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ABSTRACT

Mathematical modeling of biological systems provides a structured framework
for exploring and understanding intricate biological phenomena that can be key to
unlocking the underlying principles that govern life. Even relatively elementary math-
ematical models applied to highly complex biological systems have exhibited a ca-
pacity to unveil significant patterns and insights, underscoring the substantial utility of
computational models in scientific inquiries. In a simplified perspective, mathematical
models of biological phenomena can be categorized into three groups: The first group
assumes known governing equations and employs mathematical descriptions (e.g. Or-
dinary or Partial Differential Equations) for modeling dynamics and variations. The
second group relies on complete observations to learn some or all system components,
often utilizing Machine Learning to uncover useful patterns and relationships in the
data. The third group aims to use incomplete observations or assumptions to learn
from the system, often seeking to generalize findings to unknown agents in the same
or different systems.

The goal of this dissertation is to propose novel mathematical techniques to
address some of the intricacies inherent in modeling complex biological systems.
This dissertation is structured into three parts, each corresponding to the modeling
paradigms mentioned earlier, with individual chapters devoted to various methods and
applications. The first part of this dissertation introduces a novel numerical method
for modeling Partial Differential Equations on deforming geometries. Subsequently,
the dissertation transitions to data-driven modeling of biological tissues in humans
and animals, leveraging deep learning to capture meaningful insights that can improve
the robustness and accuracy of biological analyses. In the final part of this disserta-
tion, novel deep-learning algorithms are formulated to address data or label scarcity,
offering substantial improvements in the analysis of systems where prior knowledge
or the amount of observations is limited.

Similar to mathematical biology itself, the methods and systems explored in this
dissertation encompass a wide spectrum, spanning various scales (from a single cell
to tissues) and species (yeast, mice, humans) within the realm of biological sciences.
However, they are unified in their pursuit to enable more robust and accurate analysis
of complex biological systems. Despite their distinctions, the frameworks presented in
this work underscore my dissertation’s overarching goal: to provide a comprehensive
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toolkit for modeling complex biological systems across different modeling regimes
and limitations. Through these efforts, I hope to contribute to gaining a deeper under-
standing of life and its underlying mathematical principles.
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Everything should be made as simple as possible, but

no simpler.

Albert Einstein

1
Introduction

The history of mathematics and its applications to various modeling stands as a
testament to its pervasive and transformative influence across diverse scientific disci-
plines. Mathematics’ origins can be traced back to ancient civilizations, where early
mathematicians and astronomers, such as the Babylonians, Persians, Egyptians, and
Greeks3, developed equations to describe celestial motion and geometric principles.
However, it was not until the Renaissance that mathematical modeling began to take
a more structured form4, with pioneers like Galileo Galilei and Johannes Kepler us-
ing mathematical principles to model planetary orbits and motion4. The 17th cen-
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tury saw the emergence of calculus, courtesy of Isaac Newton and Gottfried Wilhelm
Leibniz, which provided powerful tools for modeling and solving complex scientific
problems. In the 19th century, mathematical modeling extended its reach into physics,
engineering, and chemistry, with luminaries like Carl Friedrich Gauss, Joseph Fourier,
Pierre-Simon Laplace, and Lord Kelvin making significant contributions to the ad-
vancements5. The 20th century witnessed unprecedented breakthroughs in mathe-
matical modeling across fields like biology, economics, and environmental science,
propelled by computing breakthroughs and the realization that complex natural phe-
nomena could be unraveled through quantitative approaches5. Today, mathematical
modeling remains at the forefront of scientific inquiry, facilitating exploring, under-
standing, and predicting intricate phenomena in fields as varied as climate science,
epidemiology, finance, and beyond. Its historical trajectory highlights its enduring sig-
nificance in shaping how we comprehend and engage with the natural world.

With the advent of mathematical modeling, the field of Applied Mathematics emerged
to address complex real-world problems by utilizing mathematical principles and
techniques to formulate practical solutions. Applied Mathematics aims to bridge the
gap between theoretical mathematics and the tangible challenges faced in various sci-
entific and engineering domains. Applied Mathematics has been instrumental in ad-
vancing our understanding of complex phenomena, improving the optimization of
processes, predicting future outcomes, and making informed decisions across diverse
fields. Applied Math’s interdisciplinary approach has not only expanded the bound-
aries of mathematical curiosity but has also significantly contributed to technological
advancements, scientific breakthroughs, and the overall enhancement of our modern
society. Within the realm of Applied Mathematics, few branches have exhibited as
much unexpected potential and promise as Mathematical Biology and Machine Learn-
ing, which are the main focuses of this dissertation.

Both Mathematical Biology and Machine Learning have experienced a paradigm
shift propelled by the availability of high-throughput biological data, sophisticated
computational tools, and interdisciplinary collaborations6. These developments have
empowered researchers to construct increasingly intricate models that capture the in-
tricacies of biological systems, from cellular processes to ecosystems. Mathematical
Biology has played a pivotal role in developing personalized medicine, enabling tai-
lored treatment strategies based on an individual’s genetic makeup and disease profile.
In epidemiology, mathematical modeling has been instrumental in predicting disease
outbreaks, guiding public health responses, and optimizing vaccination campaigns, as
exemplified during the COVID-19 pandemic. As a result, the interdisciplinary nature
of Mathematical Biology continues to shape our understanding of life sciences and
offers invaluable insights for addressing pressing challenges in healthcare, environ-
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mental conservation, and beyond.
In the following sections, I provide a brief overview of the recent advances in

Mathematical Biology and Machine Learning, motivating the main contributions of
my dissertation. I discuss the specifics of each chapter and how they fit in the grand
scheme of modeling complex biological systems.

1.1. THE NEW FRONTIERS IN MATHEMATICAL BIOLOGY

Classical mathematical biology models predominantly used differential equations
to describe changes occurring in a system over time7. These differential equations
served as powerful tools to describe dynamic processes, allowing researchers to quan-
tify the rates of change of various biological entities. This foundational approach
paved the way for a deeper understanding of biological systems, such as population
dynamics, biochemical reactions, and the spread of diseases. Moreover, it established
a strong mathematical framework for investigating biological phenomena and laid the
groundwork for developing more sophisticated modeling techniques and computa-
tional methods that have since expanded the field’s scope and capabilities.

As computational resources and data availability increased, mathematical biolo-
gists began exploring new areas of applications. Additionally, technological advance-
ments of the late 20th century paved the way for computational biologists to research
the human genome, a feat deemed impossible just half a century ago8. These efforts,
spearheaded by the Human Genome Project9, aimed at deciphering the chemical
makeup of the entire human genetic code. The Human Genome Project played a cru-
cial role in driving advancements in DNA sequencing, ultimately paving the way for
high-throughput sequencing technologies for the genome and transcriptome. These
technologies allowed for the rapid and cost-effective generation of vast amounts of
biological data, including DNA sequences, gene expression profiles, and protein in-
teractions. In response to this influx of data, mathematical biologists have turned to
leveraging statistical and machine-learning techniques in their modeling approaches.

The utilization of Machine Learning in modeling complex biological systems is
catalyzing transformative shifts across various branches of Mathematical Biology, in-
cluding Computational Biology10, Genomics6, and Bioinformatics11. The integration
of machine learning techniques has unlocked new avenues for data-driven discovery
and decision-making in these areas, enabling the extraction of valuable insights from
vast and complex biological datasets. However, the application of machine learning in
the context of biological data is not without its challenges. Biological datasets often
exhibit inherent nuances, including technical and biological noise, high dimensional-
ity, and sparsity, which pose substantial hurdles to efficient and effective learning12.
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I provide a more extensive biological background of the challenges associated with
biological data in Chapter 3.

1.2. THE RISE OF DEEP LEARNING

The inception of Machine Learning dates back to the mid-20th century, marked
by the emergence of initial concepts and rudimentary algorithms in the hopes of rec-
ognizing letters of the alphabet13. These early days were characterized by limited
computational resources and relatively simple models, such as the perceptron and lin-
ear regression13. Progress was modest, and the field faced considerable challenges
due to the scarcity of high-quality data and computational power. However, Machine
Learning has experienced remarkable advancement over time, to the point of being
referred to as Artificial Intelligence. The integration of more sophisticated algorithms,
the explosion of big data, and the advent of powerful hardware have tremendously
contributed to the fields’ remarkable growth. Notable milestones include the devel-
opment of neural networks, reinforcement learning techniques, and the rise of Deep
Learning.

Deep Learning is a subset of Machine Learning that uses deep neural networks
(DNNs) to analyze large and complex datasets. DNNs comprise layers of artificial
neurons inspired by how human neurons work. Each neuron takes the weighted sum-
mation of all inputs and passes it through a non-linear activation function, creating a
stack of hidden layers. The input information flows from the input layer through the
hidden layers, and the model generates an output at the last layer, the output layer.
The large set of trainable weights of the neurons and the non-linear transformations
enable DNNs to capture underlying complex patterns of the data. Training a DNN is
the process of determining these trainable weights to optimize model performance.
Recent advances in Deep Learning have revolutionized almost all areas of science, no-
tably Computational Biology and health-related research. I provide a more complete
background of various Deep Learning architectures used in Computational Biology in
Chapter 3.

1.3. THREE MATHEMATICAL MODELING REGIMES

In a simplified view, any mathematical model of biological phenomena is grouped
into three cases: First, models that assume the underlying governing equations are
known. These models often leverage classical mathematical frameworks (e.g. Ordi-
nary or Partial Differential Equations) to model change over time (or space), or to
infer important biological parameters (e.g. tumor growth rate). The second group con-
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sists of models that assume enough observations are present to learn the specifics of
system components, often utilizing some form of Machine Learning to learn key pa-
rameters or to identify the agents within the system. An example of such a model is a
classifier that learns to predict the specific condition of patients based on blood work
through supervised learning14. The last group is made up of algorithms that are meant
to model incomplete observations or assumptions, aiming to generalize the learnings
to other systems or improve the initial set of assumptions. Primary examples of such
models are few-shot or zero-shot models15 trained on very few examples of different
classes within the observations, aiming to learn structural similarities that can be ex-
ploited on future unseen inputs to the model.

Given the tremendous utility of mathematical and machine learning models in
modeling biological systems, this dissertation aims to propose novel frameworks that
enable researchers to study complex biological systems, particularly those relating to
diseases, in a more robust and accurate manner.

1.4. MODELING PHENOMENA USING GOVERNING EQUATIONS

Mathematical modeling of systems based on prescribed governing equations has
been instrumental in scientific and engineering applications. Such models are built on
the premise that natural phenomena and physical systems can be described by math-
ematical equations, typically in the form of differential equations that aim to capture
change in dynamics. By formulating and solving these equations, researchers gain in-
sights into the fundamental principles governing the behavior of the desired system.
Models based on governing equations are widely used to model the flow of fluids16,17,
the spread of diseases18,19, or the behavior of financial markets20,21. In the real world,
most systems vary both in time and space, thus necessitating the need for Partial Dif-
ferential Equations (PDEs). PDEs are frequently used to model biological systems,
allowing researchers to describe and analyze complex biological processes that expe-
rience spatial and temporal variations on complex geometries.

Solving some of these models analytically, e.g. PDEs, often fail due to the inher-
ent complexities and nonlinearity of many real-world phenomena. The challenges
of deriving closed-form solutions highlight the need for developing numerical meth-
ods that approximate these systems’ solutions. Among the numerical methods for
solving PDEs, finite difference (FD), finite elements (FE), and finite volumes (FV)
are perhaps the widely used methods. Finite differences, the simplest and most intu-
itive method among the three, discretize the domain into a grid of points and then ap-
proximate the derivatives in the partial differential equation at each point. Though FD
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methods are often well-suited for simple problems, they can be inaccurate for prob-
lems with more complex geometries. Biological systems inherently possess interest-
ing geometries that require FE or FV: FE methods to discretize the domain into a set
of elements and approximate the solution to the partial differential equation over each
element. Though constructing different elements provides much-needed flexibility, it
can potentially be the most computationally expensive method. FVs methods, on the
other hand, start by discretizing a domain into a set of control volumes, then approxi-
mating the integral conservation law on each control volume. Due to its construction,
FV is ideal for solving PDEs over complex geometries as they can be more efficient
than FEs but potentially less accurate.

Given the geometrical complexities of biological systems, FV are frequently used
to solve biologically-motivated PDEs. However, it is known that FV methods are not
conservative on deforming geometries, which is a critical challenge given that many
of the most basic biological phenomena include some deformation in their initial ge-
ometry (e.g. cell division). To address this issue, I present a novel conservative for-
mulation of the FV method in Chapter 2. Motivated by experimental observations of
protein aggregation in dividing yeast cells, I present a conservative finite volume ap-
proach for reaction-diffusion systems defined over deforming geometries. The key
idea of this approach is to use spatio-temporal control volumes instead of integrating
the time-discretized equations in space, as it is common practice. The theoretical and
computational results demonstrate the convergence of this method and highlight how
traditional approaches can lead to inaccurate solutions. In this chapter, I present the
results of employing our approach to investigate the partitioning of protein aggregates
in dividing yeast cells, leveraging the flexibility of the level set method to construct
realistic biological geometries. Using a simple reaction-diffusion model, we find that
spatial heterogeneity in yeast cells during division can alone create asymmetries in the
concentration of protein aggregates. Moreover, we find that obstructing intracellular
entities, such as nuclei or insoluble protein compartments, amplify these asymmetries,
suggesting they may be essential in regulating molecular partitioning. Beyond these
findings, our results illustrate the flexibility of our approach and its potential to design
realistic predictive tools to explore intracellular bio-mechanisms.

1.5. LEARNING FROM LARGE-SCALE BIOLOGICAL OBSERVATIONS

Mathematical and machine learning frameworks are key to unlocking the full po-
tential of large-scale biological data analysis. In the current age of biological “big
data" characterized by massive, intricate datasets, computational models offer a struc-
tured and effective means to unveil biological systems’ underlying dynamics and
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patterns. Machine learning models have shown tremendous potential in extracting
meaningful features, relationships, and predictive insights from such data. Moreover,
mathematical frameworks provide a foundation for integrating diverse data types, fa-
cilitating the creation of comprehensive models encompassing genomics, proteomics,
metabolomics, and more. These frameworks not only enhance our understanding
of complex biological processes but also empower advancements in personalized
medicine, disease diagnosis, drug discovery, and the elucidation of intricate biologi-
cal networks. Such mathematical models have the potential to bridge the gap between
raw biological data and actionable knowledge, making them an indispensable tool in
modern mathematical biology.

The era of big biological data is most prominently marked by high-throughput ge-
nomics22. This data is a valuable resource for biologists, helping them identify pat-
terns, discover trends, and test their hypotheses. Additionally, big data has opened up
exciting research possibilities, such as creating data-driven theories to improve bio-
logical predictions, studying the effects of global changes on different organisms, and
developing tools that make it faster to use models with data. The marriage of Machine
Learning with Biology has revolutionized genomics, enabling the rapid and cost-
effective sequencing of genomes, transcriptomes, and epigenomes. In biomedicine,
machine learning has empowered the development of predictive models for disease di-
agnosis, drug discovery, and treatment optimization, fostering personalized healthcare
approaches. The multifaceted nature of genomics data demands continual advance-
ments in machine learning algorithms that are specialized for biological applications.
Researchers grapple with the need for efficient yet robust methods to handle noisy
datasets, extract meaningful features from high-dimensional spaces, and address the
challenges of data scarcity. Overcoming these challenges remains central to harness-
ing the full potential of machine learning in unraveling the mysteries of biology and
advancing our ability to tackle pressing issues in healthcare, genetics, and beyond.
The later chapters of my dissertation aim to propose new methods that leverage deep
learning to improve the robustness and accuracy of transcriptomics data, particularly
single-cell RNA sequencing (scRNAseq). ScRNAseq technologies allow gene expres-
sion measurements at a single-cell resolution. This gives researchers a tremendous
advantage for detecting heterogeneity, delineating cellular maps, or identifying rare
subpopulations. Chapter 3 is dedicated to providing the necessary mathematical and
biological background for the methods I later propose.

Despite the significant advances in deep-learned models for scRNAseq, the lack
of interpretability is a limitation of current deep-learning approaches for scRNAseq
analysis. Moreover, existing pipelines are designed and trained for specific tasks used
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disjointly for different stages of analysis. In Chapter 4, I propose a novel interpretable
deep learning framework for enhancing the analysis of scRNAseq data. Our approach,
called scANNA, leverages neural attention to learn gene associations. After training,
the learned gene importance (interpretability) is used to perform downstream analyses
(e.g., global marker selection and cell-type classification) without retraining. I demon-
strate that ScANNAs performance is comparable to or better than state-of-the-art
methods designed and trained for specific standard scRNAseq analyses, even though
scANNA was not trained for these tasks explicitly. ScANNA enables researchers to
discover meaningful results without extensive prior knowledge or training separate
task-specific models, saving time and enhancing scRNAseq analyses.

1.6. MATHEMATICAL MODELING OF BIOLOGICAL SYSTEMS IN DATA-
LIMITED REGIMES

Data collection from biological systems is inherently challenging due to exist-
ing biological technical variations. Despite the rapid advancements in data gener-
ation technologies, numerous biological domains still grapple with insufficient or
sparse datasets. The intricate nature of biological systems, ethical considerations,
cost-intensive experimental procedures, and the immense diversity of life forms con-
tribute to this scarcity. As a result, researchers often face limitations when attempt-
ing to build robust models or draw statistically significant conclusions, impeding the
depth and breadth of research insights and hindering the development of accurate pre-
dictive models. Addressing these challenges requires innovative approaches that lever-
age advanced statistical techniques and machine learning algorithms.

Given the formidable challenges associated with extracting biological insights and
constructing reliable predictive models from complex datasets, there has been a no-
table upsurge in adopting deep learning-based models to augment data quality and
analysis. Deep learning has exhibited significant promise by effectively handling vast
volumes of high-dimensional biological data, such as single-cell RNA sequencing
(scRNAseq) data, allowing researchers to uncover intricate patterns and relationships.
However, it is crucial to recognize that adapting deep learning techniques from other
domains, like Computer Vision and Natural Language Processing, to the unique in-
tricacies of biological processes can present challenges and limitations. To address
these issues, Chapters 5 and 6 are dedicated to the development of novel deep learning
frameworks specifically tailored for the intricacies of computational biology, offering
innovative solutions to enhance the modeling and analysis of biological studies with
limited observations or knowledge of the system. The methodologies introduced in
my dissertation exhibit a robust and versatile nature, offering potential utility in mod-
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eling observations from diverse biological systems. While my dissertation primarily
centers on developing these deep learning techniques in the context of scRNAseq
studies, their adaptability extends to various other biological domains. This empha-
sis on scRNAseq data is driven by its broad applicability and the distinctive hurdles it
presents, given its inherent complexity, high feature dimensionality, and the presence
of technical and biological noise.

A critical complication in scRNAseq studies remains the scarcity of detailed infor-
mation about individual samples in biological systems, including scRNAseq studies.
Among the most critical limitations in scRNAseq research is the absence of reliable
labels for individual cells, which can significantly hinder our ability to perform crucial
downstream tasks, limiting our ability to infer cell-cell communication, differentiation
trajectories, and disease progression. Consequently, numerous models have been pro-
posed to predict cell types and fate6. However, most such models demand extensive
data with reliable labels, both of which are often challenging to obtain in real-world
applications. In Chapter 5, I introduce a semi-supervised deep learning approach in-
spired by Partial Differential Equations (PDEs), capable of accurately predicting cell
types even when provided with limited training data. Beyond its significant biological
implications, the proposed model called Drift-Diffusion Graph Neural Network (DD-
GNN) offers a valuable mathematical framework for designing graph neural networks
founded on dynamics prescribed on the model’s latent manifold. This framework in-
troduces a high degree of adaptability, enabling the modeling of various biological
systems by incorporating specific dynamics.

In addition to the inherent challenge of limited sample sizes, researchers face an-
other major hurdle: the low number of single-cell observations stemming from the
rarity of subpopulations, tissue degradation, or cost. This absence of sufficient data
may cause inaccuracy or irreproducibility of downstream analysis. Chapter 6 of my
dissertation proposes Automated Cell-Type-informed Introspective Variational Au-
toencoder (ACTIVA): a novel framework for generating realistic synthetic data using a
single-stream adversarial variational autoencoder conditioned with cell-type informa-
tion. Within a single framework, ACTIVA can enlarge existing datasets and generate
specific subpopulations on demand instead of two separate models. Data generation
and augmentation with ACTIVA can enhance scRNAseq pipelines and analysis, such
as benchmarking new algorithms, studying the accuracy of classifiers, and detecting
marker genes. ACTIVA will facilitate the analysis of smaller datasets, potentially re-
ducing the number of patients and animals necessary in initial studies. Chapters 5 and
6 propose novel techniques tailored to addressing the challenges posed by scRNAseq
datasets with extremely limited data, having the potential to revolutionize our com-
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prehension of intricate biological processes. Such an advancement has far-reaching
implications, spanning disciplines from developmental biology to disease research,
where it could expedite groundbreaking discoveries and innovative applications.

Portions of my dissertation contain research that has been published in peer-reviewed
venues, with me as the first author in all papers17,23,24,25. Therefore, per the Uni-
versity of California, Merced’s guidelines, each chapter has been written to be self-
contained while the common thread in all chapters remains focused on modeling com-
plex biological systems. The following freestanding chapters will adhere to the stan-
dard structure of scientific publications, as directed in university dissertation guide-
lines, each containing an introduction, background, methodology, results, and discus-
sion sections, though certain sections may recall more complete descriptions from
previous chapters as a reference to the reader.
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Part I

Systems with Known Governing
Equations
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Truth is the biggest lie of all. All truths are rooted in
assumption. In fact, real truth isn’t a stagnant point,
but a dynamic force of eternal correction.

Abhijit Naskar

2
Solving Governing Equations on

Deforming Geometries

2.1. INTRODUCTION

Cells are often considered to be the smallest unit of life because they group critical
constituents within a single compartment. Inside the boundary of a cell, the environ-
ment is continually changing as molecular species are constantly created, degraded,
and interacting with one another26. Mathematical models have proven to be powerful
tools in biology through their ability to provide abstract representations of the cellular
environment, generate simulations under distinct hypotheses, and provide quantitative
output that can be validated through comparisons with experiments27,28. However,
mathematical modeling necessarily involves simplifying assumptions about the cell
itself and its environment.

One common assumption is that the cell environment is well-mixed and spatially
homogeneous, allowing for the use of deterministic ordinary differential equations
or stochastic simulations of the chemical master equation, which offer both analyt-
ical and computational advantages over their partial differential equation counter-
parts29,30,31,32. However, even if the cell began as a well-mixed compartment, reac-
tion, diffusion, and cellular reconfiguration can create spatial heterogeneities, which
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may cause unequal partitioning after cellular division33,34. More recently, structured
population equations have proven useful to consider populations of cells where intra-
cellular constituencies may be partitioned unequally34,35. However, these models still
assume that the environment is well-mixed within individual cells. With the increas-
ing ability to experimentally observe distributions of biochemical species within indi-
vidual cells, it becomes necessary to favor mathematical methods that model spatial
heterogeneity. For such a model to be realistic, it must reproduce observed cell defor-
mations while preserving essential physical properties such as mass conservation.

Over the last decades, the level set method36,37 has been recognized as a versatile
interface representation, virtually applicable to any interfacial problem. The interface
is defined as the zero contour of a continuous function (i.e. the level set function), and
an advection equation models its evolution. In doing so, the costly mesh conforma-
tion inherent to any method explicitly tracking the geometry is replaced by the nu-
merical resolution of a standard partial differential equation. The level set method has
been employed to simulate a broad range of applications in computer, engineering,
and natural sciences, such as the dynamic multi-phase flows38, the electrostatic of
biomolecules39, or the response of elastic structures40. In computational biology, it
has for example been used to simulate the behavior of self-healing41, growing42 and
shear stress-stimulated43,44 tissues, tumor growth45,46,47, wound healing48 or the pro-
trusion of cells in micropipettes49. Even though the level set formalism seems to be
the natural mathematical tool for studying the dynamics of single cells, to the best of
our knowledge, it has not been used to study protein aggregation in three-dimensional
yeast cells.

In this work, we present a framework for studying the reaction-diffusion process
in deforming cells and employ it to simulate prions aggregation in dividing yeast
cells. First, we construct a level-set-based model to represent the budding cell cycle
of yeasts; that is, our model begins with a single compartment (mother cell), which,
through the budding processes, produces a growing daughter cell that ultimately dis-
connects completely (see Fig. 2.2). Second, we construct a novel finite volume formu-
lation that ensures mass conservation even on deforming geometries. Third, we vali-
date our model using analytical and practical examples and finally employ it to study
the impact of intracellular material and biochemistry on the prions transmission pro-
cess. Our results both illustrate the limitations of the well-mixed assumptions and the
ability of the reaction-diffusion mechanisms to create asymmetric distribution alone.
In addition to providing insights into the segregation of proteins in yeast, our work
demonstrates the power of our framework to serve as a tool for modeling cell division
and intracellular dynamics, providing a powerful testbed for mathematical biologists
to generate predictions on an increasingly relevant experimental scale.
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Figure 2.1: Asymmetric yeast cell division. (A) Saccharomyces cerevisiae yeast
cells under Differential Interference Contrast (DIC) microscopy showing two yeast
cells (at the bottom) budding1. (B) Illustration of a yeast cell budding, as depicted by
Amoussouvi et al.2. (C) Half-space rendering of our three-dimensional simulation of
single yeast cell budding.

We start in Section 2.2 by providing background for our biological motivations.
Section 2.3 describes our mathematical model, both the reaction-diffusion system and
the level set representation. We then introduce our conservative finite volume formu-
lation in section 2.4 and validate it in section 2.5. We apply our framework to simulate
prions dynamics in dividing yeast cell in Section 2.6 and conclude in Section 2.7.

2.2. BIOLOGICAL BACKGROUND

2.2.1. PROTEINS AGGREGATION AND PRIONS DISEASES

Proteins are linear sequences of amino acids, which then fold into a three-dimensional
shape or conformation. The function of a protein is tightly connected to its conforma-
tion50. As such, cells have developed protein-quality control mechanisms, including
molecular chaperones, which degrade misfolded or damaged proteins51. Prions are a
special class of proteins that are capable of adopting multiple stable conformations,
which not only fail to be removed by protein quality control mechanisms but which
themselves can induce proteins in the normal configuration to change to the alternate
(prion) conformation52.

More specifically, the proteins in the prion conformation form aggregates. These
aggregates then convert normally folded protein to the prion state by acting as a tem-
plate. The newly misfolded protein monomer is then incorporated into the aggregate,
thus increasing its size. Then, rather than be cleared by protein quality control mecha-
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nisms, these aggregates can be split (fragmentation), increasing the number of aggre-
gates and rate of further misfolding52.

In mammals, prions have only been associated with progressive, untreatable, and
fatal neurodegenerative disease53,54. Prions disease in mammals can be infectious
between members of the same species (scrapie in sheep, kuru in humans), occur spon-
taneously in an individual (Creutzfeldt-Jakob disease and fatal familial insomnia), and
can even jump between species as when humans acquire variant Creutzfeldt-Jakob
disease from consuming meat from cattle with bovine spongiform encephalopathy
(Mad Cow disease)55. Fortunately, in humans, prion diseases are rare. There are less
than 400 reported cases of Creutzfeldt-Jakob disease per year, but approximately 70%
of those affected die within a year of exposure56. Fatal familial insomnia, though rare,
is typically fatal within only 18 months of initial symptoms57.

While prion diseases are rare, the biochemical processes of prion disease are closely
related to other protein-misfolding disorders such as Alzheimer’s and Parkinson’s. All
these diseases are related by the common amyloid structure of their corresponding
protein aggregates. As such, much of the research within the prion disease aims to
characterize the dynamics of the amyloid protein aggregates, which will provide in-
sights into classes of much more common disease55,58. Much of the research within
the field aims to characterize the dynamics of protein aggregates that cause prion and
amyloid diseases55,58. One powerful biological tool for studying prion and protein
aggregation processes is the single-celled yeast Saccharomyces cerevisiae. However,
because yeast cells are quite different from mammalian cells, mathematical models
of protein aggregation in yeast need to include other processes from those models de-
signed for mammals.

2.2.2. YEAST CELLS AND ASYMMETRIC DIVISION

The single-celled yeast Saccharomyces cerevisiae has emerged as a model eukary-
ote in biological research and, as such, is the subject of our study. Yeast biologists
have a host of experimental manipulations at their disposal, making yeast an ideal
system to study a host of biological processes, including protein misfolding and ag-
ing59,52,60.

Yeast is an attractive system for studying protein misfolding because, unlike for
mammals, protein misfolding in yeast is not fatal or harmful. Moreover, in yeast, also
unlike mammals, protein misfolding processes can be turned on and off61,62,63. That
is, protein misfolding can be reliably induced in healthy cells64 and, for certain pro-
tein mutants, protein misfolding phenotypes can be destabilized (i.e., all of the mis-
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Figure 2.2: Level-set based simulation of a budding yeast cell. Top row: full three-
dimensional simulation of a yeast cell (larger sphere ϕm) with its nucleus (the middle
sphere ϕmn) at its center. As time progresses, the daughter cell, ϕd , and its nucleus,ϕdn
starts budding off. Bottom row: half-space rendering of the yeast cell budding.

folded protein will return to normal.) There are even studies that indicate misfolded
protein aggregates may have benefits for yeast65.

The cell-division process in yeast makes them a valuable tool for studying aging.
Unlike bacteria, which divide into two identical (or nearly identical) cells, yeast di-
vide asymmetrically by budding into a mother cell and a daughter cell (see Fig. 2.2).
In budding cell division, a new (daughter) cell is grown as an outgrowth of the old
(mother) cell. At the time of separation, the mother cell is larger than the daughter
cell. Finally, the daughter does not inherit the replicative age of the mother66. Al-
though intracellular constituencies, including the nucleus, are transmitted from mother
to daughter cell through a narrow bud neck connecting them, not all constituents
transmit with equal efficiencies. Mother cells have been shown to retain a variety
of “damaged” protein species preferentially, and this bias in retention can not be ex-
plained by differences in volume67.

Intriguingly, prion aggregates are one such cellular constituency shown to not
transmit efficiently between mother and daughter cells61. A variety of theories have
emerged to explain this bias: (1) Misfolded proteins are larger and therefore less mo-
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bile, especially in a crowded environment such as the intracellular matrix, and there-
fore have a harder progressing toward the daughter cell; (2) “Chaperone” proteins are
present in the cell and forcibly restrict the damaged proteins to particular compart-
ments, preventing them from reaching the daughter cell. The mathematical modeling
framework we propose offers the capability to investigate these causes. However, we
will focus on the passive assumptions alone for the present scope.

