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Abstract

High-dimensional statistics with systematically corrupted data

by

Po-Ling Loh

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Martin Wainwright, Chair

Noisy and missing data are prevalent in many real-world statistical estimation problems.
Popular techniques for handling nonidealities in data, such as imputation and expectation-
maximization, are often difficult to analyze theoretically and/or terminate in local optima of
nonconvex functions—these problems are only exacerbated in high-dimensional settings. We
present new methods for obtaining high-dimensional regression estimators in the presence
of corrupted data, and provide theoretical guarantees for the statistical consistency of our
methods. Although our estimators also arise as minima of nonconvex functions, we show the
rather surprising result that all stationary points are clustered around a global minimum.
We describe extensions of our work to nonconvex regularizers, and demonstrate that an
adaptation of composite gradient descent may be used to compute a global optimum up to
statistical precision in log-linear time. Finally, we show how our corrupted regression meth-
ods may be applied to structure estimation for undirected graphical models, even when data
are observed with systematic corruption. We derive new relationships between augmented
inverse covariance matrices and the edge structure of discrete-valued graphs, and combine
our population-level results with corrupted estimation methods to create new algorithms
for graph estimation. We close with theoretical results and preliminary simulations in the
domain of compressed sensing MRI.
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Chapter 1

Introduction

Statistics is entering an exciting new era, as technology continues to propagate and society
advances through the Information Age. Whereas scientific studies were previously limited
by the cost or time required for data collection, modern technology allows massive datasets
to be acquired cheaply and efficiently, shifting the focus of statistics to regimes where the
number of measured variables is comparable to or exceeds the number of samples. From a
computational perspective, it is important to find low-dimensional representations of high-
dimensional data and filter through datasets in a more temporally and spatially efficient
manner than directly processing all samples.

This thesis brings together several areas of statistics that involve new challenges arising
in the field of high-dimensional settings. Scenarios where the number of parameters exceeds
the number of observations involve intrinsic non-identifiability, which is overcome through
appropriate assumptions. In the sections that follow, we outline some of the core problems
and key contributions that will be developed in the remainder of this thesis.

1.1 High-dimensional inference

Throughout this thesis, we are concerned with statistical problems where the number of
parameters exceeds the number of observations. Such high-dimensional problems differ from
their low-dimensional analogs, in which the number of parameters is small (and fixed) and
the number of observations grows to infinity. Since classical statistical theory focuses on
characterizing the asymptotic behavior of estimators in low-dimensional settings, new theory
must be derived to establish nonasymptotic results for high-dimensional estimators. In fact,
estimators that are statistically consistent in low-dimensional settings may be ill-defined
in high-dimensional problems, giving rise to an entire subspace of solutions rather than a
unique estimator. One popular technique is to leverage known structure of the underlying
parameter vector (such as sparsity) and incorporate it into a composite objective that trades
off the prediction error of the estimate with its deviation from the ideal structure. The goal,
from a statistical perspective, is to devise an appropriate estimator and then prove that it
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achieves optimal rates of convergence among the class of models under consideration.

1.2 Systematically corrupted data

Another salient characteristic of many traditional statistical algorithms is the underlying
assumption that observations are cleanly observed, independent, and identically distributed.
What happens when such assumptions do not hold? Intuitively, systematic corruptions lead
to systematic biases in inference, which still persist as the number of samples tends to infin-
ity. Some corruption mechanisms of interest include additive noise and missing data, which
were previously only studied in the context of low-dimensional problems. It is interesting
to ask what can be said about high-dimensional statistical inference in the presence of sys-
tematically corrupted data—both in terms of devising natural estimators and establishing
rates of convergence. We show that a simple variant of the Lasso for linear regression enjoys
provably good behavior when the underlying parameter vector is sparse.

The methods we develop for high-dimensional linear regression have natural applications
to compressed sensing, where the goal is to reduce the number of acquisitions and still
accurately reconstruct a signal. In compressed sensing MRI, the number of samples is only
required to scale as the logarithm of the overall dimensionality times the sparsity of the image
in an appropriate wavelet basis. However, it is unrealistic to assume that data are acquired
noiselessly: In addition to noise in the readout signal, nonidealities in the magnetic field may
lead to systematic noise in the acquisition frequency, thereby creating a garbled image. We
propose a variant of the corrected Lasso algorithm that is designed specifically for corrupted
acquisitions in compressed sensing MRI and performs well in synthetic experiments.

1.3 Nonconvex optimization

On the algorithmic side, high-dimensional statistical inference gives rise to interesting fami-
lies of objective functions that do not satisfy the canonical assumptions necessary for efficient
optimization. Whereas low-dimensional problems often result in optimizing objective func-
tions that are nicely smooth and strongly convex, their high-dimensional analogs generally
only have positive curvature in a restricted set of directions. This necessitates the inclusion
of a regularization function, which encourages solutions to lie in a lower-dimensional space
within which the composite objective is well-behaved. Although it may still be possible to
prove consistency of a global optimum, finding global optima may be exceedingly difficult
in practice. This problem is exacerbated when the objective function possesses nonconvex-
ity due to corrupted observations, yielding multiple local optima. Another parallel line of
work involves using nonconvex regularization functions to reduce bias in estimated parame-
ters. Although statistical consistency of global optima may again be established in a fairly
straightforward manner, optimization algorithms are only guaranteed to locate local optima,
for which theoretical guarantees do not exist.
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We establish a general framework of sufficient conditions under which composite objective
functions formed as a sum of a nonconvex loss and nonconvex regularizer are still tractable to
standard optimization procedures. In particular, when the loss function satisfies a condition
known as restricted strong convexity (RSC) and the penalty satisfies an upper bound on the
level of nonconvexity, all local and global optima are guaranteed to lie within a small ball
of the true parameter, where the radius of the ball is on the order of statistical precision.
We also described how a variant of the composite gradient descent algorithm, typically only
used to locate optima of strongly convex loss functions with convex penalties, may be used
to efficiently obtain local optima within a small radius of the truth.

1.4 Graphical models

Graphical models are used to represent conditional independencies between variables in a
joint distribution, where nodes represent variables and absent edges indicate conditional
independence. In a high-dimensional setting, the goal is to infer the edge structure of a
sparse graph based on samples from the joint distribution. Many theoretical results have
been derived for consistent edge recovery when variables are jointly Gaussian; in practice,
the same algorithms are often applied even when data are not Gaussian, and practitioners
attempt to extract inferences from the output of the learning algorithm. When do algorithms
such as the graphical Lasso yield meaningful results? Do efficient algorithms exist for edge
recovery in highly non-Gaussian settings?

We show that when individual variables take states in a finite discrete alphabet, a funda-
mental connection still exists between generalized (augmented) inverse covariance matrices
and the structure of the graph. Our result hinges on the theory of sufficient statistics in an
exponential family representation of the graph, and constitutes a significant generalization of
results on inverse covariances previously only known for Gaussians. In addition, we propose
new methods for estimtating the edge structure of an arbitrary discrete-valued graphical
model. Our methods are particularly attractive for graphs with bounded treewidth, such as
trees, in which case a (group) graphical Lasso may be applied to the appropriate choice of
sufficient statistics to recover the edges of the graph.

Our research has widespread implications in application domains where the theory of
graphical models is used to learn relationships between individuals in a network. For in-
stance, the goal of learning in social networks is to infer connections between individuals
based on joint observations of their states. In computational biology, scientists wish to
reconstruct gene networks based on joint measurements of gene expression levels. In neu-
roscience, researchers learn neural networks from measured brain activity. Our work on
graphical model estimation in discrete graphs demonstrates that there is still hope for these
learned networks to be meaningful even when the assumption of multivariate Gaussianity is
not strictly satisfied.
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1.5 Thesis overview

The remainder of the thesis is organized as follows. We begin in Chapter 2 with basic
background material. In Chapter 3, we devise a modified Lasso estimator that may be
used for sparse high-dimensional linear regression in the presence of corrupted observations,
and derive statistical properties and optimization guarantees for the resulting estimator.
We also present lower bounds based on information-theoretic arguments, which show that
the modified Lasso estimator is minimax optimal. In Chapter 4, we expand our scope to
more general classes of estimators, and establish sufficient conditions under which stationary
points of nonconvex M-estimators with (possibly nonconvex) regularizers are statistically
consistent. In Chapter 5, we show how our regression-based results, in conjunction with
newly established connections between the edge structure of certain discrete-valued graphical
models and the inverse covariance matrix of the augmented distribution, may be used to
perform structural estimation even in the presence of systematically corrupted observations.
Finally, we close in Chapter 6 with remarks and simulations about how our work may be
applied in the context of compressed sensing MRI. Proofs of the more technical results are
contained in the Appendices.
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Chapter 2

Background

We devote this chapter to expository material introducing some of the basic statistical and
optimization terminology to be used later in the thesis. Each chapter is self-contained,
however, so we invite the reader to examine the introductory material of individual chapters
for more detailed descriptions.

2.1 High-dimensional regression

The basic statistical model to be discussed in this thesis is as follows: Data pairs {(xi, yi)}ni=1

are generated according to a distribution

yi ∼ Pβ∗(· | xi), (2.1)

where xi ∈ Rp, yi ∈ R, and β∗ ∈ Rd is an unknown regression vector. In the models we
consider, we will generally take d = p. In most cases, we will assume that the pairs (xi, yi)
are independent over 1 ≤ i ≤ n, but we will always state explicitly whether or not this is
the case.

We are primarily interested in high-dimensional models, in which we assume that the
number of parameters p exceeds the number of observations n. Consequently, the parametric
model (2.1) may be nonidentifiable without introducing further assumptions. We will assume
that β∗ is a sparse vector: Denoting by ‖β∗‖0 the number of nonzero entries of β∗, we assume
‖β∗‖0 ≤ k for some k ≤ n. In many cases, this reduces the parameter space sufficiently in
order to perform efficient statistical inference.

2.1.1 Examples

As a first example, we consider the problem of high-dimensional linear regression. The
data-generating mechanism (2.1) is given by

yi = xTi β
∗ + ǫi,
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where ǫ ⊥⊥ xi is independent observation noise.
Another example of interest is the generalized linear model (GLM), which includes linear

models as a special case, but also includes other classes of regression models such as logistic
and Poisson regression. For GLMs, the conditional distribution (2.1) is given by

Pβ∗,σ(yi | xi) = exp

{
yix

T
i β

∗ − ψ(xTi β
∗)

c(σ)

}
,

where σ > 0 is a scale parameter and ψ is the cumulant function [59]. In our settings of
interest (e.g., maximum likelihood estimation), β∗ may be estimated independent of σ.

2.1.2 Corrupted observations

We also allow for some corruption in the data, meaning that we only observe surrogates
zi ∈ Rp in place of the covariates xi, according to some conditional distribution

zi ∼ Q(· | xi). (2.2)

Some examples of corruption mechanisms include the following:

Additive noise. Here,
zi = xi + wi,

where xi ⊥⊥ wi and we assume Cov(wi) is known or may be estimated efficiently. This model
follows the standard errors-in-variables model of Carroll et al. [18]. Although needing to
know Cov(wi) a priori is a somewhat restrictive assumption, it is noted in Carroll et al. [18]
that Cov(wi) may be estimated in settings where repeated noisy measurements of the same
covariate are available. Knowledge of Cov(wi) is also reasonable in some engineering appli-
cations (e.g., compressed sensing), where the noise covariance may correspond to instrument
error and may be measured independently.

Missing data. For some fixed fraction α ∈ [0, 1), and independently for all 1 ≤ j ≤ p, we
have

zij =

{
xij , with probability 1− α,

missing, with probability α.

In the statistical literature, this corresponds to the data being missing completely at random
(MCAR) [51]. In our algorithms, we do not need to assume that α is known a priori, since
a sufficiently good estimate may be obtained simply by taking an empirical average of the
number of missing entries in the data matrix.
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2.1.3 Regularized M-estimators

In order to estimate the unknown regression vector β∗ from observations {(zi, yi)}ni=1, we
will use the technique of M-estimation. Suppose

β∗ = arg min
β∈Rp

L(β),

for a function L which we call the population risk. For example, L may be the expected
(conditional) negative log likelihood:

L(β) = −E[log Pβ(yi | xi)]. (2.3)

We denote the empirical risk by Ln, where Ln is a function satisfying E[Ln(β)] = L(β). For
instance, when L is given by equation (2.3), we may take

Ln(β) = −1

n

n∑

i=1

log Pβ(yi | xi). (2.4)

In the high-dimensional setting, the minimizer β̂ ∈ argminβ∈Rp Ln(β) may not be unique.
Hence, we instead minimize a regularized version, given by

β̂ ∈ arg min
β∈Rp

{Ln(β) + ρλ(β)} , (2.5)

where ρλ is the regularizer or penalty function, and λ > 0 is the regularization parameter.
Following the terminology of Huber [36], with the addition of a regularizer, we call the
estimator (2.5) a regularizedM-estimator when Ln may be written as an average of functions
of individual observations (e.g., equation (2.4)). We will also allow for an extra side condition
in equation (2.5), where the vector β is constrained to lie in a convex set Ω.

A standard choice for the regularizer ρλ when β∗ is sparse is the ℓ1-norm,

ρλ(β) = λ‖β‖1,

which may be viewed as a convex relaxation of the nonconvex regularizer

ρλ(β) = λ‖β‖0.

Other nonconvex regularizers of interest, including the smoothly clipped absolute deviation
(SCAD) penalty [28] and the minimax concave penalty [104] will be introduced later. Note
that the well-known Lasso estimator [85] is an example of a regularized M-estimator (2.5),
where Ln is the least-squares loss for linear regression and ρλ is the ℓ1-penalty.
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2.2 Graphical models

We now turn our attention to graphical models. Given a joint probability distribution
q(x1, . . . , xp), we study graphical structures G = (V,E), with V = {1, . . . , p} and E ⊆ V ×V ,
which respect certain characteristics of the distribution. In particular, the absence of edges
in G indicates conditional independence relations between subsets of variables. While we will
focus on undirected graphical models in this thesis, we include a brief overview of directed
graphical models, as well.

2.2.1 Undirected graphs

An undirected graph G = (V,E) is a conditional independence graph or Markov random field
for the distribution q if the following property holds: For any disjoint triple (A,B, S) ⊆ V
such that S separates A from B, meaning any path from a vertex in A to a vertex in B must
pass through a vertex in S, we have XA ⊥⊥ XB | XS. Here, XC := {Xj : j ∈ C} for any
subset C ⊆ V . We also say that G represents the distribution q.

By the well-known Hammersley-Clifford theorem [47], if q is a strictly positive distribution
(i.e., q(x1, . . . , xp) > 0 for all (x1, . . . , xp)), then G represents q if and only if we may write

q(x1, . . . , xp) =
∏

C∈C
ψC(xC),

for some potential functions {ψC : C ∈ C} defined over the set of cliques C of G. In
particular, the complete graph on p vertices always constitutes an undirected graphical
model representation for q, but representations with fewer edges may exist.

2.2.2 Directed graphs

We now consider a directed graph G = (V,E), where we distinguish between edges (j, k) and
(k, j). We say that G is a directed acyclic graph (DAG) if there are no directed paths starting
and ending at the same node. For each node j ∈ V , let Pa(j) := {k ∈ V : (k, j) ∈ E} denote
the parent set of j. A DAG G represents a distribution q(x1, . . . , xp) if q factorizes as

q(x1, . . . , xp) ∝
p∏

j=1

q(xj | xPa(j)). (2.6)

A permutation π of the vertex set V is a topological order for G if π(j) < π(k) whenever
(j, k) ∈ E. The factorization (2.6) implies Xj ⊥⊥ Xν(j) | XPa(j) fo all j, where ν(j) is the set
of nondescendants of j.

2.2.3 Structure estimation

Given joint observations {(x1, . . . , xp)}ni=1 from the distribution q, our goal is to infer the un-
known edge structure of the graph G. When G is undirected, existing methods for structure
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estimation generally fall into two categories: local (nodewise) methods [60, 73] and global
methods [100, 30, 24].

For local methods, the procedure is to estimate the neighborhood set N(j) of each node
j ∈ {1, . . . , p} in succession. The edge set E will then be defined using either an AND
function (i.e., (j, k) ∈ E if and only if j ∈ N(k) AND k ∈ N(j)) or an OR function (i.e.,
(j, k) ∈ E if and only if j ∈ N(k) OR k ∈ N(j)). For global methods, the procedure involves
minimizing an empirical loss function defined in terms of an appropriate summary statistic of
the graph. For instance, when the underlying distribution is multivariate Gaussian, it is well-
known that the support of the inverse covariance matrix Θ := (Cov(X))−1 coincides with the
edge structure of the conditional independence graph [47]. Consequently, popular methods
for structure estimation of Gaussian graphical models reduce to performing a maximum
likelihood calculation over the space of positive semidefinite matrices.

When G is a directed graph, structure estimation is a significantly harder problem. If a
topological order of the vertices is known a priori, one may simply regress each vertex upon
its predecessors and select a neighborhood set that maximizes the function fit. However,
when a topological order is unknown, existing methods for DAG estimation involve costly
search algorithms that scale exponentially with the size of the graph [69, 83].

We will again focus our attention on high-dimensional settings, where p ≫ n. In order
to avoid issues of nonidentifiability, we will assume that the number of edges and/or the
maximal degree of the underlying graph G are sparse. This manifests itself in the addition
of a regularization term in both nodewise and global estimation methods.

2.3 Optimization algorithms

Finally, we include background two optimization algorithms that we employ and analyze in
this thesis. Both are first-order methods, meaning they are iterative methods for minimizing
a target function based on gradients.

2.3.1 Projected gradient descent

The projected gradient method is used to optimize functions of the form

min f(x)

s.t. x ∈ Ω,

where f is differentiable and Ω ⊆ Rp is a closed convex set. The algorithm is initialized at
a point x0 ∈ Ω, and successive iterates take the form

xt+1 = argmin
x∈Ω

∥∥∥x− (xt − ηt∇f(xt))
∥∥∥
2

2
,

or equivalently,

xt+1 = PΩ

(
xt − ηt∇f(xt)

)
,
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where PΩ is the projection operator onto the set Ω and ηt is the stepsize at iteration t.
Our results will be derived for a fixed stepsize η, but the stepsize may also be chosen adap-
tively after each successive iteration. For more details on projected gradient methods and
convergence guarantees, see Bertsekas [6].

2.3.2 Composite gradient descent

Now consider the case when the function to be optimized is not smooth. The composite
gradient descent method is used to optimize functions of the form

min {f(x) + g(x)}
s.t. x ∈ Ω,

where Ω ⊆ Rp is a closed convex set, f is differentiable, and g is convex but not necessarily
differentiable. The algorithm is initialized at a point x0 ∈ Ω, and successive iterates take
the form

xt+1 = argmin
x∈Ω

{
f(xt) + 〈∇f(xt), x− xt〉+ Lt

2
‖x− xt‖22 + g(x)

}
,

or equivalently,

xt+1 = argmin
x∈Ω

{∥∥∥x− (xt − ηt∇f(xt))
∥∥∥
2

2
+ 2ηtg(x)

}
,

where ηt = 1
Lt is the stepsize. Again, the stepsize may be constant or chosen adaptively. For

more details and convergence guarantees, see Nesterov [65].
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Chapter 3

Modified Lasso algorithm

3.1 Introduction

In standard formulations of prediction problems, it is assumed that the covariates are fully-
observed and sampled independently from some underlying distribution. However, these
assumptions are not realistic for many applications, in which covariates may be observed only
partially, observed subject to corruption, or exhibit some type of dependency. Consider the
problem of modeling the voting behavior of politicians: in this setting, votes may be missing
due to abstentions, and temporally dependent due to collusion or “tit-for-tat” behavior.
Similarly, surveys often suffer from the missing data problem, since users fail to respond to
all questions. Sensor network data also tends to be both noisy due to measurement error,
and partially missing due to failures or drop-outs of sensors.

There are a variety of methods for dealing with noisy and/or missing data, including
various heuristic methods, as well as likelihood-based methods involving the expectation-
maximization (EM) algorithm (e.g., see the book [51] and references therein). A challenge in
this context is the possible nonconvexity of associated optimization problems. For instance,
in applications of EM, problems in which the negative likelihood is a convex function often
become nonconvex with missing or noisy data. Consequently, although the EM algorithm
will converge to a local minimum, it is difficult to guarantee that the local optimum is close
to a global minimum.

In this chapter, we study these issues in the context of high-dimensional sparse linear
regression—in particular, in the case when the predictors or covariates are noisy, missing,
and/or dependent. Our main contribution is to develop and study simple methods for
handling these issues, and to prove theoretical results about both the associated statistical
error and the optimization error. Like EM-based approaches, our estimators are based on
solving optimization problems that may be nonconvex; however, despite this nonconvexity,
we are still able to prove that a simple form of projected gradient descent will produce an
output that is “sufficiently close”—as small as the statistical error—to any global optimum.
As a second result, we bound the statistical error, showing that it has the same scaling as
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the minimax rates for the classical cases of perfectly observed and independently sampled
covariates. In this way, we obtain estimators for noisy, missing, and/or dependent data
that have the same scaling behavior as the usual fully-observed and independent case. The
resulting estimators allow us to solve the problem of high-dimensional Gaussian graphical
model selection with missing data.

There is a large body of work on the problem of corrupted covariates or error-in-variables
for regression problems (e.g., see the papers and books [39, 18, 41, 95], as well as references
therein). Much of the earlier theoretical work is classical in nature, meaning that it requires
that the sample size n diverges with the dimension p fixed. Most relevant to this chapter is
more recent work that has examined issues of corrupted and/or missing data in the context
of high-dimensional sparse linear models, allowing for n ≪ p. Städler and Bühlmann [84]
developed an EM-based method for sparse inverse covariance matrix estimation in the miss-
ing data regime, and used this result to derive an algorithm for sparse linear regression with
missing data. As mentioned above, however, it is difficult to guarantee that EM will converge
to a point close to a global optimum of the likelihood, in contrast to the methods studied
here. Rosenbaum and Tsybakov [76] studied the sparse linear model when the covariates are
corrupted by noise, and proposed a modified form of the Dantzig selector (see the discussion
following our main results for a detailed comparison to this past work, and also to concurrent
work [77] by the same authors). For the particular case of multiplicative noise, the type of
estimator that we consider here has been studied in past work [95]; however, this theoretical
analysis is of the classical type, holding only for n≫ p, in contrast to the high-dimensional
models that are of interest here.

The remainder of this chapter is organized as follows. We begin in Section 3.2 with back-
ground and a precise description of the problem. We then introduce the class of estimators
we will consider and the form of the projected gradient descent algorithm. Section 3.3 is
devoted to a description of our main results, including a pair of general theorems on the
statistical and optimization error, and then a series of corollaries applying our results to the
cases of noisy, missing, and dependent data. In Section 3.4, we demonstrate simulations
to confirm that our methods work in practice, and verify the theoretically-predicted scaling
laws. In Section 3.5, we derive information-theoretic lower bounds establishing the minimax
optimality of the modified Lasso for an important subclass of problems. Section 3.6 contains
proofs of some of the main results, with the remaining proofs contained in Appendix A.

Notation: For a matrix M , we write ‖M‖max := maxi,j |mij | to be the elementwise ℓ∞-
norm of M . Furthermore, |||M |||1 denotes the induced ℓ1-operator norm (maximum absolute

column sum) of M , and |||M |||op is the spectral norm of M . We write κ(M) := λmax(M)
λmin(M)

, the
condition number ofM . For matricesM1,M2, we writeM1⊙M2 to denote the componentwise
Hadamard product, and write M1 c M2 to denote componentwise division. For functions
f(n) and g(n), we write f(n) - g(n) to mean that f(n) ≤ cg(n) for a universal constant
c ∈ (0,∞), and similarly, f(n) % g(n) when f(n) ≥ c′g(n) for some universal constant
c′ ∈ (0,∞). Finally, we write f(n) ≍ g(n) when f(n) - g(n) and f(n) % g(n) hold
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simultaneously.

3.2 Background and problem setup

In this section, we provide background and a precise description of the problem, and then
motivate the class of estimators analyzed in this chapter. We then discuss a simple class of
projected gradient descent algorithms that may be used to obtain an estimator.

3.2.1 Observation model and high-dimensional framework

Suppose we observe a response variable yi ∈ R linked to a covariate vector xi ∈ Rp via the
linear model

yi = 〈xi, β∗〉+ ǫi, for i = 1, 2, . . . , n. (3.1)

Here, the regression vector β∗ ∈ Rp is unknown, and ǫi ∈ R is observation noise, independent
of xi. Rather than directly observing each xi ∈ Rp, we observe a vector zi ∈ Rp linked to xi
via some conditional distribution, i.e.,

zi ∼ Q(· | xi), for i = 1, 2, . . . , n. (3.2)

This setup applies to various disturbances to the covariates, including:

(a) Covariates with additive noise: We observe zi = xi + wi, where wi ∈ Rp is a random
vector independent of xi, say zero-mean with known covariance matrix Σw.

(b) Missing data: For some fraction α ∈ [0, 1), we observe a random vector zi ∈ Rp such
that for each component j, we independently observe zij = xij with probability 1− α,
and zij = ∗ with probability α. We can also consider the case when the entries in the
jth column have a different probability αj of being missing.

(c) Covariates with multiplicative noise: Generalizing the missing data problem, suppose
we observe zi = xi ⊙ ui, where ui ∈ Rp is again a random vector independent of xi,
and ⊙ is the Hadamard product. The problem of missing data is a special case of
multiplicative noise, where all uij’s are independent and uij ∼ Bernoulli(1− αj).

Our first set of results is deterministic, depending on specific instantiations of the observa-
tions {(yi, zi)}ni=1. However, we are also interested in results that hold with high probability
when the xi’s and zi’s are drawn at random. We consider both the case when the xi’s are
drawn i.i.d. from a fixed distribution; and the case of dependent covariates, when the xi’s
are generated according to a stationary vector autoregressive (VAR) process.

We work within a high-dimensional framework that allows the number of predictors p to
grow and possibly exceed the sample size n. Of course, consistent estimation when n≪ p is
impossible unless the model is endowed with additional structure—for instance, sparsity in
the parameter vector β∗. Consequently, we study the class of models where β∗ has at most
k non-zero parameters, where k is also allowed to increase to infinity with p and n.
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3.2.2 M-estimators for noisy and missing covariates

In order to motivate the class of estimators we will consider, let us begin by examining a
simple deterministic problem. Let Σx ≻ 0 be the covariance matrix of the covariates, and
consider the ℓ1-constrained quadratic program

β̂ ∈ arg min
‖β‖1≤R

{1
2
βTΣxβ − 〈Σxβ∗, β〉

}
. (3.3)

As long as the constraint radius R is at least ‖β∗‖1, the unique solution to this convex

program is β̂ = β∗. Of course, this program is an idealization, since in practice we may
not know the covariance matrix Σx, and we certainly do not know Σxβ

∗—after all, β∗ is the
quantity we are trying to estimate!

Nonetheless, this idealization still provides useful intuition, as it suggests various estima-
tors based on the plug-in principle. Given a set of samples, it is natural to form estimates
of the quantities Σx and Σxβ

∗, which we denote by Γ̂ ∈ Rp×p and γ̂ ∈ Rp, respectively, and
to consider the modified program

β̂ ∈ arg min
‖β‖1≤R

{1
2
βT Γ̂β − 〈γ̂, β〉

}
, (3.4)

or alternatively, the regularized version

β̂ ∈ arg min
β∈Rp

{1
2
βT Γ̂β − 〈γ̂, β〉+ λn‖β‖1

}
, (3.5)

where λn > 0 is a user-defined regularization parameter. Note that the two problems are
equivalent by Lagrangian duality when the objectives are convex, but not in the case of a
nonconvex objective. The Lasso [85, 20] is a special case of these programs, obtained by
setting

Γ̂Las :=
1

n
XTX and γ̂Las :=

1

n
XTy, (3.6)

where we have introduced the shorthand y = (y1, . . . , yn)
T ∈ Rn, and X ∈ Rn×p, with xTi as

its ith row. A simple calculation shows that (Γ̂Las, γ̂Las) are unbiased estimators of the pair
(Σx, Σxβ

∗). This unbiasedness and additional concentration inequalities (to be described in
the sequel) underlie the well-known analysis of the Lasso in the high-dimensional regime.

In this chapter, we focus on more general instantiations of the programs (3.4) and (3.5),

involving different choices of the pair (Γ̂, γ̂) that are adapted to the cases of noisy and/or

missing data. Note that the matrix Γ̂Las is positive semidefinite, so the Lasso program is
convex. In sharp contrast, for the case of noisy or missing data, the most natural choice
of the matrix Γ̂ is not positive semidefinite, hence the quadratic losses appearing in the
problems (3.4) and (3.5) are nonconvex. Furthermore, when Γ̂ has negative eigenvalues, the
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objective in equation (3.5) is unbounded from below. Hence, we make use of the following
regularized estimator:

β̂ ∈ arg min
‖β‖1≤b0

√
k

{1
2
βT Γ̂β − 〈γ̂, β〉+ λn‖β‖1

}
, (3.7)

for a suitable constant b0.
In the presence of nonconvexity, it is generally impossible to provide a polynomial-time

algorithm that converges to a (near) global optimum, due to the presence of local minima.
Remarkably, we are able to prove that this issue is not significant in our setting, and a simple
projected gradient descent algorithm applied to the programs (3.4) or (3.7) converges with
high probability to a vector extremely close to any global optimum.

Let us illustrate these ideas with some examples. Recall that (Γ̂, γ̂) serve as unbiased esti-
mators for (Σx,Σxβ

∗).

Example 3.1 (Additive noise). Suppose we observe Z = X +W , where W is a random
matrix independent of X, with rows wi drawn i.i.d. from a zero-mean distribution with known
covariance Σw. We consider the pair

Γ̂add :=
1

n
ZTZ − Σw and γ̂add :=

1

n
ZTy. (3.8)

Note that when Σw = 0 (corresponding to the noiseless case), the estimators reduce to the

standard Lasso. However, when Σw 6= 0, the matrix Γ̂add is not positive semidefinite in the
high-dimensional regime (n ≪ p). Indeed, since the matrix 1

n
ZTZ has rank at most n, the

subtracted matrix Σw may cause Γ̂add to have a large number of negative eigenvalues. For
instance, if Σw = σ2

wI for σ2
w > 0, then Γ̂add has p− n eigenvalues equal to −σ2

w.

Example 3.2 (Missing data). We now consider the case where the entries of X are missing
at random. Let us first describe an estimator for the special case where each entry is missing
at random, independently with some constant probability α ∈ [0, 1). (In Example 3.3 to
follow, we will describe the extension to general missing probabilities.) Consequently, we
observe the matrix Z ∈ Rn×p with entries

Zij =

{
Xij with probability 1− α,

0 otherwise.

Given the observed matrix Z ∈ Rn×p, we use

Γ̂mis :=
Z̃T Z̃

n
− α diag

(Z̃T Z̃

n

)
and γ̂mis :=

1

n
Z̃Ty, (3.9)

where Z̃ij = Zij/(1 − α). It is easy to see that the pair (Γ̂mis, γ̂mis) reduces to the pair

(Γ̂Las, γ̂Las) for the standard Lasso when α = 0, corresponding to no missing data. In the
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more interesting case when α ∈ (0, 1), the matrix Z̃T Z̃
n

in equation (3.9) has rank at most

n, so the subtracted diagonal matrix may cause the matrix Γ̂mis to have a large number of
negative eigenvalues when n ≪ p. As a consequence, the matrix Γ̂mis is not (in general)
positive semidefinite, so the associated quadratic function is not convex.

Example 3.3 (Multiplicative noise). As a generalization of the previous example, we now
consider the case of multiplicative noise. In particular, suppose we observe the quantity
Z = X ⊙ U , where U is a matrix of nonnegative noise variables. In many applications, it
is natural to assume that the rows ui of U are drawn in an i.i.d. manner, say from some
distribution in which both the vector E[u1] and the matrix E[u1uT1 ] have strictly positive
entries. This general family of multiplicative noise models arises in various applications; we
refer the reader to the papers [39, 18, 41, 95] for more discussion and examples. A natural

choice of the pair (Γ̂, γ̂) is given by the quantities

Γ̂mul :=
1

n
ZTZ c E(u1u

T
1 ) and Γ̂mul :=

1

n
ZTy c E(u1), (3.10)

where c denotes elementwise division. A small calculation shows that these are unbiased
estimators of Σx and Σxβ

∗, respectively. The estimators (3.10) have been studied in past
work [95], but only under classical scaling (n≫ p).

As a special case of the estimators (3.10), suppose the entries uij of U are independent
Bernoulli(1 − αj) random variables. Then the observed matrix Z = X ⊙ U corresponds
to a missing-data matrix, where each element of the jth column has probability αj of being
missing. In this case, the estimators (3.10) become

Γ̂mis =
ZTZ

n
c M and γ̂mis =

1

n
ZTy c (1−α), (3.11)

where M := E(u1uT1 ) satisfies

Mij =

{
(1− αi)(1− αj) if i 6= j

1− αi if i = j,

α is the parameter vector containing the αj’s, and 1 is the vector of all 1’s. In this way, we
obtain a generalization of the estimator discussed in Example 3.2.

3.2.3 Restricted eigenvalue conditions

Given an estimate β̂, there are various ways to assess its closeness to β∗. In this chapter,
we focus on the ℓ2-norm ‖β̂ − β∗‖2, as well as the closely related ℓ1-norm ‖β̂ − β∗‖1. When
the covariate matrix X is fully observed (so that the Lasso can be applied), it is now well

understood that a sufficient condition for ℓ2-recovery is that the matrix Γ̂Las =
1
n
XTX satisfy

a certain type of restricted eigenvalue (RE) condition (e.g., [8, 32]). In this chapter, we make
use of the following condition.
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Definition 1 (Lower-RE condition). The matrix Γ̂ satisfies a lower restricted eigenvalue
condition with curvature αℓ > 0 and tolerance τ(n, p) > 0 if

θT Γ̂θ ≥ αℓ ‖θ‖22 − τ(n, p)‖θ‖21 for all θ ∈ Rp. (3.12)

It can be shown that when the Lasso matrix Γ̂Las =
1
n
XTX satisfies this RE condition (3.12),

the Lasso estimate has low ℓ2-error for any vector β∗ supported on any subset of size at most
k . 1

τ(n,p)
. In particular, bound (3.12) implies a sparse RE condition for all k of this

magnitude, and conversely, Lemma A.11 in the Appendix shows that a sparse RE condition
implies bound (3.12). In this chapter, we work with condition (3.12), since it is especially
convenient for analyzing optimization algorithms.

In the standard setting (with uncorrupted and fully observed design matrices), it is known
that for many choices of the design matrix X (with rows having covariance Σ), the Lasso

matrix Γ̂Las will satisfy such an RE condition with high probability (e.g., [70, 80]) with
αℓ =

1
2
λmin(Σ) and τ(n, p) ≍ log p

n
. A significant portion of the analysis in this chapter is

devoted to proving that different choices of Γ̂, such as the matrices Γ̂add and Γ̂mis defined
earlier, also satisfy condition (3.12) with high probability. This fact is by no means obvious,

since as previously discussed, the matrices Γ̂add and Γ̂mis generally have large numbers of
negative eigenvalues.

Finally, although such upper bounds are not necessary for statistical consistency, our al-
gorithmic results make use of the analogous upper restricted eigenvalue condition, formalized
in the following:

Definition 2 (Upper-RE condition). The matrix Γ̂ satisfies an upper restricted eigenvalue
condition with smoothness αu > 0 and tolerance τ(n, p) > 0 if

θT Γ̂θ ≤ αu‖θ‖22 + τ(n, p)‖θ‖21 for all θ ∈ Rp. (3.13)

In recent work on high-dimensional projected gradient descent, Agarwal et al. [1] make use
of a more general form of the lower and upper bounds (3.12) and (3.13), applicable to non-
quadratic losses as well, which are referred to as the restricted strong convexity (RSC) and
restricted smoothness (RSM) conditions, respectively. For various class of random design

matrices, it can be shown that the Lasso matrix Γ̂Las satisfies the upper bound (3.13) with
αu = 2λmax(Σx) and τ(n, p) ≍ log p

n
; see Raskutti et al. [70] for the Gaussian case and

Rudelson and Zhou [80] for the sub-Gaussian setting. We will establish similar scaling for

our choices of Γ̂.

3.2.4 Gradient descent algorithms

In addition to proving results about the global minima of the (possibly nonconvex) pro-
grams (3.4) and (3.5), we are also interested in polynomial-time procedures for approxi-
mating such optima. In this chapter, we analyze some simple algorithms for solving either
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the constrained program (3.4) or the Lagrangian version (3.7). Note that the gradient of

the quadratic loss function takes the form ∇L(β) = Γ̂β − γ̂. In application to the con-
strained version, the method of projected gradient descent generates a sequence of iterates
{βt, t = 0, 1, 2, . . .} by the recursion

βt+1 = arg min
‖β‖1≤R

{
L(βt) + 〈∇L(βt), β − βt〉+ η

2
‖β − βt‖22

}
, (3.14)

where η > 0 is a stepsize parameter. Equivalently, this update can be written as βt+1 =
Π
(
βt − 1

η
∇L(βt)

)
, where Π denotes the ℓ2-projection onto the ℓ1-ball of radius R. This

projection can be computed rapidly in O(p) time using a procedure due to Duchi et al. [26].
For the Lagrangian update, we use a slight variant of the projected gradient update (3.14),
namely

βt+1 = arg min
‖β‖1≤R

{
L(βt) + 〈∇L(βt), β − βt〉+ η

2
‖β − βt‖22 + λn‖β‖1

}
, (3.15)

with the only difference being the inclusion of the regularization term. This update can also
performed efficiently by performing two projections onto the ℓ1-ball (see the paper [1] for
details).

When the objective function is convex (equivalently, Γ̂ is positive semidefinite), the it-
erates (3.14) or (3.15) are guaranteed to converge to a global minimum of the objective

functions (3.4) and (3.7), respectively. In our setting, the matrix Γ̂ need not be positive
semidefinite, so the best generic guarantee is that the iterates converge to a local optimum.
However, our analysis shows that for the family of programs (3.4) or (3.7), under a reasonable
set of conditions satisfied by various statistical models, the iterates actually converge to a
point extremely close to any global optimum in both ℓ1-norm and ℓ2-norm; see Theorem 3.2
to follow for a more detailed statement.

3.3 Main results and consequences

We now state our main results and discuss their consequences for noisy, missing, and depen-
dent data.

3.3.1 General results

We provide theoretical guarantees for both the constrained estimator (3.4) and the La-
grangian version (3.7). Note that we obtain different optimization problems as we vary the

choice of the pair (Γ̂, γ̂) ∈ Rp×p×Rp. We begin by stating a pair of general results, applicable
to any pair that satisfies certain conditions. Our first result (Theorem 3.1) provides bounds

on the statistical error, namely the quantity ‖β̂−β∗‖2, as well as the corresponding ℓ1-error,
where β̂ is any global optimum of the programs (3.4) or (3.7). Since the problem may be
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nonconvex in general, it is not immediately obvious that one can obtain a provably good
approximation to any global optimum without resorting to costly search methods. In order
to assuage this concern, our second result (Theorem 3.2) provides rigorous bounds on the

optimization error, namely the differences ‖βt − β̂‖2 and ‖βt − β̂‖1 incurred by the iterate
βt after running t rounds of the projected gradient descent updates (3.14) or (3.15).

3.3.1.1 Statistical error

In controlling the statistical error, we assume that the matrix Γ̂ satisfies a lower-RE condition
with curvature αℓ and tolerance τ(n, p), as previously defined (3.12). Recall that Γ̂ and γ̂
serve as surrogates to the deterministic quantities Σx ∈ Rp×p and Σxβ

∗ ∈ Rp, respectively.
Our results also involve a measure of deviation in these surrogates. In particular, we assume
that there is some function ϕ(Q, σǫ), depending on the two sources of noise in our problem:
the standard deviation σǫ of the observation noise vector ǫ from equation (3.1), and the
conditional distribution Q from equation (3.2) that links the covariates xi to the observed
versions zi. With this notation, we consider the deviation condition

‖γ̂ − Γ̂β∗‖∞ ≤ ϕ(Q, σǫ)

√
log p

n
. (3.16)

To aid intuition, note that inequality (3.16) holds whenever the following two deviation
conditions are satisfied:

‖γ̂ − Σxβ
∗‖∞ ≤ ϕ(Q, σǫ)

√
log p

n
and ‖(Γ̂− Σx)β

∗‖∞ ≤ ϕ(Q, σǫ)

√
log p

n
. (3.17)

The pair of inequalities (3.17) clearly measures the deviation of the estimators (Γ̂, γ̂) from
their population versions, and they are sometimes easier to verify theoretically. However,
inequality (3.16) may be used directly to derive tighter bounds (e.g., in the additive noise
case). Indeed, the bounds established via inequalities (3.17) is not sharp in the limit of
low noise on the covariates, due to the second inequality. In the proofs of our corollaries
to follow, we will verify the deviation conditions for various forms of noisy, missing, and
dependent data, with the quantity ϕ(Q, σǫ) changing depending on the model. We have the

following result, which applies to any global optimum β̂ of the regularized version (3.7) with

λn ≥ 4ϕ(Q, σǫ)
√

log p
n

:

Theorem 3.1 (Statistical error). Suppose the pair (Γ̂, γ̂) satisfies the deviation bound (3.16),

and the matrix Γ̂ satisfies the lower-RE condition (3.12) with parameters (αℓ, τ) such that

√
k τ(n, p) ≤ min

{ αℓ

128
√
k
,
ϕ(Q, σǫ)

b0

√
log p

n

}
. (3.18)
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Then for any vector β∗ with sparsity at most k, there is a universal positive constant c0 such
that any global optimum β̂ of the Lagrangian program (3.7) with any b0 ≥ ‖β∗‖2 satisfies the
bounds

‖β̂ − β∗‖2 ≤ c0
√
k

αℓ
max

{
ϕ(Q, σǫ)

√
log p

n
, λn

}
, and (3.19a)

‖β̂ − β∗‖1 ≤ 8 c0 k

αℓ
max

{
ϕ(Q, σǫ)

√
log p

n
, λn

}
. (3.19b)

The same bounds (without λn) also apply to the constrained program (3.4) with radius
choice R = ‖β∗‖1.

Remarks To be clear, all the claims of Theorem 3.1 are deterministic. Probabilistic con-
ditions will enter when we analyze specific statistical models and certify that the RE con-
dition (3.18) and deviation conditions are satisfied by a random pair (Γ̂, γ̂) with high prob-

ability. We note that for the standard Lasso choice (Γ̂Las, γ̂Las) of this matrix-vector pair,
bounds of the form (3.19) for sub-Gaussian noise are well known from past work (e.g., [8,
102, 61, 64]). The novelty of Theorem 3.1 is in allowing for general pairs of such surrogates,
which—as shown by the examples discussed earlier—can lead to nonconvexity in the under-
lying M-estimator. Moreover, some interesting differences arise due to the term ϕ(Q, σǫ),
which changes depending on the nature of the model (missing, noisy, and/or dependent). As
will be clarified in the sequel, proving that the conditions of Theorem 3.1 are satisfied with
high probability for noisy/missing data requires some non-trivial analysis, involving both
concentration inequalities and random matrix theory.

Note that in the presence of nonconvexity, it is possible in principle for the optimization
problems (3.4) and (3.7) to have many global optima that are separated by large distances.
Interestingly, Theorem 3.1 guarantees that this unpleasant feature does not arise under the
stated conditions: given any two global optima β̂ and β̃ of the program (3.4), Theorem 3.1
combined with the triangle inequality guarantees that

‖β̂ − β̃‖2 ≤ ‖β̂ − β∗‖2 + ‖β̃ − β∗‖2 ≤ 2c0
ϕ(Q, σǫ)

αℓ

√
k log p

n

and similarly for the program (3.7). Consequently, under any scaling such that k log p
n

= o(1),
the set of all global optima must lie within an ℓ2-ball whose radius shrinks to zero.

In addition, it is worth observing that Theorem 3.1 makes a specific prediction for the scal-
ing behavior of the ℓ2-error ‖β̂−β∗‖2. In order to study this scaling prediction, we performed
simulations under the additive noise model described in Example 3.1, using the parameter
setting Σx = I and Σw = σ2

wI with σw = 0.2. Panel (a) of Figure 3.1 provides plots1 of

1Corollary 3.1, to be stated shortly, guarantees that the conditions of Theorem 3.1 are satisfied with high
probability for the additive noise model. In addition, Theorem 3.2 to follow provides an efficient method of
obtaining an accurate approximation of the global optimum.
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Figure 3.1: Plots of the error ‖β̂ − β∗‖2 after running projected gradient descent on the
nonconvex objective, with sparsity k ≈ √

p. Plot (a) is an error plot for i.i.d. data with
additive noise, and plot (b) shows ℓ2-error versus the rescaled sample size n

k log p
. As predicted

by Theorem 3.1, the curves align for different values of p in the rescaled plot.

the error ‖β̂ − β∗‖2 versus the sample size n, for problem dimensions p ∈ {128, 256, 512}.
Note that for all three choices of dimensions, the error decreases to zero as the sample size
n increases, showing consistency of the method. The curves also shift to the right as the
dimension p increases, reflecting the natural intuition that larger problems are harder in a
certain sense. Theorem 3.1 makes a specific prediction about this scaling behavior: in par-
ticular, if we plot the ℓ2-error versus the rescaled sample size n/(k log p), the curves should
roughly align for different values of p. Panel (b) shows the same data re-plotted on these
rescaled axes, thus verifying the predicted “stacking behavior.”

Finally, as noted by a reviewer, the constraint R = ‖β∗‖1 in the program (3.4) is rather
restrictive, since β∗ is unknown. Theorem 3.1 merely establishes a heuristic for the scaling
expected for this optimal radius. In this regard, the Lagrangian estimator (3.7) is more
appealing, since it only requires choosing b0 to be larger than ‖β∗‖2, and the conditions on
the regularizer λn are the standard ones from past work on the Lasso.

3.3.1.2 Optimization error

Although Theorem 3.1 provides guarantees that hold uniformly for any global minimizer,
it does not provide guidance on how to approximate such a global minimizer using a
polynomial-time algorithm. Indeed, for nonconvex programs in general, gradient-type meth-
ods may become trapped in local minima, and it is impossible to guarantee that all such
local minima are close to a global optimum. Nonetheless, we are able to show that for
the family of programs (3.4), under reasonable conditions on Γ̂ satisfied in various settings,
simple gradient methods will converge geometrically fast to a very good approximation of
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any global optimum. The following theorem supposes that we apply the projected gradient
updates (3.14) to the constrained program (3.4), or the composite updates (3.15) to the
Lagrangian program (3.7), with stepsize η = 2αu. In both cases, we assume that n % k log p,
as is required for statistical consistency in Theorem 3.1.

Theorem 3.2 (Optimization error). Under the conditions of Theorem 3.1:

(a) For any global optimum β̂ of the constrained program (3.4), there are universal positive
constants (c1, c2) and a contraction coefficient γ ∈ (0, 1), independent of (n, p, k), such
that the gradient descent iterates (3.14) satisfy the bounds

‖βt − β̂‖22 ≤ γt‖β0 − β̂‖22 + c1
log p

n
‖β̂ − β∗‖21 + c2‖β̂ − β∗‖22, (3.20)

‖βt − β̂‖1 ≤ 2
√
k ‖βt − β̂‖2 + 2

√
k ‖β̂ − β∗‖2 + 2 ‖β̂ − β∗‖1, (3.21)

for all t ≥ 0.

(b) Letting φ denote the objective function of Lagrangian program (3.7) with global opti-

mum β̂, and applying composite gradient updates (3.15), there are universal positive
constants (c1, c2) and a contraction coefficient γ ∈ (0, 1), independent of (n, p, k), such
that

‖βt − β̂‖22 ≤ c1‖β̂ − β∗‖22︸ ︷︷ ︸
δ2

for all iterates t ≥ T , (3.22)

where T := c2 log
(φ(β0)−φ(β̂))

δ2

/
log(1/γ).

Remarks As with Theorem 3.1, these claims are deterministic in nature. Probabilistic
conditions will enter into the corollaries, which involve proving that the surrogate matrices
Γ̂ used for noisy, missing, and/or dependent data satisfy the lower- and upper-RE conditions
with high probability. The proof of Theorem 3.2 itself is based on an extension of a result
due to Agarwal et al. [1] on the convergence of projected gradient descent and composite
gradient descent in high dimensions. Their result as originally stated imposed convexity
of the loss function, but the proof can be modified so as to apply to the nonconvex loss
functions of interest here. As noted following Theorem 3.1, all global minimizers of the
nonconvex program (3.4) lie within a small ball. In addition, Theorem 3.2 guarantees that
the local minimizers also lie within a ball of the same magnitude. Note that in order to show
that Theorem 3.2 can be applied to the specific statistical models of interest in this chapter,
a considerable amount of technical analysis remains in order to establish that its conditions
hold with high probability.

In order to understand the significance of the bounds (3.20) and (3.22), note that they
provide upper bounds for the ℓ2-distance between the iterate βt at time t, which is easily
computed in polynomial-time, and any global optimum β̂ of the program (3.4) or (3.7), which



CHAPTER 3. MODIFIED LASSO ALGORITHM 23

may be difficult to compute. Focusing on bound (3.20), since γ ∈ (0, 1), the first term in the

bound vanishes as t increases. The remaining terms involve the statistical errors ‖β̂ − β∗‖q,
for q = 1, 2, which are controlled in Theorem 3.1. It can be verified that the two terms
involving the statistical error on the right-hand side are bounded as O(k log p

n
), so Theorem 3.2

guarantees that projected gradient descent produce an output that is essentially as good—in
terms of statistical error—as any global optimum of the program (3.4). Bound (3.22) provides
a similar guarantee for composite gradient descent applied to the Lagrangian version.
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Figure 3.2: Plots of the optimization error log(‖βt− β̂‖2) and statistical error log(‖βt−β∗‖2)
versus iteration number t, generated by running projected gradient descent on the nonconvex
objective. Each plot shows the solution path for the same problem instance, using 10 different
starting points. As predicted by Theorem 3.2, the optimization error decreases geometrically.

