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Abstract

Identifying the reactions that govern a dynamical biological system is a crucial but challeng-

ing task in systems biology. In this work, we present a data-driven method to infer the under-

lying biochemical reaction system governing a set of observed species concentrations over

time. We formulate the problem as a regression over a large, but limited, mass-action con-

strained reaction space and utilize sparse Bayesian inference via the regularized horseshoe

prior to produce robust, interpretable biochemical reaction networks, along with uncertainty

estimates of parameters. The resulting systems of chemical reactions and posteriors inform

the biologist of potentially several reaction systems that can be further investigated. We

demonstrate the method on two examples of recovering the dynamics of an unknown reac-

tion system, to illustrate the benefits of improved accuracy and information obtained.

Author summary

Reconstructing the correlated reactions that govern a system of biochemical species from

observational temporal data is an essential step in understanding many biological systems.

To facilitate this process, we propose a robust, data-driven approach based on a sparse

Bayesian statistical model. Our approach exploits sparse Bayesian priors and an unbiased

observational model to recover a parsimonious, interpretable reaction system from mass-

action relations, utilizing very little user input. On a set of simulated test problems, the

method demonstrates increased robustness and decreased bias at different levels of mea-

surement variability, while also producing interpretable reaction systems and quantifying

uncertainty. As a tool, the approach can be used to flexibly interrogate biological systems

while allowing incorporation of potentially uncertain domain knowledge to improve the

efficiency and identifiability of the problem.

This is a PLOS Computational Biology Methods paper.
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Introduction

Developments in high-throughput experimental methodologies in biology have enabled the

collection of massive amounts of time varying molecular data at small scales. This has resulted

in significant advances in understanding the biochemical networks and mechanisms underly-

ing physiological processes such as gene regulation. Indeed, greater understanding of regula-

tory processes at the single cell level can aid in the development of targeted therapies for

diseases such as cancer [1–3]. A major challenge in this process is the translation of high-

throughput, observational molecular data into analyzable and interpretable reaction networks.

Typically, this is accomplished by utilizing significant biological insights to first define a reac-

tion system, and then calibrating the model based on collected data, which while accurate,

requires substantial time and effort to iterate. An appealing avenue is to utilize data-driven

approaches for systems identification, whereby plausible biochemical reaction networks are

generated and estimated directly from data without the need to initially propose a system.

While recently, many such methods have been developed to infer networks from a wide variety

of different datasets, it remains a challenging statistical and computational task [4]. Most

works of estimating networks typically focus on either reconstructing a network without

assuming any known dynamics due to destructive time series measurements [5–7], or produc-

ing networks that replicate dynamics, but without focusing on interpretability [8–12].

In this work, we are primarily interested on identifying interpretable mass-action biochem-

ical reaction networks using only the observed time series of species concentrations. Expand-

ing upon the problem formulation first proposed as Reactive SINDy in [13], we automatically

enumerate the allowable mass-action reactions given a set of species and a library of ansatz

reactions and utilize advances in sparse Bayesian inference to generate posterior distributions

of interpretable biochemical reaction systems. Compared with Reactive SINDy, our method

provides uncertainty estimates over potential reaction systems, reduces a major source of bias

in the previous method, and produces potentially several interpretable reaction networks. Fur-

thermore, the transparent statistical formulation of the problem allows us to easily incorporate

existing, potentially uncertain, domain knowledge via prior distributions to improve the effi-

ciency and identifiability of the problem.

The remainder of this paper proceeds as follows. In Materials and methods, we describe

mass-action biochemical reaction networks and formulate the problem of inferring these net-

works from observational data. Next, we propose improvements to the existing methodology

and describe the specifics of the proposed model applied to inference of reaction networks. In

Results, we demonstrate how our methodology can be used in two different examples to

retrieve interpretable networks from observational concentration data. We close in Discussion

by noting a few details for usage, detailing some future directions, and mentioning the limita-

tions of our method. All implementations and code can be found at https://github.com/

rmjiang7/bayes_reactive_sindy.

Materials and methods

Mass-action biochemical kinetics

Systems of biochemical species reacting under any number of reaction channels are commonly

modeled dynamically using the framework of chemical kinetics. Specifically, denote XðtÞ 2
RN as the vector of concentrations of each of N species at time t. The evolution of the system

can be modeled using the following set of coupled ordinary differential equations (ODEs)
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formally known as the reaction rate equations:

dX
dt
¼ SfðXÞ; ð1Þ

where S 2 ZN�M
is the stoichiometric matrix with M reactions among N species and f(X) is the

vector of all rate functions.

Although theoretically, f(X) can take the form of any nonlinear function, in this work we

assume that the system follows mass-action kinetics [14] and thus, the reaction rates are pro-

portional to the product of the concentrations of each reactant in the case of multiple reactants,

and proportional to the concentration of the reactant in single reactant reactions.

Network inference for mass-action reaction systems

Suppose we observe a time series of N species concentrations at T discrete times:

X̂ðtjÞ 2 R
N
; j ¼ f0; . . . ;Tg:

Given this data and assuming that the system is governed by up to 2nd-order mass-action

kinetics and the dynamics of Eq (1), we wish to recover a parsimonious system of expressible

reactions that can explain the observed data.

Under these constraints, this problem can be posed as a linear regression, given a library of

ansatz reactions. More specifically, suppose we initially specify a large set of D possible reac-

tions among the N species in our system. Each reaction can be expanded into a stoichiometry s
and a rate function f(X), where the rate function is known due to the assumption of mass-

action rate kinetics. Let Sc 2 ZN×D denote the complete stoichiometric matrix constructed by

stacking all D stoichiometries into a matrix. The reaction rate equations then take the form,

dX
dt
¼ STc

k1f1ðXÞ
k2f2ðXÞ
� � �

kDfDðXÞ

0

B
B
B
B
@

1

C
C
C
C
A
; ð2Þ

where ki> 0 is the unknown rate-constant and fi is simply a product of the reactants for the i-
th reaction. Letting k = [k1, . . ., kD] denote the vector of all of the reaction rates, we aim to esti-

mate k such that, when solved, Eq (2) replicates the observations X̂ at all tj. Many methods

exist to solve these types of problems, such as ridge, LASSO, and Elastic net regression [15–

18].

