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Background:  The clinical high-risk (CHR) period offers a 
temporal window into neurobiological deviations preceding 
psychosis onset, but little attention has been given to re-
gions outside the cerebrum in large-scale studies of CHR. 
Recently, the North American Prodrome Longitudinal 
Study (NAPLS)-2 revealed altered functional connec-
tivity of the cerebello-thalamo-cortical circuitry among 
individuals at CHR; however, cerebellar morphology re-
mains underinvestigated in this at-risk population, despite 
growing evidence of its involvement in psychosis.  Study 
Design:  In this multisite study, we analyzed T1-weighted 
magnetic resonance imaging scans obtained from N = 469 
CHR individuals (61% male, ages = 12–36 years) and N 
= 212 healthy controls (52% male, ages = 12–34 years) 
from NAPLS-2, with a focus on cerebellar cortex and 
white matter volumes separately. Symptoms were rated by 
the Structured Interview for Psychosis-Risk Syndromes 
(SIPS). The outcome by two-year follow-up was categor-
ized as in-remission, symptomatic, prodromal-progression, 
or psychotic. General linear models were used for case-
control comparisons and tests for volumetric associations 
with baseline SIPS ratings and clinical outcomes.  Study 
Results:  Cerebellar cortex and white matter volumes dif-
fered between the CHR and healthy control groups at 
baseline, with sex moderating the difference in cortical 
volumes, and both sex and age moderating the differ-
ence in white matter volumes. Baseline ratings for major 

psychosis-risk dimensions as well as a clinical outcome at 
follow-up had tissue-specific associations with cerebellar 
volumes.  Conclusions:  These findings point to clinically 
relevant deviations in cerebellar cortex and white matter 
structures among CHR individuals and highlight the im-
portance of considering the complex interplay between sex 
and age when studying the neuromaturational substrates of 
psychosis risk. 

Key words: CHR/prodrome/ultra-high risk/schizophrenia/
North American Prodrome Longitudinal Study/
structural magnetic resonance imaging

Introduction

Among individuals with schizophrenia and other psy-
chotic disorders, the clinical onset of psychosis is typically 
preceded by a prodromal period, marked by functional 
decline, cognitive and affective changes, and surfacing of 
attenuated positive symptoms.1–5 Given this course, the 
prodrome offers a promising temporal window into the 
neurobiological precursors of psychosis.

The clinical high risk (CHR) for psychosis construct 
originated from findings from retrospective studies and is 
now used to prospectively identify individuals presenting 
with such “warning” signs.6,7 Longitudinal studies using 
screening tools, such as the Structured Interview for 
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Psychosis-Risk Syndromes (SIPS)8,9 report that 15%–35% 
of individuals meeting CHR criteria transition to psy-
chosis within 2–3 years.10–15 Hence, a substantial propor-
tion of CHR youth are at imminent risk of developing 
frank psychosis. However, it is not yet possible to make 
personalized predictions about psychosis-onset based 
solely on these criteria.

Among CHR individuals who do not go on to develop 
psychosis, a subset experience remission, while others re-
main stably symptomatic or experience exacerbation,16–25 
suggesting that the CHR construct itself  embodies a con-
tinuum toward frank psychosis. Consequently, consid-
ering the broader spectrum of clinical outcomes in CHR 
beyond conversion versus nonconversion provides more 
nuanced insights into variable expressions of psychosis 
vulnerability.

The integration of the CHR paradigm and high-
resolution structural magnetic resonance imaging (MRI) 
has greatly advanced our understanding of brain al-
terations underlying psychosis risk without confounds 
such as disease chronicity or extended antipsychotic 
treatment.26 An array of neuroanatomical abnormal-
ities has been identified in CHR,27–49 some of which are 
similar to but more subtle than those seen in psychotic 
disorders.27,39,50–52 Several changes, including accelerated 
neocortical thinning, distinguish CHR individuals who 
convert to psychosis (CHR-C) from those who do not 
(CHR-NC),31,32,39,40,50,53–56 and compared to CHR-NC, 
CHR-C shows baseline volumetric reductions in multiple 
structures,27,30,34–37,39–41,56–58 including frontal and temporal 
regions, which has important implications for improving 
prognostic precision.