Experimentally, we have found that the predictions of Theorem 3.2 are borne out in
simulations. Figure 3.2 shows the results of applying the projected gradient descent method
to solve the optimization problem (3.4) in the case of additive noise (panel (a)), and missing
data (panel (b)). In each case, we generated a random problem instance, and then applied

the projected gradient descent method to compute an estimate β̂. We then reapplied the
projected gradient method to the same problem instance 10 times, each time with a random
starting point, and measured the error ‖βt− β̂‖2 between the iterates and the first estimate
(optimization error), and the error ‖βt−β∗‖2 between the iterates and the truth (statistical
error). Within each panel, the blue traces show the optimization error over 10 trials, and
the red traces show the statistical error. On the logarithmic scale given, a geometric rate
of convergence corresponds to a straight line. As predicted by Theorem 3.2, regardless of
the starting point, the iterates {βt} exhibit geometric convergence to the same fixed point.2

2To be precise, Theorem 3.2 states that the iterates will converge geometrically to a small neighborhood
of all the global optima.
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The statistical error contracts geometrically up to a certain point, then flattens out.

3.3.2 Some consequences

As discussed previously, both Theorems 3.1 and 3.2 are deterministic results. Applying
them to specific statistical models requires some additional work in order to establish that
the stated conditions are met. We now turn to the statements of some consequences of these
theorems for different cases of noisy, missing, and dependent data. In all the corollaries
below, the claims hold with probability greater than 1− c1 exp(−c2 log p), where (c1, c2) are
universal positive constants, independent of all other problem parameters. Note that in all
corollaries, the triplet (n, p, k) is assumed to satisfy scaling of the form n % k log p, as is
necessary for ℓ2-consistent estimation of k-sparse vectors in p dimensions.

Definition 3. We say that a random matrix X ∈ Rn×p is sub-Gaussian with parameters
(Σ, σ2) if:

(a) each row xTi ∈ Rp is sampled independently from a zero-mean distribution with covari-
ance Σ, and

(b) for any unit vector u ∈ Rp, the random variable uTxi is sub-Gaussian with parameter
at most σ.

For instance, if we form a random matrix by drawing each row independently from the
distribution N(0,Σ), then the resulting matrix X ∈ Rn×p is a sub-Gaussian matrix with
parameters (Σ, |||Σ|||op).

3.3.2.1 Bounds for additive noise: i.i.d. case

We begin with the case of i.i.d. samples with additive noise, as described in Example 3.1.

Corollary 3.1. Suppose that we observe Z = X +W , where the random matrices X,W ∈
Rn×p are sub-Gaussian with parameters (Σx, σ

2
x), and let ǫ be an i.i.d. sub-Gaussian vector

with parameter σ2
ǫ . Let σ2

z = σ2
x + σ2

w. Then under the scaling n % max
{ σ4z
λ2min(Σx)

, 1
}
k log p,

for the M-estimator based on the surrogates (Γ̂add, γ̂add), the results of Theorems 3.1 and 3.2
hold with parameters αℓ =

1
2
λmin(Σx) and ϕ(Q, σǫ) = c0σz(σw + σǫ)‖β∗‖2, with probability at

least 1− c1 exp(−c2 log p).

Remarks
(a) Consequently, the ℓ2-error of any optimal solution β̂ satisfies the bound

‖β̂ − β∗‖2 -
σz(σw + σǫ)

λmin(Σx)
‖β∗‖2

√
k log p

n



CHAPTER 3. MODIFIED LASSO ALGORITHM 25

with high probability. The prefactor in this bound has a natural interpretation as an inverse
signal-to-noise ratio; for instance, when X and W are zero-mean Gaussian matrices with
row covariances Σx = σ2

xI and Σw = σ2
wI, respectively, we have λmin(Σx) = σ2

x, so

(σw + σǫ)
√
σ2
x + σ2

w

λmin(Σx)
=
σw + σǫ
σx

√
1 +

σ2
w

σ2
x

.

This quantity grows with the ratios σw/σx and σǫ/σx, which measure the SNR of the
observed covariates and predictors, respectively. Note that when σw = 0, corresponding
to the case of uncorrupted covariates, the bound on ℓ2-error agrees with known results.
See Section 3.4 for simulations and further discussions of the consequences of Corollary 3.1.

(b) We may also compare the results in (a) with bounds from past work on high-dimensional
sparse regression with noisy covariates [77]. In this work, Rosenbaum and Tsybakov derive
similar concentration bounds on sub-Gaussian matrices. The tolerance parameters are all

O
(√

log p
n

)
, with prefactors depending on the sub-Gaussian parameters of the matrices. In

particular, in their notation,

ν ≍ (σxσw + σwσǫ + σ2
w)

√
log p

n
‖β∗‖1,

leading to the bound (cf. Theorem 2 of Rosenbaum and Tsybakov [77])

‖β̂ − β∗‖2 -
ν
√
k

λmin(Σx)
≍ σ2

λmin(Σx)

√
k log p

n
‖β∗‖1.

Extensions to unknown noise covariance: Situations may arise where the noise co-
variance Σw is unknown, and must be estimated from the data. One simple method is to
assume that Σw is estimated from independent observations of the noise. In this case, sup-
pose we independently observe a matrix W0 ∈ Rn×p with n i.i.d. vectors of noise. Then
we use Σ̂w = 1

n
W T

0 W0 as our estimate of Σw. A more sophisticated variant of this method
(cf. Chapter 4 of Carroll et al. [18]) assumes that we observe ki replicate measurements
Zi1, . . . , Zik for each xi and form the estimator

Σ̂w =

∑n
i=1

∑ki
j=1(Zij − Z i·)(Zij − Z i·)

T

∑n
i=1(ki − 1)

. (3.23)

Based on the estimator Σ̂w, we form the pair (Γ̃, γ̃) such that γ̃ = 1
n
ZTy and Γ̃ = ZTZ

n
− Σ̂w.

In the proofs of Section 3.6, we will analyze the case where Σ̂w = 1
n
W T

0 W0 and show that
the result of Corollary 3.1 still holds when Σw must be estimated from the data. Note that
the estimator in equation (3.23) will also yield the same result, but the analysis is more
complicated.
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3.3.2.2 Bounds for missing data: i.i.d. case

Next, we turn to the case of i.i.d. samples with missing data, as discussed in Example 3.3.
For a missing data parameter vector α, we define αmax := maxj αj , and assume αmax < 1.

Corollary 3.2. Let X ∈ Rn×p be sub-Gaussian with parameters (Σx, σ
2
x), and Z the missing

data matrix with parameter α. Let ǫ be an i.i.d. sub-Gaussian vector with parameter σ2
ǫ .

If n % max
(

1
(1−αmax)4

σ4x
λ2min(Σx)

, 1
)
k log p, then Theorems 3.1 and 3.2 hold with probability at

least 1− c1 exp(−c2 log p) for αℓ = 1
2
λmin(Σx) and ϕ(Q, σǫ) = c0

σx
1−αmax

(
σǫ +

σx
1−αmax

)
‖β∗‖2.

Remarks Suppose X is a Gaussian random matrix and αj = α for all j. In this case, the

ratio σ2x
λmin(Σx)

= λmax(Σx)
λmin(Σx)

= κ(Σx) is the condition number of Σx. Then

ϕ(Q, σǫ)

α
≍
(

1

λmin(Σx)

σxσǫ
1− α

+
κ(Σx)

(1− α)2

)
‖β∗‖2,

a quantity that depends on both the conditioning of Σx, and the fraction α ∈ [0, 1) of missing
data. We will consider the results of Corollary 3.2 applied to this example in the simulations
of Section 3.4.

Extensions to unknown α: As in the additive noise case, we may wish to consider the
case when the missing data parameters α are not observed and must be estimated from the
data. For each j = 1, 2, . . . , p, we estimate αj using α̂j , the empirical average of the number
of observed entries per column. Let α̂ ∈ Rp denote the resulting estimator of α. Naturally,
we use the pair of estimators (Γ̃, γ̃) defined by

Γ̃ =
ZTZ

n
c M̃ and γ̃ =

1

n
ZTy c (1− α̂), (3.24)

where

M̃ij =

{
(1− α̂i)(1− α̂j) if i 6= j

1− α̂i if i = j.

We will show in Section 3.6 that Corollary 3.2 holds when α is estimated by α̂.

3.3.2.3 Bounds for dependent data

Turning to the case of dependent data, we consider the setting where the rows of X are
drawn from a stationary vector autoregressive (VAR) process according to

xi+1 = Axi + vi, for i = 1, 2, . . . , n− 1, (3.25)
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where vi ∈ Rp is a zero-mean noise vector with covariance matrix Σv, and A ∈ Rp×p is a
driving matrix with spectral norm |||A|||2 < 1. We assume the rows of X are drawn from a
Gaussian distribution with covariance Σx, such that Σx = AΣxA

T + Σv. Hence, the rows of
X are identically distributed but not independent, with the choice A = 0 giving rise to the
i.i.d. scenario. Corollaries 3.3 and 3.4 correspond to the case of additive noise and missing
data for a Gaussian VAR process.

Corollary 3.3. Suppose the rows of X are drawn according to a Gaussian VAR process with
driving matrix A. Suppose the additive noise matrix W is i.i.d. with Gaussian rows, and
let ǫ be an i.i.d. sub-Gaussian vector with parameter σ2

ǫ . If n % max
(

ζ4

λ2min(Σx)
, 1
)
k log p, with

ζ2 = |||Σw|||op+ 2|||Σx|||op
1−|||A|||op , then the results of Theorems 3.1 and 3.2 hold with probability at least

1− c1 exp(−c2 log p) for αℓ = 1
2
λmin(Σx) and ϕ(Q, σǫ) = c0(σǫζ + ζ2)‖β∗‖2.

Corollary 3.4. Suppose the rows of X are drawn according to a Gaussian VAR process with
driving matrix A, and Z is the observed matrix subject to missing data, with parameter α.
Let ǫ be an i.i.d. sub-Gaussian vector with parameter σ2

ǫ . If n % max
(

ζ′4

λ2min(Σx)
, 1
)
k log p, with

ζ ′2 = 1
(1−αmax)2

2|||Σx|||op
1−|||A|||op , then the results of Theorems 3.1 and 3.2 hold with probability at least

1− c1 exp(−c2 log p) for αℓ = 1
2
λmin(Σx) and ϕ(Q, σǫ) = c0(σǫζ

′ + ζ ′2)‖β∗‖2.

Remark 3.1. Note that the scaling and the form of ϕ in Corollaries 2-4 are very similar,

except with different effective variances σ2 = σ2x
(1−αmax)2

, ζ2, or ζ ′2, depending on the type of
corruption in the data. As we will see in Section 3.6, the proofs involve verifying the deviation
conditions (3.17) using similar techniques. On the other hand, the proof of Corollary 1
proceeds via deviation condition (3.16), which produces a tighter bound.

We may also extend the cases of dependent data to situations when Σw and α are unknown
and must be estimated from the data. The proofs of these extensions are identical to the i.i.d
case, so we will omit them.

3.3.3 Application to graphical model inverse covariance
estimation

The problem of inverse covariance estimation for a Gaussian graphical model is also related
to the Lasso. Meinshausen and Bühlmann [60] prescribed a way to recover the support of the
precision matrix Θ when each column of Θ is k-sparse, via linear regression and the Lasso.
More recently, Yuan [99] proposed a method for estimating Θ using the Dantzig selector,

and obtained error bounds on |||Θ̂−Θ|||1 when the columns of Θ are bounded in ℓ1. Both of
these results assume that X is fully-observed and has i.i.d. rows.

Suppose we are given a matrix X ∈ Rn×p of samples from a multivariate Gaussian
distribution, where each row is distributed according to N(0,Σ). We assume the rows of X
are either i.i.d. or sampled from a Gaussian VAR process. Based on the modified Lasso of
the previous section, we devise a method to estimate Θ based on a corrupted observation
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matrix Z, when Θ is sparse. Our method bears similarity to the method of Yuan [99], but
is valid in the case of corrupted data, and does not require an ℓ1 column bound. Let Xj

denote the jth column of X , and let X−j denote the matrix X with jth column removed. By
standard results on Gaussian graphical models, there exists a vector θj ∈ Rp−1 such that

Xj = X−jθj + ǫj , (3.26)

where ǫj is a vector of i.i.d. Gaussians and ǫj ⊥⊥ X−j. Setting aj := −(Σjj − Σj,−jθ
j)−1, we

can verify that Θj,−j = ajθ
j. Our algorithm, described below, forms estimates θ̂j and âj for

each j, then combines the estimates to obtain an estimate Θ̂j,−j = âj θ̂
j .

In the additive noise case, we observe the matrix Z = X+W . From the equations (3.26),
we obtain Zj = X−jθj + (ǫj +W j). Note that δj = ǫj +W j is a vector of i.i.d. Gaussians,
and since X ⊥⊥ W , we have δj ⊥⊥ X−j . Hence, our results on covariates with additive noise
allow us to recover θj from Z. We can verify that this reduces to solving the program (3.4)

or (3.7) with the pair (Γ̂(j), γ̂(j)) = (Σ̂−j,−j,
1
n
Z−jTZj), where Σ̂ = 1

n
ZTZ − Σw.

When Z is a missing-data version of X , we similarly estimate the vectors θj via equa-
tion (3.26), using our results on the Lasso with missing covariates. Here, both covariates
and responses are subject to missing data, but this makes no difference in our theoretical
results. For each j, we use the pair

(Γ̂(j), γ̂(j)) =
(
Σ̂−j,−j,

1

n
Z−jTZj

c (1−α
−j)(1− αj)

)
,

where Σ̂ = 1
n
ZTZ c M , and M is defined as in Example 3.3.

To obtain the estimate Θ̂, we therefore propose the following procedure, based on the
estimators {(Γ̂(j), γ̂(j))}pj=1 and Σ̂.

Algorithm 3.1. (1) Perform p linear regressions of the variables Zj upon the remaining

variables Z−j, using the program (3.4) or (3.7) with the estimators (Γ̂(j), γ̂(j)), to obtain

estimates θ̂j of θj.

(2) Estimate the scalars aj using the quantity âj := −(Σ̂jj − Σ̂j,−j θ̂
j)−1, based on the

estimator Σ̂. Form Θ̃ with Θ̃j,−j = âj θ̂
j and Θ̃jj = −âj.

(3) Set Θ̂ = arg min
Θ∈Sp

|||Θ− Θ̃|||1, where Sp is the set of symmetric matrices.

Note that the minimization in step (3) is a linear program, so is easily solved with standard

methods. We have the following corollary about Θ̂:

Corollary 3.5. Suppose the columns of the matrix Θ are k-sparse, and suppose the condition
number κ(Θ) is nonzero and finite. Suppose we have

‖γ̂(j) − Γ̂(j)θj‖∞ ≤ ϕ(Q, σǫ)

√
log p

n
, ∀j, (3.27)
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and suppose we have the following additional deviation condition on Σ̂:

‖Σ̂− Σ‖max ≤ cϕ(Q, σǫ)

√
log p

n
. (3.28)

Finally, suppose the lower-RE condition holds uniformly over the matrices Γ̂(j) with the
scaling (3.18). Then under the estimation procedure of Algorithm 3.1, there exists a universal
constant c0 such that

|||Θ̂−Θ|||op ≤
c0κ

2(Σ)

λmin(Σ)

(ϕ(Q, σǫ)
λmin(Σ)

+
ϕ(Q, σǫ)

αℓ

)
k

√
log p

n
.

Remark 3.2. Note that Corollary 3.5 is again a deterministic result, with parallel structure
to Theorem 3.1. Furthermore, the deviation bounds (3.27) and (3.28) hold for all scenarios
considered in Section 3.3.2 above, using Corollaries 1-4 for the first two inequalities, and
a similar bounding technique for ‖Σ̂ − Σ‖max; and the lower-RE condition holds over all

matrices Γ̂(j) by the same technique used to establish the lower-RE condition for Γ̂. The
uniformity of the lower-RE bound over all sub-matrices holds because

0 < λmin(Σ) ≤ λmin(Σ−j,−j) ≤ λmax(Σ−j,−j) ≤ λmax(Σ) <∞.

Hence, the error bound in Corollary 3.5 holds with probability at least 1 − c1 exp(−c2 log p)
when n % k log p, for the appropriate values of ϕ and αℓ.

3.4 Simulations

In this section, we report some additional simulation results to confirm that the scalings
predicted by our theory are sharp. In Figure 3.1 following Theorem 3.1, we showed that the
error curves align when plotted against a suitably rescaled sample size, in the case of additive
noise perturbations. Panel (a) of Figure 3.3 shows these same types of rescaled curves for
the case of missing data, with sparsity k ≈ √

p, covariate matrix Σx = I, and missing
fraction α = 0.2, whereas panel (b) shows the rescaled plots for the vector autoregressive
case with additive noise perturbations, using a driving matrix A with |||A|||op = 0.2. Each
point corresponds to an average over 100 trials. Once again, we see excellent agreement with
the scaling law provided by Theorem 3.1.

We also ran simulations to verify the form of the function ϕ(Q, σǫ) appearing in Corollar-
ies 3.1 and 3.2. In the additive noise setting for i.i.d. data, we set Σx = I and ǫ equal to i.i.d.
Gaussian noise with σǫ = 0.5. For a fixed value of the parameters p = 256 and k ≈ log p,
we ran the projected gradient descent algorithm for different values of σw ∈ (0.1, 0.3), such
that Σw = σ2

wI and n ≈ 60(1 + σ2
w)

2k log p, with ‖β∗‖2 = 1. According to the theory,
ϕ(Q,σǫ)

α
≍ (σw + 0.5)

√
1 + σ2

w, so that

‖β̂ − β∗‖2 - (σw + 0.5)
√

1 + σ2
w

√
k log p

(1 + σ2
w)

2k log p
≍ σw + 0.5√

1 + σ2
w

.
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Figure 3.3: Plots of the error ‖β̂ − β∗‖2 after running projected gradient descent on the
nonconvex objective, with sparsity k ≈ √

p. In all cases, we plotted the error versus the
rescaled sample size n

k log p
. As predicted by Theorems 3.1 and 3.2, the curves align for

different values of p when plotted in this rescaled manner. (a) Missing data case with i.i.d.
covariates. (b) Vector autoregressive data with additive noise. Each point represents an
average over 100 trials.

In order to verify this prediction, we plotted σw versus the rescaled error

√
1+σ2w

σw+0.5
‖β̂ − β∗‖2.

As shown by panel (a) of Figure 3.4(a), the curve is roughly constant, as predicted by the
theory.

Similarly, in the missing data setting for i.i.d. data, we set Σx = I and ǫ equal to i.i.d.
Gaussian noise with σǫ = 0.5. For a fixed value of the parameters p = 128 and k ≈ log p,
we ran simulations for different values of the missing data parameter α ∈ (0, 0.3), such that

n ≈ 60
(1−α)4 k log p. According to the theory, ϕ(Q,σǫ)

α
≍ σǫ

1−α + 1
(1−α)2 . Consequently, with our

specified scalings of (n, p, k), we should expect a bound of the form

‖β̂ − β∗‖2 -
ϕ(Q, σǫ)

α

√
k log p

n
≍ 1 + 0.5(1− α).

The plot of α versus the rescaled error ‖β̂−β∗‖2
1+0.5(1−α) is shown in Figure 3.4(b). The curve is

again roughly constant, agreeing with theoretical results.
Finally, we studied the behavior of the inverse covariance matrix estimation algorithm

on three types of Gaussian graphical models:

(a) Chain-structured graphs. In this case, all nodes of the graph are arranged in a linear
chain. Hence, each node (except the two end nodes) has degree k = 2. The diagonal
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(a) Additive noise scaling (b) Missing data scaling

Figure 3.4: (a) Plot of the rescaled ℓ2-error

√
1+σ2w

σw+0.5
‖β̂−β∗‖2 versus the additive noise standard

deviation σw for the i.i.d. model with additive noise. (b) Plot of the rescaled ℓ2-error
‖β̂−β∗‖2

1+0.5(1−α)
versus the missing fraction α for the i.i.d. model with missing data. Both curves are roughly
constant, showing that our error bounds on ‖β̂−β∗‖2 exhibit the proper scaling. Each point
represents an average over 200 trials.

entries of Θ are set equal to 1, and all entries corresponding to links in the chain are
set equal to 0.1. Then Θ is rescaled so |||Θ|||op = 1.

(b) Star-structured graphs. In this case, all nodes are connected to a central node, which
has degree k ≈ 0.1p. All other nodes have degree 1. The diagonal entries of Θ are
set equal to 1, and all entries corresponding to edges in the graph are set equal to 0.1.
Then Θ is rescaled so |||Θ|||op = 1.

(c) Erdös-Renyi graphs. This example comes from Rothman et al. [78]. For a sparsity
parameter k ≈ log p, we randomly generate the matrix Θ by first generating the matrix
B such that the diagonal entries are 0, and all other entries are independently equal
to 0.5 with probability k/p, and 0 otherwise. Then δ is chosen so that Θ = B+ δI has
condition number p. Finally, Θ is rescaled so |||Θ|||op = 1.

After generating the matrix X of n i.i.d. samples from the appropriate graphical model,
with covariance matrix Σx = Θ−1, we generated the corrupted matrix Z = X + W with
Σw = (0.2)2I in the additive noise case, or the missing data matrix Z with α = 0.2 in the
missing data case.

Panels (a) and (c) in Figure 3.5 show the rescaled ℓ2-error
1√
k
|||Θ̂−Θ|||op plotted against

the sample size n for a chain-structured graph. In panels (b) and (d), we have ℓ2-error
plotted against the rescaled sample size, n/(k log p). Once again, we see good agreement
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with the theoretical predictions. We have obtained qualitatively similar results for the star
and Erdös-Renyi graphs.
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(a) ℓ2 error plot for chain graph, additive noise (b) rescaled plot

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

1
/s

q
rt

(k
) 

* 
l2

 o
p
e
ra

to
r 

n
o
rm

 e
rr

o
r

Chain graph, missing data

 

 

p=64

p=128

p=256

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n/(k log p)

1
/s

q
rt

(k
) 

* 
l2

 o
p
e
ra

to
r 

n
o
rm

 e
rr

o
r

Chain graph, missing data

 

 

p=64

p=128

p=256

(c) ℓ2 error plot for chain graph, missing data (d) rescaled plot

Figure 3.5: (a) Plots of the error |||Θ̂−Θ|||op after running projected gradient descent on the
nonconvex objective for a chain-structured Gaussian graphical model with additive noise.
As predicted by Theorems 3.1 and 3.2, all curves align when the error is rescaled by 1√

k

and plotted against the ratio n
k log p

, as shown in (b). Plots (c) and (d) show the results of
simulations on missing data sets. Each point represents the average over 50 trials.

3.5 Lower bounds

We now focus on fundamental information-theoretic limitations of prediction under various
forms of corrupted covariates. Our approach consists of a two-pronged attack: On the



CHAPTER 3. MODIFIED LASSO ALGORITHM 33

statistical side, we demonstrate an efficient estimator for our model and prove upper bounds
on ℓ2-error between the estimator and the population parameter that slightly sharpen the
results of Section 3.3; while on the information-theoretic side, we establish lower bounds on
ℓ2-error that hold for any estimator derived from the data. Our upper and lower bounds
in the additive noise setting agree up to constant factors, demonstrating that our proposed
estimator is minimax optimal.

To compare with the upper bounds in Section 3.3, here we improve the asymptotic
scaling in the squared ℓ2-error from

k log p
n

to k log(p/k)
n

, and tighten the prefactor so it achieves
known minimax results in the limit of no corruption. However, whereas the upper bounds
in Section 3.3 apply to arbitrary sub-Gaussian variables with nondiagonal covariances, the
lower bounds derived in this section only apply when covariates are Gaussian and covariances
are multiples of the identity. Our proof techniques for lower bounds closely follow those of
Raskutti et al. [71].

3.5.1 Problem setup

We again focus on the linear regression model

yi = 〈xi, β∗〉+ ǫi, for i = 1, 2, . . . , n,

where the xi’s are p-dimensional covariates, the yi’s are response variables, the ǫi’s are
independent noise, and β∗ ∈ Rp is the unknown vector. In matrix form, we write y = Xβ∗+ǫ,
where X ∈ Rn×p and y, ǫ ∈ Rn. Since we are working in a high-dimensional setting (p≫ n),
we must impose additional structure on β∗. Henceforth, we assume that ‖β∗‖0 ≤ k, meaning
β∗ has at most k nonzero entries.

In the traditional linear regression framework, one would estimate β∗ based on observa-
tions (y,X). However, we assume that only the pair (y, Z) is available, where Z is a version
of X corrupted by noise. We analyze the following settings:

(a) Additive noise: For each i, observe zi = xi + wi, where wi is independent of xi.

(b) Missing data: For each i and each component j, independently observe zij = xij with
probability 1− α, and zij = ⋆ with probability α, where α ∈ [0, 1).

In both cases, we assume the xi’s and ǫi’s are drawn i.i.d. from the distributions N(0, σ2
xI)

and N(0, σ2
ǫ I), respectively. We assume the wi’s are drawn i.i.d. from N(0, σ2

wI) in the
additive noise case.

Our analysis focuses on the minimax squared ℓ2-error

M(n, p, k) := inf
β̂

sup
β∗∈B0(k)∩B2(1)

‖β̂ − β∗‖22.

Note that the supremum is taken over k-sparse vectors in the ℓ2 unit ball, whereas the infi-
mum is taken over all measureable functions β̂ of the observed data (y, Z). In Theorems 3.3
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and 3.5, we derive upper bounds for M by analyzing a modified version of the Lasso for
corrupted covariates. In Theorems 3.4 and 3.6, we derive lower bounds via information-
theoretic techniques, where we first reduce the estimation problem to a hypothesis testing
problem and then apply Fano’s inequality to lower-bound the error probability. This type
of reduction is standard in minimax statistical analysis (e.g., [9, 98, 97]).

3.5.2 Main results and consequences

We now state our main results. Following Section 3.3, we define the surrogate Γ̂ ∈ Rp×p for
Σx, defined in the additive noise and missing cases as

(a) Γ̂ = ZTZ
n

− Σw,

(b) Γ̂ = ẐT Ẑ
n

− α diag
(
ẐT Ẑ
n

)
, Ẑ = Z

1−α ,

respectively. We assume Γ̂ obeys the lower-RE condition:

Assumption 3.1 (Lower-RE condition). For some αℓ > 0, we have θT Γ̂θ ≥ αℓ‖θ‖22 whenever
‖θ‖1 ≤ c0

√
k‖θ‖2.

By Lemmas A.1 and A.3 in Appendix A.1, Assumption 3.1 holds w.h.p. for αℓ ≍ σ2
x in

both settings of interest.

3.5.3 Additive noise setting

We begin by stating an upper bound for the additive noise setting, when X and W are

Gaussian with covariance σ2
xI and σ2

wI, respectively. We write σ2
z := σ2

x + σ2
w and κ := σ2w

σ2x
.

Theorem 3.3. In the additive noise setting, if Γ̂ satisfies Assumption 3.1 and n % k log(p/k),
we have

M ≤ c((1 + κ)σ2
xσ

2
w + σ2

ǫσ
2
z)

α2
ℓ

k log(p/k)

n
, (3.29)

with probability at least 1− c1 exp(−c2k log(p/k)).

Note that when σw = 0, corresponding to the classical case of fully-observed covariates,
the upper bound reduces to

cσ2
ǫσ

2
x

α2
ℓ

k log(p/k)

n
.

Past work has established bounds of this form for the Lasso and related estimators [14, 8],
and this rate has been shown to be minimax optimal [71]. In the more general setting with
σw > 0, the bound (3.29) has a qualitatively similar form, with the prefactor growing with
the magnitude of σw.
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We now turn to a lower bound that matches the upper bound up to a constant factor.
The probability for the lower bound is chosen to be 1/2; it may be replaced by a constant
arbitrarily close to 1, by a suitable modification of the universal constants.

Theorem 3.4. In the additive noise setting, if 8 ≤ k ≤ p/2 and n % k log(p/k), we have

M ≥ c′(σ2
xσ

2
w + σ2

ǫσ
2
z)

σ4
x

k log(p/k)

n
, (3.30)

with probability at least 1/2.

Note in particular that when the κ = σ2w
σ2x

is bounded above by a constant and αℓ ≍ σ2
x, the

bounds in Theorems 3.3 and 3.4 match up to constant factors, identifying minimax optimal
rates for the additive noise setting. The assumption of bounded κ merely requires the SNR
to be bounded away from zero.

3.5.4 Missing data setting

In the missing data setting, we assume xi ∼ N(0, σ2
xI), and α ∈ [0, 1) is the probability that

a given entry is missing. We have the following upper bound:

Theorem 3.5. In the missing data setting, suppose Γ̂ satisfies Assumption 3.1 and the
sample size satisfies n % 1

(1−α)2 k log(p/k). Then

M ≤ cσ2
x

α2
ℓ

(
σǫ +

ασx
1− α

)2
k log(p/k)

n
,

with probability at least 1− c2 exp(−c2k log(p/k)).

For a lower bound, we have the following:

Theorem 3.6. In the missing data setting, if 8 ≤ k ≤ p/2 and n % 1
(1−α)2 k log(p/k), we

have

M ≥ cσ2
ǫ

σ2
x(1− α)

σ2
ǫ

σ2
x + σ2

ǫ

k log(p/k)

n
, (3.31)

with probability at least 1/2.

Note that when α = 0, corresponding to no missing data, Theorem 3.5 again reduces
to known results. Furthermore, both the upper and lower bounds grow as the inverse of
(1−α), agreeing with intuition—as the proportion of missing entries increases, the estimation
problem increases in difficulty. However, a gap of a factor of (1 − α) remains between the
scaling in Theorems 3.5 and 3.6.
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3.6 Proofs

In this section, we turn to the proofs of our main theorems in Sections 3.3 and 3.5. The
proofs of corollaries and more technical lemmas are contained in Appendix A.

3.6.1 Proof of Theorem 3.1

Let L(β) = 1
2
βT Γ̂β−〈γ̂, β〉+λn‖β‖1 denote the loss function to be minimized. This definition

captures both the estimator (3.4) with λn = 0 and the estimator (3.7) with the choice of λn
given in the theorem statement. For either estimator, we are guaranteed that β∗ is feasible
and β̂ is optimal for the program, so L(β̂) ≤ L(β∗). Indeed, in the regularized case, the

k-sparsity of β∗ implies that ‖β∗‖1 ≤
√
k‖β∗‖2 ≤ b0

√
k. Defining the error vector ν̂ := β̂−β∗

and performing some algebra leads to the equivalent inequality

1

2
ν̂T Γ̂ν̂ ≤ 〈ν̂, γ̂ − Γ̂β∗〉+ λn

{
‖β∗‖1 − ‖β∗ + ν̂‖1}. (3.32)

In the remainder of the proof, we first derive an upper bound for the right-hand side of this
inequality. We then use this upper bound and the lower-RE condition to show that the error
vector ν̂ must satisfy the inequality

‖ν̂‖1 ≤ 8
√
k‖ν̂‖2. (3.33)

Finally, we combine the inequality (3.33) with the lower-RE condition to derive a lower
bound on the left-hand side of the basic inequality (3.32). Combined with our earlier upper
bound on the right-hand side, some algebra yields the claim.

Upper bound on right-hand side We first upper-bound the RHS of inequality (3.32).

Hölder’s inequality gives 〈ν̂, γ̂ − Γ̂β∗〉 ≤ ‖ν̂‖1‖γ̂ − Γ̂β∗‖∞. By the triangle inequality, we
have

‖γ̂ − Γ̂β∗‖∞ ≤ ‖γ̂ − Σxβ
∗‖∞ + ‖(Σx − Γ̂)β∗‖∞

(i)

≤ 2ϕ(Q, σǫ)

√
log p

n
,

where inequality (i) follows from the deviation conditions (3.17). Combining the pieces, we
conclude that

〈ν̂, γ̂ − Γ̂β∗〉 ≤ 2‖ν̂‖1 ϕ(Q, σǫ)
√

log p

n
=
(
‖ν̂S‖1 + ‖ν̂Sc‖1

)
2ϕ(Q, σǫ)

√
log p

n
. (3.34)

On the other hand, we have

‖β∗ + ν̂‖1 − ‖β∗‖1 ≥
{
‖β∗

S‖1 − ‖ν̂S‖1
}
+ ‖ν̂Sc‖1 − ‖β∗‖1 = ‖ν̂Sc‖1 − ‖ν̂S‖1, (3.35)

where we have exploited the sparsity of β∗ and applied the triangle inequality. Combining
the pieces, we conclude that the right-hand side of inequality (3.32) is upper-bounded by

2ϕ(Q, σǫ)

√
log p

n
(‖ν̂S‖1 + ‖ν̂Sc‖1) + λn{‖ν̂S‖1 − ‖ν̂Sc‖1}, (3.36)

a bound that holds for any nonnegative choice of λn.
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Proof of inequality (3.33) In the case of the constrained estimator (3.4) with R = ‖β∗‖1,
we have ‖β̂‖1 = ‖β∗ + ν̂‖1 ≤ ‖β∗‖1. Combined with inequality (3.35), we conclude that
‖ν̂Sc‖1 ≤ ‖ν̂S‖1. Consequently, we have the inequality ‖ν̂‖1 ≤ 2‖ν̂S‖1 ≤ 2

√
k‖ν̂‖2, which is

a slightly stronger form of the bound (3.33).

For the regularized estimator (3.7), we first note that our choice of λn guarantees that
the term (3.36) is at most 3λn

2
‖ν̂S‖1 − λn

2
‖ν̂Sc‖1. Returning to the basic inequality, we apply

the lower-RE condition to lower-bound the left-hand side, thereby obtaining the inequality

−τ
2
‖ν̂‖21 ≤ 1

2

(
αℓ‖ν̂‖22 − τ ‖ν̂‖21

)
≤ 3λn

2
‖ν̂S‖1 −

λn
2
‖ν̂Sc‖1.

By the triangle inequality, we have ‖ν̂‖1 ≤ ‖β̂‖1 + ‖β∗‖1 ≤ 2b0
√
k. Since we have assumed√

k τ(n, p) ≤ ϕ(Q,σǫ)
b0

√
log p
n

, we are guaranteed that

τ(n, p)

2
‖ν̂‖21 ≤ ϕ(Q, σǫ)

√
log p

n
‖ν̂‖1 ≤ λn

4
‖ν̂‖1,

by our choice of λn. Combining the pieces, we conclude that

0 ≤ 3λn
2

‖ν̂S‖1 −
λn
2
‖ν̂Sc‖1 +

λn
4

(
‖ν̂S‖1 + ‖ν̂Sc‖1

)
=

7λn
4

‖ν̂S‖1 −
λn
4
‖ν̂Sc‖1,

and rearranging implies ‖ν̂Sc‖1 ≤ 7‖ν̂S‖1, from which we conclude that ‖ν̂‖1 ≤ 8
√
k‖ν̂‖2, as

claimed.

Lower bound on left-hand side We now derive a lower bound on the left-hand side of
inequality (3.32). Combining inequality (3.33) with the RE condition (3.12) gives

ν̂T Γ̂ν̂ ≥ αℓ‖ν̂‖22 − τ(n, p)‖ν̂‖21 ≥
{
αℓ − 64kτ(n, p)

}
‖ν̂‖22 ≥ αℓ

2
‖ν̂‖22, (3.37)

where the final step uses our assumption that kτ(n, p) ≤ αℓ

128
.

Finally, combining bounds (3.36), (3.33), and (3.37) gives

αℓ
4
‖ν̂‖22 ≤ 2max

{
2ϕ(Q, σǫ)

√
log p

n
, λn

}
‖ν̂‖1

≤ 32
√
kmax

{
ϕ(Q, σǫ)

√
log p

n
, λn

}
‖ν̂‖2,

yielding inequality (3.19a). Using inequality (3.33) again gives inequality (3.19b).
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3.6.2 Proof of Theorem 3.2

We begin by proving the claims for the constrained problem, and projected gradient descent.
For the ℓ2-error bound, we make use of Theorem 1 in the pre-print of Agarwal et al. [1].
Their theory, as originally stated, requires that the loss function be convex, but a careful
examination of their proof shows that their arguments hinge on restricted strong convexity
and smoothness assumptions, corresponding to a more general version of the lower- and
upper-RE conditions given here. Apart from these conditions, the proof exploits the fact
that the sub-problems defining the gradient updates (3.14) and (3.15) are convex. Since the
loss function itself appears only in a linear term, their theory still applies.

In order to apply Theorem 1 in their paper, we first need to compute the tolerance
parameter ǫ2 defined there; since β∗ is supported on the set S with |S| = k and the RE
conditions hold with τ ≍ log p

n
, we find that

ǫ2 ≤ c
log p

αun

(√
k‖β̂ − β∗‖2 + 2‖β̂ − β∗‖1

)2

≤ c′2
k log p

αun
‖β̂ − β∗‖22 + c1

log p

αun
‖β̂ − β∗‖21

≤ c2‖β̂ − β∗‖22 + c1
log p

αun
‖β̂ − β∗‖21,

where the final inequality makes use of the assumption that n % k log p. Similarly, we may
compute the contraction coefficient to be

γ =

(
1− αℓ

αu
+
c1k log p

αun

)(
1− c2k log p

αun

)−1

, (3.38)

so γ ∈ (0, 1) for n % k log p.

We now establish the ℓ1-error bound. First, let ∆
t := βt − β∗. Since βt is feasible and β̂

is optimal with an active constraint, we have ‖βt‖1 ≤ ‖β̂‖1. Applying the triangle inequality
gives

‖β̂‖1 ≤ ‖β∗‖1 + ‖β̂ − β∗‖1 = ‖β∗
S‖1 + ‖β̂ − β∗‖1,

‖βt‖1 = ‖β∗ +∆t‖1 ≥ ‖β∗
S +∆t

Sc‖1 − ‖∆t
S‖1 = ‖β∗

S‖1 + ‖∆t
Sc‖1 − ‖∆t

S‖1;

combining the bounds yields ‖∆t
Sc‖1 ≤ ‖∆t

S‖1 + ‖β̂ − β∗‖1. Then

‖∆t‖1 ≤ 2‖∆t
S‖1 + ‖β̂ − β∗‖1 ≤ 2

√
k‖∆t‖2 + ‖β̂ − β∗‖1,

so
‖βt − β̂‖1 ≤ ‖β̂ − β∗‖1 + ‖∆t‖1 ≤ 2

√
k(‖βt − β̂‖2 + ‖β̂ − β∗‖2) + 2‖β̂ − β∗‖1.

Turning to the Lagrangian version, we exploit Theorem 2 in Agarwal et al., with M
corresponding to the subspace of all vectors with support contained within the support set
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of β∗. With this choice, we have ψ(M) =
√
k, and the contraction coefficient γ takes the

previous form (3.38), so that the assumption n % k log p guarantees that γ ∈ (0, 1). It
remains to verify that the requirements are satisfied. From the conditions in our Theorem
2 and using the notation of Agarwal et al., we have β(M) = O( log p

n
) and α =

√
k, and the

condition n % k log p implies that ξ(M) = O(1). Putting together the pieces, we find that the

compound tolerance parameter ǫ2 satisfies the bound ǫ2 = O(k log p
n

‖β̂−β∗‖22) = O(‖β̂−β∗‖22),
so the claim follows.

3.6.3 Proof of Theorem 3.3

It suffices to demonstrate an estimator for β∗ which, w.h.p., has small ℓ2-norm error. We use

the same estimator (3.7) as before, where (Γ̂, γ̂) =
(
ZTZ
n

− Σw,
ZT y
n

)
are unbiased estimators

for (Σx,Cov(xi, yi)), and the regularization parameter λ ≍
√

log(p/k)
n

is chosen appropriately.

We show that if β∗ ∈ B0(k) ∩ B2(1), then ‖β̂ − β∗‖22 satisfies the proper upper bound.

Since β∗ is feasible and β̂ is optimal, we have

1

2
ν̂T Γ̂ν̂ ≤ 〈ν̂, γ̂ − Γ̂β∗〉+ λ{‖β∗‖1 − ‖β∗ + ν̂‖1}, (3.39)

where ν̂ = β̂−β∗. Since ‖ν̂‖1 ≤ 8
√
k‖ν̂‖2, we may lower-bound the LHS of inequality (3.39)

using Assumption 3.1.
To upper-bound the RHS of inequality (3.39), we use the following combinatorial lemma,

a slight generalization of Lemma A.11 in Appendix A.2:

Lemma 3.1. For any constant c > 0, we have

B1(c
√
k) ∩ B2(1) ⊆ (1 + 2c) cl{conv{B0(k) ∩ B2(1)}},

where cl{·} and conv{·} denote the topological closure and convex hull, respectively.

Since ‖ν̂‖1 ≤ c
√
k‖ν̂‖2, we apply Lemma 3.1 to u = ν̂

‖ν̂‖2 to obtain

u ⊆ (1 + 2c) cl{conv{B0(k) ∩ B2(1)}},

so
|ν̂T (γ̂ − Γ̂β∗)| ≤ (1 + 2c)‖ν̂‖2 sup

u′∈cl{conv{B0(k)
∩B2(1)}}

|u′T (γ̂ − Γ̂β∗)|.

Clearly, the sup may be taken over u′ ∈ B0(k)∩B2(1). Furthermore, we may use a standard
discretization argument for each support set S ′ with |S ′| ≤ k, followed by a union bound
over all choices of S ′. Since the discretization gives a factor of ck and the union bound gives
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a factor of
(
p
k

)
≤
(
p
k

)k
, it suffices to bound the sup w.h.p. for an arbitrary fixed unit vector

ũ with ‖ũ‖0 ≤ k. This yields a bound of the form

|ν̂T (γ̂ − Γ̂β∗)| ≤ Cϕ‖ν̂‖2
√
k log(p/k)

n
,

with probability at least 1 − c1 exp(−c2k log(p/k)), where ϕ is a function of the problem
parameters, derived below.

Finally, note that
‖β∗‖1 − ‖β∗ + ν̂‖1 ≤ ‖ν̂‖1 ≤ c

√
k‖ν̂‖2.

Combining this with inequality (3.39) and the lower-RE bound then implies

αℓ‖ν̂‖22 ≤ Cϕ‖ν̂‖2
√
k log(p/k)

n
+ c

√
kλ‖ν̂‖2.

Dividing through by ‖ν̂‖2 yields

‖ν̂‖2 ≤
c
√
k

αℓ
max

{
ϕ

√
log(p/k)

n
, λ

}
.

Hence, choosing λ ≍ ϕ
√

log(p/k)
n

, we obtain the bound M ≤ cϕ2

α2
ℓ

k log(p/k)
n

. The remaining

component is to find an appropriate choice of the prefactor ϕ.
Let ũ ∈ B0(k) ∩ B2(1). Then

|ũT (γ̂ − Γ̂β∗)| =
∣∣∣∣ũ
T

(
ZTy

n
−
(
ZTZ

n
− Σw

)
β∗
)∣∣∣∣

=

∣∣∣∣ũ
T

(
ZT (Xβ∗ + ǫ)

n
−
(
ZTZ

n
− Σw

)
β∗
)∣∣∣∣

≤
∣∣∣∣
ũTZT ǫ

n

∣∣∣∣+
∣∣∣∣ũ
T

(
Σw − ZTW

n

)
β∗
∣∣∣∣

≤ (σǫσz + σwσz)t,

with probability at least 1 − 2 exp(−cnt2), using standard tail bounds for sub-Gaussian

matrices. Taking ϕ = (σǫσz + σwσz) and t =
√

k log(p/k)
n

gives

M ≤ cσ2
z(σw + σǫ)

2

α2
ℓ

k log(p/k)

n
,

w.h.p. Finally, we bound

σ2
z(σw + σǫ)

2 ≤ σ2
z(2σ

2
w + 2σ2

ǫ ) = 2(1 + κ)σ2
xσ

2
w + 2σ2

ǫσ
2
z .
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3.6.4 Proof of Theorem 3.4

For lower bounds, we follow a standard argument [9, 97, 98] to transform the estimation
problem into a hypothesis testing problem. Namely, given any δ-packing {β1, . . . , βM} of the
target set B0(k) ∩ B2(1), we have the inequality

P

(
min
β̂

max
β∗∈B0(k)∩B2(1)

‖β̂ − β∗‖22 ≥
δ2

4

)
≥ min

β̃
P(β̃ 6= B), (3.40)

where B is uniformly distributed over {β1, . . . , βM} and β̃ is an estimator. We then lower-
bound the RHS using Fano:

P(β̃ 6= B) ≥ 1− I(y;B) + log 2

logM
. (3.41)

In order to upper-bound the mutual information I(y;B), let Pβ denote the distribution of y
given B = β (when Z is observed). For conciseness of notation, denote Pj = Pβj . Since y is
distributed as the mixture 1

M

∑
j Pj , we have

I(y;B) = EB[D(Py|B‖Py)] =
1

M

∑

j

D

(
Pj

∥∥∥∥∥
1

M

∑

ℓ

Pℓ

)

≤ 1

M2

∑

j,ℓ

D(Pj‖Pℓ), (3.42)

exploiting the convexity of the KL divergence in the last inequality. Finally, we upper-bound
the pairwise KL divergences D(Pj‖Pℓ) explicitly, and then choose an appropriate value of

δ to ensure that P(β̃ 6= B) ≥ 1/2. The key steps therefore involve finding an appropriate
δ-packing of the target set and an upper-bound on the mutual information.

The following lemma shows that there exists a 1
2
-packing of the target set with logM ≥

k
2
log p−k

k/2
:

Lemma 3.2. There exists a 1
2
-packing of B0(k) ∩ B2(1) in ℓ2-norm with logM ≥ k

2
log p−k

k/2
.

In particular, if δ < 1
2
, there exists a 2δ-packing {β1, . . . , βM} of the same set such that

‖βj − βk‖2 ≤ 4δ for all pairs (j, k).

The proof is based on a modification of a result due to Raskutti et al. [71]. We now derive
an explicit expression for Pβ, which we will use to compute the KL divergences appearing
in inequality (3.42). By independence, Pβ is a product distribution of yi|zi, over all i. We
claim that for each i,

yi | zi ∼ N(βTΣxΣ
−1
z zi, β

T (Σx − ΣxΣ
−1
z Σx)β + σ2

ǫ ). (3.43)
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Indeed, (yi, zi) is clearly jointly Gaussian with mean 0, and by computing covariances,

[
yi
zi

]
∼ N

([
0
0

]
,

[
βTΣxβ + σ2

ǫ βTΣx
Σxβ Σx + Σw

])
,

so equation (3.43) follows immediately by standard results on conditional Gaussians. We
now derive the following lemma:

Lemma 3.3. For any β, β ′ ∈ B0(k), we have

D(Pβ‖Pβ′) ≤ cnσ4
x

σ2
xσ

2
w + σ2

ǫσ
2
z

‖β − β ′‖22.

Proof. Assume σǫ and σw are not both 0; otherwise, the theorem is trivially true. By
equation (3.43), we can write

D(Pβ‖Pβ′) = EPβ

[
log

Pβ(y)

Pβ′(y)

]

= EPβ

[
n

2
log

(
σ2
β′

σ2
β

)
− ‖y − ZΣ−1

z Σxβ‖22
2σ2

β

+
‖y − ZΣ−1

z Σxβ
′‖22

2σ2
β′

]

=
n

2
log

(
σ2
β′

σ2
β

)
+
n

2

(
σ2
β

σ2
β′

− 1

)

+
1

2σ2
β′

‖ZΣxΣ−1
z (β − β ′)‖22, (3.44)

where σ2
β = βT (Σx − ΣxΣ

−1
z Σx)β + σ2

ǫ , and σ
2
β′ is defined analogously.

In our setting, since Σx = σ2
xI, Σw = σ2

wI, and ‖β‖2 = 1,

σ2
β =

(
σ2
x −

σ4
x

σ2
z

)
‖β‖22 + σ2

ǫ =
σ2
xσ

2
w

σ2
z

+ σ2
ǫ := σ′2

gives the same value for all β. Then equation (3.44) becomes

D(Pβ‖Pβ′) =
1

2σ′2

σ4
x

σ4
z

‖Z(β − β ′)‖22 ≤
cnσ4

x

σ′2σ2
z

‖β − β ′‖22, (3.45)

where the last inequality uses Lemma A.16 in Appendix A.3. Expanding σ′2 in inequal-
ity (3.45) then yields the desired result.
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In particular, for βj , βℓ in the δ-packing, Lemmas 3.2 and 3.3 together imply that

D(Pj‖Pℓ) ≤
cnδ2σ4

x

σ2
xσ

2
w + σ2

ǫσ
2
z

,

so by inequality (3.42), we also have

I(y;B) ≤ cnδ2σ4
x

σ2
xσ

2
w + σ2

ǫσ
2
z

.

Substituting into Fano’s inequality (3.41) gives

P(β̃ 6= B) ≥ 1−
cnδ2σ4x

σ2xσ
2
w+σ2ǫσ

2
z
+ log 2

k
2
log p−k

k/2

. (3.46)

Note that for p/k ≥ 2 and k ≥ 8, we have log 2 ≤ k
8
log p−k

k/2
, so inequality (3.46) implies that

P(β̃ 6= B) ≥ 1−




cnδ2σ4x
σ2xσ

2
w+σ2ǫσ

2
z

k
2
log p−k

k/2

+
1

4


 .

Choosing

δ2 =
c(σ2

xσ
2
w + σ2

ǫσ
2
z)

σ4
x

k

n
log

p− k

k/2
,

and using inequality (3.40), we conclude that M ≥ δ2

4
with probability at least 1/2. Finally,

note that when p/k ≥ 2, we have p−k
k/2

= 2
(
p
k
− 1
)
≥ p

k
, so we may replace the quotient p−k

k/2

by p
k
in the lower bound to obtain the result we seek.

