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Abstract

Mixed-effects models are becoming common in psychological science. Although they have 

many desirable features, there is still untapped potential. It is customary to view homogeneous 

variance as an assumption to satisfy. We argue to move beyond that perspective, and to view 

modeling within-person variance as an opportunity to gain a richer understanding of psychological 

processes. The technique to do so is based on the mixed-effects location scale model that can 

simultaneously estimate mixed-effects sub-models to both the mean (location) and within-person 

variance (scale). We develop a framework that goes beyond assessing the sub-models in isolation 

of one another and introduce a novel Bayesian hypothesis test for mean-variance correlations in 

the distribution of random effects. We first present a motivating example, which makes clear how 

the model can characterize mean–variance relations. We then apply the method to reaction times 

gathered from two cognitive inhibition tasks. We find there are more individual differences in 

the within-person variance than the mean structure, as well as a complex web of structural mean–

variance relations. This stands in contrast to the dominant view of within-person variance (i.e., 

“noise”). The results also point towards paradoxical within-person, as opposed to between-person, 

effects: several people had slower and less variable incongruent responses. This contradicts the 

typical pattern, wherein larger means tend to be associated with more variability. We conclude 

with future directions, spanning from methodological to theoretical inquires, that can be answered 

with the presented methodology.
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Introduction

Repeated measurement designs are common to the social-behavioral sciences. Their use 

spans from observational inquiries that track individuals over an extended period of time, 

to controlled settings that can include hundreds of experimental trials for each person. 

Modeling these kinds of data requires techniques that are able to partition and account 

for different sources of variation, for example, in the experimental effect (Aarts, Dolan, 

Verhage, & van der Sluis, 2015) or stimulus type (Wolsiefer, Westfall, & Judd, 2017). 

Adequately accounting for these sources of variability leads to the desired (frequentist) 

inference by ensuring that nominal error rates are maintained (Aarts, Verhage, Veenvliet, 

Dolan, & van der Sluis, 2014; Barr, Levy, Scheepers, & Tily, 2013; Judd, Westfall, & 

Kenny, 2012; Williams, Carlsson, & Bürkner, 2017). The idea here is that researchers need 

to control or correct for variability. On the other hand, modeling these same sources of 

variation can provide valuable insight into psychological processes that drive the variation 

itself. A prominent example is the study of individual differences in, say, temporal changes 

(Liu, Rovine, & Molenaar, 2012), inhibition (Haaf & Rouder, 2017), or learning trajectories 

(Williams & Rast, 2018).

Although there are many approaches to modeling repeated measurements data, two general 

trends have emerged in psychology. First, some researchers seek to construct elaborate, 

nonlinear models, that are meant to mimic, as closely as possible, the latent data-generating 

mechanisms (Mazur, 2006). The resulting models are termed process models, and their study 

has been an integral part of the field of mathematical psychology (see references provided 

in: Townsend, 2008). The second trend is to focus exclusively on the mean structure—that 

is, how the mean of the outcome (e.g., response times) varies with, perhaps, an experimental 

manipulation. In these situations, it is common to aggregate repeated measures data at 

the individual level (Davidson, Zacks, & Williams, 2003; Wright, 2017), such that each 

person contributes only their respective mean score. This allows for using a relatively 

simple statistical method such as the dependent samples t-test. Despite their popularity, these 

approaches are not without limitations (Leppink, 2019; Leppink & Merriënboer, 2015), 

including removal of the within-person variance and they cannot provide information about 

individual variability (Bauer, 2011). More recent approaches employ mixed-effect models 

that can simultaneously estimate the average effect across individuals and the person

specific estimates (i.e., random effects). Their inherent flexibility allows for investigating 

research questions beyond the average, for example, whether all people had an effect in the 

predicted direction (Haaf & Rouder, 2017). These developments have been integral in the 

study of individual differences.

In this work, we argue there is a fertile middle ground between positing full-blown process 

models and studying mean structures. For the study of individual differences in particular, 

there is untapped potential in mixed-effects models. The focus has mostly remained on the 

mean structure, that is the dependent variable of interest, whereas within-person variability 

is often relegated to “error” and considered a nuisance. In other words, the unexplained 

variance, or the within-person variance, goes into the residual component where it is 

typically considered a fixed, non-varying constant, in mixed-effects models. Herein lies the 

untapped potential: rather than viewing homogeneous variance as an assumption to satisfy, 
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or within-person variance as “noise,” we can seek to understand it just like the dependent 

variable.

Despite that in psychology the primary focus has been on the mean structure, there is 

an interesting and storied literature on modeling within-person variance (i.e, the residual 

variance, Cleveland, Denby, & Liu, 2003; Hedeker, Mermelstein, & Demirtas, 2008, 2012; 

Leckie, French, Charlton, & Browne, 2014; Rast & Ferrer, 2018; Rast, Hofer, & Sparks, 

2012a). In applied settings, residual variability is termed intraindividual variability (IIV; 

Christ, Combrinck, & Thomas, 2018; Fagot et al., 2018; Röcke & Brose, 2013), and thought 

to reflect behavioral consistency (Rast, Hofer, & Sparks, 2012b) or predictability (D. J. 

Mitchell, Fanson, Beckmann, & Biro, 2016). This conceptualization builds upon a central 

idea that within-person variance, or IIV, is not regarded as reflecting mere measurement 

error but conveys systematic information (Cattell, Cattell, & Rhymer, 1947; Fiske & Rice, 

1955; Horn, 1972; Ram & Gerstorf, 2009; Woodrow, 1932). As an example, consistency 

in cognitive abilities has been proposed as an indicator of Alzheimer’s disease in aging 

populations (Kalin et al., 2014). And inconsistency was even suggested to predict death 

(MacDonald, Hultsch, & Dixon, 2008). That is, those that were more variable tended to die 

before those that were relatively stable.

Furthermore, it has been noted that behavioral measures may have important signatures 

in both the mean and variance structures. For example, Luce (1986) and Wagenmakers 

and Brown (2007) proposed a lawful relationship in response time: the standard deviation 

of response time tends to increase linearly with the mean. Rouder and colleagues build 

in this lawfulness explicitly by using shift-scale-shape models (e.g. Rouder, Tuerlinckx, 

Speckman, Lu, & Gomez, 2008; Rouder, Yue, Speckman, Pratte, & Province, 2010), such as 

a three-parameter lognormal with effects in scale. Moreover, common graphical approaches, 

such as QQ plots and the delta plot (De Jong, Liang, & Lauber, 1994), are commonly 

employed techniques for visualizing the mean-variance relationship (Ridderinkhof, Scheres, 

Oosterlaan, & Sergeant, 2005; Schwarz & Miller, 2012). These inquiries into the mean–

variance relation share a common thread, that is, they are typically descriptive in nature. 

And the modeling based approaches, as in Rouder et al. (2010), do not directly target the 

within-person variance.

The aim of this work is to present a novel, formal Bayesian modeling framework, that allows 

for testing and visualizing what has been previously stipulated about the mean–variance 

relation. But, importantly, we focus on within-person variance or IIV in hierarchical models. 

This places our work within the tradition of individual difference research, in that, along 

with the means, person-specific consistency is characterized. This necessarily leads to rich 

inferences relating to mean–variance lawfulness, because the correlations between individual 

difference parameters in the random effects distribution can be tested. Hence, with an 

uncanny level of detail, researchers can begin to test lawful relations between, say, an 

experimental effect on reaction time and reaction time consistency.