When these advances are reviewed collectively, it be-
comes apparent that most CHR studies have focused on 
supratentorial regions, with little attention given to the 
cerebellum: an infratentorial structure containing ~80% 
of all neurons in the brain.59 The few that examined the 
cerebellum have revealed reduced gray or whole cerebellar 
volume in CHR, especially among those who transition 
to psychosis, compared to controls.42,43,46–49 One reported 
increased cerebellar white matter (WM) volume in CHR 
converters.44 The paucity of research on the cerebellum 
is partially a result of the view that cerebellar function is 
confined to motor control. However, recent findings indi-
cate that the cerebellum also modulates higher cognitive 
and affective processes via interactions with nonmotor re-
gions of the neocortex,60–69 and growing evidence, with 
roots in early theories of “cognitive dysmetria,”70 impli-
cate the cerebellum in schizophrenia pathogenesis.71–75

Consistent with these reports, findings from the North 
American Prodrome Longitudinal Study (NAPLS)-276 
revealed altered functional connectivity of the cerebellum 
in CHR,77 but the cerebellar structure has not been in-
vestigated in this sample. The present study expands 
prior neuroimaging findings from NAPLS-241,55,78 and 
interrogates baseline differences in the cerebellar cortex 

and WM morphology between CHR participants and 
healthy controls (HCs). Although previous research has 
established that the cerebellar cortex and WM follow dif-
ferent developmental trajectories that may be sexually di-
morphic,79–92 studies of the cerebellum in CHR have not 
made this distinction. The inclusion of sex as a predictor 
is especially important, because sexual dimorphism ap-
pears to be more pronounced in the cerebellum than in 
any other human brain region.81–84 Thus, we separately 
measure gray and WM while exploring interactions be-
tween sex and age and test for associations between base-
line cerebellar volumes and psychosis-risk symptoms 
assessed by the SIPS. Finally, we test the prediction that 
baseline cerebellar volumes differ among CHR partici-
pants according to clinical outcome within the two-year 
study follow-up period. To our knowledge, this is the lar-
gest study of CHR to date with an explicit focus on cere-
bellar structure.

Methods

Participants

Participants were recruited through NAPLS-2.76 Data 
from 469 help-seeking CHR participants, ages 12–36 
years and 212 HCs, ages 12–34 years were included (table 
1, Tables S1, and S2; figure 1A). CHR participants met 
the Criteria of Prodromal Syndromes,93 or if  under age 19, 
met the criteria for schizotypal personality disorder. HCs 
were excluded if  they had a psychotic disorder, Cluster-A 
personality disorder, prodromal syndrome, first-degree 
family history of psychosis, or were using psychotropic 
medication. Individuals with IQ < 70, a central nervous 
system disorder, or substance dependence were excluded. 
Procedures were approved by the Institutional Review 
Boards of all sites. Project protocol and characteristics of 
the broader study sample, from which the current sample 
was drawn, have been detailed elsewhere.25,76

Neuroimaging

Structural MRI was performed on 3T Siemens or GE 
scanners with 12- or 8-channel head coils, using stand-
ardized sequence parameters optimized based on the 
ADNI protocol94 (https://adni.loni.usc.edu/methods/
documents/mri-protocols/). T1-weighted 3D images were 
acquired in the sagittal plane with a 1 × 1 mm in-plane 
resolution and 1.2 mm slice thickness using an MPRAGE 
sequence at Siemens sites and IR-SPGR sequence at 
GE sites: TR = 52,300 ms, TE = 2.91 ms, TI = 900 ms, 
FOV = 256 × 240 × 176 mm, flip angle = 9° for Siemens;  
TR= 57.0 ms, TE = minimum full, TI = 400 ms, FOV = 
26 cm, and flip angle = 8º for GE. 