3.6.5 Proof of Theorem 3.5

Again following Section 3.3, we use the estimators Γ̂ = ẐT Ẑ
n

−α diag
(
ẐT Ẑ
n

)
, γ̂ = ẐT y

n
, where

Ẑ = Z
1−α is a rescaled version of the missing data matrix. Let ũ ∈ B0(k) ∩ B2(1). Using the

fact that y = Xβ∗ + ǫ and expanding, we have the bound

|ũT (γ̂ − Γ̂β∗)| ≤
∣∣∣∣∣ũ
T

(
ẐT (Ẑ −X)

n
− α

1− α
σ2
xI

)
β∗

∣∣∣∣∣

+

∣∣∣∣∣
ũT ẐT ǫ

n

∣∣∣∣∣ + α

∣∣∣∣∣ũ
T

(
diag

(
ẐT Ẑ

n

)
− σ2

x

1− α
I

)
β∗

∣∣∣∣∣ .
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Note that Ẑ is sub-Gaussian with parameter σ2x
(1−α)2 , so we can bound the second term by

σxσǫ
1−α t with probability at least 1− 2 exp(−cnt2). Similarly, we may bound the third term by
ασ2x

(1−α)2 t. Finally, note that

ẐT (Ẑ −X)

n
=

1

n

n∑

i=1

ẑi(ẑi − xi)
T =

1

n

α

(1− α)2

n∑

i=1

ziz
T
i ,

where zi is the observed vector with 0’s in missing positions. Conditioned on the missing

positions, ũT Ẑ
T (Ẑ−X)
n

β∗ is sub-exponential with parameter ασ2x
(1−α)2 . Since a mixture of sub-

exponentials is sub-exponential with the same parameter, we have a bound of the form
ασ2x

(1−α)2 t. Then ϕ = σxσǫ
1−α + ασ2x

(1−α)2 with t = (1− α)
√

k log(p/k)
n

yields the bound.

3.6.6 Proof of Theorem 3.6

Note that when σǫ = 0, the theorem is trivially true; hence, we assume σǫ > 0. We use
the same δ-packing obtained in Lemma 3.2. To compute the KL divergences, we first derive
the distribution of y | Z for a fixed β, which is a product distribution of yi | zi over all i.
Furthermore, we may write

yi = 〈xi,obs, βobs〉+ 〈xi,mis, βmis〉+ ǫi, (3.47)

where obs denotes the indices of the the observed coordinates and mis denotes the indices
of the missing coordinates. Note that βobs and βmis vary with i. From equation (3.47), we
have

yi | zi ∼ N(zTi β, β
T
misΣx,misβmis + σ2

ǫ ).

Denote σ2
i,β = βTmisΣx,misβmis = σ2

β = σ2
x‖βmis‖22 + σ2

ǫ . By a similar computation as before,
for β ′ 6= β, we have

1

n
D(Pβ‖Pβ′) =

1

n

n∑

i=1

[
1

2
log

(
σ2
i,β′

σ2
i,β

)
+

1

2

(
σ2
i,β

σ2
i,β′

− 1

)

+
1

2σ2
i,β′

(zTi (β − β ′))2

]
. (3.48)

By a Taylor expansion, log x ≤ (x − 1) + c(x − 1)2 for x close to 1. Taking x =
σ2i,β
σ2
i,β′

,

equation (3.48) becomes

1

n
D(Pβ‖Pβ′) ≤ 1

n

n∑

i=1


 c
2

(
σ2
i,β

σ2
i,β′

− 1

)2

+
(zTi (β − β ′))2

2σ2
i,β′


 .
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Further note that

σ2
i,β

σ2
i,β′

− 1 =
σ2
x(‖βmis‖22 − ‖β ′

mis‖22)
σ2
i,β′

=
σ2
xu

T
i (β

2 − β ′2)

σ2
i,β′

,

where ui ∈ Rp is a binary vector with 1’s corresponding to missing values in zi, and β
2 and

β ′2 are obtained by componentwise squaring of β and β ′. The matrix U with rows uTi is i.i.d.
Bernoulli, hence sub-Gaussian with parameter 1. Applying Lemma A.16 to U and Z with

covariances α(1− α)I and (1− α)σ2
xI, taking t = (1− α)σ2

√
k log(p/k)

n
, we obtain

1

n
D(Pβ‖Pβ′)≤ cσ4

x

σ4
ǫ

(1− α)‖β2 − β ′2‖22 +
c′σ2

x

σ2
ǫ

(1− α)‖β − β ′‖22,

since σ2
i,β′ ≥ σ2

ǫ . Finally, note that

‖β2 − β ′2‖22 ≤ ‖β − β ′‖22‖β + β ′‖22 ≤ 2‖β − β ′‖22,

by Cauchy-Schwarz and the triangle inequality. When {β1, . . . , βM} is a δ-packing of the set
B0(k) ∩ B2(1), we have

D(Pj‖Pℓ) ≤ cnδ2(1− α)

(
σ4
x

σ4
ǫ

+
σ2
x

σ2
ǫ

)

= cnδ2(1− α)
σ2
x

σ2
ǫ

σ2
x + σ2

ǫ

σ2
ǫ

for all j 6= ℓ, with probability at least 1− exp(−ck log(p/k)). Choosing

δ2 =
cσ2

ǫ

σ2
x(1− α)

σ2
ǫ

σ2
x + σ2

ǫ

k

n
log

p− k

k/2

yields the bound.

3.7 Discussion

In this chapter, we formulated an ℓ1-constrained minimization problem for sparse linear
regression on corrupted data. The source of corruption may be additive noise or missing
data, and although the resulting objective is not generally convex, we showed that projected
gradient descent is guaranteed to converge to a point within statistical precision of the op-
timum. In addition, we established ℓ1- and ℓ2-error bounds that hold with high probability
when the data are drawn i.i.d. from a sub-Gaussian distribution, or drawn from a Gaus-
sian vector autoregressive process. In the case when covariates are Gaussian with diagonal
covariance matrix, we derived matching lower bounds on rates of estimation, showing that
our procedures are minimax optimal. Finally, we used our results on linear regression to
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perform sparse inverse covariance estimation for a Gaussian graphical model, where the data
are observed subject to corruption. The bounds we obtain for the spectral norm of the error
are of the same order as existing bounds for inverse covariance matrix estimation when the
data are uncorrupted and i.i.d.

Future directions of research include studying more general types of dependencies or
corruption in the covariates of regression, such as more general types of multiplicative noise;
and performing sparse linear regression for corrupted data with additive noise when the
noise covariance is unknown and replicates of the data may be unavailable. It would also be
interesting to study the performance of our algorithms on data that are not sub-Gaussian,
or even under model mismatch. In addition, one might consider other loss functions, where
it is more difficult to correct the objective for corrupted covariates. Finally, it remains to
be seen whether or not our techniques—used here to show that certain nonconvex problems
can solved to statistical precision—can be applied more broadly.
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Chapter 4

Nonconvex M-estimators

4.1 Introduction

Although recent years have brought about a flurry of work on optimization of convex func-
tions, optimizing nonconvex functions is in general computationally intractable [66, 88].
Nonconvex functions may possess local optima that are not global optima, and iterative
methods such as gradient or coordinate descent may terminate undesirably in local optima.
Unfortunately, standard statistical results for nonconvex M-estimators often only provide
guarantees for global optima. This leads to a significant gap in the theory, since comput-
ing global optima—or even near-global optima—in an efficient manner may be extremely
difficult in practice. Nonetheless, empirical studies have shown that local optima of various
nonconvex M-estimators arising in statistical problems appear to be well-behaved [10]. This
is the starting point of our work.

A key insight is that nonconvex functions occurring in statistics are not constructed ad-
versarially, so that “good behavior” might be expected in practice. The results of Chapter 3
confirmed this intuition for one specific case: a modified version of the Lasso applicable to
errors-in-variables regression. Although the Hessian of the modified objective has many neg-
ative eigenvalues in the high-dimensional setting, the objective function resembles a strongly
convex function when restricted to a cone set that includes the stationary points of the
objective. This allows us to establish bounds on the statistical and optimization error.

Our current chapter is framed in a more general setting, and we focus on various M-
estimators coupled with (nonconvex) regularizers of interest. On the statistical side, we
establish bounds on the distance between any local optimum of the empirical objective and
the unique minimizer of the population risk. Although the nonconvex functions may possess
multiple local optima (as demonstrated in simulations), our theoretical results show that all
local optima are essentially as good as a global optima from a statistical perspective. The
results presented here subsume the results of Chapter 3, and our present proof techniques
are much more direct.

Our theory also sheds new light on a recent line of work involving the nonconvex SCAD



CHAPTER 4. NONCONVEX M-ESTIMATORS 48

and MCP regularizers [28, 10, 101, 103]. Various methods previously proposed for nonconvex
optimization include local quadratic approximation (LQA) [28], minorization-maximization
(MM) [38], local linear approximation (LLA) [106], and coordinate descent [10, 58]. How-
ever, these methods may terminate in local optima, which were not previously known to be
well-behaved. In a recent paper, Zhang and Zhang [103] provided statistical guarantees for
global optima of least-squares linear regression with nonconvex penalties and showed that
gradient descent starting from a Lasso solution would terminate in specific local minima.
Fan et al. [29] also showed that if the LLA algorithm is initialized at a Lasso optimum sat-
isfying certain properties, the two-stage procedure produces an oracle solution for various
nonconvex penalties. Finally, Chen and Gu [19] showed that specific local optima of non-
convex regularized least-squares problems are stable, so optimization algorithms initialized
sufficiently closeby will converge to the same optima. See the survey paper [103] for a more
complete overview of related work.

In contrast, our results are the first to establish appropriate regularity conditions under
which all stationary points (including both local and global optima) lie within a small ball
of the population-level minimum. Thus, standard first-order methods such as projected and
composite gradient descent [65] will converge to stationary points that lie within statistical
error of the truth, eliminating the need for specially designed optimization algorithms that
converge to specific local optima. Figure 4.1 provides an illustration of the type of behavior
explained by the theory in this chapter. Panel (a) shows the behavior of composite gradient
descent for a form of logistic regression with the nonconvex SCAD [28] as a regularizer: the
red curve shows the statistical error, namely the ℓ2-norm of the difference between the iterates
and the underlying true regression vector. The blue curve shows the optimization error,
meaning the difference between the iterates and a given stationary point of the objective. As
shown by the blue curves, this problem possesses multiple local optima, since the algorithm
converges to different final points depending on the initialization. However, as shown by
the red curves, the statistical error of each local optimum is very low, so that they are all
essentially comparable from a statistical point of view. Panel (b) exhibits the same behavior
for a problem in which both the cost function (a corrected form of least-squares suitable
for missing data, as described in Chapter 3) and the regularizer (the MCP function [101])
are nonconvex. Nonetheless, as guaranteed by our theory, we still see the same qualitative
behavior of the statistical and optimization error. Moreover, our theory also predicts the
geometric convergence rates that are apparent in these plots. More precisely, under the same
sufficient conditions for statistical consistency, we show that a modified form of composite
gradient descent only requires log(1/ǫstat) steps to achieve a solution that is accurate up
to the statistical precision ǫstat, which is the rate expected for strongly convex functions.
Furthermore, our techniques are more generally applicable than the methods proposed by
previous authors, and are not restricted to least-squares or even convex loss functions.

While our paper was under review after its arXiv posting [56], we became aware of an
independent line of related work by Wang et al. [93]. Our contributions are substantially
different, in that we provide sufficient conditions guaranteeing statistical consistency for all
local optima, whereas their work is only concerned with establishing good behavior of suc-
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Figure 4.1: Plots of the optimization error (blue curves) and statistical error (red curves)
for a modified form of composite gradient descent, applicable to problems that may involve
nonconvex cost functions and regularizers. (a) Plots for logistic regression with the nonconvex
SCAD regularizer. (b) Plots for a corrected form of least squares (a nonconvex quadratic
program) with the nonconvex MCP regularizer.

cessive iterates along a certain path-following algorithm. In addition, our techniques are
applicable even to regularizers that do not satisfy smoothness constraints on the entire pos-
itive axis (such as capped-ℓ1). Finally, we provide rigorous proofs showing the applicability
of our sufficient condition on the loss function to a broad class of generalized linear models,
whereas the applicability of their “sparse eigenvalue” condition to such objectives was not
established.

The remainder of the chapter is organized as follows: In Section 2, we establish basic
notation and provide background on nonconvex regularizers and loss functions of interest.
In Section 3, we provide our main theoretical results, including bounds on ℓ1-, ℓ2-, and
prediction error, and also state corollaries for special cases. Section 4 contains a modification
of composite gradient descent that may be used to obtain near-global optima, and includes
theoretical results establishing the linear convergence of our optimization algorithm. Section
5 supplies the results of various simulations. Proofs are contained in Appendix B.

Notation: For functions f(n) and g(n), we write f(n) - g(n) to mean that f(n) ≤ cg(n)
for some universal constant c ∈ (0,∞), and similarly, f(n) % g(n) when f(n) ≥ c′g(n)
for some universal constant c′ ∈ (0,∞). We write f(n) ≍ g(n) when f(n) - g(n) and
f(n) % g(n) hold simultaneously. For a vector v ∈ Rp and a subset S ⊆ {1, . . . , p}, we write
vS ∈ RS to denote the vector v restricted to S. For a matrix M , we write |||M |||2 and |||M |||F
to denote the spectral and Frobenius norms, respectively, and write |||M |||max := maxi,j |mij|
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to denote the elementwise ℓ∞-norm ofM . For a function h : Rp → R, we write ∇h to denote
a gradient or subgradient, if it exists. Finally, for q, r > 0, let Bq(r) denote the ℓq-ball of
radius r centered around 0.

4.2 Problem formulation

In this section, we develop some general theory for regularized M-estimators. We begin by
establishing our notation and basic assumptions, before turning to the class of nonconvex
regularizers and nonconvex loss functions to be covered in this chapter.

4.2.1 Background

Given a collection of n samples Zn
1 = {Z1, . . . , Zn}, drawn from a marginal distribution

P over a space Z, consider a loss function Ln : Rp × (Z)n → R. The value Ln(β;Zn
1 )

serves as a measure of the “fit” between a parameter vector β ∈ Rp and the observed data.
This empirical loss function should be viewed as a surrogate to the population risk function
L : Rp → R, given by

L(β) := EZ
[
Ln(β;Zn

1 )
]
.

Our goal is to estimate the parameter vector β∗ := arg min
β∈Rp

L(β) that minimizes the popu-

lation risk, assumed to be unique.
To this end, we consider a regularized M-estimator of the form

β̂ ∈ arg min
g(β)≤R, β∈Ω

{Ln(β;Zn
1 ) + ρλ(β)} , (4.1)

where ρλ : Rp → R is a regularizer, depending on a tuning parameter λ > 0, which serves
to enforce a certain type of structure on the solution. In all cases, we consider regularizers
that are separable across coordinates, and with a slight abuse of notation, we write

ρλ(β) =

p∑

j=1

ρλ(βj).

Our theory allows for possible nonconvexity in both the loss function Ln and the regularizer
ρλ. Due to this potential nonconvexity, our M-estimator also includes a side constraint g :
Rp → R+, which we require to be a convex function satisfying the lower bound g(β) ≥ ‖β‖1,
for all β ∈ Rp. Consequently, any feasible point for the optimization problem (4.1) satisfies
the constraint ‖β‖1 ≤ R, and as long as the empirical loss and regularizer are continuous,

the Weierstrass extreme value theorem guarantees that a global minimum β̂ exists. Finally,
we allow for an additional side constraint β ∈ Ω, where Ω is some convex set containing
β∗. For the graphical Lasso considered in Section 4.3.4, we take Ω = S+ to be the set of
positive semidefinite matrices; in settings where such an additional condition is extraneous,
we simply set Ω = Rp.
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4.2.2 Nonconvex regularizers

We now state and discuss conditions on the regularizer, defined in terms of a univariate
function ρλ : R → R.

Assumption 4.1.

(i) The function ρλ satisfies ρλ(0) = 0 and is symmetric around zero (i.e., ρλ(t) = ρλ(−t)
for all t ∈ R).

(ii) On the nonnegative real line, the function ρλ is nondecreasing.

(iii) For t > 0, the function t 7→ ρλ(t)
t

is nonincreasing in t.

(iv) The function ρλ is differentiable for all t 6= 0 and subdifferentiable at t = 0, with
nonzero subgradients at t = 0 bounded by λL.

(v) There exists µ > 0 such that ρλ,µ(t) := ρλ(t) + µt2 is convex.

It is instructive to compare the conditions of Assumption 4.1 to similar conditions pre-
viously proposed in literature. Conditions (i)–(iii) are the same as those proposed in Zhang
and Zhang [103], except we omit the extraneous condition of subadditivity (cf. Lemma 1 of
Chen and Gu [19]). Such conditions are relatively mild and are satisfied for a wide variety of
regularizers. Condition (iv) restricts the class of penalties by excluding regularizers such as
the bridge (ℓq-) penalty, which has infinite derivative at 0; and the capped-ℓ1 penalty, which
has points of non-differentiability on the positive real line. However, one may check that if
ρλ has unbounded derivative at zero, then β̃ = 0 is always a local optimum of the composite
objective (4.1), so there is no hope for ‖β̃ − β∗‖2 to be vanishingly small. Condition (v),
known as weak convexity [90], also appears in Chen and Gu [19] and is a type of curvature
constraint that controls the level of nonconvexity of ρλ. Although this condition is satisfied
by many regularizers of interest, it is again not satisfied by capped-ℓ1 for any µ > 0. For
details on how our arguments may be modified to handle the more tricky capped-ℓ1 penalty,
see Appendix B.6.

Nonetheless, many regularizers that are commonly used in practice fully satisfy Assump-
tion 4.1. It is easy to see that the standard ℓ1-norm ρλ(β) = ‖β‖1 satisfies these conditions.
More exotic functions have been studied in a line of past work on nonconvex regularization,
and we provide a few examples here:

SCAD penalty: This penalty, due to Fan and Li [28], takes the form

ρλ(t) :=





λ|t|, for |t| ≤ λ,

−(t2 − 2aλ|t|+ λ2)/(2(a− 1)), for λ < |t| ≤ aλ,

(a + 1)λ2/2, for |t| > aλ,

(4.2)

where a > 2 is a fixed parameter. As verified in Lemma B.3 of Appendix B.1.2, the SCAD
penalty satisfies the conditions of Assumption 4.1 with L = 1 and µ = 1

a−1
.
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MCP regularizer: This penalty, due to Zhang [104], takes the form

ρλ(t) := sign(t) λ ·
∫ |t|

0

(
1− z

λb

)
+
dz, (4.3)

where b > 0 is a fixed parameter. As verified in Lemma B.4 in Appendix B.1.2, the MCP
regularizer satisfies the conditions of Assumption 4.1 with L = 1 and µ = 1

b
.

4.2.3 Nonconvex loss functions and restricted strong convexity

Throughout this chapter, we require the loss function Ln to be differentiable, but we do
not require it to be convex. Instead, we impose a weaker condition known as restricted
strong convexity (RSC). Such conditions have been discussed in previous literature [63, 1],
and involve a lower bound on the remainder in the first-order Taylor expansion of Ln. In
particular, our main statistical result is based on the following RSC condition:

〈∇Ln(β∗ +∆)−∇Ln(β∗), ∆〉 ≥





α1‖∆‖22 − τ1
log p

n
‖∆‖21, ∀‖∆‖2 ≤ 1, (4.4a)

α2‖∆‖2 − τ2

√
log p

n
‖∆‖1, ∀‖∆‖2 ≥ 1, (4.4b)

where the αj’s are strictly positive constants and the τj ’s are nonnegative constants.
To understand this condition, note that if Ln were actually strongly convex, then both

these RSC inequalities would hold with α1 = α2 > 0 and τ1 = τ2 = 0. However, in the high-
dimensional setting (p≫ n), the empirical loss Ln can never be strongly convex, but the RSC
condition may still hold with strictly positive (αj, τj). On the other hand, if Ln is convex
(but not strongly convex), the left-hand expression in inequality (4.4) is always nonnegative,

so inequalities (4.4a) and (4.4b) hold trivially for ‖∆‖1
‖∆‖2 ≥

√
α1n

τ1 log p
and ‖∆‖1

‖∆‖2 ≥ α2

τ2

√
n

log p
,

respectively. Hence, the RSC inequalities only enforce a type of strong convexity condition

over a cone set of the form

{
‖∆‖1
‖∆‖2 ≤ c

√
n

log p

}
.

It is important to note that the class of functions satisfying RSC conditions of this type
is much larger than the class of convex functions; the results of Chapter 3 contain a large
family of nonconvex quadratic functions that satisfy this condition (see Section 4.3.2 below
for further discussion). Finally, note that we have stated two separate RSC inequalities (4.4),
unlike in past work [63, 1, 55], which only imposes the first condition (4.4a) over the entire
range of ∆. As illustrated in the corollaries of Sections 4.3.3 and 4.3.4 below, the first
inequality (4.4a) can only hold locally over ∆ for more complicated types of functions; in
contrast, as proven in Appendix B.2.1, inequality (4.4b) is implied by inequality (4.4a) in
cases when Ln is convex.
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4.3 Statistical guarantees and consequences

With this setup, we now turn to the statements and proofs of our main statistical guarantees,
as well as some consequences for various statistical models. Our theory applies to any vector
β̃ ∈ Rp that satisfies the first-order necessary conditions to be a local minimum of the
program (4.1):

〈∇Ln(β̃) +∇ρλ(β̃), β − β̃〉 ≥ 0, for all feasible β ∈ Rp. (4.5)

When β̃ lies in the interior of the constraint set, this condition reduces to the usual zero-
subgradient condition:

∇Ln(β̃) +∇ρλ(β̃) = 0.

4.3.1 Main statistical results

Our main theorems are deterministic in nature, and specify conditions on the regularizer, loss
function, and parameters, which guarantee that any local optimum β̃ lies close to the target
vector β∗ = arg min

β∈Rp
L(β). Corresponding probabilistic results will be derived in subsequent

sections, where we establish that for appropriate choices of parameters (λ,R), the required
conditions hold with high probability. Applying the theorems to particular models requires
bounding the random quantity ‖∇Ln(β∗)‖∞ and verifying the RSC conditions (4.4). We

begin with a theorem that provides guarantees on the error β̃ − β∗ as measured in the ℓ2-
and ℓ1-norms:

Theorem 4.1. Suppose the regularizer ρλ satisfies Assumption 4.1, the empirical loss Ln
satisfies the RSC conditions (4.4) with α1 > µ, and β∗ is feasible for the objective. Consider
any choice of λ such that

2

L
·max

{
‖∇Ln(β∗)‖∞, α2

√
log p

n

}
≤ λ ≤ α2

6RL
, (4.6)

and suppose n ≥ 16R2 max(τ21 ,τ
2
2 )

α2
2

log p. Then any vector β̃ satisfying the first-order necessary

conditions (4.5) satisfies the error bounds

‖β̃ − β∗‖2 ≤
7λL

√
k

4(α1 − µ)
, and ‖β̃ − β∗‖1 ≤

56λLk

4(α1 − µ)
, (4.7)

where k = ‖β∗‖0.

From the bound (4.7), note that the squared ℓ2-error grows proportionally with k, the
number of non-zeros in the target parameter, and with λ2. As will be clarified in the

following sections, choosing λ proportional to
√

log p
n

and R proportional to 1
λ
will satisfy
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the requirements of Theorem 4.1 w.h.p. for many statistical models, in which case we have
a squared-ℓ2 error that scales as k log p

n
, as expected.

Our next theorem provides a bound on a measure of the prediction error, as defined by
the quantity

D
(
β̃; β∗) := 〈∇Ln(β̃)−∇Ln(β∗), β̃ − β∗〉. (4.8)

When the empirical loss Ln is a convex function, this measure is always nonnegative, and in
various special cases, it has a form that is readily interpretable. For instance, in the case of
the least-squares objective function Ln(β) = 1

2n
‖y −Xβ‖22, we have

D
(
β̃; β∗) =

1

n
‖X(β̃ − β∗)‖22 =

1

n

n∑

i=1

(
〈xi, β̃ − β∗〉

)2
,

corresponding to the usual measure of (fixed design) prediction error for a linear regression
problem (cf. Corollary 4.1 below). More generally, when the loss function is the negative log
likelihood for a generalized linear model with cumulant function ψ, the error measure (4.8)
is equivalent to the symmetrized Bregman divergence defined by ψ. (See Section 4.3.3 for
further details.)

Theorem 4.2. Under the same conditions as Theorem 4.1, the error measure (4.8) is
bounded as

〈∇Ln(β̃)−∇Ln(β∗), β̃ − β∗〉 ≤ λ2L2k

(
21

8(α1 − µ)
+

49µ

16(α1 − µ)2

)
. (4.9)

This result shows that the prediction error (4.8) behaves similarly to the squared Eu-

clidean norm between β̃ and β∗.

Remark 4.1. It is worthwhile to discuss the quantity α1 − µ appearing in the denominator
of the bounds in Theorems 4.1 and 4.2. Recall that α1 measures the level of curvature of the
loss function Ln, while µ measures the level of nonconvexity of the penalty ρλ. Intuitively, the
two quantities should play opposing roles in our result: Larger values of µ correspond to more
severe nonconvexity of the penalty, resulting in worse behavior of the overall objective (4.1),
whereas larger values of α1 correspond to more (restricted) curvature of the loss, leading
to better behavior. However, while the condition α1 > µ is needed for the proof technique
employed in Theorem 4.1, it does not seem to be strictly necessary in order to guarantee good
behavior of local optima. Indeed, note that the capped-ℓ1 penalty may be viewed as a limiting
version of SCAD when a→ 1, or equivalently, µ→ ∞. Viewed in this light, Theorem B.1, to
be stated and proved in Appendix B.6, reveals that the condition α1 > µ is not necessary, at
least in general, for good behavior of local optima. Moreover, Section 4.5 contains empirical
studies using linear regression and the SCAD penalty showing that local optima may be well-
behaved even when α1 < µ. Nonetheless, our simulations (see Figure 4.5) also convey a
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cautionary message: In extreme cases, where α1 is much smaller than µ, the good behavior
of local optima (and the optimization algorithms used to find them) appear to degenerate.

Finally, we note that Negahban et al. [63] have shown that for convex M-estimators, the
arguments used to analyze ℓ1-regularizers may be generalized to other types of “decomposable”
regularizers, such as norms for group sparsity or the nuclear norm for low-rank matrices. In
our present setting, where we allow for nonconvexity in the loss and regularizer, our theorems
have straightforward and analogous generalizations.

We return to the proofs of Theorems 4.1 and 4.2 in Section 4.3.5. First, we develop
various consequences of these theorems for various nonconvex loss functions and regularizers
of interest. The main technical challenge is to establish that the RSC conditions (4.4) hold
with high probability for appropriate choices of positive constants {(αj, τj)}2j=1.

4.3.2 Corrected linear regression

We begin by considering the case of high-dimensional linear regression with systematically
corrupted observations. Recall that in the framework of ordinary linear regression, we have
the linear model

yi = 〈β∗, xi〉︸ ︷︷ ︸∑p
j=1 β

∗
j xij

+ ǫi, for i = 1, . . . , n, (4.10)

where β∗ ∈ Rp is the unknown parameter vector and {(xi, yi)}ni=1 are observations. Following
the framework discussed in Chapter 3, assume we instead observe pairs {(zi, yi)}ni=1, where
the zi’s are systematically corrupted versions of the corresponding xi’s. Some examples of
corruption mechanisms include the following:

(a) Additive noise: We observe zi = xi+wi, where wi ∈ Rp is a random vector independent
of xi, say zero-mean with known covariance matrix Σw.

(b) Missing data: For some fraction ϑ ∈ [0, 1), we observe a random vector zi ∈ Rp such
that for each component j, we independently observe zij = xij with probability 1− ϑ,
and zij = ∗ with probability ϑ.

We use the population and empirical loss functions

L(β) = 1

2
βTΣxβ − β∗TΣxβ, and Ln(β) =

1

2
βT Γ̂β − γ̂Tβ, (4.11)

where (Γ̂, γ̂) are estimators for (Σx,Σxβ
∗) depending only on {(zi, yi)}ni=1. It is easy to

see that β∗ = argminβ L(β). From the formulation (4.1), the corrected linear regression
estimator is given by

β̂ ∈ arg min
g(β)≤R

{
1

2
βT Γ̂β − γ̂Tβ + ρλ(β)

}
. (4.12)
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We now state a concrete corollary in the case of additive noise (model (a) above). In this

case, as discussed in Chapter 3, an appropriate choice of the pair (Γ̂, γ̂) is given by

Γ̂ =
ZTZ

n
− Σw, and γ̂ =

ZTy

n
. (4.13)

Here, we assume the noise covariance Σw is known or may be estimated from replicates of
the data. Such an assumption also appears in canonical errors-in-variables literature [18],
but it is an open question how to devise a corrected estimator when an estimate of Σw is
not readily available.

In the high-dimensional setting (p ≫ n), the matrix Γ̂ in equation (4.13) is always

negative-definite: the matrix ZTZ
n

has rank at most n, and then the positive definite ma-

trix Σw is subtracted to obtain Γ̂. Consequently, the empirical loss function Ln previously
defined (4.11) is nonconvex. Other choices of Γ̂ are applicable to missing data (model (b)),
and also lead to nonconvex programs (see Chapter 3 for further details).

Corollary 4.1. Suppose we have i.i.d. observations {(zi, yi)}ni=1 from a corrupted linear
model with additive noise, where the xi’s are sub-Gaussian. Suppose (λ,R) are chosen such
that β∗ is feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Then given a sample size n ≥ C max{R2, k} log p, any local optimum β̃ of the nonconvex
program (4.12) satisfies the estimation error bounds

‖β̃ − β∗‖2 ≤
c0λ

√
k

λmin(Σx)− 2µ
, and ‖β̃ − β∗‖1 ≤

c′0λk

λmin(Σx)− 2µ
,

and the prediction error bound

ν̃T Γ̂ν̃ ≤ λ2k

(
c̃0

λmin(Σx)− 2µ
+

c̃0
′µ

(λmin(Σx)− 2µ)2

)
,

with probability at least 1− c1 exp(−c2 log p), where ‖β∗‖0 = k.

Remark 4.2. When ρλ(β) = λ‖β‖1 and g(β) = ‖β‖1, then taking λ ≍
√

log p
n

and R = b0
√
k

for some constant b0 ≥ ‖β∗‖2 yields the required scaling n % k log p. Hence, the bounds of
Corollary 4.1 agree with bounds previously established in Theorem 3.1 in Chapter 3. Note,
however, that those results are stated only for a global minimum β̂ of the program (4.12),

whereas Corollary 4.1 is a much stronger result holding for any local minimum β̃. Theo-
rem 3.2 in Chapter 3 provides a rather indirect (algorithmic) route for establishing similar

bounds ‖β̃ − β∗‖1 and ‖β̃ − β∗‖2, since the proposed projected gradient descent algorithm
may become stuck in a local minimum. In contrast, our argument here is much more direct
and does not rely on an algorithmic proof. Furthermore, our result is applicable to a more
general class of (possibly nonconvex) penalties beyond the usual ℓ1-norm.
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Corollary 4.1 also has important consequences in the case where pairs {(xi, yi)}ni=1 from
the linear model (4.10) are observed cleanly without corruption and ρλ is a nonconvex
penalty. In that case, the empirical loss Ln previously defined (4.11) is equivalent to the
least-squares loss, modulo a constant factor. Much existing work, including that of Fan and
Li [28] and Zhang and Zhang [103], first establishes statistical consistency results concerning
global minima of the program (4.12), then provides specialized algorithms such as a local
linear approximation (LLA) for obtaining specific local optima that are provably close to
global optima. However, our results show that any optimization algorithm guaranteed to
converge to a local optimum of the program suffices. See Section 4.4 for a more detailed
discussion of optimization procedures and fast convergence guarantees for obtaining local
minima. In the fully-observed case, we also have Γ̂ = XTX

n
, so the prediction error bound in

Corollary 4.1 agrees with the familiar scaling 1
n
‖X(β̃−β∗)‖22 - k log p

n
appearing in ℓ1-theory.

Furthermore, our theory provides a theoretical motivation for why the usual choice of
a = 3.7 for linear regression with the SCAD penalty [28] is reasonable. Indeed, as discussed
in Section 4.2.2, we have

µ =
1

a− 1
≈ 0.37

in that case. Since xi ∼ N(0, I) in the SCAD simulations, we have λmin(Σx) > 2µ for the
choice a = 3.7. For further comments regarding the parameter a in the SCAD penalty, see
the discussion concerning Figure 4.3 in Section 4.5.

4.3.3 Generalized linear models

Moving beyond linear regression, we now consider the case where observations are drawn from
a generalized linear model (GLM). Recall that a GLM is characterized by the conditional
distribution

P(yi | xi, β, σ) = exp

{
yi〈β, xi〉 − ψ(xTi β)

c(σ)

}
,

where σ > 0 is a scale parameter and ψ is the cumulant function, By standard properties of
exponential families [59, 50], we have

ψ′(xTi β) = E[yi | xi, β, σ].

In our analysis, we assume that there exists αu > 0 such that ψ′′(t) ≤ αu for all t ∈ R.
Note that this boundedness assumption holds in various settings, including linear regression,
logistic regression, and multinomial regression, but does not hold for Poisson regression. The
bound will be necessary to establish both statistical consistency results in the present section
and fast global convergence guarantees for our optimization algorithms in Section 4.4.

The population loss corresponding to the negative log likelihood is then given by

L(β) = −E[log P(xi, yi)] = −E[log P(xi)]−
1

c(σ)
· E[yi〈β, xi〉 − ψ(xTi β)],
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giving rise to the population-level and empirical gradients

∇L(β) = 1

c(σ)
· E[(ψ′(xTi β)− yi)xi], and

∇Ln(β) =
1

c(σ)
· 1
n

n∑

i=1

(
ψ′(xTi β)− yi

)
xi.

Since we are optimizing over β, we will rescale the loss functions and assume c(σ) = 1. We
may check that if β∗ is the true parameter of the GLM, then ∇L(β∗) = 0; furthermore,

∇2Ln(β) =
1

n

n∑

i=1

ψ′′(xTi β)xix
T
i � 0,

so Ln is convex.
We will assume that β∗ is sparse and optimize the penalized maximum likelihood program

β̂ ∈ arg min
g(β)≤R

{
1

n

n∑

i=1

(
ψ(xTi β)− yix

T
i β
)
+ ρλ(β)

}
. (4.14)

We then have the following corollary, proved in Appendix B.2.3:

Corollary 4.2. Suppose we have i.i.d. observations {(xi, yi)}ni=1 from a GLM, where the xi’s
are sub-Gaussian. Suppose (λ,R) are chosen such that β∗ is feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Then given a sample size n ≥ CR2 log p, any local optimum β̃ of the nonconvex pro-
gram (4.14) satisfies

‖β̃ − β∗‖2 ≤
c0λ

√
k

λmin(Σx)− 2µ
, and ‖β̃ − β∗‖1 ≤

c′0λk

λmin(Σx)− 2µ
,

with probability at least 1− c1 exp(−c2 log p), where ‖β∗‖0 = k.

Remark 4.3. Although Ln is convex in this case, the overall program may not be convex if
the regularizer ρλ is nonconvex, giving rise to multiple local optima. For instance, see the
simulations of Figure 4.4 in Section 4.5 for a demonstration of such local optima. In past
work, Breheny and Huang [10] studied logistic regression with SCAD and MCP regularizers,
but did not provide any theoretical results on the quality of the local optima. In this context,
Corollary 4.2 shows that their coordinate descent algorithms are guaranteed to converge to a
local optimum β̃ within close proximity of the true parameter β∗.
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4.3.4 Graphical Lasso

Finally, we specialize our results to the case of the graphical Lasso. Given p-dimensional
observations {xi}ni=1, the goal is to estimate the structure of the underlying (sparse) graphical
model. Recall that the population and empirical losses for the graphical Lasso are given by

L(Θ) = trace(ΣΘ)− log det(Θ), and Ln(Θ) = trace(Σ̂Θ)− log det(Θ),

where Σ̂ is an empirical estimate for the covariance matrix Σ = Cov(xi). The objective
function for the graphical Lasso is then given by

Θ̂ ∈ arg min
g(Θ)≤R, Θ�0

{
trace(Σ̂Θ)− log det(Θ) +

p∑

j,k=1

ρλ(Θjk)

}
, (4.15)

where we apply the (possibly nonconvex) penalty function ρλ to all entries of Θ, and define
Ω :=

{
Θ ∈ Rp×p | Θ = ΘT , Θ � 0

}
.

A host of statistical and algorithmic results have been established for the graphical Lasso
in the case of Gaussian observations with an ℓ1-penalty [4, 30, 78, 100], and more recently for
discrete-valued observations, as described in Chapter 5. In addition, a version of the graphical
Lasso incorporating a nonconvex SCAD penalty has been proposed [27]. Our results subsume
previous Frobenius error bounds for the graphical Lasso, and again imply that even in the
presence of a nonconvex regularizer, all local optima of the nonconvex program (4.15) remain
close to the true inverse covariance matrix Θ∗.

As suggested in Chapter 5, the graphical Lasso easily accommodates systematically cor-
rupted observations, with the only modification being the form of the sample covariance
matrix Σ̂. Furthermore, the program (4.15) is always useful for obtaining a consistent esti-
mate of a sparse inverse covariance matrix, regardless of whether the xi’s are drawn from a
distribution for which Θ∗ is relevant in estimating the edges of the underlying graph. Note
that other variants of the graphical Lasso exist in which only off-diagonal entries of Θ are
penalized, and similar results for statistical consistency hold in that case. Here, we assume
all entries are penalized equally in order to simplify our arguments. The same framework is
considered by Fan et al. [27].

We have the following result, proved in Appendix B.2.4. The statement of the corollary is
purely deterministic, but in cases of interest (say, sub-Gaussian observations), the deviation
condition (4.16) holds with probability at least 1 − c1 exp(−c2 log p), translating into the
Frobenius norm bound (4.17) holding with the same probability.

Corollary 4.3. Suppose we have an estimate Σ̂ of the covariance matrix Σ based on (possibly
corrupted) observations {xi}ni=1, such that

∣∣∣
∣∣∣
∣∣∣Σ̂− Σ

∣∣∣
∣∣∣
∣∣∣
max

≤ c0

√
log p

n
. (4.16)
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Also suppose Θ∗ has at most s nonzero entries. Suppose (λ,R) are chosen such that Θ∗ is
feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Then with a sample size n > Cs log p, for a sufficiently large constant C > 0, any local
optimum Θ̃ of the nonconvex program (4.15) satisfies

∣∣∣
∣∣∣
∣∣∣Θ̃−Θ∗

∣∣∣
∣∣∣
∣∣∣
F
≤ c′0λ

√
s

(|||Θ∗|||2 + 1)−2 − µ
. (4.17)

Remark 4.4. When ρ is simply the ℓ1-penalty, the bound (4.17) from Corollary 4.3 matches
the minimax rates for Frobenius norm estimation of an s-sparse inverse covariance ma-
trix [78, 74].

4.3.5 Proof of Theorems 4.1 and 4.2

Proof of Theorem 4.1 Introducing the shorthand ν̃ := β̃− β∗, we begin by proving that
‖ν̃‖2 ≤ 1. If not, then inequality (4.4b) gives the lower bound

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≥ α2‖ν̃‖2 − τ2

√
log p

n
‖ν̃‖1. (4.18)

Since β∗ is feasible, we may take β = β∗ in inequality (4.5), and combining with inequal-
ity (4.18) yields

〈−∇ρλ(β̃)−∇Ln(β∗), ν̃〉 ≥ α2‖ν̃‖2 − τ2

√
log p

n
‖ν̃‖1. (4.19)

By Hölder’s inequality, followed by the triangle inequality, we also have

〈−∇ρλ(β̃)−∇Ln(β∗), ν̃〉 ≤
{
‖∇ρλ(β̃)‖∞ + ‖∇Ln(β∗)‖∞

}
‖ν̃‖1

(i)

≤
{
λL+

λL

2

}
‖ν̃‖1,

where inequality (i) follows since ‖∇Ln(β∗)‖∞ ≤ λL
2

by the bound (4.6), and the bound

‖∇ρλ(β̃)‖∞ ≤ λL holds by Lemma B.1 in Appendix B.1.1. Combining this upper bound
with inequality (4.19) and rearranging then yields

‖ν̃‖2 ≤
‖ν̃‖1
α2

(
3λL

2
+ τ2

√
log p

n

)
≤ 2R

α2

(
3λL

2
+ τ2

√
log p

n

)
.
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By our choice of λ from inequality (4.6) and the assumed lower bound on the sample size n,
the right hand side is at most 1, so ‖ν̃‖2 ≤ 1, as claimed.

Consequently, we may apply inequality (4.4a), yielding the lower bound

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≥ α1‖ν̃‖22 − τ1
log p

n
‖ν̃‖21. (4.20)

Since the function ρλ,µ(β) := ρλ(β) + µ‖β‖22 is convex by assumption, we have

ρλ,µ(β
∗)− ρλ,µ(β̃) ≥ 〈∇ρλ,µ(β̃), β∗ − β̃〉 = 〈∇ρλ(β̃) + 2µβ̃, β∗ − β̃〉,

implying that

〈∇ρλ(β̃), β∗ − β̃〉 ≤ ρλ(β
∗)− ρλ(β̃) + µ‖β̃ − β∗‖22. (4.21)

Combining inequality (4.20) with inequalities (4.5) and (4.21), we obtain

α1‖ν̃‖22 − τ1
log p

n
‖ν̃‖21 ≤ −〈∇Ln(β∗), ν̃〉+ ρλ(β

∗)− ρλ(β̃) + µ‖β̃ − β∗‖22
(i)

≤ ‖∇Ln(β∗)‖∞ · ‖ν̃‖1 + λL (‖ν̃A‖1 − ‖ν̃Ac‖1) + µ‖ν̃‖22
(ii)

≤ 3λL

2
‖ν̃A‖1 −

λL

2
‖ν̃Ac‖1 + µ‖ν̃‖22, (4.22)

where inequality (i) is obtained by applying Hölder’s inequality to the first term and applying
Lemma B.2 in Appendix B.1.1 to the middle two terms, and inequality (ii) uses the bound

‖ν̃‖1 ≤ ‖ν̃A‖1 + ‖ν̃Ac‖1.
Here, A is defined to be the index set of the k largest elements of β̃ − β∗ in magnitude, and
Ac is the complement. Rearranging inequality (4.22), we find that

0 ≤ 2(α1 − µ)‖ν̃‖22 ≤ 3λL‖ν̃A‖1 − λL‖ν̃Ac‖1 + 4Rτ1
log p

n
‖ν̃‖1

≤ 3λL‖ν̃A‖1 − λL‖ν̃Ac‖1 + α2

√
log p

n
‖ν̃‖1

≤ 7λL

2
‖ν̃A‖1 −

λL

2
‖ν̃Ac‖1, (4.23)

implying that ‖ν̃Ac‖1 ≤ 7‖ν̃A‖1. Consequently,
‖ν̃‖1 = ‖ν̃A‖1 + ‖ν̃Ac‖1 ≤ 8‖ν̃A‖1 ≤ 8

√
k‖ν̃A‖2 ≤ 8

√
k‖ν̃‖2. (4.24)

Furthermore, inequality (4.23) implies that

2(α1 − µ)‖ν̃‖22 ≤
7λL

2
‖ν̃A‖1 ≤

7λL
√
k

2
‖ν̃‖2.

Rearranging yields the ℓ2-bound, whereas the ℓ1-bound follows from by combining the ℓ2-
bound with the cone inequality (4.24).
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Proof of Theorem 4.2 To establish inequality (4.9), note that combining the first-order
condition (4.5) with the upper bounds of inequalities (4.21) and (4.22), we have

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≤ 〈−∇ρλ(β̃)−∇Ln(β∗), ν̃〉
≤ ρλ(β

∗)− ρλ(β̃) + µ‖ν̃‖22 + ‖∇Ln(β∗)‖∞ · ‖ν̃‖1
≤ 3λL

2
‖ν̃A‖1 −

λL

2
‖ν̃Ac‖1 + µ‖ν̃‖22

≤ 3λL

2

√
k‖ν̃‖2 + µ‖ν̃‖22,

so substituting in the ℓ2-bound (4.7) yields the desired result.

4.4 Optimization algorithms

We now describe how a version of composite gradient descent may be applied to efficiently
optimize the nonconvex program (4.1), and show that it enjoys a linear rate of convergence
under suitable conditions. In this section, we focus exclusively on a version of the optimiza-
tion problem with the side function

gλ,µ(β) :=
1

λ

{
ρλ(β) + µ‖β‖22

}
, (4.25)

which is convex by Assumption 4.1. We may then write the program (4.1) as

β̂ ∈ arg min
gλ,µ(β)≤R, β∈Ω

{(
Ln(β)− µ‖β‖22

)
︸ ︷︷ ︸

L̄n

+λgλ,µ(β)
}
. (4.26)

In this way, the objective function decomposes nicely into a sum of a differentiable but
nonconvex function and a possibly nonsmooth but convex penalty. Applied to the rep-
resentation (4.26) of the objective function, the composite gradient descent procedure of
Nesterov [65] produces a sequence of iterates {βt}∞t=0 via the updates

βt+1 ∈ arg min
gλ,µ(β)≤R

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

+
λ

η
gλ,µ(β)

}
, (4.27)

where 1
η
is the stepsize. As discussed in Section 4.4.2, these updates may be computed in a

relatively straightforward manner.

4.4.1 Fast global convergence

The main result of this section is to establish that the algorithm defined by the iterates (4.27)
converges very quickly to a δ-neighborhood of any global optimum, for all tolerances δ that
are of the same order (or larger) than the statistical error.
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We begin by setting up the notation and assumptions underlying our result. The Taylor
error around the vector β2 in the direction β1 − β2 is given by

T (β1, β2) := Ln(β1)− Ln(β2)− 〈∇Ln(β2), β1 − β2〉. (4.28)

We analogously define the Taylor error T for the modified loss function Ln, and note that

T (β1, β2) = T (β1, β2)− µ‖β1 − β2‖22. (4.29)

For all vectors β2 ∈ B2(3)∩B1(R), we require the following form of restricted strong convexity:

T (β1, β2) ≥





α1‖β1 − β2‖22 − τ1
log p

n
‖β1 − β2‖21, ∀‖β1 − β2‖2 ≤ 3, (4.30a)

α2‖β1 − β2‖2 − τ2

√
log p

n
‖β1 − β2‖1, ∀‖β1 − β2‖2 ≥ 3. (4.30b)

The conditions (4.30) are similar but not identical to the earlier RSC conditions (4.4). The
main difference is that we now require the Taylor difference to be bounded below uniformly
over β2 ∈ B2(3) ∩ B1(R), as opposed to for a fixed β2 = β∗. In addition, we assume an
analogous upper bound on the Taylor series error:

T (β1, β2) ≤ α3‖β1 − β2‖22 + τ3
log p

n
‖β1 − β2‖21, for all β1, β2 ∈ Ω, (4.31)

a condition referred to as restricted smoothness in past work [1]. Throughout this section,
we assume αi > µ for all i, where µ is the coefficient ensuring the convexity of the function
gλ,µ from equation (4.25). Furthermore, we define α = min{α1, α2} and τ = max{τ1, τ2, τ3}.

The following theorem applies to any population loss function L for which the population
minimizer β∗ is k-sparse and ‖β∗‖2 ≤ 1, and under the scaling n > Ck log p, for a constant
C depending on the αi’s and τi’s. Note that this scaling is reasonable, since no estimator
of a k-sparse vector in p dimensions can have low ℓ2-error unless the condition holds (see
Raskutti et al. [71] for minimax rates). We show that the composite gradient updates (4.27)
exhibit a type of globally geometric convergence in terms of the quantity

κ :=
1− α−µ

4η
+ ϕ(n, p, k)

1− ϕ(n, p, k)
, where ϕ(n, p, k) :=

128τk log p
n

α− µ
. (4.32)

Under the stated scaling on the sample size, we are guaranteed that κ ∈ (0, 1), so it is a
contraction factor. Roughly speaking, we show that the squared optimization error will fall

below δ2 within T ≍ log(1/δ2)
log(1/κ)

iterations. More precisely, our theorem guarantees δ-accuracy
for all iterations larger than

T ∗(δ) :=
2 log

(
φ(β0)−φ(β̂)

δ2

)

log(1/κ)
+

(
1 +

log 2

log(1/κ)

)
log log

(
λRL

δ2

)
, (4.33)
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where φ(β) := Ln(β) + ρλ(β) denotes the composite objective function. As clarified in the
theorem statement, the squared tolerance δ2 is not allowed to be arbitrarily small, which
would contradict the fact that the composite gradient method may converge to a local opti-
mum. However, our theory allows δ2 to be of the same order as the squared statistical error
ǫ2stat = ‖β̂−β∗‖22, the distance between a fixed global optimum and the target parameter β∗.
From a statistical perspective, there is no point in optimizing beyond this tolerance.

With this setup, we now turn to a precise statement of our main optimization-theoretic result.
As with Theorems 4.1 and 4.2, the statement of Theorem 4.3 is entirely deterministic.

Theorem 4.3. Suppose the empirical loss Ln satisfies the RSC/RSM conditions (4.30)

and (4.31), and suppose the regularizer ρλ satisfies Assumption 4.1. Suppose β̂ is any global
minimum of the program (4.26), with regularization parameters chosen such that

R

√
log p

n
≤ c, and λ ≥ 4

L
·max

{
‖∇Ln(β∗)‖∞, τ

√
log p

n

}
.