Although Sc is potentially high dimensional, conditional on the initially specified set of D
reactions, in most situations D over-specifies the possible reactions. Hence, to replicate the

observations, a safe assumption is that most potential reactions do not exist, which is equiva-

lent to setting ki = 0 when the i-th reaction does not contribute to the dynamics of the system.

This assumption can be captured by estimating k using sparse regression methods. A small

reaction system can then be expressed by rewriting the system in terms of only the non-zero

reactions.

Sparse regression methods for estimating dynamical systems from data have been widely

applied in the last few years. More generally, when Eq (1) is generated from polynomial basis

functions rather than ansatz reactions, this becomes Sparse Identification of Nonlinear

Dynamics (SINDy) [19], which has been applied to biological systems [8], though without the

specific aim to recover interpretable reactions. Reactive SINDy, as described above, expands

SINDy by constraining the basis functions to such ansatz mass-action reactions. Both of these
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methods estimate the coefficients k using LASSO regularization, resulting in maximum likeli-

hood networks that do not inform about the uncertainty associated with the particular fits, an

especially important feature when data is sparse and noisy. Reactive SINDy uses finite differ-

ence derivative estimates from observations to transform Eq (2) into a linear regression prob-

lem, which can result in significant bias for estimating networks when measurements are

sparse and noisy, as is often the case in biological systems.

More specifically, using the assumptions of mass-action kinetics and the law of parsimony,

Reactive SINDy solves a mixed LASSO and ridge regression optimization problem. Letting
dX̂
dt ðtiÞ be the derivatives numerically estimated from the observations X̂ðtjÞ via second-order

finite differences, the optimization problem solved is

FðXÞ ¼

k1f1ðXðtjÞÞ
k2f2ðXðtjÞÞ
� � �

kDfDðXðtjÞÞ

0

B
B
B
B
@

1

C
C
C
C
A

k ¼ arg min
k

1

2T
kX̂ � FðXÞk2

F þ alkkk2
þ að1 � lÞkkk2

2

� �

subject to k � 0:

The equivalent statistical model for the LASSO optimization can be summarized as

ki � LaplaceðlÞ;

dX̂
dt
ðtjÞ � Normal STc

k1f1ðXðtjÞÞ
k2f2ðXðtjÞÞ
� � �

kDfDðXðtjÞÞ

0

B
B
B
B
@

1

C
C
C
C
A
; 1

0

B
B
B
B
@

1

C
C
C
C
A
; j ¼ 0; . . . ;T;

ð3Þ

which can also be fit using Bayesian methods to provide uncertainty estimates.

In this work we improve on Reactive SINDy in two key ways. First, we estimate k using the

sparse Bayesian regularized horseshoe prior to obtain uncertainty estimates as well as to intro-

duce a natural way of incorporate existing domain knowledge via prior distributions. Second,

we avoid biased numerical derivative estimates by re-formulating the statistical model in terms

of the solution of the ODE. This better captures the observational model and allows us to

incorporate alternative models of measurement noise. Using recent advances in automatic dif-

ferentiation software for sensitivity analysis of ODE systems [20–23], this can be solved effi-

ciently and provides more accurate solutions, especially in the case of sparsely measured data.

Bayesian reactive SINDy

In this section we introduce the regularized horseshoe prior [24] used in our Bayesian formu-

lation of the Reactive SINDy model and the modified observational model, which better cap-

tures the measurement process and avoids biased, low-order derivative estimates. We

construct the complete stoichiometric matrix Sc using a library of possible mass-action ansatz

reactions and all reaction rates are specified by k as indicated in Eq (2). Details for how we con-

struct a set of ansatz reactions can be found in the S1 Appendix.

Sparse Bayesian regularized horseshoe priors. A challenge in implementing a Bayesian

formulation of this problem is the fact that the LASSO penalization used for sparse parameter

estimation, which can be translated as a statistical model to Eq (3), does not result in sparse

PLOS COMPUTATIONAL BIOLOGY Identification of dynamic biochemical reaction networks using sparse Bayesian methods
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Bayesian posterior distributions. Instead, we adapt the regularized horseshoe prior, an exten-

sion of the standard horseshoe prior [25], which is a drop-in replacement for the LASSO

derived Laplace prior.

Letting N be the number of species, T be the number of observations, and D be the number

of ansatz reactions, the regularized horseshoe prior placed on the reaction coefficients k takes

the form

li � Cauchyþð0; 1Þ;

~li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2l

2

i

c2 þ ðtliÞ
2

s

;

ki � Normal ð0; t ~liÞ; i ¼ 1; . . . ;D:

ð4Þ

This promotes sparse solutions in the following way: each reaction rate ki is given a normal

prior centered around 0 with a standard deviation of τλi, where τ is a global shrinkage parame-

ter shared among all reaction rates and λi is a positive parameter specific to each reaction rate.

The heavy tailed half-Cauchy priors on the individual λi allows for the values to grow

extremely large. This has the following effect:

if ðtliÞ
2
� c2; t ~li ! c

if ðtliÞ
2
� c2; t ~li ! tli:

Thus, if ki is estimated to be non-zero, λi is allowed to become large and ki breaks away from τ
toward a regularized value of c2, which is an estimate of the scale of the non-zero terms. On the

other hand, if ki is estimated to be zero, λi becomes small and ki is shrunken to 0 with an often

very small standard deviation. The horseshoe prior has the effect of placing significant prior

mass towards 0 for all parameters, but allowing for any individual parameter to be non-zero if

there is sufficient evidence to do so. The regularized horseshoe further shrinks non-zero esti-

mates using a Gaussian slab with variance c2, to help when parameters are weakly identified

and to prevent non-zero values from growing too large.