2.3. BIOLOGICAL MODELING

Our mathematical model is built as a two-species reaction-diffusion system defined
over a deforming geometry, represented by a level set function. To study the influence
of intracellular compartments, we will consider a succession of geometries with in-
creasing complexity and discuss their construction.

2.3.1. GOVERNING EQUATIONS

We consider two protein species, A and B, living inside a deforming cell Ω(t) (see
Fig. 2.2), and track their respective concentrations ψA and ψB. We assume that A is a
monomer and can aggregate with itself to form the dimer B, which can degrade into
two monomers. We define the dimerization and degradation rate as γAB and γBA, re-
spectively. Additionally, both species are diffusing with the corresponding diffusivi-
ties DA and DB. The concentrations ψA and ψB are therefore solutions of the reaction-
diffusion equations

∂ψA

∂ t
−DA△ψA = 2γBAψB − γABψ2

A ∀x ∈ Ω(t), (2.1)

∂ψB

∂ t
−DB△ψB =

1
2

γABψ2
A − γBAψB ∀x ∈ Ω(t). (2.2)

We assume the cell membrane to be hermetic and, therefore, enforce a no-flux bound-
ary condition on the contour of the cell ∂Ω(t)

∇ψA ·n = 0 ∀x ∈ ∂Ω(t), (2.3)
∇ψB ·n = 0 ∀x ∈ ∂Ω(t), (2.4)

where n denotes the normal vector to ∂Ω(t).
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Figure 2.3: level set representation of a dividing yeast cell in two dimensions. The
beige plane depicts the zero level set, and the three-dimensional surface illustrates the
level set functions of mother and daughter cells (in two dimensions), denoted by ϕm
and ϕd , respectively. The union of the two biological cells is reproduced by taking the
minimum of their level-set function.

2.3.2. LEVEL SET REPRESENTATION

For the biological motivation, we construct Ω(t), the inside of the dividing yeast
cell, by decomposing it into multiple subdomains (see Fig. 2.2). To each subdomain,
we associate a level set function. Then, as illustrated in Fig. 2.3, we assemble the
complete geometry by taking unions and intersections of these subdomains, equiva-
lent to taking min and max of the corresponding level set functions.

This setup allows us to construct a succession of four geometrical representations
of increasing complexity to evaluate the impact of each geometrical feature on the
prion aggregation problem. From the initial representation containing the mother
ϕm and daughter ϕd cells only (Fig. 2.4-(A)), we successively introduce the mother
nucleus ϕmn (Fig. 2.4-(B)), the daughter nucleus ϕdn (Fig. 2.4-(C)), and finally two
compartments found in yeast cells, the Juxtanuclear Quality Control Compartment
(JUNQ) and Insoluble Protein Deposit (IPOD)68 (Fig. 2.4-(D)), which have shown
impact the budding and aggregation process68. We will use the convention that the
level set function is negative inside the domain of interest.

A No Nuclei
In this first case, we represent the dividing mother cell as the stationary domain Ωm
and its detaching daughter cell Ωd(t) as two spheres represented by the following
level set functions

ϕm(x, t) = |x−xm|−rm, (2.5)
ϕd(x, t) = |x−xd(t)|−rd(t), (2.6)

where xm and xd(t) are the center of the mother and daughter cell and rm and rd(t)
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Figure 2.4: Succession of geometric representations. We start by modeling the cell
budding of the mother cell without any nucleus (A). Then, we introduce a moving
nucleus as shown in (B), allow the nucleus to split (C), and finally consider additional
moving compartments in the mother cell (D). We describe the specifics of the geome-
try for our problem in Section 2.3.2.

are the respective radii. The entire dividing cell is defined as the union of these two
domains and is represented by the level set function ϕ = min(ϕm,ϕd), as Fig. 2.3
illustrates.

B Moving Nucleus
Similarly we define the center xmn(t) of the nucleus of the mother cell, its radius
rmn(t) and corresponding level set function

ϕmn(x, t) = |x−xmn(t)|−rmn(t). (2.7)

The upgraded domain Ω(t) over which the governing equations are valid is now
the intersection of the previous domain with the outside of the mother nucleus

Ω(t) = (Ωm ∪Ωd(t))∩Ωc
mn(t), (2.8)

or equivalently in terms of the level set functions

ϕ =max(min(ϕm,ϕd),−ϕmn). (2.9)

C Splitting Nucleus
Following case (i), we define a new level set function for the daughter’s nucleus,
which we model detaching from the mother cell’s nucleus, as observed in nature.
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The corresponding level set function is

ϕdn(x, t) = |x−xdn(t)|−rmn(t)− rdn(t), (2.10)

leading to

Ω(t) = (Ωm ∪Ωd(t))∩ (Ωmn(t)∪Ωdn(t))c ⇐⇒ max(min(ϕm,ϕd),−min(ϕmn,ϕdn))(2.11)

D Additional Cellular Compartments (IPOD and JUNQ)
Finally, for our most comprehensive model, we include two cellular compart-
ments representing Insoluble Protein Deposit (IPOD) and Juxta Nuclear Quality
(JUNQ). We model these compartments as moving and rotating ellipsoids of cen-
ters xI(t),xJ(t) and parameters pI(t),pJ(t)

ϕI(x, t) =

((
(x−xI(t))

px
I (t)

)2
+
(
(y−yI(t))

py
I (t)

)2
+
(
(z−zI(t))

pz
I(t)

)2
) 1

2

−1, (2.12)

ϕJ(x, t) =

((
(x−xJ(t))

px
J(t)

)2
+
(
(y−yJ(t))

py
J(t)

)2
+
(
(z−zJ(t))

pz
J(t)

)2
) 1

2

−1. (2.13)

The final geometry and level set function are

Ω(t) = (Ωm ∪Ωd)∩ (Ωmn ∪Ωdn)
c ∩Ωc

I ∩Ωc
J ∀x ∈ R3,∀t ≥ 0, (2.14)

ϕ = max(min(ϕm,ϕd),−min(ϕmn,ϕdn),−ϕI,−ϕJ) (2.15)

In our implementation, we use the above formulas to initialize at each iteration the
level set function, which we then reinitialize by reaching the steady state of the fol-
lowing equation

∂ϕ
∂τ

+ sign(ϕ0)(|∇ϕ |−1) = 0, (2.16)

defined in fictitious time τ and over the entire computational domain. This is achieved
using the second-order Total Variation Diminishing algorithm detailed in69.

2.4. NUMERICAL METHODS

This section presents our novel finite volume method and compares it to the tradi-
tional finite volume method, focusing, in particular, on mass conservation. While we
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will limit our analysis to the reaction-diffusion system described in the above section,
we should point out that it can easily be extended to other systems of partial differen-
tial equations. The last part of this section focuses on using and constructing adaptive
non-graded octree grids.

2.4.1. FINITE VOLUME APPROACH

The numerical solution of the system (2.1)-(2.2)-(2.3)-(2.4) is constructed using
a semi-implicit finite volume method70, which final form is given by Eqs. (2.33) and
(2.34). For stability, the diffusive effects are treated implicitly while the non-linear
reactive terms are treated explicitly. All diffusive fluxes are approximated using the
second-order antisymmetric discretization proposed by Lossaso et al.71 and used in
our previous studies72,73,74,38,75.

NOTATIONS, APPROXIMATIONS, AND REMARKS

All quantities are stored at the centers of the octree grids. The control volumes
V n

i are defined as the intersection of the ith computational cell Ci with the biological
complex Ωn at time step tn (see Fig. 2.5)

V n
i =Ci ∩Ωn+1. (2.17)

The integrals over these volumes for any cell-based quantity q are approximated using
the approximations ∫

V n
i

f = fi|V n
i |+O(∆x3). (2.18)

The contour integrals of the normal fluxes ∇q ·n over ∂V n
i are decomposed as∫

∂V n
i

∇q ·n = ∑
f∈faces(Ci)

∫
f∩Ωn

∇q ·n+
∫

∂Ωn∩Ci

∇q ·n, (2.19)

and since the boundary conditions (2.3)-(2.4) are homogeneous, all interfacial fluxes
are null, and we approximate the above as∫

∂V n
i

∇q ·n = ∑
f∈faces(Ci)

∇q ·n| f | f ∩Ωn|+O(∆x3). (2.20)
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The volumes |V n
i | and the faces fractions | f ∩Ωn| are calculated using the second-

order quadrature rules presented in76. The resulting linear systems are solved using
a Multigrid77 preconditioned Bi-Conjugate Gradient Stabilized solver. For the model
presented in section 2.3, the total mass of protein at any given time t is

MT (t) = MA(t)+2MB(t) =
∫

Ω(t)
ψA +2

∫
Ω(t)

ψB =
M

∑
i=1

∫
V n

i

ψn
A +2

M

∑
i=1

∫
V n

i

ψn
B, (2.21)

where MA(t) and MB(t) are the total mass of species A and B respectively. The factor
2 in front of the second integral accounts for species B being the dimer composed of
two monomers and, therefore, twice as heavy. While this conservation property is
easily achieved on fixed geometry, additional care is required to ensure it holds in the
deforming case, as we will see next.

In practice, the dynamic mesh refinement imposes to interpolate the solution be-
tween consecutive grids. To preserve the overall accuracy, we use a third-order Least
Square interpolation, which is non-conservative. This interpolating step can generate
local spurious converging mass variations. However, as our results illustrate, these
variations are converging and, in practice, reasonably small.

Another key feature of our proposed finite volume formulation is that it does not
require extending the solution across the interface as it is often needed with interfacial
problems (see72,38). Instead, our formulation only involves the solution where it is
formally defined (i.e. inside Ω(t)).

TRADITIONAL FORMULATION

Here, we consider a common way of applying the finite volume method to a time-
dependent problem, which we will refer to as the traditional formulation. In this for-
mulation, we start by discretizing the conservation equations (2.1) and (2.2) in time
using the semi-implicit scheme

ψn+1
A −ψn

A
∆t

−DA△ψn+1
A = 2γBAψn

B − γAB (ψn
A)

2 , (2.22)

ψn+1
B −ψn

B
∆t

−DB△ψn+1
B =

1
2

γAB(ψn
A)

2 − γBAψn
B, (2.23)

where the upper-scripts n and n+1 indicate the semi-discrete quantities being evalu-
ated at (x, tn) and (x, tn+1) respectively. We construct the finite volume formulation by
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Figure 2.5: Comparison between the traditional and conservative finite volume
formulations. (A) With the traditional approach, the equation is first discretized
in time and then spatially integrated over each control volume V n+1

i = Ci ∩ Ωn+1

(depicted in blue) at the future time tn+1. In the spatio-temporal domain, this is an
integral over the orange hypervolume. (B) With our proposed formulation, the partial
differential equation is directly integrated over the hypervolume Hn

i =Vi(t)× [tn, tn+1],
leading to mass conservation. (C) The local mass loss with the traditional method di-
rectly relates to the difference between the two hypervolumes (in red).

integrating the above Eqs. over the control volumes V n
i =Ci ∩Ωn+1 (see Fig. 2.5). For

each cell Ci=1,···,M, we obtain

∫
V n+1

i

ψn+1
A −DA∆t

∫
V n+1

i

△ψn+1
A =

∫
V n+1

i

(
ψn

A +∆t
(

2γBAψn
B − γABψn

A
2
))

,∫
V n+1

i

ψn+1
B −DB∆t

∫
V n+1

i

△ψn+1
B =

∫
V n+1

i

(
ψn

B +∆t
(

1
2

γABψn
A

2 − γBAψn
B

))
,

(2.24)

which, using Gauss’ theorem, we rewrite as∫
V n+1

i

ψn+1
A −DA∆t

∫
∂V n+1

i

∇ψn+1
A ·n =

∫
V n+1

i

(
ψn

A +∆t
(

2γBAψn
B − γABψn

A
2
))

,∫
V n+1

i

ψn+1
B −DB∆t

∫
∂V n+1

i

∇ψn+1
B ·n =

∫
V n+1

i

(
ψn

B +∆t
(

1
2

γABψn
A

2 − γBAψn
B

))
.

(2.25)
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To quantify the total mass (shown in (2.21)) we start by summing Eq. (2.25) over all
grid cells,

M

∑
i=1

(∫
V n+1

i

ψn+1
A −DA∆t

∫
∂V n+1

i

∇ψn+1
A ·n

)
=

M

∑
i=1

∫
V n+1

i

(
ψn

A +∆t
(

2γBAψn
B − γABψn

A
2
))

.

(2.26)

Because the diffusive fluxes are antisymmetric and the boundary condition (2.3) is
homogeneous, the contour integrals vanish, leaving us with

M

∑
i=1

∫
V n+1

i

ψn+1
A =

M

∑
i=1

∫
V n+1

i

(
ψn

A +∆t
(

2γBAψn
B − γABψn

A
2
))

, (2.27)

which in terms of the total mass MA of the monomer A reads

Mn+1
A =

M

∑
i=1

∫
V n+1

i

ψn
A +∆t

M

∑
i=1

∫
V n+1

i

(
2γBAψn

B − γABψn
A

2
)
. (2.28)

Similarly, we obtain for the second specie

Mn+1
B =

M

∑
i=1

∫
V n+1

i

ψn
B +∆t

M

∑
i=1

∫
V n+1

i

(
1
2

γABψn
A − γBAψn

B
2
)
. (2.29)

Multiplying Eq. (2.29) by two and adding the result to Eq. (2.28), the reactive terms
cancel and it results

Mn+1
T = Mn+1

A +2Mn+1
B =

M

∑
i=1

∫
V n+1

i

(ψn
A +2ψn

B) . (2.30)

Because the volumes over which the integral is performed are evaluated at time step
tn+1. In contrast, the integrands are evaluated at tn; the right-hand side is not the to-
tal mass at tn and therefore, with this semi-discrete formulation, Mn+1

T ̸= Mn
T . An-

other issue resulting from this asynchronicity is that the quantities ψn
A,ψ

n
B may not

be formally defined over the control volumes V n+1
i . Therefore, they may have to be

extended over the interface ∂Ωn before being integrated in Eq. (2.25). Such exten-
sions are often expensive as they involve costly geometric reconstruction78,72 or solv-
ing non-linear propagation equations79,80, and may not preserve the stability of the
method.
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CONSERVATIVE FORMULATION

Inspired by the work of Gaburro et al.81, we construct the conservative formulation
by integrating Eqs. (2.1) and (2.2) over the space-time hyper volume Hn

i = Vi(t)×
[tn, tn+1] (see Fig. 2.5). Focusing on the monomer A, we obtain∫

Hn
i

(
∂ψA

∂ t
−DA△ψA

)
=

∫
Hn

i

(
2γBAψn

B − γAB (ψn
A)

2
)
, (2.31)

which in virtue of Gauss’s theorem, can be rewritten as∫
V n+1

i

ψn+1
A −

∫
V n

i

ψn
A −DA

∫ tn+1

tn

∫
∂Vi(t)

∇ψA ·n =
∫

Hn
i

(
2γBAψB − γAB (ψA)

2
)
. (2.32)

Integrating the diffusive terms implicitly and the reactive ones explicitly, the semi-
discrete formulation becomes∫

V n+1
i

ψn+1
A −

∫
V n

i

ψn
A −DA∆t

∫
∂Vi(t)

∇ψA ·n = ∆t
∫

V n
i

(
2γBAψB − γAB (ψA)

2
)
, (2.33)

and similarly∫
V n+1

i

ψn+1
B −

∫
V n

i

ψn
B −DB∆t

∫
∂Vi(t)

∇ψB ·n = ∆t
∫

V n
i

(
1
2

γABψn
A − γBAψn

B
2
)
. (2.34)

To prove that this formulation is conservative, we again sum the formulation overall
computational cells, use the anti-symmetry of the fluxes and the homogeneity of the
boundary condition (2.3) to conclude that

Mn+1
A =

M

∑
i=1

∫
V n

i

ψn
A +∆t

M

∑
i=1

∫
V n

i

(
2γBAψn

B − γABψn
A

2
)
. (2.35)

The only difference between the above equation and (2.28) is that the first integral in
the right-hand side is now evaluated on the geometry at tn. It implies that the sum is
indeed the total mass of A at tn

Mn+1
A = Mn

A +∆t
M

∑
i=1

∫
V n

i

(
2γBAψn

B − γABψn
A

2
)
, (2.36)
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and similarly

Mn+1
B = Mn

B +∆t
M

∑
i=1

∫
V n+1

i

(
1
2

γABψn
A − γBAψn

B
2
)
, (2.37)

leading to the total conservation

Mn+1
A +2Mn+1

B = Mn
A +2Mn

B ⇐⇒ Mn+1
T = Mn

T . (2.38)

We conclude that this formulation is mass-conservative.

CONVERGENCE LIMITATIONS OF THE TRADITIONAL FORMULATION

As we exposed, the traditional finite volume method fails to preserve mass. We
find here an upper bound for its accuracy. From this result, we demonstrate that the
total mass loss, and by extension, the concentration, is not guaranteed to converge. We
conduct this analysis on a uniform grid for readability and denote the spatial resolu-
tion by ∆x.

To quantify the total mass variation ∆n
M between two consecutive time steps

∆n
M = Mn+1

T −Mn
T =

M

∑
i=1

(∫
V n+1

i

ψn
A +2ψn

B −
∫

V n
i

ψn
A +2ψn

B

)
, (2.39)

we start by reformulating Eq. (2.30) as

Mn+1
T −

M

∑
i=1

∫
V n+1

i

(ψn
A +2ψn

B) = 0, (2.40)

and decomposing each integrals over the domains V n
i and V n+1

i \Vi
n = Λn

i (visualized
in Fig. 2.5-(C) as the red shaded region).

Mn+1
T −

M

∑
i=1

∫
V n

i

(ψn
A +2ψn

B) =
M

∑
i=1

∫
Λn

i

(ψn
A +2ψn

B) . (2.41)

The left-hand side term is exactly ∆n
M, and so after taking the absolute value, we ob-
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tain

|∆n
M|≤

M

∑
i=1

∫
Λn

i

|ψn
A +2ψn

B|, (2.42)

Because only for the computational cells that are crossed by the interface during the
interval [tn, tn+1] the integral over Λn

i is non-zero, we can further simplify the above
inequality and write that

|∆n
M|≤ Mn

Γ max
i
|Λn

i | ||ψn
A +2ψn

B||∞, (2.43)

where Mn
Γ is the total number of cells crossed by the interface during [tn, tn+1]. Pro-

vided that the time step is small enough, this total number scales as 1
∆xd−1 , d is the

spatial dimension. The size of the volume variation |Λn
i | is the order of the local in-

terface displacement multiplied by the area of the surface contained in V n
i , therefore

|Λn+1
i |= O(∆xd−1∆t). Assuming that the concentration field remains bounded, we ob-

tain the following approximation for the local mass loss

∆n
M = O(∆t), (2.44)

telling us that the global mass loss is O(1). This proves that the mass losses are non-
diverging, but we cannot conclude whether they converge. However, we can construct
a simple example * where the upper bound in Eq. (2.42) is reached, proving that in
general the total mass is not converging and therefore that concentration is also not
converging in L∞ -norm.

2.4.2. ADAPTIVE MESH REFINEMENT

The computational domain is represented as a non-graded octree grid82. At each
iteration, the mesh generation starts with the root cell representing the entire domain
(corresponding to level 0), which we subdivide into eight identical cells of level 1 (see
Fig. 2.6). We then recursively divide each newly created cell C if either

min
v∈nodes(C)

|ϕ(v)|≤ Lip(ϕ) ·D(C) and level(C)< maxlevel, (2.45)

*Consider, for example, a flat interface moving at a constant speed V , with uniform concentration
and fields, and a fixed time step ∆t = ∆x

V . In this example, there are exactly 1
△x many Λn+1

i , which are
all identical and of size ∆x2, and thus the upper bound in Eq. (2.42) is reached.
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Figure 2.6: Adaptive grid generation and representation. The level of a compu-
tational cell is defined as the number of successive subdivisions to create it. In this
example, the maximum level is 7 (red cells), and the minimum level is 2 (blue cells).
The automatic refinement is done according to criterion (2.45)-(2.46).

or

level(C) < minlevel, (2.46)

where Lip(ϕ) is an estimation of the minimal Lipschitz constant for the level set func-
tion ϕ(x), set to 1.2 in practice, D(C) is the length of the diagonal C, minlevel and
maxlevel are the prescribed minimum and maximum tree level. As done in a previous
study73, we store the concentrations at the cell centers and the level set values at the
nodes. Because the interface is evolving between iterations, the grid is, too, and the
solution must be interpolated between grids. This is achieved using third-order Least
Square regression as done in previous studies72,73,38.

2.5. NUMERICAL VALIDATIONS

In this section, we compare our conservative formulation to the traditional method
in two and three spatial dimensions. We first consider a simpler test problem for which
we construct an analytic solution, allowing us to investigate the convergence of the so-
lution. We then return to our motivating application and focus on total mass conserva-
tion. In both cases, we find that our method converges with second-order accuracy in
space while the traditional approach rapidly stalls.

2.5.1. TEST PROBLEM: EXPANDING SPHERE

To study the spatio-temporal convergence of the two formulations, we consider a
one-species diffusion system with an exact solution on an expanding and translating
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sphere. We define this spherical domain by the level set function

ϕexact(t) = |x−x0(t)|−r(t), (2.47)

where r(t) = 0.25t is the expanding radius and x0(t) = (0, t,0) is the translating center.
In this domain, we consider the following test problem for a single concentration field
ψ(x, t)

∂ψ
∂ t

−△ψ = f (x, t), ∀x ∈ Ω(t), (2.48)

∇ψ ·n = g(x, t), ∀x ∈ ∂Ω(t). (2.49)

We use for the exact solution ψexact(x, t), forcing term f (x, t) and boundary flux g(x, t)
the functions

2D ψExact(x, t) = ex+y+t , f (x, t) =−ex+y+t , g(x, t) = ex+y+t ,

3D ψExact(x, t) = ex+y+z+t , f (x, t) =−2ex+y+z+t , g(x, t) = ex+y+z+t ,

(2.50)

and run the simulation for t ∈ [0,5]. Because we expect our new formulation to be
first-order in time and second-order in space - i.e. O(∆t+∆x2) -, we let ∆t = 1000∆x2,
so that the measured numerical error is O(∆x2). To decrease the resolution, we in-
crease the grid’s minimum and maximum levels. By doing so, we ensure that the spa-
tial resolution diminishes everywhere. Increasing the maximum level would only re-
fine the grid close to the interface.

Fig. 2.7 depicts the time evolution of the L∞- error for increasing grid resolutions.
In two dimensions, our method is converging at an apparent constant rate, while the
traditional finite volume formulation appears to stall after two refinements (maxlevel =
7). Our conservative formulation results in a solution orders of magnitude more ac-
curate. The same observations apply to the three-dimensional results, although the
differences between the two methods are less striking as the analysis is limited to a
maxlevel = 10.

The corresponding order of convergence for the global L∞- errors are reported in
Table 2.1. The conservative formulation is second-order accurate in space and at least
first-order in time in two and three dimensions. With the non-conservative method,
the order of convergence decreases as the resolution increases. This accuracy drop is
flagrant in two dimensions, where the order rapidly falls around 0.5. In comparison,
the three-dimensional order only drops to 1.18.
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Figure 2.7: Expanding sphere simulation reults. Convergence of our conservative
(left column) and the traditional (right column) formulations for the expanding sphere
test 2.5.1, in two (A-B), and three spatial dimensions (C-D).

2.5.2. PRACTICAL MASS CONSERVATION

To quantify the mass conservation of both methods, we go back to the original bi-
ological motivation described by the system in Eq. (2.1)-(2.2) and consider the three-
dimensional Splitting Nucleus geometry with the geometric parameters listed in 2.3.
Simulations are carried until the final time T = 90 min, at which point the daugh-
ter cell has fully detached from the mother cell. Following the biologically relevant
ranges (Table 2.3), we set the diffusion coefficients to be DA = 103 µm2 ·min−1 and
DB = 1 µm2 ·min−1, and the reaction rates between γAB = 10−2 µm3 ·min−1 and
γBA = 10−3 min−1, which are biologically relevant. We define the relative total mass
variations at any given discrete time tn in terms of the initial and current total mass

eM(tn) =

∣∣∣∣Mn
T −M0

T

M0
T

∣∣∣∣, (2.51)
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Figure 2.8: Semi-log plot of relative mass loss. Here we present the semi-log relative
mass loss plots for the conservative (A) and traditional FV (B). The curves are labeled
by their minimum and maximum grid level. We observe that the traditional method
rapidly stalls while the conservative one provides converging mass loss over the con-
sidered range of grid resolution.

Table 2.2: Mass loss for the biological application, using either our methods. Results
are indexed by the minimum and maximum grid levels.

3D
Conservative FV Traditional FV

Levels Mass Loss Order Mass Loss Order
1:5 2.56×10−3 - 6.06×10−2 -
2:6 8.74×10−4 1.55 9.66×10−3 2.65
3:7 2.13×10−4 2.03 3.02×10−3 1.68
4:8 5.68×10−5 1.91 2.31×10−3 0.38
5:9 1.46×10−5 1.95 1.98×10−3 0.22

6:10 3.86×10−6 1.92 1.64×10−3 0.28
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Table 2.1: Convergence of the global L∞−error with the proposed and traditional for-
mulations, in two and three spatial dimensions. Results are indexed by the minimum
and maximum grid levels.

2D
Conservative FV Traditional FV

levels error order error order
1:5 9.76×10−4 - 1.12×10−3 -
2:6 2.15×10−4 2.18 4.36×10−4 1.37
3:7 3.74×10−5 2.52 2.03×10−4 1.09
4:8 1.02×10−5 1.87 1.14×10−4 0.83
5:9 2.46×10−6 2.06 9.74×10−5 0.23

6:10 6.52×10−7 1.92 6.86×10−5 0.51
7:11 1.71×10−7 1.93 4.78×10−5 0.52
8:12 4.41×10−8 1.96 3.21×10−5 0.57

3D
Conservative FV Traditional FV

levels error order error order
1:5 6.83×10−3 - 6.83×10−3 -
2:6 1.69×10−3 2.01 1.69 ×10−3 2.01
3:7 2.56×10−4 1.96 2.72×10−4 2.64
4:8 6.86×10−5 2.07 6.85×10−5 1.99
5:9 1.64×10−5 2.06 2.43×10−5 1.50

6:10 4.24×10−6 1.95 1.07×10−5 1.18

where the current total mass is calculated as

Mn
T =

∫
Ωn

ψn+1
A +2ψn+1

B . (2.52)

The mass loss as a function of time and for increasing grid resolution, using either
method, is depicted in Fig. 2.8, and the estimated orders of convergence are reported
in Table 2.2. As for the previous error analysis, our formulation converges at an appar-
ent second-order rate, while the traditional method stalls after a couple of refinements.
Again, the error differences between the two methods are striking: they reach three or-
ders of magnitudes on the finest grid (maxlevel = 10). The mass loss with our method
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on the coarsest grid is comparable to the one obtained with the traditional on the finest
grid.

For the rest of our biological study, we will set the minimum and maximum grid
levels to 5 and 8, respectively. In light of the measurement reported in Fig. 2.8, we are
confident that the typical mass loss will be well below 0.1%.

2.6. SIMULATED PRIONS DYNAMICS IN DIVIDING YEAST CELLS

2.6.1. SIMULATION PARAMETERS

We provide all parameter values in Table 2.3 and summarize how they were ob-
tained here. Bryne et al.83 found the cell reproduction time to be 1.46 hours on av-
erage (for the strains YJW512 [PSI +]); based on this, we took the cell division time
(i.e. the final time) to be T = 90 min. Next, we chose 37µm3 as the volume of the
mother cell at the initial time according to Tyson et al.84; from the same reference,
we have that the volume of the daughter cell must be two-thirds of the volume of the
mother cell when budding is complete. For the nucleus size, we use the estimation
provided in85, which reasonably agrees with the experimental observations of Wang et
al.86. We model the additional compartments in the mother cell to resemble the IPOD
and JUNQ compartments found in yeast cells, which are known to affect protein ag-
gregation. Although the size and shape of these compartments are known to vary, we
chose to represent these compartments as ellipsoids for simplicity. We selected their
characteristic lengths to be smaller than the nucleus, based on microscopic observa-
tions found in87.

We estimate the characteristic prion concentration ψ0 from the value reported on
the Saccharomyces Genome Database88. For the typical rates of fragmentation and
aggregation, γBA and γAB respectively, we chose values in agreement with our previous
study89. We note that these findings were obtained in a different context, and so the
typical rates (reported in table 2.3) will only be used as guiding information during
our computational exploration. In all our simulations, we use constant initial concen-
tration fields with random spatial noise. These initial profiles are re-scaled so that the
initial total mass is identical across all examples. For the rest of this chapter, we will
use the minute and micrometer as our characteristic time and length scales and non-
dimensionalize all concentrations by the characteristic concentration ψ0. From now
on, all quantities will be reported in dimensionless form.

In this last section, we return to the original biological motivation, the simulation
of prion dynamics in dividing yeast cells, and characterize the impact of the biochem-
ical properties and geometric features on the protein distributions. We conduct this
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Figure 2.9: Fraction of total mass in the daughter cell as a function of time for
various diffusion rates. In (A), where there is no nucleus, about 40% of the mass is
transferred to the daughter cell for fast diffusion rates. The addition of obstacles dras-
tically reduces the amount of transmitter material. (B) Moving Nucleus. (C) Splitting
Nucleus. (D) Additional compartments in the cell.
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Figure 2.10: Ratio of the final average concentration in the daughter and mother
cells (FC) for varying diffusion coefficient (D). As expected, almost no mass is trans-
ferred between the mother and daughter cells for very slow diffusion rates. At the
other extreme, the system is well-mixed, and the concentrations are identical (ratio of
1). We find that the system is far from an ideal well-mixed environment for biologi-
cally relevant diffusion rates. The system’s complexity amplifies this discrepancy.
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Table 2.3: Simulation parameters for the dividing yeast cell (section 2.6.1)

Parameter Symbol Value References

Geometry

Budding time T 90 min 83

Mother radius rm 2.07 µm 84

Daughter final radius rd 1.81 µm 84

Nucleus radius rn 0.89 µm 85,86

Estimated IPOD and JUNQ length - 0.28 µm 68,87

Biochemistry

Characteristic concentration ψ0 713 µm−3 88

Typical diffusivity - 24-120 µm2min−1 85

Typical fragmentation rate γBA 1.35×10−3 min−1 89

Typical aggregation rate γAB 2.57×10−4µm3 · min−1 89

Computational

Domain length - 7.5 µm
Grid levels - 5:8
Grid resolution - 29 nm - 234 nm
Time step ∆t 12 s

analysis in two steps, focusing first on a purely diffusive system and exposing the lim-
itations of the well-mixed assumption as the system representation complexifies. We
then focus on the full reaction-diffusion system and quantify the asymmetries in the
species repartition.