Scans were processed using Freesurfer v.5.3 (http://
surfer.nmr.mgh.harvard.edu/) for methodological con-
sistency with previous work from NAPLS-2. Using au-
tomated subcortical segmentation,95 we distinguished the 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac169#supplementary-data
https://adni.loni.usc.edu/methods/documents/mri-protocols/
https://adni.loni.usc.edu/methods/documents/mri-protocols/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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two primary tissue types of the cerebellum and extracted 
volumetric measures for the cerebellar cortex and WM 
(figure 1B). To correct for variability in head size,96,97 we 
used estimated intracranial volume (eICV).98 To improve 
between-site reliability a traveling-subject design was im-
plemented, and scanner-related variance was corrected 
as reported previously41,99 (see Supplemental Methods 
and Figure S1 for details). Quality control is described 
elsewhere.41,55,99

Clinical Measures

Dimensional Symptom Ratings at Baseline. SIPS was ad-
ministered at baseline to rate symptom severity along 
positive, negative, and disorganization symptom dimen-
sions.8,9 Individual items were summed to produce a 
total score for each dimension. Only participants with 
complete SIPS data across all domains (CHR N = 466, 

HC N = 210) were included in corresponding analyses. 
Assessments were performed by trained personnel, with 
high inter-rater reliability.9,25

Clinical Outcome at Follow-up. CHR participants were 
followed for up to two years to determine illness progres-
sion based on Current Clinical State criteria.22 To reduce 
attrition-related bias, clinical outcome was determined 
based on the last observation carried forward (LOCF) 
method commonly used in longitudinal research.100 
Resulting clinical outcomes were (1) in-remission (full 
remission from prodromal syndromes, N = 121), (2) 
symptomatic (continues to exhibit prodromal symp-
toms, but not meeting prodromal syndrome criteria, N 
= 130), (3) prodromal-progression (continues to meet 
prodromal syndrome criteria, N = 109), or (4) psychotic 
(converted to psychosis, N = 68) (Table S3). LOCFs 
were relatively evenly distributed across outcome groups 
(Figure S2).

Fig. 1. (A) Histogram showing age distributions of study participants. (B) Example cerebellar segmentation mask. (C) and (D) 
Cerebellar cortex and WM volume distributions across age. Solid lines: line of linear fit, error bands: 95% confidence interval. CHR, 
clinical high-risk; HC, healthy control; WM, white matter.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac169#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac169#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac169#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac169#supplementary-data
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Statistical Analyses

Case-Control Comparison of Cerebellar Volume at 
Baseline. Statistical analyses were performed using R 
v.4.0.3.101 Demographics were compared using Pearson’s 
chi-squared and Wilcoxon rank-sum tests. Baseline vol-
umes of cerebellar cortex and WM were compared be-
tween CHR and HC using multiple linear regression, 
correcting for age, sex, maternal education, and eICV. 
Covariate selection was informed by correlation analyses 
prior to model construction (Tables S4–9, Figures S3 and 
4). Maternal education was included as a covariate given 
its association with offspring outcomes.102–105 Higher de-
gree polynomials of age were additionally tested; con-
sistent with the age range, linear models were found more 
appropriate to prevent overfitting (figure 1C and D).

We checked for two-way and three-way interactions 
between sex, age, and diagnostic group and determined 
best-fit models using analyses of variance (ANOVA). In 
cases where a significant product term was identified, 
data were stratified by sex and/or age for post hoc anal-
ysis. In supplemental analyses, bilateral volumes were 
substituted with hemisphere-specific counterparts with 
handedness106 added as an additional covariate.107 Results 
indicate parallel trends between models testing bilateral 
versus unilateral measures (Table S10). Hence, down-
stream analyses focus on bilateral volumes.

Relationship between Cerebellar Volume and Symptom 
Dimensions of Psychosis Risk. We investigated the di-
mensional relationship between positive, negative, and 
disorganization symptoms and cerebellar cortex and 
WM volumes among CHR participants at baseline in 
separate multiple linear regression models, correcting for 
age, sex, maternal education, and eICV. Using the same 
procedure outlined above, we checked for two-way and 
three-way interactions between sex, age, and cerebellar 
volumes. Descriptive statistics for SIPS ratings are pro-
vided in Table S11 and Figure S5. Covariate selection was 
informed by supplemental correlation analyses (Tables 
S12–14 and Figure S6).

Relationship between Cerebellar Volume and Future 
Clinical Outcomes. Baseline demographics of the four 
clinical outcome groups that CHR participants met cri-
teria for at follow-up were compared using Pearson’s 
chi-squared, Kruskal–Wallis, and Dunn’s tests. Multiple 
linear regression was used to test for baseline differences 
in the cerebellar cortex and WM volumes of CHR parti-
cipants with varying clinical outcomes, correcting for age, 
sex, maternal education, and eICV. Clinical outcome was 
treated as an ordered predictor (in-remission < sympto-
matic < prodromal-progression < psychotic); one fewer 
orthogonal polynomials than ordered levels were fit, and 
interactions between sex, age, and clinical outcome were 
tested. Since a linear trend was observed across its ordinal 

levels, clinical outcome was treated as continuous in post 
hoc analyses to maximize power.