The pivotal global shrinkage parameter τ specifies the scale of the near-zero reaction rates,

which is relevant because, compared to the spike-and-slab prior [26], the regularized horse-

shoe prior is continuous in all parameters, preventing any parameter from becoming exactly 0.

Furthermore, smaller values of τ also result in sparser networks. For our problem, as reaction

rates can often be very small, specifying the scale at which a reaction is considered negligible

can dramatically affect the interpretation and the simulated dynamics.

Following [24], we place a hyper-prior on the term c with distribution

c � Inv-Gamma ða; bÞ:

The c parameter regularizes by essentially placing a N ð0; c2Þ prior on non-zero rates, prevent-

ing them from getting too large. The non-regularized horseshoe is retrieved when c2!1.

The regularized horseshoe prior offers a few distinct advantages compared to other sparse

Bayesian priors. Primarily, the dependency structure formed by introducing the global τ and

the local λi parameters leads to sparser solutions that can borrow information from other reac-

tions. The regularized horseshoe, as a continuous relaxation of the commonly used sparse

Bayesian spike-and-slab prior [26, 27], allows for efficient Bayesian computation using modern

gradient based MCMC samplers such as Hamiltonian Monte Carlo (HMC) [28] or Variational

Inference [29]. This allows it to be implemented in probabilistic programming languages such

as Stan [30], PyMC3 [31], or Pyro [32].
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Observational model. A potentially large source of bias in SINDy and Reactive SINDy as

presented in Eq (3) is the need to first estimate dX̂
dt from observations of the system. This pres-

ents an issue as standard methods of estimating derivatives, such as finite difference methods,

become much less accurate as the time between observations increases, resulting in heavily

biased estimates of k. To correct for this, we modify the observational model as follows:

ZðtjÞ ¼
Z tj

0

STc

k1f1ðZðtÞÞ
k2f2ðZðtÞÞ
� � �

kDfDðZðtÞÞ

0

B
B
B
B
@

1

C
C
C
C
A
dt

X̂ðtjÞ � Log-Normal ðZðtjÞ; sÞ; j ¼ 0; . . . ;T:

Rather than assuming that we observe derivatives of the process, as in the Eq (3), this formula-

tion models that the underlying system follows a latent variable Z(tj), which is the solution of

the ODE. We observe noisy measurements of the underlying system X̂ðtjÞ at times tj. By

directly modeling the observations, there is no need to pre-process the data by estimating

derivatives.

In this work, we also assume that the measured concentrations of each species are corrupted

by log-normal error. This captures both that concentration measurements are strictly positive

and that at higher concentrations, measurements are more variable. In addition, this formula-

tion enables us to easily change the measurement error model to better capture the user’s

beliefs, without modifying the regularized horseshoe prior for inferring the network. As an

example, a Poisson error model, such as that explained in [33], can be applied under the

assumption that measured values are positive and discrete, and that measurements at some

time tj are distributed with mean and variance of Z(tj). The use of MCMC for sampling enables

the observational model to be configured based on the experimental setup as long as the likeli-

hood remains tractable.

The use of MCMC for sampling enables the observational model to be configured based on

the experimental setup as long as the likelihood remains tractable. For biochemical reaction

networks, PTLasso [34] apply a similar latent observation model, but with the Laplace prior to

the parameters of a biochemical reaction network, further using parallel tempering MCMC to

obtain sparse Bayesian estimates on models of up to a dozen different reactions.

The latent variable formulation also allows for the realistic scenario of observing only some

of the species in the system. Suppose that in a system consisting of 5 species, we can only

observe species n = {1, 2}. Then the observational model can be easily modified to

ZðtjÞ ¼
Z tj

0

STc

k1f1ðZðtÞÞ
k2f2ðZðtÞÞ
� � �

kDfDðZðtÞÞ

0

B
B
B
B
@

1

C
C
C
C
A
dt

X̂nðtjÞ � Log-Normal ðZnðtjÞ; sÞ; j ¼ 0; . . . ;T; n ¼ f1; 2g:

ð5Þ

This is possible because the latent trajectory Z does not directly depend on the observed values

X̂ . In comparison, for Eq (3) used in Reactive SINDy and SINDy, the regression directly

depends on the observed values, which thus requires complete observations of the system.

PLOS COMPUTATIONAL BIOLOGY Identification of dynamic biochemical reaction networks using sparse Bayesian methods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009830 January 31, 2022 6 / 21

https://doi.org/10.1371/journal.pcbi.1009830


Statistical model and estimation. Combining the regularized horseshoe prior and the

latent variable observational model, the complete hierarchical statistical model is specified by

li � Cauchyþð0; 1Þ;

~li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2l

2

i

c2 þ ðtliÞ
2

s

;

ki � Normal ð0; t ~liÞ; i ¼ 1; . . . ;D

ZðtjÞ ¼
Z tj

0

STc

k1f1ðZðtÞÞ
k2f2ðZðtÞÞ
� � �

kDfDðZðtÞÞ

0

B
B
B
B
@

1

C
C
C
C
A
dt

X̂ðtjÞ � Log-Normal ðZðtjÞ; sÞ:

ð6Þ

The algorithm for network identification is then as follows. First, we construct the complete stoi-

chiometric matrix, Sc, and the set of linear and nonlinear reaction rate functions f(X) implied by

mass-action kinetics. In our examples, the library of reactions consists of a large set of zero, first,

and second order reactions types between all species modeled, which is automatically defined by

our implementation. We note here that our method of generating possible reactions is intended

to be general to demonstrate the method. In practice, the set of possible reactions is something

the modeler can and should modify according to the constraints of the problem.

Provided with Sc and f(X), the sparse Bayesian posterior distribution pðkjX̂Þ is approxi-

mated from the above statistical model using the No-U-Turns [35] sampler implemented in

Stan [30].