2.6.2. DIFFUSIVE SYSTEM - LIMITATIONS OF THE WELL-MIXED ASSUMPTION

To quantify the impact of the diffusion alone, we first simulate a purely diffusive
system (i.e. , γAB = γBA = 0). Because the two protein species are now decoupled,
we will focus on speciesA only and assume that ψB = 0. For each geometrical repre-
sentation, we vary the diffusion rate from 10−7 to 105, scanning in particular through
the biologically relevant range (≈ 101 − 102, shown in Table 2.3), and measure the
amount of transmitted material in two ways. First, we compute FA(t) the fraction of
total mass transferred to the daughter cell

FA(t) =

∫
ΩD(t)ψA∫

ΩD(t)∪ΩM(t)ψA
=

∫
ΩD(t)ψA

M0
T

(2.53)

where ΩM(t) and ΩD(t) denote the inside of the mother and daughter cells at time
t, and M0

T is the initial total mass. Second, we compute FC, the final ratio of average
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concentrations between the mother and daughter cells

FC =

∫
ΩD(T )ψA∫
ΩM(T )ψA

|ΩM(T )|
|ΩD(T )|

, (2.54)

For a symmetric transfer from the mother to the daughter cell, we expect the aver-
age concentration in both final cells to be identical, and so the concentration ratio
FC to be 1, and the final mass ratio FM(T ) to only depend on the cells volume and be

|ΩD(T )|
|ΩD(T )|+|ΩM(T )| , which for the chosen radii (see table 2.3), and in the absence of nuclei
or compartments, is 0.4.

Fig. 2.11 depicts the diffusion process for all four geometries. The fraction of fi-
nal mass for all geometries and all considered diffusion coefficients is represented in
Fig. 2.9. Unsurprisingly, the fraction of mass remains under 0.4 (the ideal value for
a perfectly symmetric transfer) even for the fastest diffusion and the least obstructed
geometry (for case A, DA = 103, we measure FM(T ) = 0.38). The final separation
between the two cells happens around t = 80. After this time, the daughter mass can-
not change despite the daughter cell still moving and growing. Indeed, we observe the
daughter’s mass to be constant after this point in all cases. We interpret this as another
illustration of the conservation property of our finite volume formulation.

Adding the nucleus seems to have the most dramatic impact on the transfer pro-
cess, as it reduces the daughter’s mass by around 50%. Furthermore, including the
split of the nucleus or additional cellular compartments reduces the transmission by
another 10% to 15%. Ultimately, the transmission is largely asymmetric for the most
realistic representations (B, C, D), suggesting that the diffusive process alone can gen-
erate asymmetries and that the well-mixed assumption is irrelevant.

To further investigate these asymmetries and the validity of the well-mixed as-
sumption, we turn our attention to Fig. 2.10, where the final concentration ratios are
reported. Again, an ideal well-mixed system would lead to an ideal transfer and a
ratio of 1. A ratio of 0 indicates that no transfer occurred. For the most realistic ge-
ometries (B, C, D), the ideal transmission limit is only approached for the largest dif-
fusion coefficients, likely an order of magnitude larger than the biological ones. The
well-mixed assumption for such a system is, therefore, largely inaccurate. Most inter-
estingly, the transition from a non-transferring system (FC = 0) to an ideal well-mixed
system (FC = 1) appears to be centered around the biologically relevant diffusion val-
ues. This observation suggests that the biological system may lie where the diffusion
coefficient variations have their largest impact. In other words, this hints that the bio-
logical system may be hypersensitive to the prions’ diffusivity.
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2.6.3. FULL SYSTEM - ASYMMETRIC DISTRIBUTIONS

For this final study, we consider the full systems and quantify the impacts of the
reaction rates on the transfer asymmetry for each protein species. We set the diffusion
coefficients (DA = 103, DB = 1) to be close to the biologically relevant range. We
chose DB to be less than DA because species B is bigger and therefore expected to be
less mobile. We will consider the splitting nucleus geometry only and quantify the
transfer process by computing the final mass fraction of each species

FA(T ) =

∫
ΩD(T )ψA

M0
T

and FB(T ) =
2
∫

ΩD(T )ψB

M0
T

. (2.55)

For a single species, the final mass fraction in the daughter cell does not exceed 0.2
(see Fig. 2.9 C). Because all our initial conditions are re-scaled to have the same to-
tal mass, the final mass fraction of either species cannot exceed 0.2. If either of them
reaches this value, it indicates that the other species has been depleted. In the current
context, we will define a perfectly symmetric transfer as one where the above final
ratios are identical. The reaction-diffusion process is illustrated in Fig. 2.12. Both
concentrations appear quasi-uniform in each cell, sharply varying over the bud neck.
These localized spatial heterogeneities seem to explain the large concentration asym-
metries we observed at the final stage. This suggests that the area of the bud neck
where the cellular material is transferred is crucial in the transmission process.

In the same figure, we display the final fraction of each species for varying reaction
rates. As expected, when one of the reaction rates becomes extremely large (top left
and bottom right corners of the diagrams), one of the species will be almost depleted.
At the same time, the mass ratio of the other one will approach the maximum ratio
(0.2). Furthermore, in the vicinity of the biologically relevant rates, we observe that
the fraction of species A is about two times larger than that of species B, indicating a
clear asymmetry in the transmission process.

We expect this unbalanced transfer will occur each time a new cell is created.
Therefore, the ratio of asymmetries between the youngest and oldest cells will mag-
nify with the generational gap’s length. We note that these observations are consistent
with previous experimental and computational studies of the yeast [PSI+] prion sys-
tem61.
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2.7. DISCUSSION AND CONCLUSION

Motivated to understand asymmetric transfers in dividing yeast cells, we proposed
a novel numerical framework for reaction-diffusion systems in a three-dimensional
deforming domain. Using finite volume discretizations, level set functions, and adap-
tive octree grids, our framework can produce accurate simulations at an enhanced
computational cost while offering extreme modeling flexibility. The cornerstone of
our approach is our novel finite volume formulation, where the partial differential
equations are integrated over spatio-temporal control volumes. As we demonstrated,
this procedure ensures mass conservation and produces a converging solution, which a
traditional finite volume discretization may not achieve.

Using this new computational tool, we demonstrated how spatial heterogeneity can
cause asymmetric protein transfer in dividing yeast cells and studied the effect of the
yeast geometry, the mobility of the prions, and the reaction rates. We found that diffu-
sion alone can create asymmetries, even more so for realistic parameters and geome-
tries. This leads us to conclude that the well-mixed assumption is not pertinent to such
systems. Looking at the full reaction-diffusion model, we were able to quantify the
transfer of each protein species from the mother to the daughter cell for a wide range
of reaction rates. We found that our system produces large asymmetries reminiscent
of these observed in experimental setups for plausible estimations of these rates.

Our reaction-diffusion model is probably too simple to simulate the entire trans-
mission process comprehensively. Yet, it succeeds at reproducing experimentally
observed features and provides valuable insights for future modeling strategies. Our
exploration revealed sharp spatial variations across the bud neck, intuiting that the
geometry of the neck may be crucial for the transmission process. This suggests that
either the model or the computational grid may need to be refined in that area or that
perhaps a reduced two-dimensional model of the bud neck can capture the essence of
this problem.

The flexibility of our framework makes it a method of choice for studying complex
intracellular biophysical processes and virtually any reaction-diffusion system on a
deforming domain. The reaction-diffusion system can easily be modified to include
more protein species, different initial populations, production and destruction rates,
or other biological processes while preserving mass conservation. In addition, the
cell shape can be refined to better match experimental observations, and other cellular
entities can be integrated to better reflect how complex a cell’s environment is.

As microscopic imaging technologies advance, high-fidelity modeling strategies
for studying sub-cellular protein dynamics aggregation models and simulations are
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required to match and support experimental data. This work lays the foundation of a
new class of continuum modeling techniques for efficient and accurate simulation of
intracellular processes, which we believe can help the scientific community shine the
light on some essential biophysical mechanisms, a necessary first step to understand-
ing diseases and developing new treatments.
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Figure 2.11: Prions diffusion in dividing yeast cells for geometries of increasing
complexity and DA = 10−3. The concentration profile is represented in characteristic
concentration units (ψ0 = 713 µm−3). A No nucleus, B Moving nucleus, C Splitting
nucleus, and D Splitting nucleus with additional moving compartments.
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Figure 2.12: Asymmetric mass transfer in dividing yeast cell. (A) Concentration
profiles for γBA = 10−3, γAB = 1, DA = 103 and DB = 1. (B) Final mass fractions in the
daughter cell (FA(T ), FB(T )).
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Part II

Data-Driven Analysis of Biological
Systems
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The capacity to blunder slightly is the real marvel of
DNA. Without this special attribute, we would still
be anaerobic bacteria, and there would be no music.

Lewis Thomas

3
Mathematical and Biological

Background

Although multicellular organisms contain a common genome within their cells, the
morphology and gene expression patterns of cells are largely distinct and dynamic.
These differences arise from internal gene regulatory systems and external environ-
mental signals. Cells proliferate, differentiate, and function in tissues while sending
and receiving signals from their surroundings. These environmental factors cause cell
fate to be highly dependent on the environment in which it exists. Therefore, monitor-
ing a cell’s behavior in the residing tissue is crucial to understanding cell function and
its past and future fate90.

Advancements in single-cell sequencing have transformed the genomics and bioin-
formatics fields. The advent of single-cell RNA sequencing (scRNAseq) has enabled
researchers to profile gene expression levels of various tissues and organs, allow-
ing them to create comprehensive atlases in different species91,92,93,94,95. Moreover,
scRNAseq enables the detection of distinct subpopulations present within a tissue,
which has been paramount in discovering new biological processes, the inner work-
ings of diseases, and effectiveness of treatments96,97,98,6,99,100,101,102. However, high-
throughput sequencing of solid tissues requires tissue dissociation, resulting in the
loss of spatial information103,104. To fully understand cellular interactions, data on
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tissue morphology and spatial information is needed, which scRNAseq alone can
not provide. The placement of cells within a tissue is crucial from the developmen-
tal stages (e.g. , asymmetric cell fate of mother and daughter cells105) and beyond
cell differentiation (such as cellular functions, response to stimuli, and tissue home-
ostasis106). These limitations would be alleviated by technologies that could preserve
spatial information while measuring gene expression at the single-cell level.

Spatial Transcriptomics (ST) provides an unbiased view of tissue organization cru-
cial in understanding cell fate, delineating heterogeneity, and other applications107.
However, many current ST technologies suffer lower sensitivities than scRNAseq
while lacking the single-cell resolution that scRNAseq provides108. Targeted in situ
technologies have tried to solve the issue of resolution and sensitivity but are limited
in gene throughput and often require a priori knowledge of target genes108. More
specifically, in situ technologies (such as in situ sequencing109, single-molecule fluo-
rescence in situ hybridization (smFISH)110,111,112, targeted expansion sequencing113,
cyclic-ouroboros smFISH (osmFISH)114, multiplexed error-robust fluorescence in
situ hybridization (MERFISH)115, sequential FISH (seqFISH+)116, and spatially re-
solved transcript amplicon readout mapping (STARmap)117), are typically limited
to pre-selected genes that are on the order of hundreds, with the accuracy potentially
dropping as more probes are added117. We will refer to these methods as image-based
techniques.

On the other hand, Next Generation Sequencing (NGS)-based technologies (such
as 10x Genomics’ Visium and its predecessor118,119, Slide-Seq120, HDST121) barcode
entire transcriptomes but have limited capture rates, and resolutions that are larger
than a single cell122 (50 µm - 100 µm for Visium and 10 µm for Slide-Seq). More-
over, unlike image-based technologies, NGS-based methods allow for unbiased pro-
filing of large tissue sections without necessitating a set of target genes123,124. How-
ever, using computational approaches, NGS-based technologies do not have a single-
cell resolution, requiring cellular features to be inferred or related to the histological
scale. Many current algorithms use traditional statistical or medical image processing
frameworks that require human supervision122,125,126, which is not ideal for large-
scale analyses. Additionally, many algorithms are not generalizable across different
sequencing platforms, which limits their utility and restricts multi-omics integration
efforts.

Deep Learning (DL) methods can use raw data to extract useful representations (or
information) needed for performing a task, such as classification or detection127. This
quality makes this Machine Learning (ML) algorithm class ideal for applications with
large, higher-dimensional, noisy data, such as single-cell omics. DL models have been
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extensively used in scRNAseq studies (e.g. preprocessing128,129, clustering130,131,
cell-type identification132,133,25,134 and data augmentation23,135), and have shown
to significantly improve upon traditional methods6, suggesting the potential of such
methods in ST analysis. Moreover, DL models can leverage multiple data sources,
such as images and text data, to learn a set of tasks136. Since spatially-resolved tran-
scriptomics are inherently multimodal (i.e. , they consist of images and gene expres-
sion count data), and that downstream analysis consists of multiple tasks (e.g. clus-
tering and cell-type detection), researchers have sought to develop ST-specific DL
algorithms.

3.1. RNA SEQUENCING TECHNOLOGIES

RNA sequencing (RNA-seq) provides comprehensive insights into cellular pro-
cesses (such as identifying up or down-regulated genes, etc.). However, traditional
bulk RNA-seq is limited to revealing the average expression from a collection of cells
and not disambiguation of single-cell behavior. Thus, it is difficult to delineate cel-
lular heterogeneity with traditional RNA-seq, which is a disadvantage since cellu-
lar heterogeneity has been shown to play a crucial role in understanding many dis-
eases137. Therefore, researchers have turned to single-cell RNA-seq (scRNAseq)
to identify cellular heterogeneity within tissues. ScRNAseq technologies have been
instrumental in the study of key biological processes in many diseases, such as can-
cer138, Alzheimer’s139, cardiovascular diseases140, etcetera (see137 for more details).
RNA sequencing of cells at a single-cell resolution, scRNAseq, generally consists of
four stages:

(i) Isolation of Single-Cells and Lysing: Cells are selected through laser microdi-
rection, fluorescence-activated cell sorting (FACS), microfluidic/microplate
Technology (MT) or a combination of these methods141, with MT being highly
complementary to NGS-based technologies142. MT encapsulates each single
cell into an independent microdroplet containing unique molecular identifiers
(UMI), lysis buffer for cell lysis (to increase the capturing of as many RNA
molecules as possible), oligonucleotide primers, and deoxyribonucleotide triphos-
phates (dNTPs) in addition to the cells themselves. Due to MT’s higher isolation
capacity, thousands of cells can be simultaneously tagged and analyzed, which is
beneficial for large-scale scRNAseq studies.

(ii) Reverse Transcription: One challenge in RNA sequencing is that RNA can
not be directly sequenced from cells, and thus RNA must first be converted to
complementary DNA (cDNA)143. Although dist technologies employ different
techniques, the reverse transcription phase generally involves capturing mRNA
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using poly[T] sequence primers that bind to mRNA ploy[A] tail before cDNA
conversion. Based on the sequencing platform, other nucleotide sequences are
added to the reverse transcription; for example, in NGS protocols, UMIs are
added to tag unique mRNA molecules to trace them back to their originating
cells, enabling the combination of different cells for sequencing.

(iii) cDNA Amplification: Given that RNA can not be directly sequenced from cells,
single-stranded RNAs must first be reverse-transcribed to cDNA. However, lim-
ited cDNA is produced due to the small amount of mRNA in cells, which is not
optimal for sequencing. Therefore, the limited quantity of cDNA must be am-
plified before library preparation and sequencing144. The amplification is often
done by either PCR (exponential amplification process with its efficiency being
sequence dependent) or IVT (a linear amplification method which requires an
additional round of reverse transcription of the amplified RNA) before sequenc-
ing143,145. The final cDNA library has an adaptor-ligated sequencing library
attached to each end.

(iv) Sequencing Library Construction: Finally, every cell’s tagged and amplified
cDNA is combined for library preparation and sequencing, similar to bulk RNA
sequencing methods, followed by computational pipelines for processing and
analysis.146.

Fig. 3.1(A) illustrates an example of the workflow for scRNAseq. For more details of
each stage and various scRNAseq workflows, we refer the reader to references147,145,148,149,149.

With the technologies now defined, we describe common Machine Learning meth-
ods used to analyze sequencing data. In this section, we first discuss the algorithmic
development of ML and Deep Learning models and then discuss common architec-
tures used for spatially-resolved transcriptomics (and scRNAseq data).

3.2. INTRODUCTION TO MACHINE LEARNING AND DEEP LEARNING

Machine Learning (ML) refers to a computer algorithm’s ability to acquire knowl-
edge by extracting patterns and features from raw data150. All ML algorithms depend
on data, which must be available before the methods can be used, and a defined math-
ematical objective. ML models’ lifecycle consists of two phases, namely training and
evaluation. During training, ML algorithms analyze the data to extract patterns and
adjust their internal parameters based on optimizing their objective (known as loss
function). In the evaluation (or inference) stage, the trained model makes predictions
(or performs the task it was trained to do) on unseen data.
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Figure 3.1: Example Single-Cell RNA Sequencing and Spatial Transcriptomics
Workflows. (A) An illustration of droplet-based microfluidics single-cell RNA se-
quencing which consists of (1) dissociating a tissue or biological sample, (2) isolating
single cells, unique molecular identifiers and lysis buffer, (3) cell lysis, (4) mRNA
capture and reverse transcription, (5) cDNA amplification, and (6) library construc-
tion. (B) A visualization of the steps for next-generation sequencing-based spatial
transcriptomic, which include (1) tissue preparation, staining, and imaging, (2) per-
meabilizing the tissue, (3) cDNA synthesis, amplification, and library construction,
followed by (5) sequencing.
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There are four main types of ML algorithms: supervised, unsupervised, semi-
supervised and self-supervised. An ML algorithm is considered to be unsupervised
if it utilizes raw inputs without any labels to optimize its objective function (an exam-
ple would be the K-Means clustering algorithm151). Conversely, if an algorithm uses
raw data and the associated labels (or targets) in training, it is a supervised learning
algorithm. Supervised learning is the most common form of ML127. An example of
supervised learning in scRNAseq analysis would be classifying cell subpopulations
using prior annotations: this requires a labeled set of cell types for training (the avail-
able annotations), an objective function for calculating learning statistics (teaching the
model), and testing data for measuring how well the model can predict the cell-type
(label) on data it has not seen before (i.e. generalizability of the model). Another com-
mon example of supervised learning is regression, where a model predicts continuous
values instead of outputting labels or categorical values in classification. For super-
vised tasks, a model is trained on the majority of the data (known as training set) and
then evaluated on held-out data (test set). Depending on the size of our dataset, there
can also be a third data split known as a validation set, which is used to measure the
performance of the model throughout training to determine early stopping152: Early
stopping is when we decide to stop the training of a model due to overfitting (or over-
optimization) on the training set. Overfitting training data worsens the model’s gen-
eralizability on unseen data, which early stopping aims to avoid152. In addition to su-
pervised and unsupervised algorithms, there are also semi-supervised learning, where
a model uses a mix of both supervised and unsupervised tasks, and self-supervised,
where the computer algorithm generates new or additional labels to improve its train-
ing or to learn a new task.

Raw experimental data typically contains noise or other unwanted features, which
present many challenges for ML algorithms. Therefore, it is often necessary to care-
fully preprocess data or to rely on domain-specific expertise to transform raw data
into some internal representation from which ML models can learn127. However,
Deep Learning (DL) algorithms aim to use only raw data to automatically extract and
construct useful representations required for learning the tasks at hand. In a broad
sense, DL models can learn from observations by constructing a hierarchy of con-
cepts, where each concept is defined by its relation to simpler concepts. A graph rep-
resentation of the hierarchy of concepts (and learning) will consist of many layers,
with many nodes and edges connecting the vertices, resembling a human neural net-
work. This graph is referred to as an Artificial Neural Network (ANN). ANNs are
composed of interconnected nodes ("artificial neurons") that resemble and mimic our
brains’ neuronal functions. An ANN is considered a DL model if it consists of many
layers–often more than three, hence being called deep.
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Many tasks humans perform can be viewed as mappings between sets of inputs
and outputs. For example, humans can take a snapshot image of their surroundings
(input) and detect the relevant objects (the outputs). DL, more generally Artificial In-
telligence, aims to learn such mappings to model human-level intelligence. Mathemat-
ically, ANNs are universal function approximators, meaning that, theoretically, they
can approximate any (continuous) function153,154,155. Cybenko153 proved this result
for a one-layer neural network with an arbitrary number of neurons (nodes) and a sig-
moid activation function by showing that such architecture is dense within the space
of continuous functions (this result has now been extended to ANNs with multiple
layers154). While constructing arbitrarily-long single-layer ANNs is not possible, it
has been shown that ANNs with many many layers (deeper) generally learn faster and
more reliably than ANNs with few wide (many neurons) layers156. This has allowed
researchers to employ deep networks for learning very complex functions through
constructing simple non-linear layers, which can transform the representation of each
module (starting with the raw input) into a representation at a higher, slightly more
abstract level127.

DL models’ ability to approximate highly non-linear functions has revolutionized
many domains of science, including Computer Vision157,158,159, Natural Language
Processing160,161,162 and Bioinformatics163,164,165. DL is becoming increasingly in-
corporated in many computational pipelines and studies, especially in genomics and
bioinformatics, including scRNAseq and spatial transcriptomics analysis. The follow-
ing sections provide a brief overview of essential deep learning architectures used in
spatial transcriptomics and scRNAseq analysis. In Fig. 3.2, we present illustrations
of the architectures discussed in the following sections. Note that for simplicity, we
have categorized all Graph Convolution Networks (GCN)166 as DL models; this is be-
cause (i) GCNs can easily be extended to include more layers (deeper networks), and
(ii) lack of other existing methods which incorporate some elements of DL. A more
comprehensive description of each architecture can be found in the seminal textbook
by Goodfellow et al.150.

3.3. A MATHEMATICAL OVERVIEW OF DEEP LEARNING ARCHITECTURES

3.3.1. FEED FORWARD NEURAL NETWORK (FFNN)

FFNNs, the quintessential example of Artificial Neural Networks (ANNs), aim
to approximate a function mapping a set of inputs to their corresponding targets (see
Fig. 3.2(A)). More specifically, given an input x ∈ Rn and a target y ∈ Rm, where
n,m ∈ R, FFNNs aim to learn the optimal parameters θ such that y = f (x;θ). FFNNs
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(Caption on next page)

are the building blocks of many more advanced architectures (e.g. convolutional neu-
ral networks) and, therefore, of paramount importance in the field of ML150. As men-
tioned previously, ANNs are universal function approximators, representing a directed
acyclic graph of function composition hierarchy within the network. Each layer of an
FFNN, f (i)(x;θ) (i ∈ N being the i-th layer), is often a simple linear function: For ex-
ample, we can have a linear function for outputting y ∈ R of the form Eq. (3.1), with
weight parameters w ∈ Rn and a bias b ∈ R:

y = f (1)(x;θ) = f (1)(x;w,b) = xT w+b. (3.1)
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Figure 3.2: Examples of Deep Learning Architectures. Models depicted in (A),
(B), (C), (D) are examples of supervised learning, and networks shown in (E), (F)
are unsupervised. (A) An example of an FFNN architecture with gene expression
count as its input. (B) An example of CNN architecture, where the model passes the
inputs through the three stages of a CNN (with non-linear activation not depicted) to
extract features. Then, outputs are flattened and fed into a fully connected layer (or
layers). (C) The general training flow of an RNN, with the unrolled version showing
the timestep-dependent inputs, hidden state, and outputs. The inputs to RNNs need a
sequential structure (e.g. time-series data). (D) An illustration of a ResNet. In tradi-
tional ResNets, identity mappings (or skip connections) pass the input of a residual
block to its output (often through addition). (E) Here, we show the general architec-
ture of a trained denoising AE in the inference stage, with a noisy histology slide as
its input, yielding a denoised version of the input image. Note that this approach is
unsupervised since no labels are required during training (only the “clean" images).
(F) A depiction of a traditional VAE in the inference stage. VAE aims to generate
synthetic data that closely resembles the original input. This is done by regularizing
an AE’s latent space with a probabilistic encoder and decoder.

However, a model composed of only linear functions can only approximate lin-
ear mappings. As such, we must consider non-linear activation functions to increase
model capacity, enabling the approximation of complex non-linear functions. In the
simplest case, Neural networks (NNs) use an affine transform (controlled by learned
parameters) followed by a non-linear activation function, which, theoretically, enables
them to approximate any non-linear function167. Moreover, we could compose many
non-linear transformations to avoid infinitely wide neural networks when approximat-
ing complex functions. However, in this context, finding a set of optimal functions
f (i) : Rqi → Rdi (qi,di ∈ R) is a practically impossible task. As such, we restrict the
class of function that we use for f (i) to the following form in Eq. (3.2):

f (i)(x(i−1);θ(i)) = σ (i)(W (i)x(i−1)+b(i)), (3.2)

where superscript i enumerates the layers, σ(·) is a non-linear activation function
(usually a Rectified Linear Unit168), x(i−1) ∈Rqi denotes the output of the layer (i−1)
(with x(0) indicating the input data), weights W ∈ Rdi×qi and biases b(i) ∈ Rdi . Note
that because of the dimensionality of the mapping, W (i)X (i−1) ∈ Rdi and we must have
a vector of biases b(i) ∈ Rdi). FFNNs are composed of such functions in chains; to il-
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lustrate, consider a three-layer neural network:

y = f (x;θ) (3.3a)

= f (3)( f (2)( f (1)(x;θ(1));θ(2));θ(3)) (3.3b)

= f (3)
(

h(2)
(

h(1)
(

x;w(1),b(1)
)

;w(2),b(2)
)

;w(3),b(3)
)
. (3.3c)

with h representing the hidden states or hidden layers.

FFNNs find the optimal contribution of each parameter (i.e. weights and biases) by
minimizing the desired objective. The goal is to generalize the task to data the model
has never seen before (testing data). Although the non-linearity increases the capac-
ity of FFNNs, it causes most objective functions to become non-convex. In contrast
to convex optimization, non-convex loss functions do not have global convergence
guarantees and are sensitive to the initial starting point (network parameters)169.
Therefore, such optimization is often done through stochastic gradient descent (or
some variant). Moreover, given the sensitivity to initial values, weights are typically
chosen as small random values, with biases initialized to zero or small positive val-
ues150,170,171.

3.3.2. CONVOLUTIONAL NEURAL NETWORK (CNN)

Learning from images, such as detecting edges and identifying objects, has been
of interest for some time in computer science172. Images contain a lot of information.
However, only a small amount of that information is often relevant to the task at hand.
For example, an image of a stained tissue contains important information, namely the
tissue itself, and irrelevant pixels, such as the background. Prior to DL, researchers
would hand-design a feature extractor to learn relevant information from the input.
Much of the work had focused on the appropriate feature extractors for desired tasks
(e.g. see the seminal work by Marr and Hildreth173). However, one of the main goals
of ML is to extract features from raw inputs without hand-tuned kernels for feature
extraction. CNNs174,175 are a specialized subset of ANNs that use the convolution
operation (in at least one of their layers) to learn appropriate kernels for extracting
important features beneficial to the task at hand. Mathematically, convolution between
two functions f and w is defined as a commutative operation shown in Eq. (3.4)

( f ∗w)(x)≜
∫ ∞

−∞
f (s)w(s− x)ds. (3.4)
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Using our notation, we intuitively view convolution as the area under f (s) weighted
by w(−s) and shifted by x. In most applications, discrete functions are used. For ex-
ample, assume we have a 2D kernel K that can detect edges in a 2D image I with di-
mension m× n. Since I is discrete, we can use the discrete form of Eq. (3.4) for the
convolution of I and K over all pixels:

E(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n). (3.5)

However, since there is less variation in the valid range of m,n (the dimensions of
the image) and the operation is commutative, most algorithms implement Eq. (3.5)
equivalently:

E(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n). (3.6)

Typical CNNs consist of a sequence of layers (usually three), which include a layer
performing convolution, hence called a convolutional layer (affine transform), a de-
tector stage (non-linear transformation), and a pooling layer. The learning unit of a
convolutional layer is called a filter or kernel. Each convolutional filter is a matrix,
typically of small dimensions (e.g. 3x3 pixels), composed of a set of weights that acts
as an object detector, with the weights being continuously calibrated during the learn-
ing process. CNNs’ objective is to learn an optimal set of filters (weights) to detect the
needed features for specific tasks (e.g. image classification). The result of convolu-
tion between the input data and the filter’s weights is often referred to as a feature map
(as shown in Fig. 3.2(B)). Once a feature map is available, each value of this map is
passed through a non-linearity (e.g. ReLU). The output of a convolutional layer con-
sists of as many stacked feature maps as the number of filters present within the layer.

Two key ideas are behind the design of CNNs: First, local neighbors have highly
correlated information in data with grid-like topology. Second, equivariance to trans-
lation can be obtained if units at different locations share weights. In other words,
sharing parameters in CNNs enabled the detection of features regardless of the loca-
tions where they appear. An example of this would be detecting a car. In a dataset, a
car could appear at any position in a 2D image, but the network should be able to de-
tect it regardless of the specific coordinates172. These design choices provide CNNs
with three main benefits compared to other ANNs: (i) sparse interactions, (ii) shared
weights, and (iii) equivariant representations174.

Another way of achieving equivariance to translation is to utilize pooling layers.
Pooling decreases the dimension of learned representations and makes the model in-
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sensitive to small shifts and distortions127. In the pooling layers, we use the outputs of
the detector stage (at certain locations) to calculate a summary statistic for a rectangu-
lar window of values (e.g. calculating the mean of a 3x3 patch). There are many pool-
ing operations, with common choices being max-pooling (taking the maximum value
of a rectangular neighborhood), mean-pooling (taking the average), and L2 norm (tak-
ing the norm). In all cases, rectangular patches from one or several feature maps are
inputted to the pooling layer, where semantically similar features are merged into one.
CNNs typically have an ensemble of stacked convolution layers, non-linearity, and
pooling layers, followed by fully connected layers that produce the network’s final
output. The backpropagation of gradients through CNNs is analogous to FFNNs, en-
abling the model to learn an optimal set of filters for the task(s) at hand. CNNs have
been effectively used in many applications in computer vision and time-series anal-
ysis176 and are being increasingly utilized for the analysis of ST data since spatial
omics are multimodal, with one of the modalities being images122.