Standard diagnostics were performed for statistical as-
sumptions; to address ordinary least squares violations, 
heteroscedasticity-robust estimates were calculated using 
the HC1 robust standard error estimator.108 All analyses 
were two-tailed. Benjamini–Hochberg procedure109 was 
used to control the false discovery rate (FDR) within 
families of  hypotheses. See Supplemental Materials for 
details.

Results

Case-Control Differences in Cerebellar Cortex and 
WM Volumes Change as a Function of Sex and Age at 
Baseline

We first compared the cerebellar volumes of CHR and 
HC participants at baseline (Table S15). There was a sig-
nificant effect of diagnostic group (b = −2.78, P-value = 
.002, adjusted P-value = .01) and a two-way interaction 
between sex and diagnostic-group on cerebellar cortex 
volumes (b = 2.79, P-value = .03, adjusted P-value = 
.04). Simultaneously, there was a significant two-way in-
teraction between sex and diagnostic-group (b = −5.65, 
P-value = .02, adjusted P-value = .03) and a three-way in-
teraction between sex, age, and diagnostic group (b = 0.32, 
P-value = .01, adjusted P-value = .03) on cerebellar WM 
volumes, as well as a two-way interaction between sex 
and diagnostic groups (b = 0.56, P-value = .02, adjusted 
P-value = .03) and a three-way interaction between sex, 
age, and diagnostic group (b = −0.03, P-value = .02, ad-
justed P-value = .03) on cerebellar cortex-to-WM ratios.

In post hoc analyses (Table S16), there was a signif-
icant reduction in the cerebellar cortex of CHR com-
pared with HC participants (b = −2.53, P-value = .005, 
adjusted P-value = .02), among females only (figure 2A). 
There was also a significant effect of diagnostic-group 
(b = −6.38, P-value ≤ .001, adjusted P-value ≤ .001; b 
= 0.53, P-value ≤ .001, adjusted P-value = .004) and a 
two-way interaction between diagnostic group and age 
(b = 0.32, P-value ≤ .001, adjusted P-value ≤ .001; b = 
−0.03, P-value ≤ .001, adjusted P-value = .004) on cere-
bellar WM volumes and cerebellar cortex-to-WM ratios, 
among males only (figure 2B and C). The crossover of 
these two-way interactions (ie, the point of intersection 
for regression lines in figure 2B and C) occurred around 
age 20, coinciding with the period of transition from ad-
olescence to young adulthood. Partitioning males into 
younger (age ≤ 20) versus older (age > 20) age cohorts 
(Table S17) revealed a significant reduction in the cere-
bellar WM of younger CHR males than HCs (b = −1.14, 
P-value = .02, adjusted P-value = .03), whereas cerebellar 
WM was significantly larger in older CHR males than 
HCs (b = 1.36, P-value = .02, adjusted P-value = .03) 
(Table S18).
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Disorganization and Negative Symptoms Covary with 
Baseline Cerebellar Cortex Volumes in CHR

We next tested whether cerebellar volumes were as-
sociated with positive, negative, or disorganization 
symptom ratings among CHR participants at base-
line (Table S19). There was a significant effect of  cere-
bellar cortex volume (b = −0.06, P-value = .01, adjusted 
P-value = .02) and a two-way interaction between cere-
bellar cortex volume and sex (b = 0.11, P-value ≤ .001, 
adjusted P-value = .004) on disorganization symptoms. 
Similarly, there was a significant two-way interaction 
between cerebellar cortex volume and sex on negative 
symptoms (b = 0.16, P-value = .01, adjusted P-value = 
.02), but no association between cerebellar volumes and 
positive symptoms.