As the regularized horseshoe is continuous in all parameters, no rate parameter will be set

exactly to zero. Thus to decide whether a reaction is to be removed from the system, we employ

the pruning technique adopted from [36]. Specifically, we estimate

Pðt ~li < dÞ > p0; i ¼ 1; . . . ;D

using the posterior distribution. This can be roughly interpreted as pruning all reactions where

the posterior probability that the scale of ki is less than δ is sufficiently large. This metric is sen-

sible because rates which are shrunken towards 0 in the regularized horseshoe are scaled by

τλi. This leaves two tuning hyperparameters, δ and p0. These can be calibrated for a model by

choosing the threshold such that, allowing more reactions does not improve the model’s fit to

the data, while removing reactions degrades the fit. In our examples, we find that δ = 1e−3 and

p0 = 0.90 work well for these models.

The complete implementation and all replicating results can be found at https://github.

com/rmjiang7/bayes_reactive_sindy.

Results

We demonstrate our method on two synthetic examples where data is first generated from a

known system of reactions and our method is used to recover the underlying network from a

relatively large set of possible reactions. In each example, results are compared to those of

Reactive SINDy, to show the ability of our model to obtain a network, with uncertainty esti-

mates, that replicates the observations in addition to demonstrating the superior performance

in the case of sparse observations due to the modified observational model. In the second,

larger problem, we demonstrate the ability of our method to discover multiple small reaction

PLOS COMPUTATIONAL BIOLOGY Identification of dynamic biochemical reaction networks using sparse Bayesian methods
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systems that can capture the observations and discuss identifiability issues. Further descrip-

tions and more precise model specifications can be found in the S1 Appendix.

Lotka-Volterra

The Lotka-Volterra predator-prey system is a simple but informative example of a non-linear

system with oscillatory dynamics. Although not strictly a biochemical reaction system, we pro-

vide it as an example for evaluating the model formulation and method. Briefly, the Lotka-Vol-

terra system models the interaction dynamics of two species X≔ {P, Y} where P is the

predator and Y is the prey. This can be described using the following reactions:

Y !
k1

2Y

P þ Y !
k2

2P

P !
k3
�;

which corresponds to the following stoichiometric matrix and rate vectors under mass-action

kinetics,

S ¼

0 1

1 0

0 � 1

0

B
B
B
@

1

C
C
C
A
; fðXÞ ¼

k1½Y�

k2½P�½Y�

k3½P�

0

B
B
B
@

1

C
C
C
A
:

With k1 = 1, k2 = 0.01, k3 = 0.3 and initial conditions X(t0)≔ {50, 100}, this gives rise to stable

oscillations.

Data is generated by solving the above system of reactions and perturbing with Log-Nor-

mal(0, 0.2) noise at fixed times to simulate a noisy measurement process. The reactions com-

prising the complete stoichiometric matrix Sc from which we will recover the underlying

system is provided in Table 1 and adopted from [13]. In total, there are 16 possible reactions in

Table 1. Library of ansatz reactions for the Lotka-Voltera model.

Reaction Index Allowed Reactions True Rate Constant

0
2X!

k1
0

k1 = 0

1
2Y!

k2
0

k2 = 0

2 X!
k3 2X k3 = 1.0

3 Xþ Y!
k4 2Y k4 = 0.01

4 X!
k5 0 k5 = 0.3

5 X þ Y!
k6

2X k6 = 0

6 X!
k7

0
k7 = 0

7
2Y!

k8 Y k8 = 0

8 Y!
k9

2Y k9 = 0

9
2X!

k10 X k10 = 0

10 X þ Y!
k11 X k11 = 0

11 X þ Y!
k12 Y k12 = 0

12
2X!

k13 Y k13 = 0

13 X!
k14 Y k14 = 0

14 Y!
k15 X k15 = 0

15 X!
k16

2Y k16 = 0

https://doi.org/10.1371/journal.pcbi.1009830.t001
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this system, three of which are non-zero in the original system. We generate data at three dif-

ferent measurement frequencies dt = {0.2, 1, 2} between t = [0, 15] and estimate k separately

for each using the same Sc. Trajectories of the two species are shown in Fig 1. For estimation

from the regularized horseshoe model, we set τ = 1e−8 and estimate c along with the other

parameters by placing the prior c* Inv- Gamma(4, 4). A total of 4000 samples are drawn

using four MCMC chains. We note that while we use MCMC for accuracy and demonstration

purposes, variational inference can also be used to obtain fast approximate solutions and is

supported in our implementations. In our experiments, we found that the variational approxi-

mations were generally reliable, though this largely depends on the problem.

In Fig 2a, we show the posterior credible intervals for the recovered rate constants from each

of the three measurement frequencies, which are heavily centered around the true values for all

reactions. Fig 2b shows the point estimates obtained by using Reactive SINDy under equivalent

experimental setups. Notably, both methods can recover the reaction system with frequent mea-

surements but Reactive SINDy degrades considerably as measurements become more sparse.

More specifically, the difference in the results demonstrates the bias introduced by estimat-

ing derivatives. At observation intervals dt = 1.0 and dt = 2.0, too much information is lost

Fig 1. Lotka-Volterra observation data. Simulated data used for network identification. Log-Normal noise is added

to the true trajectory, and measurement frequency is changed to show the uncertainty in posteriors.

https://doi.org/10.1371/journal.pcbi.1009830.g001

Fig 2. Lotka-Volterra estimated reactions. (a) Estimated parameters using Eq (6). Reactions correspond to the reactions specified

in Table 1 (b) Estimated parameters using Reactive SINDy at different measurement frequencies as well as using noise-less

measurements.

https://doi.org/10.1371/journal.pcbi.1009830.g002
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from estimating derivatives coupled with measurement noise to obtain the correct system.

Fig 3 shows the differences in inferred dynamics along with predictive uncertainty intervals

from the networks recovered using our observational model, (a), and Reactive SINDy, (b).

Our model remains in phase with the observations while the networks derived from using esti-

mated derivatives demonstrate a systematic bias away from the true reaction system, even in

the case of dt = 0.2 due to measurement noise.