3.3.3. RECURRENT NEURAL NETWORK (RNN)

Just as CNNs are specialized to process data with a grid-like topology, RNNs’177

special characteristics make them ideal for processing sequential data X = {x(1),x(2), · · · ,x(n)},
where x(i) denotes the i-th element in the ordered sequence X . Examples of such
sequence-like structures include time series and natural language. RNNs process se-
quential inputs one at a time and implicitly maintain a history of previous input se-
quence elements. We present an illustration of the conventional RNN architecture in
Fig. 3.2(C). Similar to FFNNs or CNNs, RNNs can be composed of many layers, with
each layer depending on the previous hidden state, h(t−1), and a shared set of parame-
ters, θ. A deep RNN with n hidden states can be expressed as follows:

h(n) = f (x(n),h(n−1);θ);θ) (3.7a)

= f (x(n), f (x(n−1),h(n−2);θ);θ) (3.7b)

= f ( f (· · · f (x(2),h(1)(x(1);θ);θ) · · · ;θ);θ). (3.7c)

The idea behind sharing θ in RNN states is similar to CNNs: parameter sharing
across different time points allows RNNs to generalize the model to sequences of vari-
able lengths, and share statistical strengths at different positions in time150,*. Similar

*Note that if the model chose a separate parameter for each x(i), for i = 1, · · · ,n, then the model
could not generalize to any inputs where |X |> n (size of X is greater than n).
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to FFNNs, RNNs learn by propagating the gradients of each hidden state’s inputs at
discrete times. This process becomes more intuitive if we consider the outputs of hid-
den units at various time iterations as if they were the outputs of different neurons
in a deep multi-layer network. However, due to the sequential nature of RNNs, the
backpropagation of gradients shrinks or grows at each time step, causing the gradients
to vanish or blow up potentially. This fact and the inability to parallelize training at
different hidden states (due to the sequential nature of RNNs) makes RNNs notori-
ously hard to train, especially for longer sequences160,178. However, when these issues
are averted (via gradient clipping or other techniques), RNNs are powerful models
and gain state-of-the-art capabilities in many domains, such as natural language pro-
cessing. The training challenges combined with the nature of scRNAseq data have
resulted in fewer developments of RNNs for single-cell analysis. However, recently,
some studies have used RNNs and Long Short-Term Memory179 (a variant of RNNs)
for predicting cell types and cell motility (e.g. see Kimmel et al.180).

3.3.4. RESIDUAL NEURAL NETWORK (RESNET)

As mentioned above, deep RNNs may suffer from vanishing or exploding gradi-
ents. Such issues can also arise in other deep neural networks, where gradient infor-
mation could diminish as the depth increases (through approaches such as Batch Nor-
malization181 aim to help with gradient issues). One way to alleviate vanishing gra-
dients in very deep networks is to allow gradient information from successive layers
to pass through, helping maintain information propagation even as networks become
deeper. ResNets182 achieve this by skip (or residual) connections that add the input to
a block (a collection of sequential layers) to its output. For a FFNN, consider function
f in Eq. (3.2). Using the same notation as in Eq. (3.2), ResNet’s inner layers take the
form shown in Eq. (3.8):

f (i)(x(i−1)) = x(i−1)+σ (i)(W (i)x(i−1)+b). (3.8)

The addition of x(i−1), the input of the current layer (or the output of (i− 1)-th layer),
to the current i-th layer output is the skip or residual connection helps flow the infor-
mation from the input deeper in the network, thus stabilizing training and avoiding
vanishing gradient in many cases182,183. Indeed, this approach can be contextualized
within the traditional time integration framework for dynamical systems. For exam-
ple, consider Eq. (3.9):

ẋ(t) =
dx
dt

= F (t,x(t)), x(t0) = x0. (3.9)
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In the simplest case, this system can be discretized and advanced using x(tn) and some
scaled value of F (tn,x(tn)), or a combination of scaled values of ẋ(tn). Forward Eu-
ler, perhaps the simplest time integrator, advances the solution as shown through the
scheme in Eq. (3.10)

xn+1 = xn +hF (tn,yn), (3.10)

where h is a sufficiently small real positive value. ResNets uses this idea to propose a
different way of calculating the transformations in each layer, as shown in Eq. (3.8).

ResNets consist of residual blocks (also called modules), each containing a series
of layers. For visual tasks, these blocks often consist of convolutional layers, followed
by activation functions, with the skip connection adding the input information to the
output of the residual blocks (as opposed to the individual layers inside). ResNets
have different depths and architectures, with a number usually describing the depth of
the model (e.g. ResNet50 means there are 50 layers [there are 48 convolution layers,
one MaxPool, and one AveragePool layer]).

ResNets have transformed DL by enabling the training of very deep neural net-
works, setting the state-of-the-art performance in many areas, particularly in computer
vision182. The pre-trained ResNets on ImageNet dataset † are widely used for transfer
learning, where the network is either used as is or further fine-tuned on the specific
dataset. As discussed in this chapter, pre-trained ResNet models have also been used
in spatial transcriptomics analysis.

3.3.5. GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have emerged as a powerful class of machine
learning models designed to tackle complex data structures represented as graphs.
GNNs aim to produce a representation of graphs in a continuous space (depicted in
Fig. 3.3. GNNs have recently gained prominence in various domains recently, from
social network analysis to recommendation systems and computational biology. Un-
like traditional deep learning models that operate on grid-structured data, GNNs are
uniquely equipped to capture the intricate relationships and dependencies within
graph-structured data, making them an invaluable tool for tasks that involve connec-
tivity patterns, such as node classification, link prediction, and graph classification,
tasks that can answer numerous biological questions. The mathematical foundation
of GNNs rests on the principles of graph theory and deep learning, enabling them to
generalize and propagate information effectively across graph nodes.

†ImageNet184 is the standard dataset for benchmarking the performance of machine learning algo-
rithms in classification and object recognition. ImageNet contains more than 14 million hand-annotated
images.
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Figure 3.3: Graph Neural networks aim to learn a mapping from graph-structured data
(on the left) to a low-dimensional continuous vector space (on the right). These rep-
resentations, instead of the original graph, can then be used for various downstream
tasks.

3.3.6. AUTOENCODER (AE)

AEs185,186 are neural networks that aim to reconstruct (or copy) the original input
via a non-trivial mapping. Conventional AEs have an "hour-glass" architecture (see
Fig. 3.2(E)) consisting of two networks: (i) an encoder network, Enc(·), which maps
an input x ∈ Rn to a latent vector z ∈ Rd where, ideally, z contains the most important
information from x in a reduced space (i.e. d ≪ n), (ii) the decoder network, Dec(·),
which takes z as input and maps it back to Rn, ideally, reconstructing x exactly; i.e.
x = AE(x) = Dec(Enc(x)). AEs were traditionally used for dimensionality reduction
and denoising, trained by minimizing a mean squared error (MSE) objective between
the input data and the reconstructed samples (decoder outputs).

Over time, the AE framework has been generalized to stochastic mappings, i.e.
probabilistic encoder-decoder mappings, pEnc(z|x) and pDec(x|z). A well-known ex-
ample of such generalization is Variational Autoencoders (VAEs)187, where by using
the same hour-glass architecture, one can use probabilistic encoders and decoders to
generate new samples drawn from an approximated posterior. Both traditional AEs
and VAEs have practical applications in many biological fields and have been used
extensively in scRNAseq (see reference6 for an overview of these models), and are
becoming more frequently employed in spatial transcriptomics analysis, which we
overview later in this work.
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3.3.7. VARIATIONAL AUTOENCODER (VAE)

One can describe VAEs187 as AEs that regularize the encoding distribution, en-
abling the model to generate new synthetic data. The general idea behind VAEs is
to encode the inputs as a distribution over the latent space instead of a single point
(which is done by AEs). From a neural network perspective, VAEs are autoencoders
that use variational inference to reconstruct the original data, having the ability to gen-
erate new data that is "similar" to those already in a dataset x. Mathematically, VAEs
are motivated through traditional Bayesian inference, where we aim to find a likeli-
hood function for generating x given latent variables z, p(x|z). However, the question
is what latent parameters z one must use, given the data x. VAEs assume that observed
data and latent representation are jointly distributed as pθ (x,z) = pθ (x|z)p(z). In deep
learning, the log-likelihood pθ (x|z) is modeled through non-linear transformations,
thus making the posterior probability distribution,

pθ (z|x) =
pθ (x|z)pθ (z)

pθ (x)
, (3.11)

which is intractable due to the marginal. More specifically, the issue arises from the
denominator,

pθ (x) =
∫

p(x,z)dz (3.12)

which is possible to compute directly. Variational inference aims to approximate the
posterior through a family of functions qγ(z|x). Using this idea, we then find that:

p(x) =
∫

p(x,z)dz =
∫

pθ (x|z)pθ (z)dz (3.13)

⇒ log p(x) = log
∫

pθ (x|z)pθ (z)dz (3.14)

= log
∫

pθ (x|z)pθ (z)
qγ(z|x)
qγ(z|x)

dz (3.15)

= log
(
Eqγ (z|x)[p(x,z)]

)
− log

(
Eqγ (z|x)[logqγ(z|x)]

)
(3.16)

⇒ log p(x)≥ Eqγ (z|x)[log p(x,z)]−Eqγ (z|x)[logqγ(z|x)], (3.17)

where E denotes the expected value, i.e. E[X ] =
∫

u fX(u)du for fX being the prob-
ability density function of X . Therefore, we can maximize the evidence lower bound
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(ELBO) to get a good approximation of the evidence pθ (x):

Eqγ (z|x)

[
log
(

pθ (x|z)p(z)
qγ(z|x)

)]
︸ ︷︷ ︸

ELBO(θ ,qγ )

≤ log pθ (x), (3.18)

where qγ(z|x) being the mentioned auxiliary variational distribution with parameters
γ that is dependent on the family of distributions chosen. Note that by maximizing
the lower, we can better approximate the evidence and thus obtain a close approxima-
tion for the true posterior pθ (z|x). We find the variational parameters γ for new inputs
x using an inference network Enc(·) with parameters ϕ , such that Encϕ (x) = γ(x).
But the question is how can we measure the difference between ELBO and the true
evidence. This can be done by computing the Kullback-Leibler (KL) divergence, as
shown in Eq. (3.19).

KL
(
qϕ (z|x)||pθ (z|x)

)
:= Ez∼qϕ (z|x) log

[
qϕ (z|x)
pθ (z|x)

]
(3.19)

Using our definition of KL divergence, we can write:

KL(q||p) = Ez∼qϕ (z|x)[logqϕ (z|x)]−Ez∼qϕ (z|x)[log
pθ (x|z)pθ (z)

pθ (x)
] (3.20)

= Ez∼qϕ (z|x)[logqϕ (z|x)]−Ez∼qϕ (z|x)[log pθ (x,z)]+Ez∼qϕ (z|x)[log pθ (x)]
(3.21)

= log pθ (x)−Ez∼qϕ (z|x)

[
log

pθ (x,z)
qϕ (z|x)

]
(3.22)

= log pθ (x)−ELBO(θ ,qϕ ) (3.23)

⇒ log p(x) = ELBO(θ ,qϕ )−KL
(
qϕ (z|x)||pθ (z|x)

)
. (3.24)

Given that KL divergence is non-negative, this means that log p(x) ≥ ELBO(θ ,qϕ ).
Therefore, we have:

log pθ (x)≥ ELBO(θ ,qϕ ) =L (x;θ ,ϕ) =Ez∼qϕ (z|x)
[
− logqϕ (z|x)+ log pθ (x|z)pθ (z)

]
,

which can be written as shown in Eq. (3.3.7):

L (x;θ ,ϕ) = Ez∼qϕ (z|x)
[
log pθ (x|z)]−KL

(
qϕ (z|x)||p(z)

)]
.
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A common assumption in many frameworks is that the posterior and the prior are
isotropic Gaussian distributions, i.e. qϕ (z|x(i)) = N (z; µ(i),(σ (i))2I) and pθ (z) =
N (z;0, I). This assumption simplifies the computation of the KL divergence, as
shown in Eq. (3.25):

KL
(
qϕ (z|x)||pθ (z)

)
=

1
2

J

∑
j

(
1+(logσ (i)

j )2 − (µ(i)
j )2 − (σ (i)

j )2
)

(3.25)

(refer to Kingma et al.188 for the proof). In this scenario, the VAE objective function
becomes:

L (x(i);θ ,ϕ) =
1
2

J

∑
j

(
1+ log(σ (i)

j )2 − (µ(i)
j )2 − (σ (i)

j )2
)
+

1
N

N

∑
l
log pθ (x(i)|z(i,l))

(3.26)
where z(i,l) ∼ qϕ (z|x(i)) with the parametrization trick z(i,l) = µ(i)+σ (i)⊙ ε(l), with
ε(l) ∼ N (0, I). Furthermore, if we parametrize the likelihood function with another
Gaussian, our objective function becomes even simpler. The most common form of
VAEs’ objective is shown in Eq. (3.27), though this is not the exact resulting loss. We
provide the derivation of the simplified reconstruction loss in Appendix B.

L (x(i);θ ,ϕ) =
1
2

J

∑
j

(
1+ log(σ (i)

j )2 − (µ(i)
j )2 − (σ (i)

j )2
)
+MSE(x(i), x̂(i)) (3.27)

where MSE(·) denotes the Mean Squared Error between the input x(i) and the recon-
struction by the probabilistic decoder x̂(i).

Compared to other generative models (e.g. Generative Adversarial Networks (GANs)189),
VAEs have desirable mathematical properties and training stability150. However, they
suffer from two major weaknesses: (i) classic VAEs create "blurry" samples (those
that adhere to an average of the data points) rather than the sharp samples that GANs
generate due to GANs’ adversarial training. One possibility for this blurriness is the
effect of maximum likelihood. That is, the model may assign a high probability to
other points rather than just the training data, and these points may include “blurry"
samples/images. This issue has often been addressed by defining adversarial training
between the encoder and the decoder, as done by our work in Chapter 5. (ii) The other
major issue with VAEs is posterior collapse: when the variational posterior and actual
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posterior is nearly identical to the prior (or collapse to the prior), which results in poor
data generation quality190. To alleviate these issues, different algorithms have been
developed, which have been shown to significantly improve the quality of data gen-
eration191,192,193,193,194,195,196. VAEs are used extensively to analyze single-cell RNA
sequencing (see Erfanian et al.6), and we anticipate them to be applied to a wide range
of spatial transcriptomics analyses as well.

3.3.8. GENERATIVE ADVERSARIAL NETWORKS (GANS)

GANs197 are capable of generating realistic synthetic data and have been success-
fully applied to a wide range of machine learning tasks198,199,200,201 and bioinformat-
ics202,135. GANs consist of a generator network (G) and a discriminator network (D)
that train adversarially, which enables them to produce high-quality fake samples.
During training, D learns the difference between real and synthetic samples, while G
produces fake data to "fool" D. More specifically, G produces a distribution of gener-
ated samples Pg, given an input z ∼ Pz, with Pz being a random noise distribution. The
objective of GANs is to learn Pg, ideally finding a close approximation to the real data
distribution Pr so that Pg ≈ Pr. To learn the approximation to Pg, GANs play a "min-
max game" of

min
G

max
D

Ex∼Pr log[D(x)]+Ez∼Pz log[1−D(G(z))],

where both players (G and D) attempt to maximize their own payoff. This adversarial
training is critical in GANs’ ability to generate realistic samples. Compared to other
generative models, GANs’ main advantages are (i) the ability to produce any type of
probability density, (ii) no prior assumptions for training the generator network, and
(iii) no restrictions on the size of the latent space.

Despite these advantages, GANs are notoriously hard to train since it is highly
non-trivial for G and D to achieve Nash equilibrium203. Another disadvantage of
GANs is vanishing gradients where an optimal D cannot provide enough informa-
tion for G to learn and make progress. If D learns the distinction between real and
generated data too well, then G will fail to train, as shown by204. Another issue with
GANs is "mode collapse" when G generates only a small set of outputs that can trick
D. More explicitly, this occurs when G has learned to map several noise vectors z to
the same output that D classifies as real data. In this scenario, G is over-optimized,
and the generated samples lack diversity. Quantifying how much GANs have learned
about real data distribution is often complicated, measuring the dissimilarity between
Pg and Pr when Pr is not known or assumed. Therefore, common ways of evaluating
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GANs involve directly evaluating the output205, which can be arduous.

Although some variations of GANs have been proposed to alleviate vanishing
gradients and mode collapse (e.g. Wasserstein-GANs (WGANs)206 and Unrolled-
GANs207), the convergence of GANs remains a major problem. During the training
progression, the feedback of D to G becomes meaningless. If GANs continue to train
past this point, the quality of the synthetic samples can be affected and ultimately col-
lapse. Common variations of GANs cannot be trained as single-stream networks, and
a necessary step is to define a training schedule for G and D separately, adding an-
other layer of complexity. Although all deep learning models are sensitive to hyperpa-
rameter choices,208 show all experimented GANs (including WGANs) are much more
sensitive to these choices than VAEs. This can be a drawback in using GANs for scR-
NAseq generation since the hyperparameters may need to be re-tuned for every new
dataset.
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If you’re not careful what you focus on, you might
move towards something you never intended.

Unknown

4
Boosting Single-Cell RNA Sequencing

Analysis with Neural Attention

4.1. INTRODUCTION

Single-cell RNA sequencing (scRNAseq) technologies have been instrumental in
studying biological patterns and processes in development and disease24,209. ScR-
NAseq datasets are high-dimensional and noisy, often requiring advanced machine
learning (ML) methods for accurate and efficient analysis6. Recent years have seen a
surge in deep learning (DL) methods, setting the state-of-the-art performance in many
pre- and post-processing tasks, such as batch correction, dimensionality reduction,
and multi-modal integration (see6). While DL methods have become the standard for
accuracy, a limitation of most DL approaches for scRNAseq analysis is a lack of bio-
logical interpretability; traditional DL approaches transform scRNAseq data into low
dimensional representations that cannot directly be associated with specific gene sig-
natures. Moreover, current pipelines require researchers to develop and train separate
disjoint models for each specific downstream analysis pipeline. In this work, we intro-
duce scANNA (single-cell analysis using Neural-Attention). This flexible DL model
utilizes simple neural attention to provide unique biological insights and facilitate the
discovery process through a single training procedure for a suite of downstream tasks.
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The major advance of scANNA is the innovative use of a neural attention module
within a three-module DL core (see Fig. 4.1(A)). This DL core is trained once on raw
single-cell RNA sequencing counts and can subsequently be applied without retrain-
ing to various user-specified downstream tasks, such as automatic cell type classifica-
tion, optimal feature selection, unsupervised scRNAseq annotation, and transfer learn-
ing (Fig. 4.1(B-E)). The DL core of scANNA has three serial modules (depicted in
Fig. 4.1(A)), which take raw scRNAseq counts as input. The parameters of scANNA,
i.e. the neural network weights of each module, are learned by optimizing the aux-
iliary objective (e.g. , predicting pseudo labels). For this training of the model, the
auxiliary objective is designed to predict pseudo-labels, i.e. cell type labels generated
through an unsupervised algorithm.
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Figure 4.1: Overview of scANNA and its application to various downstream tasks.
(A) General workflow utilizing scANNA for scRNAseq studies and illustration of
scANNAs novel three-module DL architecture. ScANNA can be used for a wide
range of downstream tasks. In this chapter, we focus on four important tasks: (B)
Automated Cell Type Identification (C) Global Marker Selection, (D) Unsupervised
Broad Annotation, and (E) Transfer Learning. These results show that scANNA
learns complex relations from data that can be exploited for scalable, accurate, and
interpretable analysis in scRNAseq studies.

The first component of scANNA is the Additive Attention module, which learns
optimal weights for each gene based on their contribution to the auxiliary objective.
These weights are used to calculate gene scores, a scaled version of the raw counts.
After training scANNAs DL core, the gene attention weights from the Additive At-
tention Module are used as input for most standard downstream tasks. This common
training is achieved by inputting the gene scores into the second component, the Deep
Projection Blocks, which are an ensemble of operators learning a nonlinear mapping
between gene scores. This mapping is designed to increase model capacity and con-
nect the gene associations to the auxiliary objective. A concatenated representation
of the ensemble defined in this step forms the input to scANNAs third component,
the Configuration Module. The Configuration Module is the last layer of the DL core
made to align with the chosen auxiliary objective function, allowing for flexibility and
potential adjustments based on the dataset (e.g. , the number of neurons that corre-
spond to the number of known populations).

This chapter compares scANNA to state-of-the-art methods on various standard
scRNAseq tasks using nine public single-cell datasets. We show that scANNA attains
comparable to better performance despite not being explicitly trained for these stan-
dard tasks. Based on our findings, we propose scANNA as an accurate and effective
method for various scRNAseq analysis settings. ScANNAs unbiased pipelines can
rapidly and accurately identify new and noteworthy genes in large-scale studies with
limited prior knowledge. For small-scale studies (min 2000 cells), scANNAs DL core
can be pre-trained on existing atlases to transfer knowledge from existing repositories.
As such, scANNA is a valuable tool for novice and expert users in the initial steps of
scRNAseq analysis.
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4.2. METHODS AND RELATED WORK

SCANNA: EFFICIENT NEURAL ATTENTION WITH BRANCHING PROJECTION
BLOCKS

Our approach utilizes a simple neural attention (a feed-forward version of the ad-
ditive attention introduced in210) with ensembles of linear operators, which we call
branching projections. Multiple branching projections combined form a projection
block. ScANNA is a much simpler version of the popular Transformers models160

that revolutionized many fields, such as natural language processing and computer vi-
sion211,212. Despite being simpler than Transformers, scANNA is still a large-scale
model with a large capacity for learning nonlinear relations in complex datasets, such
as scRNAseq, while training faster than traditional transformer-based models and be-
ing easier to interpret. We describe scANNAs different components below (visualized
in Figure 4.2).

Additive Attention

Attention is a weighting scheme that aims to mimic the way humans understand
context in sentences or details in images by focusing on a subset of significant fea-
tures for a given objective213. The use of attention-based NN for scRNAseq analysis
is still in its infancy, with only a few successful scRNAseq applications to date214,215,216.
To identify salient genes (markers), we use an additive attention module in a feed-
forward NN aiming to learn the importance (weights) of all genes for each cell, given
a downstream task. Analyzing the learned associations between genes and cells post
hoc provides our models biological interpretability.

The first step in the DL core, the Attention Module, is used to calculate a gene-
score matrix (weighted version of scRNAseq count matrix), representing expression
data in later layers. These importance scores enable gene prominence quantifica-
tion for the downstream task, allowing interpretation of the models decision-making.
Given a gene expression matrix X ∈ RC×N , where C and N denote the number of cells
and genes, respectively, we define the gene-score matrix Γ and the attention weights A
as shown below:

Γ = A⊙X , where Ai, j =
eLi, j

∑N
j=1 eLi, j

with L = NN(·) denoting a linear neural network. After training, the learned oper-
ator A is leveraged to identify salient genes for interpretability. Gene scores have the
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Figure 4.2: Overview of scANNAs projection block concerning other components.
Here, we use the unsupervised annotation as an example to show scANNAs projection
blocks in action.
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same dimension as input data, i.e. , Γ ∈ RC×N).

Branching Projections

The second module in scANNA is the projection mechanisms, which are inter-
mediate layers between the attention layer and the Configuration Module (see Fig.
4.1(A)). The goal of using projection modules is to strike a balance between model
capacity and efficiency: Too much capacity could lead to significant over-fitting, while
insufficient capacity prevents the model from learning the correct representations.
We design the projection blocks to allow for branching, i.e. , consisting of h ∈ N
separate linear operators in each level, a concept shown by217 to improve optimiza-
tion and overall learning. Such design allows efficient consideration of different gene
subsets and improves model performance without requiring numerous nonlinear lay-
ers and additional computational costs. Outputs from each branch are concatenated
and inputted to a subnetwork consisting of two linear operators (L1 ∈ RN×128 and
L2 ∈ R128×N , respectively) with a Rectified Linear Unit (ReLU) in between. Based on
careful ablation studies (Table 4.1), we found projection blocks with h = 4 branches
provide the appropriate balance of accuracy and efficiency. We hypothesized that
adding residual connections from the gene scores to the input of each block would
improve interpretability (by reducing the chance of learning a complex, unrelated non-
linear mapping). Through ablation studies, we found that the residual connections,
followed by LayerNorm218 operation, increased accuracy and improved interpretabil-
ity. We present the architecture of a residual block in Figure 4.2.

Table 4.1: Ablation Study on the Number of Projection Heads. We fixed all other
hyperparameters and studied the effect of head number on accuracy and interpretabil-
ity for various datasets, here shown for Immune CSF. Training times are the average
of 5 training runs (on an A100 GPU). Accuracy of each model remained the same
across different training settings, since all random parameters were initialized with the
same random seed. Abbreviations: W-F1: Weighted F1 score; NW-F1: Non-Weighted
F1 score (Macro F1); Hit@5: Binary success measure of whether the correct cell type
was retrieved within the 5 most probable cell types predicted by our model.

NUMBER OF HEADS W-F1 NW-F1 HIT@5 AVG. TRAINING TIME

1 0.9278 0.8968 0.85 9.11±0.14 (MIN)
4 0.9317 0.9077 0.85 9.38±0.31 (MIN)
8 0.9307 0.9156 1.00 9.31±0.22 (MIN)

10 0.9322 0.9173 1.00 9.56±0.27 (MIN)
20 0.9324 0.9156 1.00 9.87±0.24 (MIN)

70



Configuration Module

The last stage of scANNA consists of the Configuration Module, a linear operator.
Our goal in separating the Configuration Module from the other components was to
provide flexibility for different tasks or for transferring labels between datasets with
different numbers of cells. To show scANNAs generality, we trained one model and
used a cross-entropy objective to predict labels (actual annotations in a supervised set-
ting or pseudo-labels for the unsupervised training). The Configuration Module used
for our work consisted of a linear layer mapping the gene space (number of highly
variable genes) to the number of cell types, followed by a Leaky ReLU activation.

TRAINING SCANNA

Results presented for all downstream tasks used one trained model, except for TL
between reference and query datasets with different cell populations. For all datasets,
we trained scANNA by minimizing a standard cross entropy loss using the Adam
gradient-based optimizer at a learning rate lr = 10−4 for 50 epochs. Our experiments
showed training scANNA for more epochs can result in a slight increase in prediction
accuracy; however, we chose to train all models for 50 epochs for additional compu-
tational efficiency. We also employed an exponential learning rate scheduling, starting
at epoch ten and decaying every five epochs after with γ = 0.95 to avoid overfitting
(more relevant when training over 100 epochs, which we did not do in this study).

FEATURE SELECTION EXPERIMENTS

Five methods, SMaSH219, scGeneFit220, Triku221, Seurat222, and CellRanger223,
were compared against scANNA in evaluating its feature selection performance (i.e.
, selecting the most important global features224). Following common metrics in this
space, we measured performance by calculating the classification accuracy given top
n features, with n = {10,25,50,100,200,300}, using K-Nearest Neighbors (KNNs),
XGBoost and Nearest Centroid. As a baseline, we also trained each classifier using
the 5000 HVGs. Our results only report KNN classification accuracy since KNN on
5000 HVGs performed best for most datasets. Additionally, we computed the frac-
tion of variance on the original gene space (total variance) and compared that with
the different approaches. Based on the evidence in the SmaSH manuscript and our
own validation, ensemble learning (XGBoost), we have provided the most accurate
approach we employed in our experiments. Of note, minor but necessary adjustments
were made to the SMaSH package (located at https://gitlab.com/cvejic-g
roup/smash) to make SMaSH compatible with Tensorflow 2.11 (adjustments
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noted in the tutorial and reproducibility notebooks). For a fair comparison across all
methods, we modified SMaSH to use pre-defined train and test split, which were de-
termined a priori. Our last minor modification was to allow for the ensemble method
to train in parallel (by adding n_jobs=-1 to the XGBoostClassifer arguments in the
ensemble_learning class method). For scGeneFit220, we used the provided soft-
ware package (https://github.com/solevillar/scGeneFit-python)
with the same parameters as in225 (i.e. the parameters for get_markers function
were set to method=’centers’, redundancy=0.25, epsilon = 1). For Triku, we
used the provided python package (https://github.com/alexmascension/triku) follow-
ing the suggested usage protocol with only one modification (i.e. , the parameter for
tk.tl.triku function was set to use_raw=True). For Seurat and CellRanger, we
leveraged scanpys function scanpy.pp.highly_variable_genes to identify impor-
tant features based on the dispersion-based methods Seurat (Seurat) and CellRanger
(CellRanger)226,227,223.
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Figure 4.3: ScANNAs unsupervised broad annotation example (enrichment of
local marker genes identified by scANNA).
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Figure 4.4: Evaluating global marker selection performance through measuring
classification accuracy of cell populations with n selected markers from each
model.

Figure 4.5: Evaluating global marker selection performance through measuring
classification accuracy of cell populations with n selected markers from each
model.

SUPERVISED CLASSIFICATION METHODS

Seven models were compared against scANNA to evaluate performance on su-
pervised classification ACTINN228, scClassify229, SingleCellNet230, CHETAH231,
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Figure 4.6: Accuracy of various supervised annotation methods reported in
macro F1 score.

Random Forest, scPred232 using the svmRadial (support vector machines) model,
and scPred using the neural net (NN) model. ScPreds parameters were as follows:
resampleMethod was set to none, tuneLength was set to 1, and genes containing
zero counts for all cells had a pseudo count of 2 added to a cell randomly to allow
scPred to run. ACTINN was run using a PyTorch implementation (https://gi
thub.com/SindiLab/ACTINN-PyTorch). Lastly, for Random Forest, we used
sklearn.ensemble.RandomForestClassifier function with default parameters.
We generated five distinct train and test splits (each containing 80/20% of all data) for
each dataset using the ShuffleSplit function from the Sci-Kit Learn package. Each
model was applied to all splits with the following metric: collected runtime, accuracy,
weighted F1, and macro F1. Mean and standard deviation were calculated for each
metric based on the dataset and model.

SUPERVISED ANNOTATIONS

We chose six large immune datasets to evaluate scANNAs capabilities across mul-
tiple diseases and tissues. Five datasets consist of human cells and one of the mouse
cells. The human datasets included three SARS-CoV-2 viral infection studies and
a human cutaneous squamous cell carcinoma study. We included a mouse dataset
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Figure 4.7: Overview of scANNAs workflow of performing unsupervised annota-
tion used in this study.

to demonstrate our models effectiveness on non-human and non-immune datasets.
All datasets were generated using the 10X Genomics platform. A summary for each
dataset is provided in §4.3.

UNSUPERVISED ANNOTATIONS

Since labels are not available in an unsupervised setting, pseudo-labels keep the
same supervised objective as in the dataset publications. Pseudo-labels can be gener-
ated using traditional methods, such as graph-based clustering or self-supervised con-
trastive learning (for which scANNA can also be used). To avoid any improvements
in annotation not caused by scANNA, we generated pseudo-labels for each dataset
using the same clustering approach described in the originating manuscript. After
clustering, the arbitrary cluster numbers were used as pseudo-labels, and scANNA
was trained to predict the cluster number given to a cell. No information about the
cell types, known marker genes, or common housekeeping genes were used during
training. After training, we extracted the top n attentive genes and used those genes as
markers for querying cell type. using GSEAPYs (https://github.com/zqfang/GS
EApy) enrichr method. We provide an overview of our workflow in Fig. 4.7.

