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ABSTRACT
We describe a new relativistic electromagnetid.

computer simulation code, with one.spatial'dimension, which
explicitly follows right- and left-going electromagnetic
waves by integrating along the characteristics of Maxwell's
equétions. The code‘is suited to simulating laser-plasma

~ interactions. As an example, we discuss simulations of
the_heating of plasma by two opposed 1asers‘wﬁose beat
frequency drives a local plasma oscillation. Excellent
ggreement is obtained with the analytic theory, in the

linear—response regime.

I. INTRODUCTION
This ‘paper presents computer simulations of laser-plaéma intef—
actibns, 1ntroducing a new code for performing‘relativistic particle -
simulations with fully electromagnétic interaction. The application
étudied is the heating of plasma by two lasers (of frequencies Wy wi)

whose beat frequency (Q = Wy = ml) is near the plasma frequency.
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The nonlinear interaction may be considered as an induced decay

(ub > @, + ), in which the fraction R of the incident power at

1

Wy 1s converted to Wy

as iongitudinal plasma oscillation and, because of damping, ultimately

and £, with the fraction RQ/wO appearing

aélheat. It is the aim of the theory and simulations to determine ﬁhe
dependence of this efficiency parameter R on the parameters of the
problem: ‘laser intensities, density scale length, temperature.

In the presenf paper we diSCués the general theory of the
interaction, with specific attention to the regimé of linearvlongi—
tudinal response of the nonuniform plasma. This theory is then
tested by the simulations, with excellent agreement obtained;
Particular interest attaches also to the regime of nonlinear
response;l ﬁowevér, its analysis is still in progresé, and will be
reported in a later publication.

It should be kept in mind that the process studied here,
involving fhree electron ﬁaves-(two transverse and one longitudiﬁal),
. with no ambiént magnetic field, is illustrative of tﬁe more general
three—wavé process, possibly,involving ions, and in a ﬁagnetic field.
Thus the principle of electron heating, by the damping of a resonant
excitation from the beat of two high-frequency waves, can be extended

to the analogous heating of ions in a magnetically confined plasma.

II. THE CODE
Thefe‘is a considerable literature concerning electromagnetic
codes.2 Most algorithms for solution of Maxwell's equations require

solving a current driven'wave equation for the vector potential. In

this code, we solve for the electromagnetic fields explicitly by
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integraiing‘Maxwell's equations along their characteristics. Dawson
and Langdon3 first used this method in 1966, |

Charged particles are representedvby clouds of infinite
cross-sectional area in the plane transverse to the grid; In the

one dimension in which‘Spatial variations are followed and

particle‘positions are assigned, particles have finite size. Charge
densities are calculated b& linear interpolation according to the

4

PIC-CIC model. In this same dimension,,designated "longifudinai",
there are components of particle velocity and electric tield, and all
wave propagation occurs. The electromagnetic waves are>li£early
polarized in the direction of the single transverse velocity component
(see Figure 1). The self-consistent and externai magnetic fields lie
in the transverse plane and are perpendicular to the polarization
.direction. The equations of motion are relativistic. There are
versions of the code for which the plasma is assumed periodic or,
alternatively, finite. | _

For the particular geometry we have described (Figure 1), the

‘two Maxwell curl equations take the following form:

"

A -1 _
-3B _/3x - 9E_ /ot J
. 'z/ X -c¢ | y/ LT y/c

S |
3E,/x + ¢ 3B, /3t 0o .

By adding and subtracting these equations, we obtain

(B/QX){Ey + Bz] + c-l(S/at)[Ey + Bz]- = 3 AﬁJy/c v (1)



=

If we define the right- and left-going electromagnetic field
quantities respéctively as F, % Ey j'BZ, the two Maxwell equations

become
-[(a/ax) i}c-l(a/at)} F, = ¥ 4ﬂJy/c . ‘ (2)

Given the-particle positions and velocities, from which we octain the
current »J&, Eq. (2) is integrated aloﬁg the vacuum characteristics

