regulators can be expressed through de novo meristem
induction thus bypassing the need of in vitro tissue
culture (Maher et al. 2020). These strategies need to be
further tested and improved upon in additional woody
plant species to explore and mitigate broader develop-
mental issues caused by manipulating growth regula-
tors for improved regeneration.

In addition to the aforementioned developmental
regulators, additional factors have been applied to
reduce the long juvenile period and promote flowering
in woody plants to expedite breeding. For instance, the
overexpression of BpMADS4 successfully reduced the
juvenile period and promoted early flowering in apple
(Flachowsky et al. 2007). Ectopic expression of FT from
many donor species has reduced the generation time
woody species including plum (Prunus domestica) (Petri
et al. 2018; Srinivasan et al. 2012), Eucalyptus gran-
dis 9 E. urophylla hybrids (Klocko et al. 2016), and
sweet orange (Pons et al. 2014). Overexpression of
Arabidopsis APETALA1 (AP1) shortened the generation
time to one year in sweet orange and citrange (a hybrid
of sweet orange and trifoliate orange; Citrus sinen-
sis 9 Poncirus trifoliata). In the case of citrange, the
transgenic plants were used in re-transformation to test
gene stacking; the reporter genes were stably expressed
in the re-transformant and were evaluated as early as
one year (Cervera et al. 2009). The success of these
approaches at substantially lowering generation time in
woody species raises promise for introducing useful
traits such as disease resistance from wild species or
other elite lines.

METABOLIC ENGINEERING OF AGRONOMICALLY
AND ECONOMICALLY VIABLE WOODY PLANTS IS
ENHANCED BY MODERN BREEDING TOOLS

Traditional crossing and evaluation methods remain
indispensable for facilitating metabolic engineering of
woody plants because of their ability to combine locally
adapted traits into engineered lines expressing a par-
ticular suite of biosynthetic and regulatory genes.
Woody plant breeding is naturally hindered by the long
time period before reproductive maturity and before
meaningful phenotypic evaluation can occur. Strategies
common in annual plant breeding such as ‘‘speed
breeding’’ (Watson et al. 2018) and usage of off-season
nurseries are not generally viable for woody species. An
expanding toolkit of computational and engineering
tools ameliorate this constraint and collectively speed
up the process of traditional breeding in long-lived
woody plants. Phenomic and genomic data for woody
plants are central to this effort by collectively facilitating
quantitative genetic approaches to breeding including
genomic selection (GS)—that is, selection on whole
genomes in highly heterogeneous populations (Lebedev
et al. 2020). In this approach, genome-estimated
breeding values (GEBVs) are estimated from genetic
data (e.g. SNP arrays, whole genome sequences) and
known phenotypes using statistical models such as
Bayes Least Absolute Shrinkage and Selection Operator
(Bayes LASSO) (Park and Casella 2008) and Ridge
Regression Best Linear Unbiased Predictor (RR-BLUP)
(Endelman 2011). Approaches using either family of
models are increasingly relevant to breeding and can be
applied effectively to woody plants.

Growth traits such as height, wood density, bark
thickness, stem straightness, and circumference have
been predicted in woody plant progeny with suit-
able accuracy using GS (de Moraes et al. 2018; Li et al.
2019b; Thistlethwaite et al. 2020). In addition, GS has
also been used to predict yield in significant agricultural
crops such as macadamia (Macadamia integrifo-
lia 9 tetraphylla) and passion fruit (Passiflora edulis)
(O’Connor et al. 2018; Viana et al. 2017). Finally, black
spot resistance in pear progeny has been adequately
predicted using multiple Bayesian GS models (Iwata
et al. 2013). GS can also be applied to metabolic phe-
notypes, which has been demonstrated for anthocyanin
content in maize and glucosinolate content in Brassica
napus (Chatham and Juvik 2020; Werner et al. 2018).
Using genome-wide information to predict metabolite
profiles in woody plants has been relatively limited.
There has been some application of GS to flavor com-
ponents of grape and pear (Iwata et al. 2013; Viana et al.
2016). Recent work has also been conducted to predict
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rubber production in the progeny of rubber trees (He-
vea brasiliensis) (Cros et al. 2019). Future applications
of GS to woody species can be used in functional
genomics to identify target traits and breeding schemes
to optimize accumulation of useful metabolites or to
increase flux through a metabolic pathway that can be
leveraged in engineering efforts.