TRANSFER LEARNING EXPERIMENTS

For transfer learning, we focused on labeling two small-scale query datasets using
larger source data (references). These experiments were as follows:
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Pancreatic ductal adenocarcinoma (PDAC) Transfer Learning

As an initial assessment for transfer learning, we pre-trained scANNA on a PDAC
atlas, an integration of five publicly available datasets (see §4.3), which were split
80% and 20% for training and testing, respectively. As the target data, we chose Lin
et al. (GSE154778)233 since it contained scRNAseq of the pancreatic primary tumor
while containing important distinctions and differences from the source data, making
it appropriate for transfer learning. From this data, we used 20% of randomly selected
cells for fine-tuning and 80% for testing, aiming to mimic a small-scale study. Note
that the fine-tuning process uses the reverse training/testing proportions of pre-training
splits to test the performance of the TL experiment.

T cell atlas to CD8+ T cell Populations

As a more challenging task, we aimed to perform TL from a broad T cell atlas
(GSE188666) to a CD8+ T cell-specific dataset (GSE199565) containing more sub-
populations than the reference data. Similar to the PDAC experiment, we used 80%
of the source data for pre-training (and 20% for testing the pre-training), 20% of the
query target data for fine-tuning, and 80% for testing (see §4.3).

FINE-TUNING SCANNA

Fine-tuning scANNA consists of freezing all weights in the attention and projec-
tion modules, with the only trainable parameters being in the configuration module
(the last layer of scANNA mapping projections to the corresponding cell types). We
fine-tuned scANNA (and other tested models) for 10 or 50 epochs using the same hy-
perparameters as pre-training.

SCARCHES FOR TRANSFER LEARNING

ScArches234 allows transferring labels to query data by integrating it with a ref-
erence atlas. ScArches relies on an underlying reference-building method. For our
application, the appropriate underlying models are scANVI235 and scGen236 as de-
scribed in (https://scarches.readthedocs.io/); however, we were unable to use scGen
due underlying maintenance issues. Therefore, all results presented in this chapter for
scArches utilize scANVI (which uses scVI at its core). Though the scGen method is
recommended, we note that scANVI is also appropriate since it can be trained unsu-
pervised and fine-tuned on target data using labels, thus making the comparison rele-
vant and fair. Using the source data, we trained the scVI core for 100 epochs, with an
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additional ten epochs for the annotation, which achieved desirable accuracy (compara-
ble to other methods). Then, similar to scANNA, we fine-tuned the model for 10 and
50 epochs on the query data.

ACTINN-TRANSFER LEARNING

We hypothesized that scANNAs advantage for TL stems from our architecture de-
sign. To test the importance of architecture, we applied our methodology for freez-
ing weights and fine-tuning to an existing model, ACTINN, with the following ratio-
nale: If scANNAs architecture is not unique and more beneficial for transfer learning,
then a pre-trained ACTINN model (on the source data) should perform comparably
to scANNA (once fine-tuned on a query dataset) given its comparable performance
in the supervised annotation regime. Similar to the other experiments, we trained
ACTINN-TL on source data for 50 epochs, then froze the weights in the hidden layers
and fine-tuned the last layer responsible for predicting the correct cell type. For sim-
plicity, we call this approach ACTINN-TL.

SCNYM FOR TRANSFER LEARNING

ScNym237 model is a semi-supervised method combined with MixMatch frame-
work238 and domain adversarial training for transferring labels from a source to a tar-
get dataset. ScNym generates pseudo-labels for target cells and randomly pairs source
and target observations, with the weighted average of each being computed. ScNym
then aims to minimize a supervised classification loss on the paired mixed training ex-
amples while minimizing the interpolation consistency loss on the mixed target cells.
We trained scNym with the source and target data using the default setting for 100
epochs and then continued training for an additional 10 or 50 epochs with the pre-
trained model using the test target data.

4.3. DATA DESCRIPTION AND DATA AVAILABILITY

PREPARATION OF SCRNASEQ DATASET FOR ANALYSIS WITH SCANNA

All data are publicly available from NCBI gene expression omnibus (GEO) and
the Broad Institute Single Cell Portal (SCP), with links provided below. Datasets
were processed using the Seurat239 package (v4.1.0) in R. Manual annotations were
merged with count matrices using a variety of tidyverse (v1.3.1) functions, and sub-
sequently added to the Seurat object as metadata. Data filtering consisted of removing
cells with fewer than 200 expressed genes and removing genes present in fewer than
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three cells. Next, we retained cells with less than 10% mitochondrial reads to mitigate
cellular debris. Lastly, cell types containing less than 100 cells were removed and ex-
cluded from the dataset. After filtering, following similar works, we identified each
dataset’s top 5000 highly variable genes (HVGs) using Seurats FindVariableFeatures
function, described in224. To minimize biological and technical effects in each dataset
based on patient or biological conditions (such as normal versus disease state), we uti-
lized Harmony240 (v0.1.0) to perform integration when necessary. The lower dimen-
sional plots were generated using Uniform Manifold Approximation and Projection
(UMAP)241. SeuratDisk (v.0.0.0.9019) was used to convert the Seurat data object
into an AnnData object compatible with scanpy. To perform clustering and generate
cell labels (in the unsupervised case), we used Scanpys pipeline for clustering (con-
sisting of dimensionality reduction using principal component analysis (PCA), fol-
lowed by Leiden clustering). As mentioned, we found Leiden resolutions that led to
the same number of clusters as the annotated populations to compare our predictions
to the ground truth labels.

SCP1361

SCP1361 consists of aortic cell scRNAseq from mice fed a normal or high-fat diet,
resulting in 24K cells (after processing)242. The authors identified 27 clusters for ten
different cell populations. Original data for SCP1361 can be downloaded from Single
Cell Portal https://singlecell.broadinstitute.org/single_cell.

ImmuneCSF

ImmuneCSF (GSE163005) profiles scRNAseq data in cerebrospinal fluid243. Cells
were isolated from 31 patients: 8 Neuro-COVID patients, nine non-inflammatory, nine
autoimmune neurological diseases, and five viral encephalitis, resulting in a total of
70K cells after processing, with 15 populations. Raw data can be downloaded from
Gene Expression Omnibus (GEO) with accession number GSE163005.

GSE154567

GSE154567 evaluates the transcriptional immune dysfunction in patients trig-
gered during moderate and severe COVID-19 using scRNAseq244. Peripheral blood
mononuclear cells were isolated and sequenced from 20 patients. Patients ranged
from healthy (n = 3), moderate COVID (n = 5), acute respiratory distress syndrome
(ARDS-Severe, n = 6), and recovering (ARDS-Recovering, n = 6), resulting in 69K
cells. After pre-processing the dataset, we retained 64K cells. The authors identified
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nine populations in the dataset. Raw data can be downloaded from Gene Expression
Omnibus (GEO) with accession number GSE154567.

GSE144236

GSE144236 evaluates scRNAseq of normal skin and cutaneous squamous cell car-
cinoma (cSCC) tumors245. Normal and cSCC tumor cells were sequenced from each
patient (n =10), resulting in 48K cells and seven major cell populations. We retained
47K cells after pre-processing. The myeloid cell population (CD14+Hi) is composed
of various subpopulations. Raw data can be downloaded from Gene Expression Om-
nibus (GEO) with accession number GSE144236.

Lukassen Lung

Lukassen (EGAS00001004419) evaluates single nuclei RNA sequencing of lung
tissue to evaluate the expression of ACE2 and TMPRSS1246. Primary lung tissue was
sampled from male and female smokers and non-smokers (n = 12 total), resulting in
39K cells and nine cell populations. We retained 39K cells after pre-processing. Raw
data is available from the European Genome-Phenome Archive (EGA) with study ID
EGAS00001004419.

PDAC atlas

PDAC atlas consists of five scRNAseq published datasets247,248,249,250,251 from
normal and pancreatic ductal adenocarcinoma patients. After pre-processing and inte-
gration (as described by252), we retained 85,437K cells with 11 subpopulations.

PDAC small

PDAC small (GSE154778) is a specific PDAC study consisting of individual cells
(57K with ten subpopulations) from dissociated primary tumors or metastatic biopsies
obtained from patients with PDAC233. Raw data can be downloaded from Gene Ex-
pression Omnibus using accession number GSE154778.

T cell atlas

T-cell atlas (GSE188666) evaluates CD8 T cell exhaustion during viral infection
by scRNAseq resulting in 96K cells (retained 96K cells after pre-processing)253. Raw
data can be downloaded from Gene Expression Omnibus (GEO) with accession num-
ber GSE188666.
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GSE199565

CD8 specific data (GSE199565) evaluates CD8+ T cell temporal differentiation by
scRNAseq resulting in 29K cells (retained 29K cells after pre-processing)254. The au-
thors identified 19 CD8 T cell populations (many intermediate populations). Raw data
can be downloaded from Gene Expression Omnibus (GEO) with accession number
GSE199565.

4.4. RESULTS

Supervised Automated Cell Type Identification: While we primarily intend
scANNA to be a tool for unsupervised analysis, as an initial test, we considered scANNA
in a supervised learning framework. We compared scANNA against standard state-of-
the-art supervised automatic cell type identification (ACTI) models * on five com-
plex datasets (four human datasets with distinct disease conditions and one mouse
dataset). ScANNA was trained on quality-controlled raw data, and for computational
efficiency, the gene space was reduced to the 5000 (5K) most variable genes, although
larger gene spaces (8K, 10K, 15K) achieve similar results (a performance drop of ap-
proximately 4% from 15K to 5K). Figure 4.1(B) and Fig. 4.6 show that scANNA per-
forms comparably to current state-of-the-art models for ACTI (ACTINN228, scPred232,
SingleCellNet230, scClassify229, CHETAH231) while providing decision making in-
terpretability (i.e. , attention tensor).

Next, we evaluated scANNAs capabilities in two different scRNASeq tasks: global
feature selection (5 datasets), unsupervised annotations (5 datasets), and transfer
learning from large-scale data to small datasets (2 pairs of datasets). For each scR-
NASeq data, we trained scANNA once and then applied it to each corresponding
downstream task without retraining the core DL model. To train scANNA in these
unsupervised analysis tasks, for each data set, we: (1) Generated pseudo-labels of cell
types using an unsupervised clustering† (2) trained the DL core to predict pseudo-
labels, and (3) extracted attention weights from the Attention Module or fine-tuned the
Configuration Module if transferring the learnings to a different biological context.

Global Marker Selection: We considered scANNA for global feature selection.

*Although this is not scANNAs primary application. Here, we use the ground truth labels; in the
other studies, we use only our generated pseudo-labels.

†While it is possible to use more advanced methods, such as self-supervised contrastive algorithms,
we chose a naïve unsupervised clustering process to assess improvements offered by scANNA more
directly. For the five datasets used in feature selection and unsupervised annotation, we conditioned the
number of clusters to be the same as the number of manually annotated populations for a fair compari-
son.
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That is, we used scANNAs learned gene weights to identify global markers, i.e. a
unique and small subset of genes that are most informative and useful for additional
analyses228. Despite the importance of global marker selection in scRNAseq stud-
ies, computational methods are nascent and often limited in the number of markers
that can be selected232. In contrast to methods that exhaustively search for n features
ranked in a one versus all task‡, scANNAs Attention Module implicitly performs fea-
ture selection by assigning weights to each gene during training. After training, we
extracted attention values and ranked top genes accordingly (§4.2).

We compared scANNA-selected genes against markers selected by state-of-the-art
ML methods (scGeneFit220 and SMaSH225, Triku221) and statistical techniques (Cell-
Ranger and Seurat) for global feature selection. Following225; we assessed methods
by evaluating classification accuracy (Weighted F1) and the fraction of total variance
explained, using n = {10,25,50,100,200,300} (Fig. 4.1 (C), Figures 4.4 and 4.5).
Our results show that scANNA outperforms these methods in both metrics in the bi-
ologically relevant regime (between 50 - 200 genes225). As such, scANNA has the
potential to be a powerful addition to biological applications such as the detection of
pertinent markers (100-200 genes) required for designing padlock probes used in situ
sequencing24,225.

Unsupervised Annotation: Next, we set out to perform cell type annotation, an-
other critical challenge in scRNAseq studies255, in an unsupervised manner. A signifi-
cant limitation in most computational pipelines is the reliance on manual cell type an-
notation based on curated lists of marker genes, which is laborious, time-consuming,
partially subjective, and requires expertise256,23. In this experiment, we considered
whether scANNAs Attention Module gene weights provide a powerful companion to
manual annotation. Note that, as before, we use pseudo-labels for training and use the
existing annotations for validation and testing purposes after training. Once scANNA
was trained, we extracted the top attentive genes in each cluster as markers to query
the gene set for identifying cell type embedded in our software package (§4.2).

‡One v n marker selection refers to evaluating the importance of each gene against n other genes
(potentially all). Then, top genes are selected as markers based on some metric (e.g. fraction of vari-
ance explained).
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Figure 4.8: Utility of scANNA for Unsupervised Annotations. (A) scANNA learns
complex relations between genes across cells. Here, we show the correlation be-
tween attention values (learned importance weights) among different cell types in
two datasets. The learned gene associations in similar cell types (e.g. , CD8 and CD4
cells) have the highest correlations. (B) Enrichment analysis identified significant
populations in Proliferating Lymphocytes, with CD8+ proliferating and effector mem-
ory T cells being the most prominent, while Unidentified Lymphocytes were mainly
composed of natural killer cells, along with some CD8+ effector memory T cells.

Our results (Fig. 4.1(D), Fig. 4.8 (A), and 4.3) show that scANNA learns salient
genes for each cluster enabling accurate and scalable unsupervised annotations with-
out prior knowledge or expertise. Since many manual annotations are performed with
only a few marker genes257, it is possible to define broad and ambiguous popula-
tions; for example, two populations of GSE154567 data (see Data Description and
Data Availability) annotated as Proliferating Lymphocytes and Unidentified Lympho-
cytes. We disambiguate these broad annotations using scANNAs gene scores without
re-clustering or further complex analyses. Our enrichment analysis for Proliferating
Lymphocytes resulted in multiple significant populations, with CD8+ proliferating
and effector memory T cells as the most prominent populations (Fig. 4.8 (B)). Enrich-
ment analysis for Unidentified Lymphocytes yielded primarily natural killer cells with
some CD8+ Effector Memory T cells (Fig. 4.8 (B)). These results signify scANNAs
utility for unsupervised annotation and the applicability of our framework in tandem
with other annotation forms to provide interpretability and validation, and scANNA
performs well even with difficult-to-assign mixed populations.

Transfer Learning: Lastly, we considered the application of scANNA to trans-
fer learning, the accurate and robust annotation transfer of knowledge from a larger
reference set to a smaller query set. Linear machine learning methods have had broad
applicability due to their interpretability258. In contrast, existing DL approaches for
transfer learning (TL) on scRNSseq data typically require complex transformations
prior to fine-tuning or fall short when the query dataset contains a different num-
ber of cell types than the source. To study scANNAs ability to perform TL, we pre-
trained scANNA to predict cell types on two previously annotated atlases, (i)T cell
atlas253 with 96750 cells and (ii) pancreatic ductal adenocarcinoma252 (PDAC) and
136807 cells. For target queries, we selected (i) a more specific CD8 T cell study
(GSE199565)254 with 29616 cells and (ii) a specific PDAC study (GSE154778) with
57530 (see Data Description and Data Availability).

To simulate small-scale studies and to test TL capabilities, we fine-tuned scAN-
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NAs Configuration Module on only 20% of target datasets (5911 and 11520 cells)
and used 80% for testing (23705 and 46020 cells). We also analyzed scANNA per-
formance on out-of-distribution data without fine-tuning. We compared our approach
against the current state-of-the-art TL models, scArches234 and scNym237. To evalu-
ate the importance of scANNAs architecture, we modified ACTINN for TL (ACTINN-
TL; §4.2) and used this as an additional benchmarking method. Our results (4.1(E))
show that fine-tuned scANNA achieves higher accuracy than the other tested meth-
ods, performing within 10% F1 score of the best model (supervised classifier trained
on 80% data [as opposed to 20%], denoted as Best Case in 4.1(E)), showing tremen-
dous potential for TL tasks. ScANNAs improvement over ACTINN-TL showcases
the strength of attention in identifying salient genes and supporting transfer learning.
ScANNAs enhanced transfer learning can potentially improve the accuracy and ro-
bustness of small-scale single-cell analysis.

UTILITY OF SCANNA FOR DISAMBIGUATION OF BROAD ANNOTATIONS

Given that many manual annotations are typically performed with only a few genes
(marker genes)256, it is possible to have broad and ambiguous populations. This was
the case with two populations of GSE154567 data (§4.3): The original annotations
Proliferating Lymphocytes and Unidentified Lymphocytes. (Fig. 4.8 (B)). We aimed
to utilize scANNA to disambiguate these broad annotations without re-clustering or
performing other complex analyses. Therefore, we investigated the two broad anno-
tations in GSE154567 data and queried our top 50 attentive genes from the Azimuth
Cell Type 2021 database33 using Enrichr R Package (v3.0)259,260,261 to perform en-
richment analysis.

Our enrichment analysis for proliferating lymphocytes resulted in multiple sig-
nificant populations, with the most prominent type being CD8+ proliferating T cells
(4.8 (B)). Intuitively, these results are expected given this populations quantitative and
qualitative similarity with the CD8+ T cell population. The difference in gene overlap
percentages of the top three predictions, namely CD8+ proliferating T, CD4+ prolif-
erating T, and proliferating natural killer cells, is very small due to the similar lineage
and function of these populations, which may explain why the original annotations
were left broadly as proliferating lymphocytes. Enrichment analysis for unidentified
lymphocytes yielded natural killer cells as the most probable cell type, with other vi-
able populations also being statistically significant. Similar to the previous population,
these results are intuitive since CD8+ T cells and natural killer cells are both lympho-
cyte subsets and proliferate. There is extensive overlap in the gene sets between CD8+
T cells and natural killer cells due to their similar lineage and function. Lastly, we
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note that the second enriched population based on attentive genes is CD8+ effector
memory T, suggesting that the unidentified lymphocyte population could be refined
into two or more populations. These results further signify the utility of scANNA for
unsupervised annotation and the applicability of our framework in tandem with other
annotation forms to provide interpretability and validation and the ability to identify
functional linage differences between similar cell subsets that can be exploited in ex-
perimental studies.

4.5. DISCUSSION AND CONCLUSION

We presented scANNA, a DL model employing a novel core that leverages simple
neural attention for multiple scRNAseq analyses. We show that scANNA performs
comparably or better than state-of-the-art methods designed and trained for specific
standard scRNAseq tasks (global features selections, unsupervised annotation, and
transfer learning), even though scANNA was not trained for these tasks explicitly. We
have demonstrated scANNAs effectiveness at identifying cell types in a supervised
and unsupervised manner, reducing subjectivity while minimizing the time for an-
notating scRNAseq datasets. Our results indicate that leveraging attention in global
feature selection outperforms current methods in identifying features that explain the
most variance in a dataset. Lastly, we demonstrated that scANNA outperforms state-
of-the-art models in TL tasks, highlighting the importance of interpretable and gener-
alized models in the scRNAseq space. Moreover, scANNAs unique flexibility extends
beyond using cell-type pseudo-labels (as we did in this work), enabling the utilization
of other groupings for learning the desired gene associations, such as leveraging hier-
archies for trajectory inference.

Our results with scANNA demonstrate the potential of attention-based DL meth-
ods to offer significant improvement compared to traditional DL methods when ap-
plied to scRNAseq. Researchers can replace task-specific DL pipelines with scANNA
and potentially other interpretable DL methods that are likely to emerge. As attention-
based DL methods are not yet widely used in scRNAseq analyses, our work suggests
significant discoveries may yet exist in the abundance of existing public scRNAseq
datasets. Finally, we note that scANNAs architecture can be generalized to design fur-
ther interpretable models for scRNAseq, including spatial transcriptomics. We envi-
sion using attention layers in DL models will allow the field to transition from single-
purpose DL models designed for specific tasks to interpretable multi-tools capable of
enabling researchers without extensive computational training to accelerate the dis-
covery process.

86



Part III

Systems with Limited Observations
and Assumptions
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How seldom we weigh our neighbor in the same
balance with ourselves!

Thomas a Kempis

5
Biological Representation Learning with

PDE-Inspired Graph Neural Networks

5.1. INTRODUCTION

In the era of precision medicine and the ever-expanding breadth of biological data,
applying advanced computational techniques to decipher complex biological pro-
cesses has become indispensable262,263. Among the myriad data types and modali-
ties, single-cell RNA sequencing (scRNAseq) data stands out as a powerful tool for
exploring cellular heterogeneity and unraveling the intricacies of gene regulation at a
single-cell resolution. However, the effective analysis of scRNAseq data poses unique
computational challenges due to its inherent high-dimensionality, sparse structure,
and innate variability. Moreover, many real-world scRNAseq studies suffer from data
scarcity or limited reliable knowledge of the system due to factors such as the high
cost and complexity of scRNAseq experiments, the need for specialized equipment,
and other technical challenges in sample preparation. Consequently, researchers often
grapple with small sample sizes and sparse datasets, which can impede the robustness
and generalizability of analytical models. Addressing the challenge of data limitation
is essential for unlocking the full potential of scRNAseq studies. These challenges
necessitate the development of innovative mathematical frameworks to unveil hidden
biological patterns and interactions from such data.
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Graphs, representing a collection of nodes and edges, are fundamental in capturing
relational information present in various domains, including social networks, molecu-
lar structures, citation networks, and knowledge graphs. Biological data often follow
a graph structure, with the agents (e.g. cells) forming the nodes and the interaction be-
tween them (e.g. signaling pathways) forming the edges264. To analyze and process
such graph structures, Graph Neural Networks (GNNs)265,266 were developed to har-
ness the rich interconnectedness and relationship between the nodes and edges. Each
vertex in a graph encapsulates distinct features. GNNs employ iterative information
propagation mechanisms, allowing nodes to refine their representations based on their
inherent attributes and information exchanged with neighboring nodes166. Through
successive iterations, GNNs aggregate and fuse information from the local neighbor-
hood of each node, progressively enriching the node representations with an evolving
understanding of the global graph structure267. This iterative neighborhood-aware
processing makes GNNs proficient in discerning complex patterns, uncovering latent
features, and making informed predictions on various tasks ranging from node classi-
fication and link prediction to entire graph property inference.

GNNs aim to use the information about nodes and edges of a graph to produce
meaningful representations in the Euclidean space. GNNs represent a crucial embod-
iment of this idea, as they are artificial neural networks tailored for data with inherent
graph structures. GNNs fundamentally aim to transform features associated with each
node in the graph and subsequently combine these transformations, often employing
various aggregation schemes such as averaging. Very often, the difference btween
GNN architectures lie in their approach to transforming node features and aggregating
information from neighboring nodes267. Such versatility allows GNNs to be highly
adaptable to diverse domains, providing a flexible framework to model and analyze
complex interactions within graph-structured data. Recently, researchers have pro-
posed GNN architectures for analyzing biological networks and, more specifically, for
studying scRNAseq data.

In this work, our approach is inspired by two general concepts. First, we aim to
mimic how humans make predictions: humans tend to rely on their past experiences,
making assessments based on previous observed similarities. Recent studies have
shown that learning similarity between agents in a system (e.g. by learning a simi-
larity metric in an embedded space) can significantly improve patient representation
and downstream tasks14. However, such models rely on a large number of similar
samples to adequately learn their similarities, thus not being feasible for rare or under-
represented conditions268. In our approach, we tackle the notion of similarity in scR-
NAseq by constructing a single cell graph, where the nodes represent each cell’s fea-
tures (i.e. gene expression), and the edges express similarity or relatedness between
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the cells. Specifically, we leverage a simple nearest-neighbor kernel for learning sim-
ilarities between cells, resulting in a sparse adjacency matrix. Our second inspiration
is to prescribe dynamics on the data manifold, which the model must follow. These
dynamics may be different based on the desired task at hand. For example, if we want
to classify different classes, we can prescribe samples to diffuse or advect on the latent
manifold based on their similarity with other data points (depicted in Fig. 5.1). This
idea serves as the main motivation for our methodology.

This chapter of my dissertation proposes a novel GNN containing PDE-inspired
recursions. More specifically, we discretize a drift-diffusion (also called advection
diffusion) PDE on a graph to find an update rule based on time discretization, thus
constructing the layers of GNNs. This construction allows us to prove valuable prop-
erties about the network and conditions on its convergence, enabling us to design the
neural architecture based on the mathematical guarantees. In contrast to most con-
ventional GNNs, our model does not suffer from over-smoothing even as we increase
the number of layers (i.e. forming a deep network). To demonstrate the versatility and
effectiveness of our proposed approach, we conducted extensive experiments on stan-
dard benchmarking datasets and, notably, scRNAseq studies. Our results showcase
that our method consistently outperforms or is on par with the existing state-of-the-art
models across all test cases, underscoring its potential for advancing future research in
graph-based machine learning and computational biology.

5.2. BACKGROUND AND RELATED WORK

Neural Partial Differential Equations: Recent years have seen an increased interest
in using neural networks for solving differential equations, spearheaded by Neural Or-
dinary Differential Equations269 and Physics-Informed Neural Networks270 for solv-
ing PDEs. These breakthroughs have primarily focused on leveraging neural networks
to solve various differential equations, most prominently PDEs. Numerous innova-
tive approaches have emerged to enhance and extend these foundational concepts as
the field has evolved. Among these advancements, integrating GNNs into the realm
of differential equations271,272 is noteworthy. It’s important to distinguish our work
from these methods: while these approaches employ neural networks to solve PDEs
directly, our novel approach involves embedding dynamics, specifically PDEs, onto
a data manifold to design an architecture based on GNNs. This unique perspective
marks a departure from traditional paradigms and holds the promise of opening new
avenues for solving complex mathematical and computational problems. We next dis-
cuss techniques that are more closely related to our work.

GNNs for Data Limited Regimes: The most common type of GNNs for semi-supervised
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Figure 5.1: Illustration of our proposed Diffusion-Drift GNN. Here, we present an
illustration of how our model propagates through the layers (denoted by l) the dynam-
ics on the latent manifold for classification.

node classification and edge prediction is the Graph Convolution Network (GCN)166,
which defines a simple convolution to aggregate information from a neighborhood
to compute an embedding for each node. GCNs can be generally divided into spec-
tral166,273,274 or spatial methods275,276, most of which can be viewed as a Message
Passing Neural Networks277. Given a feature matrix X with its adjacency matrix A
and degree matrix D, each layer of a GCN can be written as:

GCN(X ,A) = σ(ÃXW ) (5.1)

where Ã = D−1/2AD−1/2 denotes the symmetrically normalized adjacency matrix, and
σ(·) denotes a pointwise activation function (e.g. sigmoid or ReLU), with the learn-
able weights W . Though GCN-based techniques have changed how we learn from
and process graph-structured data, they suffer from two main limitations: First, GNNs
consisting of GCN layers do not provide any theoretical guarantees for design choices
or convergence criteria, an issue that has been attributed to GCN’s lack of consistent
performance across different datasets278. The second issue is that GNNs consisting
of GCN layers cannot be deep due to the well-known oversmoothing issue, where the
node representations become almost identical across all vertices, thus significantly
hindering performance279,280. In this work, we aim to alleviate the mentioned issues
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for learning biological representations with GNNs through constructing layers that
propagate a dynamic on the latent manifold.

PDE-Inspired GNNs: Though the connection between continuous manifolds and
graphs has been known, the association of partial differential equations (PDEs) and
GNNs were uncovered and utilized more recently, prominently in Chamberlain et
al. (GRAND)281 and Eliasof et al. (PDE-GCN)278. Similar to our approach, these
studies present GNNs as discrete PDEs, particularly the diffusion equation*. Building
on these methods, our work introduces a GNN based on the drift-diffusion equation,
which requires different (and more stringent) stability conditions, as we prove in §5.3,
and can alleviate the common issues with GNNs such as oversmoothing279,280 and
bottlenecks282. Moreover, due to our PDE formulation, the layer propagation intro-
duced in our work differs from the existing approaches, aiming to provide additional
flexibility for training and discretization. For example, our approach models the drift-
diffusion process explicitly in contrast to GRAND, which uses multi-headed atten-
tion160 to model diffusivity. Additionally, the main focus of our work is modeling
single-cell data, which requires careful construction of cell graphs.

GNNs for Single-Cell RNA Sequencing Data: As more challenges of scRNAseq
datasets have come to light, such as relatively few and sparse observations with thou-
sands of genes (large feature spaces), researchers have sought to leverage GNNs to
improve existing analysis pipelines. GNNs have shown promising results in imput-
ing missing expression values, unsupervised clustering, and predicting cell fate. One
of the most popular and successful GNN-based algorithms for scRNA-seq analysis is
scGNN283, which we use in this chapter for comparison with our approach. ScGNN is
a novel framework that integrates GNN and a left-truncated mixture Gaussian model
for learning meaningful representations of scRNAseq. ScGNN consists of three iter-
ative multi-modal autoencoders. Each autoencoder contains a graph neural network
encoder and a graph neural network decoder. The encoder learns to represent each
cell as a vector of features that capture its gene expression and its relationships with
other cells. The decoder then learns to reconstruct the original gene expression of the
cell from its encoded representation. The left-truncated mixture Gaussian model is
used to model the distribution of gene expression values. This model is well-suited
for scRNA-seq data, which is often characterized by a large number of zero values.
ScGNN is trained to minimize the reconstruction error between the original and re-
constructed gene expressions. This forces scGNN to learn representations of cells that
capture both their gene expression and their relationships with other cells, which can

*While Chamberlain et al. only considers the diffusion equation in GRAND, PDE-GCN introduces
a convex combination of diffusion and wave equations where the coefficient is learned during training
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provide valuable insights when used for downstream tasks. One drawback of scGNN
is the use of GCN layers, potentially making the model suffer from the same issues as
traditional GCNs. To show the utility of our approach and potential improvements to
scGNN (and other similar models), we utilize scGNN’s training scheme but change
the GCN layers with various GNN architectures, including our proposed DDGNN
layers.

5.3. DRIFT-DIFFUSION GRAPH NEURAL NETWORKS

5.3.1. PROPOSED DRIFT-DIFFUSION EQUATION

We will first start with the continuous form to describe the Drift-Diffusion Par-
tial Differential Equation on a graph. On a general continuous manifold M , a system
governed by drift-diffusion is described using (5.2),

ut = ∇ · (D∇u)−∇ · (Vu)+R, u(t = 0) = u0 , 0 ≤ t ≤ L, (5.2)

where D denotes diffusivity, R is a source or sink, and V describes a velocity field in
which quantity u moves (e.g. particles moving through an electromagnetic field). In
our application of learning patient representations, we assume R = 0 and assume that
V has zero divergence since individual samples will be incompressible†. Therefore,
we can simplify Eq. (5.2) to be:

ut = ∇ · (D∇u)−V ·∇u, u(t = 0) = u0 , 0 ≤ t ≤ L. (5.3)

Equivalently, using the same initial conditions, we can express (5.2) as shown in Eq.
(5.4):

ut = ∇ · D̃∗σ(D̃∇u)−Ṽ ∗ψ(Ṽ ·∇u). (5.4)

where σ(·) denotes a pointwise activation function. To show the stability of our for-
mulation (i.e. the PDE is well-behaved), following the approach in Ruthotto et al.284,
we prove the conditions that yield non-decreasing energy of the Eq. (5.4).