This work is organized as follows. In the first section we introduce a relatively simple 

model, where it is made clear how our approach can capture and test mean–variance 

relations. Additionally, we introduce our hypothesis testing strategy for the correlations 
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that capture the mean–variance relations in the distribution of random effects. We then apply 

the methodology to two well-known cognitive inhibition tasks. Here, general advantages 

of our approach are highlighted, as compared to a traditional mixed-effects model, and 

the hypothesis testing strategy is employed. We conclude by summarizing our major 

contribution, limitations of the mean-variance modeling in general, and specific future 

directions for psychological applications.

Motivating Example

The foundation for our methodology merges two disparate lines of research. On the one 

hand, the heterogeneous variance modeling literature that attempts to explain within-person 

variance (Cleveland et al., 2003; J. Foulley & Quaas, 1995; J. L. Foulley, San Cristobal, 

Gianola, & Im, 1992). Central to this endeavour is the recently proposed mixed-effects 

location scale model (MELSM, pronounced mel-zem; Hedeker et al., 2008), described 

below, which allows the within-person variance to be a function of its own mixed-effects 

model (e.g., Watts, Walters, Hoffman, & Templin, 2016; Williams & Rast, 2018). On the 

other hand, for testing mean–variance relations, we draw upon the Bayesian literature 

that employs mixture prior distributions for variable selection–that is, spike and slab 

methodology (see references in O’Hara & Sillanpää, 2009). As shown in this motivating 

example, this opens the door for answering novel research questions about the interplay 

between the mean structure and within-person variance in psychology.

Random Intercept Model

We use data from an inhibition task that investigated the so-called “Stroop Effect.” These 

data were first reported in von Bastian, Souza, and Gade (2016). They consist of 121 

participants, each of which completed approximately 90 trials in total. About half of the 

trials were in the congruent condition, wherein the number of characters matched the 

displayed numbers (e.g., 22). The remaining trials were in the incongruent condition (e.g., 

222). Further details are provided below (Section Illustrative Examples). The outcome is 

reaction time (on the seconds scale) for correctly identifying the number of characters.

Mean Structure.—For the ith person and jth trial, the mean structure is defined as

yij = β0 + u0i + ϵij, (1)

where β0 is the fixed effect, or the population-averaged mean, and u0i is the individual 

deviation, or random effect, for subject i. The random effects are assumed to follow a 

normal distribution with mean zero. Hence, for person i, their respective response time 

mean is β0 + u0i. Note this is not equivalent to estimating the empirical means, because 

the hierarchical structure, described below (Equation 3), provides shrinkage that improves 

accuracy by smoothing the random effects towards β0 (Efron & Morris, 1977; James & 

Stein, 1961).

Variance Structure.—We next account for the “errors”. While they are typically assumed 

to be normally distributed, with a constant variance, this is not the case for the MELSM, that 

is,
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ϵij ∼ N(0, σϵij
2 ) with

σϵij
2 = exp(η0 + u1i) . (2)

The subscripts denote the residual for the ith person and jth trial. Further, the error variance 

σϵij
2  is now allowed to vary across i individuals given a log-linear model (Hedeker et al., 

2008). These parameters are analogous to those in Equation (1), in that η0 is the average 

of the within-person variances on the logarithmic scale. The random effects u1i are the 

individual deviations from η0 and they are assumed to be normally distributed with mean 

zero (Equation 3). This allows each person to have their own “error” variance. For person i, 
η0 + u1i quantifies the variability of their respective response time distribution. We assume 

diffuse prior distributions for the fixed effects, β0, η0 ∼ N(0, 5), which is justifiable because 

they are not tested in this example.

Random Effects Covariance Matrix.—This work focuses on the relations between the 

means and within-person variances. As such, we assume that the individual effects from 

both sub-models are sampled from a common multivariate normal distribution–that is,

u0i
u1i

∼ N(0, Σ) . (3)

with mean zero and Σ is the covariance matrix that includes the random effects variances 

and covariances. A variety of priors have been proposed for Σ (see references in Alvarez, 

Niemi, & Simpson, 2014). Historically, the inverse-Wishart distribution has been a popular 

choice because it is the conjugate prior for Σ (Gutiérrez-Peña et al., 1997). However, it has 

been criticized for being overly restrictive (e.g., a common parameter governs all elements; 

Hsu, Sinay, & Hsu, 2012; Leonard & Hsu, 1992). Further, recall that our aim is covariance 
selection in the distribution of random effects (Equation 3). Hence, the random effects 

correlations, which are scale free, are a natural target for Bayesian variable selection. To this 

end, we use the separation strategy to decompose Σ (see Equation 1 in Barnard, McCulloch, 

& Meng, 2000). This can be written as

Σ = diag(τ) Ω diag(τ), (4)

where τ is a 2 × 1 vector, τi = 0, 1, that contains the random effects standard deviations S 
D, diag(τ) is a diagonal matrix with the diagonal elements τ, and Ω is a 2 × 2 correlation 

matrix. Note that τi refers to element i in τ. With this decomposition, we can specify 

independent priors for each element of τ and Ω. For the random effects S Ds, we again 

assume diffuse priors,

τi ∼ Student‐t+(μ = 0, σ = 1, v = 10), i = 0, 1, (5)

where each is assigned a half Student-t distribution. This family of priors was proposed in 

Gelman (2006) and then Huang and Wand (2013) extended the idea to multivariate settings. 

Note that we are not testing for the presence of variability, for example τ1 > 0, but instead 
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the mean–variance relation captured in Ω. We return to the important topic of testing, say, 

the fixed effects and random effects S Ds, in the discussion.

Mixture Prior Distribution.: We now describe the prior for the correlations in Ω (Equation 

4). We employ the spike and slab approach for variable selection. In this approach, model 

comparison is typically formulated as a two component mixture: 1) a “spike” that is either 

narrowly concentrated around zero (George & McCulloch, 1993; George & Mcculloch, 

1997) or a point mass at zero (Kuo & Mallick, 1998; T. J. Mitchell & Beauchamp, 1988) 

and 2) a diffuse “slab” component surrounding zero. A central aspect of this approaches 

is the addition of an indicator variable (Kuo & Mallick, 1998), which in essence allows 

for switching between the mixture components (i.e., transdimensional MCMC, Heck, 

Overstall, Gronau, & Wagenmakers, 2018). The proportion of MCMC samples spent in each 

component can then be used to approximate the respective posterior model probabilities or 

the marginal Bayes factors.

Because we target the random effects distribution, this requires an innovative approach 

for covariance selection. We build upon approaches described in Wang (2015) and 

Frühwirth-Schnatter and Tüchler (2008), each of which employed a mixture of continuous 

distributions. The former was in the context of graphical models, whereas the latter 

was also for random effects covariance matrices. They used a binary indicator, whereas 

our innovation is to allow for several competing hypotheses. This is accomplished by 

introducing a three component mixture prior for the random effects correlations.

Recall that the random effects correlations are the off-diagonal elements of Ω, that is,

Ω =
1 ρ01

ρ01 1 . (6)

We employ the categorical distribution, which generalizes the Bernoulli distribution, to the 

case of several categories

k01 ∼ Cat(π), k ∈ {1, 2, 3} . (7)

Here π is a 1 × 3 vector of prior probabilities for each category, such that ∑k = 1
K πk = 1, 

and k01 can be understood as an indicator variable. We assume equal prior probabilities 

1/K. It follows that the prior for ρ01, that captures the relations between the means and 

within-person variances, is then a mixture of three distributions. In our formulation, this 

mixture is defined as

ρ01 = F−1(z01)

z01 ∼

N(0, sρ ⋅ cρ−1) if k = 1 cρ ≫ 1

N+(0, sρ) if k = 2

N−(0, sρ) if k = 3,

(8)
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where N+ is a half-normal distribution restricted to positive values, N− is a half-normal 

distribution restricted to negative values. Consequently, sρ is the scale of a half-normal 

(k = 2, 3) or a normal distribution (k = 1), respectively. After taking the inverse of the 

Fisher z transformation, F−1(z01), this results in the prior for ρ01 (Equation 6). Assuming a 

prior on z was described in Daniels and Kass (section 2.3.2, 1999), which was motivated 

by approaches for covariance matrix estimation (pp. 5 - 6 in Lin & Perlman, 1985). We 

have simplified this formulation by assuming that each component has the same scale sρ. 