When stratified by sex (Table S20; figure 3), a signif-
icant inverse relationship was identified between cer-
ebellar cortex volume and disorganization symptoms 
among CHR females (b = −0.07, P-value = .01, adjusted 
P-value = .02), whereas the direction of this relationship 
was positive among CHR males (b = 0.05, P-value = .02, 

adjusted P-value = .04). Similarly, there was a nominally 
significant positive relationship between cerebellar cortex 
and negative symptoms among CHR males that did not 
survive FDR correction (b = 0.09, P-value = .04, adjusted 
P-value = .10), and a trend-level inverse association be-
tween these variables among CHR females (b = −0.08, 
P-value = .10).

Future Clinical Outcomes in CHR are Associated with 
Baseline Cerebellar WM Volumes

To investigate prognostic relations, we tested for baseline 
differences in the cerebellar cortex and WM volumes of 
CHR participants as a function of clinical outcomes by 
the end of the two-year study follow-up period (Table 
S21). Results indicated a relation with clinical outcome 
(b = −5.30, P-value = .02, adjusted P-value = .04), a 
two-way interaction between sex and clinical outcome (b 
= 9.94, P-value = .01, adjusted P-value = .03), a two-way 
interaction between age and clinical outcome (b = 0.30, 
P-value = .03, adjusted P-value = .04), and a three-
way interaction between sex, age, and clinical outcome  

Fig. 2. (A)–(C) Predictor effect plots illustrating sex- and age-specific differences in baseline cerebellar cortex and WM volumes between 
CHR and HC participants. Error bands: 95% confidence interval, dashed circles: crossover point of interaction. CHR, clinical high-risk; 
HC, healthy control; WM, white matter.
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(b = −0.60, P-value = .004, adjusted P-value = .03) on 
cerebellar WM volumes.

In post hoc analyses (Table S22; figure 4), there was 
a significant relation of clinical outcome (b = −2.01, 
P-value = .02, adjusted P-value = .04) and a significant 
interaction between age and clinical outcome (b = 0.12, 
P-value = .02, adjusted P-value = .04) for cerebellar WM 
among CHR females. Similarly, there was a trend-level 
effect of clinical outcome (b = 2.04, P-value = .10) and a 
nominally significant interaction between age and clinical 
outcome on WM among CHR males (b = −0.13, P-value 
= .04, adjusted P-value = .06).

To parse these interactions, we partitioned CHR par-
ticipants into two age groups (age ≤ 20 vs > 20) (Table 
S23). In older CHR males, participants with more se-
vere clinical outcomes had significantly smaller cere-
bellar WM at baseline (b = −0.96, P-value = .03, adjusted 
P-value = .04). Among older CHR females, a trend-level 

association was identified between clinical outcome and 
cerebellar WM, but the direction of this relationship was 
positive (b = 0.83, P-value = .07). No link was identified 
between clinical outcome and cerebellar volumes among 
younger CHR participants. A similar pattern was ob-
served when the clinical outcome was treated as an un-
ordered categorical variable (Table S24), but power was 
expectedly reduced.

Discussion

Structural neuroimaging has been pivotal in identifying 
the types of brain abnormality observed across individ-
uals at CHR for psychosis. However, not all parts of 
the brain have received equal attention in this pursuit, 
partially stemming from the neocorticocentric bias in 
studying higher-order capacities of the human brain.110 
Work suggesting that cerebellar abnormalities occur in 

Fig. 3. Predictor effect plots illustrating sex-specific associations between baseline cerebellar cortex volumes and symptom ratings among 
CHR participants. Error bands: 95% confidence interval. CHR, clinical high-risk.
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schizophrenia and other psychoses are accumulating,111,112 
but only a limited number of studies with relatively small 
sample sizes, and in some cases with no HC comparisons, 
have investigated the morphology of the cerebellum in 
CHR.35,42–49,54,56 Due to insufficient data, the cerebellum 
was excluded from multiple meta-analyses in this pop-
ulation,113,114 hindering our ability to assess the full ex-
tent of neuropathology associated with vulnerability for 
psychosis.

To our knowledge, no large-scale study of CHR has 
ever jointly investigated the distinct volumetric profiles 
and clinical correlates of cerebellar cortex and WM, 
while considering sex and age-related differences beyond 
so-called “nuisance” variation. Using high-resolution 
T1-weighted MRI, standardized clinical assessments, 
and the NAPLS-2 multicenter design, here we report the 
largest study of CHR to date with an explicit focus on 
sex-, age-, and tissue-specific deviations in the volumetric 
properties of this long-overlooked brain region.