Theorem 5.3.1. Let σ(·) and ψ(·) be monotonic non-decreasing element-wise sign
preserving functions which satisfy {σ(x),ψ(x)} ≤ x, for x ∈ R, with potentially
σ = ψ . Then, the energy of the system described by (5.4) with homogeneous Dirichlet
boundary conditions is non-increasing.

†The assumption of zero divergence for the fluid is often the case in fluid dynamics as well, where
V is assumed to describe the vector field for an incompressible fluid
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Proof. Let ∂Ω denote the boundary of Ω. We want to show that the energy of the sys-
tem, i.e.

E =
1
2

∫
∂Ω

u2dS,

is non-decreasing throughout time. Therefore, we have that

2
dE
dt

=
∫

∂Ω
u · ∂u

∂ t
dS =

∫
∂Ω

u
(
∇ · D̃∗σ(D̃∇u)−Ṽ ∗ψ(Ṽ ∇u)

)
dS

∂
∂ t

∥u∥2 =
∫

∂Ω
u
(
∇ · D̃∗σ(D̃∇u)

)
dS−

∫
∂Ω

u
(
Ṽ ∗ψ(Ṽ ∇u)

)
dS

From the specifications of σ and ψ , we have σ(·) ≤ I(·) and ψ(·) ≤ I(·) where I(·) is
the linear activation (identity mapping).‡

Therefore

∂
∂ t

∥u∥2 ≤
∫

∂Ω
u(∇ ·∇u)dS−

∫
∂Ω

u(∇u)dS

≤ u(∇u)
∣∣∣
∂Ω

−
∫

∂Ω
(∇u)2 dS− 1

2
u2
∣∣∣
∂Ω

≤−
∫

∂Ω
(∇u)2 dS ≤ 0

In the next theorem, we show that more general activation functions for σ could be
used, while only one family of activation functions is permissible for ψ .

Theorem 5.3.2. Let σ(·) and ψ(·) be monotonic non-decreasing element-wise vector
functions, where σ(·) being sign-preserving and ψ(·) ≤ x, for x ∈ R. Then the energy
of the partial differential equation system defined in (5.4) with homogeneous Dirichlet
boundary conditions is non-increasing.

‡e.g. Leaky ReLU, f (x) =

{
x, if x > 0
αx otherwise

, with α <−1.
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Proof. Let < ·, ·> denote the inner product. Similar to the previous proof, we have:

∂
∂ t

∥u∥2 =
〈
u,∇ · D̃∗σ(D̃∇u)

〉
−
〈
u,Ṽ ∗ψ(Ṽ ∇u)

〉
=−

〈
∇u, D̃∗σ(D̃∇u)

〉
−
〈
u,Ṽ ∗ψ(Ṽ ∇u)

〉
=−

〈
D̃∇u,σ(D̃∇u)

〉
−
〈
Ṽ u,ψ(Ṽ ∇u)

〉
Given the sign-preserving specifications of σ and ψ , we have:

sign(D̃∇u) = sign(σ((D̃∇u))

Therefore, we have that:

∂
∂ t

∥u∥2 =−
〈
D̃∇u,σ(D̃∇u)

〉
−
〈
Ṽ u,ψ(Ṽ ·∇u)

〉
≤ 0−

〈
Ṽ u,ψ(Ṽ ·∇u)

〉
≤ 0−

〈
Ṽ u,Ṽ ·∇u

〉
≤ 0

Theorem 5.3.2 shows that a recursive algorithm based on the proposed PDE in Eq.
(5.4) will be stable. Using this, we formulate the specifics of Diffusion-Drift GNN in
the next section.

5.3.2. DIFFUSION-DRIFT INSPIRED GRAPH NEURAL NETWORK

Graphs are considered to be the discretization of continuous manifolds285,278. We
define a graph G = (V ,E ) to approximate M , and let u to be the discretized real-
ization of u on G . Therefore, to approximate the solution to Eq. (5.4), we formulate
a recursion on a graph (which describes the operations for each layer) based on the
discretization of the equation. Following graph theory conventions, we define the dis-
cretization of ∇, B, to be the incidence matrix, which for two connected nodes i and j
is defined as:

(Bu)i j =Wi j(ui −u j) (5.5)

where Wi j is an edge weight matrix, and u{i, j} denotes the features on each node, re-
spectively. Note that the edge weights in W can either be learned or set to a quantity
that would directly approximate the true gradients; for example, using the inverse dis-
tances between two nodes, i.e. Wi j = d−1

i j I, will provide the second-order approxi-
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Figure 5.2: Illustration of the architecture and propagation scheme of the pro-
posed Diffusion-Drift GNN. Here, we show the process of generating a continuous
embedding z(G) for a graph input G. We provide additional details of the network
architecture in §5.3.3.

mation to the true gradients. Given the discrete gradient operator, we can define the
discrete Laplacian operator (Kirchhoff matrix) as ∆ ∼ B⊤B.

Given the discretization of the gradients and divergence, we can now formulate
the recursion describing the operations in each layer of the DDGNN. Using the Euler
discretization, we have:

ul+1 = ul −h
[
B⊤D⊤σ

(
DBul

)
−V⊤ψ(V Bul)

]
(5.6)

Eq. (5.6) defines the recursion that our model aims to propagate in each layer. Note
that the dynamics are prescribed on the hidden space and do not follow a physical
intuition in the original data manifold. We present an illustration of the proposed
DDGNN in Fig. 5.1 and 5.2.

5.3.3. ARCHITECTURE OF DRIFT-DIFFUSION GRAPH NEURAL NETWORK

Given a graph G = (V,E), with each node vi having features xi, our model starts by
mapping the input features to the latent input at layer l = 0, i.e. u0

i = A0 ∗ xi, where A0
is a learnable set of weights. We chose the dimensions of Q0 so that u0

i ∈ R128. Then,
given a fixed number of layers L, our model advances the solution forward in time ac-
cording to Eq. (5.6). We note that in our model, the graph’s adjacency matrix is used
in computing the discrete gradients, which can be viewed as a weighted directional
derivative as formulated in Eq. (5.5). Moreover, h denotes the time step of the scheme
(Eq. (5.5)), which is constrained by the CourantFriedrichsLewy (CFL) condition. We
chose h based on a random grid search for h = {0.01,0.05,0.1,0.2,0.5}, finding that
h = 0.2 provides the best results on the Cora dataset (described in §5.4). For the num-
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ber of layers L, we perform an ablation study to investigate over-smoothing (as pre-
sented in §5.5), finding that our model performs similarly as depth (i.e. number of lay-
ers L) increases. However, for computational efficiency, we chose T = 8 layers (unless
otherwise noted). Due to our mathematical guarantees proved in theorems 5.3.2, we
let σ(·) = tanh(·) and ψ(·) = LeakyReLU(·). Lastly, we pass the hidden represen-
tation uL into a projector z(uL

i ) = Ac ∗ uL
i , where Ac is a tensor of learnable weights,

resulting in the final continuous representation of node vi as z(uL
i ), which is used in

the downstream tasks. The dimension of Ac is chosen so that the final representation is
a 64-dimensional vector.

To classify the nodes, we add a softmax layer after producing z(uL
i ), which assigns

a probability to each class. The outputs of the softmax layer are used to optimize a
standard cross-entropy loss. We then identify the class with the highest probability
as the predicted class for vi. We train our model for 1000 epochs with Adam286 op-
timizer, leveraging early stopping if model performance on validation data does not
improve in 20 epochs. We aim to reconstruct the input adjacency matrix for unsu-
pervised representation learning after pruning the graph (refer to Wang et al.283 for
description). Therefore, we leverage scGNN’s decoder module instead of the classi-
fication layer and use the embeddings before this layer to perform the downstream
analyses. Additional details on this experiment are provided in §5.5.

5.4. DATA AND DATA PROCESSING

5.4.1. STANDARD BENCHMARKING DATASETS

To show the utility of our approach on general use cases, we test our method on
the standard benchmark datasets for evaluating node classification accuracy of GNNs,
namely Cora, Pubmed, and CiteSeer:
The Cora dataset contains 2708 scientific publications classified into one of seven
classes, with the citation network containing 5429 links. Each publication in the dataset
is described by a 0- or 1-valued word vector indicating the absence or presence of the
corresponding word from the dictionary. The dictionary contains 1433 unique words.

The Pubmed data consists of 19717 scientific publications from the PubMed database
of diabetes classified into one of three classes. The citation network consists of 44338
links. Each publication in the dataset is described by a Term Frequency - Inverse Doc-
ument Frequency weighted word vector from a dictionary of size 500.

The CiteSeer dataset comprises 3327 scientific classified into one of six classes. The
citation network consists of 44338 links. Each publication in the dataset is described
by a 0- or 1-valued word vector indicating the absence or presence of the correspond-
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ing word from the dictionary of 1433 unique words.

5.4.2. SINGLE CELL RNA SEQUENCING DATA

Given our true intention of developing a model for data-limited studies, we aimed
to choose scRNAseq data with few observations (cells). Therefore, we use the fol-
lowing three datasets (as used by Wang et al.283 for scGNN): (1) Chung data287,
a transcriptome profiling study of breast cancer tissues from 11 patients, with only
515 cells, (2) Klein et al.288 data containing expression profile of about 10000 cells,
and (3) Zeisel et al.289 dataset which contains scRNAseq profiling of the primary so-
matosensory cortex (S1) and the hippocampal CA1 region, resulting in 9 distinct clus-
ters based on 3005 single-cell transcriptomes.

We followed the steps described in Wang et al.283 for preprocessing. That is, for
each scRNAseq data, we kept genes that had non-zero expression in more than 1% of
cells, and cells that had more than 1% non-zero genes. After filtering, we selected the
top 2000 highly variable genes224 as feature inputs and log-transformed the filtered
expression profiles. After preprocessing, we computed the single-cell graph as input
to graph-based models. The graph construction step is described next.

5.4.3. CONSTRUCTING SINGLE CELL GRAPHS

The cells and their interactions with their neighbors can be used to construct a
graph. Following previous approaches, we construct the cell graph utilizing a k-nearest
neighbors (KNN) graph framework, where each node represents an individual single
cell, and edges signify relationships between these cells. The number of neighbors, k,
is a set hyperparameter that sets each cell’s connectivity with its neighbors. To calcu-
late the weights of each edge, we utilize the local connectivity within each neighbor-
hood, as described in McInnes et al.241.

5.5. RESULTS

5.5.1. DEPTH AND OVERSMOOTHING ANALYSIS

To evaluate our mathematical intuition and validate our mathematical guaran-
tees, we set out to test the effect of increasing the number of layers in our model (i.e.
depth). As mentioned in §5.1, GCN-based models suffer from over-smoothing, con-
straining such models to shallow networks. To test the effect of depth increase, we
compared the classification accuracy of our model against GCN166 on the Cora dataset
for varying layers: l = {2,8,16,64,128}. Our results, presented in Table 5.1, demon-
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Figure 5.3: A qualitative comparison of learned node representations for Cora
dataset produced by different approaches.

strate that GCN’s performance decreases significantly as more layers are added. DDGNN’s
performance, on the other hand, remains consistently high for node classification
across different layers (and is slightly improved as more layers are added). A quali-
tative representation of the embeddings qualities is presented in Fig. 5.3. We attribute
this improvement to the formulation of our algorithm, rooted in the PDE dynamics,
which serves as an implicit regularizer. This implicit regularization forces the model
to learn distinct representations for each node, thereby preserving the model’s robust-
ness and the capacity to adapt to an array of layer depths.

5.5.2. DATA LIMITED EXPERIMENT: STANDARD BENCHMARKS

For each dataset, we only consider 20 samples from each class and use the re-
maining samples in testing. We compare our model against the current state-of-the-
art (SOTA) universal methods, namely GCN, GAT 267, and PDE-GCN 278, as well as
sigGCN and modified scGNN, which are the single-cell specific SOTA models. Our
results are presented in Table 5.2.
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Table 5.1: Comparison of node classification accuracy for GCN and DDGNN
(ours) when increasing depth. Results of node classification accuracy (Median Mi-
cro F1 score from 5 random runs) on the Cora dataset, demonstrating our model’s
robustness to depth increase. Boldface values indicate better performance.

Number of Layers GCN DDGNN (Ours)

l = 2 0.8024 0.8232
l = 4 0.8081 0.8383
l = 16 0.6497 0.8371
l = 64 0.2282 0.8397
l = 128 0.1668 0.8414

Table 5.2: Comparison of node classification accuracy for various models in data-
poor scenarios on standard benchmarks. Results of node classification accuracy
(Median Micro F1 score from 5 random runs) on standard benchmark datasets. Bold-
face values indicate better performance. ScRNAseq-specific models were not tested
on standard benchmarks since the manuscripts did not test their models’ applicability
in general settings.

Model Name Cora CiteSeer Pubmed

GCN 80.81 70.5 79.51
GAT 82.7 74.36 68.06
PDE-GCN 81.67 77.59 79.15
DDGNN (Ours) 83.83 79.51 81.26
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Figure 5.4: Schematic of training procedure for data-limited scRNAseq experi-
ment described in §5.5.3. We use our model as well as other state-of-the-art tech-
niques to learn to learn representations in an unsupervised manner. After training, we
perform graph-based clustering on the latent representation and measure the clustering
accuracy against the ground truth (annotations provided from the actual datasets).
Note that the “common decoder" is used for all graph-representation methods to re-
duce decoding bias when learning the reconstruction of the original graph.

5.5.3. DATA LIMITED EXPERIMENT: SCRNASEQ BENCHMARKS

Following Wang et al.283, we motivated this experiment by scRNAseq downstream
analysis: Given our goal of representation learning in very low data regimes, we train
DDGNN and other graph-based neural networks in an unsupervised manner. We train
all models to produce embeddings instead of classification probability. The embed-
dings generated from all models are then inputted to a decoder (specifically, scGNN’s
decoder), aiming to reconstruct the adjacency matrix of the input graph. This is done
to carefully assess the impact of model architecture and update schemes across var-
ious models. The reconstructed adjacency matrices, Â are used to optimize the loss
function introduced by Wang et al.283, as shown in Eq. (5.7):

L(A, Â) =− 1
N2

N

∑
i

N

∑
j

(
ai j log

(
âi j
)
+
(
1−ai j

)
log
(
1− âi j

))
(5.7)

where N denotes the number of nodes (cells) {a, â}i j denote the elements of A or Â,
respectively. Since most scRNAseq labels are generated through clustering, we eval-
uate the accuracy of each model by calculating the Adjusted Rand Index (ARI) and
Normalized Mutual Information (NMI) between the true clustering and Louvain clus-
tering performed on the learned embeddings. We depict the training scheme for this
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Table 5.3: Comparison of node clustering accuracy for various models in an un-
supervised manner for scRNAseq studies. Results of clustering latent embeddings
of each model (reported median ARI and NMI scores from 5 random runs) on scR-
NAseq studies with various scales. Boldface values indicate better performance. Our
results show that DDGNN-based model outperforms other methods in poor-data sce-
narios (when the number of observations are very low).

scRNAseq Studies

Chung et al. Klein et al. Zeisel et al.

Model ARI NMI ARI NMI ARI NMI
GCN 0.5391 0.7146 0.9307 0.8947 0.6401 0.6746
GAT 0.5649 0.7247 0.9271 0.8932 0.6671 0.6895
PDE-GCN 0.5847 0.7588 0.9347 0.9101 0.6722 0.7052
scGNN 0.5451 0.7214 0.9321 0.9095 0.6513 0.6850
DDGNN (Ours) 0.6274 0.7805 0.9314 0.8967 0.7049 0.7288

experiment in Fig. 5.4. As presented in Table 5.3, our results indicate that our model
can learn meaningful biological representations for scRNAseq studies, even when the
number of observations is limited.

5.6. DISCUSSION AND CONCLUSION

In this work, we introduced the Drift-Diffusion Graph Neural Network (DDGNN),
an innovative framework inspired by partial differential equations (PDEs) that offers
a universal approach to the design of graph neural networks (GNNs). Our approach
capitalizes on the profound connection between PDEs and graphs, utilizing a specific
formulation derived from the drift-diffusion equation. When solved on a graph and
discretized in time, we obtain a propagation scheme that resembles classical GNNs’
update rule. This bridge between PDEs and graph structures is a significant departure
from conventional GNN methodologies and underscores the potential for unifying
mathematical principles from diverse domains. DDGNN provides an adaptable and
versatile framework for modeling complex systems with limited data, paving the way
for more insightful analyses and predictions across various disciplines, from compu-
tational biology to network analysis, where graph-based representations play a pivotal
role in deciphering intricate relationships and patterns.

In our first experiment, we validated our mathematical intuition on our model’s
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performance when adding more layers. We trained DDGNN on standard benchmark
data and showed that increasing the number of layers from 2 to 128 does not hin-
der model performance, improving the node classification results. In contrast, we
found that GCN’s performance significantly drops with increased depth, verifying
the fact that GCNs must remain shallow. Designing GNNs with the capability to
achieve greater depth is paramount to advancing machine learning algorithms for
graph-structured data. Building deeper GNN architectures enables these models to
capture more intricate and complex relationships within the data, which are often cru-
cial for making accurate predictions and uncovering hidden patterns. Shallow GNNs
may struggle to capture complex dependencies that span multiple graph layers, limit-
ing their capacity to learn nuanced representations, especially for biological data. By
contrast, deeper GNNs can better exploit the hierarchical structure of data, facilitating
the extraction of high-level features and abstractions. Such capability can be lever-
aged to better explain the complex nature of scRNAseq studies where the expression
of thousands of genes depend on one another.

Given the goal of my PhD research and this dissertation, we next applied our method-
ology to datasets with limited observations, training our model in a semi-supervised
and unsupervised manner to test its representation learning. To demonstrate the model’s
versatility outside of biology, we conducted semi-supervised training with just 20
nodes per class and evaluated it on a substantial test set of 1000 samples, resembling
few-shot learning. Our results showed that DDGNN outperforms existing state-of-
the-art methods on these standard benchmark datasets. This highlights our model’s
adaptability and robustness in situations where data is scarce, making it a valuable
tool in broader machine-learning applications.

To evaluate our model’s application to biological representation learning, we next
trained DDGNN in an unsupervised manner to learn continuous embeddings from
scRNAseq data. To demonstrate the value of our PDE-inspired architecture, we fol-
lowed the training procedure of Wang et al.283, with the only difference being the
GNN architecture. Using the learned embeddings, we performed unsupervised clus-
tering and compared the results with the initial annotations. We found DDGNN to
perform significantly better than the competing methods in the low-data experiments
(two out of three datasets). These results signify our approach’s potential to accurately
and robustly identify cell types, even when the number of observations is less than
1000 cells (e.g. Chung et al. study287). Our models’ ability to improve the analysis
of such small-scale experiments is particularly noteworthy, as it enables researchers
to study rare cell populations or to investigate the effects of perturbations on cell type
composition with limited resources. For example, our approach could be used to iden-
tify rare cell populations in tumor samples or to study the effects of a new drug on
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cell type composition in a small animal model. Our model limitations include longer
training time than traditional GCNs and sensitivity to propagation-specific parameters,
such as the time step, which could destabilize training if not set correctly. We believe
additional improvements are needed to enhance our model’s training efficiency and to
potentially mitigate the effects of PDE-specific hyperparameters.

Looking ahead, we aim to extend our approach to encompass other single-cell data
modalities as well. While this chapter has primarily focused on applying our method-
ology to scRNAseq data, we believe that considering other single-cell modalities can
further enhance the ability of our model to elucidate the underlying biology. Single-
cell protein sequencing and single-cell chromatin accessibility profiling are two such
data modalities that may improve the analyses and offer insightful perspectives of the
system of interest. Expanding our approach to accommodate these diverse data types
presents an exciting opportunity to further our understanding of cellular heterogeneity.
Another key avenue of exploration for DDGNN is data imputation, where accurate
and reliable imputation of missing gene expression values can significantly improve
the completeness and quality of scRNAseq studies. Additionally, we plan to lever-
age DDGNN’s capabilities to infer cell-cell interactions, another critical component
of understanding the dynamic behaviors of cells within complex biological systems.
By applying DDGNN to these important downstream tasks, we anticipate that our re-
search will contribute to developing more comprehensive computational frameworks
for scRNAseq data analysis. Such applications will ultimately enable researchers to
gain deeper insights into cellular processes, unravel intricate regulatory networks, and
further our understanding of the underlying biology in health and disease, even with-
out large-scale observations.
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Reality is ultimately a selective act of perception and
interpretation.

David Simon

6
Generating Realistic Synthetic Biological

Data

6.1. INTRODUCTION

Traditional sequencing methods are limited to measuring the average signal in a
group of cells, potentially masking heterogeneity and rare populations290. Single-cell
RNA sequencing (scRNAseq) technologies allow for amplifying and extracting small
RNA quantities, enabling sequencing at a single-cell level291. The single-cell reso-
lution thus enhances our understanding of complex biological systems. For example,
scRNAseq has been used in immunology to discover new immune cell populations,
targets, and relationships, which have been used to propose new treatments290.

While the number of tools for analyzing scRNAseq data increases, one limiting
factor remains the low number of cells, potentially related to financial, ethical, or pa-
tient availability135. Large, well-funded projects have generated the Human Cell At-
las292 and the Mouse Cell Atlas92, which characterized cell populations in organs and
tissues in their respective species. Although a tremendous amount of scRNAseq data
is available from such projects, they are limited to a broad overview of the cell popu-
lations in these tissues and organs. The Atlases overlook sub-populations of smaller,
rarer, and important cells in normal and dysregulated states. As Button et al. note293,
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small numbers of observations reduce the reproducibility and robustness of experi-
mental results since they may not represent the behavior of the underlying population
well. This is especially important for benchmarking new tools for scRNAseq data, as
the number of features (genes) in each cell often exceeds the number of samples.

Given limitations on scRNAseq data availability and the importance of adequate
sample sizes, in-silico data generation and augmentation offers a fast, reliable, and
cost-effective solution. Synthetic data augmentation is a standard practice in many
fields of machine learning such as text and image classification294. Traditional data
augmentation techniques, geometric transformations, or noise injection, are being
replaced by more recently developed generative models, variational autoencoder
(VAE)188 and Generative Adversarial Networks (GANs)197, for augmenting com-
plex biological datasets. However, GANs and VAEs remain less explored for data
augmentation in genomics and transcriptomics. We briefly overview GANs and VAEs
in Section 6.2, with a more detailed review presented in Chapter 3 of this dissertation.

There are many statistical frameworks for generating in-silico scRNAseq
data295,296,297,298,299, but recently Marouf et al.135 introduced the first deep generative
models (GAN-based) for scRNAseq data generation and augmentation (called single-
cell GAN [scGAN] and conditional scGAN [cscGAN]), and demonstrated that they
outperform other state-of-the-art models. While scGAN augments the entire popula-
tion by creating “holistic” cells, cscGAN is conditioned to generate cells from specific
subpopulations.

In this chapter, we will extend and generalize their approach by employing an in-
trospective VAE for data augmentation. The motivation and application of our gen-
erative model are closely related to Marouf et al.135, focusing on improving training
time, stability, and generation quality using only one framework. We compare our pro-
posed model, ACTIVA, with scGAN and cscGAN, showing how it can be leveraged
to augment rare populations, improving classification and downstream analysis. In
contrast to these previously published GANs, our novel cell-type conditioned intro-
spective VAE model allows us to generate either “holistic” or specific cellular subpop-
ulations in a single framework.

In § 6.2 of this chapter, we provide an overview of GANs (both generally and in
the context of scRNAseq data) and VAEs (for more details on the mathematics be-
hind these approaches, refer to Chapter 3). Section 6.3 details ACTIVA, our proposed
conditional introspective VAE. Section 6.4 describes our training data and associated
processing steps. Section 6.5 compares ACTIVA with competing methods - scGAN
and cscGAN. We demonstrate that augmenting rare cell populations with ACTIVA
improves classification over GANs while providing a more computationally tractable
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framework, mirroring both scGAN and cscGAN in a single model. In comparison
with scGAN and cscGAN, ACTIVA generates cells that are harder for classifiers to
identify as synthetic (i.e. having Areas Under the Curve [AUC] closer to 0.5), with
better pair-wise correlation between genes. ACTIVA-generated cells allow for im-
proved classification of rare subtypes (more than 4% improvement over cscGAN), all
while reducing run-time by an order of magnitude compared to both models. Finally,
we review our approach, findings, and limitations in § 6.6.

6.2. BACKGROUND ON GANS AND VAES

6.2.1. GENERATIVE ADVERSARIAL NETWORKS

GANs197 are capable of generating realistic synthetic data and have been success-
fully applied to a wide range of machine learning tasks198 and bioinformatics202.
GANs consist of a generator network (G) and a discriminator network (D) that train
adversarially, which enables them to produce high-quality fake samples. During train-
ing, D learns the difference between real and synthetic samples, while G produces
fake data to "fool" D. More specifically, G produces a distribution of generated sam-
ples pg, given an input z ∼ pz, with pz being a random noise distribution. The ob-
jective of GANs is to learn pg, ideally finding a close approximation to the real data
distribution pr, so that pg ≈ Pr. To learn the approximation to pg, GANs play a "min-
max game" of minGmaxDEx∼pr log[D(x)]+Ez∼pz log[1−D(G(z))], where both players
(G and D) attempt to maximize their own payoff. This adversarial training is critical
in GANs’ ability to generate realistic samples. Compared to other generative models,
GANs’ main advantages are (i) the ability to produce any probability density, (ii) no
prior assumptions for training the generator network, and (iii) no restrictions on the
size of the latent space.

Despite these advantages, GANs are notoriously hard to train since it is highly
non-trivial for G and D to achieve Nash equilibrium203. Another disadvantage of
GANs is vanishing gradients where an optimal D cannot provide enough information
for G to learn and make progress, as shown by Arjovsky et al.204. Another issue with
GANs is "mode collapse," when G has learned to map several noise vectors z to the
same output that D classifies as real data. In this scenario, G is over-optimized, and
the generated samples lack diversity. Although some variations of GANs have been
proposed to alleviate vanishing gradients and mode collapse (e.g. Wasserstein-GANs
(WGANs)206 and Unrolled-GANs207), the convergence of GANs still remains a ma-
jor problem. Furthermore, quantifying how well GANs have learned the distribution
of real data is often complicated, consisting of measuring the dissimilarity between
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pg and pr when pr is not known or assumed. Therefore, common ways of evaluating
GANs involve directly evaluating the output205, which can be arduous. During the
training progression, the feedback of D to G becomes meaningless, and if GANs con-
tinue to train past this point, the quality of the synthetic samples can be affected and
ultimately collapse. Common variations of GANs cannot be trained as single-stream
networks, and a necessary step is to define a training schedule for G and D separately,
adding another layer of complexity. Although all deep learning models are sensitive
to hyperparameter choices, Lucic et al.208 show all experimented GANs (including
WGANs) are much more sensitive to these choices than VAEs. This can be a draw-
back in using GANs for scRNAseq generation since the hyperparameters may need to
be re-tuned for every new dataset.

6.2.2. SINGLE CELL GANS

scGAN and cscGAN are state-of-the-art deep learning models for generating and
augmenting scRNAseq data. Marouf et al.135 trained scGAN to generate single-cell
data from all populations and cscGAN to produce cluster-specific samples, with the
underlying model in both being a WGAN. For scGAN, the objective is to minimize
Wasserstein distance between real cells distribution, pr, and generated data, pg:

W (pr, pg) = inf
γ∈Π(pr,pg)

E(x,y)∼γ∥x−y∥, (6.1)

where x and y denote random variables, Π(pr, pg) is the set of all joint probability
distributions γ(x,y) with marginals pr and pg. Intuitively, Wasserstein distance is
the cost of optimally transporting "masses" from x to y such that pr is transformed
to pg

206. However, since the infimum in Eq. (6.1) is highly intractable, Arjovsky
et al.206 use Kantorovich-Rubinstein duality to find an equivalent formulation of
Wasserstein distance with better properties:

W (pr, pg) = sup
∥ f∥L≤1

Ex∼prf(x)−Ex∼pgf(x),

where the set of 1-Lipschitz functions is denoted by ∥ f∥L≤ 1, with the solution being
a universal approximator (potentially a fully connected neural network) to approx-
imate f . This function is approximated by D, which we denote as fd . Similarly, fg
denotes the function approximated by the generator. Using these notations, we arrive
at the adversarial objective function of WGANs (used in scGAN):

min
fg

max
∥ fd∥L≤1

Ex∼prfd(x)−Ex∼ fg(pn)fd(x),
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where pn denotes a multivariate noise distribution.

Although WGANs can alleviate the vanishing gradient issue, most of the GANs’
training instabilities can still occur, making WGANs less flexible and transferable be-
tween different datasets or domain-specific tasks. CscGAN uses a projection-based
conditioning300, which adds an inner product of class labels (cell types) at the dis-
criminator’s output. Based on the instruction given by the authors in the implemen-
tation, scGAN and cscGAN must be trained separately; however, our model learns to
generate specific cell populations (cell types) or collective cell clusters with one train-
ing.

6.2.3. VARIATIONAL AUTOENCODERS

VAEs188 are generative models that jointly learn deep latent-variable and infer-
ence models. Specifically, VAEs are autoencoders that use variational inference to
reconstruct the original data, having the ability to generate new data that is "simi-
lar" to those already in a dataset x. VAEs assume that observed data and latent rep-
resentation are jointly distributed as pθ (x,z) = pθ (x|z)p(z). In deep learning, the
log-likelihood pθ (x|z) is modeled through non-linear transformations, thus mak-
ing the posterior probability distribution, pθ (z|x) = pθ (x|z)pθ (z)

pθ (x)
, intractable. Due to

the intractability of maximizing the expected log-likelihood of observed data over
θ , Ep(x) [log

∫
pθ (x,z)dz], the goal is to instead maximize the evidence lower bound

(ELBO):

Eqγ(x)(z)

[
log

(
pθ (x|z)p(z)

qγ(x)(z)

)]
︸ ︷︷ ︸

ELBO(θ ,γ)

≤ log pθ (x),

where qγ(x)(z) is an auxiliary variational distribution (with parameters γ(x)) that
tries to approximate the true posterior pθ (z|x). We provide a more complete deriva-
tion of VAE’s objective in Chapter 3.