" x T ot = const, Gridpoints in the space-time mesh are linked by the
vacudm characteristics. Then Ax/At = ¢, and there is no Coufant

condition in the usuél sense.5 By solving for the fields explicitly

and by calculatipg a new current Jy with some smoothing at the
half time—étep, spurioﬁs ﬁﬁmerical dispersion is minimized. Conse-
cquently, if we do the mechanics of the papticle motion relativistically
there should be no numerical Cerenkov instaoility. Furthermore, the
parametefs for which light waves in aAdrifting plasma can become
unstable, due to finite differencing,‘are'unphysical and can be
easily avoided.6
The differential equations which the code sclves can be ;
Summarized.as follows: the equations for the fields, given the’

sources, i.e., charge density and current, are Eq. (2) and the

Poisson equation
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Electrons have charge e. We assume a single species here (with
fixed neutralizing backgrouna) but the code deals with two in general..
The equations for the particle and current densities (5efore linear

interpolation) are

| Z 3(_x - ™)
.m _ |

n(x)

(4)

-

2: evym 6<x.- ) .

m

J (x)
().
The equation of motion for the particles is
2,2\-3) _ |
(d/dt) mz(l - v</c%) = e(g +vx g/c) . (5)

The closed set of equations yields to standard space-time
centering and leap-frog techniques (Fig. 2). The equation of motion
~(5) is integrated forward in time using a hybrid, fast half-accelera-

7 Because we are interested in the Fourier

tion and rotation method.
transform ot the electrostatic pofential, we'301ve'PoiSson's’equation
‘by means of faét Fourier transforms although faster techniques
. exist. The'differences between the bounded and periodic versions of
' the code appear in the 5oundary conditions on the potential ¢, the
particles, and the elecfrostatic and electromagnetic fields at the
system walls. dur simulation of a finite p}asma assumeé that the
walls are radiation transparent and particle retlecting. inmthe
bounded versioﬁ, the longitudinal field E_ vanishes at the s&ggém

walls. The magnetostatic, vacuum tield contribution to B, 1is

an arbitrary constant value thfoughout, in either version of the
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code, We have found the code quite inexpensive to use; typical computer
experiments with 4000 particles have required 0.25 sec CPU per time-step
on the C.D.C. 7600 at the Lawrence Berkeley Laboratory (this includes’

all operations: field solving, pafticle pushing, and diagnostics).

III, BEAT HEATING

The theory of beat heating, of interest for confined plasmas,

has been discussed by Cohen, Kaufman, andvWatsoﬁB_lo and by Rosenbluth
- and Liu.ll Two linearly polarized transverse waves are oppositely

incident on a finite, inhomogeneous, underdense plasma (Fig. 3).

‘There can.be a resonant interaction with a longitudinal normal mode
of the plasma if the eleétrostatic disturbance, driven by the pondero-
-motive force at the beat frequency and wavenumber (o= wo—w1.<< wo’wl;

K S ko-kl), approximates the Bohm-Gross dispersién relation somewhere

LR

in the plasma. Because of the plasma inhomogeneity, the three-wave
interaction is resonant only in a finite region around the position
of exact mafching shown in Fig. 3. The dissipation of the electron
plasma oscillation introduces irreversibility intovthe three-wave
process, and is the mechanism for the eventual thermélization of part
- of the energy provided by the electromagnetic waves. The dissipation
may be due fo collisioms, Landau damping, convective loss, or non-
linear mode coupiing processes. Inasmuch as ouf present studies
encombass both the linear and nonlinear regimes for the beat wave,
we shall refbrmulateland extend the main ideas‘of Ref, 9, pointing out
those results which remain valid for a nonlinear beat wave,

vfrom tﬁe wave eqﬁation for the total vector potentiai (of

the two transverse waves), we obtain
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[(2702) + wlx) - AP/ t) = - ?[entx e ing s,

(6)

where uy(x,t) = -eAy(x,t)/mc is the transverse oscillation velocity.