With the Bayesian treatment of the problem, we can also quantify uncertainty in the non-

zero reaction rates. This informs us of the plausible range of reaction rates, given the observed

data, and can be useful to detect which parameters the model is able to identify with evidence

of correlated reactions. In Fig 4, the posterior distributions of the non-zero estimated parame-

ters are shown, demonstrating that as we increase measurement frequency, uncertainty

decreases. Furthermore, in this system there is mild correlation between the reaction rates,

indicating that they vary together to replicate the oscillating behavior.

Partially observed species. In the previous example, we assumed that the species were

completely observed. However, under the latent variable formulation, this is not strictly

required. In this section, we demonstrate inference of the network for the identifiable Lotka-

Volterra example, when only the prey species, Y, is observed. In this case, the statistical obser-

vational model can be changed to,

ZðtjÞ ¼
Z tj

0

STc

k1f1ðZðtÞÞ
k2f2ðZðtÞÞ
� � �

kDfDðZðtÞÞ

0

B
B
B
B
@

1

C
C
C
C
A
dt

Ŷ ðtjÞ � Log-Normal ðZ2ðtjÞ; sÞ; j ¼ 0; . . . ;T;

ð7Þ

where we apply the likelihood only to the observations of Y.

Fig 5 shows the simulated trajectories and posterior distributions obtained by using our

model under this scenario. Compared to the situation where both species are observed, the

Fig 3. Reconstructed trajectories. (a) Using posterior samples from Eq (6). Even at smaller observation frequencies, the

observed data is accurately captured, though (as expected) with greater uncertainty. (b) As Reactive SINDy estimates derivatives,

errors in the numerical methods lead to large deviations in the reconstructed trajectories as sampling frequency and noise

increase. Although a single trajectory at dt = 0.2 may capture the oscillating behavior, it is clearly biased away from the true

observations.

https://doi.org/10.1371/journal.pcbi.1009830.g003
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uncertainty is significantly higher for the same reactions because the information gained from

observing P is lost. However, the method is still able to retrieve the correct networks, as the

oscillating regime for this problem is generally unique.

Sums of observed species. Similar to above, the latent variable formulation we have pre-

sented allows for modeling of the situation where a sum of species concentrations is observed,

but not any of the individual species. In this case, for the Lokta-Volterra system, letting W = X
+ Y be the observed sum of X and Y, the statistical model can be stated as

ZðtjÞ ¼
Z tj

0

STc

k1f1ðZðtÞÞ
k2f2ðZðtÞÞ
� � �

kDfDðZðtÞÞ

0

B
B
B
B
@

1

C
C
C
C
A
dt

ŴðtjÞ � Log-Normal ðZ1ðtjÞ þ Z2ðtjÞ; sÞ; j ¼ 0; . . . ;T;

ð8Þ

Fig 4. Lotka-Volterra: Posterior distributions of non-zero reactions using the proposed model. As expected,

uncertainty in the parameters decreases as the measurement frequency decreases, but all are concentrated in relatively

the same area. Only a single network is consistently identified given this data, indicating that identifiabiltiy is not a

problem for this system.

https://doi.org/10.1371/journal.pcbi.1009830.g004
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Fig 6 shows that our model under only additive observations can still recover the correct

network under this highly identifiable model. Similar to the previous case, uncertainties in the

rate constants are, as expected, larger.

Prokaryotic auto-regulation

To evaluate the method on a larger reaction system with more possible reactions, we explore a

simple synthetic model of auto-regulation of a protein P by a gene g in a prokaryotic cell [37].

Fig 5. Identified trajectories and posterior from partial observations. The true network can still be captured using only observations of Y
however the credible intervals are significantly higher due to the loss of observations of P.

https://doi.org/10.1371/journal.pcbi.1009830.g005

Fig 6. Identified trajectories and posterior from additive. Similar to the case of observing only one Y, the true network can still be recovered in

this example however credible intervals are significantly larger.

https://doi.org/10.1371/journal.pcbi.1009830.g006
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The model is described by the following reaction system:

g þ P2 !
k1 gP2 ðRepressionÞ

gP2 !
k2 g þ P2

g !
k3 g þ r ðTranscriptionÞ

r !
k4 r þ P ðTranslationÞ

2P !
k5 P2 ðDimerizationÞ

P2 !
k6

2P

r !
k7
� ðmRNA DegradationÞ

P !
k8
� ðProtein DegradationÞ;

where gP2 is the bound gene and r is the mRNA of protein P. Protein P represses its own tran-

scription by binding to an available gene location. Denoting X≔ {g, P2, gP2, r, P}, we generate

data from the system with parameters k1 = 0.5, k2 = 1, k3 = 0.15, k4 = 1, k5 = 0.5, k6 = 0.5, k7 =

1.5, k8 = 0.3 and initial conditions X(t0)≔ {20, 20, 20, 20, 20, 20} at dt = 0.05 for times in the

interval [0, 0.5]. Furthermore, Log-Normal(0, 0.07) noise is added to the observations. At

these parameter values, g and P decay rapidly, thus a small dt is required to provide sufficient

information to the model. True trajectories and observations are shown in Fig 7.

Using our library of ansatz reactions, we construct a complete stoichiometric matrix Sc of

260 possible reactions. The exact reactions included can be explored in the code repository.

For estimation from the regularized horseshoe model in this problem, we set τ = 1e−6 and esti-

mate c along with the other parameters by setting c* Inv- Gamma(5, 25). We run several

MCMC chains to obtain results however only report the best two networks obtained for each

experiment.

Including known reactions. To replicate the more common situation where the biologist

has prior domain knowledge about the system under study, we explored the scenario where

the first 4 reactions and rate parameters, k1, k2, k3, and k4, are known with confidence and the

aim is to retrieve a system of reactions which replicates the observations, given these four

known reactions. Below, we present the results of this setting to demonstrate a realistic situa-

tion where partial knowledge about system. The same experiment when no reactions are

known is presented in the S1 Appendix with similar results though converging to different

sparse networks.