The main issue with VAEs arises when the training procedure falls into the trivial
local optimum of the ELBO objective; that is, when the variational posterior and the
true posterior closely match the prior (or collapse to the prior). This phenomenon of-
ten causes issues with data generation since the generative model ignores a subset of
latent variables that may have meaningful latent features for inputs190. In our exper-
iments, we did not encounter posterior collapse. However, our package provides an
option for modifying objective function weights adaptively using SoftAdapt194. VAEs

109



have also been criticized for generating samples that adhere to an average of the data
points instead of sharp samples that GANs produce because of adversarial training.
This issue has often been addressed by defining an adversarial training between the
encoder and the decoder, as done in introspective VAEs (IntroVAEs)301 which we use
in our framework*. IntroVAEs have been used mostly in computer vision, which has
performed comparably to their GAN counterparts in applications such as synthetic
image generation301 and single-image super-resolution192. We describe the formula-
tions of IntroVAEs in Section 6.3.

VAEs’ natural ability to produce both a generative and an inference model presents
them as an ideal candidate for generating and augmentation of omics data. In this
work, we demonstrate the ability of our deep VAE-based model to produce realistic
in-silico scRNAseq data. Our model, ACTIVA, performs comparably to the state-of-
the-art GAN models, scGAN and cscGAN, and trains significantly faster and main-
tains stability. Moreover, ACTIVA learns to generate specific cell types and holistic
population data in one training (unlike scGAN and cscGAN, which train separately).
Our model trains at least 6 times faster than scGAN on the same datasets and in the
same environment. Moreover, ACTIVA can produce 100K samples in less than 2 sec-
onds on a single NVIDIA Tesla V100 and 87 seconds on a common research laptop.
ACTIVA provides researchers with a fast, flexible, and reliable deep-learning model
for augmenting and enlarging existing datasets, improving the robustness and repro-
ducibility of downstream analyses.

6.3. METHODS

Our proposed model, ACTIVA, consists of three main networks, with a self-evaluating
VAE as its core and a cell-type classifier as its conditioner. In this section, we formu-
late the objective functions of our model and describe the training procedure.

6.3.1. ENCODER NETWORK

The ACTIVA encoder network, Enc, serves two purposes: (i) mapping (encoding)
scRNAseq data into an approximate posterior to match the assumed prior, and (ii)
acting as a discriminator, judging the quality of the generated samples against training
data. Therefore, Enc’s objective function is designed to train as an adversary of the
generator network, resulting in realistic data generation. To approximate the prior
distribution, KL divergence is used as a regularization term (denoted as LREG) which
regularizes the encoder by forcing the approximate posterior, qϕ (z|x), to match the

*Here we follow Huang et al.301 and categorize IntroVAEs as a type of VAE.
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prior, p(z). We assume a center isotropic multivariate Gaussian prior since it can be
reparameterized differently into arbitrary multivariate Gaussian random variables,
thus simplifying the inference process302. Although pθ (x|z) can be parameterized in
many ways, we choose an isotropic multivariate Gaussian for simplicity. However,
choosing a scRNAseq-specific counts distribution as the conditional likelihood (e.g.
, zero-inflated negative binomial) may lead to some improvements in the generation
process302.

The posterior probability is qϕ (z|x) = N (z; µ,σ2), where µ and σ are the mean
and standard deviation, respectively, computed from the outputs of Enc. As in tradi-
tional VAEs, z is sampled from N (0, I), which will be used as an input to the gener-
ator network (decoder in VAEs). Due to the stochasticity of z, gradient-based back-
propagation becomes difficult, but using the reparameterization trick in Kingma et
al.188 makes this operation tractable. That is, define z = µ +σ ⊙ ε with ε ∼ N (0, I)
which passes the stochasticity of z onto ε . Now given N cells and a latent vector in a
D-dimensional space (i.e. z ∈ RD), we can compute the KL regularization:

LREG =
1
2

N

∑
i=1

D

∑
j=1

(
1+ log(σ2

i j)+µ2
i j −σ2

i j
)
. (6.2)

Like traditional VAEs, the encoder network aims to minimize the difference be-
tween reconstructed and training cells (real data). We denote the expected negative
reconstruction error as LAE , defined as:

LAE = Eqϕ (z|x) [log pθ (x|z)] . (6.3)

Following Huang et al.301, we choose the reconstruction loss LAE to be the mean
squared error between the training cells and reconstructed cells (more details in Ap-
pendix A).

As the last part of the network, we introduce a cell-type loss component that en-
courages xr to have the same cell type as x. That is, given a classifying network C,
we want to ensure that the identified type of reconstructed sample C(xr) = tr is the
same as real cell C(x) = t; we denote this as LCT shown in Eq. (6.6). We provide ad-
ditional detail on the conditioning in Section 6.3.3. During the development of AC-
TIVA, Zheng et al.303 introduced similar conditioning of the IntroVAE framework for
image synthesis, which significantly improved the generation of new images. Given
our model’s objectives, the loss function for Enc, LEnc, must encode training data and
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self-evaluate newly generated cells from the generator network Gen:

LEnc = LREG(z) + α1 ∑
s=r,g

[m−LREG(zs)]
+ + α2 (LAE(x,xr)+LCT (t, tr)) , (6.4)

where subscripts r and g denote reconstructed and generated cells from Gen, respec-
tively. Note that reconstructed cells xr correspond directly to training data x, but gen-
erated cells xg are newly produced cells. In Eq. (6.4), [·]+ = max(0, ·), and m ∈ R+

determines our network’s adversarial training, as described in Section 6.3.4.

6.3.2. GENERATOR NETWORK

The generator network, Gen, aims at learning two tasks. First, Gen must learn a
mapping of encoded training data, z ∈ RD, from the posterior, qϕ (z|x), back to the
original feature space, RM. In the ideal mapping, reconstructed samples xr would
perfectly match training data x. To encourage learning of this objective, we mini-
mize the mean squared error between x and xr, as shown in Eq. (6.3), and force cell
types of reconstructed samples to match with original cells, as shown in Eq. (6.6). The
second task of Gen is to generate realistic new samples from a random noise vector
zn ∈ RD ∼ p(z) (sampled from the prior p(z)) that "fool" the encoder network Enc.
After producing new synthetic samples xg, we calculate Enc(xg) = zg to judge the
quality of generated cells. Given these two objectives, the generator’s objective func-
tion is defined as

LGen = α1 ∑
s=r,g

LREG (Enc(xs))+α2(LAE(x,xr)+LCT (t, tr)). (6.5)

6.3.3. AUTOMATED CELL TYPE CONDITIONING

Minimizing LAE alone does not enforce our model to generate more cells from
the rare populations, so we introduce a cell-type matching objective. This objective
aims to encourage the generator to generate cells that are classified as the same type
as the input data. More explicitly, the loss component LCT will penalize the network
if reconstructed cell types differ from the training data. Given a trained classifier C(·),
we can express this objective as

LCT =
1
2

N

∑
i=1

∥t − tr∥2
F =

1
2

N

∑
i=1

∥C(x)−C(xr)∥2
F . (6.6)
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For ACTIVA’s conditioning, we use an automated cell-type identification introduced
by Ma et al.133. This network, called ACTINN, uses all genes to capture features and
focuses on the signals associated with cell variance. We chose ACTINN because of
its accurate classification and efficiency in training compared to other existing mod-
els304; we provide an overview of ACTINN in Appendix A. Our model is also flexible
to use any classifier as a conditioner, as long as an explicit loss could be computed
between predicted and true labels†. With ACTINN as the classifier, t and tr are logits
(output layer) for x and xr, respectively. Our implementation of ACTINN is available
as a stand-alone package at https://github.com/SindiLab/ACTINN-PyTorch.

6.3.4. ADVERSARIAL TRAINING

The generator produces two types of synthetic cells: reconstructed cells xr from
x and newly generated cells xg from a noise vector. While both the Enc and Gen at-
tempt to minimize LAE and LCT , the encoder tries to minimize LREG(z) and maximize
LREG(zr,g) to be greater than or equal to m. However, the generator tries to minimize
LREG(zr,g) to minimize its objective function. This is the min-max game played by
Enc and Gen. Note that choosing m is an important step for the network’s adversarial
training; we describe the strategies for choosing m in A.

6.3.5. ADAPTIVE WEIGHTING OF LOSS COMPONENTS

Our objective functions Eqs. (6.4)-(6.5) have multiple components, which re-
quire weights for the linear combination; in our formulation, these weights are de-
noted by α1, α2. A typical way of combining these loss components is to have fixed
weights (αk) that do not change throughout training. However, each part may require
a different optimization level based on their performance throughout the training. As
mentioned in §6.1, when the LREG term in Eq. (6.4)-(6.5) becomes too close to zero,
meaning that the variational distribution collapses towards the prior. For this reason,
we use SoftAdapt194, a family of methods for adaptive weighting multi-part loss func-
tions. SoftAdapt can use live training statistics to prioritize optimization of each part
of the loss function, i.e. , the parts of the loss function that perform the poorest get
most of the attention from the optimizer. Using SoftAdapt can also reduce training
time for VAE-based models since it can reduce the stability of spurious local minima
or maxima305,194. This can also improve the quality of training since the loss parts
that have reached a minimum and remain at that minimum are no longer considered
by the optimizer, placing more importance on the parts that perform poorly. For our

†This is true for most classifiers.

113

https://github.com/SindiLab/ACTINN-PyTorch


Figure 6.1: Classifying synthetic data (ACTIVA and scGAN) from real data
(test set) for Brain Small (left plot) and 68K PBMC (right plot). The metrics are
reported using a random forest classifier (detailed in Section 6.5.2) with 5-fold cross-
validation (marked by pastel colors in each plot). An area under the curve (AUC) of
0.5 (chance) is the ideal scenario (red dash line), and an AUC closer to this value is
better.

method, we use the Loss Weighted variant of SoftAdapt, which means that the weights
α i

k in Eq. (6.4)-(6.5) are determined by

α i
k =

f i
keβ si

k

m

∑
ℓ=1

f i
ℓe

β si
ℓ

, (6.7)

for an objective function L = α1 f1 +α2 f2 + · · ·+αm fm. In Eq. (6.7), β is a hyperpa-
rameter set to 0.1‡, k ∈ 1,2, · · · ,m denotes different coefficients used for different loss
parts and i indicates the current iteration for which SoftAdapt is being computed. In
the same equation, f i

k stands for the value of the k-th loss part in the objective function
at the i-th iteration; similarly, si

k indicates the approximated rate of change for each f i
k

through finite-difference approximation.

‡choice of β is discussed in Heydari et al.194
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Table 6.1: Average training time with sample std. dev. (in seconds), of five itera-
tions for the generative models. ACTIVA (which has the capabilities of scGAN and
cscGAN combined) trains much faster than both scGAN and cscGAN. Individual
run-times for each iteration are provided in Appendix ??.

Brain Small 68K PBMC
ACTIVA scGAN cscGAN ACTIVA scGAN cscGAN

Average 8074.91±135.9
(≈ 2.2 hours)

142238.10±705.18
(≈ 39.5 hours)

145855.98±335.71
(≈ 40.5 hours)

26025.95±127.68
(≈ 7.2 hours)

164839.14±503.73
(≈ 45.7 hours)

176014.49±192.82
(≈ 48.9 hours)

6.4. DATASETS USED AND PROCESSING STEPS

6.4.1. DATASETS

68K PBMC: To compare our results with the current state-of-the-art deep learning
model, scGAN/cscGAN, we trained and evaluated our model on a dataset contain-
ing 68579 peripheral blood mononuclear cells (PBMCs) from a healthy donor (68K
PBMC)306. 68K PBMC is an ideal dataset for evaluating generative models due to
the distinct cell populations, data complexity, and size135. After pre-processing, the
data contained 17789 genes. We then performed a balanced split on this data, which
resulted in 6991 testing and 61588 training cells.

Brain Small: In addition to 68K PBMC, we used a randomly selected subset of a
larger dataset called Brain Large (both by 10x Genomics). Brain Small contains 20,000
random samples (out of approximately 1.3 million cells) from the cortex, hippocam-
pus, and subventricular zone of two embryonic day 18 mice. Compared to 68K PBMC,
this dataset has fewer cells and varies in complexity and organism. The full dataset
and and its subset, Brain Small, are available on 10X Genomics portal. After perform-
ing the pre-processing steps, the data contained 17970 genes, which we then split (via
"balanced split") into 1997 test cells and 18003 training cells.

NeuroCOVID: This dataset243 contains scRNAseq data of immune cells from the
cerebrospinal fluid (CSF) of Neuro-COVID patients and patients with non-inflammatory
and autoimmune neurological diseases or with viral encephalitis. Our pre-processing
resulted in data of dimensions 85414 cells × 22824 genes, which we split into testing
and training subsets as mentioned above.

6.4.2. PRE-PROCESSING

We use the pipeline provided by Marouf et al.135 to pre-process the data. First, we
removed genes expressed in less than 3 cells and cells expressing less than 10 genes.
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Next, cells were normalized by total unique molecular identifiers (UMI) counts and
scaled to 20000 reads per cell. Then, we selected a "test set" (approximately 10% of
each dataset). Testing samples were randomly chosen considering cell ratios in each
cluster ("balanced split").

6.4.3. POST-PROCESSING

After generating a count matrix with a generative model (e.g. ACTIVA or scGAN),
we add the gene names (from the real data) and save them as a Scanpy/Seurat ob-
ject. We then use Seurat to identify 3000 highly variable genes through the use of
variance-stabilization transformation (VST)307, which applies a negative binomial
regression to identify outlier genes. The shared highly variable genes are then used for
integration222, allowing biological feature overlap between different datasets to per-
form the downstream analyses presented in this work. Next, we perform a gene-level
scaling, i.e. centering each feature’s mean to zero and scaling by the standard devia-
tion. The feature space is then reduced to 50 principal components, followed by Uni-
form Manifold Approximation and Projection (UMAP)241 and t-distributed Stochastic
Neighbor Embedding (t-SNE)308. As noted by Marouf et al.135, analysis with lower-
dimensional representations has two main advantages: (i) most biologically relevant
information is captured while noise is reduced, and (ii) statistically, it is more accept-
able to use lower-dimensional embeddings in classification tasks when samples and
features are of the same order of magnitude, which is often the case with scRNAseq
datasets (such as the ones we used). Lastly, we visualize the datasets using Scater309.

6.5. RESULTS

Assessing generative model quality is notoriously difficult and still remains an
open research area310,208. Here, we apply some qualitative and quantitative metrics
for evaluating synthetic scRNAseq, as used in scGAN135. For qualitative metrics,
we compare the manifold of generated and real cells using UMAP. For quantitative
metrics, we train a classifier to distinguish between real and synthetic cells. We com-
pare our results to Marouf et al. alone to study ACTIVA’s performance since their
models outperform other state-of-the-art generative models such as Splatter311 and
SUGAR312. Training and inference time comparisons are shown in Appendix A. As
we show, ACTIVA generates cells that better resemble the real data, and it outper-
forms competing methods in improving the classification of rare cell populations with
data augmentation. ACTIVA is one model that can serve as an alternative to both sc-
GAN and cscGAN, and it trains much faster than both GAN-based models (and it
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only needs one training).

6.5.1. ACTIVA TRAINS FASTER THAN GAN-BASED MODELS

To measure the efficiency of ACTIVA in comparison to the state-of-the-art GAN-
based models (scGAN and cscGAN), we trained all three models in the exact same
computational environment on a single GPU for each dataset (we describe the hard-
ware used in Appendix A). Note that since scGAN and cscGAN train separately, we
repeated this process five times to account for any variability and then computed the
average training time and standard deviation. As shown in Table 6.1, ACTIVA trains
orders of magnitude faster for both datasets (approximately 17 times faster on Brain
Small and 6 times faster on 68K PBMC and NeuroCOVID) and only needs one train-
ing to produce cells from all populations (scGAN’s goal) and specific cell populations
(cscGAN’s purpose).

6.5.2. ACTIVA GENERATES REALISTIC CELLS

To evaluate the generated cells qualitatively, we analyzed the two-dimensional
UMAP representation of the test set (real data) and in-silico generated cells (same
size as the test set). We found that the distribution and clusters match closely between
ACTIVA-generated cells and real cells (Fig. 6.2A-6.2(B) and Fig. A.11). We also an-
alyzed t-SNE embeddings of the real cells and synthetic cells generated by ACTIVA,
which showed similar results. These qualitative assessments demonstrated that AC-
TIVA learns the underlying manifold of real data, the main goal of generative models.
A key feature of ACTIVA is cell-type conditioning, which encourages the network to
produce cells from all clusters. This means that generating cells with ACTIVA results
in gaining cells within clusters rather than losing clusters. Due to this design choice,
ACTIVA can generate more cells from the rare populations than scGAN, as shown in
Fig. 6.2(A)-6.2(B). ACTIVA’s flexible framework allows for adjusting the strength of
the cell-type conditioning (which is a parameter in our model) for cases where the ex-
act data representation is more desirable.

Next we quantitatively assessed the quality of the generated cells by training a ran-
dom forest (RF) classifier (same as in Marouf et al.135) to distinguish between real
and generated cells. The goal is to determine how "realistic" ACTIVA-generated cells
are compared to real cells. Ideally, the classifier will not differentiate between the syn-
thetic and real cells, thus resulting in a receiver operating characteristic (ROC) curve
that is the same as randomly guessing (0.5 AUC). The RF classifier consists of 1000
trees with the Gini impurity criterion and the square root of the number of genes as
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Figure 6.2: ACTIVA generates high-quality cells that resemble both the cluster
and gene expressions present in the training data. Top row: UMAP plot of AC-
TIVA generated cells compared with test set and scGAN generated cells, colored by
clusters for 68K PBMC (A) and Brain Small (B). Bottom row: same UMAP plots
as top row, colored by selected marker gene expressions. (C) corresponds the log
expression for CD79A marker gene (for 68K PBMC) and (D) illustrates the same for
Hmgb2 (for Brain Small). ACTIVA’s cell-type conditioning encourages to generate
more cells per cluster rather than lose clusters, meaning that ACTIVA will generate
more cells from the rare populations (e.g. cluster 7 of PBMC and cluster 6 of Brain
Small).
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Figure 6.3: Correlation of top five differentially expressed genes in each cluster
for 68K PBMC (A) and Brain Small (B). The lower triangular matrices indicate a
correlation of generated data, and the upper triangular shows a correlation of real data
(same in both plots in panels A and B). For 68K PBMC (A), we investigated pairwise
correlation for a total of 55 genes, and for Brain Small (B), we calculated the Pearson
correlation for 40 genes. In the ideal case, the correlation plots should be symmet-
ric, and the Correlation Discrepancy (CD), defined in Eq. (6.8), should be zero. The
gene correlations in ACTIVA match the real data more closely than scGAN, as shown
in the figures and the CD score computed; ACTIVA has a CD score of 1.5816 and
4.6852 for 68K PBMC and Brain Small, respectively, compared to scGAN’s 2.2037
and 5.5937.

the maximum number of features used. Maximum depth is set to either all leaves
containing less than two samples or until all leaves are pure. We generated cells us-
ing ACTIVA and scGAN and performed a five-fold cross-validation on synthetic and
real cells (test). ACTIVA performs better than scGAN with AUC scores closer to 0.5
for both datasets (Fig. 6.1). For the Brain Small test set, the mean ACTIVA AUC is
0.62± 0.02 compared to scGAN’s 0.74± 0.01. For 68K PBMC, the mean AUC is
0.68±0.01 for ACTIVA and 0.73±0.01 for scGAN.

Table 6.2: MMD values for ACTIVA, scGAN and positive control (training set)
compared to the test set. ACTIVA outperforms the scGAN for both datasets, since it
has a lower MMD score.

Brain Small 68K PBMC
Training Set ACTIVA scGAN Training Set ACTIVA scGAN

MMD 0.0619 0.7715 0.9686 0.0539 0.7952 0.9047
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6.5.3. ACTIVA GENERATES SIMILAR GENE EXPRESSION PROFILES

The marker gene distribution in the generated data should roughly match the gene
distribution in real cells to generate cells representing all clusters. We used UMAP
representations of ACTIVA, scGAN, and the test set, and colored them based on
the expression levels of marker genes. Fig. 6.2(C)-6.2(D) show examples of log-
gene expression for marker genes from each dataset. In our qualitative assessment,
ACTIVA-generated cells followed the real gene expression closely. For a quantitative
assessment, we calculated the Pearson correlation of the top 5 differentially expressed
genes from each cluster for both ACTIVA-generated cells and real data. As shown in
Fig. 6.3, the pairwise correlation of genes from the ACTIVA-generated cells closely
matches those from the real data for both datasets. To quantify the overall gene-gene
correlation for synthetic data, we define the following metric: given a correlation ma-
trix of generated samples, G, and a correlation matrix of the real data (test set), R, we
compute the 1-norm of the difference in correlations to measure the discrepancy be-
tween the correlations

CD(G,R) = max
1≤ j≤n

n

∑
i=1

|Gi, j −Ri, j|. (6.8)

We refer to this metric as Correlation Discrepancy (CD) for simplicity. (In the ideal
case, CD(G,R) = 0, therefore values closer to zero indicate better performance.) Our
calculations show that for 68K PBMC, ACTIVA has a CD score of 1.5816, as op-
posed to scGAN’s 2.2037, and for Brain Small ACTIVA outperforms scGAN with a
CD score of 4.6852 compared to 5.5937. These values further quantify that generated
cells from ACTIVA better preserve the gene-gene correlation present in the real data.

Additionally, we plotted marker gene distribution in all cells against real cells. Fig.
A.12 illustrates the distribution of five marker genes from cluster 1 (LTB, LDHB,
RPL11, RPL32, RPL13) and cluster 2 (CCL5, NKG7, GZMA, CST7, CTSW). We
also investigated known marker genes for specific cell populations, such as for B-
cells in PBMC data, finding that ACTIVA generated cells expressed these markers
(CD79A, CD19, and MS4A1) in the appropriate clusters (Fig. 6.2C and other figures
not shown here) similar to real data. Following Marouf et al., we calculated the max-
imum mean discrepancy (MMD) between the real data distribution and the generated
ones using ACTIVA and scGAN. Simply stated, MMD is a distance metric based on
embedding probabilities in a reproducing kernel Hilbert space313, and since MMD
is a distance metric, a lower value of MMD between two distributions indicates the
distributions are closer to one another. For consistency, we chose the same kernels as
Marouf et al. and calculated MMD on the first 50 principal components. As shown in
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Figure 6.4: RF classifier distinguishes two real sub-populations from synthetic
data for Brain Small. ACTIVA outperforms cscGAN in producing realistic samples
on this dataset since the ROC curve is closer to chance (red dashed line).

Table 6.2, ACTIVA had a lower MMD score than scGAN, demonstrating an improve-
ment in the quality of the generated cells compared to scGAN.

Based on qualitative and quantitative evaluations of our model, we conclude that
ACTIVA has learned the underlying marker gene distribution of real data, as desired.
However, we suspect that assuming a different prior in model formulation (e.g. , Zero-
Inflated Negative Binomial) could further improve our model’s learning of real data.

6.5.4. ACTIVA GENERATES SPECIFIC CELL-TYPES ON DEMAND

Since we minimize a cell-type identification loss in the training objective, ACTIVA
is encouraged to produce correctly classified cells. Therefore, the accuracy of the gen-
erated cell types depends on the classifier selected. In Tables A.7 and A.7, we show
that ACTIVA’s classifier accurately distinguishes rare cell types, achieving an F1 score
of 0.89 when trained with only 1% sub-population in the training cells. ACTIVA gen-
erates specific cell types from the manifold it has learned, which then filters through
the identifier network to produce specific sub-populations. To quantify the quality of
the generated samples, we trained an RF classifier (as in §6.5.2) to distinguish be-
tween generated and real sub-populations in the data. Fig. 6.4 illustrates ACTIVA’s
performance against cscGAN for the Brain Small dataset, with ACTIVA achieving
better AUC scores. Similar results were obtained for 68K PBMC sub-populations, al-
though the AUC gap between cscGAN and ACTIVA was narrower.
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6.5.5. ACTIVA IMPROVES CLASSIFICATION OF RARE CELLS

The main goal of designing generative models is to augment sparse datasets with
additional data to improve downstream analyses. Given the performance of our model
and conditioner, we hypothesized that classifying rare cells in a dataset can be im-
proved through augmentation with ACTIVA, i.e. using synthetic rare cells alongside
real data. We next directly compared against cscGAN to demonstrate the feasibil-
ity of augmenting rare populations to improve classification. We utilized the data-
augmentation experiment presented by Marouf et al.135. That is, we chose the cells
in cluster 2 of 68K PBMC and downsampled those cells to 10%, 5%, 1%, and 0.5%
of the actual cluster size while keeping the populations fixed. The workflow of the
downsampling and exact sizes is shown in Fig. A.10 (Appendix A). We then trained
ACTIVA on the downsampled subsets and generated 1500 synthetic cluster 2 cells
to augment the data (Marouf et al. generated 5000 cells). After that, we used an RF
classifier to identify cluster 2 cells versus all other cells. This classification was done
on (i) downsampled cells without augmentation and (ii) downsampled cells with AC-
TIVA augmentation. F1 scores are measured on a held-out test set (10% of the total
real cluster 2 cells), shown in Fig. 6.5. The classifier is identical to the one described
in §6.5.2 with the addition of accounting cluster-size imbalance, as it was done by
Marouf et al. , since RF classifiers are sensitive to unbalanced classes314. Most no-
tably, our results show an improvement of 0.4526 in F1 score (from 0.4736 to 0.9262)
when augmenting 0.5% of real cells and an improvement of 0.2568 (from 0.6829 to
0.9397) on the 1% dataset. ACTIVA also outperforms augmentation with cscGAN for
the rarest case since cscGAN achieves an F1 score of 0.8774 as opposed to ACTIVA’s
0.9262. These results indicate ACTIVA’s promising and powerful application in rare
cell-type identification and classification.

6.6. DISCUSSION AND CONCLUSION

In this chapter, we propose a deep generative model for generating realistic scR-
NAseq data. Our model, ACTIVA, consists of an automatic cell-type identification
network coupled with IntroVAE that aims to learn the distribution of the original data
and the existing sub-populations. Due to the architectural choices and single-stream
training, ACTIVA trains orders of magnitude faster than the state-of-the-art GAN-
based model, producing comparably high-quality samples. ACTIVA can be easily
trained on different datasets to either enlarge the entire dataset (generate samples from
all clusters) or augment specific rare populations.

ACTIVA can generate hundreds of thousands of cells in only a few seconds (on
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Figure 6.5: Augmentation with ACTIVA improves classification of rare popula-
tions. Mean F1 scores of the RF classifier for training data (with no augmentation),
shown in blue, and training data with augmentation in red and purple. Error bars indi-
cate the range for five different random seeds for sub-sampling cluster 2 cells.
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a GPU), which enables benchmarking of new scRNAseq tools’ accuracy and scal-
ability. We showed that, for these datasets, using ACTIVA to augment rare popula-
tions improves downstream classification by more than 40% in the rarest case of real
cells used (0.5% of the training samples). We believe that ACTIVA learns the under-
lying higher dimensional manifold of the scRNAseq data, even where few cells are
available. The deliberate architectural choices of ACTIVA provide insights as to why
this learning occurs. As Marouf et al.135 also noted, the fully connected layers of our
three networks share information learned from all other populations. In fact, the only
cluster-specific parameters are the ones learned in the batch normalization layer. This
is also shown by the accuracy of the conditioner network when trained on rare popula-
tions. However, if the type-identifying network does not classify sub-populations ac-
curately, this can directly affect the performance of the generator and inference model
due to the conditioning. We keep this fact in mind and, therefore, allow for the flexi-
bility of adding any classifier to our existing architecture. Given our architecture, we
hypothesize that the conditioner network could be used directly as the encoder or its
learned parameters could be transferred to the encoder network, which we plan to ex-
plore in the future.

Lopez et al.302 demonstrate that the latent manifold of VAEs can also be useful
for analyses such as clustering or denoising. A deep investigation of the learned man-
ifold of ACTIVA can further improve the interpretability of our model or yield new
research questions to explore. We also hypothesize that assuming a different prior,
such as a Zero Inflated Negative Binomial or a Poisson distribution, could further im-
prove the quality of generated samples given that scRNAseq follow such distributions.
Our experiments show that ACTIVA learns to generate high-quality samples on com-
plex datasets from different species. ACTIVA potentially reduces the need for human
and animal sample sizes and sequencing depth in studies, saving costs and time and
improving the robustness of scRNAseq research with smaller datasets. Furthermore,
ACTIVA would benefit studies where large or diverse patient sample sizes are not
available, such as rare and emerging diseases.
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The more I learn, the more I realize how much I
don’t know.

Albert Einstein

7
Conclusion

This dissertation, along with my broader PhD research, has aimed to introduce
innovative mathematical methodologies essential for effectively modeling complex
biological systems. When delving into mathematical modeling for biological phenom-
ena, we can broadly categorize the approaches into three key areas. The first involves
modeling under the assumption of known governing equations, providing a founda-
tional framework for understanding system dynamics. The second category encom-
passes algorithms that leverage large-scale observations, operating on the assumption
of complete data to extract meaningful insights from biological processes. Lastly, the
third category focuses on modeling in scenarios where assumptions or observations
are incomplete, challenging researchers to generalize learnings to different systems
or improve initial assumptions. Throughout my research journey, my overarching aim
has been to contribute to each of these modeling paradigms by proposing innovative
numerical and deep learning techniques. By developing novel mathematical tools and
frameworks, my work strives to enhance our modeling arsenal and ability to analyze
complex biological processes with diverse characteristics and data availability, irre-
spective of the challenges posed by governing equations, data completeness, or inher-
ent assumptions.

Given the different modeling paradigms, my dissertation naturally consists of three
parts: In the first part, I propose a novel formulation of the finite volumes method on
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deforming geometries that preserves mass. In Chapter 2, co-authors and I propose a
new numerical method for solving reaction-diffusion systems on a dividing yeast cell,
a single-cell organism that divides asymmetrically. Through this work, I identified that
the traditional finite volumes fail to preserve mass when solving the reaction-diffusion
PDEs on a deforming geometry. Through our analytical analysis, I found that this
issue can be attributed to the classical finite volume methods integrating the time-
discretized equation in space. To mitigate this, we proposed to use spatio-temporal
control volumes that "move" and deform with the geometry through time. Our the-
oretical and numerical results showed that our formulation of the finite volume pre-
served mass, a key advancement for modeling reaction-diffusion systems.

We applied our approach to the budding process of yeast and were able to com-
putationally explain the asymmetric distribution of cell content between mother and
daughter cells. The proposed technique has the potential to significantly advance
mathematical biology by providing a reliable tool for simulating reaction-diffusion
systems on complex geometries. Our approach can be used to study a wide range of
intricate biological processes, including protein aggregation, cell division, and wound
healing. While this work holds promise, biological systems often lack well-defined
mathematical formulations, given their inherent complexity and variability. Therefore,
assuming governing equations in biological systems may be infeasible. As a result,
the subsequent chapters of my dissertation focused on data-driven modeling of biolog-
ical processes, particularly single-cell RNA sequencing studies.