Furthermore, cρ−1 is a constant, that when multiplied by sρ, creates the “spike” component 

that is narrowly peaked at zero. Note also that by “scale” we are referring to the standard 

deviation. This formulation effectively allows for sampling from a null model (k = 1), a 

model with a positive constraint (k = 2), or a model with a negative constraint (k = 3). sρ 
and cρ are determined by the researcher. The former can be chosen to reflect a hypothesized 

effect size, whereas the latter is used to create a null region that is practically equivalent to 

zero. Examples of this mixture prior are provided in Figure 1 (panel A).

Hypothesis Formulation

The mixture defined in Equation (8) allows for confirmatory hypothesis testing, which is a 

central contribution of this work. For example, there is often a positive relationship between 

the mean and variance (Figure 1 panel C). This scientific expectation can be tested as it 

relates to the mixture components, that is,

ℋ1 :k = 1
ℋ2 :k = 2
ℋ3 :k = 3 .

(9)

Recall that k = 2 corresponds to the positive constraint. This can then be tested against its 

compliment ℋc : “not ℋ2.” The corresponding Bayes factor follows,

BF2c = Pr(k = 2 ∣ Y)
1 − Pr(k = 2 ∣ Y) ∕ Pr(k = 2)

1 − Pr(k = 2) , (10)

where the numerator is the posterior odds and the denominator is the prior odds. This 

expression parallels the informative testing literature (Hoijtink, 2011), where hypotheses 

are often tested against their compliment (e.g., Equation 8 in van de Schoot, Verhoeven, & 

Hoijtink, 2013). Our mixture approach can also be used for one-sided hypothesis testing, 

that is,

ℋ0 :k = 1
ℋ1 :k = 2, (11)

where k = 1 is the “spike” component. In this case, the posterior odds is given as Pr(k = 

2∣Y)/Pr(k = 1∣Y). Because we assumed equal prior odds, this also corresponds to the Bayes 

factor BF10. Furthermore, our mixture approach can seamlessly be extended to test joint 

hypotheses that include several correlations. We provide an example of this below. These are 

major and novel contributions.
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At this point, it is important to note that we are focusing on the marginal posterior 

probabilities of each mixture component, that is, Pr(k∣Y), k = 1, 2, 3. These are known 

as posterior inclusion probabilities (PIP). In this example, because we are only testing one 

parameter, they also correspond to the respective model probabilities. In the case of testing 

several correlations, however, it is possible to obtain the highest posterior model (HPM). A 

limitation of this approach is that, with several test relevant parameters, the size of model 

space becomes prohibitively large. For this reason, we primarily focus on the marginal PIPs 

(e.g., Table 1 in Wagner & Duller, 2012) and Bayes factors (e.g., p. 216 in Peterson, Swartz, 

Shete, & Vannucci, 2013).

Software and Estimation

This paper includes a variety of fitted models. To avoid redundancy, we detail their 

estimation in this section. All models were fitted with the R package hypMuVar, which 

serves as a front-end to the popular Bayesian software JAGS (Plummer, 2013). For 

demonstrative purposes, we set sρ = 0.5 and cρ = 50 (Figure 1, right plot in panel A). Hence, 

the standard deviation of the “spike” component was 0.01. Each fitted model included four 

chains of 25,000 iterations each, resulting in a total of 100,000 samples from the posterior 

distribution. Those samples were saved from an initial adaption phase of 5,000 iterations 

for each chain. This number of samples provided a good quality of the parameter estimates 

in which the models converged with potential scale reduction factors R smaller than 1.1 

(Brooks & Gelman, 1998). The posterior distributions are summarized with means, standard 

deviations, and 90% credible intervals (CrI). All computations were done in R version 3.6.1 

(R Core Team, 2017).

Results

The parameter estimates are displayed in Figure 1. Panel B (left) includes the hierarchical 

reaction time means for each individual. The pink bars denote 90 % CrIs that excluded the 

fixed effect or population average (dotted line), which revealed that there were substantial 

individual differences. Panel B (right) includes the hierarchical reaction time standard 

deviations (S D) for each individual. This is a unique aspect of the MELSM (Equation 

2). Paralleling the mean structure, there were also substantial individual differences in 

consistently responding. In other words, the S D of the response time distributions varied 

from individual to individual. Furthermore, as revealed in panel B, there was a 3.4 fold 

increase from the most to least consistent individuals. On the other hand, there was a 1.8 

fold difference in the reaction time means.

In Wagenmakers and Brown (2007), where a lawful relationship between reaction time 

means and S Ds was proposed, a null hypothesis significance test was used in a two-stage 

approach. This was accomplished by computing the reaction time means and S Ds for each 

person in step-one, and then correlating those estimates in step-two. Our model formulation 

also provides this correlation (Equation 3), but, importantly, for the hierarchical estimates. 

The individual means and S Ds are displayed in Figure 1 (panel C). “Hierarchical” (grey) 

refers to the estimates obtained from the MELSM, whereas “Empirical” (orange) refers 

to the sample based estimates.1 In these data, the correlation was slightly larger for the 

hierarchical estimates (0.63 vs. 0.65). The results also highlight the central idea behind 
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shrinkage, in that the model based estimates are often closer to the fixed effect. This 

gravitation towards the average was especially pronounced for the larger values.

Panel D includes the posterior distribution for ρ01 (Equation 4). Recall that the prior for ρ01 

is a mixture of three components (e.g., panel A) and the proportion of posterior samples in 

each can be used to compute Bayes factors. In this case, because Pr(k = 2∣Y) = 1, this results 

in an infinite Bayes factor in favor of a positive correlation. This is decisive evidence (Kass 

& Raftery, 1995). Hence, the slowest individuals tended to be the least consistent.

Summary

This simple example illustrated several benefits of our innovative approach for 

characterizing mean–variance relations. For example, the hierarchical formulation reduced 

variability in the estimates and the correlation was tested with a novel strategy. Of course, 

individual differences are commonly studied in relation to, say, an experimental effect. In the 

following section, we thus extend this formulation to accommodate both random intercepts 

and slopes.

Illustrative Examples

We first return to the Stroop and then proceed to the Flanker inhibition task. In these 

tasks, there is a congruent and an incongruent condition, and researchers are most interested 

in the contrast between these conditions. For this contrast defines the effect, and in the 

data we explore, it defines how well each individual can inhibit irrelevant information. 

We use illustrative data that were first used in von Bastian et al. (2016), and were then 

reanalyzed in Haaf and Rouder (2017). The latter included a customary, location-only, 

individual differences model that included random intercepts and slopes. Note that we are 

answering a much different question than Haaf and Rouder (2017), which focused on the 

direction of the random slopes (i.e., the experimental effects). We are explicitly interested in 

the covariances between the individual difference parameters for the location and scale.

Case 1: The Stroop Task

In this task, participants were asked to count the number of characters displayed with 

key strikes. This is the number Stroop task. For the congruent condition, the number 

of characters matched the digits displayed (e.g., 3 characters presented as 333). For the 

incongruent condition, there was a mismatch between the number of characters and the 

digits displayed (e.g., 2 characters presented as 44). There were 121 participants in total. 