Fig 7. Prokaryotic auto-regulation observation data. Simulated data used for the prokaryotic auto-regulation model.

Log-normal observational noise is added to the true trajectory.

https://doi.org/10.1371/journal.pcbi.1009830.g007
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Table 2 lists the two selected networks obtained from MCMC chains with the rate constants

set to the posterior median. Notably, each chain converges to different reaction pathways, nei-

ther of which are the true generating network. We note that, though we only present two net-

works here, our method was capable of producing several different reaction pathways with

roughly the same number of reactions also capable of capturing the data.

As Fig 8 demonstrates, although the reaction networks are different from the ground truth,

the dynamics produced from each inferred reaction system appear plausible, especially given

the noise present in data. Fig 9 shows the posterior distributions of the non-zero reactions for

both networks provided by our Bayesian approach. The marginals for each reaction rate in

both cases are relatively tight, indicating that the reactions are well identified within in each

discovered mode.

Reactive SINDy is also capable of inferring a network, however it is considerably less sparse

and with larger reaction rates than those from our method. Under a threshold of 1e−2, selected

such that thresholding larger reactions changes the dynamics, the best estimated network was

comprised of 24 total reactions. The full network is detailed in the S1 Appendix. As Fig 8

Table 2. Selected recovered networks for prokaryotic auto-regulation system. The first 4 reactions are assumed to

be known and the remaining reactions are to be inferred by the method.

True Network Network 1 Network 2

gþ P2!
0:5gP2 gþ P2!

0:5 gP2 gþ P2!
0:5 gP2

gP2!
1 gþ P2 gP2!

1 gþ P2 gP2!
1 gþ P2

g!0:15 gþ r g!0:15 gþ r g!0:15 gþ r

r!1 rþ P r!1 rþ P r!1 rþ P

2P!0:5 P2 2r!0:05 P 2P!0:5 P2

P2!
0:5

2P 2P!0:26 gP2 2P2!
0:06 P

r!1:5 � P2 þ gP2!
0:04 P gP2 þ r!0:05 P2 þ gP2

P!0:3 � P2 þ P!0:4 2P2

https://doi.org/10.1371/journal.pcbi.1009830.t002

Fig 8. Dynamics from the identified networks. The dynamics from both recovered networks are different from the

truth and each other, but still manage to produce plausible dynamics when compared to the noisy data. This points to

an unidentifiability in the system, caused by noise in the data and structural identifiability issues.

https://doi.org/10.1371/journal.pcbi.1009830.g008
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demonstrates, though, the replicated trajectory is still consistent with the observations. In this

example, the scale of the observed concentrations and the small observation frequency provide

well estimated derivatives, resulting in minimal bias for the reactive SINDy method. Under

these circumstances, it may be preferable to utilize Reactive SINDy as it can be run signifi-

cantly faster than our method while still providing reasonable results as shown here.

That multiple networks are obtained by different chains in this problem is largely due to the

facts that our complete stoichiometric matrix constructed from the above process does not

restrict many reactions. In this, an iterative procedure can be applied, where the recovered net-

works can be examined by the user for plausibility and implausible reactions can be excluded

in future runs to converge to a different reaction system. Realistically, we expect that the com-

plete stoichiometric matrix will often be constructed in a more careful manner so as to elimi-

nate many of the implausible reactions before the method is used. We discuss the

identifiability issue in the next section. Interestingly, the inferred networks converge largely to

2nd-order reactions to describe the system. While from a combinatorial perspective, this is not

surprising considering that the ansatz library contains significantly more 2nd-order reactions

than 1st-order, a possibility is to add a bias to the system for 1st-order reactions via a prior

weight on certain reactions.

Discussion

Observational model

The latent variable formulation for the observational model provides robustness when obser-

vations are noisy or observations are not made for all of the species. In these situations, it is

valid and desirable to use this model as it takes into account the true measurement process as

demonstrated in the Lotka-Volterra example. However, this comes at a substantial computa-

tional cost. In some situations, when all of the species are observed and the measurements are

not too noisy, simply using the Bayesian Regularized Horseshoe along with estimated deriva-

tives as an extension to Reactive SINDy is sufficient and significantly faster to identify models.

Fig 9. Posterior distributions over non-zero reaction rates. Pair plots of the two distinct reaction networks inferred by the model. Reaction

rates within each network exhibit are relatively well determined. This indicates a distinct multi-modality or unidentifiability in the problem.

https://doi.org/10.1371/journal.pcbi.1009830.g009
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The model for this is:

li � Cauchyþð0; 1Þ;

~li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2l

2

i

c2 þ ðtliÞ
2

s

;

ki � Normal ð0; t ~li Þ; i ¼ 1; . . . ;D:

dX̂
dt
ðtjÞ � Normal STc

k1f1ðXðtjÞÞ
k2f2ðXðtjÞÞ
� � �

kDfDðXðtjÞÞ

0

B
B
B
B
@

1

C
C
C
C
A
; 1

0

B
B
B
B
@

1

C
C
C
C
A
; j ¼ 0; . . . ;T;

ð9Þ

where dX̂
dt is estimated numerically as previously discussed. This avoids the need to use an ODE

solver and can provide Bayesian sparsity estimates similar to PTLasso [34]. We suggest that

this method be used initially as it can often result in reasonable networks significantly faster.

Identifiability

A major problem in the identification of reaction systems is the possibility of multiple struc-

tural networks which can produce nearly identical results, especially when data is limited and

noisy. As multiple definitions of the unidentifiability problem can be found in the literature, in

our work, we are referring to the case where different dynamic networks with different param-

eterizations and equations can yield indistinguishable outputs and thus cannot be identified

from the data given. While the sparsity priors used in this paper aim to resolve this situation

by biasing estimates toward systems with fewer reactions, this remains an issue as multiple

structural pathways may still exist with a very similar number of reactions. Immediately, this

issue can be somewhat relaxed in a few ways.