METABOLIC ENGINEERING BEYOND WOODY
PLANTS—PRODUCING WOODY PLANT
METABOLITES IN COMPLEMENTARY SYSTEMS

To obtain valuable metabolites naturally produced by
woody plants, metabolic pathways can also be recon-
structed in complementary biological systems.
Microorganisms are suitable for this purpose because of
their small genome, simple compartments, fast growth
rate, and easily controllable growth conditions. For
example, the synthesis of hydroxytyrosol, a valuable
nutraceutical and preservative from olive, was achieved
in E. coli through the heterologous expression of the
hydroxytyrosol pathway in tandem with tyrosine over-
production (Trantas et al. 2019). In another example,
the production of caffeine has also been achieved by
inserting xanthosine methyltransferase from Coffea ara-
bica and caffeine synthase from Camellia sinensis into
yeast strains that were fed exogenous xanthosine (Jin
et al. 2014). However, lack of the native biochemical and
regulatory network in the microbial systems can result
in metabolic imbalance, accumulated intermediates, and
toxic compounds that lead to the failure of metabolic
engineering in microbial systems. Moreover, maintain-
ing a large, sterile manufacturing platform requires
often prohibitive amounts of labor and materials that
complicate scaling.

Using plants as a complementary system for
metabolite production is often fruitful, as the availability
of the existing upstream substrates with the native gene
regulatory network circumvent issues found in micro-
bial systems. The production of woody plant metabolite
taxadiene (the first committed intermediate in the
synthesis of taxol/paclitaxel, an anticancer drug) was
boosted in multiple complementary plant systems that
produce carotenoids such as tomato (Solanum lycoper-
sicum) (Cha et al. 2012; Kovacs et al. 2007; Li et al.
2015). Taxadiene and carotenoids use the common
biosynthetic precursor geranylgeranyl diphosphate
(GGPP). By expressing the taxadiene synthase in a yellow
flesh tomato with low accumulation of carotenoids due
to lacking a functional phytoene synthase (the rate
limiting enzyme for carotenoid biosynthesis), metabolic
flux was redirected from carotenoid to taxadiene

biosynthesis and resulted in high amounts of taxadiene
in leaves and fruits of the transgenic plants (Besumbes
et al. 2004; Kovacs et al. 2007). In another study, the
accumulation of biosynthetic intermediates of taxol,
taxadiene, and taxadiene-5a-ol, was significantly
improved in Nicotiana benthamiana leaves by enriching
the isoprenoid precursor for taxol biosynthesis and
engineering enzymes for taxol biosynthesis in the same
compartment (Li et al. 2019a).

The success above highlights the possibilities when
many components of a biosynthetic pathway are known.
However, de novo biosynthesis of woody plant
metabolites in complementary systems can be chal-
lenging when the biosynthetic pathway is not fully
elucidated (such as QS-21 and quinine). To this end,
biosynthetic precursors and their derivatives can be fed
to the complementary systems to produce downstream
products (Cravens et al. 2019). Alternatively, pathway
intermediates produced by the complementary systems
can be extracted and used as substrates for in vitro
reactions that produce the target woody plant metabo-
lites (Birchfield and McIntosh 2020; Cravens et al.
2019). Metabolites that function in preserving the
health of plant tissues or otherwise maintaining physi-
ological roles are not suitable for production in
heterologous plant expression systems, as extraction
removes them from the context in which they are the
most valuable. This applies to an array of compounds
involved in flower color, lignin production, water
homeostasis, and signaling. Nonetheless, heterologous
systems remain useful for engineering efforts in which a
purified final product is the central aim.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Pivotal discoveries in herbaceous model systems such
as Arabidopsis, tobacco, and tomato can help chart the
course for research in woody species. Ongoing work in
model systems is optimizing the delivery of multiple
genes concurrently—which raises the possibility of
circumventing multiple regeneration events for recalci-
trant woody plants. Gene Assembly in Agrobacterium by
Nucleic Acid Transfer using Recombinase Technology
(GAANTRY) uses multiple unidirectional site-specific
recombinases to stack multiple genes in vivo. The
GAANTRY ArPORT1 strain of A. rhizogenes was demon-
strated to be effective at stacking up to ten genes in rice
(Hathwaik et al. 2021). As A. rhizogenes has proven
effective at transforming woody plants (Gomes et al.
2019), the GAANTRY system could prove useful for
reconstituting metabolic pathways into woody plant
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chasses. Plant Artificial Chromosomes (PACs) are
stable in plant cells and multiple genes on artificial
chromosomes can be stably expressed. PACs have been
the subject of research in non-woody plants such as
barley, maize, and Arabidopsis, and promise remains for
implementing PACs into woody plant species with
established transformation and regeneration methods
(Yu et al. 2016). Delivery of CRISPR-Cas9 systems is also
being expanded, with viral delivery systems already
developed and nanoparticle or nanotube delivery on the
horizon (Demirer et al. 2021), facilitating the metabolic
engineering effort in woody plants.