Each completed 48 trials for the two conditions. We chose these data because there is a large 

effect, with a mean difference of 65 ms, and also significant individual differences in the 

“Stroop effect” χ2(3) = 10.94, p = 0.012.2

1These were computed as the mean and standard deviation for each person.
2We compared a random intercept model to a random slope model with the R package lme4
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Data Set 2: The Flanker Task

In this task, the goal was to identify a vowel (e.g., A or E) or consonant (e.g., B or C). The 

target was located in the middle, and was "flanked" by two characters on either side. The 

congruent flankers surrounded the target with letters from the same category (e.g., UUAUU). 

The incongruent flankers were surrounded by mismatched letters (e.g., CCACC). There was 

also a neutral condition (##A##), but we only used the congruent and incongruent trials. 

There were 121 participants in total. Each completed 48 trials for the two conditions. We 

explicitly chose these data to contrast the Stoop data. The mean difference was small (2 ms) 

and there were no significant individual differences χ2(3) = 2.03, p = 0.566. This may seem 

paradoxical on the “surface,” but this demonstrates the utility of extended inference beyond 

the mean structure.

Model Parameterization

Mean Structure.—We fit the same model to both data sets. The outcome is reaction time 

for correct responses on the seconds scale, predicted by the experimental condition. For each 

outcome y, the location sub-model of the response times for the ith person and jth trial is 

given as

yij ∼ β0 + β1(Incongruentij)
+ u0i + u1i(Incongruentij) + ϵij . (12)

where β0 is the fixed effect intercept, which is the average reaction time for the congruent 

condition (the reference category). The reaction times are predicted by the experimental 

condition (congruent vs. incongruent). Hence, β1 is the average difference from the 

congruent condition (i.e., the experimental effect). There are random intercepts u0i that 

capture the individual deviations from β0. For person i, their mean reaction time for the 

congruent condition is β0 + u0i. Additionally, there are random slopes, u1i that capture the 

individual deviations from β1. Hence each person has an experimental effect. Again for 

person i, their experimental effect is β1 + u1i.

Residual Variance Structure.—The above is a traditional individual differences model, 

in that the “errors” are not modeled. This is not the case for the MELSM, that is,

ϵij ∼ N(0, σϵij
2 ) with

σϵij
2 = exp(η0 + η1(Incongruentij)

+ u2i + u3i(Incongruentij))2 .
(13)

The subscripts i and j denote residuals for the ith person and jth trial. Furthermore, the 

residual variance σϵij
2  is a function of a hierarchical model that includes both fixed and 

random effects. This is a defining feature of the MELSM. The interpretation differs from 

the random intercepts only model, because there is a predictor in the location sub-model 

(Equation 12). Hence, this model captures systematic patterns in the residual variance that 

were not explained by the experimental manipulation. The parameters are analogous to those 

in Equation (12), but they are on the logarithmic scale. η0 is the average within-person 
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variance for the congruent condition. η1 is the average difference, in residual variance, 

from the congruent condition. This is the experimental effect on consistently inhibiting 

irrelevant information. There are also random intercepts u2i and slopes u3i, that capture the 

individual deviations from the fixed effects. For person i, the within-person variance for 

their congruent responses is η0 + u2i. Additionally, η1 + u3i is the experimental effect on 

within-person variance for person i. This leads to an intuitive interpretation as percentage 

changes. Note that this formulation essentially generalizes the possibility of heterogeneous 

residual variance to the individual level.

Random Effects Covariance Matrix.—We assume that the random effects, for both the 

location and scale sub-models, are drawn from a common multivariate normal distribution

u0i
u1i
u2i
u3i

∼ N(0, Σ), (14)

with mean zero and Σ the covariance matrix that includes the random effects variances and 

covariances. We again use the separation strategy. This can be written as

Σ = diag(τ) Ω diag(τ), (15)

where τ is a 4 × 1 vector, τi = 0, 1, 2, 3, that contains the random effects S Ds, diag(τ) 

= diag(τ0, τ1, τ3, τ4) is a diagonal matrix with the diagonal elements τ, and Ω is a 4 × 4 

correlation matrix.

Standard Deviations.: The S Ds capture variability in the random intercepts τ0 and slopes 

τ1 for the mean structure, as well as the random intercepts τ2 and slopes τ3 for the residual 

variance structure. For example, τ1
2 is the variance in the experimental effects for the location 

sub-model. This is commonly tested to determined whether there is a “common effect” 

(Haaf & Rouder, 2017). In this paper we do not test the variance components, because 

we are explicitly interested in covariance between the random effects across the location 

and scale sub-models. We return to the topic of testing the random effects variances in the 

discussion.

Correlations.: The correlation matrix is defined as

Ω =

1 ρ01 ρ02 ρ03
ρ01 1 ρ12 ρ13
ρ02 ρ12 1 ρ23
ρ03 ρ13 ρ23 1

. (16)

ρ01 is the correlation for the random effects within the location sub-model. That is, the 

individual means for the congruent responses and the individual mean differences (i.e., the 

experimental effect). ρ23 is the correlation for the random effects within the scale sub-model. 

This provides the relation between the within-person variances for the congruent responses 
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and the experimental effects on within-person variance. The remaining correlations that are 

located in Ω3:4,1:2 capture the relations across the location and scale sub-models. Because 

they are the primary focus in this work, and they lead to novel inferences, we explain them 

in detail here.

1. ρ02: The correlation between random intercepts. That is, the individual means u0i 

and within-person variances u2i for the congruent responses. A similar relation is 

displayed in Figure 1 (panel D), but importantly, in this case, it captures residual 

variance that can be interpreted as response time consistency.

2. ρ03: The correlation between random intercepts for the location sub-model and 

random slopes for the scale sub-model. That is, the individual means u0i in 

the congruent condition and the individual differences u3i, in within-person 

variance, compared to the congruent condition (the effect on response time 

consistency). Interestingly, this allows for testing whether individuals with the 

fastest (or slowest) congruent responses tended to have more (or less) consistent 

incongruent responses (compared to their congruent responses).

3. ρ12: The correlation between random slopes for the location sub-model u1i and 

random intercepts for the scale sub-model u2i. This is similar to the previous, 

but the question asked is slightly different. In this case, the correlation captures 

whether those with the largest (or smallest) effects on their reaction times tended 

to have more (or less) consistent congruent responses.

4. ρ13: The correlation between the random slopes for the location and scale sub

models. That is, the individual “Stroop/flanker effects” on response time and 

within-person variance. This is perhaps the most interesting relation for the 

reaction time modeling literature in particular, because slower individuals are 

predicted to be more variable (Wagenmakers & Brown, 2007). In this case, it is 

not whether slower people are less consistent in general, but whether those that 

struggled to inhibit irrelevant information also inhibited irrelevant information 

inconsistently.

Prior Specification.—We do not test the fixed effects, and thus use diffuse priors, 

β0, β1, η0, η1 ∼ N(0, 5). Similarly, we also use diffuse prior distributions for the random effects 

S Ds, τi ~ Student-t+(μ = 0, σ = 1, v = 10), i = 0, 1, 2, 3. These are the same prior used 

in the random intercepts only model. Note that these are more informative than so-called 

noninformative prior distributions that customarily set the scale to a large value (e.g., 

1000). In more complex models, such as the MELSM, more informative priors can improve 

sampling efficiency (Gelman, Simpson, & Betancourt, 2017). This is the primary motivation 

for these priors.

We test the correlations that capture the relations across the location and scale sub-models. 