First, constraining the allowed reactions will naturally bias the solutions away from certain

pathways. However, this requires significant domain knowledge of the species or the system

under observation. The work of Tuza et al. [18] presents one possible way to restrict the reac-

tion basis to make the problem more identifiable while also using the LASSO with estimated

derivatives. Another possibility would be to first pre-process the dictionary of functions to

eliminate the unidentifiable graphs aided by the concept of linearly conjugate reaction systems

such as demonstrated in [38]. Further exploration in this direction is needed as their algorithm

focuses on expanding a known reaction system into it’s equivalents while we do not know the

reaction graph at all. This can potentially automatically eliminate the structural unidentifiabil-

ities in the problem before inferring the system. An alternative use of the method o [38] would

be to retrieve the set of unidentifiable graphs from the reaction systems inferred from our

method. This would simultaneously serve as an indication of the difficulty of the inference

problem as well as potentially allow the user to prune reactions based on the whole set of

unidentifiable graphs. An interesting extension in this direction would be to use recent

advances in Machine Learning (ML) to search the literature and generate a reasonable set of

reactions given the species involved in the system [39, 40].

Alternatively, without introducing any domain knowledge, multiple MCMC chains can be

used to explore all of the different networks. As each chain is trivially parallelizable, massive

computational power can help explore the space more efficiently. Starting a large number of

chains at different initial points will allow the chains to converge to different modalities and

present it to the user as is in the case of the Prokaryotic Auto-regulation model above. A user

can prune implausible reaction networks and re-run the model to converge to better solutions.
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The use of ML techniques such as cross-validation on a hold-out test set to automatically rank

networks based on predictive accuracy [41] could be useful but limitations in the amount of

data may pose a problem. Another direction that may be useful to aid in resolving unidentifi-

abilities is to use simulations of the retrieved networks to understand where they may deviate.

If they are not structurally unidentifiable and identical everywhere, this may help to design fur-

ther experiments and measurement methods to identify competing networks using new data.

As explored in Reactive SINDy, the incorporation of more data such as trajectories from

multiple initial conditions can also aid in improving the identifiabiltiy of the process. Intui-

tively, this can be relevant in the case where certain dynamics are only present at certain con-

centration levels. In this case, a straightforward modification to the observational model where

L independent trajectories are observed could be stated as follows,

ZðtjÞ ¼
Z tj

0

STc

k1f1ðZðtÞÞ
k2f2ðZðtÞÞ
� � �

kDfDðZðtÞÞ

0

B
B
B
B
@

1

C
C
C
C
A
dt

X̂l ðtjÞ � Log-NormalðZðtjÞ; sÞ; j ¼ 0; . . . ;T l ¼ 1; . . . ; L;

where X̂l ðtjÞ refers to the observed species concentrations at time tj for the l-th trajectory.

Future directions & limitations

Scaling. As the number of species grows, the number of possible reactions grows combi-

natorially. This poses a significant issue computationally, as it results in a large search space for

reactions and possibly further identifiability issues as demonstrated above. The scaling issue

limits the practical applicability of the method to systems with a small number of active spe-

cies, which we roughly estimate to be<20 based on our experiments and the amount of time

that they take. While a larger set is technically possible, the computational burden may be too

great to obtain results in a reasonable amount of time. One possibility is to run the method on

smaller subsets of reactions to prune reactions in a sequential procedure. However, this may

lead to bias issues as combining the estimates from different subsets is a non-trivial problem,

especially if dealing with partial posterior distributions. Practically, biological domain knowl-

edge can substantially help here in limiting the allowed reactions in the system or specifying

known reactions as in Example 2.

Computationally, the latent variable approach with Bayesian Inference is significantly more

expensive than the approach used by reactive SINDy. A large part of this is the need to com-

pute the sensitivities of the ODE system to obtain efficient sampling. In our experiments, the

auto regulatory network with 260 reactions took approximately 4 hours of time on a M1 Apple

ARM processor using our approach while roughly 1.5 hours to perform a large grid search

using reactive SINDy. We find that this difficulty generally scales as a function of the number

of data points in addition to the number of possible reactions. A possibility on this end is to

utilize Variational Inference to speed up the inference component as presented in [36]. Fur-

thermore, there are a few different methods for computing the sensitivities of ODE systems as

well as a variety of different ODE solvers [22] that may potentially offer speedups for these

types of problems. For our experiments we employ the rk45 solver and a forward sensitivity

solver as implemented by Stan.

Hyper-parameter selection of τ. Selection of τ determines the level of sparsity of these

networks and, in our experience, is a pivotal hyperparameter to tune when using the horseshoe

prior. Generally, we find that smaller values of τ will force the near-zero reaction rates to
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smaller values however, this typically leads to a significant decrease in computational efficiency

when estimating the networks. For this reason, through our experiments and set τ to a small

enough value such that the above pruning procedure removes a large enough set of reactions

while maintaining the dynamics.

Further work exploring how to properly tune and select τ in a more interpretable way for

reaction network inference problems is needed. A common strategy employed in other models

is to place the prior τ* Cauchy+(0, τ0) to allow the data to adjust τ [42], however this needs to

be further explored in the context of the horseshoe for systems of differential equations. For

linear regression models, Piironen et al. [24] propose a way to parameterize τ0 as,

t0 ¼
m0s

ðD � m0Þ
ffiffiffiffiffiffiffiffi
NM
p ;

where m0 can be derived as a guess for the effective non-zero coefficients and σ is the measure-

ment noise, however our models deviate from linear regression and thus the same interpreta-

tions do not hold.

A common concern with Bayesian methods is whether the prior can be overcome with suf-

ficient data. While in our experience, the utilized horseshoe priors are weakly informative, and

indeed can be overcome with sufficient data to obtain the true network, however more rigor-

ous study needs to be done for this. The particular case study demonstrated by Golchi et al.

[43] offers good insight into the strength and importance of priors in the context of ODEs

though further investigation needs to be done with respect our model and for network

inference.