Though gene regulatory networks have been exten-
sively explored in herbaceous plants, considerable work
remains to gain a more complete understanding of such
regulatory networks in woody plants. The task of
unraveling these networks in woody plant species is
complicated by the diversity of tissue types present as
well as the maturation time needed for such gene net-
works to emerge and be adequately explored. Poplar
serves as a suitable woody model plant from which
findings can be translated. Methods and knowledge
developed in poplar can prove instrumental in exploring
other woody plant systems to bolster our knowledge of
their metabolic networks and to translate suitable ap-
proaches for metabolic engineering. Conquering the
bottlenecks of transformation and regeneration in non-
model woody plants will shorten the design-build-test-
learn cycles in gene editing and transgene insertion to
streamline their usage in metabolic engineering as well.
Finally, a large amount of untapped diversity exists in
domesticated cultivars across broad geographic ranges
and non-domesticated genotypes. Comparative geno-
mics can take advantage of the highly diverse genomes
of woody species around the globe not only for breed-
ing, but also to study the evolution of genes and gene
families to facilitate gene mining for metabolic engi-
neering (Tuskan et al. 2018).

As woody plants are understudied, there is room to
integrate current genetic and metabolic engineering
strategies developed in other plant and microbial sys-
tems. Implementation of these strategies is finding
increasing success in more studied woody plant systems
such as poplar and citrus. Translating these tools into
more woody plant systems not only leverages different
native metabolic networks, but also expands the col-
lection of ecosystem services available to the site of
interest due to the broader species selection. These
ecosystem services brought by woody plants are unique
among plant chemical factories and include habitat,
carbon sequestration, erosion reduction, and water
retention. These ecosystem services can be viewed as
the key benefits of a sustainable bioeconomy anchored

in the used of long-lived woody plants. Low resource
and labor demand further complement the vast
ecosystem services of woody plant platforms. Metabolic
engineering expedites our capability to simultaneously
capitalize on the rich biochemical diversity of woody
plants in tandem with the suite of environmental ben-
efits associated with their usage. The transition from an
oil-based economy to a sustainable bio-based economy
will be facilitated by advances in this space.
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Coutos-Thévenot P et al (2001) In vitro tolerance to Botrytis
cinerea of grapevine 41B rootstock in transgenic plants
expressing the stilbene synthase Vst1 gene under the control
of a pathogen-inducible PR 10 promoter. J Exp Bot
52:901–910. https://doi.org/10.1093/jexbot/52.358.901

Cravens A, Payne J, Smolke CD (2019) Synthetic biology strategies
for microbial biosynthesis of plant natural products. Nat
Commun 10:2142. https://doi.org/10.1038/s41467-019-
09848-w

Cros D et al (2019) Within-family genomic selection in rubber tree
(Hevea brasiliensis) increases genetic gain for rubber pro-
duction. Ind Crop Prod 138:111464. https://doi.org/10.
1016/j.indcrop.2019.111464

Dalton DA, Ma C, Shrestha S, Kitin P, Strauss SH (2011) Trade-offs
between biomass growth and inducible biosynthesis of
polyhydroxybutyrate in transgenic poplar. Plant Biotechnol J
9:759–767. https://doi.org/10.1111/j.1467-7652.2010.
00585.x