Then for any stepsize parameter η ≥ 2 ·max{α3−µ, µ} and tolerance parameter δ2 ≥ cǫ2
stat

1−κ ,
we have

‖βt − β̂‖22 ≤ 2

α− µ

(
δ2 +

δ4

τ
+ 128τ

k log p

n
ǫ2stat

)
, ∀t ≥ T ∗(δ). (4.34)

Remark 4.5. Note that for the optimal choice of tolerance parameter δ ≍ ǫstat, the error

bound appearing in inequality (4.34) takes the form
cǫ2stat
α−µ , meaning that successive iterates

of the composite gradient descent algorithm are guaranteed to converge to a region within
statistical accuracy of the true global optimum β̂. More concretely, if the sample size satis-
fies n % Ck log p and the regularization parameters are chosen appropriately, Theorem 4.1

guarantees that ǫstat = O
(√

k log p
n

)
with high probability. Combined with Theorem 4.3, we

then conclude that

max
{
‖βt − β̂‖2, ‖βt − β∗‖2

}
= O

(√
k log p

n

)
,

for all iterations t ≥ T (ǫstat).
As would be expected, the (restricted) curvature α of the loss function and nonconvexity

parameter µ of the penalty function enter into the bound via the denominator α−µ. Indeed,
the bound is tighter when the loss function possesses more curvature or the penalty function
is closer to being convex, agreeing with intuition. Similar to our discussion in Remark 4.1,
the requirement α > µ is certainly necessary for our proof technique, but it is possible that
composite gradient descent still produces good results when this condition is violated. See
Section 4.5 for simulations in scenarios involving mild and severe violations of this condition.
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Finally, note that the parameter η must be sufficiently large (or equivalently, the stepsize
must be sufficiently small) in order for the composite gradient descent algorithm to be well-
behaved. See Nesterov [65] for a discussion of how the stepsize may be chosen via an iterative
search when the problem parameters are unknown.

In the case of corrected linear regression (Corollary 4.1), Lemma A.13 in Appendix A.2
establishes the RSC/RSM conditions for various statistical models. The following proposition
shows that the conditions (4.30) and (4.31) hold in GLMs when the xi’s are drawn i.i.d. from a
zero-mean sub-Gaussian distribution with parameter σx and covariance matrix Σx = cov(xi).
As usual, we assume a sample size n ≥ c k log p, for a sufficiently large constant c > 0. Recall
the definition of the Taylor error T (β1, β2) from equation (4.28).

Proposition 4.1. [RSC/RSM conditions for generalized linear models] There exists a con-
stant αℓ > 0, depending only on the GLM and (σx,Σx), such that for all vectors β2 ∈
B2(3) ∩ B1(R), we have

T (β1, β2) ≥





αℓ
2
‖∆‖22 −

c2σ2
x

2αℓ

log p

n
‖∆‖21, for all ‖β1 − β2‖2 ≤ 3, (4.35a)

3αℓ
2

‖∆‖2 − 3cσx

√
log p

n
‖∆‖1, for all ‖β1 − β2‖2 ≥ 3, (4.35b)

with probability at least 1− c1 exp(−c2n). With the bound ‖ψ′′‖∞ ≤ αu, we also have

T (β1, β2) ≤ αuλmax(Σx)

(
3

2
‖∆‖22 +

log p

n
‖∆‖21

)
, for all β1, β2 ∈ Rp, (4.36)

with probability at least 1− c1 exp(−c2n).

For the proof of Proposition 4.1, see Appendix B.4.

4.4.2 Form of updates

In this section, we discuss how the updates (4.27) are readily computable in many cases. We
begin with the case Ω = Rp, so we have no additional constraints apart from gλ,µ(β) ≤ R. In
this case, given iterate βt, the next iterate βt+1 may be obtained via the following three-step
procedure:

(1) First optimize the unconstrained program

β̂ ∈ arg min
β∈Rp

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

+
λ

η
· gλ,µ(β)

}
. (4.37)

(2) If gλ,µ(β̂) ≤ R, define βt+1 = β̂.
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(3) Otherwise, if gλ,µ(β̂) > R, optimize the constrained program

βt+1 ∈ arg min
gλ,µ(β)≤R

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

}
. (4.38)

We derive the correctness of this procedure in Appendix B.3.1. For many nonconvex
regularizers ρλ of interest, the unconstrained program (4.37) has a convenient closed-form
solution: For the SCAD penalty (4.2), the program (4.37) has simple closed-form solution
given by

β̂SCAD =





0 if 0 ≤ |z| ≤ νλ,

z − sign(z) · νλ if νλ ≤ |z| ≤ (ν + 1)λ,
z−sign(z)· aνλ

a−1

1− ν
a−1

if (ν + 1)λ ≤ |z| ≤ aλ,

z if |z| ≥ aλ.

(4.39)

For the MCP (4.3), the optimum of the program (4.37) takes the form

β̂MCP =





0 if 0 ≤ |z| ≤ νλ,
z−sign(z)·νλ

1−ν/b if νλ ≤ |z| ≤ bλ,

z if |z| ≥ bλ.

(4.40)

In both equations (4.39) and (4.40), we have

z :=
1

1 + 2µ/η

(
βt − ∇Ln(βt)

η

)
, and ν :=

1/η

1 + 2µ/η
,

and the operations are taken componentwise. See Appendix B.3.2 for the derivation of these
closed-form updates.

More generally, when Ω ( Rp (such as in the case of the graphical Lasso), the minimum
in the program (4.27) must be taken over Ω, as well. Although the updates are not as
simply stated, they still involve solving a convex optimization problem. Despite this more
complicated form, however, our results from Section 4.4.1 on fast global convergence under
restricted strong convexity and restricted smoothness assumptions carry over without modi-
fication, since they only require RSC/RSM conditions holding over a sufficiently small radius
together with feasibility of β∗.

4.4.3 Proof of Theorem 4.3

We provide the outline of the proof here, with more technical results deferred to Ap-
pendix B.3. In broad terms, our proof is inspired by a result of Agarwal et al. [1], but
requires various modifications in order to be applied to the much larger family of nonconvex
regularizers considered here.

Our first lemma shows that the optimization error βt− β̂ lies in an approximate cone set:
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Lemma 4.1. Under the conditions of Theorem 4.3, suppose there exists a pair (η̄, T ) such
that

φ(βt)− φ(β̂) ≤ η̄, ∀t ≥ T. (4.41)

Then for any iteration t ≥ T , we have

‖βt − β̂‖1 ≤ 4
√
k‖βt − β̂‖2 + 8

√
k‖β̂ − β∗‖2 + 2 ·min

( η̄

λL
,R
)
.

Our second lemma shows that as long as the composite gradient descent algorithm is
initialized with a solution β0 within a constant radius of a global optimum β̂, all successive
iterates also lie within the same ball:

Lemma 4.2. Under the conditions of Theorem 4.3, and with an initial vector β0 such that
‖β0 − β̂‖2 ≤ 3, we have

‖βt − β̂‖2 ≤ 3, for all t ≥ 0. (4.42)

In particular, suppose we initialize the composite gradient procedure with a vector β0

such that ‖β0‖2 ≤ 3
2
. Then by the triangle inequality,

‖β0 − β̂‖2 ≤ ‖β0‖2 + ‖β̂ − β∗‖2 + ‖β∗‖2 ≤ 3,

where we have assumed our scaling of n guarantees ‖β̂ − β∗‖2 ≤ 1/2.
Finally, recalling our earlier definition (4.32) of κ, the third lemma combines the results

of Lemmas 4.1 and 4.2 to establish a bound on the value of the objective function that decays
exponentially with t:

Lemma 4.3. Under the same conditions of Lemma 4.2, suppose in addition that inequal-
ity (4.41) holds and 32kτ log p

n
≤ α−µ

2
. Then for any t ≥ T , we have

φ(βt)− φ(β̂) ≤ κt−T (φ(βT )− φ(β̂)) +
ξ

1− κ
(ǫ2 + ǫ2),

where ǫ := 8
√
kǫstat, ǫ := 2 · min

(
η̄
λL
, R
)
, the quantities κ and ϕ are defined according to

equations (4.32), and

ξ :=
1

1− ϕ(n, p, k)
· 2τ log p

n
·
(
α− µ

4η
+ 2ϕ(n, p, k) + 5

)
. (4.43)

The remainder of the proof follows an argument used in Agarwal et al. [1], so we only
provide a high-level sketch. We first prove the following inequality:

φ(βt)− φ(β̂) ≤ δ2, for all t ≥ T ∗(δ), (4.44)
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as follows. We divide the iterations t ≥ 0 into a series of epochs [Tℓ, Tℓ+1) and define
tolerances η̄0 > η̄1 > · · · such that

φ(βt)− φ(β̂) ≤ η̄ℓ, ∀t ≥ Tℓ.

In the first iteration, we apply Lemma 4.3 with η̄0 = φ(β0)− φ(β̂) to obtain

φ(βt)− φ(β̂) ≤ κt
(
φ(β0)− φ(β̂)

)
+

ξ

1− κ
(4R2 + ǫ2), ∀t ≥ 0.

Let η̄1 :=
2ξ
1−κ(4R

2 + ǫ2), and note that for T1 :=

⌈
log(2η̄0/η̄1)
log(1/κ)

⌉
, we have

φ(βt)− φ(β̂) ≤ η̄1 ≤
4ξ

1− κ
max{4R2, ǫ2}, for all t ≥ T1.

For ℓ ≥ 1, we now define

η̄ℓ+1 :=
2ξ

1− κ
(ǫ2ℓ + ǫ2), and Tℓ+1 :=

⌈
log(2η̄ℓ/η̄ℓ+1)

log(1/κ)

⌉
+ Tℓ,

where ǫℓ := 2min
{
η̄ℓ
λL
, R
}
. From Lemma 4.3, we have

φ(βt)− φ(β̂) ≤ κt−Tℓ
(
φ(βTℓ)− φ(β̂)

)
+

ξ

1− κ
(ǫ2ℓ + ǫ2), for all t ≥ Tℓ,

implying by our choice of {(ηℓ, Tℓ)}ℓ≥1 that

φ(βt)− φ(β̂) ≤ η̄ℓ+1 ≤
4ξ

1− κ
max{ǫ2ℓ , ǫ2}, ∀t ≥ Tℓ+1.

Finally, we use the recursion

η̄ℓ+1 ≤
4ξ

1− κ
max{ǫ2ℓ , ǫ2}, Tℓ ≤ ℓ+

log(2ℓη̄0/η̄ℓ)

log(1/κ)
, (4.45)

to establish the recursion

η̄ℓ+1 ≤
η̄ℓ

42ℓ−1 ,
η̄ℓ+1

λL
≤ R

42ℓ
. (4.46)

Inequality (4.44) then follows from computing the number of epochs and timesteps neces-
sary to obtain λRL

42ℓ−1 ≤ δ2. For the remaining steps used to obtain inequalities (4.46) from

inequalities (4.45), we refer the reader to Agarwal et al. [1].
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Finally, by inequality (B.29b) in the proof of Lemma 4.3 in Appendix B.3.5 and the
relative scaling of (n, p, k), we have

α− µ

2
‖βt − β̂‖22 ≤ φ(βt)− φ(β̂) + 2τ

log p

n

(
2δ2

λL
+ ǫ

)2

≤ δ2 + 2τ
log p

n

(
2δ2

λL
+ ǫ

)2

,

where we have set ǫ = 2δ2

λL
. Rearranging and performing some algebra with our choice of λ

gives the ℓ2-bound.

4.5 Simulations

In this section, we report the results of simulations we performed to validate our theoretical
results. In particular, we present results for two versions of the loss function Ln, corre-
sponding to linear and logistic regression, and three penalty functions, namely the ℓ1-norm
(Lasso), the SCAD penalty, and the MCP, as detailed in Section 4.2.2. In all cases, we chose

regularization parameters R = 1.1
λ
· ρλ(β∗), to ensure feasibility of β∗, and λ =

√
log p
n

.

Linear regression: In the case of linear regression, we simulated covariates corrupted by
additive noise according to the mechanism described in Section 4.3.2, giving the estimator

β̂ ∈ arg min
gλ,µ(β)≤R

{
1

2
βT
(
XTX

n
− Σw

)
β − yTZ

n
β + ρλ(β)

}
. (4.47)

We generated i.i.d. samples xi ∼ N(0, I) and set Σw = (0.2)2I, and generated additive noise
ǫi ∼ N(0, (0.1)2).

Logistic regression: In the case of logistic regression, we also generated i.i.d. samples
xi ∼ N(0, I). Since ψ(t) = log(1 + exp(t)), the program (4.14) becomes

β̂ ∈ arg min
gλ,µ(β)≤R

{
1

n

n∑

i=1

{log(1 + exp(〈β, xi〉)− yi〈β, xi〉}+ ρλ(β)

}
. (4.48)

We optimized the programs (4.47) and (4.48) using the composite gradient updates (4.27).
In order to compute the updates, we used the three-step procedure described in Section 4.4.2,
together with the updates for SCAD and MCP given by equations (4.39) and (4.40). Note
that the updates for the Lasso penalty may be generated more simply and efficiently as
discussed in Agarwal et al. [1].
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Figure 4.2 shows the results of corrected linear regression with Lasso, SCAD, and MCP
regularizers for three different problem sizes p. In each case, β∗ is a k-sparse vector with
k = ⌊√p⌋, where the nonzero entries were generated from a normal distribution and the
vector was then rescaled so ‖β∗‖2 = 1. As predicted by Theorem 4.1, the three curves

corresponding to the same penalty function stack up nicely when the estimation error ‖β̂ −
β∗‖2 is plotted against the rescaled sample size n

k log p
, and the ℓ2-error decreases to zero as the

number of samples increases, showing that the estimators (4.47) and (4.48) are statistically
consistent. The Lasso, SCAD, and MCP regularizers are depicted by solid, dotted, and
dashed lines, respectively. We chose the parameter a = 3.7 for the SCAD penalty, suggested
by Fan and Li [28] to be “optimal” based on cross-validated empirical studies, and chose
b = 3.5 for the MCP. Each point represents an average over 20 trials.
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Figure 4.2: Plots showing statistical consistency of linear and logistic regression with Lasso,
SCAD, and MCP regularizers, at sparsity level k = ⌊√p⌋. Panel (a) shows results for
corrected linear regression, where covariates are subject to additive noise with SNR = 5.
Panel (b) shows similar results for logistic regression. Each point represents an average over

20 trials. In both cases, the estimation error ‖β̂−β∗‖2 is plotted against the rescaled sample
size n

k log p
. Lasso, SCAD, and MCP results are represented by solid, dotted, and dashed

lines, respectively. As predicted by Theorem 4.1 and Corollaries 4.1 and 4.2, the curves for
each of the three types stack up for different problem sizes p, and the error decreases to zero
as the number of samples increases, showing that our methods are statistically consistent.

The simulations in Figure 4.3 depict the optimization-theoretic conclusions of Theo-
rem 4.3. Each panel shows two different families of curves, corresponding to statistical error
(red) and optimization error (blue). Here, the vertical axis measures the ℓ2-error on a loga-
rithmic scale, while the horizontal axis tracks the iteration number. Within each block, the
curves were obtained by running the composite gradient descent algorithm from 10 different
initial starting points chosen at random. In all cases, we used the parameter settings p = 128,
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k = ⌊√p⌋, and n = ⌊20k log p⌋. As predicted by our theory, the optimization error decreases
at a linear rate (on the log scale) until it falls to the level of statistical error. Furthermore,
it is interesting to compare the plots in panels (c) and (d), which provide simulation results
for two different values of the SCAD parameter a. We see that the choice a = 3.7 leads to a
tighter cluster of local optima, providing further evidence that this setting suggested by Fan
and Li [28] is in some sense optimal.

Figure 4.4 provides analogous results to Figure 4.3 in the case of logistic regression, using
p = 64, k = ⌊√p⌋, and n = ⌊20k log p⌋. The plot shows solution trajectories for 20 different
initializations of composite gradient descent. Again, we see that the log optimization error
decreases at a linear rate up to the level of statistical error, as predicted by Theorem 4.3.
Furthermore, the Lasso penalty yields a unique local/optimum β̂, since the program (4.48) is
convex, as we observe in panel (a). In contrast, the nonconvex program based on the SCAD
penalty produces multiple local optima, whereas the MCP yields a relatively large number
of local optima, albeit all guaranteed to lie within a small ball of β∗ by Theorem 4.1.

Finally, Figure 4.5 explores the behavior of our algorithm when the condition α1 > µ
from Theorem 4.1 is not satisfied. We generated i.i.d. samples xi ∼ N(0,Σ), with Σ taken
to be a Toeplitz matrix with entries Σij = ζ |i−j|, for some parameter ζ ∈ [0, 1), so that
λmin(Σ) ≥ (1− ζ)2. We chose ζ ∈ {0.5, 0.9}, resulting in α1 ≈ {0.25, 0.01}. Panel (a) shows
the expected good behavior of ℓ1-regularization, even for α1 = 0.01; although convergence is
slow and the overall statistical error is greater than for Σ = I (cf. Figure 4.3(a)), composite
gradient descent still converges at a linear rate. Panel (b) shows that for SCAD parameter
a = 2.5 (corresponding to µ ≈ 0.67), local optima still seem to be well-behaved even for
α1 = 0.25 < µ. However, for much smaller values of α1, the good behavior breaks down,
as seen in panels (c) and (d). Note that in the latter two panels, the composite gradient
descent algorithm does not appear to be converging, even as the iteration number increases.
Comparing (c) and (d) also illustrates the interplay between the curvature parameter α1

of Ln and the nonconvexity parameter µ of ρλ. Indeed, the plot in panel (d) is slightly
“better” than the plot in panel (c), in the sense that initial iterates at least demonstrate
some pattern of convergence. This could be attributed to the fact that the SCAD parameter
is larger, corresponding to a smaller value of µ.

4.6 Discussion

We have analyzed theoretical properties of local optima of regularized M-estimators, where
both the loss and penalty function are allowed to be nonconvex. Our results are the first
to establish that all local optima of such nonconvex problems are close to the truth, imply-
ing that any optimization method guaranteed to converge to a local optimum will provide
statistically consistent solutions. We show concretely that a variant of composite gradient
descent may be used to obtain near-global optima in linear time, and verify our theoretical
results with simulations.

Future directions of research include further generalizing our statistical consistency results
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Figure 4.3: Plots illustrating linear rates of convergence on a log scale for corrected linear
regression with Lasso, MCP, and SCAD regularizers, with p = 128, k = ⌊√p⌋, and n =
⌊20k log p⌋, where covariates are corrupted by additive noise with SNR = 5. Red lines depict

statistical error log
(
‖β̂ − β∗‖2

)
and blue lines depict optimization error log

(
‖βt− β̂‖2

)
. As

predicted by Theorem 4.3, the optimization error decreases linearly when plotted against
the iteration number on a log scale, up to statistical accuracy. Each plot shows the solution
trajectory for 10 different initializations of the composite gradient descent algorithm. Panels
(a) and (b) show the results for Lasso and MCP regularizers, respectively; panels (c) and
(d) show results for the SCAD penalty with two different parameter values. Note that the
empirically optimal choice a = 3.7 proposed by Fan and Li [28] generates local optima
that exhibit a smaller spread than the local optima generated for a smaller setting of the
parameter a.
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Figure 4.4: Plots that demonstrate linear rates of convergence on a log scale for logistic
regression with p = 64, k =

√
p, and n = ⌊20k log p⌋. Red lines depict statistical error

log
(
‖β̂ − β∗‖2

)
and blue lines depict optimization error log

(
‖βt − β̂‖2

)
. (a) Lasso penalty.

(b) SCAD penalty. (c) MCP. As predicted by Theorem 4.3, the optimization error decreases
linearly when plotted against the iteration number on a log scale, up to statistical accu-
racy. Each plot shows the solution trajectory for 20 different initializations of the composite
gradient descent algorithm.

to other nonconvex regularizers not covered by our present theory, such as bridge penalties or
regularizers that do not decompose across coordinates. In addition, it would be interesting to
expand our theory to nonsmooth loss functions such as the hinge loss. For both nonsmooth
losses and nonsmooth penalties (including capped-ℓ1), it remains an open question whether a
modified version of composite gradient descent may be used to obtain near-global optima in
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Figure 4.5: Plots showing breakdown points as a function of the curvature parameter α1

of the loss function and the nonconvexity parameter µ of the penalty function. The loss
comes from ordinary least squares linear regression, where covariates are fully-observed and
sampled from a Gaussian distribution with covariance equal to a Toeplitz matrix. Panel
(a) depicts the good behavior of Lasso-based linear regression. Panel (b) shows that local
optima may still be well-behaved even when α1 < µ, although this situation is not covered
by our theory. Panels (c) and (d) show that the good behavior nonetheless disintegrates for
very small values of α1 when the regularizer is nonconvex.

polynomial time. Finally, it would be interesting to develop a general method for establishing
RSC and RSM conditions, beyond the specialized methods used for studying GLMs in this
chapter.
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Chapter 5

Graphical model estimation

5.1 Introduction

Graphical models are used in many application domains, running the gamut from computer
vision and civil engineering to political science and epidemiology. In many applications,
estimating the edge structure of an underlying graphical model is of significant interest.
For instance, a graphical model may be used to represent friendships between people in a
social network [4] or links between organisms with the propensity to spread an infectious
disease [67]. It is a classical corollary of the Hammersley-Clifford theorem [33, 7, 47] that zeros
in the inverse covariance matrix of a multivariate Gaussian distribution indicate absent edges
in the corresponding graphical model. This fact, combined with various types of statistical
estimators suited to high dimensions, has been leveraged by many authors to recover the
structure of a Gaussian graphical model when the edge set is sparse (see the papers [13,
60, 74, 99] and references therein). Recently, Liu et al. [53, 52] introduced the notion of
a nonparanormal distribution, which generalizes the Gaussian distribution by allowing for
monotonic univariate transformations, and argued that the same structural properties of the
inverse covariance matrix carry over to the nonparanormal; see also related work of Xue and
Zou [96] on copula transformations.

However, for non-Gaussian graphical models, the question of whether a general relation-
ship exists between conditional independence and the structure of the inverse covariance
matrix remains unresolved. In this chapter, we establish a number of interesting links be-
tween covariance matrices and the edge structure of an underlying graph in the case of
discrete-valued random variables. (Although we specialize our treatment to multinomial
random variables due to their widespread applicability, several of our results have straight-
forward generalizations to other types of exponential families.) Instead of only analyzing the
standard covariance matrix, we show that it is often fruitful to augment the usual covariance
matrix with higher-order interaction terms. Our main result has an interesting corollary
for tree-structured graphs: for such models, the inverse of a generalized covariance matrix
is always (block) graph-structured. In particular, for binary variables, the inverse of the
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usual covariance matrix may be used to recover the edge structure of the tree. We also
establish more general results that apply to arbitrary (non-tree) graphs, specified in terms
of graph triangulations. This more general correspondence exploits ideas from the geometry
of exponential families [12, 91], as well as the junction tree framework [46, 47].

As we illustrate, these population-level results have a number of corollaries for graph
selection methods. Graph selection methods for Gaussian data include neighborhood re-
gression [60, 105] and the graphical Lasso [30, 74, 78, 24], which corresponds to maximizing
an ℓ1-regularized version of the Gaussian likelihood. Alternative methods for selection of
discrete graphical models include the classical Chow-Liu algorithm for trees [21]; techniques
based on conditional entropy or mutual information [3, 11]; and nodewise logistic regression
for discrete graphical models with pairwise interactions [43, 73]. Our population-level results
imply that minor variants of the graphical Lasso and neighborhood regression methods,
though originally developed for Gaussian data, remain consistent for trees and the broader
class of graphical models with singleton separator sets. They also convey a cautionary mes-
sage, in that these methods will be inconsistent (generically) for other types of graphs. We
also describe a new method for neighborhood selection in an arbitrary sparse graph, based
on linear regression over subsets of variables. This method is most useful for bounded-degree
graphs with correlation decay, but less computationally tractable for larger graphs.

In addition, we show that our methods for graph selection may be adapted to handle noisy
or missing data in a seamless manner. Naively applying nodewise logistic regression when
observations are systematically corrupted yields estimates that are biased even in the limit
of infinite data. There are various corrections available, such as multiple imputation [79] and
the expectation-maximization (EM) algorithm [25], but in general, these methods are not
guaranteed to be statistically consistent due to local optima. To the best of our knowledge,
our work provides the first method that is provably consistent under high-dimensional scal-
ing for estimating the structure of discrete graphical models with corrupted observations.
Further background on corrupted data methods for low-dimensional logistic regression may
be found in Carroll et al. [18] and Ibrahim et al. [40].

The remainder of this chapter is organized as follows: In Section 5.2, we provide brief
background and notation on graphical models and describe the classes of augmented covari-
ance matrices we will consider. In Section 5.3, we state our main population-level result
(Theorem 5.1) on the relationship between the support of generalized inverse covariance ma-
trices and the edge structure of a discrete graphical model, and then develop a number of
corollaries. The proof of Theorem 5.1 is provided in Section 5.3.4, with proofs of corollaries
and more technical results deferred to the appendices. In Section 5.4, we develop conse-
quences of our population-level results in the context of specific methods for graphical model
selection. We provide simulation results in Section 5.4.4 in order to confirm the accuracy
of our theoretically-predicted scaling laws, dictating how many samples are required (as a
function of graph size and maximum degree) to recover the graph correctly.
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5.2 Background and problem setup

In this section, we provide background on graphical models and exponential families. We
then present a simple example illustrating the phenomena and methodology underlying this
chapter.

5.2.1 Undirected graphical models

An undirected graphical model or Markov random field (MRF) is a family of probability
distributions respecting the structure of a fixed graph. We begin with some basic graph-
theoretic terminology. An undirected graph G = (V,E) consists of a collection of vertices
V = {1, 2, . . . , p} and a collection of unordered1 vertex pairs E ⊆ V ×V . A vertex cutset is a
subset U of vertices whose removal breaks the graph into two or more nonempty components
(see Figure 5.1(a)). A clique is a subset C ⊆ V such that (s, t) ∈ E for all distinct s, t ∈ C.
The cliques in Figure 5.1(b) are all maximal, meaning they are not properly contained within
any other clique. For s ∈ V , we define the neighborhood N(s) := {t ∈ V | (s, t) ∈ E} to be
the set of vertices connected to s by an edge.

For an undirected graph G, we associate to each vertex s ∈ V a random variable Xs

taking values in a space X . For any subset A ⊆ V , we define XA := {Xs, s ∈ A}, and for
three subsets of vertices, A, B and U , we write XA ⊥⊥ XB | XU to mean that the random
vector XA is conditionally independent of XB given XU . The notion of a Markov random
field may be defined in terms of certain Markov properties indexed by vertex cutsets, or in
terms of a factorization property described by the graph cliques.

A
B

U

A

B

D

C

(a) (b)

Figure 5.1: (a) Illustration of a vertex cutset: when the set U is removed, the graph breaks
into two disjoint subsets of vertices A and B. (b) Illustration of maximal cliques, corre-
sponding to fully-connected subsets of vertices.

1No distinction is made between the edge (s, t) and the edge (t, s). In this chapter, we forbid graphs
with self-loops, meaning (s, s) /∈ E for all s ∈ V .
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Definition 4 (Markov property). The random vector X := (X1, . . . , Xp) is Markov with
respect to the graph G if XA ⊥⊥ XB | XU whenever U is a vertex cutset that breaks the
graph into disjoint subsets A and B.

Note that the neighborhood set N(s) is always a vertex cutset for the sets A = {s} and
B = V \{s ∪N(s)}. Consequently, Xs ⊥⊥ XV \{s∪N(s)} | XN(s). This property is important for
nodewise methods for graphical model selection to be discussed later.

The factorization property is defined directly in terms of the probability distribution q
of the random vector X . For each clique C, a clique compatibility function ψC is a mapping
from configurations xC = {xs, s ∈ V } of variables to the positive reals. Let C denote the set
of all cliques in G.

Definition 5 (Factorization property). The distribution of X factorizes according to G if it
may be written as a product of clique functions:

q(x1, . . . , xp) ∝
∏

C∈C
ψC(xC). (5.1)

The factorization may always be restricted to maximal cliques of the graph, but it is some-
times convenient to include terms for non-maximal cliques.

5.2.2 Graphical models and exponential families

By the Hammersley-Clifford theorem [7, 33, 47], the Markov and factorization properties
are equivalent for any strictly positive distribution. We focus on such strictly positive dis-
tributions, in which case the factorization (5.1) may alternatively be represented in terms
of an exponential family associated with the clique structure of G. We begin by defining
this exponential family representation for the special case of binary variables (X = {0, 1}),
before discussing a natural generalization to m-ary discrete random variables.

Binary variables For a binary random vector X ∈ {0, 1}p, we associate with each clique
C—both maximal and non-maximal—a sufficient statistic IC(xC) :=

∏
s∈C xs. Note that

IC(xC) = 1 if and only if xs = 1 for all s ∈ C, so it is an indicator function for the event
{xs = 1, ∀s ∈ C}. In the exponential family, this sufficient statistic is weighted by a natural
parameter θC ∈ R, and we rewrite the factorization (5.1) as

qθ(x1, . . . , xp) = exp
{∑

C∈C
θC IC(xC)− Φ(θ)

}
, (5.2)

where Φ(θ) := log
∑

x∈{0,1}p exp(
∑

C∈C θCIC(xC)) is the log normalization constant. It may

be verified (cf. Proposition 4.3 of Darroch and Speed [23]) that the factorization (5.2) defines
a minimal exponential family; i.e., the statistics {IC(xC), C ∈ C} are affinely independent.
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In the special case of pairwise interactions, equation (5.2) reduces to the classical Ising model :

qθ(x1, . . . , xp) = exp
{∑

s∈V
θsxs +

∑

(s,t)∈E
θstxsxt − Φ(θ)

}
. (5.3)

The model (5.3) is a particular instance of a pairwise Markov random field.

Multinomial variables In order to generalize the Ising model to non-binary variables,
say X = {0, 1, . . . , m−1}, we introduce a larger set of sufficient statistics. We first illustrate
this extension for a pairwise Markov random field. For each node s ∈ V and configuration
j ∈ X0 := X\{0} = {1, 2, . . . , m− 1}, we introduce the binary-valued indicator function

Is;j(xs) =

{
1 if xs = j,

0 otherwise.
(5.4)

We also introduce a vector θs = {θs;j, j ∈ X0} of natural parameters associated with these suf-
ficient statistics. Similarly, for each edge (s, t) ∈ E and configuration (j, k) ∈ X 2

0 := X0 ×X0,
we introduce the binary-valued indicator function Ist;jk for the event {xs = j, xt = k}, as well
as the collection θst := {θst;jk, (j, k) ∈ X 2

0 } of natural parameters. Then any pairwise Markov
random field over m-ary random variables may be written in the form

qθ(x1, . . . , xp) = exp
{∑

s∈V
〈θs, Is(xs)〉+

∑

(s,t)∈E
〈θst, Ist(xs, xt)〉 − Φ(θ)

}
, (5.5)

where we have used the shorthand 〈θs, Is(xs)〉 :=
∑m−1

j=1 θs;jIs;j(xs) and

〈θst, Ist(xs, xt)〉 :=
m−1∑

j,k=1

θst;jkIst;jk(xs, xt).

Note that equation (5.5) defines a minimal exponential family, where the dimension is
|V |(m − 1) + |E|(m − 1)2 [23]. Furthermore, the family (5.5) is a natural generalization
of the Ising model (5.3); in particular, when m = 2, we have a single sufficient statistic
Is;1(xs) = xs for each vertex, and a single sufficient statistic Ist;11(xs, xt) = xsxt for each
edge. (We have omitted the additional subscripts 1 or 11 in our earlier notation for the Ising
model, since they are superfluous in that case.)

Finally, for a graphical model involving higher-order interactions, we require additional
sufficient statistics. For each clique C ∈ C, we define the subset of configurations

X |C|
0 := X0 × · · · × X0︸ ︷︷ ︸

C times

=
{
(js, s ∈ C) ∈ X |C| : js 6= 0 ∀s ∈ C

}
,



CHAPTER 5. GRAPHICAL MODEL ESTIMATION 80

a set of cardinality (m − 1)|C|. As before, C is the set of all maximal and non-maximal

cliques. For any configuration J = {js, s ∈ C} ∈ X |C|
0 , we define the corresponding indicator

function

IC;J(xC) =

{
1 if xC = J,

0 otherwise.
(5.6)

We then consider the general multinomial exponential family

qθ(x1, . . . , xp) = exp
{∑

C∈C
〈θC , IC〉 − Φ(θ)

}
, for xs ∈ X = {0, 1, . . . , m− 1}, (5.7)

with 〈θC , IC(xC)〉 =
∑

J∈X |C|
0
θC;JIC;J(xC). Note that our previous models—namely, the

binary models (5.2) and (5.3), as well as the pairwise multinomial model (5.5)—are special
cases of this general factorization.

Recall that an exponential family is minimal if no nontrivial linear combination of suffi-
cient statistics is almost surely equal to a constant. The family is regular if {θ : Φ(θ) <∞}
is an open set. As will be relevant later, the exponential families described in this section
are all minimal and regular [23].

5.2.3 Covariance matrices and beyond

We now turn to a discussion of the phenomena that motivate the analysis of this chapter.
Consider the usual covariance matrix Σ = cov(X1, . . . , Xp). When X is jointly Gaussian, it
is an immediate consequence of the Hammersley-Clifford theorem that the sparsity pattern
of the precision matrix Γ = Σ−1 reflects the graph structure—that is, Γst = 0 whenever
(s, t) /∈ E. More precisely, Γst is a scalar multiple of the correlation of Xs and Xt conditioned
on X\{s,t} (cf. Lauritzen [47]). For non-Gaussian distributions, however, the conditional
correlation will be a function of X\{s,t}, and it is unknown whether the entries of Γ have any
relationship with the strengths of correlations along edges in the graph.

Nonetheless, it is tempting to conjecture that inverse covariance matrices might be related
to graph structure in the non-Gaussian case. We explore this possibility by considering a
simple case of the binary Ising model (5.3).

Example 5.1. Consider a simple chain graph on four nodes, as illustrated in Figure 5.2(a).
In terms of the factorization (5.3), let the node potentials be θs = 0.1 for all s ∈ V and the
edge potentials be θst = 2 for all (s, t) ∈ E. For a multivariate Gaussian graphical model
defined on G, standard theory predicts that the inverse covariance matrix Γ = Σ−1 of the
distribution is graph-structured: Γst = 0 if and only if (s, t) /∈ E. Surprisingly, this is also
the case for the chain graph with binary variables (see panel (f)). However, this statement
is not true for the single-cycle graph shown in panel (b). Indeed, as shown in panel (g), the
inverse covariance matrix has no nonzero entries at all. Curiously, for the more complicated
graph in (e), we again observe a graph-structured inverse covariance matrix.
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X1

X2 X3

X4
X1

X2 X3

X4 X1

X2 X3

X4 X1

X2 X3

X4

(a) Chain (b) Single cycle (c) Edge augmented (d) With 3-cliques (e) Dino

Γchain =




9.80 −3.59 0 0
−3.59 34.30 −4.77 0

0 −4.77 34.30 −3.59
0 0 −3.59 9.80


 Γloop =




51.37 −5.37 −0.17 −5.37
−5.37 51.37 −5.37 −0.17
−0.17 −5.37 51.37 −5.37
−5.37 −0.17 −5.37 51.37




(f) (g)

Figure 5.2: (a)–(e) Different examples of graphical models. (f) Inverse covariance for chain
graph in (a). (g) Inverse covariance for single-cycle graph in (b).

Still focusing on the single-cycle graph in panel (b), suppose that instead of considering
the ordinary covariance matrix, we compute the covariance matrix of the augmented random
vector (X1, X2, X3, X4, X1X3), where the extra term X1X3 is represented by the dotted edge
shown in panel (c). The 5× 5 inverse of this generalized covariance matrix takes the form

Γaug = 103 ×




1.15 −0.02 1.09 −0.02 −1.14
−0.02 0.05 −0.02 0 0.01
1.09 −0.02 1.14 −0.02 −1.14
−0.02 0 −0.02 0.05 0.01
−1.14 0.01 −1.14 0.01 1.19



. (5.8)

This matrix safely separates nodes 1 and 4, but the entry corresponding to the non-edge (1, 3)
is not equal to zero. Indeed, we would observe a similar phenomenon if we chose to augment
the graph by including the edge (2, 4) rather than (1, 3). This example shows that the usual
inverse covariance matrix is not always graph-structured, but inverses of augmented matrices
involving higher-order interaction terms may reveal graph structure.

Now let us consider a more general graphical model that adds the 3-clique interaction
terms shown in panel (d) to the usual Ising terms. We compute the covariance matrix of the
augmented vector

Ψ(X) =
{
X1, X2, X3, X4, X1X2, X2X3, X3X4,

X1X4, X1X3, X1X2X3, X1X3X4

}
∈ {0, 1}11.

Empirically, one may show that the 11 × 11 inverse (cov[Ψ(X)])−1 respects aspects of the
graph structure: there are zeros in position (α, β), corresponding to the associated functions
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Xα =
∏

s∈αXs and Xβ =
∏

s∈βXβ, whenever α and β do not lie within the same maximal
clique. (For instance, this applies to the pairs (α, β) = ({2}, {4}) and (α, β) = ({2}, {1, 4}).)

The goal of this chapter is to understand when certain inverse covariances do (and do not)
capture the structure of a graphical model. At its root is the principle that the augmented
inverse covariance matrix Γ = Σ−1, suitably defined, is always graph-structured with respect
to a graph triangulation. In some cases (e.g., the dino graph in Figure 5.2(e)), we may
leverage the block-matrix inversion formula [35], namely

Σ−1
A,A = ΓA,A − ΓA,BΓ

−1
B,BΓB,A, (5.9)

to conclude that the inverse of a sub-block of the augmented matrix (e.g., the ordinary
covariance matrix) is still graph-structured. This relation holds whenever A and B are
chosen in such a way that the second term in equation (5.9) continues to respect the edge
structure of the graph. These ideas will be made rigorous in Theorem 5.1 and its corollaries
in the next section.

5.3 Generalized covariance matrices and graph

structure

We now state our main results on the relationship between the zero pattern of generalized
(augmented) inverse covariance matrices and graph structure. In Section 5.4 to follow, we
develop some consequences of these results for data-dependent estimators used in structure
estimation.

We begin with some notation for defining generalized covariance matrices, stated in terms
of the sufficient statistics previously defined (5.6). Recall that a clique C ∈ C is associated

with the collection {IC;J , J ∈ X |C|
0 } of binary-valued sufficient statistics. Let S ⊆ C, and

define the random vector

Ψ(X ;S) =
{
IC;J , J ∈ X |C|

0 , C ∈ S
}
, (5.10)

consisting of all the sufficient statistics indexed by elements of S. As in the previous section,
C contains both maximal and non-maximal cliques.

We will often be interested in situations where S contains all subsets of a given set. For
a subset A ⊆ V , let pow(A) denote the collection of all 2|A| − 1 nonempty subsets of A. We
extend this notation to S by defining

pow(S) :=
⋃

C∈S
pow(C).
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5.3.1 Triangulation and block structure

Our first main result concerns a connection between the inverses of generalized inverse co-
variance matrices associated with the model (5.7) and any triangulation of the underlying
graph G. The notion of a triangulation is defined in terms of chordless cycles, which are
sequences of distinct vertices {s1, . . . , sℓ} such that:

• (si, si+1) ∈ E for all 1 ≤ i ≤ ℓ− 1, and also (sℓ, s1) ∈ E;

• no other nodes in the cycle are connected by an edge.

As an illustration, the 4-cycle in Figure 5.2(b) is a chordless cycle.

Definition 6 (Triangulation). Given an undirected graph G = (V,E), a triangulation is an

augmented graph G̃ = (V, Ẽ) that contains no chordless cycles of length greater than 3.

Note that a tree is trivially triangulated, since it contains no cycles. On the other hand,
the chordless 4-cycle in Figure 5.2(b) is the simplest example of a non-triangulated graph.

By adding the single edge (1, 3) to form the augmented edge set Ẽ = E ∪ {(1, 3)}, we

obtain the triangulated graph G̃ = (V, Ẽ) shown in panel (c). One may check that the more
complicated graph shown in Figure 5.2(e) is triangulated, as well.

Our first result concerns the inverse Γ of the matrix cov(Ψ(X ; C̃)), where C̃ is the set

of all cliques arising from some triangulation G̃ of G. For any two subsets A,B ∈ C̃, we
write Γ(A,B) to denote the sub-block of Γ indexed by all indicator statistics on A and B,
respectively. (Note that we are working with respect to the exponential family representation

over the triangulated graph G̃.) Given our previously-defined sufficient statistics (5.6), the
sub-block Γ(A,B) has dimensions dA × dB, where

dA := (m− 1)|A|, and dB := (m− 1)|B|.

For example, when A = {s} and B = {t}, the submatrix Γ(A,B) has dimension (m− 1)×
(m− 1). With this notation, we have the following result:

Theorem 5.1. [Triangulation and block graph-structure.] Consider an arbitrary discrete

graphical model of the form (5.7), and let C̃ be the set of all cliques in any triangulation of

G. Then the generalized covariance matrix cov(Ψ(X ; C̃)) is invertible, and its inverse Γ is
block graph-structured:

(a) For any two subsets A,B ∈ C̃ that are not subsets of the same maximal clique, the
block Γ(A,B) is identically zero.

(b) For almost all parameters θ, the entire block Γ(A,B) is nonzero whenever A and B
belong to a common maximal clique.
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In part (b), “almost all” refers to all parameters θ apart from a set of Lebesgue measure
zero. The proof of Theorem 5.1, which we provide in Section 5.3.4, relies on the geometry
of exponential families [12, 91] and certain aspects of convex analysis [75], involving the
log partition function Φ and its Fenchel-Legendre dual Φ∗. Although we have stated Theo-
rem 5.1 for discrete variables, it easily generalizes to other classes of random variables. The
only difference is the specific choices of sufficient statistics used to define the generalized
covariance matrix. This generality becomes apparent in the proof.

To provide intuition for Theorem 5.1, we consider its consequences for specific graphs.
When the original graph is a tree (such as the graph in Figure 5.2(a)), it is already tri-

angulated, so the set C̃ is equal to the edge set E, together with singleton nodes. Hence,
Theorem 5.1 implies that the inverse Γ of the matrix of sufficient statistics for vertices and
edges is graph-structured, and blocks of nonzeros in Γ correspond to edges in the graph. In
particular, we may apply Theorem 5.1(a) to the subsets A = {s} and B = {t}, where s and
t are distinct vertices with (s, t) /∈ E, and conclude that the (m − 1) × (m − 1) sub-block
Γ(A,B) is equal to zero.

When G is not triangulated, however, we may need to invert a larger augmented covari-
ance matrix and include sufficient statistics over pairs (s, t) /∈ E, as well. For instance, the
augmented graph shown in Figure 5.2(c) is a triangulation of the chordless 4-cycle in panel
(b). The associated set of maximal cliques is given by C = {(1, 2), (2, 3), (3, 4), (1, 4), (1, 3)};
among other predictions, our theory guarantees that the generalized inverse covariance Γ
will have zeros in the sub-block Γ({2}, {4}).

5.3.2 Separator sets and graph structure

In fact, it is not necessary to take sufficient statistics over all maximal cliques, and we may
consider a slightly smaller augmented covariance matrix. (This simpler type of augmented
covariance matrix explains the calculations given in Section 5.2.3.)

By classical graph theory, any triangulation G̃ gives rise to a junction tree representation
of G. Nodes in the junction tree are subsets of V corresponding to maximal cliques of G̃,
and the intersection of any two adjacent cliques C1 and C2 is referred to as a separator set
S = C1 ∩C2. Furthermore, any junction tree must satisfy the running intersection property,
meaning that for any two nodes of the junction tree—say corresponding to cliques C and
D—the intersection C ∩D must belong to every separator set on the unique path between
C and D. The following result shows that it suffices to construct generalized covariance
matrices augmented by separator sets:

Corollary 5.1. Let S be the set of separator sets in any triangulation of G, and let Γ be the
inverse of cov(Ψ(X ;V ∪ pow(S))). Then Γ({s}, {t}) = 0 whenever (s, t) /∈ Ẽ.

Note that V ∪ pow(S) ⊆ C̃, and the set of sufficient statistics considered in Corollary 5.1
is generally much smaller than the set of sufficient statistics considered in Theorem 5.1.
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Hence, the generalized covariance matrix of Corollary 5.1 has a smaller dimension than the
generalized covariance matrix of Theorem 5.1, which becomes significant when we consider
exploiting these population-level results for statistical estimation.

The graph in Figure 5.2(c) of Example 5.1 and the associated matrix in equation (5.8)
provide a concrete example of Corollary 5.1 in action. In this case, the single separator set in
the triangulation is {1, 3}, so when X = {0, 1}, augmenting the usual covariance matrix with
the additional sufficient statistic I13;11(x1, x3) = x1x3 and taking the inverse yields a graph-

structured matrix. Indeed, since (2, 4) /∈ Ẽ, we observe that Γaug(2, 4) = 0 in equation (5.8),
consistent with the result of Corollary 5.1.

Although Theorem 5.1 and Corollary 5.1 are clean population-level results, however,
forming an appropriate augmented covariance matrix requires prior knowledge of the graph—
namely, which edges are involved in a suitable triangulation. This is infeasible in settings
where the goal is to recover the edge structure of the graph. Corollary 5.1 is most useful
for edge recovery when G admits a triangulation with only singleton separator sets, since
then V ∪ pow(S) = V . In particular, this condition holds when G is a tree. The following
corollary summarizes our result:

Corollary 5.2. For any graph with singleton separator sets, the inverse Γ of the covariance
matrix cov(Ψ(X ;V )) of vertex statistics is graph-structured. (This class includes trees as a
special case.)

In the special case of binary variables, we have Ψ(X ;V ) = (X1, . . . , Xp), so Corollary 5.2
implies that the inverse of the ordinary covariance matrix cov(X) is graph-structured. For
m-ary variables, cov(Ψ(X ;V )) is a matrix of dimensions (m− 1)p× (m− 1)p involving in-
dicator functions for each variable. Again, we may relate this corollary to Example 5.1—the
inverse covariance matrices for the tree graph in panel (a) and the dino graph in panel (e)
are exactly graph-structured. Although the dino graph is not a tree, it possesses the nice
property that the only separator sets in its junction tree are singletons.

Corollary 5.1 also guarantees that inverse covariances may be partially graph-structured,
in the sense that Γ({s}, {t}) = 0 for any pair of vertices (s, t) separable by a singleton
separator set, where Γ = (cov(Ψ(X ;V )))−1. This is because for any such pair (s, t), we
may form a junction tree with two nodes, one containing s and one containing t, and apply
Corollary 5.1. Indeed, the matrix Γ defined over singleton vertices is agnostic to which
triangulation we choose for the graph.

In settings where there exists a junction tree representation of the graph with only
singleton separator sets, Corollary 5.2 has a number of useful implications for the con-
sistency of methods that have traditionally only been applied for edge recovery in Gaussian
graphical models: for tree-structured discrete graphs, it suffices to estimate the support of
(cov(Ψ(X ;V )))−1 from the data. We will review methods for Gaussian graphical model
selection and describe their analogs for discrete tree graphs in Sections 5.4.1 and 5.4.2.
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5.3.3 Generalized covariances and neighborhood structure

Theorem 5.1 also has a corollary that is relevant for nodewise neighborhood selection ap-
proaches to graph selection [60, 74], which are applicable to graphs with arbitrary topologies.
Nodewise methods use the basic observation that recovering the edge structure of G is equiv-
alent to recovering the neighborhood set N(s) = {t ∈ V : (s, t) ∈ E} for each vertex s ∈ V .
For a given node s ∈ V and positive integer d, consider the collection of subsets

S(s; d) :=
{
U ⊆ V \{s}, |U | = d

}
.

The following corollary provides an avenue for recovering N(s) based on the inverse of a
certain generalized covariance matrix:

Corollary 5.3. [Neighborhood selection] For any graph and node s ∈ V with deg(s) ≤ d,
the inverse Γ of the matrix cov(Ψ(X ; {s} ∪ pow(S(s; d)))) is s-block graph-structured; i.e.,
Γ({s}, B) = 0 whenever {s} 6= B ( N(s). In particular, Γ({s}, {t}) = 0 for all vertices
t /∈ N(s).

Note that pow(S(s; d)) is the set of subsets of all candidate neighborhoods of s of size
d. This result follows from Theorem 5.1 (and the related Corollary 5.1) by constructing a
particular junction tree for the graph, in which s is separated from the rest of the graph by
N(s). Due to the well-known relationship between the rows of an inverse covariance matrix
and linear regression coefficients [60], Corollary 5.3 motivates the following neighborhood-
based approach to graph selection: For a fixed vertex s ∈ V , perform a single linear regression
of Ψ(X ; {s}) on the vector Ψ(X ; pow(S(s; d))). Via elementary algebra and an application
of Corollary 5.3, the resulting regression vector will expose the neighborhood N(s) in an
arbitrary discrete graphical model; i.e., the indicators Ψ(X ; {t}) corresponding to Xt will
have a nonzero weight only if t ∈ N(s). We elaborate on this connection in Section 5.4.2.

5.3.4 Proof of Theorem 5.1

We now turn to the proof of Theorem 5.1, which is based on certain fundamental correspon-
dences arising from the theory of exponential families [5, 12, 91]. Recall that our exponential
family (5.7) has binary-valued indicator functions (5.6) as its sufficient statistics. Let D de-
note the cardinality of this set and let I : X p → {0, 1}D denote the multivariate function that
maps each configuration x ∈ X p to the vector I(x) obtained by evaluating the D indicator
functions on x. Using this notation, our exponential family may be written in the compact
form qθ(x) = exp{〈θ, I(x)〉 − Φ(θ)}, where

〈θ, I(x)〉 =
∑

C∈C
〈θC , IC(x)〉 =

∑

C∈C

∑

J∈X |C|
0

θC;JIC;J(xC).

