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Linguistic structure is an evolutionary trade-off between simplicity and
expressivity

Kenny Smith (kenny @ling.ed.ac.uk), Monica Tamariz & Simon Kirby
Language Evolution and Computation Research Unit, School of Philosophy, Psychology & Language Sciences,
University of Edinburgh, Dugald Stewart Building, 3 Charles Street, Edinburgh, EH8 9AD, UK

Abstract

Language exhibits structure: a species-unique system for ex-
pressing complex meanings using complex forms. We present
a review of modelling and experimental literature on the evo-
lution of structure which suggests that structure is a cultural
adaptation in response to pressure for expressivity (arising dur-
ing communication) and compressibility (arising during learn-
ing), and test this hypothesis using a new Bayesian iterated
learning model. We conclude that linguistic structure can and
should be explained as a consequence of cultural evolution in
response to these two pressures.

Keywords: language; structure; cultural evolution; learning;
communication

Introduction

Human language is unique among the communication sys-
tems of the natural world in that it is exhibits a rich combina-
torial and compositional structure: language provides a gen-
erative system for productively combining meaningless ele-
ments (e.g. speech sounds) to form meaning-bearing units
(morphemes), which are further recombined to yield com-
plex units (phrases) whose meaning is derived in a predictable
manner from the meaning of their component parts and their
manner of composition. This allows us massive expressive
potential: at least at a first approximation, anything you can
think you can express in language. No other species has a
communication system providing anything approaching this
expressive power: why do humans?

One explanation for the presence of structure' in human
language appeals to biological evolution under natural selec-
tion (Pinker & Bloom, 1990): language is fundamentally a
biological trait, being underpinned by some innate language-
specific apparatus; the ability to communicate propositions
which a structured language provides is adaptive, since it
facilitates social interaction and ultimately increases fitness;
therefore, structure in language represents a biological adap-
tation to facilitate communication. A second account explains
structure in language as a consequence of cultural, rather than
biological, evolution (Christiansen & Chater, 2008). Rather
than language structure reflecting an evolved domain-specific
learning apparatus, the idea is that languages have adapted
over repeated episodes of learning and production (a process
sometimes called iterated learning) in response to weaker,
domain-general constraints arising from the biases of lan-
guage learners. We have previously termed this evolutionary
process cultural selection for learnability (Brighton, Kirby,
& Smith, 2005). A range of models and experiments show

'We use the term structure as a shorthand for combinatoriality
and/or compositionality.

that cultural selection for learnability leads to the evolution
of structure, under certain assumptions about the nature of
transmission and the biases of language learners. Under a
strong interpretation of this account, language’s function for
communication could be seen as an epiphenomenon: struc-
tured language provides a powerful medium for communica-
tion, but language structure is not ‘for’ communication.

Here we present a new model of iterated learning, moti-
vated by recent experimental work, which goes some way to
reconcile these two viewpoints. We draw from the biologi-
cal account the insight that the alignment between language’s
apparent function as a system for expressing propositions and
its structure, tailor-made for just such a purpose, is unlikely
to be a fortuitous coincidence. We draw from cultural evo-
lutionary account two insights: 1) biological evolution is not
the only evolutionary process which might act to shape lan-
guage: cultural evolution, a necessary consequence of the fact
that language is socially learned, is a second such mechanism;
2) selection for learnability will impact on language during its
transmission. This model suggests that structure arises from
cultural evolution when language is under pressure to be ex-
pressive and learnable: pressure for expressivity arises from
language use in communication, language learning by naive
individuals introduces a pressure for simplicity arising from
domain-general preferences for compressibility in learning.
Crucially, both must be in play: pressure for expressivity or
simplicity alone does not lead to structure. Structure in lan-
guage is a linguistic adaptation, not a biological adaptation,
in response to competing pressures for expressivity and learn-
ability (Kirby, Cornish, & Smith, 2008; Steels, 2012).