Consistent with previous reports of normative sex 
differences, in our HC group, males showed larger cere-
bellar cortex volumes than females across ages, as well as 

a significant age-by-sex interaction, with females showing 
an earlier peak volume and less protracted age-related vol-
umetric declines in adolescence/young adulthood.80,83 In a 
study of both cerebellar gray and WM volumes in healthy 
youth aged 12–22, age-by-sex interactions were also 
found; controlling for sex differences in overall volume, 
gray matter volume declined faster in male youths than in 
female youths with age, but WM volume increased faster 
in females than in males.85 To date, we are aware of one 
report on sex and age differences in cerebellar WM using 
diffusion tensor imaging, with results also showing a sig-
nificant age-by-sex interaction, due to males only with 
an age-related increase during childhood.115 Because the 
sample age ranges in the above-cited studies differ from 
the present study, with minimums from 7 to 12 years and 
maximums to the early/mid-1920s, we would not expect 
replications of the age-related trends. Nonetheless, all 
find age-by-sex interactions.

Present findings suggest that the CHR group showed 
sex differences similar to those observed in HCs, but the 
volumes and age trajectories differed by diagnostic group. 
First, we found a significant diagnostic-group-by-sex 

Fig. 4. Predictor effect plots illustrating sex- and age-specific associations between baseline cerebellar WM volumes and future clinical 
outcomes among CHR participants. Error bands: 95% confidence interval. CHR, clinical high-risk; WM, white matter.
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interaction on baseline volumes of the cerebellar cortex, 
which contains almost all neuronal cell bodies (gray 
matter) in the cerebellum and more than half  of the 
neurons in the entire brain. The average size of the cere-
bellar cortex was smaller in CHR females compared with 
HC females, while this effect was not observed among 
males and did not change as a function of age.

Simultaneously, we found a significant diagnostic-
group-by-sex-by-age interaction on baseline volumes of 
cerebellar WM, which mostly contains myelinated axons 
connecting the cerebellum with the central nervous system. 
There was a male-specific reduction in the cerebellar 
WM volumes of CHR participants compared with HCs 
among those aged 20 or younger, while CHR males older 
than 20 had larger WM than HCs. This male-specific ef-
fect was also mirrored in cerebellar cortex-to-WM ratios. 
Altogether, these results implicate abnormal cerebellar 
structure as a baseline neuroanatomical marker of CHR, 
but with substantial sex- and age-specific heterogeneity in 
the direction of diagnostic-group effects that support the 
importance of harnessing sex- and age-related variability 
in future precision medicine approaches116–119

Furthermore, our results revealed sex-specific relation-
ships between baseline cerebellar cortex volumes and dis-
organization symptoms. Among CHR females, smaller 
cerebellar cortex volumes were associated with more se-
vere disorganization symptoms, while the inverse was ob-
served among males. Concurrently, among CHR males, 
larger cerebellar cortex volumes showed a nominally sig-
nificant association with more severe negative symptoms, 
while an inverse trend was observed among females. We 
found no association between baseline cerebellar volumes 
and positive symptom ratings among CHR participants, 
although caution is warranted in interpreting this finding, 
given the range restriction imposed on this dimension by 
SIPS eligibility criteria.

These findings are broadly consistent with growing ev-
idence indicating many cognitive and affective processes 
map onto neural networks involving the cerebellum.120–123 
Following cerebellar lesion, a cognitive/affective syn-
drome is known to unfold, which includes impairments in 
working memory, verbal fluency, attention, and abstract 
reasoning, as well as blunted affect, and disinhibited or 
inappropriate behavior,124 which are highly consistent 
with the phenomenology of disorganization and negative 
symptoms.

We also showed that baseline cerebellar WM volumes 
display a sex- and age-specific association with clinical 
outcome at follow-up, suggesting prognostic utility. 
Among CHR males older than 20, those with smaller 
baseline cerebellar WM volumes developed more se-
vere clinical outcomes, while among CHR females older 
than 20, larger cerebellar WM showed a trend-level as-
sociation with more severe clinical outcomes. These 
associations were not observed among younger CHR 
participants.