Dandekar AM et al (2004) Effect of down-regulation of ethylene
biosynthesis on fruit flavor complex in apple fruit. Transgenic
Res 13:373–384. https://doi.org/10.1023/B:TRAG.
0000040037.90435.45

Das D, Reddy M, Upadhyaya K, Sopory S (2002) An efficient leaf-
disc culture method for the regeneration via somatic
embryogenesis and transformation of grape (Vitis vinifera
L.). Plant Cell Rep 20:999–1005. https://doi.org/10.1007/
s00299-002-0441-4

de Moraes BFX et al (2018) Genomic selection prediction models
comparing sequence capture and SNP array genotyping
methods. Mol Breed 38:115. https://doi.org/10.1007/
s11032-018-0865-3

Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, Palatnik
JF, Dubcovsky J (2020) A GRF–GIF chimeric protein improves
the regeneration efficiency of transgenic plants. Nat Biotech-
nol 38:1274–1279. https://doi.org/10.1038/s41587-020-
0703-0

Demirer GS et al (2021) Nanotechnology to advance CRISPR–Cas
genetic engineering of plants. Nat Nanotechnol 16:243–250.
https://doi.org/10.1038/s41565-021-00854-y

Deng W, Luo K, Li Z, Yang Y (2009) A novel method for induction
of plant regeneration via somatic embryogenesis. Plant Sci
177:43–48. https://doi.org/10.1016/j.plantsci.2009.03.009

Dey P et al (2020) Analysis of alkaloids (indole alkaloids,
isoquinoline alkaloids, tropane alkaloids). In: Sanches Silva
A, Nabavi SF, Saeedi M, Nabavi SM (eds) Recent advances in
natural products analysis. Elsevier, Amsterdam, pp 505–567

Dubouzet JG, Strabala TJ, Wagner A (2013) Potential transgenic
routes to increase tree biomass. Plant Sci 212:72–101.
https://doi.org/10.1016/j.plantsci.2013.08.006

Endelman JB (2011) Ridge regression and other kernels for
genomic selection with R package rrBLUP. Plant Genome
4:250–255. https://doi.org/10.3835/plantgenome2011.08.
0024

Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S,
Allan AC (2007) Red colouration in apple fruit is due to the
activity of the MYB transcription factor, MdMYB10. Plant J
49:414–427. https://doi.org/10.1111/j.1365-313X.2006.
02964.x

Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008)
Agrobacterium-mediated genetic transformation of grapevine
(Vitis vinifera L.) with a novel stilbene synthase gene from
Chinese wild Vitis pseudoreticulata. Plant Cell Tiss Organ Cult
92:197–206. https://doi.org/10.1007/s11240-007-9324-2

Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient
CRISPR/Cas9-mediated targeted mutagenesis in populus in
the first generation. Sci Rep 5:12217. https://doi.org/10.
1038/srep12217

Fenn MA, Giovannoni JJ (2021) Phytohormones in fruit develop-
ment and maturation. Plant J 105:446–458. https://doi.org/
10.1111/tpj.15112