The second part of my dissertation starts by providing the mathematical and bi-
ological background for the subsequent chapters. In the first portion of Chapter 3, I
present an overview of single-cell RNA sequencing and spatial transcriptomic tech-
nologies, which generate a wealth of biological data with unprecedented resolution.
These technologies are instrumental in delineating cellular heterogeneity found in
many tissues (e.g. tumors). However, traditional statistical methods cannot adequately
illuminate the true underlying biology due to the high dimensionality and intricacies
of datasets generated by single-cell technologies. As a result, many have turned to de-
veloping and using machine learning algorithms for analyzing transcriptomic data.
In the latter part of Chapter 3, I provide an overview of machine learning and spe-
cific deep learning architectures often used for analyzing and modeling single-cell
datasets. In the same chapter, I provide a mathematical review of key deep learning
architectures, including feedforward neural networks, convolutional neural networks,
recurrent neural networks, residual networks, autoencoders, variational autoencoders
(VAEs), generative adversarial networks (GANs), and graph neural networks (GNNs).

Chapter 4 presents a novel interpretable deep learning architecture that learns the
importance of each gene based on their contribution to the training task. Our model
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called scANNA, is able to learn the importance of each gene through our use of neural
attention and our proposed deep projection blocks. We trained scANNA on large-
scale scRNAseq datasets on an auxiliary task to extract the attention weights (im-
portance scoring). We used these weights without any retraining to perform various
downstream tasks, such as global marker selection, cell-type classification, and dif-
ferential expression analysis. Notably, our approach performs better or comparably to
methods that have been designed for each specific downstream task, while scANNA
is only trained once on an auxiliary task. Another promising application of scANNA
is in transfer learning, where we demonstrated scANNA’s effectiveness in leverag-
ing learnings from a large atlas to improve the robustness and accuracy of small-scale
scRNAseq studies (similar to the atlas) with minimal fine-tuning.

Our findings from scANNA highlight the potential of attention-based deep learn-
ing techniques to substantially improve traditional deep learning methods when ap-
plied to scRNAseq data. ScANNA has shown the potential to complement or po-
tentially replace task-specific deep learning pipelines. Given the limited adoption of
attention-based deep learning methods in scRNAseq analyses, our work suggests valu-
able insights may still be hidden within the wealth of publicly available scRNAseq
datasets. Furthermore, it is worth noting that scANNA’s architectural framework can
be adapted to create additional interpretable models for scRNAseq, including ap-
plications in spatial transcriptomics. I envision integrating attention layers in deep
learning models will facilitate a transition from specialized single-purpose models
designed for specific tasks to versatile interpretable tools, empowering researchers
without extensive computational backgrounds to expedite their discovery processes.
Despite scANNA’s potential, one limiting factor is the need for large-scale datasets for
scANNA’s training, which is often unavailable in pilot or small-scale studies.

The last part of my dissertation proposes methods for enhancing the modeling of
data-limited biological systems, the third and last mathematical modeling paradigm
we discussed. In this part, my goal is to propose methods that exploit the underlying
structure of the data and data manifold to improve the analysis of such datasets. In
Chapter 5, the main idea is to discretize PDEs on graphs and to embed those graphs
in infinite dimensional manifolds, thereby constructing networks that follow the dy-
namics of the chosen PDEs. This process allows us to design networks that adhere to
our chosen dynamics based on the specific application needs. Moreover, using the rich
analysis tools in PDEs, we can prove mathematical conditions on the network’s sta-
bility, architecture, etc. In this chapter, I applied this idea to construct a novel graph
network using the drift-diffusion PDEs, proving theorems on the architecture choices
that guarantee model stability. As an initial validation, I applied our model for semi-
supervised learning of standard benchmarking datasets, which showed our model,
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DDGNN, outperforming all graph networks we tested. Moreover, I demonstrated that,
in contrast to most GNNs, our model’s performance improves with the addition of
more layers. This positions DDGNN as a unique GNN in capturing more intricate
and complex relationships within the data, which are often crucial for making accu-
rate predictions. Our last experiment was to test DDGNN’s ability to learn biological
representations from the scRNAseq dataset, with an emphasis on data-limited stud-
ies. Our results indicated that DDGNN can learn better biological representations,
outperforming state-of-the-art methods on low-data experiments. These results sig-
nify our approach’s potential to accurately and robustly identify cell types, even when
the number of total observations is less than 1000 cells. The framework presented
in this chapter, particularly the innovative approach of constructing graph networks
based on discretized PDEs, holds promise for significantly enhancing the analysis of
data-limited scRNAseq studies, offering new avenues for improving the accuracy and
robustness of cell type identification, even in scenarios with limited observations.

In some cases, models designed for data-limited studies can face challenges in cap-
turing the full complexity of the underlying biological mechanism. Therefore, it is
imperative to develop frameworks to augment existing data with realistic synthetic
samples, enhancing the robustness and generalizability of the analysis. For this rea-
son, the last chapter of my dissertation focuses on developing a novel deep-learning
approach for generating realistic synthetic scRNAseq data. Chapter 6 proposes AC-
TIVA, a VAE-based method that learns the latent distribution of the real scRNAseq
data, thus being able to generate realistic cells. ACTIVA uses an innovative adversar-
ial VAE that addresses the main challenges of traditional VAEs, thus outperforming
state-of-the-art scRNAseq generators, including GAN-based techniques. Once trained,
ACTIVA can generate realistic scRNAseq data from all populations or specific cell
types for data augmentation. Our results demonstrated that ACTIVA can generate re-
alistic rare cell types, which, when used to augment the real data, can significantly
improve the identification of those rare populations. Our results indicate that ACTIVA
is a powerful tool for enhancing the analysis of data-limited scRNAseq experiments.
The development of synthetic data generators, like ACTIVA, can be instrumental in
enhancing the robustness and generalizability of analyses, highlighting their impor-
tance in advancing the modeling of data-limited biological systems.

Each chapter of my dissertation has introduced mathematical frameworks pow-
ered by cutting-edge techniques, aiming to expand our toolkit for mathematical bi-
ology research. The culminating work of my PhD research offers novel approaches
and insights for the three modeling regimes that govern our understanding of complex
biological mechanisms. These methods offer practical solutions to bridge theoreti-
cal assumptions, empirical data, and biological complexity. The presented models
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and methodologies have the potential to advance research in diverse fields, providing
robust foundations for a better understanding of biological systems. By addressing
these three regimes, I hope my research moves us closer toward a unified framework
in modeling biological phenomena, where mathematics and computation synergize to
unravel the intricate secrets of life through the combined power of biology and mathe-
matics.
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A
Supplemental Material for Chapter 6

DATA POST-PROCESSING

After generating a count matrix with a generative model (e.g., ACTIVA or sc-
GAN), we add the gene names (from the real data) and save them as a Scanpy/Seurat
object. We then use Seurat to identify 3000 highly variable genes through the use of
variance-stabilization transformation (VST) [307], which applies a negative binomial
regression to identify outlier genes. The shared highly variable genes are then used for
integration [222], allowing biological feature overlap between different datasets to per-
form the downstream analyses presented in this work. Next, we perform a gene-level
scaling, i.e., centering the mean of each feature to zero and scaling by the standard
deviation. The feature space is then reduced to 50 principal components, followed by
the Uniform Manifold Approximation and Projection (UMAP)241 and t-distributed
Stochastic Neighbor Embedding (t-SNE)308. As noted by135, analysis with lower-
dimensional representations has two main advantages: (i) most biologically relevant
information is captured while noise is reduced, and (ii) statistically, it is more accept-
able to use lower-dimensional embeddings in classification tasks when samples and
features are of the same order of magnitude, which is often the case with scRNAseq
datasets (such as the ones we used). We visualize the datasets using Scater [309].
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COMPLETE COMPUTATIONAL ENVIRONMENT

Development and testing were done on Accelerated Computing EC2 instances
(p3.2xlarge and p3.8xlarge) of Amazon Web Services. Our package automati-
cally installs all requirements and dependencies. They are listed in a requirements file,
but for the sake of completeness, they are as follows: Python v3.7.6, PyTorch v1.5.1,
NumPy v1.18.5, SciPy v1.4.1, Pandas v1.2.0, Scanpy v1.6.0, AnnData v0.7.5, and
Scikit-learn v0.24.0. For data pre- and post-processing, we used LoomPy v3.0.6, Seu-
ratDisk v0.0.0.9013, Seurat v3.2.3, scatter v1.16.2, and R v4.0.3. To evaluate dropout
rates, we used M3Drop v1.18.0 and ggplot2 v3.3.2. Differential state analysis was
performed with Muscat v1.6.0. The scGAN package was run in a Docker container
(using the provided dockerfile at https://github.com/imsb-uke/scGAN/tree/
master/dockerfile). Reported training times for ACTIVA/scGAN were averages
of 5 times on a single NVIDIA-Tesla V100 GPU. Inference times were averages of 5
measurements on (i) V100 GPU (GPU time) and (ii) 2.3 GHz Quad-Core Intel Core
i7 (on a 2020 MacBook Pro).

GPU TRAINING TIMES

Table A.1: Training time (in seconds) on 68K PBMC for ACTIVA and sc-
GAN on 1 NVIDIA Tesla V100 GPU. We trained each model 5 times under
the same conditions to find an average training time. We have not included csc-
GAN times since training that model took longer than scGAN. We can see that
ACTIVA trains much faster (6.3 times faster on average). scGAN and cscGAN
were run in a Docker container (by Marouf et al.) using the Dockerfile located at
https://github.com/imsb-uke/scGAN/tree/master/dockerfile).

Iteration ACTIVA scGAN cscGAN
1 25968.2447 164225.5618 175978.2588
2 26218.7306 165308.7142 176041.7922
3 25935.2738 164391.8113 176318.0701
4 26091.8337 165281.5137 175941.7097
5 25915.6733 164988.1371 175792.6410

Average
26025.95

(≈7.2 hours)
164839.14

(≈45.7 hours)
176014.49

(≈48.8 hours)
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Table A.2: Training time (in seconds) on Brain Small for ACTIVA and scGAN on
1 NVIDIA Tesla V100 GPU. We trained each model 5 times under the same condi-
tions to find an average training time. ACTIVA trains approximately 17 times faster
than scGAN. scGAN and cscGAN were run in a Docker container (using the Docker-
file located at https://github.com/imsb-uke/scGAN/tree/master/dockerfil
e).

Iteration ACTIVA scGAN cscGAN
1 8277.4867 142371.9793 145980.3154
2 7922.1005 141103.8196 145952.2580
3 8107.3591 143008.7401 145261.1851
4 7983.4031 142532.3804 146076.8253
5 8084.2473 142173.5900 146009.3626

Average
8074.91

(≈2.2 hours)
142238.10

(≈39.5 hours)
145855.98

(≈40.5 hours)

Table A.3: Training time (in seconds) on NeuroCOVID for ACTIVA and scGAN
on 1 NVIDIA Tesla V100 GPU. We trained each model 5 times under the same
conditions to find an average training time. ACTIVA trains approximately six times
faster than scGAN. scGAN and cscGAN were run in a Docker container (using the
Dockerfile located at https://github.com/imsb-uke/scGAN/tree/master/doc
kerfile).

Iteration ACTIVA scGAN cscGAN
1 29604.6613 184421.5509 187618.5119
2 29351.4168 183863.5722 187440.2821
3 29719.3984 184249.4072 188414.8095
4 29492.1603 183120.8326 187922.5381
5 29575.2929 183814.1538 187924.3118

Average
29548.58

(≈ 8.2 hours)
183749.10

(≈ 51.0 hours)
187864.09

(≈ 52.1 hours)

RUNTIME ANALYSIS

As mentioned in Chapter 6, ACTIVA trains much faster than the GAN-based mod-
els due to its architecture. ACTIVA’s runtime depends on several factors, such as
the complexity of the dataset, number of genes, sparsity, and the hardware used for
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training −even using different GPUs will result in training time differences. How-
ever, since ACTIVA uses batch training (as done in almost all deep learning models),
out-of-memory (OOM) errors are more controlled, and the runtime scales linearly (at
worst). Here, we aim to demonstrate this fact with so-called "corner" cases. Due to
the nature of scRNAseq experiments, we believe that it is unlikely that ACTIVA will
be trained with 105 cells or more, but we provide the runtimes for 105, 2× 105, and
5×105 for reference. Due to the computational costs, we did not replicate the runtime
experiment for scGAN and cscGAN. However, the runtimes can be extrapolated from
our previous results and Marouf et al.135.
To construct the mentioned corner cases, we generated random data Xruntime ∈ Rn×d ,
where d is the number of genes in 68K PBMC, and n is the number of cells (n ∈
{100000,200000,500000}). Next, we measured the percentage of non-zero entries
in the 68K PBMC data (often called density). We found that the 68K PBMC had
a density of about 3%. However, we set the Xruntime density to be 30% to create a
“worst-case" for training. Since we were only interested in the runtime of ACTIVA
for Xruntime and not the data generation quality for this random data, we used all of
Xruntime for training. The training data dimensions were 100000× 17789, 200000×
17789, and 500000× 17789. We repeated training on each dataset five times and pre-
sented the runtimes in Table A.4.

Table A.4: Runtime analysis for ACTIVA with various numbers of cells. To simu-
late the “worst cases", we chose the same number of genes as in 68K PBMC (17789),
and we took the density of the count matrix to be 30% (compared to about 3% for
68K PBMC). We then trained ACTIVA for various numbers of cells for five iterations,
which we present in this table. The reported times are measured in seconds.

Iteration 100K 200K 500K
1 33143.3375 61270.0890 129722.8039
2 33053.8834 61255.4751 126041.6814
3 32931.2144 61183.5369 124377.9299
4 32995.6469 61230.1366 130018.3193
5 33181.0439 61091.5801 128588.0704

Average
33061.0252

(≈ 9.1 hours)
61206.1635

(≈ 17.0 hours)
127749.7609

(≈35.48 hours)
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RESULTS ON NEURO-COVID DATA

This section presents our qualitative and quantitative results on our third dataset:
NeuroCOVID.

Figure A.1: UMAP plot of ACTIVA generated cells compared with test set and
scGAN generated cells, colored by clusters for NeuroCOVID. ACTIVA’s cell-type
conditioning encourages the model to generate more cells per cluster, meaning that
ACTIVA will generate more cells from the rare populations, as shown in the above
visualization.
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Figure A.2: Results of correlation analysis for NeuroCOVID. We performed the
correlation analysis described in Section 5.3, where we looked at the correlation of the
top genes five genes from each cluster and measured the pair-wise correlation of those
genes in each dataset (test set, ACTIVA, and scGAN). As presented in this figure,
ACTIVA has a closer relationship to the real data than scGAN, achieving a correlation
discrepancy (CD) score of 4.19 compared to scGAN’s 7.31 (lower CD is better).

Figure A.3: Random Forest identification of synthetic data (generated from AC-
TIVA and scGAN) against the real data (test set). As described in Chapter 6, AUCs
closer to 0.5 indicate better performance for the generative model since that means
that the classifier could not properly distinguish the difference between real cells and
generated cells.
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Figure A.4: Mean F1 scores of Random Forest (RF) classifier for NeuroCOVID.
Training data (with no augmentation), shown in blue, and training data augmented
with ACTIVA (shown in red) and scGAN (shown in purple), respectively. Error bars
indicate the range for five different random seeds for sub-sampling cluster 7 cells in
NeuroCOVID data.
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CHOOSING ADVERSARIAL CONSTANT m

Ensuring the numerical balance between the KL divergence regularization of real
and fake samples is crucial to ACTIVA’s sample quality. Therefore, an m that is ex-
tremely large or small could affect the quality of the generated cells. The adversar-
ial training in IntroVAE is similar to Energy-based GANs315. The following are two
strategies we followed for choosing an appropriate value of m, based on315:

1. An effective strategy is to train the model as VAE for n epochs and track the
minimized KL divergence. This will estimate the capacity of Gen’s reconstruc-
tion of single cells without a critic’s input. Then, set m to be close to minimized
KL divergence after n epochs. Our package already implements this feature,
with a default VAE-only training of 10 epochs. In practice, we found that values
of m roughly close to this minimized divergence performed well.

2. Another strategy for choosing m can be a rough grid-search starting from large
values of m (which could be the upper bound of KL values) and gradually go-
ing to 0.

NETWORK ARCHITECTURE

In this section, we present the architecture of our model with the input x ∈ RM.
Latent vectors of our model live in a 128-dimensional space, but for the sake of gener-
ality, we assume z ∈ RD. In the encoder and generator networks, Adam286 optimizer
is used with a learning rate lr = 0.0002, and moving averages decay rates β1 = 0.9,
β2 = 0.999. Gradients are calculated on mini-batches of size 128 with the adversarial
constant m = 110. We describe each component in more detail in A.

TRAINING AND INFERENCE PROCEDURE

Unlike GANs, our model does not require a training schedule. The cell-type clas-
sifier in ACTIVA can be pre-trained or trained simultaneously with Enc and Gen. To
start the adversarial training and pick an appropriate m, we first introduce the model
as a VAE for 10 epochs while training ACTINN in parallel (these options are read-
ily available and adjustable in our package). After the initial warm-up, we train the
IntroVAE component for 600 epochs with α1 = 1 and α2 = 0.5. We also provide an
option for dynamic weight-balancing using SoftAdapt that would be useful in the case
of a posterior collapse (which did not occur in our experiments).

For inference, we input a random noise tensor sampled from a multi-variate Gaus-
sian to the trained generator. For cell-specific generation, outputs are automatically
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filtered through the trained classifier to produce the desired sub-populations on de-
mand.

ENCODER NETWORK

Figure A.5: The encoder network of ACTIVA.

Enc consists of fully connected layers, with Rectified Linear Units (ReLU)168 as
the activation between two layers, where we also perform batch normalization oper-
ation in181 (denoted as BN) after ReLU . The input to the network is x ∈ RM, which
goes through the network with layers {1024,512,256,128}, as shown in Fig. A.5.
Adam optimizer is used with a learning rate lr = 0.0002, and moving average decay
rates β1 = 0.9, β2 = 0.999. Gradients are calculated on mini-batches of size 128, with
the adversarial constant m = 110.

GENERATOR NETWORK

Figure A.6: Architecture of ACTIVA’s generator network.
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The generator network mirrors the encoder network, consisting of an input latent
vector z ∈ RD going through the layers {256,512,1024,M} as shown in Fig. A.6.
Note that in the last layer of the generator (mapping from 1024 to M), we use ReLU
without BN. This is because we want to ensure that all generated values are non-
negative. Similar to the encoder, we optimize the network using Adam with a learning
rate lr = 0.0002, β1 = 0.9, β2 = 0.999. Gradients are calculated on 128-cell mini-
batches.

AUTOMATED CELL TYPE NETWORK (ACTINN)

Figure A.7: Automatic cell-type identification network of ACTIVA, which is
ACTINN.

ACTINN133 uses a fully connected neural network architecture for the supervised
classification of cell types. scRNAseq data is usually high dimensional and often
sparse, making neural networks a promising method for analyzing such data. We im-
plemented ACTINN in PyTorch to identify cell types and conditioning ACTIVA. Our
implementation has the same architecture as in133, which was implemented in Ten-
sorFlow (A.7). Cross entropy measures the loss between the predicted classes and the
actual cell types. Optimization is done with Adam, and an exponential "staircase"
decay is used, with the initial learning rate being lr = 0.0001 and a decay rate of
0.95 applied after every 1000 optimization steps. Our implementation of ACTINN
in PyTorch differs from the original implementation in two ways: (1) we do not use
a SoftMax layer between the last hidden layer and the output layer (due to the imple-
mentation of cross-entropy in PyTorch), and (2) we train for fewer number of epochs
(between 5-10 as opposed to 50 epochs in the original implementation). Although we
train for fewer epochs than133, we did not notice a drop in the accuracy of our model;
that is, our results on 68K PBMC closely match the results found by304 (results are
shown in Tables A.6-A.7). Gradients are calculated on mini-batches of size 128.
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ADDITIONAL RESULTS

DROPOUT RATE

A common feature in scRNAseq data is technical zero counts (referred to as “dropouts"),
which can arise from low RNA capture. To analyze the dropout rates as a function of
mean gene expression for our generated data, we use functions from M3Drop316 to
extract the observed dropout rates for ACTIVA and scGAN and compare those with
the raw data for 68K PBMC, Brain Small and NeuroCOVID. Our analysis showed
that our model produced a lower dropout rate for higher mean expressions, which we
can attribute to the prior distribution assumption. Our dropouts were very close to
scGAN’s for 68K PBMC, while for NeuroCOVID, our data resembled the real data
more closely. In the Brain Small dataset, we observed a steeper dropout rate for AC-
TIVA in relation to the real dataset. We hypothesize that the steeper dropout rate is
due to fewer samples in the training data, about four times fewer than 68K PBMC and
NeuroCOVID.

Figure A.8: Observed dropout rates as a function of log10(Gene Expression) for
all three datasets. The dropout rate for ACTIVA is shown in Black (two-dashed line),
Real in green (dot-dashed line), and scGAN in orange (dotted line) with the 95% con-
fidence interval for each line shown in grey. Data was fit using a binomial generalized
linear model.

DIFFERENTIAL STATES IN CLUSTERS

As another evaluation metric for ACTIVA’s generative quality, we perform a dif-
ferential state (DS) analysis using muscat317. DS accounts for sample-to-sample as
well as cell-to-cell variability, allowing us to conclude extrapolated to the samples
rather than cells318. In our case, we measure the sample-to-sample variability between
generated and real cells (test data). The idea is that if the generative models generate
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realistic samples, then there should be fewer DS genes about the real data. To perform
the differential state (DS) analysis, we sample each data (ACTIVA, real test set, and
scGAN) without replacement to create five pseudo-replicates for each dataset, which
formed the “pseudobulk data". From this pseudobulk, ACTIVA was directly compared
with the real (referred to as ACTIVA-Real in Fig. A.9), and scGAN was compared
with the real (scGAN-REAL). For all three datasets, we find that the generated-real
cluster pairs contain only a few DS genes compared to the real data, indicating a high
quality of synthetic data. However, ACTIVA has fewer DS genes for NeruoCOVID
and Brain Small than scGAN, while scGAN has fewer DS genes in the 68K PBMC
clusters.

Figure A.9: Barplots displaying the percent of genes with no differential state per
cluster for all three datasets. Values closer to 100% indicate a better match with the
real data. In orange, ACTIVA is compared with the real data (test set), and in blue,
scGAN is compared with the real data (test set). Our results show a high null differ-
ential state per cluster for all three datasets. The statistical analyses were performed
in clusters with a sufficient number of cells (clusters with too few cells are not shown
here).
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DOWNSAMPLING AND DATA AUGMENTATION

Figure A.10: Downsampling process for evaluating the impact of data augmenta-
tion with ACTIVA. Test splits are shown in red frames, and Training splits are in blue
frames, with ACTIVA generated in purple frames. First, we separate the test set from
the training set and then label cluster 2 cells to differentiate them from all other clus-
ters. Cells from all other clusters (besides cluster 2) are used in all training and testing
modes. For cluster 2 cells, we randomly subsample a fraction of the cells (10%, 5%,
1% or 0.5%) and use this subset in addition to all other cells to train ACTIVA. In other
words, ACTIVA and the RF will include (i) training data from all other clusters and
(ii) one of the downsampled versions of cluster 2 cells (highlighted in light blue). For
the performance evaluation of RF without data augmentation ("no-augmentation"), we
only use the desired cluster 2 subset and all other training cells to train the classifier.
For training mode ACTIVA augmentation, we generate 1500 cells for data augmenta-
tion and add to the training cells we used in "no-augmentation" mode. So for training
the RF in augmentation mode, we use (i) training data from all other clusters, (ii) one
of the downsampled version of cluster 2 cells (highlighted in light blue) and (iii) 1500
ACTIVA generated cells [trained on the same downsampled data in (ii)].

ACCURACY OF THE CLASSIFIER ON EACH DATASET

As mentioned in Chapter 6, the sub-population cell generation depends on cor-
rectly classifying the cell types. We show that ACTIVA’s classifier, ACTINN, can
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classify rare-cell populations with training cells as few as 71 cells (see Table A.7). We
did observe that in some cases, if the number of training samples for a specific cluster
is extremely low, then ACTIVA does not learn that cell type (as is expected from any
machine learning model); for example, the classifier does not learn the 10th cell-types
of the PBMC data, since there were only 19 training cells available (out of 61K train-
ing cells). However, for the cluster 2 cell population, having 50 cells resulted in an F1
score of 0.74. This was useful for studying the impact of data augmentation with AC-
TIVA, as described in Chapter 6.

Table A.5: Accuracy of ACTIVA’s classifier network (ACTINN) on the test sets
of Brain Small, 68K PBMC, and NeuroCOVID. Three metrics were used: (1)
Accuracy-number of correct predictions overall predictions; (2) F1 Score (Non-
Weighted): unweighted mean of per-label accuracy (not counting for cell-type imbal-
ance); and (3) Weighted F1 Score: per-type accuracy but weighted by the number of
cells for each cell-type.

Test Set Accuracy F1 Score (Non-Weighted) Weighted F1 Score
Brain Small 0.9649 0.9674 0.9654
68K PBMC 0.9223 0.7448 0.9216

NeuroCOVID 0.9790 0.9697 0.9790

Table A.6: Accuracy of ACTIVA’s classifier on Brain Small. Here we present the
accuracy of ACTIVA’s classifier network on the test and training set for the Brain
Small dataset (see main text Section 4.3 and Fig. 3).

Cluster Testing Cells Test Precision Test Recall Test F1-Score Training Cells Train Precision Train Recall Train F1-Score
0 978 0.97 0.97 0.97 8808 0.99 1.00 0.99
1 304 0.98 0.99 0.98 2738 0.99 1.00 0.99
2 271 0.90 0.93 0.92 2439 0.98 0.99 0.98
3 182 0.99 0.96 0.97 1646 1.00 0.98 0.99
4 141 0.99 0.94 0.97 1271 1.00 0.99 0.99
5 59 0.98 0.98 0.98 535 1.00 0.99 1.00
6 35 1.00 0.94 0.97 323 1.00 0.97 0.98
7 27 1.00 0.93 0.96 243 0.99 0.99 0.99
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Table A.7: Accuracy of ACTIVA’s classifier on 68K PBMC. Here we present the
accuracy of ACTIVA’s classifier network on the test and training set for 68K PBMC
dataset(see main text Section 4.3 and Fig. 3).

Cluster Testing Cells Test Precision Test Recall Test F1-Score Training Cells Train Precision Train Recall Train F1-Score
0 1791 0.89 0.90 0.90 15768 0.99 1.00 1.00
1 1545 0.88 0.87 0.88 13608 1.00 0.99 1.00
2 1515 0.93 0.96 0.95 13344 1.00 1.00 1.00
3 697 0.91 0.87 0.89 6145 1.00 0.99 1.00
4 483 0.99 0.98 0.99 4258 1.00 0.99 1.00
5 466 0.97 0.97 0.97 4105 1.00 1.00 1.00
6 413 1.00 1.00 1.00 3644 1.00 1.00 1.00
7 71 0.98 0.82 0.89 626 1.00 0.95 0.97
8 8 0.00 0.00 0.00 71 1.00 0.68 0.81
9 2 0.00 0.00 0.00 19 0.00 0.00 0.00
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GENE EXPRESSIONS

Figure A.11: UMAP of Synthetic Cells (generated by ACTIVA and scGAN with a
subset of real data as training data) compared to real data (not used in training)
colored by gene expression. Column (A). Column A: here, we present results from
68K PBMC data with a UMAP of 6991 cells generated by ACTIVA and scGAN,
respectively, along with the test set, colored by the gene expression of two markers
genes. Column B: we show the results on the Brain Small test set and 1997 ACTIVA
and scGAN generated cells, colored by the gene expression of two marker genes. For
both datasets, we see that cells generated by ACTIVA resemble the real data well,
while more diversity is present among the generated cells.
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Figure A.12: Logarithmic expression of the top marker genes. The first five are for
cluster 1, and the last 5 for cluster 2 in 68K PBMC test set (in blue) and ACTIVA gen-
erated cells (in red). The similarity between the distributions indicates that ACTIVA
has learned the underlying marker gene expression.
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MANIFOLD ANALYSIS

Figure A.13: UMAP of cells generated by ACTIVA compared to real test cells
from 20K Brain Small. The histograms on the top and right of the UMAP plot dis-
play the counts of cells on the horizontal and vertical axis, respectively. This figure
shows that ACTIVA has learned the underlying distribution of the real data while hav-
ing some diversity in the generated samples (which is desired for generative models).

179



Figure A.14: Qualitative comparison of ACTIVA-generated cells with real test set
data. t-SNE plot of all the cells in the test set (in grey), real cluster 2 cells (in blue),
and ACTIVA generated cells when trained with only 0.5% of cluster 2 cells (in red).
This figure illustrates that ACTIVA learns to generate a sub-population even when
trained on 239 cells (out of 7915 training cells). This qualitative evaluation, combined
with the results in Chapter 6, shows the promising application of ACTIVA for improv-
ing the downstream classification of rare populations.
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B
Reconstruction Loss for VAEs with

Gaussian Assumptions

The expected negative reconstruction error LAE is given by:

LAE = Ez∼q(z|x) [log pθ (x|z)] .

In many cases, this term is “chosen" to be the mean squared error (MSE) between the
training data and reconstructed samples. However, it is important to formally derive
the reconstruction loss since the true reconstruction loss is not MSE alone, as shown
below. For simplicity, we normalize the expected reconstruction error by the number
of samples n as

LN =
1
n
Ez∼q(z|x) [− log pθ (x|z)] ,

and let d(x,y) = ∥x−y∥2
2. Moreover, for simplicity, we assume that σ2

θ (z) = σ2
θ I. Now

given the Gaussian assumption on the likelihood Pθ (x|z), we have the normalized re-
construction loss as:

LN =
1
n
Ez∼q(z|x)

[
1
2

(
log(2πσ2

θ )+
d (x,µθ (z))

σ2
θ

)]
.
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Defining MSE = 1
nEz∼q(z|x)d(x,µθ (z)) and substituting in the above expression yields:

LN =
1
2

(
log(2πσ2

θ )+
MSE
σ2

θ

)
= α +βMSE, for α,β ∈ R.

Now we can explicitly assuming that σ2
θ = 1

2 will give us:

LN =
log(π)

2
+MSE.

We can see that choosing MSE as the reconstruction loss simplifies the true recon-
struction loss, which could be sub-optimal in some cases. However, it is common
to take MSE as the reconstruction loss when training a VAE model with a Gaussian
Likelihood function [e.g. as done in Daniel et al.319].
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