Accordingly, a mixture prior distribution is not used for ρ01 and ρ23
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ρ01 = F−1(z01)
ρ23 = F−1(z23)
z01 ∼ N(0, 0.5)
z23 ∼ N(0, 0.5),

(17)

which include the within sub-model relations. Recall that F−1(z) computes the inverse 

of the Fisher z transformation for correlations. This offers increased flexibility compared 

to, say, a uniform distribution. For the remaining correlations, that capture the mean and 

within-person variance relations, we employ a three component mixture, that is,

ρij ∼ F−1(zij)

zij ∼
N(0, 0.01) if k = 1
N+(0, 0.50) if k = 2
N−(0, 0.50) if k = 3

(18)

kij ∼ Cat(π), k ∈ {1, 2, 3} (19)

where i = 0, 1 and j = 2, 3 (i ≠ j, i < j). The standard deviations of the “spike” (k = 1) and 

slab (k = 2, 3) components were set to 0.01 and 0.50, respectively. Furthermore, π is a 1×3 

vector of prior probabilities for each category, such that ∑k = 1
K πk = 1, and kij is the indicator 

for each correlation. We again assume equal prior probabilities 1/K = 0.33.

These prior distributions were also used in the random intercepts only model. However, 

there is an important difference. This correlation matrix is larger (4×4 vs. 2×2), which 

results in restrictions on the size of the correlations. Accordingly, constraints are needed to 

ensure that the resulting covariance matrix is positive semi-definite. This is automatically 

handled in JAGS, as invalid values are rejected before the likelihood is evaluated. Hence, 

the prior in Equation (18) is necessarily restricted to positive semi-definite covariance 

matrices. In this case, setting the scale to 0.50 ensures that the prior is mostly unaffected 

by this restriction. Note that Frühwirth-Schnatter and Tüchler (2008) used a Cholesky 

decomposition to overcome this issue. However, this presents a more serious challenge 

because the tested elements do not correspond to the covariances (or correlations). This is 

described in Pinheiro and Bates (see section 2.1, 1996).

Joint Hypotheses

Our mixture approach allows for testing joint hypotheses that include several correlations. 

For example, a researcher might expect all the correlations to be positive. This can be 

expressed as

ℋ1 : ‘‘k = 2 for all correlations’’
ℋc : ‘‘not ℋ1’’, (20)

which compares ℋ1 to its compliment ℋc. As described above (Equation 10), the Bayes 

factor BF1c can be computed directly from the posterior samples that are compatible with 
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ℋ1. This general approach can seamlessly be extended to, say, also considering a null model 

ℋ2 : ‘‘k = 1 for all correlations” and redefining the compliment as ℋc : “not ℋ1 or ℋ2.”. In 

this example, we test the hypothesis in Equation (20). We also present the marginal posterior 

probabilities for each correlation.

Results

Comparison to a Mixed-Effects Model.—We first compared the MELSM to a 

traditional mixed-effects location model (MELM). The models are the same (including the 

priors), but for the MELM, only the mean structure was specified (Equation 12). Further, it 

is important to note the MELM can be understood as predicting the residual variance with 

an intercept (η0). Hence, the remaining scale parameters and covariances within and across 

the location and scale sub-models are implicitly constrained to zero. For purely descriptive 

purposes, we use the 90% CrIs to infer whether an individual differs from the average effect.

Figure 2 (panel A) includes the random slopes for the mean structure (i.e., β1 + u1i). These 

correspond to the experimental effects for each person. There are clear differences between 

the MELM and MELSM. In reference to the empirical estimates (grey line), there was 

more shrinkage towards β1 for the MELM. This was non-trivial, in that each model would 

lead to a different conclusion. On the one hand, because only two individuals differed from 

the average for the MELM, there does not appear to be notable individual differences in 

the Stroop task. However, this assumes that the residual variance is a fixed, non-varying 

constant. On the other hand, with the MELSM, 24 % of the individual effects differed from 

the average (β1). These deviations were perhaps small, but they are nonetheless important to 

consider. These differences between models can be understood in reference to Best Linear 

Unbiased Prediction (BLUP) of random effects, which are computed assuming a common 

residual variance (Equation 2.16 in McCulloch, 2003). We emphasize this is not the case for 

the MELSM.

A similar pattern was revealed for the Flanker task, but the differences between models 

were even more pronounced. Note that, on average (β1), there did not appear to be an 

experimental effect (Table 1). This seemed to generalize to the individual level for the 

MELM, but not for the MELSM. Indeed, ≈ 10% of the sample had a negative effect 

that indicates faster incongruent responses, whereas ≈ 15% had an effect in the expected 

direction (i.e., slower incongruent responses). There were also individual differences in the 

MELSM, but not the MELM, in that 24% of the sample differed from the fixed effect β1.

Hierarchical Shrinkage.: We were surprised by the aggressive shrinkage provided by the 

MELM. We thus took a closer look at the Flanker task. The shrunken estimates for each 

model are visualized in Figure 2 (panel B). In the MELM, the random slopes in particular 

were shrunken towards a common value (β1), whereas, in the MELSM, the estimates 

were shrunken towards both β0 and β1. Furthermore, due to the aggressive shrinkage, the 

MELM based estimates could be suggested to reflect mere measurement error (i.e., “noise”). 

Conversely, by examining the residual variance structure, this can provide key insights into 

behavioral consistency or stability. As we describe below, there is actually more individual 

variation in the “noise,” or response time consistency, than in the response times themselves.
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Case 1: The Stroop Task.

Mean Structure.: The fixed and random effects are reported in Table 1. The experimental 

effect on reaction time was 65 ms (Incongruent Δ (β1) in Table 1). This reproduced the 

result in Haaf and Rouder (2017). This demonstrates the MELSM and MELM provide 

similar estimates for the average effect. However, as we described above, there were notable 

differences at the individual level which is the primary focus of this work.

Residual Variance Structure.: Figure 3 (panel A, “Scale Intercepts”) displays the 

individual, within-person variances, for the congruent condition (i.e., the random intercepts). 

There were clear individual differences in response time consistency, which is unique 

information provided by the MELSM. The individual estimates ranged from 0.06 to 0.31. 

Expressed on the variance scale, this results in a 25 fold increase from the most to least 

consistent individuals! To put this in perspective, the minimum–maximum range was 0.49–

0.95 (ms) for the response time means. This corresponds to a (nearly) two-fold increase.

Figure 3 (panel A, “Scale Slopes”) displays the individual contrasts, in within-person 

variance, compared to the congruent condition. These are the experimental effects on 

response time consistency or, substantively, on consistently inhibiting irrelevant information. 

The fixed effect (η1) was 0.16 (Table 1), which indicates a 17 % increase in IIV on 

average ([exp(0.16) − 1]× 100). This does not generalize to the individual level. In fact, 24 

% of the sample had more consistent incongruent responses (i.e., a reduction in residual 

variance). Further, the change in within-person variance, ranged from a decrease of 28% 

to an increase of 115%! At the same time, the experimental effects on response time 

were positive for all subjects (Figure 2 panel A). Hence, while all individuals had slower 

incongruent responses, some had less variable incongruent responses. This runs contrary to 

the lawful mean–variance relation seen in Figure 1 (panel A).

Mean–Variance Relations.: The scatter plots in Figure 3 (panel B) displays the individual 

difference parameters across the mean and residual variance sub-models. Recall that 

this is the primary target for our proposed testing strategy, which allows for covariance 
selection in the distribution of random effects. Here we report the Bayes factor in favor 

of the direction of the correlation compared to the compliment. Furthermore, the marginal 

posterior probabilities for each mixture component are provided in Table 2. Panel ρ02 is the 

relation among the reaction time means and residual within-person variances, or IIV, for 

the congruent responses. This shows a similar pattern as Figure 1 (panel D), such that the 

slowest individuals tended to be least consistent (cor[u0i, u2i] = 0.66, 90% CrI = [0.56, 0.75], 

BF1c = Inf). Interestingly, as revealed in panel ρ01, there was a negative relation among the 

experimental effects on IIV and the congruent means. In other words, the fastest individuals 

in the congruent condition tended to have the largest experimental effects on IIV (cor[u0i, 

u3i] = −0.37, 90% CrI = [−0.52, − 0.21], BF1c = 844). The correlation displayed in panel ρ13 

is perhaps the most interesting, as it captures the relation among the experimental effects on 

reaction time and reaction time consistency (i.e., IIV). This effect was the largest (cor[u1i, 

u3i] = 0.74, 90% CrI = [0.59, 0.87], BF1c = Inf) and the data are infinitely more likely 

under the positive model (k = 2) than the compliment. Hence, those that were the slowest 
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at inhibiting irrelevant information tended to be the least consistent at inhibiting irrelevant 

information.