Since this exponential family is known to be minimal, we are guaranteed [23] that

∇Φ(θ) = Eθ[I(X)], and ∇2Φ(θ) = covθ[I(X)],
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where Eθ and covθ denote (respectively) the expectation and covariance taken under the
density qθ [12, 91]. The conjugate dual [75] of the cumulant function is given by

Φ∗(µ) := sup
θ∈RD

{〈µ, θ〉 − Φ(θ)}.

The function Φ∗ is always convex and takes values in R ∪ {+∞}. From known results [91],
the dual function Φ∗ is finite only for µ ∈ RD belonging to the marginal polytope

M := {µ ∈ Rp | ∃ some density q s.t.
∑

x

q(x)I(x) = µ
}
. (5.11)

The following lemma, proved in Appendix C.1.1, provides a connection between the
covariance matrix and the Hessian of Φ∗:

Lemma 5.1. Consider a regular, minimal exponential family, and define µ = Eθ[I(X)] for
any fixed θ ∈ Ω = {θ : Φ(θ) <∞}. Then

(
covθ[I(X)]

)−1
= ∇2Φ∗(µ). (5.12)

Note that the minimality and regularity of the family implies that covθ[I(X)] is strictly
positive definite, so the matrix is invertible.

For any µ ∈ int(M), let θ(µ) ∈ RD denote the unique natural parameter θ such that
∇Φ(θ) = µ. It is known [91] that the negative dual function −Φ∗ is linked to the Shannon
entropy via the relation

−Φ∗(µ) = H(qθ(µ)(x)) = −
∑

x∈X p

qθ(µ)(x) log qθ(µ)(x). (5.13)

In general, expression (5.13) does not provide a straightforward way to compute ∇2Φ∗, since
the mapping µ 7→ θ(µ) may be extremely complicated. However, when the exponential family
is defined with respect to a triangulated graph, Φ∗ has an explicit closed-form representation
in terms of the mean parameters µ. Consider a junction tree triangulation of the graph,
and let (C,S), be the collection of maximal cliques and separator sets, respectively. By the
junction tree theorem [46, 91, 44], we have the factorization

q(x1, . . . , xp) =

∏
C∈C

qC(xC)∏
S∈S qS(xS)

, (5.14)

where qC and qS are the marginal distributions over maximal clique C and separator set S.
Consequently, the entropy may be decomposed into the sum

H(q) = −
∑

x∈X p

q(x) log q(x) =
∑

C∈C

HC(qC)−
∑

S∈S
HS(qS), (5.15)
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where we have introduced the clique- and separator-based entropies

HS(qS) := −
∑

xS∈X |S|

qS(xS) log qS(xS), and

HC(qC) := −
∑

xC∈X |C|

qC(xC) log qC(xC).

Given our choice of sufficient statistics (5.6), we show that qC and qS may be written
explicitly as “local” functions of mean parameters associated with C and S. For each subset
A ⊆ V , let µA ∈ (m− 1)|A| be the associated collection of mean parameters, and let

µpow(A) :=
{
µB | ∅ 6= B ⊆ A

}

be the set of mean parameters associated with all nonempty subsets of A. Note that µpow(A)

contains a total of
∑|A|

k=1

(|A|
k

)
(m− 1)k = m|A| − 1 parameters, corresponding to the number

of degrees of freedom involved in specifying a marginal distribution over the random vector
xA. Moreover, µpow(A) uniquely determines the marginal distribution qA:

Lemma 5.2. For any marginal distribution qA in the m|A|-dimensional probability simplex,
there is a unique mean parameter vector µpow(A) and matrix MA such that qA =MA ·µpow(A).

For the proof, see Appendix C.1.2.
We now combine the dual representation (5.13) with the decomposition (5.15), along

with the matrices {MC ,MS} from Lemma 5.2, to conclude that

−Φ∗(µ) =
∑

C∈C

HC(MC(µpow(C)))−
∑

S∈S
HS(MS(µpow(S))). (5.16)

Now consider two subsets A,B ∈ C̃ that are not contained in the same maximal clique.
Suppose A is contained within maximal clique C. Differentiating expression (5.16) with
respect to µA preserves only terms involving qC and qS, where S is any separator set such
that A ⊆ S ⊆ C. Since B ( C, we clearly cannot have B ⊆ S. Consequently, all cross-terms
arising from the clique C and its associated separator sets vanish when we take a second
derivative with respect to µB. Repeating this argument for any other maximal clique C ′

containing A but not B, we have ∂2Φ∗

∂µA∂µB
(µ) = 0. This proves part (a).

Turning to part (b), note that if A and B are in the same maximal clique, the expression
obtained by taking second derivatives of the entropy results in an algebraic expression with
only finitely many solutions in the parameters µ (consequently, also θ). Hence, assuming the
θ’s are drawn from a continuous distribution, the corresponding values of the block Γ(A,B)
are a.s. nonzero.
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5.4 Consequences for graph structure estimation

Moving beyond the population level, we now state and prove several results concerning the
statistical consistency of different methods—both known and some novel—for graph selection
in discrete graphical models, based on i.i.d. draws from a discrete graph. For sparse Gaussian
models, existing methods that exploit sparsity of the inverse covariance matrix fall into two
main categories: global graph selection methods (e.g., [24, 30, 78, 74]) and local (nodewise)
neighborhood selection methods [60, 105]. We divide our discussion accordingly.

5.4.1 Graphical Lasso for singleton separator graphs

We begin by describing how a combination of our population-level results and some concen-
tration inequalities may be leveraged to analyze the statistical behavior of log-determinant
methods for discrete graphical models with singleton separator sets, and suggest extensions
of these methods when observations are systematically corrupted by noise or missing data.
Given a p-dimensional random vector (X1, . . . , Xp) with covariance Σ∗, consider the estima-
tor

Θ̂ ∈ argmin
Θ�0

{trace(Σ̂Θ)− log det(Θ) + λn
∑

s 6=t
|Θst|}, (5.17)

where Σ̂ is an estimator for Σ∗. For multivariate Gaussian data, this program is an ℓ1-
regularized maximum likelihood estimate known as the graphical Lasso and is a well-studied
method for recovering the edge structure in a Gaussian graphical model [4, 30, 100, 78].
Although the program (5.17) has no relation to the MLE in the case of a discrete graphical
model, it may still be useful for estimating Θ∗ := (Σ∗)−1. Indeed, as shown in Ravikumar
et al. [74], existing analyses of the estimator (5.17) require only tail conditions such as
sub-Gaussianity in order to guarantee that the sample minimizer is close to the population
minimizer. The analysis of this chapter completes the missing link by guaranteeing that
the population-level inverse covariance is in fact graph-structured. Consequently, we obtain
the interesting result that the program (5.17)—even though it is ostensibly derived from
Gaussian considerations—is a consistent method for recovering the structure of any binary
graphical model with singleton separator sets.

In order to state our conclusion precisely, we introduce additional notation. Consider a
general estimate Σ̂ of the covariance matrix Σ such that

P
[
‖Σ̂− Σ∗‖max ≥ ϕ(Σ∗)

√
log p

n

]
≤ c exp(−ψ(n, p)) (5.18)

for functions ϕ and ψ, where ‖ · ‖max denotes the elementwise ℓ∞-norm. In the case of fully-

observed i.i.d. data with sub-Gaussian parameter σ2, where Σ̂ = 1
n

∑n
i=1 xix

T
i − xxT is the

usual sample covariance, this bound holds with ϕ(Σ∗) = σ2 and ψ(n, p) = c′ log p.
As in past analysis of the graphical Lasso [74], we require a certain mutual incoherence

condition on the true covariance matrix Σ∗ to control the correlation of non-edge variables
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with edge variables in the graph. Let Γ∗ = Σ∗⊗Σ∗, where ⊗ denotes the Kronecker product.
Then Γ∗ is a p2 × p2 matrix indexed by vertex pairs. The incoherence condition is given by

max
e∈Sc

‖Γ∗
eS(Γ

∗
SS)

−1‖1 ≤ 1− α, α ∈ (0, 1], (5.19)

where S := {(s, t) : Θ∗
st 6= 0} is the set of vertex pairs corresponding to nonzero entries of the

precision matrix Θ∗—equivalently, the edge set of the graph, by our theory on tree-structured
discrete graphs. For more intuition on the mutual incoherence condition, see Ravikumar et
al. [74].

With this notation, our global edge recovery algorithm proceeds as follows:

Algorithm 5.1 (Graphical Lasso).

1. Form a suitable estimate Σ̂ of the true covariance matrix Σ.

2. Optimize the graphical Lasso program (5.17) with parameter λn, and denote the solution

by Θ̂.

3. Threshold the entries of Θ̂ at level τn to obtain an estimate of Θ∗.

It remains to choose the parameters (λn, τn). In the following corollary, we will establish

statistical consistency of Θ̂ under the following settings:

λn ≥ c1
α

√
log p

n
, τn = c2

{
c1
α

√
log p

n
+ λn

}
, (5.20)

where α is the incoherence parameter in inequality (5.19) and c1, c2 are universal positive

constants. The following result applies to Algorithm 5.1 when Σ̂ is the sample covariance
matrix and (λn, τn) are chosen as in equations (5.20):

Corollary 5.4. Consider an Ising model (5.3) defined by an undirected graph with sin-
gleton separator sets and with degree at most d, and suppose that the mutual incoherence
condition (5.19) holds. With n % d2 log p samples, there are universal constants (c, c′) such
that with probability at least 1− c exp(−c′ log p), Algorithm 5.1 recovers all edges (s, t) with
|Θ∗

st| > τ/2.

The proof is contained in Appendix C.5.1; it is a relatively straightforward consequence
of Corollary 5.1 and known concentration properties of Σ̂ as an estimate of the population
covariance matrix. Hence, if |Θ∗

st| > τ/2 for all edges (s, t) ∈ E, Corollary 5.4 guarantees
that the log-determinant method plus thresholding recovers the full graph exactly.

In the case of the standard sample covariance matrix, a variant of the graphical Lasso
has been implemented by Banerjee et al. [4]. Our analysis establishes consistency of the
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graphical Lasso for Ising models on single separator graphs using n % d2 log p samples.
This lower bound on the sample size is unavoidable, as shown by information-theoretic
analysis [81], and also appears in other past work on Ising models [73, 43, 3]. Our analysis
also has a cautionary message: the proof of Corollary 5.4 relies heavily on the population-
level result in Corollary 5.2, which ensures that Θ∗ is graph-structured when G has only
singleton separators. For a general graph, we have no guarantees that Θ∗ will be graph-
structured (e.g., see panel (b) in Figure 5.2), so the graphical Lasso (5.17) is inconsistent in
general.

On the positive side, if we restrict ourselves to tree-structured graphs, the estimator (5.17)

is attractive, since it relies only on an estimate Σ̂ of the population covariance Σ∗ that
satisfies the deviation condition (5.18). In particular, even when the samples {xi}ni=1 are

contaminated by noise or missing data, we may form a good estimate Σ̂ of Σ∗. Furthermore,
the program (5.17) is always convex regardless of whether Σ̂ is positive semidefinite.

As a concrete example of how we may correct the program (5.17) to handle corrupted
data, consider the case when each entry of xi is missing independently with probability α,
and the corresponding observations zi are zero-filled for missing entries. A natural estimator
is

Σ̂ =

(
1

n

n∑

i=1

ziz
T
i

)
÷M − 1

(1− α)2
zzT , (5.21)

where ÷ denotes elementwise division by the matrix M with diagonal entries (1 − α) and
off-diagonal entries (1 − α)2, correcting for the bias in both the mean and second moment
terms. As in the results of Chapter 3, the deviation condition (5.18) may be shown to hold
w.h.p., where ϕ(Σ∗) scales with (1− α). Similarly, we may derive an appropriate estimator

Σ̂ for other forms of additive or multiplicative corruption.
Generalizing to the case of m-ary discrete graphical models with m > 2, we may easily

modify the program (5.17) by replacing the elementwise ℓ1-penalty by the corresponding
group ℓ1-penalty, where the groups are the indicator variables for a given vertex. Precise
theoretical guarantees follow from results on the group graphical Lasso [42].

5.4.2 Consequences for nodewise regression in trees

Turning to local neighborhood selection methods, recall the neighborhood-based method due
to Meinshausen and Bühlmann [60]. In a Gaussian graphical model, the column correspond-

ing to node s in the inverse covariance matrix Γ = Σ−1 is a scalar multiple of β̃ = Σ−1
\s,\sΣ\s,s,

the limit of the linear regression vector for Xs upon X\s. Based on n i.i.d. samples from
a p-dimensional multivariate Gaussian distribution, the support of the graph may then be
estimated consistently under the usual Lasso scaling n % d log p, where d = |N(s)|.

Motivated by our population-level results on the graph structure of the inverse covariance
matrix (Corollary 5.2), we now propose a method for neighborhood selection in a tree-
structured graph. Although the method works for arbitrary m-ary trees, we state explicit
results only in the case of the binary Ising model to avoid cluttering our presentation.
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The method is based on the following steps. For each node s ∈ V , we first perform
ℓ1-regularized linear regression of Xs against X\s by solving the modified Lasso program

β̂ ∈ arg min
‖β‖1≤b0

√
k
{1
2
βT Γ̂β − γ̂Tβ + λn‖β‖1}, (5.22)

where b0 > ‖β̃‖1 is a constant, (Γ̂, γ̂) are suitable estimators for (Σ\s,\s,Σ\s,s), and λn is an
appropriate parameter. We then combine the neighborhood estimates over all nodes via an
AND operation (edge (s, t) is present if both s and t are inferred to be neighbors of each
other) or an OR operation (at least one of s or t is inferred to be a neighbor of the other).

Note that the program (5.22) differs from the standard Lasso in the form of the ℓ1-
constraint. Indeed, the normal setting of the Lasso assumes a linear model where the predic-
tor and response variables are linked by independent sub-Gaussian noise, but this is not the
case for Xs and X\s in a discrete graphical model. Furthermore, the generality of the pro-
gram (5.22) allows it to be easily modified to handle corrupted variables via an appropriate

choice of (Γ̂, γ̂), as in Chapter 3.
The following algorithm summarizes our nodewise regression procedure for recovering the

neighborhood set N(s) of a given node s:

Algorithm 5.2 (Nodewise method for trees).

1. Form a suitable pair of estimators (Γ̂, γ̂) for covariance submatrices (Σ\s,\s,Σ\s,s).

2. Optimize the modified Lasso program (5.22) with parameter λn, and denote the solution

by β̂.

3. Threshold the entries of β̂ at level τn, and define the estimated neighborhood set N̂(s)
as the support of the thresholded vector.

In the case of fully-observed i.i.d. observations, we choose (Γ̂, γ̂) to be the recentered
estimators

(Γ̂, γ̂) =

(
XT

\sX\s

n
− x\sx

T
\s,

XT
\sXs

n
− xsx\s

)
, (5.23)

and assign the parameters (λn, τn) according to the scaling

λn % ϕ‖β̃‖2
√

log p

n
, τn ≍ ϕ‖β̃‖2

√
log p

n
, (5.24)

where β̃ := Σ−1
\s,\sΣ\s,s and ϕ is some parameter such that 〈xi, u〉 is sub-Gaussian with pa-

rameter ϕ2‖u‖22 for any d-sparse vector u, and ϕ is independent of u. The following result

applies to Algorithm 5.2 using the pairs (Γ̂, γ̂) and (λn, τn) defined as in equations (5.23)
and (5.24), respectively.
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Proposition 5.1. Suppose we have i.i.d. observations {xi}ni=1 from an Ising model and that

n % ϕ2max
{

1
λmin(Σx)

, |||Σ−1
x |||2∞

}
d2 log p. Then there are universal constants (c, c′, c′′) such

that with probability greater than 1− c exp(−c′ log p), for any node s ∈ V , Algorithm 5.2

recovers all neighbors t ∈ N(s) for which |β̃t| ≥ c′′ ϕ‖β̃‖2
√

log p
n

.

We prove this proposition in Appendix C.3, as a corollary of a more general theorem on
the ℓ∞-consistency of the program (5.22) for estimating β̃, allowing for corrupted observa-
tions. The theorem builds upon the analysis of Chapter 3, introducing techniques for ℓ∞-
bounds and departing from the framework of a linear model with independent sub-Gaussian
noise.

Remark 5.1. Regarding the sub-Gaussian parameter ϕ appearing in Proposition 5.1, note
that we may always take ϕ =

√
d, since |xTi u| ≤ ‖u‖1 ≤

√
d‖u‖2 when u is d-sparse and xi is

a binary vector. This leads to a sample complexity requirement of n % d3 log p. We suspect
that a tighter analysis, possibly combined with assumptions about the correlation decay of the
graph, would reduce the sample complexity to the scaling n % d2 log p, as required by other
methods with fully-observed data [43, 3, 73]. See the simulations in Section 5.4.4 for further
discussion.

For corrupted observations, the strength and type of corruption enters into the factors
(ϕ1, ϕ2) appearing in the deviation bounds (C.6a) and (C.6b) below, and Proposition 5.1 has
natural extensions to the corrupted case. We emphasize that although analogs of Proposi-
tion 5.1 exist for other methods of graph selection based on logistic regression and/or mutual
information, the theoretical analysis of those methods does not handle corrupted data, whereas
our results extend easily with the appropriate scaling.

In the case of m-ary tree-structured graphical models with m > 2, we may perform
multivariate regression with the multivariate group Lasso [68] for neighborhood selection,
where groups are defined (as in the log-determinant method) as sets of indicators for each
node. The general relationship between the best linear predictor and the block structure of
the inverse covariance matrix follows from block matrix inversion, and from a population-level
perspective, it suffices to perform multivariate linear regression of all indicators corresponding
to a given node against all indicators corresponding to other nodes in the graph. The resulting
vector of regression coefficients has nonzero blocks corresponding to edges in the graph. We
may also combine these ideas with the group Lasso for multivariate regression [68] to reduce
the complexity of the algorithm.

5.4.3 Consequences for nodewise regression in general graphs

Moving on from tree-structured graphical models, our method suggests a graph recovery
method based on nodewise linear regression for general discrete graphs. Note that by Corol-
lary 5.3, the inverse of cov(Ψ(X ; pow(S(s; d)))) is s-block graph-structured, where d is such
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that |N(s)| ≤ d. It suffices to perform a single multivariate regression of the indicators
Ψ(X ; {s}) corresponding to node s upon the other indicators in Ψ(X ;V ∪ pow(S(s; d))).

We again make precise statements for the binary Ising model (m = 2). In this case, the
indicators Ψ(X ; pow(U)) corresponding to a subset of vertices U of size d′ are all 2d

′ − 1
distinct products of variables Xu, for u ∈ U . Hence, to recover the d neighbors of node s,
we use the following algorithm. Note that knowledge of an upper bound d is necessary for
applying the algorithm.

Algorithm 5.3 (Nodewise method for general graphs).

1. Use the modified Lasso program (5.22) with a suitable choice of (Γ̂, γ̂) and regulariza-
tion parameter λn to perform a linear regression of Xs upon all products of subsets of
variables of X\s of size at most d. Denote the solution by β̂.

2. Threshold the entries of β̂ at level τn, and define the estimated neighborhood set N̂(s)
as the support of the thresholded vector.

Our theory states that at the population level, nonzeros in the regression vector correspond
exactly to subsets of N(s). Hence, the statistical consistency result of Proposition 5.1 carries
over with minor modifications. Since Algorithm 5.3 is essentially a version of Algorithm 5.4
with the first two steps omitted, we refer the reader to the statement and proof of Corol-
lary 5.5 below for precise mathematical statements. Note here that since the regression
vector has O(pd) components, 2d − 1 of which are nonzero, the sample complexity of Lasso
regression in step (1) of Algorithm 5.3 is O(2d log(pd)) = O(2d log p).

For graphs exhibiting correlation decay [11], we may reduce the computational complexity
of the nodewise selection algorithm by prescreening the nodes of V \s before performing a
Lasso-based linear regression. We define the nodewise correlation according to

rC(s, t) :=
∑

xs,xt

|P(Xs = xs, Xt = xt)− P(Xs = xs)P(Xt = xt)|,

and say that the graph exhibits correlation decay if there exist constants ζ, κ > 0 such that

rC(s, t) > κ ∀(s, t) ∈ E, and rC(s, t) ≤ exp(−ζr(s, t)) (5.25)

for all (s, t) ∈ V × V , where r(s, t) is the length of the shortest path between s and t. With
this notation, we then have the following algorithm for neighborhood recovery of a fixed
node s in a graph with correlation decay:

Algorithm 5.4 (Nodewise method with correlation decay).

1. Compute the empirical correlations

r̂C(s, t) :=
∑

xs,xt

|P̂(Xs = xs, Xt = xt)− P̂(Xs = xs)P̂(Xt = xt)|

between s and all other nodes t ∈ V , where P̂ denotes the empirical distribution.
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2. Let C := {t ∈ V : r̂C(s, t) > κ/2} be the candidate set of nodes with sufficiently high
correlation. (Note that C is a function of both s and κ, and by convention, s /∈ C.)

3. Use the modified Lasso program (5.22) with parameter λn to perform a linear regression
of Xs against Cd := Ψ(X ;V ∪ pow(C(s; d)))\{Xs}, the set of all products of subsets of
variables {Xc : c ∈ C} of size at most d, together with singleton variables. Denote the

solution by β̂.

4. Threshold the entries of β̂ at level τn, and define the estimated neighborhood set N̂(s)
as the support of the thresholded vector.

Note that Algorithm 5.3 is a version of Algorithm 5.4 with C = V \s, indicating the absence
of a prescreening step. Hence, the statistical consistency result below applies easily to
Algorithm 5.3 for graphs with no correlation decay.

For fully-observed i.i.d. observations, we choose (Γ̂, γ̂) according to

(Γ̂, γ̂) =

(
XT

C XC
n

− xCxC
T ,

XT
C Xs

n
− xsxC

)
, (5.26)

and parameters (λn, τn) as follows: For a candidate set C, let xC,i ∈ {0, 1}|Cd| denote the
augmented vector corresponding to the observation xi, and define ΣC := Cov(xC,i, xC,i). Let

β̃ := Σ−1
C Cov(xC,i, xs,i). Then set

λn % ϕ‖β̃‖2
√

log |Cd|
n

, τn ≍ ϕ‖β̃‖2
√

log |Cd|
n

, (5.27)

where ϕ is some function such that 〈xC,i, u〉 is sub-Gaussian with parameter ϕ2‖u‖22 for
any (2d − 1)-sparse vector u, and ϕ does not depend on u. We have the following consis-
tency result, the analog of Proposition 5.1 for the augmented set of vectors. It applies to
Algorithm 5.4 with the pairs (Γ̂, γ̂) and (λn, τn) chosen as in equations (5.26) and (5.27).

Corollary 5.5. Consider i.i.d. observations {xi}ni=1 generated from an Ising model satisfying
the correlation decay condition (5.25), and suppose

n %
(
κ2 + ϕ2max

{
1

λmin(ΣC)
,
∣∣∣∣∣∣Σ−1

C
∣∣∣∣∣∣2

∞

}
22d
)
log |Cd|. (5.28)

Then there are universal constants (c, c′, c′′) such that with probability at least 1−c exp(−c′ log p),
and for any s ∈ V :

(i) The set C from step (2) of Algorithm 5.4 satisfies |C| ≤ d
log(4/κ)

ζ .

(ii) Algorithm 5.4 recovers all neighbors t ∈ N(s) such that

|β̃t| ≥ c′′ ϕ‖β̃‖2
√

log |Cd|
n

.
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The proof of Corollary 5.5 is contained in Appendix C.5.2. Due to the exponential factor
2d appearing in the lower bound (5.28) on the sample size, this method is suitable only
for bounded-degree graphs. However, for reasonable sizes of d, the dimension of the linear

regression problem decreases from O(pd) to |Cd| = O(|C|d) = O
(
d

d log(4/κ)
ζ

)
, which has a

significant impact on the runtime of the algorithm. We explore two classes of bounded-
degree graphs with correlation decay in the simulations of Section 5.4.4, where we generate
Erdös-Renyi graphs with edge probability c/p and square grid graphs in order to test the
behavior of our recovery algorithm on non-trees. When m > 2, corresponding to non-
binary states, we may combine these ideas with the overlapping group Lasso [42] to obtain
similar algorithms for nodewise recovery of non-tree graphs. However, the details are more
complicated, and we do not include them here. Note that our method for nodewise recovery
in non-tree graphical models are again easily adapted to handle noisy and missing data,
which is a clear advantage over other existing methods.

5.4.4 Simulations

In this section, we report the results of various simulations we performed to illustrate the
sharpness of our theoretical claims. In all cases, we generated data from binary Ising mod-
els. We first applied the nodewise linear regression method (Algorithm 5.2 for trees; Algo-
rithm 5.3 in the general case) to the method of ℓ1-regularized logistic regression, analyzed in
past work for Ising model selection by Ravikumar et al. [73]. Their main result was to estab-
lish that, under certain incoherence conditions of the Fisher information matrix, performing
ℓ1-regularized logistic regression with a sample size n % d3 log p is guaranteed to select the
correct graph w.h.p. Thus, for any bounded-degree graph, the sample size n need grow only
logarithmically in the number of nodes p. Under this scaling, our theory also guarantees that
nodewise linear regression with ℓ1-regularization will succeed in recovering the true graph
w.h.p.

In Figure 5.3, we present the results of simulations with two goals: (i) test the scal-
ing n ≈ log p of the required sample size; and (ii) compare ℓ1-regularized nodewise linear
regression (Algorithms 5.3 and 5.4) to ℓ1-regularized nodewise logistic regression [73]. We
ran simulations for the two methods on both tree-structured and non-tree graphs with data
generated from a binary Ising model, with node weights θs = 0.1 and edge weights θst = 0.3.
To save on computation, we employed the neighborhood screening method described in Sec-
tion 5.4.3 to prune the candidate neighborhood set before performing linear regression. We
selected a candidate neighborhood set of size ⌊2.5d⌋ with highest empirical correlations, then
performed a single regression against all singleton nodes and products of subsets of the can-
didate neighborhood set of size at most d, via the modified Lasso program (5.22). The size of
the candidate neighborhood set was tuned through repeated runs of the algorithm. For both

methods, the optimal choice of regularization parameter λn scales as
√

log p
n

, and we used

the same value of λn in comparing logistic to linear regression. In each panel, we plot the
probability of successful graph recovery versus the rescaled sample size n

log p
, with curves of
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(a) Grid graph (b) Erdös-Renyi graph
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(c) Chain graph

Figure 5.3: Comparison between ℓ1-regularized logistic vs. linear regression methods for
graph recovery. Each panel plots of the probability of correct graph recovery vs. the rescaled
sample size n/ log p; solid curves correspond to linear regression (method in this chapter),
whereas dotted curves correspond to logistic regression [73]. Curves are based on average
performance over 500 trials. (a) Simulation results for two-dimensional grids with d = 4
neighbors, and number of nodes p varying over {64, 144, 256}. Consistent with theory, when
plotted vs. the rescaled sample size n/ log p, all three curves (red, blue, green) are well-aligned
with one another. Both linear and logistic regression transition from failure to success at
a similar point. (b) Analogous results for an Erdös-Renyi graph with edge probability 3/p.
(c) Analogous results for a chain-structured graph with maximum degree d = 2.

different colors corresponding to graphs (from the same family) of different sizes. Solid lines
correspond to linear regression, whereas dotted lines correspond to logistic regression; panels
(a), (b), and (c) correspond to grid graphs, Erdös-Renyi random graphs, and chain graphs,
respectively. For all these graphs, the three solid/dotted curves for different problem sizes
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are well-aligned, showing that the method undergoes a transition from failure to success as a
function of the ratio n

log p
. In addition, both linear and logistic regression are comparable in

terms of statistical efficiency (the number of samples n required for correct graph selection
to be achieved).

The main advantage of nodewise linear regression and the graphical Lasso over nodewise
logistic regression is that they are straightforward to correct for corrupted or missing data.
Figure 5.4 shows the results of simulations designed to test the behavior of these corrected
estimators in the presence of missing data. Panel (a) shows the results of applying the
graphical Lasso method, as described in Section 5.4.1, to the dino graph of Figure 5.2(e).
We again generated data from an Ising model with node weights 0.1 and edge weights 0.3.
The curves show the probability of success in recovering the 15 edges of the graph, as a
function of the rescaled sample size n

log p
for p = 13. In addition, we performed simulations

for different levels of missing data, specified by the parameter α ∈ {0, 0.05, 0.1, 0.15, 0.2},
using the corrected estimator (5.21). Note that all five runs display a transition from success
probability 0 to success probability 1 in roughly the same range, as predicted by our theory.
Indeed, since the dinosaur graph has only singleton separators, Corollary 5.2 ensures that
the inverse covariance matrix is exactly graph-structured, so our global recovery method is
consistent at the population level. Further note that the curves shift right as the fraction α
of missing data increases, since the recovery problem becomes incrementally harder.

Panels (b) and (c) of Figure 5.4 show the results of the nodewise regression method
of Section 5.4.2 applied to chain and star graphs, with increasing numbers of nodes p ∈
{32, 64, 128} and p ∈ {64, 128, 256}, respectively. For the chain graphs in panel (b), we
set node weights of the Ising model equal to 0.1 and edge weights equal to 0.3. For the
varying-degree star graph in panel (c), we set node weights equal to 0.1 and edge weights
equal to 1.2

d
, where the degree d of the central hub grows with the size of the graph as

⌊log p⌋. Again, we show curves for different levels of missing data, α ∈ {0, 0.1, 0.2}. The
modified Lasso program (5.22) was optimized using a form of composite gradient descent
due to Agarwal et al. [1], guaranteed to converge to a small neighborhood of the optimum
even when the problem is nonconvex (cf. Chapter 3). In both the chain and star graphs,
the three curves corresponding to different problem sizes p at each value of the missing data
parameter α stack up when plotted against the rescaled sample size. Note that the curves
for the star graph stack up nicely with the scaling n

d2 log p
, rather than the worst-case scaling

n ≍ d3 log p, corroborating the remark following Proposition 5.1. Since d = 2 is fixed for the
chain graph, we use the rescaled sample size n

log p
in our plots, as in the plots in Figure 5.3.

Once again, these simulations corroborate our theoretical predictions: the corrected linear
regression estimator remains consistent even in the presence of missing data, although the
sample size required for consistency grows as the fraction of missing data α increases.



CHAPTER 5. GRAPHICAL MODEL ESTIMATION 99

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
success prob vs. sample size for dino graph with missing data

n/log p

su
cc

es
s 

pr
ob

, a
vg

 o
ve

r 
10

00
 tr

ia
ls

 

 

rho = 0
rho = 0.05
rho = 0.1
rho = 0.15
rho = 0.2

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
success prob vs. sample size for chain graph, rho = 0, 0.1, 0.2

n/log p

su
cc

es
s 

pr
ob

, a
vg

 o
ve

r 
10

00
 tr

ia
ls

 

 

p=32
p=64
p=128

(a) Dino graph with missing data (b) Chain graph with missing data
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(c) Star graph with missing data, d ≈ log p

Figure 5.4: Simulation results for global and nodewise recovery methods on binary Ising
models, allowing for missing data in the observations. Each point represents an average over
1000 trials. Panel (a) shows simulation results for the graphical Lasso method applied to the
dinosaur graph with the fraction α of missing data varying in {0, 0.05, 0.1, 0.15, 0.2}. Panel
(b) shows simulation results for nodewise regression applied to chain graphs for varying p
and α. Panel (c) shows simulation results for nodewise regression applied to star graphs
with maximal node degree d = log p and varying α.

5.5 Discussion

The correspondence between the inverse covariance matrix and graph structure of a Gauss-
Markov random field is a classical fact with numerous consequences for estimation of Gaus-
sian graphical models. It has been an open question as to whether similar properties extend
to a broader class of graphical models. In this chapter, we have provided a partial affirma-
tive answer to this question and developed theoretical results extending such relationships
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to discrete undirected graphical models.
As shown by our results, the inverse of the ordinary covariance matrix is graph-structured

for special subclasses of graphs with singleton separator sets. More generally, we have consid-
ered inverses of generalized covariance matrices, formed by introducing indicator functions
for larger subsets of variables. When these subsets are chosen to reflect the structure of
an underlying junction tree, the edge structure is reflected in the inverse covariance matrix.
Our population-level results have a number of statistical consequences for graphical model
selection. We have shown that our results may be used to establish consistency (or incon-
sistency) of standard methods for discrete graph selection, and have proposed new methods
for neighborhood recovery which, unlike existing methods, may be applied even when ob-
servations are systematically corrupted by mechanisms such as additive noise and missing
data. Furthermore, our methods are attractive in their simplicity, in that they only involve
simple optimization problems.

Although the methods considered in our chapter are limited to structure estimation in
undirected graphs, recent work [54] shows that connections exist between inverse covariance
matrices and graph structure for directed graphs, as well, provided the underlying distribu-
tion follows a linear structural equation model. Whereas the problem of learning existence
and orientation of edges in a directed graph is reasonably tractable given a topological or-
dering of the nodes, inferring a topological order based on joint observations of the variables
appears to be a very difficult problem, and current state-of-the-art approaches involve ex-
pensive searches based on conditional independence tests that scale exponentially with the
size of the network. Motivated by our work on inverse covariance matrices in undirected
graphs and the fact that estimation of inverse covariances is far more tractable than expo-
nential search, it would be fruitful to explore whether similar connections could be leveraged
in much broader settings than linear causal networks.
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Chapter 6

Application to MRI

6.1 Introduction

Compressed sensing MRI is a relatively new technique used to reconstruct an image from
undersampled k-space data [15, 57]. From a statistical perspective, one cannot expect to
reconstruct an image of p pixels with fewer than p measurements. However, if the image
possesses a sparse representation with respect to some basis (e.g., wavelet or Fourier basis),
existing theory predicts that the image may be reconstructed with n = O(k log p) measure-
ments, where k is the number of non-zeros in the sparse representation, provided the design
matrix is sufficiently incoherent [16]. More precisely, compressed sensing MRI admits the
following mathematical formulation:

min ‖Ψm‖1 s.t. ‖Fum− y‖2 < ǫ, (6.1)

where m ∈ Cp is the image vector, Ψ ∈ Cp×p is the sparsifying transform, Fu ∈ Cn×p is the
undersampled 2DFT matrix, and y ∈ Cn is the vector of k-space measurements [15].

Current theoretical results establish that when the effective design matrix FuΨ
∗ is con-

structed by sampling points in 2D k-space uniformly at random, the desired incoherence
property holds w.h.p., so the program (6.1) results in exact recovery [17, 86]. However, such
random sampling schemes are infeasible in practice, due to physical limitations of the MRI
scanner. As a result, alternate methods for undersampling k-space have been developed, in-
cluding random subsampling of phase encode and/or readout directions [57, 92] and altering
the B1 field through random receiver coil sensitivities [82]. These methods have been shown
to perform well on synthetic and real MRI data. A final sampling method for compressed
sensing MRI involves designing random spatially-selective RF pulses so the design matrix of
the resulting optimization problem has an i.i.d. Gaussian distribution [34]. This method is
fascinating, because many theoretical results in the statistical literature assume the design
matrix is i.i.d. Gaussian, or at least real.

In this chapter, we explore the challenges presented by corrupted samples of k-space
data (perhaps introduced by machine miscalibration or gradient imperfections). We develop
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a novel estimator for reconstructing an MRI image based on corrupted k-space samples,
and prove theoretical results showing that n = O(k log p) measurements are still sufficient
for recovery in the noisy setting. In addition, we verify the theoretical predictions through
simulations with synthetic data.

6.2 Problem setup

Suppose we have a linear regression model

yi = 〈xi, β∗〉+ ǫi, i = 1, . . . , n, (6.2)

where β∗ ∈ Cp is the unknown signal, xi ∈ Cp are the sensing directions, yi ∈ C are the
corresponding measurements, and ǫi ∈ Cp is i.i.d. sub-Gaussian noise. Based on observation
pairs {(xi, yi)}ni=1, the usual goal is to recover a k-sparse vector β∗ when n≪ p.

We will adopt a slightly different setup, where we again assume a linear model (6.2),
but we wish to perform inference based on observation pairs {(zi, yi)}ni=1, where the zi’s are
controlled by the experimenter and xi is a noisy version of zi.

More concretely, in the framework of Fourier analysis, we assume the zi’s are Fourier
sensing vectors taken at frequency ωi ∈ [0, 2π). Then zij = e(j−1)ωii. Letting ξi denote the
frequency perturbations due to measurement error, with ξi ⊥⊥ ωi, and writing ψi = ωi + ξi,
we have xij = e(j−1)ψii. We may write xi = zi ⊙ ui, where uij = e(j−1)ξii.

In compressed sensing MRI, the frequencies ωi are chosen randomly from a predeter-
mined distribution. In the discrete case, ωi is drawn uniformly at random from the set
{0, 2π

p
, . . . , 2π(p−1)

p
}. In the continuous case, ωi is a uniform variable in the interval [0, 2π). We

will focus on the latter case. As established in Section 4.1 in Rauhut [72], we have E(zizTi ) = I
in both the discrete and continuous cases. Since E(xixTi ) = E(zizTi )⊙E(uiuTi ) and the diag-
onals of E(uiuTi ) are clearly all 1’s, it follows that E(xixTi ) = I whenever E(zizTi ) = I.

6.3 Derivation of objective

In this section, we show how to derive a new compressed sensing objective that is applicable
when the design matrix is corrupted. Our development parallels the analysis of Section 3.2.2,
except we need to tweak the expressions slightly to accommodate complex-valued vectors.

Note that
(xTi β − xTi β

∗)(xTi β − xTi β
∗) ≥ 0.

Expanding and taking expectations of both sides, we obtain the inequality

βTE(xix
T
i )β −

(
〈E(xTi xi)β∗, β〉+ 〈E(xTi xi)β∗, β〉

)
≥ β∗TE(xix

T
i )β

∗.

Hence, if R ≥ ‖β∗‖1, we have

β∗ ∈ arg min
‖β‖1≤R

{βTE(xixTi )β − (〈E(xixTi )β∗, β〉+ 〈E(xixTi )β∗, β〉)},
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where the ℓ1-norm encourages sparsity in β. Hence, we formulate the constrained quadratic
program

β̂ ∈ arg min
‖β‖1≤R

{β̂TE(xixTi )β − (〈η̂, β〉+ 〈η̂, β〉)}, (6.3)

where η̂ is a surrogate for E(xixTi )β
∗ based on corrupted observations {(zi, yi)}ni=1.

We also have the following Lagrangian version:

β̂ ∈ argmin
β

{β∗TE(xix
T
i )β − (〈η̂, β〉+ 〈η̂, β〉) + λ‖β‖1}. (6.4)

In order to find an appropriate choice for η̂, note that

E(yizi) = E(zix
T
i β

∗) = E(zi(zi ⊙ ui)
Tβ∗) = E(ziz

T
i diag(ui)β

∗) = E(ziz
T
i ) diag(E(ui))β

∗,

where diag(v) is the p × p diagonal matrix with entries equal to v ∈ Cp. Hence, assuming
E(ui) 6= 0, we use

η̂ = E(xix
T
i ) diag

−1(E(ui))(E(ziz
T
i ))

−1Z
Ty

n
,

which is an unbiased estimator for E(xixTi )β
∗. Note that in practice, E(zizTi ) is known by

design, and E(ui) and E(xixTi ) = E(zizTi )⊙ E(uiuTi ) may be calculated based on the known
distribution of the ui’s.

6.4 Theoretical contributions

In this section, we present theoretical guarantees concerning the consistency of the estimator
β̂ arising from equations (6.3) and (6.4).

6.4.1 Statistical error

We have a following main result, the analog of Theorem 3.1. We write αℓ := λmin(E(xixTi ))
and αu := λmax(E(xixTi )).

Theorem 6.1. Suppose the frequencies ωi are either drawn uniformly at random from the

discrete set
{
0, 2π

p
, . . . , 2π(p−1)

p

}
, or uniformly at random from the continuous interval [0, 2π).

Suppose the error ǫi is i.i.d. sub-Gaussian with parameter σǫ. Also suppose n % k log p. When

R = ‖β∗‖1, the solution β̂ to the program (6.3) satisfies

‖β̂ − β∗‖2 ≤
cαu + c′σǫ

αℓ

√
k log p

n
·
∣∣∣∣∣∣E(xixTi ) diag−1(E(ui))(E(ziz

T
i ))

−1
∣∣∣∣∣∣
1
, (6.5)

with probability at least 1− c1 exp(−c2 log p). When

λ ≥ (cαu + c′σǫ)

√
log p

n
·
∣∣∣∣∣∣E(xixTi ) diag−1(E(ui))(E(ziz

T
i ))

−1
∣∣∣∣∣∣

1
,
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the solution β̂ to the program (6.4) satisfies

‖β̂ − β∗‖2 ≤
cλ
√
k

αℓ
,

with probability at least 1− c1 exp(−c2 log p).

The proof of Theorem 6.1, which is provided in Section 6.5.1, resembles the proof of
Theorem 3.1 in that it proceeds via a basic inequality. However, the more technical steps
involve matrix concentration results for complex-valued matrices, which draw upon results
from Kunis and Rauhut [45]. Similar bounds on the ℓ1-error follow easily from the ℓ2-bounds
and the cone condition.

6.4.2 Optimization

Now consider the case when E(xixTi ) = I (which occurs when the frequencies ωi of the zi’s
are chosen uniformly on [0, 2π)). Then the Lagrangian program (6.4) simplifies to

β̂ ∈ argmin
β

{‖β‖22 − (〈η̂, β〉+ 〈η̂, β〉) + λ‖β‖1}. (6.6)

Note that each coordinate of β may be optimized separately, yielding the soft-thresholding
solution

β̂i =

{
0 if |η̂i| ≤ λ
|η̂i|−λ
|η̂i| η̂i if |η̂i| > λ

(6.7)

(cf. [94]). One may check that when η̂i ∈ R, the soft-thresholding operator reduces to the
usual definition of the operator,

SoftThresh(η̂i) =





0 if |η̂i| ≤ λ

η̂i − λ if η̂i > λ

η̂i + λ if η̂i < −λ.

In fact, the soft-thresholding operator simply soft-thresholds the amplitude of a complex
number while keeping the same phase.

When E(xixTi ) 6= I, we may use iterative methods such as projected or composite gradient

descent to obtain β̂.

6.4.3 Special case: Identity covariance

As noted in the previous section, the case when E(zizTi ) = I lends itself to a nice soft-
thresholding solution to the Lagrangian program (6.4). In this case, E(xixTi ) = I, and we
have

η̂ = diag−1(E(ui))
ZTy

n
,
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leading to the error bound
‖β̂ − β∗‖2 ≤ cλ

√
k,

w.h.p., when λ ≥ c+c′σǫ
minj |E(uij)|

√
log p
n

.

In particular, we consider two special forms of the noise frequency ψi:

(i) ψi ∈ (−δ, δ) is chosen uniformly at random.

(ii) ψi ∼ N(0, σ2).

Since ψi has a symmetric distribution in both cases, E(ui) is real-valued, with component j
equal to the characteristic function of ψi evaluated at (j − 1). For the two cases, we then
have

(i) E(uij) =
sin((j−1)δ)
δ(j−1)

(ii) E(uij) = exp
(
− (j−1)2σ2

2

)
.

We can see the tradeoff due to noise corruptions in the vectors in the magnitude of minj |E(uij)|,
which in the first case is on the order of 1

δp
, and in the second case is on the order of

exp(−p2σ2/2).

6.4.4 Sparsity in another basis

In compressed sensing MRI, it is beneficial to consider sparsity of the image with respect to
another basis. Hence, we form the alternative convex program

β̂ ∈ arg min
‖Ψβ‖1≤R

{βTE(xixTi )β − (〈η̂, β〉+ 〈η̂, β〉}, (6.8)

where Ψ ∈ Cp×p is an orthonormal change-of-basis matrix such that Ψβ∗ is sparse in the
new coordinates.

We then have the following theorem, with an analogous result for the Lagrangian variant
of the program (6.8):

Theorem 6.2. Under the same conditions as Theorem 6.1, the solution β̂ to the pro-
gram (6.8):

‖β̂ − β∗‖2 ≤
cαu + c′σǫ

λmin(E(xixTi ))

|||Ψ|||1
minj |E(uij)|

√
k log p

n
,

with probability at least 1− c1 exp(−c2 log p).

The proof of Theorem 6.2 is contained in Section 6.5.2.
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6.5 Proofs

In this section, we include the more technical proofs of our main results.

6.5.1 Proof of Theorem 6.1

We begin by analyzing the program (6.3) with R = ‖β∗‖1. Since β̂ is optimal and β∗ is
feasible, we may form the usual basic inequality

β̂TE(xix
T
i )β̂ − 〈η̂, β̂〉 − 〈η̂, β̂〉 ≤ β∗TE(xix

T
i )β

∗ − 〈η̂, β∗〉 − 〈η̂, β∗〉,

which (following some algebra and denoting ν̂ = β̂ − β∗) is equivalent to

ν̂TE(xix
T
i )ν̂ ≤ 〈η̂ − E(xix

T
i )β

∗, ν̂〉+ 〈η̂ − E(xix
T
i )β

∗, ν̂〉 = 2ℜ(〈η̂ − E(xix
T
i )β

∗, ν̂〉).

Hence,
λmin(E(xixTi ))

2
‖ν̂‖22 ≤ ‖ν̂‖1

∥∥η̂ − E(xix
T
i )β

∗∥∥
∞ .

Furthermore, it follows via standard arguments that ‖ν̂‖1 ≤ 2
√
k‖ν̂‖2. Hence, we conclude

that

‖ν̂‖2 ≤
4
√
k

αℓ

∥∥η̂ − E(xix
T
i )β

∗∥∥
∞ , (6.9)

where the latter term in the product measures the accuracy of the estimator η̂.
We now write

∥∥η̂ − E(xix
T
i )β

∗∥∥
∞ =

∥∥∥∥E(xix
T
i ) diag

−1(E(ui))(E(ziz
T
i ))

−1

(
ZTy

n
− E(yizi)

)∥∥∥∥
∞

≤
∣∣∣∣∣∣E(xixTi ) diag−1(E(ui))(E(ziz

T
i ))

−1
∣∣∣∣∣∣

1

∥∥∥∥
ZTy

n
− E(yizi)

∥∥∥∥
∞
, (6.10)

where the ℓ∞-norm is the max modulus of the coordinates of a complex vector, and the
ℓ1-operator norm is the max absolute column sum of a complex matrix. Furthermore, we
have

∥∥∥∥
ZTy

n
− E(yizi)

∥∥∥∥
∞

=

∥∥∥∥
ZT (Xβ∗ + ǫ)

n
− E(zix

T
i )β

∗
∥∥∥∥
∞

≤
∥∥∥∥
(
ZTX

n
− E(zix

T
i )

)
β∗
∥∥∥∥
∞
+

∥∥∥∥
ZT ǫ

n

∥∥∥∥
∞
. (6.11)

To bound the first term on the RHS, we have the following lemma, using ideas from Lemma
3.2 in Kunis and Rauhut [45]:
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Lemma 6.1. Let v ∈ Cp. For t > 0, and for each 1 ≤ ℓ ≤ p, we have

P

(∣∣∣∣e
T
ℓ

(
ZTX

n
− E(zix

T
i )

)
v

∣∣∣∣ ≥ t

)
≤ 4 exp

( −nt2
4αu‖v‖22 + 8‖v‖1t/3

√
2

)
.

Proof. Recall the canonical Bernstein inequality (cf. Theorem 3.1 in Kunis and Rauhut [45]):

Lemma 6.2. Let Yi be independent real-valued random variables with E(Yi) = 0, E(Y 2
i ) ≤ b,

and |Yi| ≤ B for each i. Then

P

(∣∣∣∣∣

n∑

i=1

Yi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−1

2

t2

nb+Bt/3

)
.

We write

eTℓ Z
TXv − neTℓ E(zix

T
i )v =

p∑

j=1

n∑

i=1

vje
ℓωii−jψii − neTℓ E(zix

T
i )v =

n∑

i=1

(Ỹi − E(Ỹi)),

where Ỹi :=
∑p

j=1 vje
(ℓωi−jψi)i. Let Yi := Ỹi − E(Ỹi). Clearly, E(Yi) = 0 and

|Ỹi| ≤
p∑

j=1

|vj | = ‖v‖1,

so |Yi| ≤ 2‖v‖1. Furthermore,

E(|Yi|2) = E(|Ỹi|2)− |E(Ỹi)|2 ≤ E(|Ỹi|2) = E

(
p∑

j,j′=1

vjvj′e
(j′−j)ψii

)
= vTE(xix

T
i )v ≤ αu‖v‖22.

Note that

P

(∣∣∣∣∣
1

n

n∑

i=1

Yi

∣∣∣∣∣ ≥ t

)
≤ P

(∣∣∣∣∣
1

n

n∑

i=1

ℜ(Yi)
∣∣∣∣∣ ≥

t√
2

)
+ P

(∣∣∣∣∣
1

n

n∑

i=1

ℑ(Yi)
∣∣∣∣∣ ≥

t√
2

)
.

Hence, applying Lemma 6.2 (with b = 2‖v‖1, B = αu‖v‖22, t = t/
√
2) to ℜ(Yi) and ℑ(Yi),

and using the fact that |ℜ(Yi)|, |ℑ(Yi)| ≤ |Yi|, we obtain the desired result.

Returning to inequality (6.10), note that

∥∥∥∥
(
ZTX

n
− E(zix

T
i )

)
β∗
∥∥∥∥
∞

= max
ℓ

∣∣∣∣e
T
ℓ

(
ZTX

n
− E(zix

T
i )

)
β∗
∣∣∣∣ .