� The Author(s) 2021

aBIOTECH (2021) 2:299–313 309

https://doi.org/10.1002/bit.20237
https://doi.org/10.1016/j.cpb.2020.100163
https://doi.org/10.1016/j.cpb.2020.100163
https://doi.org/10.1021/bm100487e
https://doi.org/10.1021/bm100487e
https://doi.org/10.1105/tpc.001941
https://doi.org/10.1016/j.tplants.2020.03.008
https://doi.org/10.1016/j.tplants.2020.03.008
https://doi.org/10.1016/j.enpol.2011.04.036
https://doi.org/10.1016/j.jbiotec.2009.01.024
https://doi.org/10.5483/bmbrep.2012.45.10.085
https://doi.org/10.5483/bmbrep.2012.45.10.085
https://doi.org/10.3389/fpls.2019.00040
https://doi.org/10.1101/2020.05.20.107359
https://doi.org/10.1016/j.molp.2021.01.003
https://doi.org/10.1016/j.molp.2021.01.003
https://doi.org/10.1016/j.cbpa.2020.02.009
https://doi.org/10.1093/jxb/erm287
https://doi.org/10.1073/pnas.0706537105
https://doi.org/10.1093/jexbot/52.358.901
https://doi.org/10.1038/s41467-019-09848-w
https://doi.org/10.1038/s41467-019-09848-w
https://doi.org/10.1016/j.indcrop.2019.111464
https://doi.org/10.1016/j.indcrop.2019.111464
https://doi.org/10.1111/j.1467-7652.2010.00585.x
https://doi.org/10.1111/j.1467-7652.2010.00585.x
https://doi.org/10.1023/B:TRAG.0000040037.90435.45
https://doi.org/10.1023/B:TRAG.0000040037.90435.45
https://doi.org/10.1007/s00299-002-0441-4
https://doi.org/10.1007/s00299-002-0441-4
https://doi.org/10.1007/s11032-018-0865-3
https://doi.org/10.1007/s11032-018-0865-3
https://doi.org/10.1038/s41587-020-0703-0
https://doi.org/10.1038/s41587-020-0703-0
https://doi.org/10.1038/s41565-021-00854-y
https://doi.org/10.1016/j.plantsci.2009.03.009
https://doi.org/10.1016/j.plantsci.2013.08.006
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1111/j.1365-313X.2006.02964.x
https://doi.org/10.1111/j.1365-313X.2006.02964.x
https://doi.org/10.1007/s11240-007-9324-2
https://doi.org/10.1038/srep12217
https://doi.org/10.1038/srep12217
https://doi.org/10.1111/tpj.15112
https://doi.org/10.1111/tpj.15112


Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007)
Overexpression of BpMADS4 from silver birch (Betula
pendula Roth.) induces early-flowering in apple (Malus 9

domestica Borkh.). Plant Breed 126:137–145. https://doi.
org/10.1111/j.1439-0523.2007.01344.x

Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR (2015)
Enhanced somatic embryogenesis in Theobroma cacao using
the homologous BABY BOOM transcription factor. BMC Plant
Biol 15:121. https://doi.org/10.1186/s12870-015-0479-4

Gao M, Sakamoto A, Miura K, Murata N, Sugiura A, Tao R (2000)
Transformation of Japanese persimmon (Diospyros kaki
Thunb.) with a bacterial gene for choline oxidase. Mol Breed
6:501–510. https://doi.org/10.1023/A:1026513831290

Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001)
Transformation of Japanese persimmon (Diospyros kaki
Thunb.) with apple cDNA encoding NADP-dependent sor-
bitol-6-phosphate dehydrogenase. Plant Sci 160:837–845.
https://doi.org/10.1016/s0168-9452(00)00458-1

Geraldes A et al (2013) A 34K SNP genotyping array for Populus
trichocarpa: design, application to the study of natural
populations and transferability to other populus species.
Mol Ecol Resour 13:306–323. https://doi.org/10.1111/
1755-0998.12056

Ghirardo A et al (2014) Metabolic flux analysis of plastidic
isoprenoid biosynthesis in poplar leaves emitting and none-
mitting isoprene. Plant Physiol 165:37–51. https://doi.org/
10.1104/pp.114.236018

Giorcelli A et al (2004) Expression of the stilbene synthase (StSy)
gene from grapevine in transgenic white poplar results in
high accumulation of the antioxidant resveratrol glucosides.
Transgenic Res 13:203–214. https://doi.org/10.1023/B:
TRAG.0000034658.64990.7f

Gitelson AA, Merzlyak MN, Chivkunova OB (2001) Optical prop-
erties and nondestructive estimation of anthocyanin content
in plant leaves. Photochem Photobiol 74:38–45. https://doi.
org/10.1562/0031-8655(2001)074%3c0038:opaneo%3e2.
0.co;2

Gomes C, Dupas A, Pagano A, Grima-Pettenati J, Paiva JAP (2019)
Hairy root transformation: a useful tool to explore gene
function and expression in Salix spp. recalcitrant to transfor-
mation. Front Plant Sci 10:1427. https://doi.org/10.3389/
fpls.2019.01427

Goodstein DM et al (2012) Phytozome: a comparative platform for
green plant genomics. Nucl Acids Res 40:D1178–D1186.
https://doi.org/10.1093/nar/gkr944

Gu K, Tian D, Mao H, Wu L, Yin Z (2015) Development of marker-
free transgenic Jatropha curcas producing curcin-deficient
seeds through endosperm-specific RNAi-mediated gene
silencing. BMC Plant Biol 15:242. https://doi.org/10.1186/
s12870-015-0625-z