2 . 2,2 <

(Corrections to Eq. (6) are of relative order uy2/c s Vip /e << 1,

as shown by a Vlasov analysis.) We use a WKB representation

for the vector pot_ential, or transverse velocity:

-

po

x
uy(x,t_) =  uo(x,t) expL—int + ij ko(x'ﬁ' Jax'| + cv.c.

o

-y

X

'*‘ ul(x,t)_ exp L-i.wlt - if ’kl(x')dx’J + c.c... , (7)

in terms of the slowly varying complex amplitudés uo,ul of the two
oppdsed transverse waves ; the wave numbers satisfy local di_spe.rsion
. 2 = [ 2 2 -2 '
relations: ky (x) W~ - wp (x)]c . |
For the density perturbation (not assumed small), we use a

beat representation:

: X
Sn(x,t) = T(x,t) exp |-iQt + if k(x! )dx' + c.c. ,(8)

" where Q = wy = W is the beat frequency, and K = yko + k1 is the
local beat wavenumber, We can ignore the density perturbation at the
sum frequenci_'es- (wo + wl, 2w0, and .2wl), for the foilowing reason.
Since they represent high frequency, high phase velocity nonresonant
perturbafions, they can be only collisionally damped and are not normal
" modes., But if we consistently ignore collisional loss in_high frequency

perturbations the density per_turbations at these sum frequencies sixhply
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- couple back into the electromagnetic waves, to produce nonlinear
frequency shifts.12 (The nonlinear frequency shifts for the tranéverse
waves are of order (wpz/mo) (Iuylz/c2), and are, in this paper, less

than 10%. of the frequency mismatches, which are at least 0.0l w

1

p
when the magnitude of the mismatch is averaged over the resonance
zone.} |

We further assume that T(x,t) is slowly varying in time
(on the g-scale) and in space (on the k-scale). “We can then 6btain,

. from Egs. (6);(8):

-~

[(a/at) + co(a/ax) * éodznkoé/dx]uo(x,t) e(i/Z)(wpz/wo)(ﬁ/no)ul ,

[(a/9t) = e (a/ox) - eqamniPaxhu, (x,6) = (/200 20 XE /mg g

(9)
where_only.slow temporal variations are kept in the nonlinear coupling
 tefms. The tra@sverse group velocities are ¢, E.kzcz/wl.‘
The energy density of each wave is proportional to
, Qz2|u2|2 (Ref. 8), NMltiblying the two quations Qf (9)_by ‘uo*-
and ui*, and adding their complex cdnjugates,‘we obtain the conservaf

tion law for transverse action:

(3/8t)(®0|u0|2'+ wllgllz) + (B/Bx)(cowoluol2 - ciwliullz) = 0 .
(10)
This law (Méﬁley-ﬁowe, or photon conservation) is valid for uniform
‘or nonuniform plasma, and for linear or nonlinear density petrubation;
but it is violated if our assumption of élowly varying amplitudes
breaks down. Ihe conservation of action implies that transverse

energy is not conserved: as action is transferred from the higher
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frequency wave '(wo) fo the_lowgr freqﬁency one (wl), the energy
differeﬁce,vof relative siie Q/wo, is deposited in.the plasma, as

a coherent oscillation or as heat. In the latter case, the process

is irreversible, and 6nly tné Wy > Wy transition can occur., In the
former case, the depdsit can be withdrawn, and energy transferred from

wl back to g, (This is observed when the beat wave traps

eiectrons.l) '

The rate of action transfer is, from Egs. (9), given by

(3/9F)(leuolz) * (3/3“’(%‘*’0'%'2) = -wp2 Im(uoul*'r‘i*/no)

- (11)
On ﬁsing the Poisson equation for the density and scalar potential

amplitudes, K2$ = 4mile, the right side of (11) becomes
_ %, % : B
—KzIm{uOul (ed /m)]} . . (12)

- The pofential ¢ is the iongitudiﬁal respopse’to the ponderomotive
poténtial ene;'gyl3 ¥(x,t) = <%-mu2> (x,t) of the electrons;
( ) répresents an average over the rapid temporal variation at
Wos W) 5 yielding a beat_variatidn ¥(x,t) = qax,t)exp{ei9t~+ ?]-de]
*.c,c,;'.with  @tx,t)A= muoul*, If the longitudinal.résponse'is
linear, we'ﬁaVe ' |

ed(x,t) = (et - 1W = (e-l - lhmuoul* , (13)

3

where € 1s the electron dielectric function, evaluated at Q,k.
(If the space-time variation of (uo,ul) is not sufficiently slow,
we should instead use Q + 13/0t and x-13/3x as the arguments of

€; in that case, the present formulation is not the. most expedient,



leF '

and a three-wave analysis is preferable.] When the response 1s non-
1 ' ' :
linear, certain of the nonlinear aspects may be incorporated by

modifying the form of €, so that € depends on ¢ implicitly. .