Cultural evolution of structure: previous work

Models of the cultural evolution of linguistic structure typ-
ically emphasise the role of learnability constraints in driv-
ing the evolution of compositionality. Specifically, language
is under pressure to be compressible: to allow the forma-
tion of compressed mental representations, i.e. simple gram-
mars. This pressure for compressibility is inherent in learn-
ing (Chater & Vitanyi, 2003), and can be amplified by other
constraints acting on language transmission (e.g. the mis-
match between the infinite expressivity of languages and the
finite set of data from which such languages must be learned).
Learning and transmission therefore favour languages which
admit to compressed representations, i.e. which permit gen-
eralisations. Recursive compositionality is one such general-
isation (e.g. Steels, 1998; Kirby, 2002; Brighton, Smith, &
Kirby, 2005), and therefore represents an adaptation by lan-
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guage in response to pressures inherent in transmission and
learning. However, compressibility is not the only constraint
on learnability in these models: they typically include some
learner bias in favour of languages which embody a one-to-
one mapping between meaning and form (which happen to be
communicatively functional mappings), e.g. by implement-
ing indirect (Kirby, 2002) or direct (Steels, 1998) competi-
tion between meanings which map to a single form. Brighton,
Smith, and Kirby (2005) show that, if this bias against one-to-
one mappings is absent, the pressure for compressibility act-
ing in isolation leads to degenerate, not structured, languages,
where all meanings map to a single maximally-ambiguous
form. While this might suggest that such a one-to-one bias
would be adaptive, Smith (2004) shows that such a bias is
unlikely to evolve for its (eventual) communicative payoff,
and concludes that the one-to-one bias must be a product of
domain-general cognitive biases. Again, this suggests that the
utility of language for communication might be a side-effect
of learnability pressures alone.

Diffusion-chain experiments with adult human participants
have also been used to investigate the impact of cultural se-
lection for learnability. Kirby et al. (2008) report two ex-
periments in which participants are trained on a miniature
language which provides labels for objects (coloured moving
shapes, e.g. a red square bouncing), and are then prompted to
produce labels for a further set of objects. Participants are or-
ganised into a diffusion chain, such that the labels produced
by the nth participant in a given chain provide the training
data for participant n+ 1 in that chain. The first participant in
each chain is trained on a unstructured holistic system, where
each object is associated with a unique random label (and
therefore shared elements of meaning do not map to shared
components of form).

Across two experiments, Kirby et al. (2008) show that lan-
guages change as a result of their transmission to be more
learnable: the languages produced later in a chain of trans-
mission are learnt with greater accuracy. In their Experiment
1, this is achieved by the languages becoming simple: the lan-
guages lose distinctions. In the most extreme case, this results
in a degenerate language in which all objects (with one excep-
tion) are associated with a single, highly-ambiguous label.
Simplification facilitates learning at the expense of expres-
sivity: while the initial holistic languages have high expres-
sive potential, the languages which ultimately emerge allow
only a few contrasts between objects to be signalled linguis-
tically. However, there is no pressure for expressivity in this
experiment: the language is under pressure to be learnable,
but given the lack of a communicative task, under very little
pressure to provide distinct labels for distinct objects.

In their Experiment 2, an artificial pressure for expressiv-
ity was introduced: homonyms (labels paired with multiple
objects) were eliminated during the process of sampling from
the nth participant’s productions to yield the training data for
participant n+ 1. As in Experiment 1, the languages became
more learnable, but this was achieved by the development of

compositional structure: colour, shape and motion came to be
encoded in separate ‘morphemes’ of multi-morphemic words.
These structured languages are both learnable and expressive,
allowing all distinctions between objects to be encoded lin-
guistically.

Garrod, Fay, Lee, Oberlander, and MacLeod (2007)
present a task in which participants are required to commu-
nicate a set of pre-specified concepts using drawings. Par-
ticipants who repeatedly play the game together develop an
expressive system of symbol-like graphical representations to
communicate these concepts. This system of communication
is holistic: each symbol is an idiosyncratic, stand-alone en-
tity. Theisen-White, Kirby, and Oberlander (2011) present
a modified version of this paradigm, integrating the dyadic
context for communication with the diffusion-chain method
from Kirby et al. (2008). An initial pair play a variant of
the communication game from Garrod et al., using a modi-
fied set of concepts designed to provide a basis for system-
atic structure (e.g., teacher, school, teaching; firefighter, fire
station, fire-fighting). The drawings produced by that pair
during communication are then observed by a fresh pair of
participants, who go on to communicate together, and so on.
The system of communication is therefore under pressure to
be both expressive (communicatively functional) and learn-
able (by the naive individuals during the observation phase).
Theisen-White et al. find that the sets of drawings become
more structured over these chains of transmission: the draw-
ings develop component parts which refer to the domain (e.g.
teaching, fire-fighting) and the category (e.g. person, build-
ing, activity).