Case 2: The Flanker Task.

Mean Structure.: The fixed and random effects are reported in Table 1. The experimental 

effect was practically zero (≈ 2 ms) and the 90 % CrI included zero. Because the MELSM 

also characterizes the within-person variance structure, this provides a unique opportunity to 

learn from the data, over and above the mean structure.

Residual Variance Structure.: Figure 4 (panel A, “Scale Intercepts”) displays the 

individual, within-person variances, for the congruent condition (i.e., the random intercepts). 

There were clear individual differences in response time consistency. The response time IIVs 

ranged from 0.05 to 0.43. Expressed on the variance scale, this results in a 65 fold increase 

from the most to the least consistent individual ! On the other hand, the minimum-maximum 

range was 0.43–0.79 (ms) for the response time means. This corresponds to a (nearly) 

two-fold increase.

In contrast to the Stroop task, the experimental effect on within-person variance was small 

and the interval included zero (Table 1; Incongruent Δ (η1)). Recall that this work is 

explicitly focused on the individual-specific effects. In this case, the fixed effect did not 

generalize to a large portion of the sample For example, when examining the CrI in 

reference to zero, 21 % showed an increase in within-person variance. Substantively, this 

can be interpreted as there being individual differences in consistently inhibiting irrelevant 

information.

Mean–Variance Relations.: The scatter plots in Figure 4 (panel B) displays the individual 

difference parameters across the mean and residual variance sub-models. Furthermore, the 

marginal posterior probabilities for each mixture component are provided in Table 2. Panel 

ρ02 is the relation among the reaction time means and residual within-person variances, or 

IIV, for the congruent responses. This shows a similar pattern as Figure 1 (panel D) and the 

Stroop task, such that the slowest individuals tended to be least consistent (cor[u0i, u2i] = 

0.79, 90% CrI = [0.72, 0.86], BF1c = Inf). Interestingly, while there was a negative relation 

among the experimental effects on IIV and the congruent means (panel ρ01), the evidence 

was not strong (cor[u0i, u3i] = −0.11, 90% CrI = [−0.23, 0.02], BF1c = 1.74). This highlights 

how our method can be used to compare competing hypotheses. For example, the Bayes 

factor in favor of the null hypothesis ℋ0 : k = 1 compared to, say, a negative correlation 

ℋ1 : k = 3, is BF01 = 1.5. The correlation displayed in panel ρ13 captures the relation among 

the experimental effects on reaction time and reaction time consistency (i.e., IIV). This 

effect was again the largest (cor[u1i, u3i] = 0.84, 90% CrI = [0.69, 0.94], BF1c = Inf), which 

indicates that the data are infinitely more likely under the positive component (k = 2) than 

the compliment. Hence, at the individual level, those that were the slowest at inhibiting 

irrelevant information tended to be the least consistent at inhibiting irrelevant information. 

This reproduces the result in the Stroop task.
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Joint Hypothesis Testing

An important aspect of our proposed methodology is confirmatory hypothesis testing. As an 

example, we tested the hypothesis given in Equation (20) that predicts all of the correlations 

are positive againts its compliment. For the Stroop task, it was not possible to compute the 

Bayes factor. This is because the hypothesized model was not visited once which indicates 

that the hypothesis was not supported by the data. We return to this in the discussion. For 

the Flanker task, while the data were more likely under ℋc, the Bayes factor is typically 

considered inconclusive (BF1c = 0.56, Kass & Raftery, 1995)

Highest Probability Model

The posterior model probabilities are presented in Table 3. We computed the Bayes factors 

for the top four models compared to the HPM (ℳ1). Hence, the reported value indicates 

how much more likely the data are under the HMP. For the Stroop task, there was some 

uncertainty as to the “best” model. This can be seen from the comparison to ℳ2 (BF12 = 

1.54). There was even more uncertainty for the Flanker task. In fact, compared to the top 

four models, the evidence in favor of ℳ1 was largely inconclusive. However, in both tasks, 

ρ01 and ρ13 were included in the five most probable models. These are the correlations 

between the random intercepts (the congruent means and residual variances) and slopes (the 

experimental effect on the means and residual variances).

In the presence of model selection uncertainty (no clear winner), Bayesian model 

averaging (BMA) can be used (see for example Gronau et al., 2017). This avoids the 

well-known pitfalls of selecting one model from a candidate set (Hinne, Gronau, Bergh, & 

Wagenmakers, 2019; Leeb & Pötscher, 2005). We do not explicitly pursue this here, because 

the marginal posterior distributions were composed of all visited models (not only ℳ1), 

and thus effectively weighted (i.e., the proportion of samples) by the model probabilities. 

We refer interested readers to Raftery, Madigan, and Hoeting (1997) and Hoeting, Madigan, 

Raftery, and Volinsky (1999) for a full discussion of BMA. Further Pang and Gill (2009) 

describes how the “spike” and slab can be used for simultaneous hypothesis testing and 

model averaging.

Discussion

We introduced a novel framework for testing meanzvariance relations in the random effects 

distribution of hierarchical models. This was accomplished by including a mixed-effects 

sub-model to predict the residual, within-person variance, that allows for simultaneously 

estimating individual difference parameters for both the mean (location) and variance (scale) 

structures. We proposed a three component mixture prior distribution for the explicit goal 

of covariance selection, that is, Bayesian hypothesis testing of mean–variance relations. In 

several examples, we demonstrated the utility of characterizing the within-person variance 

structure and testing hypothesized mean–variance relations in the distribution of random 

effects.
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Future Directions

We focused on the person-specific, random effects, which is motivated by recent calls 

in psychology to place more emphasis at the individual level (Hamaker, 2012; Molenaar, 

2004). To this end, we did not test the fixed effects or the random effects variances. 

However, the presented methodology can be extended to test all aspects of the location and 

scale sub-models (e.g., Williams, Martin, & Rast, 2019). This would further Rouder, Morey, 

Speckman, and Province (2012), where the fixed effects can be tested but it is not possible 

to model the scale or the random effects correlations (i.e., the parameters in Figures 3 and 

4 are implicitly constrained to zero). Consequently, the MELSM provides a foundation from 

which to develop novel Bayesian methodology that can accommodate scale models and, say, 

allow for testing mean–variance relations among fixed-effects.

We emphasized that residual variance can provide novel insights relating to the consistency 

of psychological processes. Alternatively, from a measurement perspective, the residuals 

are mere “error.” It was apparent that treating the residual variance as a fixed, non

varying constant, across individuals was not warranted for a random intercepts model 

(Figure 1, panel B). This model is commonly used to compute reliability or intraclass 

correlation coefficients (Bliese, 2000; Shieh, 2016). Our results point towards moving 

beyond considering reliability as a fixed quantity. In a MELSM, this possibility was 

briefly described in Hedeker et al. (Equation 10, 2008). Hence, our work motivates further 

investigating individually varying reliability with the MELSM.