Applying Lemma 6.1, together with a union bound, we conclude that

P

(∥∥∥∥
(
ZTX

n
− E(zix

T
i )

)
β∗
∥∥∥∥
∞

≥ t

)
≤ 4p exp

( −nt2
4αu‖β∗‖22 + 8‖β∗‖1t/2

√
2

)
.
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Let t = cαu‖β∗‖2
√

log p
n

. Then for n % k log p, we have

‖β∗‖1t ≤ 2
√
k‖β∗‖2t ≤ c′αu‖β∗‖22,

so

P

(∥∥∥∥
(
ZTX

n
− E(zix

T
i )

)
β∗
∥∥∥∥
∞

≥ cαu

√
log p

n

)
≤ 4p exp(−C log p) ≤ 4 exp(−C ′ log p).

Turning to the second term in inequality (6.10), note that for each ℓ, we have

eTℓ
ZT ǫ

n
=

1

n

n∑

i=1

eℓωiiǫi.

Assuming ǫ is an i.i.d. sub-Gaussian vector (meaning the real and imaginary parts are sep-
arately sub-Gaussian), we see that the above quantity is an i.i.d. average of sub-Gaussians
with parameter σ2

ǫ , since |eℓωii| ≤ 1. Hence, applying standard arguments and a union bound,
we have

P

(∥∥∥∥
ZT ǫ

n

∥∥∥∥
∞

≥ cσǫ

√
log p

n

)
≤ c1 exp(−c2 log p).

Putting everything together and using inequalities (6.9) and (6.10), we arrive at the bound (6.5).

A very similar argument shows that the when β̂ optimizes the Lagrangian program (6.4),
the corresponding error bound is satisfied.

6.5.2 Proof of Theorem 6.2

Let α∗ = Ψβ∗, and consider the program

α̂ ∈ arg min
‖α‖1≤R

{αTΨE(xix
T
i )Ψ

∗α− (〈Ψη̂, α〉+ 〈Ψη̂, α〉)}. (6.12)

Clearly, the problems (6.8) and (6.12) are related via α̂ = Ψβ̂.
Proceeding as in the proof of Theorem 6.1, and assuming R = ‖α∗‖1, we obtain the

bound

‖ν̂‖22
2

λmin(ΨE(xix
T
i )Ψ

∗) ≤ ‖Ψη̂ −ΨE(xix
T
i )Ψ

∗α∗‖∞‖ν̂‖1,
≤ |||Ψ|||1 ‖η̂ −ΨE(xix

T
i )β

∗‖∞‖ν̂‖1,

where ν̂ = α̂− α∗ = Ψ(β̂ − β∗), so

‖Ψ(β̂ − β∗)‖2 ≤
cαu + c′σǫ

λmin(ΨE(xixTi )Ψ
∗)

|||Ψ|||1
√
k log p

n
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w.h.p., using the same concentration bound on η̂ as before. Finally, noting that

‖Ψ(β̂ − β∗)‖2 =
√
λmin(ΨTΨ)‖β̂ − β∗‖2,

λmin(ΨE(xix
T
i )Ψ

∗) ≥ λmin(E(xix
T
i ))λmin(ΨΨ∗)

= λmin(E(xix
T
i )),

the desired result follows.

6.6 Simulations

We test our theoretical results empirically through simulations. In order to simplify compu-
tations, we generate our data such that E(zizTi ) = I, leading to the convex program (6.6) and
the soft-thresholding solution (6.7). We compare the output of our algorithm for η̂ = η̂corr
and η̂naive, where

η̂corr = diag−1(E(ui))
ZTy

n
,

η̂naive =
ZTy

n

are the corrected and uncorrected estimators, respectively. Note that η̂naive is the recon-
structed output assuming Z is an uncorrupted sensing matrix. It is interesting to note that
although η̂naive leads to a biased estimator of β∗ (even as n, p, k → ∞), this biased estimator
has the same support as β∗; this phenomenon is verified through our simulations. (How-
ever, this behavior is specific to the case when E(zizTi ) = I, and will not happen for general
frequency distributions.)

In Figure 6.6, we show the ℓ2-norm error ‖β̂ − β∗‖2 for the naive and noise-corrected
estimators. For p = 128, k = ⌊√p⌋, we generated a unit vector β∗ with 1√

k
in each of

k random components. We then chose n = αk log p, for α ∈ [100, 2400], and generated
the sensing frequencies ωi uniformly at random in [0, 2π), and the error frequencies ψi ∼
Unif(−δ, δ) with δ = π/2

p
. We then generated the measurement vector y ∈ Cn, assuming

the noise ǫ = 0. Finally, we chose the regularization parameter λ = 2
minj |E(uij)|

√
log p
n

. The

plot depicts the sample size n versus the ℓ2-norm error. As expected, the ℓ2-error decreases
to 0 for the corrected estimator, but not the naive estimator (which converges to a different
vector as n → ∞). In statistical terminology, the corrected estimator is consistent, but not
the naive estimator.

In Figure 6.6, we reran the experiments with p = 128, 256, and 512, and α ∈ [100, 1000],
in order to test the relative scaling of n, p, and k. Panels (a) and (b) show plots of the
corrected and naive ℓ2-error for the three problem sizes. In panels (c) and (d), we plotted
the same data with the horizontal axis rescaled as n/k log p. According to theory, the curves
for different problem sizes should roughly stack up in the case of the corrected estimator.
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Figure 6.1: ℓ2-error versus sample size for p = 128 and k ≈ √
p

We see this in panel (c); in contrast, the curves do not stack up for the naive estimator in
panel (d).

Finally, we simulated our algorithm on real image data. We began with a 512 × 512
axial T2-weighted image of the brain, with each pixel taking on complex values arising from
transverse magnetization. In order to speed up computation, we downsampled the original
image by summing blocks of neighboring pixels, and then renormalizing to make the maximal
signal intensity equal to 1. We then sparsified the image by taking the top 1√

256
= 6.25%

wavelet coefficients according to the Daubechies basis. In our earlier notation, the parameter
values are p = 2562, k = 4096. The original image (plotted by amplitudes) is shown in
Figure 6.6(a); the downsampled, sparsified image is shown in Figure 6.6(b).

Next, we sampled k-space frequencies (ωi, ω
′
i) independently and uniformly at random

on the interval [0, 2π), and sampled noise perturbations (ψi, ψ
′
i) independently according to

N(0, σ2), with σ = 1
256

. We modified the algorithm appropriately to handle a sensing matrix
corresponding to a 2DFT rather than 1DFT. The reconstruction based on corrected and
noisy estimators, for n = 1, 000, 000 and λ = 0.1, is given in Figure 6.6. Panels (a) and (b)
show the reconstructed images, while (c) and (d) show the pixel-wise difference between the
reconstructed images and the original downsampled image.

A few comments are in order. First, although the image difference shows a clear system-
atic bias in the naive reconstruction, overall the naive reconstruction looks fairly close to
the original. Indeed, as noted at the beginning of this section, the naive estimator provides
an estimator which has the same support as the corrected estimator, and differs only in
amplitude. It is well-known that phases are much more important than amplitudes in recon-
structing an image, so this phenomenon is not too surprising. However, if the frequencies ωi
were chosen in such a way that E(zizTi ) 6= I, we would expect the naive reconstruction to
fare much worse than the noise-corrected reconstruction.
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Second, our choice of n = 106 may seem excessive, especially since we are working in
the context of compressed sensing, when we normally assume n ≪ p. However, we wanted
to choose n large enough such that the noise-corrected image would be fairly close to the
original, and noticeably better than the naive reconstruction. In light of the discussion in
the previous paragraph, we can imagine that when E(zizTi ) 6= I, a smaller value of n would
show the desired differences. Furthermore, although n is fairly large for a 512 × 512, our
theory predicts that for larger image sizes, the required n would be relatively smaller than
p, since it scales as k log p.

Finally, we chose (ωi, ω
′
i) independently and uniformly at random to simplify the coding

for the simulation. Due to physical limitations of MRI, it is reasonable to expect that the
ωi’s would be chosen independently and uniformly at random (corresponding to the phase
encode frequency), but the ω′

i’s would be equally spaced as multiples of 2π
p

(corresponding

to readout frequencies). This model could similarly be analyzed by our theory, and it would
be interesting to simulate image reconstruction for this k-space sampling pattern.
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(a) Original 512× 512 image (b) Downsampled, sparsified 256× 256 image

6.7 Discussion

We have analyzed a model for compressed sensing with measurement error, where the error
enters as quantifiable uncertainty in the sensing frequencies. We have provided theoretical
results establishing statistical consistency of our reconstruction algorithm, and preliminary
simulations show that our method may indeed lead to cleaner reconstruction when covariates
are corrupted by additive noise.

Future directions of research are plentiful, and of primary interest is applying our recon-
struction techniques to real data acquired in the lab. In addition, it would be interesting
to explore efficient methods for solving the program (6.3) when E(xixTi ) 6= I, and to see if
the recovery algorithm performs better with non-uniformly sampled frequencies. One might
also be interested in studying the behavior caused by adding other penalties in place of (or
in addition to) the ℓ1-penalty, such as the total variation penalty, which is used to encourage
sparsity in the canonical basis, as exhibited by certain medical images (e.g., angiograms).
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(a) Reconstructed image, corrected estimator (b) Reconstructed image, naive estimator

(c) Image difference, corrected estimator (d) Image difference, naive estimator
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Chapter 7

Future directions

Many open problems remain in the domain of corrupted data. A very natural question is
whether our methods designed for correcting systematic errors in linear regression may be
extended to other regression settings such as generalized linear models. Some approaches
involving conditional scores or reweighted estimating equations seem promising, but more
theory needs to be developed to justify the statistical consistency of these methods. It
is also interesting to ask what one might do in more general settings where the data are
not corrupted completely at random. For instance, although our results cover scenarios
such as missing survey data, where a respondent decides with a certain probability not to
answer a particular question, they do not cover scenarios involving censored data, where the
probability that an entry is missing depends on its unobserved value. Another question is
whether information about the inferred regression function could be used to impute the true
uncorrupted values. Finally, it would be interesting to interface our algorithmic ideas for
handling corrupted MRI data with practitioners in medical imaging to find ways to apply
the proposed algorithms to advance existing technology.

Turning to nonconvex M-estimators, although we have explicitly proven that the RSC
condition holds for a variety of loss functions, it is unclear how one might establish RSC for
an arbitrary nonconvex function. This is an important and relevant area for future research.
For instance, the expectation-maximization (EM) algorithm is observed to perform well
empirically on various nonconvex objectives, hinting that local optima of such functions
may also be well-behaved. Other types of alternating minimization algorithms are used, for
instance, in low-rank matrix completion, and the solution path is shown to have provably
good behavior. It would be interesting to establish connections between broader families of
nonconvex problems arising from statistical estimation, which might involve devising a more
general measure of nonconvexity subsuming RSC and developing a more direct method
for verifying the condition. Perhaps for certain nonconvex functions, it is only possible
to establish good behavior of specific local optima, but such a unifying analysis is still
nonexistent in the literature.

The newfound connections between inverse covariance matrices and the edge structure
of an undirected graphical model show promise for Gaussian-based learning techniques to
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be applied rigorously in non-Gaussian settings. However, there is still a wide gap between
traditional Gaussian distributions and the multinomial distributions covered by our work.
One question is whether it is possible to quantify “approximate Gaussianity,” since approxi-
mately Gaussian distributions should still give rise to inverse covariances that approximately
reflect the edge structure of the graph and could still be useful for graph estimation. Current
theory on the inverse covariance structure of Gaussian distributions is completely non-robust
to distributional assumptions. From a more philosophical perspective, it would be interesting
to develop a deeper understanding of whether undirected graphical models are fundamen-
tally the correct structures to infer in applications such as genetics, neuroscience, or social
networks. Although the statistical theory of graphical models gives rise to many elegant
mathematical results, practitioners do not seem to concur on the precise meaning of “con-
nections” in a gene network. In addition to pushing the frontiers of inference in standard
graphical models, it would be fascinating to understand the connections between different
mathematical representations of network structures and the statistical methods that may be
imported from one domain to another.
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Appendix A

Proofs for Chapter 3

A.1 Proofs of corollaries

In this section, we include proofs of the corollaries appearing in Chapter 3.

A.1.1 Proof of Corollary 3.1

The proof of this corollary is based on two technical lemmas, one establishing that the lower-
and upper-RE conditions hold with high probability, and the other proving a form of the
deviation bounds (3.17).

Lemma A.1 (RE conditions, i.i.d. with additive noise). Under the conditions of Corol-

lary 3.1, there are universal positive constants ci such that the matrix Γ̂add satisfies the
lower- and upper-RE conditions with parameters αℓ =

λmin(Σx)
2

, αu =
3
2
λmax(Σx), and

τ(n, p) = c0 λmin(Σx)max
((σ2

x + σ2
w)

2

λ2min(Σx)
, 1
) log p
n

,

with probability at least 1− c1 exp
(
− c2nmin

( λ2min(Σx)

(σ2x+σ
2
w)2
, 1
))
.

Proof. Using Lemma A.13 in Appendix A.2, together with the substitutions

Γ̂− Σx =
ZTZ

n
− Σz, and s :=

1

c

n

log p
min

{
λ2min(Σx)

σ4
, 1

}
, (A.1)

where σ2 = σ2
x+σ

2
w and c is chosen sufficiently small so s ≥ 1, we see that it suffices to show

that

sup
v∈K(2s)

∣∣vT
(ZTZ

n
− Σz

)
v
∣∣

︸ ︷︷ ︸
D(s)

≤ λmin(Σx)

54
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with high probability.
Note that the matrix Z is sub-Gaussian with parameters (Σx + Σw, σ

2). Consequently,
by Lemma A.15 in Appendix A.3, we have

P
[
D(s) ≥ t

]
≤ 2 exp

(
− c′nmin

( t2
σ4
,
t

σ2

)
+ 2s log p

)
,

for some universal constant c′ > 0. Setting t = λmin(Σx)
54

, we see that as long as the constant
c in the definition (A.1) is chosen sufficiently small, we are guaranteed that

P
[
D(s) ≥ λmin(Σx)

54

]
≤ 2 exp

(
− c2nmin

( λ2min(Σx)

(σ2
x + σ2

w)
2
, 1
))
, (A.2)

which establishes the result.

Lemma A.2 (Deviation conditions, additive noise). Under the conditions of Corollary 3.1,
there are universal positive constants ci such the deviation bound (3.16) holds with parameter

ϕ(Q, σǫ) = c0σz(σw + σǫ)‖β∗‖2,
with probability at least 1− c1 exp(−c2 log p).
Proof. Using the fact that y = Xβ∗ + ǫ, we may write

‖γ̂ − Γ̂β∗‖∞ =
∥∥Z

Ty

n
−
(ZTZ

n
− Σw

)
β∗∥∥

∞

=
∥∥Z

T (Xβ∗ + ǫ)

n
−
(ZTZ

n
− Σw

)
β∗∥∥

∞

≤
∥∥Z

T ǫ

n

∥∥
∞ +

∥∥(Σw − ZTW

n

)
β∗∥∥

∞.

Hence, the conclusion follows easily from Lemma A.14 in Appendix A.3.

Extension to unknown Σw In the case when Σw is unknown, we first verify the deviation
bound (3.16). Note that the form of γ̂ is the same as in the case when Σw is known, so it

suffices to bound the quantity ‖(Γ̃− Σx)β
∗‖∞ w.h.p. Furthermore,

‖(Γ̃− Σx)β
∗‖∞ ≤ ‖(Γ̃− Γ̂)β∗‖∞ + ‖(Γ̂− Σx)β

∗‖∞
= ‖(Σ̂w − Σw)β

∗‖∞ + ‖(Γ̂− Σx)β
∗‖∞,

and the second term is bounded by cσ2
z

√
log p
n

w.h.p., by Lemma A.14 in Appendix A.3. If

we use the estimator Σ̂w = 1
n
W T

0 W0, then

P
(
‖(Σ̂w − Σw)β

∗‖∞ ≤ cσ2
w

√
log p

n

)
≥ 1− c1 exp(−c2 log p)
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by the same sub-Gaussian tail bounds. Since σ2
w ≤ σ2

z , we conclude that

‖(Γ̃− Σx)β
∗‖∞ ≤ cσ2

z

√
log p

n

with probability at least 1− c1 exp(−c2 log p), as wanted.
Turning to the RE conditions, we similarly write

|vT (Γ̃− Σx)v| ≤ |vT (Γ̃− Γ̂)v|+ |vT (Γ̂− Σx)v|
= |vT (Σ̂w − Σw)v|+ |vT (Γ̂− Σx)v|.

Then applying Lemma A.15 to both terms, followed by Lemma A.13, yields the required
bounds.

A.1.2 Proof of Corollary 3.2

We now turn to the proof of Corollary 3.2, which applies to the case of missing data, based
on the general M-estimator using the pair (Γ̂mis, γ̂mis) defined in equation (3.11). We will
establish that the RE conditions and deviation conditions (3.17) hold with high probability.

Lemma A.3 (RE conditions, i.i.d. with missing data). Under the conditions of Corollary 3.2,

there are universal positive constants ci such that Γ̂mis satisfies the lower- and upper-RE
conditions with parameters αℓ =

λmin(Σx)
2

, αu =
3
2
λmax(Σx), and

τ(n, p) = c0λmin(Σx)max
( 1

(1− αmax)2
σ4
x

λ2min(Σx)
, 1
) log p
n

,

with probability at least 1− c1 exp
(
− c2nmin

(
(1− αmax)

4 · λ
2
min(Σx)

σ4x
, 1
))
.

Proof. This proof parallels the proof of Lemma A.1 for the additive noise case. We make
use of Lemma A.13. This time, we have

Γ̂− Σx =
ZTZ

n
c M − Σx =

(ZTZ

n
− Σz

)
c M,

with the parameter s defined as in equation (A.1), with σ2 = σ2x
(1−αmax)2

. Note that for a
vector v ∈ Rp, we have

∣∣vT (Γ̂− Σx)v
∣∣ =

∣∣vT
((ZTZ

n
− Σz

)
c M

)
v
∣∣

≤ 1

‖M‖min

∣∣vT
(ZTZ

n
− Σz

)
v
∣∣

≤ 1

(1− αmax)2

∣∣vT
(ZTZ

n
− Σz

)
v
∣∣. (A.3)
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Furthermore, Z is a sub-Gaussian matrix with parameters (Σz, σ
2
x), so applying Lemma A.15

in Appendix A.3 with t = (1 − αmax)
2 λmin(Σx)

54
to the right-hand expression, we obtain the

bound

P
[
D(s) ≥ λmin(Σx)

54

]
≤ 2 exp

(
− c2nmin

(
(1− αmax)

4 · λ
2
min(Σx)

σ4
x

, 1
))
.

Lemma A.4 (Deviation conditions, missing data). Under the conditions of Corollary 3.2,
there are universal positive constants ci such the deviation bounds (3.17) hold with parameter

ϕ(Q, σǫ) = c0
σx

1− αmax

(
σǫ +

σx
1− αmax

)
,

with probability at least 1− c1 exp
(
− c2 log p

)
.

Proof. The key idea is to note that the observed matrix Z is a sub-Gaussian matrix with
parameter σ2

x. Indeed, recalling that the hidden matrix X is sub-Gaussian with parameter
σ2
x, we see that for any unit vector v ∈ Rp, and any missing value pattern of Xi, we have

E
[
exp(λZv) | missing values

]
= E(exp(λXiu)) ≤ exp

(σ2
xλ

2

2

)
, (A.4)

where the vector u ∈ Rp has entries ui = vi when entry i is observed, and ui = 0 otherwise.
By the tower property of conditional expectation, it follows that the moment generating
function of Zv is upper-bounded by the same quantity, so Z is also a sub-Gaussian matrix
with parameter at most σ2

x.
Observe that

‖γ̂ − Σxβ
∗‖∞ =

∥∥(1
n

(
ZTy − cov(Zi, y)

)
c (1−α)

)
β∗∥∥

≤ 1

1− αmax

∥∥ 1
n

(
ZTy − cov(zi, y)

)
β∗∥∥

∞

≤ 1

1− αmax

(∥∥ 1
n

(
ZTX − cov(zi, xi)

)
β∗∥∥

∞︸ ︷︷ ︸
T1

+
∥∥Z

T ǫ

n

∥∥
∞
)

︸ ︷︷ ︸
T2

. (A.5)

Using the sub-Gaussianity of the matrices X , Z, and ǫ, and Lemma A.14, the two terms
may be bounded as

P

[
T1 ≥ c0

σ2
x

(1− αmax)2

√
log p

n

]
≤ c1 exp(−c2 log p), (A.6a)

P

[
T2 ≥ c0

σxσǫ
(1− αmax)

√
log p

n

]
≤ c1 exp(−c2 log p). (A.6b)
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Now consider the quantity ‖(Γ̂− Σx)β
∗‖∞. By a similar manipulation, we have

‖(Γ̂− Σx)β
∗‖∞ =

∥∥((Z
TZ

n
− Σz

)
c M

)
β∗∥∥

∞ (A.7)

≤ 1

(1− αmax)2
∥∥(Z

TZ

n
− Σz

)
β∗∥∥

∞, (A.8)

so using Lemma A.14 yields

∥∥(Γ̂− Σx
)
β∗∥∥

∞ ≤ c0
σ2
x

(1− αmax)2

√
log p

n
, (A.9)

with probability at least 1 − c1 exp(−c2 log p). Combining bounds (A.6) and (A.9), we con-
clude that the deviation conditions (3.17) both hold with parameter

ϕ(Q, σǫ) = c0
σx

1− αmax

( σx
1− αmax

+ σǫ
)
,

with probability at least 1− c1 exp(−c2 log p), as claimed.

Extension to unknown αj We now consider the more challenging case when the missing
probabilities αj are unknown. Note that the estimates α̂j satisfy the deviation bound

P
(
max
j

|α̂j − αj | ≥ t
)
≤ c1 exp(−c2nt2 + log p), (A.10)

by a Hoeffding bound for Bernoulli random variables, together with a union bound. In

particular, taking t = c0

√
log p
n

, we have

‖α̂−α‖∞ ≤ c0

√
log p

n
, (A.11)

with probability at least 1− c1 exp(−c2 log p).
As long as n % log p

(1−αmax)
, as required by our results, the deviation condition (A.11) implies

that |α̂j − αj | ≤ 1−αmax

2
for each j, so

(1− α̂j) ≥ (1− αj)−
1− αmax

2
≥ 1

2
(1− αj). (A.12)

In particular, we obtain the bound

max
j

∣∣∣∣
1− αj
1− α̂j

− 1

∣∣∣∣ ≤ max
j

|αj − α̂j |
(1− αmax) (1− α̂j)

≤ 2

(1− αmax)2
max
j

|αj − α̂j|, (A.13)
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and since
∣∣1−αj

1−α̂j
− 1
∣∣ ≤ 1 by inequality (A.12), we also have

max
i,j

∣∣∣∣
(1− αi)(1− αj)

(1− α̂i)(1− α̂j)
− 1

∣∣∣∣ (A.14)

=

∣∣∣∣
(1− αi
1− α̂i

− 1
)(1− αj

1− α̂j
− 1
)
+
(1− αi
1− α̂i

− 1
)
+
(1− αj
1− α̂j

− 1
)∣∣∣∣

≤ 3max
j

∣∣∣∣
1− αj
1− α̂j

− 1

∣∣∣∣

≤ 6

(1− αmax)2
max
j

|αj − α̂j |, (A.15)

using the triangle inequality and inequality (A.13).
We will use these bounds to verify the results of Lemmas A.3 and A.4 for the estima-

tors (3.24). For the deviation bounds, we begin by writing

‖(Γ̃− Σx)β
∗‖∞ ≤ ‖(Γ̃− Γ̂)β∗‖∞ + ‖(Γ̂− Σx)β

∗‖∞.

Note that we have already bounded ‖(Γ̂− Σx)β
∗‖∞ in inequality (A.9). Furthermore,

‖(Γ̃− Γ̂)β∗‖∞ =
∥∥(Z

TZ

n
c M̃ − ZTZ

n
c M

)
β∗‖∞

=
∥∥(Z

TZ

n
c M

)
⊙
(
M c M̃ − 11T

)
β∗∥∥

∞

≤
∥∥M c M̃ − 11T

∥∥
max

∥∥(Z
TZ

n
c M

)
β∗∥∥

∞

≤ 2

(1− αmax)2
max
j

|αj − α̂j|
(
‖Γ̂− Σx)β

∗‖∞ + ‖Σxβ∗‖∞
)
,

where we have used inequality (A.13) and the triangle inequality in the last inequality above.
Noting that ‖Σxβ∗‖∞ ≤ λmax(Σx)‖β∗‖2 ≤ cσ2

x and using the bounds (A.9) and (A.11), we
obtain

‖(Γ̃− Σx)β
∗‖∞ ≤ cσ2

x

(1− αmax)2

√
log p

n
.

Combining the pieces, we conclude that the deviation conditions (3.17) are satisfied with
ϕ(Q, σǫ) = c0

σx
1−αmax

(
σx

1−αmax
+ σǫ

)
, as claimed.

For the RE conditions, we use a similar argument. Note that by Lemma A.13, we need
to show that |vT (Γ̃− Σx)v| ≤ λmin(Σx)

54
for all v ∈ K(2s), with high probability. We write

|vT (Γ̃− Σx)v| ≤ |vT (Γ̃− Γ̂)v|+ |vT (Γ̂− Σx)v|,
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and note that we have already shown how to upper-bound |vT (Γ̃ − Γ̂)v| by cλmin(Σx) with
high probability. Furthermore,

∣∣vT (Γ̃− Γ̂)v
∣∣ =

∣∣vT
(ZTZ

n
c M̃ − ZTZ

n
c M

)
v
∣∣

=
∣∣vT
(ZTZ

n
c M

)
⊙
(
M̃ c M − 11T

)
v
∣∣

≤
∥∥M̃ c M − 11T

∥∥
max

∣∣vT
(ZTZ

n
c M

)
v
∣∣

≤
∥∥M̃ c M − 11T

∥∥
max

(
|vT (Γ̂− Σx)v|+ |vTΣxv|

)
.

Making use of inequality (A.14) and the concentration bound (A.10) with the assignment

t = c λmin(Σx)
λmax(Σx)

(1− αmax)
2, we obtain

‖M̃ c M − 11T ‖max|vTΣxv| ≤ cλmin(Σx)

with probability at least

1− c1 exp
[
− c2n(1− αmax)

4 λ
2
min(Σx)

λ2max(Σx)

]
≥ 1− c1 exp

[
− c2n(1− αmax)

4λ
2
min(Σx)

σ4
x

]
.

Note that t ≤ c′, so the earlier upper bound on |vT (Γ̂ − Σx)v| is sufficient to ensure that

|vT (Γ̃− Σx)v| ≤ λmin(Σx)
54

with the required probability.

A.1.3 Proof of Corollary 3.3

We now need to establish the RE conditions and deviation bounds (3.17) for the Gaussian
VAR case, which we summarize in the following:

Lemma A.5 (RE conditions, dependent case with missing data). Under the conditions of

Corollary 3.3, there are universal positive constants ci such that Γ̂mis satisfies the lower- and
upper-RE conditions with αℓ =

λmin(Σx)
2

, αu =
3
2
λmax(Σx), and

τ(n, p) = c0λmin(Σx)max
( ζ4

λ2min(Σx)
1
) log p
n

,

with probability at least 1− c1 exp
(
− c2nmin

(λ2min(Σx)

ζ4
, 1
))
.

Proof. The proof is identical to the proof of Lemma A.1, except we use Lemma A.19 instead
of Lemma A.15 in Appendix A.3.
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Lemma A.6 (Deviation conditions, VAR with additive noise). Under the conditions of
Corollary 3.3, there are universal positive constants ci such the deviation bounds (3.17) hold
with parameter

ϕ(Q, σǫ) = c0ζ
(
ζ + σǫ),

with probability at least 1− c1 exp
(
− c2 log p

)
.

Proof. We begin by bounding the term

‖(Γ̂− Σx)β
∗‖∞ = max

1≤j≤p

∣∣eTj
( 1
n
ZTZ − Σz

)
β∗∣∣.

Define the function Φ(u, v) := uT
(
1
n
ZTZ−Σz

)
v and rewrite the term as max1≤j≤p |Φ(ej , β∗)|.

For each fixed j, some simple algebra shows that

Φ(ej , β
∗) =

1

2

{
Φ(ej + β∗, ej + β∗)− Φ(ej , ej)− Φ(β∗, β∗)

}
, (A.16)

so it suffices to have a high-probability upper bound on the quantity Φ(v, v) for each fixed unit
vector v. In particular, combining inequality (A.41) from Lemma A.18 (see Appendix A.3)
with the union bound and the relation (A.16), we conclude that

P
[
‖(Γ̂− Σx)β

∗‖∞ ≥ c0ζ
2

√
log p

n

]
≤ c1 exp(−c2 log p). (A.17)

We now turn to the quantity ‖γ̂ − Σxβ
∗‖∞, which by the triangle inequality may be

upper-bounded as

‖γ̂ − Σxβ
∗‖∞ ≤

∥∥(1
n
ZTZ − Σz

)
β∗∥∥

∞ +
∥∥(1
n
W TW − Σw

)
β∗∥∥

∞

+
∥∥ 1
n
ZT ǫ

∥∥
∞ +

∥∥ 1
n
XTWβ∗∥∥

∞. (A.18)

We have already bounded the first term in inequality (A.17) above. As for the second term,
the matrix W is sub-Gaussian, so that Lemma A.14 can be used to control it (as in previous
arguments). In order to upper-bound the third term on the RHS of equation (A.18), we first
condition on Z. Under this conditioning, the third term may be written as maxℓ=1,...,p vℓ,

where vℓ :=
1
n
〈Zeℓ, ǫ〉 is a zero-mean Gaussian variable with variance at most σ2ǫ

n

(‖Zeℓ‖2√
n

)2
.

Combining the union bound and the deviation bound (A.41) with t = 1, we conclude that
as long as n % log p, then

P
[
max
ℓ=1,...,p

(
‖Zeℓ‖2√

n
)2 ≥ cζ2

]
≤ c1 exp

(
− c2 log p

)
.

Conditioning on this event and applying standard tail bounds to control {vℓ}, we conclude

that P
[
|vℓ| ≥ t] ≤ exp

(
− c2

ζ2 σ2ǫ
nt2
)
. Setting t = c0σǫζ

√
log p
n

and then taking a union bound

over ℓ ∈ {1, . . . , p} yields the desired result. A similar analysis can be used to bound the
fourth term, since the matrices X and W are independent. Combining the pieces yields the
claim.
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A.1.4 Proof of Corollary 3.4

Lemma A.7 (RE conditions, dependent case with missing data). Under the conditions of

Corollary 3.4, there are universal positive constants ci such that Γ̂mis satisfies the lower- and
upper-RE conditions with αℓ =

λmin(Σx)
2

, αu =
3
2
λmax(Σx), and

τ(n, p) = c0λmin(Σx)max
( ζ ′4

λ2min(Σx)
, 1
) log p
n

,

with probability at least 1− c1 exp
(
− c2nmin

(λ2min(Σx)

ζ′4
, 1
))
.

Proof. Again, we simply substitute the bound of Lemma A.19 for the bound of Lemma A.15
in the proof of Lemma A.3.

The final step is verify the deviation bounds (3.17).

Lemma A.8 (Deviation conditions, VAR with missing data). Under the conditions of Corol-
lary 3.4, there are universal positive constants ci such the deviation bounds (3.17) hold with
parameter

ϕ(Q, σǫ) = c0ζ
′ (ζ ′ + σǫ),

with probability at least 1− c1 exp(−c2 log p).

Proof. To control the term ‖(Γ̂− Σx)β
∗‖∞, we use the same argument as in Lemma A.6 to

obtain inequality (A.17). For the term ‖γ̂ − Σxβ
∗‖∞, we use the expansion (A.5) from the

i.i.d. case. We show how to bound the terms T1 and T2 appearing in the expansion.

For a vector v ∈ Rp, write Ψ(v) =
‖v‖22
n

− E
(‖v‖22

n

)
, and note that

T1 = max
j

1

2

[
Ψ(Zej +Xβ∗)−Ψ(Zej)−Ψ(Xβ∗)

]
. (A.19)

By Lemma A.18, we may upper-bound the last term in equation (A.19) by Cζ ′2(1−αmax)
2
√

log p
n

,

with probability at least 1 − c1 exp(−c2 log p). In order to bound the other two terms,
we again use Lemma A.18. Note that Zej is a mixture of Gaussians N(0, Qj), each with
|||Qj |||op ≤ (1− αmax)

2ζ ′2. Then Zej +Xβ∗ is also a mixture of Gaussians N(0, Q′
j), and we

have the bound |||Q′
i|||op ≤ 4ζ ′2(1 − αmax)

2. Hence, by Lemma A.18 and a union bound, we

conclude that T1 ≤ cζ ′2(1 − αmax)
2
√

log p
n

, with probability at least 1 − c1 exp(−c2 log p).
Turning to term T2 in the expansion (A.5), we condition on Z. Repeating the argument in
Lemma A.6, we obtain the bound

T2 ≤ c0σǫζ
′(1− αmax)

√
log p

n
.
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Finally, plugging back into inequality (A.5), we arrive at the bound

‖γ̂ − Σxβ
∗‖∞ ≤ c(ζ ′2(1− αmax) + σǫζ

′)

√
log p

n
.

Altogether, we have the form of ϕ given by ϕ(Q, σǫ) = c0(σǫζ
′ + ζ ′2), as claimed.

A.1.5 Proof of Corollary 3.5

First note that by Theorem 3.1, we have the bounds

‖θ̂j − θj‖1 ≤
cϕ(Q, σǫ)

αℓ
k

√
log p

n
, (A.20)

‖θ̂j − θj‖2 ≤
cϕ(Q, σǫ)

αℓ

√
k log p

n
. (A.21)

We now establish the following lemma, which we will use to prove the theorem.

Lemma A.9. For each 1 ≤ j ≤ p, we have

1

λmax(Σ)
≤ |aj | ≤

1

λmin(Σ)
and ‖θj‖2 ≤ κ(Σ). (A.22)

Proof. Observe that |aj | ≤ maxj |Θjj| ≤ λmax(Θ) = 1
λmin(Σ)

, and similarly, |aj | ≥ 1
λmax(Σ)

,

which establishes the first inequality (A.22). Next, note that the rows (and also columns) of
Θ are bounded in ℓ2-norm according to the inequality

‖Θj·‖2 = ‖Θej‖2 ≤ λmax(Θ) =
1

λmin(Σ)
,

which implies that ‖θj‖2 = ‖Θ·j/aj‖2 = ‖Θj·‖2/|aj | ≤ κ(Σ), as claimed.

Moving forward, we establish the following deviation inequalities between aj and Θ·j and
their respective estimators.

Lemma A.10. For all j, we have the following deviation inequalities:

|âj − aj | ≤
cκ(Σ)

λmin(Σ)

(ϕ(Q, σǫ)
λmin(Σ)

+
ϕ(Q, σǫ)

αℓ

)
√
k log p

n
, (A.23)

‖Θ̃·j −Θ·j‖1 ≤
cκ2(Σ)

λmin(Σ)

(ϕ(Q, σǫ)
λmin(Σ)

+
ϕ(Q, σǫ)

αℓ

)
k

√
log p

n
. (A.24)
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Proof. We first derive inequality (A.23). Since the columns of Θ are k-sparse, we have the
bound ‖θj‖1 ≤

√
k‖θj‖2. Then

‖θ̂j‖1 ≤ ‖θj‖1 + ‖θ̂j − θj‖1 ≤ c
√
k
(
‖θj‖2 +

ϕ(Q, σǫ)

αℓ

√
k log p

n

)

≤ c
√
k
(
κ(Σ) +

ϕ(Q, σǫ)

αℓ

√
log p

n

)
,

where we have used Lemma A.9 and inequality (A.20). By the assumed sample size scaling
n % k log p, this simplifies to the inequality

‖θ̂j‖1 ≤ cκ(Σ)
√
k. (A.25)

We now have

|â−1
j − a−1

j | =
∣∣(Σ̂jj − Σ̂j,−j θ̂

j)− (Σjj − Σj,−jθ
j)
∣∣

≤ |Σ̂jj − Σjj |︸ ︷︷ ︸
T1

+ |Σ̂j,−jθ̂j − Σj,−jθ
j |︸ ︷︷ ︸

T2

. (A.26)

Using inequality (3.28), we have T1 ≤ cϕ(Q, σǫ)
√

log p
n

. Furthermore,

T2 ≤ |(Σ̂j,−j − Σj,−j)θ̂
j |+ |Σj,−j(θ̂j − θj)|

≤ ‖Σ̂− Σ‖max‖θ̂j‖1 + ‖Σj,−j‖2‖θ̂j − θj‖2

≤ c
(
ϕ(Q, σǫ)κ(Σ) + λmax(Σx)

ϕ(Q, σǫ)

αℓ

)
√
k log p

n
,

using inequality (A.25) and inequality (A.21). Substituting back into inequality (A.26), we
obtain

|â−1
j − a−1

j | ≤ c
(
ϕ(Q, σǫ)κ(Σ) + λmax(Σx)

ϕ(Q, σǫ)

αℓ

)
√
k log p

n

for all j. Hence,

∣∣∣∣
ai
âi

− 1

∣∣∣∣ = |ai||â−1
i − a−1

i | ≤ cκ(Σ)
(ϕ(Q, σǫ)
λmin(Σ)

+
ϕ(Q, σǫ)

αℓ

)
√
k log p

n
,

using Lemma A.9, so |âj| ≤ 2aj for n % k log p, and

|âj − aj| = |âj |
∣∣∣∣
aj
âj

− 1

∣∣∣∣ ≤
cκ(Σ)

λmin(Σ)

(ϕ(Q, σǫ)
λmin(Σ)

+
ϕ(Q, σǫ)

αℓ

)
√
k log p

n
, (A.27)

which establishes inequality (A.23).
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Turning to inequality (A.24), we have

‖Θ̃·j−Θ·j‖1 = |âj − aj |+ ‖âj θ̂j − ajθ
j‖1

≤ |âj − aj |+ |aj|‖θ̂j − θj‖1 + |âj − aj |‖θ̂j‖1

≤ c
( 1

λmin(Σ)

ϕ(Q, σǫ)

αℓ
+

κ2(Σ)

λmin(Σ)

(ϕ(Q, σǫ)
λmin(Σ)

+
ϕ(Q, σǫ)

αℓ

))
k

√
log p

n
,

by a combination of inequalities (A.20), (A.23), (A.25), and (A.27). Noting that κ(Σ) > 1,
we arrive at inequality (A.24).

Returning to the proof of Corollary 3.5, observe that since Θ̂ and Θ are symmetric, we
have |||Θ̂−Θ|||op ≤ |||Θ̂−Θ|||1. Furthermore, by the triangle inequality and the definition of

Θ̂,
|||Θ̂−Θ|||1 ≤ |||Θ̂− Θ̃|||1 + |||Θ̃−Θ|||1 ≤ 2|||Θ̃−Θ|||1 = 2max

j
‖Θ̃·j −Θ·j‖1,

so that the union bound and inequality (A.24) yield the claim.

A.2 Restricted eigenvalue conditions

In this appendix, we provide the proofs for various lemmas used to establish restricted
eigenvalue conditions for different classes of random matrices, depending on the observation
model. We begin by establishing two auxiliary lemmas, and then proceed to the main
lemma used directly in the proofs of the corollaries. Our first result shows how to bound the
intersection of the ℓ1-ball with the ℓ2-ball in terms of a simpler set.

Lemma A.11. For any constant s ≥ 1, we have

B1(
√
s) ∩ B2(1) ⊆ 3 cl{conv

{
B0(s) ∩ B2(1)

}
}, (A.28)

where the balls are taken in p-dimensional space, and cl{·} and conv{·} denote the topological
closure and convex hull, respectively.

Proof. Note that when s > p, the containment is trivial, since the right-hand set equals
B2(3), and the left-hand set is contained in B2(1). Hence, we will assume 1 ≤ s ≤ p.

Let A,B ⊆ Rp be closed convex sets, with support function given by φA(z) = supθ∈A〈θ, z〉
and φB similarly defined. It is a well-known fact that φA(z) ≤ φB(z) if and only if A ⊆ B
(cf. Theorem 2.3.1 of Hug and Weil [37]). We now check this condition for the pair of sets
A = B1(

√
s) ∩ B2(1) and B = 3 cl

{
conv

{
B0(s) ∩ B2(1)

}}
.

For any z ∈ Rp, let S ⊆ {1, 2, . . . , p} be the subset that indexes the top ⌊s⌋ elements of
z in absolute value. Then ‖zSc‖∞ ≤ |zj | for all j ∈ S, whence

‖zSc‖∞ ≤ 1

⌊s⌋‖zS‖1 ≤
1√
⌊s⌋

‖zS‖2. (A.29)
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We now split the supremum over A into two parts, corresponding to the elements indexed
by S and its complement Sc, thereby obtaining

φA(z) = sup
θ∈A

〈θ, z〉 ≤ sup
‖θS‖2≤1

〈θS, zS〉+ sup
‖θSc‖1≤

√
s

〈θSc , zSc〉

≤ ‖zS‖2 +
√
s‖zSc‖∞

(i)

≤
(
1 +

√
s

⌊s⌋
)
‖zS‖2

≤ 3‖zS‖2,

where step (i) makes use of inequality (A.29). Finally, we recognize that

φB(z) = sup
θ∈B

〈θ, z〉 = 3 max
|U |=⌊s⌋

sup
‖θU‖2≤1

〈θU , zU 〉 = 3‖zS‖2,

from which the claim follows.

For ease of notation, define the sparse set K(s) := B0(s) ∩ B2(1) and the cone set

C(s) := {v : ‖v‖1 ≤
√
s‖v‖2}.

Our next result builds on Lemma A.11, showing how to control deviations uniformly over
vectors in Rp.

Lemma A.12. For a fixed matrix Γ ∈ Rp×p, parameter s ≥ 1, and tolerance δ > 0, suppose
we have the deviation condition

|vTΓv| ≤ δ ∀v ∈ K(2s). (A.30)

Then ∣∣vTΓv
∣∣ ≤ 27 δ

(
‖v‖22 +

1

s
‖v‖21

)
∀v ∈ Rp. (A.31)

Proof. We begin by establishing the inequalities

|vTΓv| ≤ 27 δ ‖v‖22 ∀v ∈ C(s), (A.32a)

|vTΓv| ≤ 27 δ

s
‖v‖21 ∀v /∈ C(s). (A.32b)

Inequality (A.31) then follows immediately.
By rescaling, inequality (A.32a) follows if we can show that

|vTΓv| ≤ 27δ for all v such that ‖v‖2 = 1 and ‖v‖1 ≤
√
s. (A.33)
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By Lemma A.11 and continuity, we further reduce the problem to proving the bound (A.33)
for all vectors v ∈ 3 conv

{
K(s)} = conv

{
B0(s)∩B2(3)

}
. Consider a weighted linear combi-

nation of the form v =
∑

i αivi, with weights αi ≥ 0 such that
∑

i αi = 1, and ‖vi‖0 ≤ s and
‖vi‖2 ≤ 3 for each i. Expanding, we can write

vTΓv =
(∑

αivi
)T

Γ
(∑

αivi
)
=
∑

i,j

αiαj
(
vTi Γvj

)
.

Applying inequality (A.30) to the vectors 1
3
vi,

1
3
vj , and

1
6
(vi + vj), we have

|vTi Γvj | =
1

2
|(vi + vj)

TΓ(vi + vj)− vTi Γvi − vTj Γvj| ≤
1

2
(36δ + 9δ + 9δ) = 27δ

for all i, j, and hence |vTΓv| ≤ ∑
i,j αiαj(27δ) = 27δ‖α‖22 = 27δ, establishing inequal-

ity (A.32a).
Turning to inequality (A.32b), first note that for v /∈ C(s), we have

∣∣vTΓv
∣∣

‖v‖21
≤ 1

s
sup

‖u‖1≤
√
s

‖u‖2≤1

∣∣uTΓu
∣∣ ≤ 27 δ

s
, (A.34)

where the first inequality follows by the substitution u =
√
s v
‖v‖1 , and the second follows by

the same argument used to establish inequality (A.32a), since u is in the set appearing in
Lemma A.11. Rearranging inequality (A.34) yields inequality (A.32b).

Lemma A.13 (RE conditions). Suppose s ≥ 1 and Γ̂ is an estimator of Σx satisfying the
deviation condition ∣∣vT (Γ̂− Σx)v

∣∣ ≤ λmin(Σx)

54
∀v ∈ K(2s).

Then we have the lower-RE condition

vT Γ̂v ≥ λmin(Σx)

2
‖v‖22 −

λmin(Σx)

2s
‖v‖21 (A.35)

and the upper-RE condition

vT Γ̂v ≤ 3

2
λmax(Σx)‖v‖22 +

λmin(Σx)

2s
‖v‖21. (A.36)

Proof. This result follows easily from Lemma A.12. Setting Γ = Γ̂−Σx and δ = λmin(Σx)
54

, we
have the bound ∣∣vT (Γ̂− Σx)v

∣∣ ≤ λmin(Σx)

2

(
‖v‖22 +

1

s
‖v‖21

)
.

Then

vT Γ̂v ≥ vTΣxv −
λmin(Σx)

2

(
‖v‖22 +

1

s
‖v‖21

)
and

vT Γ̂v ≤ vTΣxv +
λmin(Σx)

2

(
‖v‖22 +

1

s
‖v‖21

)
,

so the inequalities follow from λmin(Σx)‖v‖22 ≤ vTΣxv ≤ λmax(Σx)‖v‖22.
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A.3 Deviation bounds

In this appendix, we state and prove some deviation bounds for various types of random
matrices.

A.3.1 Bounds in the i.i.d. setting

Given a zero-mean random variable Y , we refer to the quantity ‖Y ‖ψ1 := supℓ≥1 ℓ
−1(E|Y |ℓ)1/ℓ

as its sub-exponential parameter. The finiteness of this quantity guarantees existence of all
moments, and hence large-deviation bounds of the Bernstein type.

By Lemma 14 of Vershynin [89], if X is a zero-mean sub-Gaussian random variable
with parameter σ, then the random variable Y = X2 − E(X2) is sub-exponential with
‖Y ‖ψ1 ≤ 2σ2. It then follows that if X1, . . . , Xn are zero-mean i.i.d. sub-Gaussian variables,
we have the deviation inequality

P

[∣∣ 1
n

n∑

i=1

X2
i − E[X2

i ]
∣∣ ≥ t

]
≤ 2 exp

(
− cmin

(nt2
4σ4

,
nt

2σ2

))
for all t > 0,

where c > 0 is a universal constant (see Proposition 16 in Vershynin [89]). This deviation
bound may be used to establish the following useful result:

Lemma A.14. If X ∈ Rn×p1 is a zero-mean sub-Gaussian matrix with parameters (Σx, σ
2
x),

then for any fixed (unit) vector v ∈ Rp1, we have

P
[∣∣‖Xv‖22 − E

[
‖Xv‖22

]∣∣ ≥ nt
]
≤ 2 exp

(
− cnmin

( t2
σ4
x

,
t

σ2
x

))
. (A.37)

Moreover, if Y ∈ Rn×p2 is a zero-mean sub-Gaussian matrix with parameters (Σy, σ
2
y), then

P
(∥∥Y

TX

n
− cov(yi, xi)

∥∥
max

≥ t
)
≤ 6p1p2 exp

(
− cnmin

( t2

(σxσy)2
,

t

σxσy

))
, (A.38)

where Xi and Yi are the ith rows of X and Y , respectively. In particular, if n % log p, then

P
(∥∥Y

TX

n
− cov(yi, xi)

∥∥
max

≥ c0σx σy

√
log p

n

)
≤ c1 exp(−c2 log p). (A.39)

Proof. Inequality (A.37) follows from the above discussion and the fact that Xv is a vector
of i.i.d. sub-Gaussians with parameter σ. In order to prove inequality (A.38), we first note
that if Z is a zero-mean sub-Gaussian variable with parameter σz, then the rescaled variable
Z/σz is sub-Gaussian with parameter 1. Consequently, we may assume that σx = σy = 1
without loss of generality, rescaling as necessary. We then observe that

eTi

{
Y TX

n
− cov(yi, xi)

}
ej =

1

2

[
Φ(Xej + Y ei)− Φ(Xej)− Φ(Y ei)

]
,
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where we have defined Φ(v) :=
‖v‖22
n

− E
(‖v‖22

n

)
. Since Xej + Y ei is sub-Gaussian with

parameter at most 4, we may apply inequality (A.37) to each of the three terms, to obtain

∣∣eTi
(Y TX

n
− cov(yi, xi)

)
ej
∣∣ ≤ 3t

2

with probability at least 1−6 exp
(
−cnmin

{
t2, t
})

. Taking a union bound over all 1 ≤ i ≤ p1

and 1 ≤ j ≤ p2 yields inequality (A.38). Finally, setting t = c0 σx σy

√
log p
n

and using the

assumption n % log p yields inequality (A.39).

We combine this lemma with a discretization argument and union bound to obtain the
next result. For a parameter s ≥ 1, recall the notation K(s) :=

{
v ∈ Rp | ‖v‖2 ≤ 1, ‖v‖0 ≤

s
}
.