We now use (12) and (13) to express the right side of (11) as

Clugl?luy1? meXo) . )

For a uniform medium, the nonlinear equations for
luolz(x,t), lullz(x,t) " can be solved analytically, as discussed in
Ref, 10. For a nonuniform medium, we limit our analytic study to the

steady state (auo/at = auIGt = 0), whence (11) and (10) become

(@/ax)(kglugl?) = (a/ax)ilug1?) = (/) |ugl?luy ]2 m e

(15)
“where e(Q,K; x) has an’exﬁlicit x-variation through its parametefs:
density, temperature, possibly non-Maxwellian electron diétribution.
,‘In order.to use the same notation ésAin Ref.ﬁ@i_the (absolute) action
density»fluxés’afé‘expressed as V(mcz/é)zJi, ‘with

Jz = (k2/2ﬂ)|u2/cl2, so that (15) reads as in Eq; (3) of Ref. 9:

dJy/dx = aJ;/dx = 8 J.J.Im € 3(x), with 8 2K2/x0kl ~ 8 for

01

2 << Wqe Upon integrating over x, we found the solution

| b
Caa(Iy/) = B Y axIm e Nx) . (18)

-

where Af = f{(x =a)-f(x=Db), a and b are any two x-planes
" (such as the "edges" of the plasma), and ¥ = Jg = J; 1is the constant

(signed) action density flux.
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In the limit of weak damping (Im € = €" << 1), the x-integral
can be carried out exactly.9 We write Im e—l(x).= -ﬂG[E'(x)], where
‘€' = Re €; the integral 1s then

b 1
-1 -
dx Im € (x) = -nIae'/ax

= -, | (17)
a
'defining the effective density scale length Ln' In this iimit, the
action transfer of Eq. (15) takes place over the infinitesimal region
where €'(2,k;x) = 0, 1i.e., at the position x where the-Bohm;Groés
frequency at the beat wavenumber, ,w(K; x), matches the beat-

frequency . More realistically with finite €", we have
Im € = "E"/(le'(X)l + IE"-Iz) ,

and it can be shown ' that Im € % has a half-width of order

e"L = Z(v/Qp)Ln, where Vv is the total damping rate of a Langmuir
osciliation.. Equation (17), however, remains unaltered in the limit
“that the halffﬁidth is small compared to the plasma length. In order
that ouerKB representation be valid, we must require that the transfer
zone width (y/wp)Ln exceed ine wavelengths, i.e., (v/mp)>> (kan)"l.
(Typical parameters for a 6-pinch, n, ~ 1017/cm3, T, 5.100 eV,

Qp/wo ~ 0.1, and L ~10 cm,_satisfy this inequality, since

Q/mp > 10-2;‘whi1e \(kv(_.’l.n)"l ~ 107%, For our simulations the resonance
zohe was of>?rder 10 wavelengths'long.) If the'damping is ggi_weék

(v ~ mb),vso that e(x) dbes not become <<1, therihtegration can
still be done, for known e(x). _Since’strong damping implies

Im e -1 =-CK1), we obtain in place of (17)
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Idem eHx) = - @) , ' (18)

where L is the length of the plasma., In a real plasma, when

L~ C?an), we have the important result that the-action transfer is,
in order of magnitude, the same for strong as for weak damping of
the 1ongitudina1 respbﬁse. Thus, for given Kk, the dependence on
KAD
integral is truly independent of v for the model of a linear

is weak; and for KAb(K 1, the dependence vanishes, since the

gradient.