These experimental results are therefore consistent with the
modelling literature reviewed above and suggest a three-way
contrast: pressure for compressibility alone results in degen-
erate languages (Kirby et al., 2008, Experiment 1); pressure
for expressivity but not learnability (Garrod et al., 2007) leads
to holistic systems; pressure for expressivity (from artificial
filtering or, better, communication) leads to structure (Kirby
et al., 2008; Theisen-White et al., 2011). However, no one
model or experimental paradigm completely decouples learn-
ability and expressivity: below, we present a model which
does this, and which demonstrates this link between expres-
sivity, learnablity and structure more conclusively.

The model

We model individuals as rational learners who infer a dis-
tribution over possible languages (meaning-form mappings),
and use those languages to communicate. Learners have
a (parameterised) prior preference for simple, compressible
languages, and during interaction a (parameterised) tendency
to avoid utterances which are ambiguous in context.

Model of languages

A language consists of a system for expressing meanings us-
ing forms. We consider the simplest possible meanings and
forms which are nonetheless capable of evidencing system-
atic structure: meanings are vectors of length v, where each
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element in the vector takes one of w possible values. Sim-
ilarly, forms are of length /, where each character is drawn
from some alphabet . We take v =w = [ = |X| = 2, which
yields a set of meanings M = {00,01,10,11} and a set of
forms F = {aa,ab,ba,bb}. This gives a space of 256 possi-
ble languages, including degenerate, compositional and holis-
tic mappings: see Table 1 for examples.”

Hypotheses

Learners infer a distribution over languages: the space of hy-
potheses is therefore the space of possible distributions over
all 256 languages.® Following Burkett and Griffiths (2010),
we use a Dirichlet process prior (Ferguson, 1973), charac-
terised by concentration parameter o and base distribution
Gy. The parameter o determines how many languages feature
in this distribution: low alpha (we use o = 0.1) corresponds
to an a priori belief that the majority of the probability mass
will be on a single language. The base distribution is a distri-
bution over languages, and would be the prior if learners only
considered single-language hypotheses.

Our base distribution encodes a preference for simplicity,
operationalised as a preference for languages whose descrip-
tion is compressible. Intuitively, degenerate languages permit
more compressed descriptions than compositional languages;
holistic languages are, by definition, incompressible. The
prior used in Kirby, Dowman, and Griffiths (2007) captures
this intuition: it assigns higher probability to languages in
which fewer forms are used to convey a given set of mean-
ings. We simply apply this metric both over the full set of
meanings and specific feature values (see Appendix). This
prior splits the space of 256 possible languages into 12 lan-
guage classes, based on the number of forms in the language
and the regularity with which feature of meaning are mapped
to components of form: the priors for individual languages
are depicted in Fig. 1, with example languages from some
pertinent classes in Table 1. The prior yields the desired rank-
ing of languages: more compressible languages (i.e. with
fewer forms) are preferred, but within those languages with
a given number of forms, there is a preference for languages
which consistently map feature values in the meaning to a
single character in the corresponding position in the form.

Likelihood

We sample a form f from the distribution P(f|h,C,t), which
specifies the probability of f given hypothesis &, a context
of utterance (a set of meanings) C, and topic t € C, which
the speaker attempts to discriminate from the other meanings

ZWe assume that the first meaning feature is expressed in the
first form character. Without this constraint, it is impossible to spec-
ify holistic languages given this small form space: e.g. the holistic
language in Table 1 is compositional if we allow the first meaning
feature to map to the second form character. It would be possible
to distinguish between holistic and compositional systems without
this constraint given || > 2, but to minimise runtimes we opted for
|Z| = 2 and a constrained definition of compositionality.

3Inferring a distribution over languages, rather than a single lan-
guage, allows learners to track changes in their partners’ linguistic
behaviour over time.

Table 1: Example languages from three important classes.

Form
Meaning degenerate holistic compositional
00 aa aa aa
01 aa ba ab
10 aa ab ba
11 aa bb bb
)
Q _
© 4 W 1 form, degenerate
O 2forms
© O 2forms
o @ 2forms
o m 2forms
| 2forms
O 3forms
g | O 3forms
o @ 3forms
O 4 forms, holistic
O 4forms
g _ @ 4 forms, compositional
o
16 32 i
4 24 ..64 4832 1, g 4
o — [ e~ ___mm

Figure 1: Probability in Gy for individual languages in each
class, arranged by number of distinct forms, and (within a
given number of forms) increasing compressibility. Anno-
tations give the number of languages per class, all of which
have equal prior probability.

in C. P(f|h,C,t) = P(l|h) - P(f]I,C,t): we simply sample a
language / from the speaker’s hypothesis, then given that lan-
guage and the context, sample an utterance. We include a pa-
rameterisable preference to avoid ambiguity during this latter
step, following the model of pragmatics provided by Frank
and Goodman (2012). Assuming some small probability of
error on production €:

(1 —¢) ifris mapped to fin!
P(fll,c,r)«{ (“e)

[S]-1

if # is not mapped to f in [

where we normalise over all possible forms from ¥ . a is am-
biguity, the number of meanings in C that map to form f in [,
and vy specifies the extent to which utterances which are am-
biguous in context are penalised. If a = 1 (f is unambiguous
in this context) and/or 'y = O then this yields a model of pro-
duction where the ‘correct’ form is produced with probability
1 —e. However, when ¥ > 0 and f is ambiguous in context
(i.e. a > 1), then the ‘correct’” mapping from ¢ to f is less
likely to be produced, and the remaining probability mass is
spread equally over the other possible forms. Therefore, y> 0
introduces a penalty for languages whose utterances are am-
biguous in context. We use € = 0.05, |C| = 3, and vary Y.

Inference

Exact inference over this hypothesis space in intractable: in-
stead, following Burkett and Griffiths (2010), we use a Gibbs
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sampler based on the Chinese Restaurant Process to sample
a hypothesis direct from the posterior. As described below,
learners acquire an expanding set of observed utterances dur-
ing their lifetime: we run the inference over the most recent
r = 80 observations, in order to improve simulation runtimes.

Transmission in populations

Following the experimental methods employed by Theisen-
White et al. (2011) and Garrod et al. (2007), we compare two
types of population: in chains, simulated agents are organ-
ised into pairs, are trained on data produced by the previous
pair (see below), and then interact, producing data which the
next generation in the chain (a new, naive pair of simulated
individuals) are trained on. In dyads exactly the same regime
of training and interaction is observed. However, naive indi-
viduals are not introduced at each generation: rather, the same
individuals are trained on their own productions from the pre-
vious phase of interaction.* The contrast between chains and
dyads allows us to manipulate the pressure for learnability:
in chains, where naive individuals are introduced at every
generation, the pressure for learnability (i.e. the influence of
the prior preference for simplicity) is likely to be relatively
strong. In dyads, in contrast, there is only one episode of
transmission to naive individuals (at generation 1), and con-
sequently the pressure for simplicity arising from the prior is
substantially diminished.

Training During training, the pair are presented with a
shared set of 20 form-meaning pairs, produced by the pre-
ceding pair during interaction or (for the first generation
only) a shared set of 20 form-meaning pairs generated from
a randomly-selected fully-expressive holistic language (this
initialisation with holistic languages is inspired by the ex-
perimental work discussed above). This data is added to
each agent’s memory (which will be empty for individuals in
chains), and then a hypothesis is sampled from the posterior.

Interaction After training, the pair interact for 40 rounds.
At each round of interaction, one individual acts as teacher
and the other as learner. The teacher is prompted with a
randomly-selected context and topic, and samples a form
from their hypothesis. The learner adds the observed form-
meaning-context triple to its memory, and samples an updated
hypothesis. The roles of teacher and learner then switch, and
a new round is played.

Transmission The 20 form-meaning pairs produced by one
randomly-selected member of the pair at generation # is used

4Training dyads on their own productions ensures that the con-
figuration of the model is identical for dyads and chains. We ran
an additional set of dyad simulations with a modified transmission
regime, such that pairs are trained on the initial target language and
go on to interact repeatedly but are not retrained on their productions
from the last round of interaction (i.e. there is no training phase after
generation 1): this produces results which are highly similar to dyads
with transmission at every generation, showing that the retraining
step does not introduce some additional conservative tendency.

as the training data for the pair at generation n + 1.

Results

The results (Fig. 2) match the predictions of our hypothe-
sis, and are consistent with the experimental results described
above. When there is pressure for learnability arising from
transmission to naive individuals, but no pressure for expres-
sivity (achieved by using the chain population model and set-
ting 7y for interaction to 0), the final distribution is dominated
by degenerate languages, as in Kirby et al. (2008), Experi-
ment 1. Note that this preference for degenerate languages
is even stronger than that seen in the prior: given the pa-
rameters of the model, in particular the low concentration
parameter for the Dirichlet process prior, this exaggeration
of the prior is as predicted by Burkett and Griffiths (2010).
In contrast, in the condition where there is expressivity pres-
sure but little pressure for learnability (dyads, Y= 3), the ini-
tial holistic languages, (expressive but not compressible) per-
sist. Members of the dyad constantly replenish their own ev-
idence that the language is holistic: consequently, the initial
holistic language is locked in. This matches the experimen-
tal results obtained for dyads (Garrod et al., 2007): due to the
lack of transmission to new individuals, there is little pressure
for compressibility to counteract lock-in and expressivity re-
quirements during interaction, and structure does not emerge.
Note also that this result holds despite the fact that we set
a fairly low memory limit for individuals (r = 80). Finally,
when there is pressure for both learnability and expressivity
(chains, vy = 3), we see structured languages emerge: the fi-
nal distribution is dominated by a priori unlikely expressive
languages, but among these it is the a priori most likely lan-
guages, the compositional languages, that dominate. Again,
this matches our hypothesis and the experimental data from
Theisen-White et al. (2011).