Our results also have theoretical implications for mean–variance lawfulness in psychology. It 

is important to not only establish “laws,” but also to identify processes that do not adhere to 

the “law.” For example, there is substantial interest in processes that do not show the typical 

mean–variance relation (Pratte, Rouder, Morey, & Feng, 2010; Schwarz & Miller, 2012). 

In the extant literature, this is commonly investigated by averaging across individuals (e.g., 

delta plots, De Jong et al., 1994). As we demonstrated, our methodology allows for probing 

mean–variance lawfulness at the individual level. However, we argue that the “law” should 

first be clarified for within-person experimental effects. For example, if slower reaction 

times are predicted to necessarily be more inconsistent, several people in both tasks violate 
the “law” (e.g., Figure 3, panel A). On the other hand, if the slowest individuals (compared 

to the congruent primes) are predicted to have the largest increases in IIV, then the “law” 

would be confirmed in both tasks (Figure 4, panel A). The MELSM can be used to answer 

this important theoretical question, for example, by extending Haaf and Rouder (2017) to the 

scale sub-model.

Limitations

When the variances are of interest, it should be noted that their magnitude is also defined 

by the mean (Baird, Le, & Lucas, 2006; Eid & Diener, 1999; Kalmijn & Veenhoven, 2005; 

Rouder et al., 2008). In the present work, this particular correlation cor(u0i, u2i) was large 

for both tasks. This can also be seen in Figure 1 (panel D). We refer interested readers to 

Mestdagh et al. (2018), where a “mean-corrected” measure of variability was introduced. 

This is not necessarily a “problem” for the MELSM, especially for the other correlations, but 

it should be considered when making inferences about mean–variance relations.
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The responses were right skewed and we assumed normality. This choice is not without 

precedent (e.g., Haaf & Rouder, 2017; Rouder, Kumar, & Haaf, 2019). In our view, the 

research question should determine the modeling strategy (Rousselet & Wilcox, 2019). We 

were explicitly interested in the mean and variance, and in the case of skewed data, both 

can be estimated accurately when assuming normality (e.g., Figure 1, panel D). There are 

several distributions that accommodate skew and encode the mean–variance relation (Table 

1 in Wagenmakers & Brown, 2007). However, the mean and variance are then a function 

of the distributional parameters which presents challenges in more complex models (e.g., 

de Villemereuil, Schielzeth, Nakagawa, & Morrissey, 2016). This is also applies to the 

log-normal distribution, although the location and scale retain their interpretability as the 

mean and variance of log(y). Thus, the log-normal distribution seems ideal for those not 

comfortable assuming normality.3 Furthermore, because the correlations were so striking, 

we computed the individual means and S Ds, as well as contrasts between conditions. The 

same pattern emerged, in that there were large correlations for both tasks which reproduced 

Figures 3 and 4 (panel B). Hence, our results are not an artifact, as they can be seen right in 

the data.

Conclusion

In the social-behavioral sciences, it is customary to view homogeneous variance as an 

assumption to satisfy. The central message of this work is to move beyond that perspective, 

and to view within-person variance as an opportunity to gain a richer understanding of 

psychological processes. We introduced a framework to facilitate this transition by targeting 

mean–variance relations. The proposed methodolgy is not only suited for inhibition tasks, 

as presented in this work, but can also be used more generally in repeated measures 

designs. By focusing on the within-person variance, that is response time consistency, this 

opened up possibilities for modeling a component that is often disregarded as mere “noise.” 

The illustrative examples highlighted such possibilities and demonstrated that the residual 

variance may show systematic patterns, individual differences, and relations with the mean 

structure.

Funded by:

National Institutes of Health, National Institute on Aging

National Science Foundation

References

Aarts E, Dolan CV, Verhage M, & van der Sluis S (2015). Multilevel analysis quantifies variation 
in the experimental effect while optimizing power and preventing false positives. BMC Neurosci, 
16(1), 94. doi: 10.1186/s12868-015-0228-5 [PubMed: 26685825] 

Aarts E, Verhage M, Veenvliet JV, Dolan CV, & van der Sluis S (2014, 4). A solution to dependency: 
using multilevel analysis to accommodate nested data. Nature Neuroscience, 17(4), 491–496. doi: 
10.1038/nn.3648 [PubMed: 24671065] 

3We also fitted log-normal models. The results were very similar to assuming normality.

Williams et al. Page 19

Psychol Methods. Author manuscript; available in PMC 2021 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alvarez I, Niemi J, & Simpson M (2014). Bayesian inference for a covariance matrix. In 
Annual conference on applied statistics in agriculture (Vol. 20, pp. 1669–1696). doi: 10.1214/aos/
1176348885

Baird BM, Le K, & Lucas RE (2006). On the nature of intraindividual personality variability: 
Reliability, validity, and associations with well-being. Journal of personality and social psychology, 
90(3), 512. [PubMed: 16594835] 

Barnard J, McCulloch R, & Meng X-L (2000). Modelling Covariance Matrices in Terms of 
StandardDeviations and Correlations With Applications to Shrinkage. Statistica Sinica, 10(4), 
1281–1311. doi: 10.2307/24306780

Barr DJ, Levy R, Scheepers C, & Tily HJ (2013). Random effects structure for confirmatory 
hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. doi: 
10.1016/j.jml.2012.11.001

Bauer DJ (2011,4). Evaluating Individual Differences in Psychological Processes:. Current Directions 
in Psychological Science, 20(2). doi: 10.1177/0963721411402670

Bliese PD (2000). Within-group agreement, non-independence, and reliability: Implications for data 
aggregation and analysis (1st ed.; Klein KJ & Kozlowski SW, Eds.). San Francisco: Jossey-Bass.

Brooks SPB, & Gelman AG (1998, 2). General methods for monitoring convergence of iterative 
simulations. Journal of computational and graphical statistics, 7(4), 434–455. doi: 10.2307/1390675

Cattell RB, Cattell AKS, & Rhymer RM (1947). P-technique demonstrated in determining 
psychophysiological source traits in a normal individual. Psychometrika, 12(4), 267–288. 
[PubMed: 18921433] 

Christ BU, Combrinck MI, & Thomas KGF (2018). Both Reaction Time and Accuracy Measures 
of Intraindividual Variability Predict Cognitive Performance in Alzheimer’s Disease. Frontiers in 
human neuroscience, 12, 124. doi: 10.3389/fnhum.2018.00124 [PubMed: 29686610] 

Cleveland WS, Denby L, & Liu C (2003). Random scale effects. (2), 33. Retrieved from stat.bell
labs.com

Daniels MJ, Kass RE (1999, 12). Nonconjugate Bayesian Estimation of Covariance Matrices and its 
Use in Hierarchical Models. Journal of the American Statistical Association, 94(448), 1254–1263. 
doi: 10.1080/01621459.1999.10473878

Davidson DJ, Zacks RT, & Williams CC (2003, 6). Stroop Interference, Practice, and Aging. Aging, 
Neuropsychology, and Cognition, 10(2), 85–98. doi: 10.1076/anec.10.2.85.14463

De Jong R, Liang C-C, & Lauber E (1994). Conditional and unconditional automaticity: 
A dual-process model of effects of spatial stimulus-response correspondence. Journal 
of Experimental Psychology: Human Perception and Performance, 20(4), 731–750. doi: 
10.1037/0096-1523.20.4.731 [PubMed: 8083631] 

de Villemereuil P, Schielzeth H, Nakagawa S, & Morrissey M (2016, 11). General methods for 
evolutionary quantitative genetic inference from generalized mixed models. Genetics, 204(3), 
1281–1294. doi: 10.1534/genetics.115.186536 [PubMed: 27591750] 

Efron B, & Morris C (1977). Stein’s paradox in statistics. Scientific American, 236(5), 119–127.