Stochastic models. Many biochemical reaction systems exhibit intrinsic stochasticity. In

these situations, Eq (1) no longer sufficiently captures the dynamics of X(t) and the evolution

of the system is better described using a stochastic process. While mass-action kinetics can still

be applied, they now specify reaction propensities. To accommodate this, Eq (5) can be modi-

fied from the observational ODE model,

ZðtjÞ � PðZðtjÞjZðtj� 1Þ; STc ; kÞ

X̂ ðtjÞ � PðXjZðtjÞÞ; j ¼ 0; . . . ;T:

where the trajectory Z comes from the stochastic process as specified by [44] while the regular-

ized horseshoe and Sc remain as previously defined. However, the significant challenge here is

that the posterior distribution becomes intractable due to the intractable likelihood term

PðZðtjÞjZðtj� 1; STc ; kÞÞ, which corresponds to the solution of the chemical master equation [45].

This prevents the application of standard efficient Bayesian inference methods, which are

heavily reliant on tractable likelihoods.

While there is a growing class of likelihood-free Bayesian inference methods [46] that can

be applied to stochastic biochemical reaction networks, they are known to scale incredibly

poorly to high dimensional parameter spaces. This makes it quite challenging to utilize with

our method of network inference, which introduces a new parameter for each ansatz reaction.

A possibility is to instead use stochastic approximations to the model, such as the Chemical

Langevin Equation or the Linear Noise Approximation, to capture some intrinsic stochasticity,

but also provide much more tractable likelihoods [44, 47, 48].

Conclusion

In this work, we have presented a method to recover a parsimonious system of interpretable

mass-action reactions directly from observations of species concentrations over time.
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Improving on the formulation presented by Reactive SINDy, we have modified the method via

the Bayesian regularized horseshoe prior and by adapting the model as to not require deriva-

tive estimates. Our experiments show that, when identifiable, our modifications are able to

recover the underlying system with uncertainty estimates from the Bayesian formulation even

in sparse data scenarios. Alternatively, when unidentifiable, we present multiple sparse reac-

tion networks which can reasonably explain the results and upon which a biologists can

iterate.

Supporting information

S1 Appendix. Implementation specifics and additional experimental details and results.

(PDF)

Author Contributions

Conceptualization: Richard Jiang, Fredrik Wrede.

Formal analysis: Richard Jiang.

Funding acquisition: Andreas Hellander, Linda Petzold.

Investigation: Richard Jiang.

Methodology: Richard Jiang.

Project administration: Andreas Hellander, Linda Petzold.

Software: Richard Jiang.

Supervision: Andreas Hellander, Linda Petzold.

Validation: Richard Jiang, Prashant Singh, Fredrik Wrede, Andreas Hellander, Linda Petzold.

Visualization: Richard Jiang.

Writing – original draft: Richard Jiang.

Writing – review & editing: Richard Jiang, Prashant Singh, Fredrik Wrede, Andreas Hellan-

der, Linda Petzold.

References
1. Abramovitch R, Tavor E, Jacob-Hirsch J, Zeira E, Amariglio N, Pappo O, et al. A pivotal role of cyclic

AMP-responsive element binding protein in tumor progression. Cancer research. 2004; 64(4):1338–

1346. https://doi.org/10.1158/0008-5472.CAN-03-2089 PMID: 14973073

2. Perez OD, Krutzik PO, Nolan GP. Flow cytometric analysis of kinase signaling cascades. In: Flow

Cytometry Protocols. Springer; 2004. p. 67–94.

3. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an

individual by massively parallel DNA sequencing. nature. 2008; 452(7189):872–876. https://doi.org/10.

1038/nature06884 PMID: 18421352

4. Chen S, Mar JC. Evaluating methods of inferring gene regulatory networks highlights their lack of perfor-

mance for single cell gene expression data. BMC bioinformatics. 2018; 19(1):1–21. https://doi.org/10.

1186/s12859-018-2217-z PMID: 29914350

5. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: an algo-

rithm for the reconstruction of gene regulatory networks in a mammalian cellular context. In: BMC bioin-

formatics. vol. 7. Springer; 2006. p. 1–15.

6. Leday GG, De Gunst MC, Kpogbezan GB, Van der Vaart AW, Van Wieringen WN, Van De Wiel MA.

Gene network reconstruction using global-local shrinkage priors. The annals of applied statistics. 2017;

11(1):41. https://doi.org/10.1214/16-AOAS990 PMID: 28408966

PLOS COMPUTATIONAL BIOLOGY Identification of dynamic biochemical reaction networks using sparse Bayesian methods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009830 January 31, 2022 19 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009830.s001
https://doi.org/10.1158/0008-5472.CAN-03-2089
http://www.ncbi.nlm.nih.gov/pubmed/14973073
https://doi.org/10.1038/nature06884
https://doi.org/10.1038/nature06884
http://www.ncbi.nlm.nih.gov/pubmed/18421352
https://doi.org/10.1186/s12859-018-2217-z
https://doi.org/10.1186/s12859-018-2217-z
http://www.ncbi.nlm.nih.gov/pubmed/29914350
https://doi.org/10.1214/16-AOAS990
http://www.ncbi.nlm.nih.gov/pubmed/28408966
https://doi.org/10.1371/journal.pcbi.1009830


7. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data

using tree-based methods. PloS one. 2010; 5(9):1–10. https://doi.org/10.1371/journal.pone.0012776

PMID: 20927193

8. Mangan NM, Brunton SL, Proctor JL, Kutz JN. Inferring biological networks by sparse identification of

nonlinear dynamics. IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

2016; 2(1):52–63. https://doi.org/10.1109/TMBMC.2016.2633265

9. Willis MJ, von Stosch M. Inference of chemical reaction networks using mixed integer linear program-

ming. Computers & Chemical Engineering. 2016; 90:31–43. https://doi.org/10.1016/j.compchemeng.

2016.04.019
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