Discussion

Our model shows that pressure for expressivity or simplic-
ity alone does not lead to the emergence of structure: only
when both pressures are at play does structure emerge. Fur-
thermore, only cultural evolution is required for structure: we
can explain why language is structured without recourse to
invoking an evolved, domain-specific faculty of language.
As well as corresponding closely with existing modelling
and experimental data, these findings make sense of the dis-
tribution of structure in the communication systems of non-
human animals. Many small but expressive communication
systems exist in nature, a classic example being alarm calling
systems, which allow the discrimination of several referents
(predators), but do so using vocalisations which are holistic
and unlearned (Fitch, 2000). Learned vocal communication
systems are witnessed in many species of bird, as well as be-
ing patchily distributed among mammals (Fitch, 2000): strik-

5In accordance with an ongoing set of human experiments based
on these models, the context is stripped from these observations: in
other words they contain only form-meaning pairs, with a context
consisting solely of the topic.
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Figure 2: Time courses (left: mean probability of each language class in the last sampled hypothesis of each individual in
multiple chains/dyads) and final distributions (right: mean probability as in time courses, averaged over the final 50 genera-
tions of those same simulation runs). When learnability is the only pressure (top: average of 20 simulation runs), degenerate
languages dominate the final distribution. When expressivity is the only pressure (middle: 50 runs), the original expressive but
holistic languages are preserved. When both pressures are at play (bottom: 50 runs), expressive but compositionally-structured

languages emerge.
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ingly, song, the classic example of (combinatorial, not com-
positional) structure in animal communication, occurs in pre-
cisely these species, whose communication system is under
cultural selection to be learnable but expressive. This is en-
tirely consistent with the predictions of our model, although
we would suggest that the expressivity pressures inherent in
communication in these species must be rather different from
the expressivity pressure in language, with a focus on sig-
nalling e.g. individual quality, rather than communicating
propositions.

Conclusions

The results from our model support the hypothesis drawn
from our review of the modelling and experimental litera-
ture on the evolution of communication systems: structure
emerges when a system of communication is under pressure
to be both expressive (due to communicative interaction) and
simple (due to domain-general preferences for compressibil-
ity imposed during language learning). Crucially, both these
pressures must be in play: pressure for expressivity or sim-
plicity alone does not lead to structure. Linguistic structure
therefore can and should be explained as a consequence of
cultural evolution: structure in language is a linguistic adap-
tation, not a biological adaptation, and it is an adaptation in
response to competing pressures for expressivity and learn-
ability inherent in language transmission and use.
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Appendix

For a given set of forms F (where members of the set are
either complete forms, e.g. aa, or partially-specified forms,
e.g. ax, indicating a string-initial a) and a set of mean-
ings M, we can count the number of mappings in a lan-
guage for which forms from F are associated with mean-
ings from M: we denote this quantity n(M, F). For instance,
n({00,10,11,10},aa) = 4 for the degenerate language in Ta-
ble 1, since the form aa is associated with all 4 of these
meanings, but 1 for the compositional and holistic languages;
n(0x*,ax) = 2 for the degenerate and compositional languages
but 1 for the holistic language, since there is only a single
mapping where meaning-initial 0 maps to form-initial a. Our
base probability for language [/ characterised is then:

Go(l) < P(I, M, T).HP(l,m, {ax,bx}). HP(l,m, {*a,xb})
me{0x,1x} me{*0,%1}

where we normalise over all possible languages and
P(I,M,F) is the prior from Kirby et al. (2007),

['(|F|o)
@ T+ [Flo) LL (S +0).

P(LM.F) = -

where I'(x) = (x — 1)! and m is the number of meanings
from M that unify with M. The parameters ¢ determines
the strength of the preference for simplicity: low ¢ (we use
o = 1, the lowest possible value) strengthens the preference
for more compressible languages, higher ¢ leads to a weaker
preference for such languages.
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