In a simulatioh model, for reasons of economy the slab
thickness L may be smaller than Ln’ and even smaller than the
resonahce width (v/mp)Ln. In that case éppfopriate corrections must
be made in comparing theory and simulation. A typical simulation for
‘beat heating when the density perturbations are linear is shown in
Fig, 4. _

Inserting (17) into (16), we have the result (Eq. (5) of

. Ref, 9}

+

R)/o] -
(19)

1l 5 2 -1 .
- 5 8n kOLnlgo/glin = (L -R-p) 2n[(1 - R)(p

an iﬁplicit equation for the relative action transfer R AJ/Join, ;p
terms of'the input ratio p = Jlin/Join and the input amplitudé' :
[uolin.l (See Fig. 2 of Ref, 9 for a plot, also Fig. 5 here.) -This
result is remarkable not only in its independence 6flthe damping rate
\Y r(and thus of the temperature, the collision rate, and the damping
meéhanism), but alsovin that its dependence on the power parameter

luolin and the scale length Ln is only through their product.
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‘The relation (19) was tested by simulation for the case of
equal input actions (p = 1), corresponding rnghl&‘to maximum transfer
for given fotal power input. The excellent agreement, in the linear
regime, is shown in Fig. 5. )

To test the dependence on |u0|§n end L ‘through their -
‘product only, three runs were made, varying each.bﬁt holding the
product fixed. The agreement is shown also in Fig. 5.

The damping rate v in these simulations was due to Landau
damping of the beat wave. It was chosen to be in the range

1002w to 107t Wy corresponding to kA, between 0.30 and 0.45.

p
IV. CONCLUSION

Wé have described a fully electromagnetic, relafivistic,
fihite—sized particle simulation code. The code is free from bqam—
Cerenkof numerical instability. The region'of pérametér space over
which two light waves can interact with the grid and a plasma drift
to give numerical<instafility is.limited to unphysically short waveQ"
' lengths and large time;steps, We found relativity to be important
when nonlinear eftects are included because individuai particles can
. attaih very large veiocities. ot coufse, for some astropﬁysicai
applications, relativity is essential. 4Finallx;the code was found to
be economical to use, |

We have used the code to study beat heating of.a plasma in
the linear and nonlinear regime of the driven density disturbance.
Steady-state theory was found to bé useful in understanding the_gction

transfer and plasma heating.for small amplitude'electron waves., There

was good quantitative agreement betwéen simulation and theory.
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Fig, 3.

Fig. 4.

FIGURE CAPTIONS
The 1li-dimensions (x,vx,vy) of the code are pictured
schematically. Wéve propagation and.density variation occur
parailel to x, Transverse waves are linearly polarized in
the y—direction; Magnetic fields are parallel to z. The
three-ﬁave interaction is diagrammed.

The equations describing transverse waves and particle

dynamics. are integrated forward in- time ﬁsing a time-centered,

' leap-frog technique. Currents are calculated from charge

locations measured over consecutive time-steps and from
velocities at the half time-steps [Jy = (J; + {;)/2].

Beat heating in an inhomogeneous medium. Because of the
resonance condition, there arises a resonance region h. The
density gradient, described by the scalellength

Ln E (dznno/dz)—l, is parellel to the propagation direction
of waves,

Beat heating in a finite, inhomogeneous medium: (a) the right-
and left-going electromagnetic waves before onsef ofAbeeting;
(b)) (x,vi) phase space after a fairly large amplitude

electron plasma wave has been established.



Fig. 5,

-]l

Relative energy or action depletion (R E AW/W) of the high
frequency wave vs dimensionless parameter (scale iength

X pump strength)‘ 41rk0Ln|uol2/c2 for beat heating in an
inhomogéneous medium. The driven electroh plasma waves are
in/Join = 1 has been

selected. The data points for 4nkoLn|u0[2/c2

small in amplitude. An input ratio Jl

0.5

represent three parameter choices: V ; 4]uo/c|2 = 0,008

= 1g 2 ’ -
and kL =183 [J: 4]u0/c| = 0.010 and kL = 15.2;

0

5
l = 0,012 and kOLn = 13,7, We conclude

and A : 4|u0/c

that it is the combination of scale length kOLn multiplied

by pump strength ]uo/cl2 that determines action transfer.
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United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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