Lemma A.15. If X ∈ Rn×p is a zero-mean sub-Gaussian matrix with parameters (Σ, σ2),
then there is a universal constant c > 0 such that

P

[
sup

v∈K(2s)

∣∣‖Xv‖
2
2

n
− E

[‖Xv‖22
n

]∣∣ ≥ t

]
≤ 2 exp

(
− cnmin

( t2
σ4
,
t

σ2

)
+ 2s log p

)
. (A.40)

Proof. Given U ⊆ {1, . . . , p}, define SU = {v ∈ Rp : ‖v‖2 ≤ 1, supp(v) ⊆ U}, and note that
K(2s) =

⋃
|U |≤2s SU . If A = {u1, . . . , um} is a 1/3-cover of SU , then for every v ∈ SU , there

is some ui ∈ A such that ‖∆v‖2 ≤ 1
3
, where ∆v = v − ui. It is known [49] that we can

construct A with |A| ≤ 92s. If we define Φ(v1, v2) = vT1
(
XTX
n

− Σ
)
v2, we have

sup
v∈SU

|Φ(v, v)| ≤ max
i

|Φ(ui, ui)|+ 2 sup
v∈SU

|max
i

Φ(∆v, ui)|+ sup
v∈SU

|Φ(∆v,∆v)|.

Since 3∆v ∈ SU , it follows that

sup
v∈SU

|Φ(v, v)| ≤ max
i

|Φ(ui, ui)|+ sup
v∈SU

(2
3
|Φ(v, v)|+ 1

9
|Φ(v, v)|

)
,

hence supv∈SU
|Φ(v, v)| ≤ 9

2
maxi |Φ(ui, ui)|. By Lemma A.14 and a union bound, we obtain

P
(
sup
v∈SU

∣∣‖Xv‖
2
2

n
− E

(‖Xv‖22
n

)∣∣ ≥ t
)
≤ 92s · 2 exp

(
− cnmin

( t2
σ4
,
t

σ2

))
.

Finally, taking a union bound over the
(

p
⌊2s⌋
)
≤ p2s choices of U yields

P
(

sup
v∈K(2s)

∣∣‖Xv‖
2
2

n
− E

(‖Xv‖22
n

)∣∣ ≥ t
)
≤ 2 exp

(
− cnmin

( t2
σ4
,
t

σ2

)
+ 2s log p

)
,

as claimed.
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We also have the following lemma, a slight variant of Lemma A.15 that employs the
tighter bound

(
p
2k

)
≤ (p/k)k:

Lemma A.16. Suppose X ∈ Rn×p is a sub-Gaussian matrix with parameter σ2
x. For t ≤ σ2

x,
we have ∣∣∣∣

1

n
‖Xv‖22 − vTΣxv

∣∣∣∣ ≥ t ∀v ∈ B0(2k) ∩ B2(1),

with probability at most c1 exp(−c2nt2/σ4
x + 2k log(p/k)).

A.3.2 Bounds for autoregressive processes

We base our analysis of Gaussian autoregressive matrices on the following lemma:

Lemma A.17. Suppose Y ∈ Rm is a mixture of multivariate Gaussians Yj ∼ N(0, Qj), and
let σ2 = supj |||Qj|||op. Then for all t > 2√

m
, we have

P

[
1

n

∣∣‖Y ‖22 − E(‖Y ‖22)
∣∣ > 4tσ2

]
≤ 2 exp

(
−
m
(
t− 2√

m

)2

2

)
+ 2 exp(−m/2).

Proof. This result is a generalization of Lemma I.2 in the paper [62]. By definition, the ran-
dom vector Y is a mixture of random vectors of the form

√
QjXj , where Xj ∼ N(0, Im). For

each index j, the function fj(x) = ‖
√
Qjx‖2/

√
m is Lipschitz with constant |||√Q|||op/

√
m.

Since each Xj is Gaussian, it follows from the concentration for Lipschitz functions of Gaus-
sians [48] that fj(Xj) is a sub-Gaussian random variable with parameter σ2

j = |||Qj|||op/m.
Therefore, the mixture ‖Y ‖2/

√
n is sub-Gaussian with parameter σ2 = 1

m
supj |||Qj|||op. The

remainder of the proof proceeds as in the paper [62].

We now specialize the preceding lemma to the cases of additive noise and missing data
appearing in our paper.

Lemma A.18. Let X ∈ Rn×p be a Gaussian random matrix, with rows xi generated accord-
ing to a vector autoregression (3.25) with driving matrix A. Let v ∈ Rp be a fixed vector with
unit norm. Then for all t > 2√

n
,

P

[∣∣vT
(
Γ̂− Σx

)
v
∣∣ ≥ 4tζ2

]
≤ 2 exp

(
−
n
(
t− 2√

n

)2

2

)
+ 2 exp(−n/2), (A.41)

where

ζ2 :=

{
|||Σw|||op + 2|||Σx|||op

1−|||A|||op (additive noise case),
1

(1−αmax)2
2|||Σx|||op
1−|||A|||op (missing data case).
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Proof. First consider the additive noise case, where Γ̂ − Σx = ZTZ
n

− Σz . For any fixed
vector with ‖v‖2 = 1, the variable Zv ∈ Rn is a zero-mean Gaussian random variable with
covariance matrix, say Q � 0. In order to apply Lemma A.17, we need to upper-bound the
spectral norm of Q, which we do using the elementary upper bound |||Q|||op ≤ max

1≤i≤n

∑n
ℓ=1 |Qiℓ|.

For each pair i, ℓ ∈ {1, 2, . . . , n}, we have

|Qiℓ| = | cov(eTi Zv, eTℓ Zv)| = |vT cov(Zi, Zℓ)v|,

where Zi and Zℓ are the ith and ℓth rows of Z, and ‖v‖2 = 1. For i 6= ℓ, we have

|vT cov(Zi, Zℓ)v| = |vT cov(Xi, Xℓ)v| = |vTA|i−ℓ|Σxv| ≤ |||Σx|||op|||A||||i−ℓ|op ,

and for i = ℓ, we have |vT cov(Z i, Z i)v| ≤ |||Σz|||op ≤ |||Σw|||op + |||Σx|||op. Putting together the
pieces, we conclude that |||Q|||op ≤ ζ2, with ζ as defined in the lemma statement. Conse-
quently, the bound (A.41) follows from Lemma A.17.

In the missing data case, the variable Zv is a zero-mean mixture of Gaussians, conditioned
on the positions of the missing data. Suppose Z ′ is the random matrix Z corresponding to
a given positioning scheme (with 0’s in the missing positions). We claim that

|||Qj |||op ≤ 2|||Σx|||op
1− |||A|||op

, (A.42)

where Qj = Cov(Z ′v). Indeed, we write |||Qj |||op ≤ maxi
∑n

ℓ=1 |Qj,iℓ|, and for each pair (i, ℓ),

|Qj,iℓ| = | cov(eTi Z ′v, eTℓ Z
′v)| = | cov(Z ′iv, Z ′ℓv)| = | cov(Z iv1, Z

ℓv2)|,

where v1 and v2 are the vector v with 0’s in the positions corresponding to the 0’s of Z ′i and
Z ′ℓ, respectively. Since | cov(Z iv1, Z

ℓv2)| ≤ |||Σx||| |||A||||i−ℓ| for i 6= ℓ and

| cov(Z iv1, Z
iv2)| ≤ |||Σw|||op + |||Σx|||op

by a similar argument as before, the claim (A.42) follows. By the bounding technique (A.3)
earlier in the paper, together with Lemma A.17, we arrive at inequality (A.41).

Lemma A.19. Let X be a Gaussian matrix with rows generated from a vector autoregression
with driving matrix A. Let s ≥ 1. Then for all t > 2√

n
,

P

[
sup

v∈K(2s)

∣∣vT
(
Γ̂− Σx

)
v
∣∣ ≥ 4tζ2

]
≤ 4 exp

(
− cnmin

((
t− 2√

n

)2
, 1
)
+ 2s log p

)
, (A.43)

with ζ as defined in Lemma A.18.

Proof. We use the single-deviation bounds from Lemma A.18, together with a discretization
argument identical to that of Lemma A.15.
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Appendix B

Proofs for Chapter 4

B.1 Properties of regularizers

In this section, we establish properties of some nonconvex regularizers covered by our theory
(Section B.1.1) and verify that specific regularizers satisfy Assumption 4.1 (Section B.1.2).
The properties given in Section B.1.1 are used in the proof of Theorem 4.1.

B.1.1 General properties

We begin with some general properties of regularizers that satisfy Assumption 4.1.

Lemma B.1. Under conditions (i)–(ii) of Assumption 4.1, conditions (iii) and (iv) together
imply that ρλ is λL-Lipschitz as a function of t. In particular, all subgradients and derivatives
of ρλ are bounded in magnitude by λL.

Proof. Suppose 0 ≤ t1 ≤ t2. Then

ρλ(t2)− ρλ(t1)

t2 − t1
≤ ρλ(t1)

t1
,

by condition (iii). Applying (iii) once more, we have

ρλ(t1)

t1
≤ lim

t→0+

ρλ(t)

t
≤ λL,

where the last inequality comes from condition (iv). Hence,

0 ≤ ρλ(t2)− ρλ(t1) ≤ λL(t2 − t1).

A similar argument applies to the cases when one (or both) of t1 and t2 are negative.
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Lemma B.2. For any vector v ∈ Rp, let A denote the index set of its k largest elements in
magnitude. Under Assumption 4.1, we have

ρλ(vA)− ρλ(vAc) ≤ λL(‖vA‖1 − ‖vAc‖1). (B.1)

Moreover, for an arbitrary vector β ∈ Rp, we have

ρλ(β
∗)− ρλ(β) ≤ λL(‖νA‖1 − ‖νAc‖1), (B.2)

where ν := β − β∗ and β∗ is k-sparse.

Proof. We first establish inequality (B.1). Define f(t) := t
ρλ(t)

for t > 0. By our assumptions

on ρλ, the function f is nondecreasing in |t|, so

‖vAc‖1 =
∑

j∈Ac

ρλ(vj) · f(|vj|) ≤
∑

j∈Ac

ρλ(vj) · f(‖vAc‖∞) = ρλ(vAc) · f (‖vAc‖∞) . (B.3)

Again using the nondecreasing property of f , we have

ρλ(vA) · f(‖vAc‖∞) =
∑

j∈A
ρλ(vj) · f(‖vAc‖∞) ≤

∑

j∈A
ρλ(vj) · f(|vj|) = ‖vA‖1. (B.4)

Note that for t > 0, we have

f(t) ≥ lim
s→0+

f(s) = lim
s→0+

s− 0

ρλ(s)− ρλ(0)
≥ 1

λL
,

where the last inequality follows from the bounds on the subgradients of ρλ from Lemma B.1.
Combining this result with inequalities (B.3) and (B.4) yields

ρλ(vA)− ρλ(vAc) ≤ 1

f(‖vAc‖∞)
· (‖vA‖1 − ‖vAc‖1) ≤ λL(‖vA‖1 − ‖vAc‖1),

as claimed.
We now turn to the proof of the bound (B.2). Letting S := supp(β∗) denote the support

of β∗, the triangle inequality and subadditivity of ρ imply that

ρλ(β
∗)− ρλ(β) = ρλ(β

∗
S)− ρλ(βS)− ρλ(βSc)

≤ ρλ(νS)− ρλ(βSc)

= ρλ(νS)− ρλ(νSc)

≤ ρλ(νA)− ρλ(νAc)

≤ λL(‖νA‖1 − ‖νAc‖1),

thereby completing the proof.
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B.1.2 Verification for specific regularizers

We now verify that Assumption 4.1 is satisfied by the SCAD and MCP regularizers. (The
properties are trivial to verify for the Lasso penalty.)

Lemma B.3. The SCAD regularizer (4.2) with parameter a satisfies the conditions of As-
sumption 4.1 with L = 1 and µ = 1

a−1
.

Proof. Conditions (i)–(iii) were already verified in Zhang and Zhang [103]. Furthermore, we
may easily compute the derivative of the SCAD regularizer to be

∂

∂t
ρλ(t) = sign(t) ·

(
λ · I {|t| ≤ λ}+ (aλ− |t|)+

a− 1
· I {|t| > λ}

)
, t 6= 0, (B.5)

and any point in the interval [−λ, λ] is a valid subgradient at t = 0, so condition (iv) is
satisfied for any L ≥ 1. Furthermore, we have ∂2

∂t2
ρλ(t) ≥ −1

a−1
, so ρλ,µ is convex whenever

µ ≥ 1
a−1

, giving condition (v).

Lemma B.4. The MCP regularizer (4.3) with parameter b satisfies the conditions of As-
sumption 4.1 with1 L = 1 and µ = 1

b
.

Proof. Again, the conditions (i)–(iii) are already verified in Zhang and Zhang [103]. We may
compute the derivative of the MCP regularizer to be

∂

∂t
ρλ(t) = λ · sign(t) ·

(
1− |t|

λb

)

+

, t 6= 0, (B.6)

with subgradient λ[−1,+1] at t = 0, so condition (iv) is again satisfied for any L ≥ 1. Taking
another derivative, we have ∂2

∂t2
ρλ(t) ≥ −1

b
, so condition (v) of Assumption 4.1 holds with

µ = 1
b
.

B.2 Proofs of corollaries in Section 4.3

In this section, we provide proofs of the corollaries to Theorem 4.1 stated in Section 4.3.
Throughout this section, we use the convenient shorthand notation

En(∆) := 〈∇Ln(β∗ +∆)−∇Ln(β∗), ∆〉. (B.7)

B.2.1 General results for verifying RSC

We begin with two lemmas that will be useful for establishing the RSC conditions (4.4) in
the special case where Ln is convex. We assume throughout that ‖∆‖1 ≤ 2R, since β∗ and
β∗ +∆ lie in the feasible set.
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Lemma B.5. Suppose Ln is convex. If condition (4.4a) holds and n ≥ 4R2τ 21 log p, then

En(∆) ≥ α1‖∆‖2 −
√

log p

n
‖∆‖1, for all |∆‖2 ≥ 1. (B.8)

Proof. We fix an arbitrary ∆ ∈ Rp with ‖∆‖2 ≥ 1. Since Ln is convex, the function
f : [0, 1] → R given by f(t) := Ln(β∗ + t∆) is also convex, so f ′(1) − f ′(0) ≥ f ′(t) − f ′(0)
for all t ∈ [0, 1]. Computing the derivatives of f yields the inequality

En(∆) = 〈∇Ln(β∗ +∆)−∇Ln(β∗), ∆〉 ≥ 1

t
〈∇Ln(β∗ + t∆)−∇Ln(β∗), t∆〉.

Taking t = 1
‖∆‖2 ∈ (0, 1] and applying condition (4.4a) to the rescaled vector ∆

‖∆‖2 then yields

En(∆) ≥ ‖∆‖2
(
α1 − τ1

log p

n

‖∆‖21
‖∆‖22

)

≥ ‖∆‖2
(
α1 −

2Rτ1 log p

n

‖∆‖1
‖∆‖22

)

≥ ‖∆‖2
(
α1 −

√
log p

n

‖∆‖1
‖∆‖2

)

= α1‖∆‖2 −
√

log p

n
‖∆‖1,

where the third inequality uses the assumption on the relative scaling of (n, p) and the fact
that ‖∆‖2 ≥ 1.

On the other hand, if inequality (4.4a) holds globally over ∆ ∈ Rp, we obtain inequal-
ity (4.4b) for free:

Lemma B.6. If inequality (4.4a) holds for all ∆ ∈ Rp and n ≥ 4R2τ 21 log p, then inequal-
ity (4.4b) holds, as well.

Proof. Suppose ‖∆‖2 ≥ 1. Then

α1‖∆‖22 − τ1
log p

n
‖∆‖21 ≥ α1‖∆‖2 − 2Rτ1

log p

n
‖∆‖1 ≥ α1‖∆‖2 −

√
log p

n
‖∆‖1,

again using the assumption on the scaling of (n, p).

B.2.2 Proof of Corollary 4.1

Note that En(∆) = ∆T Γ̂∆, so in particular,

En(∆) ≥ ∆TΣx∆− |∆T (Σx − Γ̂)∆|.
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Applying Lemma A.12 in Appendix A.2 with s = n
log p

to bound the second term, we have

En(∆) ≥ λmin(Σx)‖∆‖22 −
(
λmin(Σx)

2
‖∆‖22 +

c log p

n
‖∆‖21

)

=
λmin(Σx)

2
‖∆‖22 −

c log p

n
‖∆‖21,

a bound which holds for all ∆ ∈ Rp with probability at least 1 − c1 exp(−c2n) whenever
n % k log p. Then Lemma B.6 in Appendix B.2.1 implies that the RSC condition (4.4a)
holds. It remains to verify the validity of the specified choice of λ. We have

‖∇Ln(β∗)‖∞ = ‖Γ̂β∗ − γ̂‖∞ = ‖(γ̂ − Σxβ
∗) + (Σx − Γ̂)β∗‖∞

≤ ‖(γ̂ − Σxβ
∗)‖∞ + ‖(Σx − Γ̂)β∗‖∞.

As derived in the proofs of Chapter 3, both of these terms are upper-bounded by c′
√

log p
n

with

high probability. Consequently, the claim in the corollary follows by applying Theorem 4.1.

B.2.3 Proof of Corollary 4.2

In the case of GLMs, we have

En(∆) =
1

n

n∑

i=1

(ψ′(〈xi, β∗ +∆〉)− ψ′(〈xi, β∗〉)) xTi ∆.

Applying the mean value theorem, we find that

En(∆) =
1

n

n∑

i=1

ψ′′(〈xi, β∗〉+ ti 〈xi, ∆〉)
(
〈xi, ∆〉

)2
,

where ti ∈ [0, 1]. From (the proof of) Proposition 2 in Negahban et al. [63], we then have

En(∆) ≥ α1‖∆‖22 − τ1

√
log p

n
‖∆‖1‖∆‖2, ∀‖∆‖2 ≤ 1, (B.9)

with probability at least 1−c1 exp(−c2n), where α1 ≍ λmin(Σx). Note that by the arithmetic
mean-geometric mean inequality,

τ1

√
log p

n
‖∆‖1‖∆‖2 ≤

α1

2
‖∆‖22 +

τ 21
2α1

log p

n
‖∆‖21,

and consequently,

En(∆) ≥ α1

2
‖∆‖22 −

τ 21
2α1

log p

n
‖∆‖21,
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which establishes inequality (4.4a). Inequality (4.4b) then follows via Lemma B.5 in Ap-
pendix B.2.1.

It remains to show that there are universal constants (c, c1, c2) such that

P

(
‖∇Ln(β∗)‖∞ ≥ c

√
log p

n

)
≤ c1 exp(−c2 log p). (B.10)

For each 1 ≤ i ≤ n and 1 ≤ j ≤ p, define the random variable Vij := (ψ′(xTi β
∗)− yi)xij . Our

goal is to bound maxj=1,...,p | 1n
∑n

i=1 Vij|. Note that

P

[
max
j=1,...,p

∣∣ 1
n

n∑

i=1

Vij
∣∣ ≥ δ

]
≤ P[Ac] + P

[
max
j=1,...,p

∣∣ 1
n

n∑

i=1

Vij
∣∣ ≥ δ | A

]
, (B.11)

where

A :=

{
max
j=1,...,p

{
1

n

n∑

i=1

x2ij

}
≤ 2E[x2ij ]

}
.

Since the xij ’s are sub-Gaussian and n % log p, there exist universal constants (c1, c2) such
that P[Ac] ≤ c1 exp(−c2n). The last step is to bound the second term on the right side of
inequality (B.11). For any t ∈ R, we have

logE[exp(tVij) | xi] = log
[
exp(txijψ

′(xTi β
∗)
]
· E[exp(−txijyi)]

= txijψ
′(xTi β

∗) +
(
ψ(−txij + xTi β

∗)− ψ(xTi β
∗)
)
,

using the fact that ψ is the cumulant generating function for the underlying exponential
family. Thus, by a Taylor series expansion, there is some vi ∈ [0, 1] such that

logE[exp(tVij) | xi] =
t2x2ij
2

ψ′′(xTi β
∗ − vi txij) ≤

αut
2x2ij
2

, (B.12)

where the inequality uses the boundedness of ψ′′. Consequently, conditioned on the event A,
the variable 1

n

∑n
i=1 Vij is sub-Gaussian with parameter at most κ = αu · maxj=1,...,p E[x2ij ],

for each j = 1, . . . , p. By a union bound, we then have

P

[
max
j=1,...,p

∣∣ 1
n

n∑

i=1

Vij
∣∣ ≥ δ | A

]
≤ p exp

(
−nδ

2

2κ2

)
.

The claimed ℓ1- and ℓ2-bounds then follow directly from Theorem 4.1.

B.2.4 Proof of Corollary 4.3

We first verify condition (4.4a) in the case where |||∆|||F ≤ 1. A straightforward calculation
yields

∇2Ln(Θ) = Θ−1 ⊗Θ−1 = (Θ⊗Θ)−1 .
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Moreover, letting vec(∆) ∈ Rp2 denote the vectorized form of the matrix ∆, applying the
mean value theorem yields

En(∆) = vec(∆)T
(
∇2Ln(Θ∗ + t∆)

)
vec(∆) ≥ λmin(∇2Ln(Θ∗ + t∆)) |||Θ|||2F , (B.13)

for some t ∈ [0, 1]. By standard properties of the Kronecker product [35], we have

λmin(∇2Ln(Θ∗ + t∆)) = |||Θ∗ + t∆|||−2
2 ≥ (|||Θ∗|||2 + t |||∆|||2)

−2

≥ (|||Θ∗|||2 + 1)−2 ,

using the fact that |||∆|||2 ≤ |||∆|||F ≤ 1. Plugging back into inequality (B.13) yields

En(∆) ≥ (|||Θ∗|||2 + 1)−2 |||Θ|||2F ,

so inequality (4.4a) holds with α1 = (|||Θ∗|||2 + 1)−2 and τ1 = 0. Lemma B.6 then implies
inequality (4.4b) with α2 = (|||Θ∗|||2 + 1)−2. Finally, we need to establish that the given
choice of λ satisfies the requirement (4.6) of Theorem 4.1. By the assumed deviation condi-
tion (4.16), we have

|||∇Ln(Θ∗)|||max =
∣∣∣
∣∣∣
∣∣∣Σ̂− (Θ∗)−1

∣∣∣
∣∣∣
∣∣∣
max

=
∣∣∣
∣∣∣
∣∣∣Σ̂− Σ

∣∣∣
∣∣∣
∣∣∣
max

≤ c0

√
log p

n
.

Applying Theorem 4.1 then implies the desired result.

B.3 Auxiliary optimization-theoretic results

In this section, we provide proofs of the supporting lemmas used in Section 4.4.

B.3.1 Derivation of three-step procedure

We begin by deriving the correctness of the three-step procedure given in Section 4.4.2. Let
β̂ be the unconstrained optimum of the program (4.37). If gλ,µ(β̂) ≤ R, we clearly have the

update given in step (2). Suppose instead that gλ,µ(β̂) > R. Then since the program (4.27)
is convex, the iterate βt+1 must lie on the boundary of the feasible set; i.e.,

gλ,µ(β
t+1) = R. (B.14)

By Lagrangian duality, the program (4.27) is also equivalent to

βt+1 ∈ arg min
gλ,µ(β)≤R′

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

}
,
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for some choice of constraint parameter R′. Note that this is projection of βt − ∇Ln(βt)
η

onto

the set {β ∈ Rp | gλ,µ(β) ≤ R′}. Since projection decreases the value of gλ,µ, equation (B.14)
implies that

gλ,µ

(
βt − ∇Ln(βt)

η

)
≥ R.

In fact, since the projection will shrink the vector to the boundary of the constraint set,
equation (B.14) forces R′ = R. This yields the update (4.38) appearing in step (3).

B.3.2 Derivation of updates for SCAD and MCP

We now derive the explicit form of the updates (4.39) and (4.40) for the SCAD and MCP
regularizers, respectively. We may rewrite the unconstrained program (4.37) as

βt+1 ∈ arg min
β∈Rp

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

+
1

η
· ρλ(β) +

µ

η
‖β‖22

}

= arg min
β∈Rp

{(
1

2
+
µ

η

)
‖β‖22 − βT

(
βt − ∇Ln(βt)

η

)
+

1

η
· ρλ(β)

}

= arg min
β∈Rp

{
1

2

∥∥∥∥β − 1

1 + 2µ/η

(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

+
1/η

1 + 2µ/η
· ρλ(β)

}
. (B.15)

Since the program in the last line of equation (B.15) decomposes by coordinate, it suffices
to solve the scalar optimization problem

x̂ ∈ argmin
x

{
1

2
(x− z)2 + νρ(x;λ)

}
, (B.16)

for general z ∈ R and ν > 0.

We first consider the case when ρ is the SCAD penalty. The solution x̂ of the pro-
gram (B.16) in the case when ν = 1 is given in Fan and Li [28]; the expression (4.39) for the
more general case comes from writing out the subgradient of the objective as

(x− z) + νρ′(x;λ) =





(x− z) + νλ[−1,+1] if x = 0,

(x− z) + νλ if 0 < x ≤ λ,

(x− z) + ν(aλ−x)
a−1

if λ ≤ x ≤ aλ,

x− z if x ≥ aλ,

using the equation for the SCAD derivative (B.5), and setting the subgradient equal to zero.
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Similarly, when ρ is the MCP parametrized by (b, λ), the subgradient of the objective
takes the form

(x− z) + νρ′(x;λ) =





(x− z) + νλ[−1,+1] if x = 0,

(x− z) + νλ
(
1− x

bλ

)
if 0 < x ≤ bλ,

x− z if x ≥ bλ,

using the expression for the MCP derivative (B.6), leading to the closed-form solution given
in equation (4.40). This agrees with the expression provided in Breheny and Huang [10] for
the special case when ν = 1.

B.3.3 Proof of Lemma 4.1

We first show that if λ ≥ 4
L
· ‖∇Ln(β∗)‖∞, then for any feasible β such that

φ(β) ≤ φ(β∗) + η̄, (B.17)

we have

‖β − β∗‖1 ≤ 4
√
k‖β − β∗‖2 + 2 ·min

( η̄

λL
,R
)
. (B.18)

Defining the error vector ∆ := β − β∗, inequality (B.17) implies

Ln(β∗ +∆) + ρλ(β
∗ +∆) ≤ Ln(β∗) + ρλ(β

∗) + η̄,

so subtracting 〈∇Ln(β∗), ∆〉 from both sides gives

T (β∗ +∆, β∗) + ρλ(β
∗ +∆)− ρλ(β

∗) ≤ −〈∇Ln(β∗), ∆〉+ η̄. (B.19)

We claim that

ρλ(β
∗ +∆)− ρλ(β

∗) ≤ λL

2
‖∆‖1 + η̄. (B.20)

We divide the argument into two cases. First suppose ‖∆‖2 ≤ 3. Since Ln satisfies the RSC
condition (4.30a), we may lower-bound the left side of inequality (B.19) and apply Hölder’s
inequality to obtain

α1‖∆‖22 − τ1
log p

n
‖∆‖21 + ρ(β∗ +∆)− ρ(β∗) ≤ ‖∇Ln(β∗)‖∞ · ‖∆‖1 + η̄

≤ λL

4
‖∆‖1 + η̄. (B.21)

Since ‖∆‖1 ≤ 2R by the feasibility of β∗ and β∗ +∆, we see that inequality (B.21) together
with the condition λL ≥ 4Rτ1 log p

n
gives inequality (B.20). On the other hand, when ‖∆‖2 ≥ 3,

the RSC condition (4.30b) gives

α2‖∆‖2 − τ2

√
log p

n
‖∆‖1 + ρλ(β

∗ +∆)− ρλ(β
∗) ≤ λL

4
‖∆‖1 + η̄,
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so for λL ≥ 4τ2

√
log p
n

, we also arrive at inequality (B.20).

By Lemma B.2 in Appendix B.1.1, we have

ρλ(β
∗)− ρλ(β) ≤ λL(‖∆A‖1 − ‖∆Ac‖1),

where A indexes the top k components of ∆ in magnitude. Combining this bound with
inequality (B.20) then implies that

‖∆Ac‖1 − ‖∆A‖1 ≤
1

2
‖∆‖1 +

η̄

λL
=

1

2
‖∆Ac‖1 +

1

2
‖∆A‖1 +

η̄

λL
,

and consequently,

‖∆Ac‖1 ≤ 3‖∆A‖1 +
2η̄

λL
.

Putting together the pieces, we have

‖∆‖1 ≤ 4‖∆A‖1 +
2η̄

λL
≤ 4

√
k‖∆‖2 +

2η̄

λL
.

Using the bound ‖∆‖1 ≤ 2R once more, we obtain inequality (B.18).

We now apply the implication (B.17) to the vectors β̂ and βt. Note that by optimality

of β̂, we have
φ(β̂) ≤ φ(β∗),

and by the assumption (4.41), we also have

φ(βt) ≤ φ(β̂) + η̄ ≤ φ(β∗) + η̄.

Hence,

‖β̂ − β∗‖1 ≤ 4
√
k‖β̂ − β∗‖2, and

‖βt − β∗‖1 ≤ 4
√
k‖βt − β∗‖2 + 2 ·min

( η̄

λL
,R
)
.

By the triangle inequality, we then have

‖βt − β̂‖1 ≤ ‖β̂ − β∗‖1 + ‖βt − β∗‖1
≤ 4

√
k ·
(
‖β̂ − β∗‖2 + ‖βt − β∗‖2

)
+ 2 ·min

( η̄

λL
,R
)

≤ 4
√
k ·
(
2‖β̂ − β∗‖2 + ‖βt − β̂‖2

)
+ 2 ·min

( η̄

λL
,R
)
,

as claimed.
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B.3.4 Proof of Lemma 4.2

Our proof proceeds via induction on the iteration number t. Note that the base case t = 0
holds by assumption. Hence, it remains to show that if ‖βt− β̂‖2 ≤ 3 for some integer t ≥ 1,

then ‖βt+1 − β̂‖2 ≤ 3, as well.

We assume for the sake of a contradiction that ‖βt+1 − β̂‖2 > 3. By the RSC condi-
tion (4.30b) and the relation (4.29), we have

T (βt+1, β̂) ≥ α‖β̂ − βt+1‖2 − τ

√
log p

n
‖β̂ − βt+1‖1 − µ‖β̂ − βt+1‖22. (B.22)

Furthermore, by convexity of g := gλ,µ, we have

g(βt+1)− g(β̂)− 〈∇g(β̂), βt+1 − β̂〉 ≥ 0. (B.23)

Multiplying by λ and summing with inequality (B.22) then yields

φ(βt+1)− φ(β̂)− 〈∇φ(β̂), βt+1 − β̂〉

≥ α‖β̂ − βt+1‖2 − τ

√
log p

n
‖β̂ − βt+1‖1 − µ‖β̂ − βt+1‖22.

Together with the first-order optimality condition 〈∇φ(β̂), βt+1 − β̂〉 ≥ 0, we then have

φ(βt+1)− φ(β̂) ≥ α‖β̂ − βt+1‖2 − τ

√
log p

n
‖β̂ − βt+1‖1 − µ‖β̂ − βt+1‖22. (B.24)

Since ‖β̂ − βt‖2 ≤ 3 by the induction hypothesis, applying the RSC condition (4.30a) to

the pair (β̂, βt) also gives

Ln(β̂) ≥ Ln(βt) + 〈∇Ln(βt), β̂ − βt〉+ (α− µ) · ‖βt − β̂‖22 − τ
log p

n
‖βt − β̂‖21.

Combining with the inequality

g(β̂) ≥ g(βt+1) + 〈∇g(βt+1), β̂ − βt+1〉,

we then have

φ(β̂) ≥ Ln(βt) + 〈∇Ln(βt), β̂ − βt〉+ λg(βt+1) + λ〈∇g(βt), β̂ − βt+1〉

+ (α− µ) · ‖βt − β̂‖22 − τ
log p

n
‖βt − β̂‖21

≥ Ln(βt) + 〈∇Ln(βt), β̂ − βt〉+ λg(βt+1)

+ λ〈∇g(βt+1), β̂ − βt+1〉 − τ
log p

n
‖βt − β̂‖21. (B.25)



APPENDIX B. PROOFS FOR CHAPTER 4 145

Finally, the RSM condition (4.31) on the pair (βt+1, βt) gives

φ(βt+1) ≤ Ln(βt) + 〈∇Ln(βt), βt+1 − βt〉+ λg(βt+1) (B.26)

+ (α3 − µ)‖βt+1 − βt‖22 + τ
log p

n
‖βt+1 − βt‖21

≤ Ln(βt) + 〈∇Ln(βt), βt+1 − βt〉+ λg(βt+1)

+
η

2
‖βt+1 − βt‖22 +

4R2τ log p

n
, (B.27)

since η
2
≥ α3 − µ by assumption, and ‖βt+1 − βt‖1 ≤ 2R. It is easy to check that the

update (4.27) may be written equivalently as

βt+1 ∈ arg min
g(β)≤R, β∈Ω

{
Ln(βt) + 〈∇Ln(βt), β − βt〉+ η

2
‖β − βt‖22 + λg(β)

}
,

and the optimality of βt+1 then yields

〈∇Ln(βt) + η(βt+1 − βt) + λ∇g(βt+1), βt+1 − β̂〉 ≤ 0. (B.28)

Summing up inequalities (B.25), (B.26), and (B.28), we then have

φ(βt+1)−φ(β̂) ≤ η

2
‖βt+1 − βt‖22 + η〈βt − βt+1, βt+1 − β̂〉+ τ

log p

n
‖βt − β̂‖21

+
4R2τ log p

n

=
η

2
‖βt − β̂‖22 −

η

2
‖βt+1 − β̂‖22 + τ

log p

n
‖βt − β̂‖21 +

4R2τ log p

n
.

Combining this last inequality with inequality (B.24), we have

α‖β̂ − βt+1‖2−τ
√

log p

n
‖β̂ − βt+1‖1

≤ η

2
‖βt − β̂‖22 −

(η
2
− µ

)
‖βt+1 − β̂‖22 +

8R2τ log p

n

≤ 9η

2
− 3

(η
2
− µ

)
‖βt+1 − β̂‖2 +

8R2τ log p

n
,

since ‖βt − β̂‖2 ≤ 3 by the induction hypothesis and ‖βt+1 − β̂‖2 > 3 by assumption, and
using the fact that η ≥ 2µ. It follows that

(
α− 3µ+

3η

2

)
· ‖β̂ − βt+1‖2 ≤

9η

2
+ τ

√
log p

n
‖β̂ − βt+1‖1 +

8R2τ log p

n

≤ 9η

2
+ 2Rτ

√
log p

n
+

8R2τ log p

n

≤ 3

(
α− 3µ+

3η

2

)
,
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where the final inequality holds whenever 2Rτ
√

log p
n

+ 8R2τ log p
n

≤ 3 (α− 3µ). Rearranging

gives ‖βt+1 − β̂‖2 ≤ 3, providing the desired contradiction.

B.3.5 Proof of Lemma 4.3

We begin with an auxiliary lemma:

Lemma B.7. Under the conditions of Lemma 4.3, we have

T (βt, β̂) ≥ −2τ
log p

n
(ǫ+ ǫ)2, and (B.29a)

φ(βt)− φ(β̂) ≥ α− µ

2
‖β̂ − βt‖22 −

2τ log p

n
(ǫ+ ǫ)2. (B.29b)

We prove this result later, taking it as given for the moment.

Define

φt(β) := Ln(βt) + 〈∇Ln(βt), β − βt〉+ η

2
‖β − βt‖22 + λg(β),

the objective function minimized over the constraint set {g(β) ≤ R} at iteration t. For any

γ ∈ [0, 1], the vector βγ := γβ̂+(1−γ)βt belongs to the constraint set, as well. Consequently,
by the optimality of βt+1 and feasibility of βγ, we have

φt(β
t+1)≤ φt(βγ) = Ln(βt)+〈∇Ln(βt), γβ̂ − γβt〉+ ηγ

2

2
‖β̂ − βt‖22 + λg(βγ).

Appealing to inequality (B.29a), we then have

φt(β
t+1) ≤ (1− γ)Ln(βt) + γLn(β̂) + 2γτ

log p

n
(ǫ+ ǫstat)

2

+
ηγ2

2
‖β̂ − βt‖22 + λg(βγ)

(i)

≤ φ(βt)− γ(φ(βt)− φ(β̂)) + 2γτ
log p

n
(ǫ+ ǫstat)

2 +
ηγ2

2
‖β̂ − βt‖22

≤ φ(βt)− γ(φ(βt)− φ(β̂)) + 2τ
log p

n
(ǫ+ ǫstat)

2 +
ηγ2

2
‖β̂ − βt‖22, (B.30)

where inequality (i) incorporates the fact that

g(βγ) ≤ γg(β̂) + (1− γ)g(βt),

by the convexity of g.
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By the RSM condition (4.31), we also have

T (βt+1, βt) ≤ η

2
‖βt+1 − βt‖22 + τ

log p

n
‖βt+1 − βt‖21,

since α3 − µ ≤ η
2
by assumption, and adding λg(βt+1) to both sides gives

φ(βt+1) ≤ Ln(βt) + 〈∇Ln(βt), βt+1 − βt〉+ η

2
‖βt+1 − βt‖22

+ τ
log p

n
‖βt+1 − βt‖21 + λg(βt+1)

= φt(β
t+1) + τ

log p

n
‖βt+1 − βt‖21.

Combining with inequality (B.30) then yields

φ(βt+1) ≤ φ(βt)− γ(φ(βt)− φ(β̂)) +
ηγ2

2
‖β̂ − βt‖22

+ τ
log p

n
‖βt+1 − βt‖21 + 2τ

log p

n
(ǫ+ ǫ)2. (B.31)

By the triangle inequality, we have

‖βt+1 − βt‖21 ≤
(
‖∆t+1‖1 + ‖∆t‖1

)2 ≤ 2‖∆t+1‖21 + 2‖∆t‖21,
where we have defined ∆t := βt − β̂. Combined with inequality (B.31), we therefore have

φ(βt+1) ≤ φ(βt)− γ(φ(βt)− φ(β̂)) +
ηγ2

2
‖∆t‖22

+ 2τ
log p

n
(‖∆t+1‖21 + ‖∆t‖21) + 2ψ(n, p, ǫ),

where ψ(n, p, ǫ) := τ log p
n

(ǫ+ ǫ)2. Then applying Lemma 4.1 to bound the ℓ1-norms, we have

φ(βt+1) ≤ φ(βt)− γ(φ(βt)− φ(β̂)) +
ηγ2

2
‖∆t‖22

+ 64kτ
log p

n
(‖∆t+1‖22 + ‖∆t‖22) + 10ψ(n, p, ǫ)

= φ(βt)− γ(φ(βt)− φ(β̂)) +

(
ηγ2

2
+ 64kτ

log p

n

)
‖∆t‖22

+ 64kτ
log p

n
‖∆t+1‖22 + 10ψ(n, p, ǫ). (B.32)

Now introduce the shorthand δt := φ(βt) − φ(β̂) and υ(k, p, n) = kτ log p
n

. By applying

inequality (B.29b) and subtracting φ(β̂) from both sides of inequality (B.32), we have

δt+1 ≤
(
1− γ

)
δt +

ηγ2 + 128υ(k, p, n)

α− µ
(δt + 2ψ(n, p, ǫ))

+
128υ(k, p, n)

α− µ
(δt+1 + 2ψ(n, p, ǫ)) + 10ψ(n, p, ǫ).
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Choosing γ = α−µ
2η

∈ (0, 1) yields

(
1− 128υ(k, p, n)

α− µ

)
δt+1 ≤

(
1− α− µ

4η
+

128υ(k, p, n)

α− µ

)
δt

+ 2

(
α− µ

4η
+

256υ(k, p, n)

α− µ
+ 5

)
ψ(n, p, ǫ),

or δt+1 ≤ κδt+ξ(ǫ+ǫ)
2, where κ and ξ were previously defined in equations (4.32) and (4.43),

respectively. Finally, iterating the procedure yields

δt ≤ κt−T δT + ξ(ǫ+ ǫ)2(1 + κ+ κ2 + · · ·+ κt−T−1) ≤ κt−T δT +
ξ(ǫ+ ǫ)2

1− κ
, (B.33)

as claimed.

The only remaining step is to prove the auxiliary lemma.

Proof of Lemma B.7: By the RSC condition (4.30a) and the assumption (4.42), we have

T (βt, β̂) ≥ (α− µ) ‖β̂ − βt‖22 − τ
log p

n
‖β̂ − βt‖21. (B.34)

Furthermore, by convexity of g, we have

λ
(
g(βt)− g(β̂)− 〈∇g(β̂), βt − β̂〉

)
≥ 0, (B.35)

and the first-order optimality condition for β̂ gives

〈∇φ(β̂), βt − β̂〉 ≥ 0. (B.36)

Summing inequalities (B.34), (B.35), and (B.36) then yields

φ(βt)− φ(β̂) ≥ (α− µ) ‖β̂ − βt‖22 − τ
log p

n
‖β̂ − βt‖21.

Applying Lemma 4.1 to bound the term ‖β̂− βt‖21 and using the assumption 32kτ log p
n

≤ α−µ
2

yields the bound (B.29b). On the other hand, applying Lemma 4.1 directly to inequal-

ity (B.34) with βt and β̂ switched gives

T (β̂, βt) ≥ (α− µ)‖β̂ − βt‖22 − τ
log p

n

(
32k‖β̂ − βt‖22 + 2(ǫ+ ǫ)2

)

≥ −2τ
log p

n
(ǫ+ ǫ)2.

This establishes inequality (B.29a).



APPENDIX B. PROOFS FOR CHAPTER 4 149

B.4 Verifying RSC/RSM conditions

In this Appendix, we provide a proof of Proposition 4.1, which verifies the RSC (4.30) and
RSM (4.31) conditions for GLMs.

B.4.1 Main argument

Using the notation for GLMs in Section 4.3.3, we introduce the shorthand ∆ := β1 − β2 and
observe that, by the mean value theorem, we have

T (β1, β2) =
1

n

n∑

i=1

ψ′′(〈β1, xi〉) + ti〈∆, xi〉
)
(〈∆, xi〉)2, (B.37)

for some ti ∈ [0, 1]. The ti’s are i.i.d. random variables, with each ti depending only on the
random vector xi.

Proof of bound (4.36) The proof of this upper bound is relatively straightforward given
the results in Chapter 3. From the Taylor series expansion (B.37) and the boundedness
assumption ‖ψ′′‖∞ ≤ αu, we have

T (β1, β2) ≤ αu ·
1

n

n∑

i=1

(
〈∆, xi〉

)2
.

By known results on restricted eigenvalues for ordinary linear regression (cf. Lemma A.13 in
Appendix A.2), we also have

1

n

n∑

i=1

(〈∆, xi〉)2 ≤ λmax(Σx)

(
3

2
‖∆‖22 +

log p

n
‖∆‖21

)
,

with probability at least 1− c1 exp(−c2n). Combining the two inequalities yields the desired
result.

Proof of bounds (4.35) The proof of the RSC bound is much more involved, and we pro-
vide only high-level details here, deferring the bulk of the technical analysis to the appendix.
We define

αℓ :=

(
inf

|t|≤2T
ψ′′(t)

)
λmin(Σx)

8
,

where T is a suitably chosen constant depending only on λmin(Σx) and the sub-Gaussian
parameter σx. (In particular, see equation (B.43) below, and take T = 3τ). The core of the
proof is based on the following lemma, proved in Section B.4.2:
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Lemma B.8. With probability at least 1− c1 exp(−c2n), we have

T (β1, β2) ≥ αℓ‖∆‖22 − cσx‖∆‖1‖∆‖2
√

log p

n
,

uniformly over all pairs (β1, β2) such that β2 ∈ B2(3) ∩ B1(R), ‖β1 − β2‖2 ≤ 3, and

‖∆‖1
‖∆‖2

≤ αℓ
cσx

√
n

log p
. (B.38)

Taking Lemma B.8 as given, we now complete the proof of the RSC condition (4.35). By
the arithmetic mean-geometric mean inequality, we have

cσx‖∆‖1‖∆‖2
√

log p

n
≤ αℓ

2
‖∆‖22 +

c2σ2
x

2αℓ

log p

n
‖∆‖21,

so Lemma B.8 implies that inequality (4.35a) holds uniformly over all pairs (β1, β2) such
that β2 ∈ B2(3) ∩ B1(R) and ‖β1 − β2‖2 ≤ 3, whenever the bound (B.38) holds. On the
other hand, if the bound (B.38) does not hold, then the lower bound in inequality (4.35a) is
negative. By convexity of Ln, we have T (β1, β2) ≥ 0, so inequality (4.35a) holds trivially in
that case.

We now show that inequality (4.35b) holds: in particular, consider a pair (β1, β2) with
β2 ∈ B2(3) and ‖β1 − β2‖2 ≥ 3. For any t ∈ [0, 1], the convexity of Ln implies that

Ln(β2 + t∆) ≤ tLn(β2 +∆) + (1− t)Ln(β2),
where ∆ := β1 − β2. Rearranging yields

Ln(β2 +∆)−Ln(β2) ≥
Ln(β2 + t∆)− Ln(β2)

t
,

so

T (β2 +∆, β2) ≥
T (β2 + t∆, β2)

t
. (B.39)

Now choose t = 3
‖∆‖2 ∈ [0, 1] so that ‖t∆‖2 = 1. Introducing the shorthand α1 := αℓ

2
and

τ1 :=
c2σ2x
2αℓ

, we may apply inequality (4.35a) to obtain

T (β2 + t∆, β2)

t
≥ ‖∆‖2

3

(
α1

(
3‖∆‖2
‖∆‖2

)2

− τ1
log p

n

(
3‖∆‖1
‖∆‖2

)2
)

= 3α1‖∆‖2 − 9τ1
log p

n

‖∆‖21
‖∆‖2

. (B.40)

Note that inequality (4.35b) holds trivially unless ‖∆‖1
‖∆‖2 ≤ αℓ

2cσx

√
n

log p
, due to the convexity of

Ln. In that case, inequalities (B.39) and (B.40) together imply

T (β2 +∆, β2) ≥ 3α1‖∆‖2 −
9τ1 αℓ
2cσx

√
log p

n
‖∆‖1,

which is exactly the bound (4.35b).
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B.4.2 Proof of Lemma B.8

For a truncation level τ > 0 to be chosen, define the functions

ϕτ (u) =





u2, if |u| ≤ τ
2
,

(τ − u)2, if τ
2
≤ |u| ≤ τ,

0, if |u| ≥ τ,

and ατ (u) =

{
u, if |u| ≤ τ,

0, if |u| ≥ τ.

By construction, ϕτ is τ -Lipschitz and

ϕτ (u) ≤ u2 · I {|u| ≤ τ}, for all u ∈ R. (B.41)

In addition, we define the trapezoidal function

γτ (u) =





1, if |u| ≤ τ
2
,

2− 2
τ
|u|, if τ

2
≤ |u| ≤ τ,

0, if |u| ≥ τ,

and note that γτ is 2
τ
-Lipschitz and γτ(u) ≤ I {|u| ≤ τ}.

Taking T ≥ 3τ so that T ≥ τ‖∆‖2 (since ‖∆‖2 ≤ 3 by assumption), and defining

Lψ(T ) := inf
|u|≤2T

ψ′′(u),

we have the following inequality:

T (β +∆, β) =
1

n

n∑

i=1

ψ′′(xTi β + ti · xTi ∆) · (xTi ∆)2

≥ Lψ(T ) ·
n∑

i=1

(xTi ∆)2 · I {|xTi ∆| ≤ τ‖∆‖2} · I {|xTi β| ≤ T}

≥ Lψ(T ) ·
1

n

n∑

i=1

ϕτ‖∆‖2(x
T
i ∆) · γT (xTi β), (B.42)

where the first equality is the expansion (B.37) and the second inequality uses the bound (B.41).
Now define the subset of Rp × Rp via

Aδ :=

{
(β,∆) : β ∈ B2(3) ∩ B1(R), ∆ ∈ B2(3),

‖∆‖1
‖∆‖2

≤ δ

}
,

as well as the random variable

Z(δ) := sup
(β,∆)∈Aδ

1

‖∆‖22

∣∣∣∣∣
1

n

n∑

i=1

ϕτ‖∆‖2(x
T
i ∆) · γT (xTi β)− E

[
ϕτ‖∆‖2(x

T
i ∆) γT (x

T
i β)
]
∣∣∣∣∣ .
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For any pair (β,∆) ∈ Aδ, we have

E
[
(xTi ∆)2 − ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β)

]

≤ E

[
(xTi ∆)2I

{
|xTi ∆| ≥ τ‖∆‖2

2

}]
+ E

[
(xTi ∆)2I

{
|xTi β| ≥

T

2

}]

≤
√

E [(xTi ∆)4] ·
(√

P

(
|xTi ∆| ≥ τ‖∆‖2

2

)
+

√
P

(
|xTi β| ≥

T

2

))

≤ σ2
x‖∆‖22 · c exp

(
−c

′τ 2

σ2
x

)
,

where we have used Cauchy-Schwarz and a tail bound for sub-Gaussians, assuming β ∈ B2(3).
It follows that for τ chosen such that

cσ2
x exp

(
−c

′τ 2

σ2
x

)
=
λmin

(
E[xixTi ]

)

2
, (B.43)

we have the lower bound

E
[
ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β)

]
≥ λmin

(
E[xixTi ]

)

2
· ‖∆‖22. (B.44)

By construction of ϕ, each summand in the expression for Z(δ) is sandwiched as

0 ≤ 1

‖∆‖2
· ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β) ≤

τ 2

4
.