Previous findings from NAPLS-2 revealed that the 
degree to which CHR cases manifest deviance from 
age-normative neuroanatomical profiles depends on age-
of-ascertainment, with marked differences observed be-
tween those ascertained during early adolescence versus 
late adolescence/early adulthood.41,78 These findings were 
interpreted as a pattern consistent with differential vul-
nerability for insidious versus acute forms of psychosis-
onset,41,78 which may be relevant to the age-specific 
findings observed in this study. However, compensation 
attempts in WM microstructure, which can be maladap-
tive,125 may also be at play. We note that the approximate 
point of crossover for these age-dependent effects was 20, 
as opposed to 18 in earlier extra-cerebellar findings from 
NAPLS-241,78 (see Supplemental Materials for an extended 
discussion); this may be due to slight differences in age 
ranges or protracted development of the cerebellum.126,127 
Here, we highlight that age 20 is only an approximate 
marker that was derived from the corresponding inter-
actions to demarcate the age dependence of group effects 
(similar to128). A sliding window approach should be em-
ployed in future work with larger sample sizes to re-eval-
uate the reproducibility of this split.

Literature on neuroanatomical sex differences in CHR 
is scarce. Similar to our findings, at least one prior study 
identified sex-by-diagnosis interactions in the cerebrum, 
with opposite directions of effect observed in CHR males, 
and females relative to same-sex HCs.129 Interestingly, 
Gur and colleagues reported a positive association be-
tween amygdala volume and negative symptom severity 
among males with schizophrenia, while the inverse was 
identified among females. This was interpreted as indic-
ative of increased “feminization” among men and “mas-
culinization” among women with schizophrenia.130 More 
research is needed to determine whether the reversal of 
normative sexual dimorphism during neurodevelopment 
contributes to the opposite pattern of cerebellar findings 
identified in CHR males and females.

We highlight that Purkinje cells of the cerebellar cortex 
are a major site of neurosteroid synthesis.131–134 Cerebellar 
sex differences in synaptic physiology,135 gene and pro-
tein expression, and functional associations have been 
reported.136–140 It has been further suggested that cere-
bellar synaptic pruning is linked with puberty, the timing 
of which differs by sex.80 These data, together with our 
findings demonstrate an imperative for including sex and 
sex-by-age interactions as variables of interest in future 
studies of the cerebellum’s role in neuropsychopathology. 
In this context, the extent to which variations in the 
timing of puberty141 might influence the age- and sex-
specific findings reported herein remains to be explored.

Finally, as shown in some previous studies of healthy 
participants,79–90 we found that age-related changes in 
HCs differ for the cerebellar cortex and WM, with the 
cortex showing a greater age-related decline. Differences 
in the timing of neuromaturational processes governing 
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the development of these two tissue types likely confer 
different susceptibilities to cerebellar cortex versus WM 
development, which may partially explain the tissue-
specific findings reported herein. We expect that previous 
studies of the cerebellum in clinical populations that 
did not distinguish between white and grey matter have 
missed differences in their respective developmental tra-
jectories, as well as developmental moderation of their 
changes.

Several limitations should be considered. The com-
plexity of cerebellar architecture introduces methodo-
logical challenges; our gray and WM classifications lack 
the resolution to differentiate thinner WM branches 
and the deep cerebellar nuclei. Emerging findings indi-
cate that distinct cerebellar subregions subserve different 
motor and  nonmotor  functions mediated by their con-
nectivity patterns with extracerebellar  regions; however, 
it is unclear whether functional subdivisions coincide 
with lobular boundaries.142–148 Given these intriguing 
circuit-level links, future work should determine whether 
differing pathologies in CHR can be localized to var-
iations in distinct subregions of the cerebellum. In this 
context, integrating a neurocognitive battery may pro-
vide more refined insights. Age-of-ascertainment does 
not necessarily reflect age-of-onset for CHR symptoms, 
but determining the latter requires reliance on retrospec-
tive memory which is frequently disrupted in CHR.149 
Finally, findings do not necessarily reflect causation; lon-
gitudinal tracking of changes in cerebellar morphology 
and replication of results in a larger sample is needed. 
Nonetheless, present findings point to the importance 
of the cerebellum in the neuropathological processes 
involved in at least some forms of psychosis. They also 
highlight sexual dimorphisms in normative cerebellar de-
velopmental trajectories that must be taken into consid-
eration in future research.

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin.
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