Hathwaik LT, Thomson JG, Thilmony R (2021) Gene assembly in
Agrobacterium via nucleic acid transfer using recombinase
technology (GAANTRY). Methods Mol Biol 2238:3–17.
https://doi.org/10.1007/978-1-0716-1068-8_1

Hazra A, Dasgupta N, Sengupta C, Das S (2018) Next generation
crop improvement program: progress and prospect in tea
(Camellia sinensis (L.) O. Kuntze). Ann Agrar Sci 16:128–135.
https://doi.org/10.1016/j.aasci.2018.02.002

Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003)
Significant increases in pulping efficiency in C4H–F5H-trans-
formed poplars: improved chemical savings and reduced
environmental toxins. J Agric Food Chem 51:6178–6183.
https://doi.org/10.1021/jf034320o

Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B,
Sugimoto K (2019) Molecular mechanisms of plant

regeneration. Annu Rev Plant Biol 70:377–406. https://doi.
org/10.1146/annurev-arplant-050718-100434

Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto
T (2013) Potential assessment of genome-wide association
study and genomic selection in Japanese Pear Pyrus Pyrifolia.
Breed Sci 63:125–140. https://doi.org/10.1270/jsbbs.63.125

Jia D et al (2021) Genetic variation in the promoter of an
R2R3-MYB transcription factor determines fruit malate
content in apple (Malus domestica Borkh.). Plant Physiol
186(1):549–568. https://doi.org/10.1093/plphys/kiab098

Jiang L, Zheng Z, Qi T, Kemper KE, Wray NR, Visscher PM, Yang J
(2019) A resource-efficient tool for mixed model association
analysis of large-scale data. Nat Genet 51:1749–1755.
https://doi.org/10.1038/s41588-019-0530-8

Jin L et al (2014) Metabolic engineering of Saccharomyces
cerevisiae for caffeine and theobromine production. PLoS
ONE 9:e105368. https://doi.org/10.1371/journal.pone.
0105368

Jing ZP, Gallardo F, Pascual MB, Sampalo R, Romero J, De Navarra
AT, Cánovas FM (2004) Improved growth in a field trial of
transgenic hybrid poplar overexpressing glutamine syn-
thetase. New Phytol 164:137–145. https://doi.org/10.1111/
j.1469-8137.2004.01173.x

Junker BH (2014) Flux analysis in plant metabolic networks:
increasing throughput and coverage. Curr Opin Biotechnol
26:183–188. https://doi.org/10.1016/j.copbio.2014.01.016

Karasawa MMG, Mohan C (2018) Fruits as prospective reserves of
bioactive compounds: a review. Nat Prod Bioprospect
8:335–346. https://doi.org/10.1007/s13659-018-0186-6

Kim M, Kim S-C, Song KJ, Kim HB, Kim I-J, Song E-Y, Chun S-J
(2010) Transformation of carotenoid biosynthetic genes
using a micro-cross section method in kiwifruit (Actinidia
deliciosa cv. Hayward). Plant Cell Rep 29:1339–1349. https://
doi.org/10.1007/s00299-010-0920-y

Kim MJ, Yang SW, Mao H-Z, Veena SP, Yin J-L, Chua N-H (2014)
Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a
patatin-domain triacylglycerol lipase, enhances seed oil
accumulation in Jatropha curcas. Biotechnol Biofuels 7:36.
https://doi.org/10.1186/1754-6834-7-36

Klocko AL, Ma C, Robertson S, Esfandiari E, Nilsson O, Strauss SH
(2016) FT overexpression induces precocious flowering and
normal reproductive development in Eucalyptus. Plant
Biotechnol J 14:808–819. https://doi.org/10.1111/pbi.
12431

Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R
(2000) Kiwifruits (Actinidia deliciosa) transformed with a
Vitis stilbene synthase gene produce piceid (resveratrol-
glucoside). Plant Cell Rep 19:904–910. https://doi.org/10.
1007/s002990000203

Koeduka T et al (2013) Enhancement of production of eugenol
and its glycosides in transgenic aspen plants via genetic
engineering. Biochem Biophys Res Commun 436:73–78.
https://doi.org/10.1016/j.bbrc.2013.05.060
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