Consequently, applying the bounded differences inequality yields

P

(
Z(δ) ≥ E[Z(δ)] +

λmin

(
E[xixTi ]

)

4

)
≤ c1 exp(−c2n). (B.45)

Furthermore, by Lemmas B.9 and B.10 in Appendix B.5, we have

E[Z(δ)] ≤ 2

√
π

2
· E
[

sup
(β,∆)∈Aδ

1

‖∆‖22

∣∣∣∣∣
1

n

n∑

i=1

gi

(
ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β)

)∣∣∣∣∣

]
, (B.46)

where the gi’s are i.i.d. standard Gaussians. Conditioned on {xi}ni=1, define the Gaussian
processes

Zβ,∆ :=
1

‖∆‖22
· 1
n

n∑

i=1

gi

(
ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β)

)
,

and note that for pairs (β,∆) and (β̃, ∆̃), we have

var
(
Zβ,∆ − Zβ̃,∆̃

)
≤ 2 var

(
Zβ,∆ − Zβ̃,∆

)
+ 2 var

(
Zβ̃,∆ − Zβ̃,∆̃

)
,
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with

var
(
Zβ,∆ − Zβ̃,∆

)
=

1

‖∆‖42
· 1

n2

n∑

i=1

ϕ2
τ‖∆‖2(x

T
i ∆) ·

(
γT (x

T
i β)− γT (x

T
i β̃)
)2

≤ 1

n2

n∑

i=1

τ 4

16
· 4

T 2

(
xTi (β − β̃)

)2
,

since ϕτ‖∆‖2 ≤ τ2‖∆‖22
4

and γT is 2
T
-Lipschitz. Similarly,

var
(
Zβ̃,∆−Zβ̃,∆̃

)
≤ 1

‖∆‖42
· 1

n2

n∑

i=1

γ2T (x
T
i β̃)

(
ϕτ‖∆‖2(x

T
i ∆)− ϕτ‖∆‖2(x

T
i ∆̃)

)2

≤ 1

‖∆‖22
· 1

n2

n∑

i=1

τ 2
(
xTi (∆− ∆̃)

)2
.

Defining the centered Gaussian process

Yβ,∆ :=
τ 2

2T
· 1
n

n∑

i=1

ĝi · xTi β +
τ

‖∆‖2
· 1
n

n∑

i=1

g̃i · xTi ∆,

where the ĝi’s and g̃i’s are independent standard Gaussians, it follows that

var
(
Zβ,∆ − Zβ̃,∆̃

)
≤ var

(
Yβ,∆ − Yβ̃,∆̃

)
.

Applying Lemma B.11 in Appendix B.5, we then have

E

[
sup

(β,∆)∈Aδ

Zβ,∆

]
≤ 2 · E

[
sup

(β,∆)∈Aδ

Yβ,∆

]
. (B.47)

Note further (cf. p.77 of Ledoux and Talagrand [49]) that

E

[
sup

(β,∆)∈Aδ

|Zβ,∆|
]
≤ E [|Zβ0,∆0|] + 2E

[
sup

(β,∆)∈Aδ

Zβ,∆

]
, (B.48)

for any (β0,∆0) ∈ Aδ, and furthermore,

E [|Zβ0,∆0|] ≤
√

2

π
·
√

var (Zβ0,∆0) ≤
1

‖∆‖2
·
√

2

π
·
√
τ 2

4n
. (B.49)

Finally,

E

[
sup

(β,∆)∈Aδ

Yβ,∆

]
≤ τ 2R

2T
· E
[∥∥∥∥∥

1

n

n∑

i=1

ĝixi

∥∥∥∥∥
∞

]
+ τδ · E

[∥∥∥∥∥
1

n

n∑

i=1

g̃ixi

∥∥∥∥∥
∞

]

≤ cτ 2Rσx
2T

√
log p

n
+ cτδσx ·

√
log p

n
, (B.50)
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by Lemma B.13 in Appendix B.5. Combining inequalities (B.46), (B.47), (B.48), (B.49),
and (B.50), we then obtain

E[Z(δ)] ≤ c′τ 2Rσx
2T

√
log p

n
+ c′τδσx ·

√
log p

n
. (B.51)

Finally, combining inequalities (B.44), (B.45), and (B.51), we see that under the scaling

R
√

log p
n

- 1, we have

1

‖∆‖22
· 1
n

n∑

i=1

ϕτ‖∆‖2(x
T
i ∆) · γT (xTi β)

≥ λmin

(
E[xixTi ]

)

4
−
(
c′τ 2Rσx

2T

√
log p

n
+ c′τδσx

√
log p

n

)

≥ λmin

(
E[xixTi ]

)

8
− c′τδσx

√
log p

n
, (B.52)

uniformly over all (β,∆) ∈ Aδ, with probability at least 1− c1 exp(−c2n).
It remains to extend this bound to one that is uniform in the ratio ‖∆‖1

‖∆‖2 , which we do via

a peeling argument [2, 31]. Consider the inequality

1

‖∆‖22
· 1
n

n∑

i=1

ϕτ‖∆‖2(x
T
i ∆) · γT (xTi β) ≥

λmin

(
E[xixTi ]

)

8
− 2c′τσx

‖∆‖1
‖∆‖2

√
log p

n
, (B.53)

as well as the event

E :=

{
ineqality (B.53) holds ∀‖β‖2 ≤ 3 and ‖∆‖1

‖∆‖2 ≤ λmin(E[xixTi ])
16c′τσx

√
n

log p

}
.

Define the function

f(β,∆;X) :=
λmin

(
E[xixTi ]

)

8
− 1

‖∆‖22
· 1
n

n∑

i=1

ϕτ (x
T
i ∆) · γT (xTi β), (B.54)

along with

g(δ) := c′τσxδ

√
log p

n
, and h(β,∆) :=

‖∆‖1
‖∆‖2

.

Note that inequality (B.52) implies

P

(
sup

h(β,∆)≤δ
f(β,∆;X) ≥ g(δ)

)
≤ c1 exp(−c2n), for any δ > 0, (B.55)
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where the sup is also restricted to {(β,∆) : β ∈ B2(3) ∩ B1(R), ∆ ∈ B2(3)}.
Since ‖∆‖1

‖∆‖2 ≥ 1, we have

1 ≤ h(β,∆) ≤ λmin

(
E[xixTi ]

)

16c′τσx

√
n

log p
, (B.56)

over the region of interest. For each integer m ≥ 1, define the set

Vm :=
{
(β,∆) | 2m−1µ ≤ g(h(β,∆)) ≤ 2mµ

}
,

where µ = c′τσx

√
log p
n

. By a union bound, we then have

P(E c) ≤
M∑

m=1

P (∃(β,∆) ∈ Vm s.t. f(β,∆;X) ≥ 2g(h(β,∆))) ,

where the index m ranges up to M :=
⌈
log

(
c
√

n
log p

)⌉
over the relevant region (B.56). By

the definition (B.54) of f , we have

P(E c) ≤
M∑

m=1

P

(
sup

h(β,∆)≤g−1(2mµ)

f(β,∆;X) ≥ 2mµ

)
(i)

≤ M · 2 exp(−c2n),

where inequality (i) applies the tail bound (B.55). It follows that

P(E c) ≤ c1 exp

(
−c2n+ log log

(
n

log p

))
≤ c′1 exp (−c′2n) .

Multiplying through by ‖∆‖22 then yields the desired result.

B.5 Auxiliary results

In this section, we provide some auxiliary results that are useful for our proofs. The first
lemma concerns symmetrization and desymmetrization of empirical processes via Rademacher
random variables:

Lemma B.9 (Lemma 2.3.6 in van der Vaart and Wellner [87]). Let {Zi}ni=1 be independent
zero-mean stochastic processes. Then

1

2
E

[
sup
t∈T

∣∣∣∣∣

n∑

i=1

ǫiZi(ti)

∣∣∣∣∣

]
≤E

[
sup
t∈T

∣∣∣∣∣

n∑

i=1

Zi(ti)

∣∣∣∣∣

]
≤2E

[
sup
t∈T

∣∣∣∣∣

n∑

i=1

ǫi(Zi(ti)− µi)

∣∣∣∣∣

]
,

where the ǫi’s are independent Rademacher variables and the functions µi : F → R are
arbitrary.
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We also have a useful lemma that bounds the Gaussian complexity in terms of the
Rademacher complexity:

Lemma B.10 (Lemma 4.5 in Ledoux and Talagrand [49]). Let Z1, . . . , Zn be independent
stochastic processes. Then

E

[
sup
t∈T

∣∣∣∣∣

n∑

i=1

ǫiZi(ti)

∣∣∣∣∣

]
≤
√
π

2
· E
[
sup
t∈T

∣∣∣∣∣

n∑

i=1

giZi(ti)

∣∣∣∣∣

]
,

where the ǫi’s are Rademacher variables and the gi’s are standard normal.

We next state a version of the Sudakov-Fernique comparison inequality:

Lemma B.11 (Corollary 3.14 in Ledoux and Talagrand [49]). Given a countable index set
T , let X(t) and Y (t) be centered Gaussian processes such that

var (Y (s)− Y (t)) ≤ var (X(s)−X(t)) , ∀(s, t) ∈ T × T.

Then

E

[
sup
t∈T

Y (t)

]
≤ 2 · E

[
sup
∈T

X(t)

]
.

A zero-mean random variable Z is sub-Gaussian with parameter σ if P(Z > t) ≤
exp(− t2

2σ2
) for all t ≥ 0. The next lemma provides a standard bound on the expected

maximum of N such variables (cf. equation (3.6) in Ledoux and Talagrand [49]):

Lemma B.12. Suppose X1, . . . , XN are zero-mean sub-Gaussian random variables such that

max
j=1,...,N

‖Xj‖ψ2 ≤ σ. Then E

[
max
j=1,...,p

|Xj |
]
≤ c0 σ

√
logN , where c0 > 0 is a universal con-

stant.

We also have a lemma about maxima of products of sub-Gaussian variables:

Lemma B.13. Suppose {gi}ni=1 are i.i.d. standard Gaussians and {Xi}ni=1 ⊆ Rp are i.i.d.
sub-Gaussian vectors with parameter bounded by σx. Then as long as n ≥ c

√
log p for some

constant c > 0, we have

E

[∥∥∥∥∥
1

n

n∑

i=1

giXi

∥∥∥∥∥
∞

]
≤ c′σx

√
log p

n
.

Proof. Conditioned on {Xi}ni=1, for each j = 1, . . . , p, the variable
∣∣ 1
n

∑n
i=1 giXij

∣∣ is zero-mean

and sub-Gaussian with parameter bounded by σx
n

√∑n
i=1X

2
ij . Hence, by Lemma B.12, we

have

E

[∥∥∥∥∥
1

n

n∑

i=1

giXi

∥∥∥∥∥
∞

∣∣∣∣∣X
]
≤ c0σx

n
· max
j=1,...,p

√√√√
n∑

i=1

X2
ij ·
√
log p,
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implying that

E

[∥∥∥∥∥
1

n

n∑

i=1

giXi

∥∥∥∥∥
∞

]
≤ c0σx

√
log p

n
· E


max

j

√∑n
i=1X

2
ij

n


 . (B.57)

Furthermore, Zj :=
∑n

i=1X
2
ij

n
is an i.i.d. average of subexponential variables, each with pa-

rameter bounded by cσx. Since E[Zj ] ≤ 2σ2
x, we have

P
(
Zj − E[Zj ] ≥ u+ 2σ2

x

)
≤ c1 exp

(
−c2nu

σx

)
, ∀u ≥ 0 and 1 ≤ j ≤ p. (B.58)

Now fix some t ≥
√
2σ2

x. Since the {Zj}pj=1 are all nonnegative, we have

E

[
max
j=1,...,p

√
Zj

]
≤ t+

∫ ∞

t

P

(
max
j=1,...,p

√
Zj > s

)
ds

≤ t+

p∑

j=1

∫ ∞

t

P
(√

Zj > s
)
ds

≤ t+ c1p

∫ ∞

t

exp

(
−c2n(s

2 − 2σ2
x)

σx

)
ds

where the final inequality follows from the bound (B.58) with u = s2 − 2σ2
x, valid as long as

s2 ≥ t2 ≥ 2σ2
x. Integrating, we have the bound

E

[
max
j=1,...,p

√
Zj

]
≤ t+ c′1pσx exp

(
−c

′
2n(t

2 − 2σ2
x)

σ2
x

)
.

Since n %
√
log p by assumption, setting t equal to a constant implies E

[
maxj

√
Zj
]
= O(1),

which combined with inequality (B.57) gives the desired result.

B.6 Capped-ℓ1 penalty

In this section, we show how our results on nonconvex but subdifferentiable regularizers may
be extended to include certain types of more complicated regularizers that do not possess
(sub)gradients everywhere, such as the capped-ℓ1 penalty.

In order to handle the case when ρλ has points where neither a gradient nor subderivative
exists, we assume the existence of a function ρ̃λ (possibly defined according to the particular

local optimum β̃ of interest), such that the following conditions hold:

Assumption B.1.

(i) The function ρ̃λ is differentiable/subdifferentiable everywhere, and ‖∇ρ̃λ(β̃)‖∞ ≤ λL.
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(ii) For all β ∈ Rp, we have ρ̃λ(β) ≥ ρλ(β).

(iii) The equality ρ̃λ(β̃) = ρλ(β̃) holds.

(iv) There exists µ1 ≥ 0 such that ρ̃λ(β) + µ1‖β‖22 is convex.

(v) For some index set A with |A| ≤ k and some parameter µ2 ≥ 0, we have

ρ̃λ(β
∗)− ρ̃λ(β̃) ≤ λL‖β̃A − β∗

A‖1 − λL‖β̃Ac − β∗
Ac‖1 + µ2‖β̃ − β∗‖22.

In addition, we assume conditions (i)–(iii) of Assumption 4.1 in Section 4.2.2 above.

Remark B.1. When ρλ(β) + µ1‖β‖22 is convex for some µ1 ≥ 0 (as in the case of SCAD or
MCP), we may take ρ̃λ = ρλ and µ2 = 0. (See Lemma B.2 in Appendix B.1.1.) When no
such convexification of ρλ exists (as in the case of the capped-ℓ1 penalty), we instead construct
a separate convex function ρ̃λ to upper-bound ρλ and take µ1 = 0.

Under the conditions of Assumption B.1, we have the following variation of Theorem 4.1:

Theorem B.1. Suppose Ln satisfies the RSC conditions (4.4), and the functions ρλ and ρ̃λ
satisfy Assumption 4.1 and Assumption B.1, respectively. With λ is chosen according to the

bound (4.6) and n ≥ 16R2 max(τ21 ,τ
2
2 )

α2
2

log p, we have

‖β̃ − β∗‖2 ≤
7λL

√
k

4(α1 − µ1 − µ2)
, and ‖β̃ − β∗‖1 ≤

56λLk

4(α1 − µ1 − µ2)
,

along with the prediction error bound

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≤ λ2L2k

(
21

8(α1 − µ1 − µ2)
+

49(µ1 + µ2)

16(α1 − µ1 − µ2)2

)
.

Proof. The proof is essentially the same as the proofs of Theorems 4.1 and 4.2, so we only
mention a few key modifications here. First note that any local minimum β̃ of the pro-
gram (4.1) is a local minimum of Ln + ρ̃λ, since

Ln(β̃) + ρ̃λ(β̃) = Ln(β̃) + ρλ(β̃) ≤ Ln(β) + ρλ(β) ≤ Ln(β) + ρ̃λ(β),

locally for all β in the constraint set, where the first inequality comes from the fact that β̃
is a local minimum of Ln + ρλ, and the second inequality holds because ρ̃λ upper-bounds
ρλ. Hence, the first-order condition (4.5) still holds with ρλ replaced by ρ̃λ. Consequently,
inequality (4.19) holds, as well.

Next, note that inequality (4.21) holds as before, with ρλ replaced by ρ̃λ and µ replaced
by µ1. By condition (v) on ρ̃λ, we then have inequality (4.22) with µ replaced by µ1 + µ2.
The remainder of the proof is exactly as before.
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Specializing now to the case of the capped-ℓ1 penalty, we have the following lemma. For
a fixed parameter c ≥ 1, the capped-ℓ1 penalty [103] is given by

ρλ(t) := min

{
λ2c

2
, λ|t|

}
. (B.59)

Lemma B.14. The capped-ℓ1 regularizer (B.59) with parameter c satisfies the conditions of
Assumption B.1, with µ1 = 0, µ2 =

1
c
, and L = 1.

Proof. We will show how to construct an appropriate choice of ρ̃λ. Note that ρλ is piecewise
linear and locally equal to |t| in the range

[
−λc

2
, λc

2

]
, and takes on a constant value outside

that region. However, ρλ does not have either a gradient or subgradient at t = ±λc
2
, hence

is not “convexifiable” by adding a squared-ℓ2 term.
We begin by defining the function ρ̃ : R → R via

ρ̃λ(t) =

{
λ|t|, if |t| ≤ λc

2
,

λ2c
2
, if |t| > λc

2
.

For a fixed local optimum β̃, note that we have ρ̃λ(β) =
∑

j∈T λ|β̃j| +
∑

j∈T c
λ2c
2
, where

T :=
{
j | |β̃j| ≤ λc

2

}
. Clearly, ρ̃λ is a convex upper bound on ρλ, with ρ̃λ(β̃) = ρλ(β̃). Fur-

thermore, by the convexity of ρ̃λ, we have

〈∇ρ̃λ(β̃), β∗ − β̃〉 ≤ ρ̃λ(β
∗)− ρ̃λ(β̃) =

∑

j∈S

(
ρ̃λ(β

∗
j )− ρ̃λ(β̃j)

)
−
∑

j /∈S
ρ̃λ(β̃j), (B.60)

using decomposability of ρ̃. For j ∈ T , we have

ρ̃λ(β
∗
j )− ρ̃λ(β̃j) ≤ λ|β∗

j | − λ|β̃j| ≤ λ|ν̃j|,

whereas for j /∈ T , we have ρ̃λ(β
∗
j )− ρ̃λ(β̃j) = 0 ≤ λ|ν̃j |. Combined with the bound (B.60),

we obtain

〈∇ρ̃λ(β̃), β∗ − β̃〉 ≤
∑

j∈S
λ|ν̃j| −

∑

j /∈S
ρ̃λ(β̃j)

= λ‖ν̃S‖1 −
∑

j /∈S
ρλ(β̃j)

= λ‖ν̃S‖1 − λ‖ν̃Sc‖1 +
∑

j /∈S

(
λ|β̃j| − ρλ(β̃j)

)
. (B.61)

Now observe that

λ|t| − ρλ(t) =

{
0, if |t| ≤ λc

2
,

λ|t| − λ2c
2
, if |t| > λc

2
,
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and moreover, the derivative of t2

c
always exceeds λ for |t| > λc

2
. Consequently, we have

λ|t| − ρλ(t) ≤ t2

c
for all t ∈ R. Substituting this bound into inequality (B.61) yields

〈∇ρ̃λ(β̃), β∗ − β̃〉 ≤ λ‖ν̃S‖1 − λ‖ν̃Sc‖1 +
1

c
‖ν̃Sc‖22,

which is condition (v) of Assumption B.1 on ρ̃λ with L = 1, A = S, and µ2 = 1
c
. The

remaining conditions are easy to verify (see also Zhang and Zhang [103]).
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Appendix C

Proofs for Chapter 5

C.1 Proofs of supporting lemmas for Theorem 5.1

In this section, we supply the proofs of Lemmas 5.1 and 5.2, which are used in the proof of
Theorem 5.1.

C.1.1 Proof of Lemma 5.1

By Proposition B.2 of Wainwright and Jordan [91] (cf. Theorems 23.5 and 26.3 of Rockafel-
lar [75]), we know that the dual function Φ∗ is differentiable on the interior of the marginal
polytope M defined in equation (5.11), in particular with

∇Φ∗(µ) = (∇Φ)−1(µ) for all µ ∈ int(M). (C.1)

Also, by Theorem 3.4 of Wainwright and Jordan [91], for any µ ∈ int(M), the negative dual
function takes the form Φ∗(µ) = −H(qθ(µ)), where θ(µ) = (∇Φ)−1(µ).

By relation (C.1), we have

(∇Φ)(∇Φ∗(µ)) = µ for all µ ∈ M.

Since this equation holds on an open set, we may take derivatives; employing the chain rule
yields

(∇2Φ)(∇Φ∗(µ)) · (∇2Φ∗(µ)) = ID×D.

Rearranging yields the relation ∇2Φ∗(µ) = (∇2Φ(θ))−1 |θ=θ(µ), as claimed.

C.1.2 Proof of Lemma 5.2

We induct on the subset size. For sets of size 1, the claim is obvious. Now suppose the claim
holds for all subsets up to some size k > 1, and consider a subset of size k + 1, which we
write as C = {1, . . . , k + 1}, without loss of generality. For any configuration J ∈ X |C|

0 , the
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marginal probability qC(xC = J) is equal to µC;J , by construction. Consequently, we need

only specify how to determine the probabilities qC(xC = J) for configurations J ∈ X |C|\X |C|
0 .

By the definition of X |C|
0 , each j ∈ J has js = 0 for at least one s ∈ {1, . . . , k + 1}.

We show how to express the remaining marginal probabilities sequentially, inducting on
the number of positions s for which js = 0. Starting with the base case in which there is a
single zero, suppose without loss of generality that jk+1 = 0. For each ℓ ∈ {1, 2, . . . , m− 1},
let J ℓ be the configuration such that J ℓi = Ji for all i 6= k + 1 and J ℓk+1 = ℓ. Defining
D := C\{k + 1}, we then have

qC(xC = J) = qD(xD = J ′)−
m−1∑

ℓ=1

qC(xC = J ℓ), (C.2)

where J ′ ∈ X k is the configuration defined by J ′
i = Ji for all i = 1, 2, . . . , k. Since |D| = k,

our induction hypothesis implies that qD(xD = J ′) is a linear function of the specified

mean parameters. Moreover, our starting assumption implies that J ℓ ∈ X |C|
0 for all indices

ℓ = {1, 2, . . . , m− 1}, so we have qC(xC = J ℓ) = µC;Jℓ. This establishes the base case.
Now suppose the sub-claim holds for all configurations with at most t nonzeros, for

some t > 1. Consider a configuration J with t + 1 zero entries. Again without loss of
generality, we may assume jk+1 = 0, so equation (C.2) may be derived as before. This time,

the configurations J ℓ are not in X |C|
0 (since they still have t ≥ 1 zero entries); however,

our induction hypothesis implies that the corresponding probabilities may be written as
functions of the given mean parameters. This completes the inductive proof of the inner
claim, thereby completing the outer induction, as well.

C.2 Proofs of population-level corollaries

In this Appendix, we prove Corollaries 5.1 and 5.3. (As previously noted, Corollary 5.2 is
an immediate consequence of Corollary 5.1.)

C.2.1 Proof of Corollary 5.1

Recall that C̃ denotes the set of all cliques in the triangulation G̃. The covariance matrix in
Theorem 5.1 is indexed by C̃, and our goal is to define appropriate blocks of the matrix and
then apply the matrix inversion lemma [35]. Consider the collection pow(S). We define the
collection of singleton subsets V = {{1}, {2}, . . . , {p}}, and introduce the disjoint partition

C̃ =
(
pow(S) ∪ V

)

︸ ︷︷ ︸
U

∪
(
C̃\
{
pow(S) ∪ V }

)

︸ ︷︷ ︸
W

.

The following property of the collection W is important:
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Lemma C.1. For each maximal clique C ∈ C, define the set collection F(C) = pow(C)\U .
For any A ∈ W, we have A ∈ F(C) for exactly one C.

Proof. We first establish existence. Since W ⊆ C̃, any set A ∈ W is contained in some
maximal clique CA. Since A /∈ U , we clearly have A ∈ F(CA).

To establish uniqueness, consider a set A belonging to the intersection C1 ∩ C2 of two
maximal cliques. If these cliques are adjacent in the junction tree, then A belongs to the
separator set C1∩C2, so A cannot belong to W, by definition. Even when C1 and C2 are not
adjacent, the running intersection property of the junction tree implies that C1 ∩ C2 must
belong to every separator set on the unique path between C1 and C2 in the junction tree,
implying that A /∈ W, as before. This is a contradiction, implying that the maximal clique
CA is unique.

Define Γ =
(
cov(Ψ(X ; C̃))

)−1
. By the block-matrix inversion formula [35], we may write

Θ := (cov
(
Ψ(X ;U)

)
)−1 = Γ(U ,U)− Γ(U ,W)

(
Γ(W,W)

)−1
Γ(W,U). (C.3)

We need to show that Θ(A,B) = 0 for any members A,B ∈ U that do not belong to the same
maximal clique. By Theorem 5.1(a), we have Γ(A,B) = 0 whenever A and B do not belong

to the same maximal clique, so it remains to show that Γ(A,W)
(
Γ(W,W)

)−1
Γ(W, B) = 0.

We begin by observing that the matrix Γ(W,W) is block-diagonal with respect to the
partition {F(C) : C ∈ C} previously defined in Lemma C.1. (Indeed, consider two sets
D,E ∈ W with D ∈ F(C) and E ∈ F(C ′) for distinct maximal cliques C 6= C ′. Two such
sets cannot belong to the same maximal clique, so Theorem 5.1(a) implies that Γ(D,E) = 0.)
Since block-diagonal structure is preserved by matrix inversion, the inverse Υ = (Γ(W,W))−1

shares this property, so for any two members A,B ∈ U , we may write

Γ(A,W)
(
Γ(W,W)

)−1
Γ(W, B)

=
∑

F(C),C∈C

Γ(A,F(C))Υ(F(C),F(C))Γ(F(C), B). (C.4)

We claim that each of these terms vanishes. For a given maximal clique C ′, suppose A is
not contained within C ′; we first claim that Γ(A,F(C ′)) = 0, or equivalently, for any set
D ∈ F(C ′), we have Γ(A,D) = 0. From Theorem 5.1(a), it suffices to show that A and D
cannot be contained within the same maximal clique. From Lemma C.1, we know that A
belongs to a unique maximal clique C. Any set D ∈ F(C ′) is contained within C ′; if it were
also contained within C, then D would be contained in C ∩ C ′. But as argued in the proof
of Lemma C.1, this implies that D is contained within some separator set, whence it cannot
belong to F(C ′). We thus conclude that Γ(A,D) = 0, as claimed.

Taking any two subsets A and B that are not contained in the same maximal clique, we
see that for any clique C, we must either have Γ(A,F(C)) = 0 or Γ(F(C), B) = 0. Hence,
each term in the sum (C.4) indeed vanishes, completing the proof.
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C.2.2 Proof of Corollary 5.3

This corollary follows by a similar argument as in the proof of Corollary 5.1. As before, let C
denote the set of all cliques in the triangulation G̃, and let V = {{1}, {2}, . . . , {p}}. Define

U = pow(S(s; d)) ∪ V and W = C̃\U .
Let Cs := s ∪N(s), and consider a disjoint partition of W defined by F1 := pow(Cs)\U

and F2 := W\F1. Note that Cs is the unique maximal clique in C̃ containing s. By
construction, every clique in F2 does not contain s and has more than d elements, whereas
every clique in F1 is contained in Cs, with |Cs| ≤ d+1. It follows that no two cliques A ∈ F1

and B ∈ F2 can be contained in the same maximal clique. Denoting Γ := (cov(Ψ(X ; C̃)))−1,
we conclude via Theorem 5.1(a) that Γ(W,W) is block-diagonal.

We now use the block matrix-equation formula (C.3). As before, Theorem 5.1(a) implies

that Γ(U ,U) is graph-structured according to G̃. In particular, for any B ∈ U with B ( Cs,
we have Γ({s}, B) = 0. (The elements of U that are subsets of Cs are exactly {s} and the
nonempty subsets of N(s).) Hence, it remains to show that

Γ({s},W)(Γ(W,W))−1Γ(W, B) = 0.

Analogous to equation (C.4), we may write

Γ({s},W)(Γ(W,W))−1Γ(W, B) =

2∑

i=1

Γ({s},Fi)Υ(Fi,Fi)Γ(Fi, B),

where Υ := (Γ(W,W))−1. Applying Theorem 5.1(a) once more, we see that Γ(F1, B) = 0,
since B ( Cs and Γ({s},F2) = 0. Therefore, the matrix Θ = (cov(Ψ(X ;U)))−1 appearing
in equation (C.3) is indeed s-block graph-structured.

C.3 Proof of Proposition 5.1

In this section, we provide a proof of our main nodewise recovery result, Proposition 5.1.
For proofs of supporting technical lemmas and all corollaries appearing in the text, see
Appendix C.4.

C.3.1 Main argument

We derive Proposition 5.1 as a consequence of a more general theorem. Suppose we have
i.i.d. observations {(xi, yi)}ni=1, with xi ∈ Rp and yi ∈ R, and we wish to estimate the best

linear predictor β̃ = Σ−1
x Cov(xi, yi), when β̃ is k-sparse. In Chapter 3, we analyze a modified

version of the Lasso based on possibly corrupted observations; however, we assume the linear
regression model

yi = xTi β̃ + ǫi, (C.5)
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where ǫi is sub-Gaussian noise and ǫi ⊥⊥ xi. Although the model (4.10) holds in the case
where yi is a sample from a single node and xi is a sample from all other nodes in a Gaus-
sian graphical model, the model (C.5) does not hold in a general discrete graphical model.

Nonetheless, we show that essentially the same Lasso estimator provides an estimator for β̃
that is consistent for support recovery. Suppose the pair (Γ̂, γ̂) in the Lasso program (5.22)
satisfies the following deviation bounds:

‖Γ̂β̃ − γ̂‖∞ ≤ ϕ1

√
log p

n
, (C.6a)

‖(Γ̂− Σx)v‖∞ ≤ ϕ2‖v‖∞
√
k log p

n
∀v ∈ B1(8k) ∩ B∞(1), (C.6b)

for some ϕ1, ϕ2. Also suppose Γ̂ satisfies the lower-restricted eigenvalue (RE) condition:

vT Γ̂v ≥ α‖v‖22 ∀v s.t. ‖v‖1 ≤
√
k‖v‖2. (C.7)

Then we have the following technical result:

Theorem C.1. Suppose the pair (Γ̂, γ̂) satisfies the deviation conditions (C.6a) and (C.6b),
as well as the lower-RE condition (C.7). Also suppose the sample size satisfies the scaling

n % max
{

ϕ2
1

α2(b0−‖β̃‖2)2
, ϕ2

2 |||Σ−1
x |||2∞

}
k log p and λn % ϕ1

√
log p
n

. Then any optimum β̂ of the

Lasso program (5.22) satisfies

‖β̂ − β̃‖∞ ≤ 4λn
∣∣∣∣∣∣Σ−1

x

∣∣∣∣∣∣
∞ .

The proof of Theorem C.1 is provided in Appendix C.3.2. In order to prove Propo-
sition 5.1, we first establish that the deviation conditions (C.6a) and (C.6b) of Theo-

rem C.1 hold w.h.p. with (ϕ1, ϕ2) = (ϕ‖β̃‖2, ϕ), and the lower-RE condition holds with
α = 1

2
λmin(Σx).

Note that
‖Γ̂β̃ − γ̂‖∞ ≤ ‖(Γ̂− Σx)β̃‖∞ + ‖Cov(xi, yi)− γ̂‖∞. (C.8)

Furthermore,

‖(Γ̂− Σx)β̃‖∞ ≤
∥∥∥∥
(
XTX

n
− E(xix

T
i )

)
β̃

∥∥∥∥
∞
+ ‖(xxT − Σx)β̃‖∞

and

‖Cov(xi, yi)− γ̂‖∞ ≤
∥∥∥∥
XTy

n
− E(yixi)

∥∥∥∥
∞
+ ‖yx− E(yi)E(xi)‖∞.

As in the analysis of inequality (C.17) below, we may disregard the two second terms involv-

ing empirical means, since they concentrate at a fast rate. Since xTi β̃ is sub-Gaussian with
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parameter ϕ2‖β̃‖22 by assumption, and eTj xi and yi are clearly sub-Gaussian with parameter

1, the deviation condition (C.6a) follows with ϕ1 = ϕ‖β̃‖2 by standard concentration bounds
on an i.i.d. average of products of sub-Gaussians (cf. Lemma A.14 in Appendix A.3).

For the second deviation bound, we will verify the bound over a more tractable set via
the following lemma:

Lemma C.2. For any constant c0 > 0, we have

B1(c0k) ∩ B∞(1) ⊆ (1 + c0) cl{conv{B0(k) ∩ B∞(1)}}.

Hence, it suffices to establish the deviation inequality (C.6b) over the set B0(k)∩B∞(1).
We proceed via a discretization argument. Suppose {v1, . . . , vM} is a 1

2
-covering of the unit

ℓ∞-ball in Rk in its own metric. By standard results on metric entropy, we know that such
a covering exists with M ≤ ck. Writing ψ(v) = ‖(Γ̂− Σx)v‖∞, we know that there exists vj
such that ‖v − vj‖∞ ≤ 1

2
. Let ∆v = v − vj . Then

ψ(v) = ‖(Γ̂− Σx)(vj +∆v)‖∞ ≤ ψ(vj) + ψ(∆v) ≤ sup
1≤j≤M

ψ(vj) +
1

2
sup

‖v‖∞≤1

ψ(v),

simply by rescaling. Taking the sup over {‖v‖∞ ≤ 1} on the LHS and rearranging then
yields

sup
‖v‖∞≤1

≤ 2 sup
1≤j≤M

ψ(vj).

Hence, it suffices to establish the bound for a given v ∈ B1(c0k) ∩ B∞(1), then take a union
bound over theM ≤ ck elements in the discretization and the

(
p
k

)
≤ pk choices of the support

set.
For a given k-sparse v, note that xTi v has sub-Gaussian parameter ϕ2‖v‖22 by assumption,

and
‖v‖22 ≤ ‖v‖1‖v‖∞ ≤

√
k‖v‖2‖v‖∞,

so xTi v is sub-Gaussian with parameter ϕ2k‖v‖2∞. Since eTℓ xi is sub-Gaussian with parameter
1, it follows from the same recentering techniques as in inequality (C.17) that

‖(Γ̂− Σx)v‖∞ = max
ℓ

|eTℓ (Γ̂− Σx)v| ≤ t,

with probability at least 1− c1 exp
(

−c2nt2
ϕ2k‖v‖2∞

)
. Taking a union bound over the discretization

and setting t = cϕ
√
k‖v‖∞

√
k log p
n

then implies the deviation bound (C.6b) with ϕ2 = ϕ,

under the scaling n % ϕ2k2 log p.
The lower-RE condition (C.7) may be verified analogously to the results in Appendix A.2.

The only difference is to use the fact that xTi v is sub-Gaussian with parameter ϕ2‖v‖22 in
all the deviation bounds. Then the lower-RE condition holds with probability at least
1− c1 exp(−c2k log p), under the scaling n % ϕ2k log p.
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We may take λn ≍ ϕ‖β̃‖2
√

log p
n

in Theorem C.1 to conclude that w.h.p.,

‖β̂ − β̃‖∞ - ϕ|β̃‖2
√

log p

n
.

Finally, note that the vector β̃ is a scalar multiple of column s of the inverse covariance
matrix Γ, as a straightforward consequence of block matrix inversion. Hence, combining
Corollary 5.1 and Theorem C.1 implies that thresholding succeeds w.h.p. for neighborhood
recovery in a tree graph.

C.3.2 Proof of Theorem C.1

We begin by establishing ℓ1- and ℓ2- error bounds, which will be used in the sequel:

Lemma C.3. Suppose the deviation condition (C.6a) holds and Γ̂ satisfies the lower-RE

condition (C.7). Also suppose λn % ϕ1

√
log p
n

. Then any global optimum β̂ of the Lasso

program (5.22) satisfies the bounds

‖β̂ − β̃‖2 ≤
c0
√
k

αℓ
max{ϕ1

√
log p

n
, λn}, (C.9)

‖β̂ − β̃‖1 ≤
8c0k

αℓ
max{ϕ1

√
log p

n
, λn}. (C.10)

We now argue that for suitable scaling n % k log p, any optimum β̂ lies in the interior of
B1(b0

√
k):

Lemma C.4. Suppose β̂ is an optimum of the Lasso program (5.22). Then under the scaling

n %
(

ϕ1

α(b0−‖β̃‖2)

)2
k log p, we have

β̂ /∈ ∂B1(b0
√
k).

By Lemma C.4, we are guaranteed that β̂ is an interior point of the feasible set. Con-
sequently, by Proposition 2.3.2 of Clarke [22], we are guaranteed that 0 is a generalized

gradient of the objective function at β̂. By Proposition 2.3.3 of Clarke [22], there must exist
a vector ẑ ∈ ∂‖β‖1 |β=β̂ such that

Γ̂β̂ − γ̂ + λnẑ = 0.

Denoting the loss function L(β) = 1
2
βT Γ̂β − γ̂Tβ, we have ∇L(β) = Γ̂β − γ̂, so

∇L(β̃)−∇L(β̂) = ∇L(β̃) + λnẑ = Γ̂β̃ − γ̂ + λnẑ.
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Then
‖∇L(β̃)−∇L(β̂)‖∞ ≤ ‖Γ̂β̃ − γ̂‖∞ + λn‖ẑ‖∞ ≤ ‖Γ̂β̃ − γ̂‖∞ + λn. (C.11)

Using the deviation bound (C.6a) again, we have

‖Γ̂β̃ − γ̂‖∞ ≤ ϕ1

√
log p

n
.

It follows from equation (C.11) that if λn ≥ ϕ1

√
log p
n

, then

‖∇L(β̃)−∇L(β̂)‖∞ ≤ 2λn. (C.12)

Finally, we lower-bound

‖∇L(β̃)−∇L(β̂)‖∞ = ‖Γ̂ν̂‖∞
≥ ‖Σxν̂‖∞ − ‖(Γ̂− Σx)ν̂‖∞
≥
∣∣∣∣∣∣Σ−1

x

∣∣∣∣∣∣−1

∞ ‖ν̂‖∞ − ‖(Γ̂− Σx)ν̂‖∞. (C.13)

Now note that ‖ν̂‖1 ≤ 8
√
k‖ν̂‖2, as shown in the proofs of Chapter 3, so we have

‖ν̂‖22 ≤ ‖ν̂‖∞‖ν̂‖1 ≤ 8
√
k‖ν̂‖∞‖ν̂‖2,

so ‖ν̂‖2 ≤ 8
√
k‖ν̂‖∞. In particular, ‖ν̂‖1 ≤ 8k‖ν̂‖∞. Applying inequality (C.6b) to v = ν̂

‖ν̂‖∞
then gives

‖(Γ̂− Σx)ν̂‖∞ ≤ cϕ2‖ν̂‖∞
√
k log p

n
.

Combining this with inequality (C.13), we have

‖Γ̂ν̂‖∞ ≥ ‖ν̂‖∞
(

1

|||Σ−1
x |||∞

− cϕ2

√
k log p

n

)
,

so when n % ϕ2
2 |||Σ−1

x |||2∞ k log p, we have

‖Γ̂ν̂‖∞ ≥ 1

2

‖ν̂‖∞
|||Σ−1

x |||∞
.

Finally, combining with inequality (C.12) yields the result of the theorem.

C.4 Proof of supporting lemmas to Proposition 5.1

In this Appendix, we derive the proofs of technical lemmas used in the proof of Proposi-
tion 5.1.
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C.4.1 Proof of Lemma C.2

We denote the left-hand set by A and the right-hand set by B. It suffices to show that
ϕA(z) ≤ ϕB(z) for all z, where ϕ is the support function.

For a given z, let S be the set of indices of coordinates of z with highest absolute value.
We may write

ϕA(z) = sup
θ∈A

〈θ, z〉

= sup
θ∈A

〈θS, zS〉+ 〈θSc , zSc〉

≤ ‖zS‖1 + c0k‖zSc‖∞, (C.14)

since
〈θS, zS〉 ≤ ‖θS‖∞‖zS‖1 ≤ ‖θ‖∞‖zS‖1 ≤ ‖zS‖1

and
〈θSc , zSc〉 ≤ ‖θSc‖1‖zSc‖∞ ≤ c0k‖zSc‖∞

for θ ∈ A. Furthermore, k‖zSc‖∞ ≤ ‖zS‖1. Hence, inequality (C.14) becomes

ϕA(z) ≤ (1 + c0)‖zS‖1.

Finally, note that

ϕB(z) = (1 + c0) max
|U |≤k

sup
‖θU‖∞≤1

〈θU , zU 〉 = (1 + c0)‖zS‖1,

establishing the desired result.

C.4.2 Proof of Lemma C.3

The proof is essentially the same as in the case of a standard linear model analyzed in
Chapter 3. From the fact that β̃ is feasible and β̂ is optimal, we obtain a basic inequality.
Furthermore, defining ν̂ = β̂ − β̃, we may verify the cone condition ‖ν̂‖1 ≤ c

√
k‖ν̂‖2. We

will not repeat the arguments here.

C.4.3 Proof of Lemma C.4

Note that
‖β̂ − β̃‖1 ≥ ‖β̂‖1 − ‖β̃‖1 ≥ ‖β̂‖1 −

√
k‖β̃‖2.

Hence, if β̂ ∈ ∂B1(b0
√
k), we have

‖β̂ − β̃‖1 ≥ b0
√
k − ‖β̃‖2

√
k = (b0 − ‖β̃‖2)

√
k. (C.15)
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On the other hand, Theorem 3.1 in Chapter 3 guarantees that under deviation condi-
tion (C.6a) and the lower-RE condition (C.7), we have the ℓ1-bound

‖β̂ − β̃‖1 ≤
cϕ1k

α

√
log p

n
. (C.16)

Combining inequalities (C.15) and (C.16) gives

(b0 − ‖β̃‖2)
√
k ≤ cϕ1k

α

√
log p

n
,

contradicting the assumption that n >
(

cϕ1

α(b0−‖β̃‖2)

)2
k log p.

C.5 Proofs of sample-based corollaries

Here, we provide proofs for the remaining corollaries involved in sample-based approaches
to graph selection.

C.5.1 Proof of Corollary 5.4

As noted by Liu et al. [53], the proof of this corollary hinges only on the deviation condition
condition (5.18) being satisfied w.h.p.; the rest of the proof follows from the analysis of
Ravikumar et al. [74]. We verify inequality (5.18) with ϕ(Σ∗) = c1 and ψ(n, p) = c′ log p.

Note that

‖Σ̂− Σ‖max =

∥∥∥∥∥

(
1

n

n∑

i=1

xix
T
i − xxT

)
− Σ

∥∥∥∥∥
max

≤
∥∥∥∥∥
1

n

n∑

i=1

xix
T
i − E(xix

T
i )

∥∥∥∥∥
max

+
∥∥xxT − E(xi)E(xi)

T
∥∥
max

, (C.17)

where we have used the triangle inequality and the fact that Σ = E(xixTi ) − E(xi)E(xi)T

in the second line. Noting that ‖Y ‖max = maxj,k |eTj Y ek| for a matrix Y , and the random
variables eTj xi are i.i.d. Bernoulli (sub-Gaussian parameter 1) for each fixed j, we conclude
by standard sub-Gaussian tail bounds (cf. Lemma A.14 in Appendix A.3) that the first term

is bounded by
√

log p
n

, with probability at least 1− c exp(−c′ log p). For the second term, we

may further bound

‖xxT − E(xi)E(xi)
T‖max ≤ ‖(x− E(xi))(x− E(xi))

T‖max

+ 2‖E(xi)‖∞‖x− E(xi)‖∞,

by way of the triangle inequality. Note that eTj (x−E(xi)) is an average of i.i.d. sub-Gaussian
variables with parameter 1, hence has sub-Gaussian parameter 1

n
. Therefore, we have the
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even tighter bound 1
n

√
log p
n

for this term. Combining the bounds for the two terms in

inequality (C.17) establishes the deviation condition (5.18).
By the machinery of Ravikumar et al. [74], we then have the elementwise bound

P
[
‖Θ̂−Θ∗‖max ≥ τn

]
≤ c exp(−c′ log p).

The statement about thresholding Θ̂ to obtain a consistent estimate of Θ∗ follows immedi-
ately.

C.5.2 Proof of Corollary 5.5

The analysis borrows techniques from the paper [11]. We first prove that under the scaling
n % κ2 log p, we have |rC(s, t)− r̂C(s, t)| ≤ κ

4
for all (s, t) ∈ V × V , with probability at least

1− c1 exp(−c2 log p). First fix a pair (s, t) and a corresponding pair of values (xs, xt). By a
simple application of Hoeffding’s inequality, we have

P
(
|P(Xs = xs, Xt = xt)− P̂(Xs = xs, Xt = xt)| ≥ ǫ

)
≤ c exp(−c′nǫ2),

and similar bounds hold for the marginal deviation terms |P(Xs = xs) − P̂(Xs = xs)| and
|P(Xt = xt)− P̂(Xt = xt)|. Note that

|rC(s, t)− r̂C(s, t)| ≤
∑

xs,xt

(
|P(Xs = xs, Xt = xt)− P̂(Xs = xs, Xt = xt)|

+ |P(Xs = xs)P(Xt = xt)− P̂(Xs = xs)P̂(Xt = xt)|
)
.

Furthermore,

|P(Xs = xs)P(Xt = xt)−P̂(Xs = xs)P̂(Xt = xt)|
≤ |P(Xs = xs)− P̂(Xs = xs)| · P(Xt = xt)

+ |P(Xt = xt)− P̂(Xt − xt)| · P̂(Xs = xs)

≤ 2ǫ,

so taking a union bound over all pairs (s, t) and all values (xs, xt), we have

|rC(s, t)− r̂C(s, t)| ≤ 3m2ǫ

for all (s, t) ∈ V × V , with probability at least 1 − cm2p2 exp(−c′nǫ2). Finally, taking
ǫ = κ

12m2 and using the fact that n % κ2 log p gives the desired bound, with probability at
least 1− c1 exp(−c2 log p).
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In particular, it follows that

N(s) ⊆ C ⊆
{
t ∈ V : rC(s, t) ≥

κ

4

}
,

with probability at least 1− c1 exp(−c2 log p). Since the last subset has cardinality at most

d
log(4/κ)

ζ by the correlation decay condition, we also have |C| ≤ d
log(4/κ)

ζ , as claimed.
The remainder of the proof is identical to the proof of Proposition 5.1, and is a conse-

quence of Theorem C.1.
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[60] N. Meinshausen and P. Bühlmann. “High-dimensional graphs and variable selection
with the Lasso”. In: Annals of Statistics 34 (2006), pp. 1436–1462.

[61] N. Meinshausen and B. Yu. “Lasso-type recovery of sparse representations for high-
dimensional data”. In: Annals of Statistics 37.1 (2009), pp. 246–270.

[62] S. Negahban and M. J. Wainwright. “Estimation of (near) low-rank matrices with
noise and high-dimensional scaling”. In: Annals of Statistics 39.2 (2011), pp. 1069–
1097.

[63] S. Negahban et al. “A unified framework for high-dimensional analysis ofM-estimators
with decomposable regularizers”. In: Statistical Science 27.4 (2012). See arXiv version
for lemma/propositions cited here, pp. 538–557.

[64] S. Negahban et al. “A unified framework for the analysis of regularizedM-estimators”.
In: Advances in Neural Information Processing Systems. 2009.

[65] Y. Nesterov. Gradient methods for minimizing composite objective function. CORE
Discussion Papers 2007076. Universit Catholique de Louvain, Center for Operations
Research and Econometrics (CORE), 2007.

[66] Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Algorithms in Convex
Programming. SIAM studies in applied and numerical mathematics. Society for In-
dustrial and Applied Mathematics, 1987.

[67] M.E.J. Newman and D.J. Watts. “Scaling and percolation in the small-world network
model”. In: Phys. Rev. E 60.6 (Dec. 1999), pp. 7332–7342.

[68] G. Obozinski, M.J. Wainwright, and M.I. Jordan. “Support union recovery in high-
dimensional multivariate regression”. In: Annals of Statistics 39 (2011), pp. 1–47.

[69] J. Pearl. Causality: Models, Reasoning and Inference. 2nd. Cambridge University
Press, 2009.

[70] G. Raskutti, M. J. Wainwright, and B. Yu. “Restricted Eigenvalue Properties for
Correlated Gaussian Designs”. In: Journal of Machine Learning Research 11 (2010),
pp. 2241–2259.

[71] G. Raskutti, M.J. Wainwright, and B. Yu. “Minimax rates of estimation for high-
dimensional linear regression over ℓq-balls”. In: IEEE Transactions on Information
Theory 57.10 (2011), pp. 6976–6994.

[72] Holger Rauhut. “Compressive Sensing and Structured Random Matrices”. In: Theo-
retical Foundations and Numerical Methods for Sparse Recovery. Ed. by M. Fornasier.
Vol. 9. Radon Series Comp. Appl. Math. deGruyter, 2010, pp. 1–92.

[73] P. Ravikumar, M.J. Wainwright, and J.D. Lafferty. “High-dimensional Ising model
selection using ℓ1-regularized logistic regression”. In: Annals of Statistics 38 (2010),
p. 1287.



BIBLIOGRAPHY 178

[74] P. Ravikumar et al. “High-dimensional covariance estimation by minimizing ℓ1-penalized
log-determinant divergence”. In: Electronic Journal of Statistics 4 (2011), pp. 935–
980.

[75] R. T. Rockafellar. Convex Analysis. Princeton: Princeton University Press, 1970.

[76] M. Rosenbaum and A. B. Tsybakov. “Sparse recovery under matrix uncertainty”. In:
Annals of Statistics 38 (2010), pp. 2620–2651.

[77] M. Rosenbaum and A.B. Tsybakov. “Improved matrix uncertainty selector”. In:
From Probability to Statistics and Back: High-Dimensional Models and Processes –
A Festschrift in Honor of Jon A. Wellner. Ed. by M. Banerjee et al. Vol. Volume
9. Collections. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2013,
pp. 276–290.

[78] A. J. Rothman et al. “Sparse permutation invariant covariance estimation”. In: Elec-
tronic Journal of Statistics 2 (2008), pp. 494–515.

[79] D.B. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley, 1987.

[80] M. Rudelson and S. Zhou. Reconstruction from anisotropic random measurements.
Tech. rep. University of Michigan, 2011.

[81] N. P. Santhanam and M. J. Wainwright. “Information-Theoretic Limits of Selecting
Binary Graphical Models in High Dimensions”. In: IEEE Transactions on Information
Theory 58.7 (2012), pp. 4117–4134.

[82] F. M. Sebert et al. “Compressed sensing MRI with random B1 field”. In: International
Society of Magnetic Resonance in Medicine Scientific Meeting. 2008, p. 3151.

[83] P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search. Vol. 81.
The MIT Press, 2000.
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