Eid M, & Diener E (1999). Intraindividual variability in affect: Reliability, validity, and personality 
correlates. Journal of Personality and Social Psychology, 76(4), 662.

Fagot D, Mella N, Borella E, Ghisletta P, Lecerf T, & De Ribaupierre A (2018). Intra-Individual 
Variability from a Lifespan Perspective: A Comparison of Latency and Accuracy Measures. 
Journal of Intelligence, 6(1), 16.

Fiske DW, & Rice L (1955). Intra-individual response variability. Psychological Bulletin, 52(3), 217. 
[PubMed: 14371891] 

Foulley J, & Quaas R (1995). Heterogeneous variances in Gaussian linear mixed models. Genetics 
Selection Evolution, 27(3), 211. doi: 10.1186/1297-9686-27-3-211

Foulley JL, San Cristobal M, Gianola D, & Im S (1992). Marginal likelihood and Bayesian 
approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian models. 
Computational Statistics and Data Analysis, 13(3), 291–305. doi: 10.1016/0167-9473(92)90137-5

Frühwirth-Schnatter S, & Tüchler R (2008, 3). Bayesian parsimonious covariance estimation 
for hierarchical linear mixed models. Statistics and Computing, 18(1), 1–13. doi: 10.1007/
s11222-007-9030-2

Williams et al. Page 20

Psychol Methods. Author manuscript; available in PMC 2021 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://stat.bell-labs.com
http://stat.bell-labs.com


Gelman A (2006). Prior distribution for variance parameters in hierarchical models. Bayesian 
Analysis, 1(3), 515–533. doi: 10.1214/06-BA117A

Gelman A, Simpson D, & Betancourt M (2017). The prior can generally only be understood in the 
context of the likelihood. ArXiv preprint.

George EI, & McCulloch RE (1993). Variable selection via Gibbs sampling. Journal of the American 
Statistical Association, 88(August 2015), 881–889. doi: 10.1080/01621459.1993.10476353

George EI, & Mcculloch RE (1997). Approaches for Bayesian Variable Selection. Statistica Sinica, 7, 
339–373. doi: 10.1.1.211.4871

Gronau QF, Van Erp S, Heck DW, Cesario J, Jonas KJ, & Wagenmakers E-J (2017). A Bayesian 
model-averaged meta-analysis of the power pose effect with informed and default priors: 
the case of felt power. Comprehensive Results in Social Psychology, 2(1), 123–138. doi: 
10.1080/23743603.2017.1326760

Gutiérrez-Peña E, Smith AFM, Bernardo JM, Consonni G, Veronese P, George EI, … Morris CN 
(1997, 6). Exponential and bayesian conjugate families: Review and extensions. Test, 6(1), 1–90. 
doi: 10.1007/BF02564426

Haaf JM, & Rouder JN (2017). Developing Constraint in Bayesian Mixed Models. Psychological 
Methods, 22(4), 779–798. doi: 10.1037/met0000156 [PubMed: 29265850] 

Hamaker EL (2012). Why researchers should think “within-person”: A paradigmatic rationale. In Mehl 
MR & Conner TS (Eds.), Handbook of research methods for studying daily life (1st ed., pp. 
43–61). New York.

Heck DW, Overstall AM, Gronau QF, & Wagenmakers EJ (2018). Quantifying uncertainty in 
transdimensional Markov chain Monte Carlo using discrete Markov models. Statistics and 
Computing, 29(4), 631–643. doi: 10.1007/s11222-018-9828-0

Hedeker D, Mermelstein RJ, & Demirtas H (2008). An application of a mixed-effects location scale 
model for analysis of ecological momentary assessment (EMA) data. Biometrics, 64(2), 627–634. 
doi: 10.1111/j.1541-0420.2007.00924.x [PubMed: 17970819] 

Hedeker D, Mermelstein RJ, & Demirtas H (2012). Modeling between-subject and within-subject 
variances in ecological momentary assessment data using mixed-effects location scale models. 
Statistics in Medicine, 31(27), 3328–3336. doi: 10.1002/sim.5338 [PubMed: 22419604] 

Hinne M, Gronau QF, Bergh D. v. d., & Wagenmakers E-J (2019). A conceptual introduction to 
Bayesian model averaging. PsyArXiv. doi: 10.31234/OSF.IO/PFYNB

Hoeting JA, Madigan D, Raftery AE, & Volinsky CT (1999). Bayesian Model Averaging: A Tutorial. 
Statistical Science, 14(4), 382–417. doi: 10.2307/2676803

Hoijtink H (2011). Informative hypotheses: Theory and practice for behavioral and social scientists. 
Chapman and Hall/CRC.

Horn JL (1972). State, trait and change dimensions of intelligence. British Journal of Educational 
Psychology, 42(2), 159–185.

Hsu CW, Sinay MS, & Hsu JS (2012, 4). Bayesian estimation of a covariance matrix with flexible 
prior specification. Annals of the Institute of Statistical Mathematics, 64(2), 319–342. doi: 
10.1007/s10463-010-0314-5

Huang A, & Wand MP (2013). Simple marginally noninformative prior distributions for covariance 
matrices. Bayesian Analysis, 8(2), 439–452. doi: 10.1214/13-BA815

James W, & Stein C (1961). Estimation with quadratic loss. Breakthroughs in Statistics: Foundations 
and basic theory(30), 361–379. doi: 10.1177/0278364907080252

Judd CM, Westfall J, & Kenny DA (2012). Treating stimuli as a random factor in social psychology: A 
new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality 
and Social Psychology, 103(1), 54–69. doi: 10.1037/a0028347 [PubMed: 22612667] 

Kalin AM, Plfuger M, Gietl AF, Riese F, JÃncke L, Nitsch RM, & Hock C (2014, 7). Intraindividual 
variability across cognitive tasks as a potential marker for prodromal Alzheimers disease. Frontiers 
in Aging Neuroscience, 6, 147. doi: 10.3389/fnagi.2014.00147 [PubMed: 25071556] 

Kalmijn W, & Veenhoven R (2005). Measuring inequality of happiness in nations: In search for proper 
statistics. Journal of Happiness Studies, 6(4), 357–396.

Kass RE, & Raftery AE (1995). Bayes Factors. Journal of the American Statistical Association, 
90(430), 773–795.

Williams et al. Page 21

Psychol Methods. Author manuscript; available in PMC 2021 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kuo L, & Mallick B (1998). Variable Selection for Regression Models. Sankhyā: The Indian Journal of 
Statistics, Series B, 60(1), 65–81.

Leckie G, French R, Charlton C, & Browne W (2014). Modeling heterogeneous variance–covariance 
components in two-level models. Journal of Educational and Behavioral Statistics, 39(5), 307–332.

Leeb H, & Pötscher BM (2005, 2). Model selection and inference: Facts and fiction. Econometric 
Theory, 21(1), 21–59. doi: 10.1017/S0266466605050036

Leonard T, & Hsu JSJ (1992). Bayesian Inference for a Covariance Matrix Tom Leonard; John S. J. 
Hsu. Annals of Statistics, 20(4), 1669–1696.

Leppink J (2019, 3). When Negative Turns Positive and Vice Versa: The Case of Repeated 
Measurements. Health Professions Education, 5(1), 76–81. doi: 10.1016/J.HPE.2017.03.004

Leppink J, & Merriënboer JJGV (2015). The Beast of Aggregating Cognitive Load Measures in 
Technology-Based Learning. Educational Technology & Society, 18(4), 230–245.

Lin SP, & Perlman DM (1985). A Monte Carlo comparison of four estimators of a covariance matrix 
(cannot found online source). Journal of Multivariate Analysis.

Liu S, Rovine MJ, & Molenaar PCM (2012). Selecting a linear mixed model for longitudinal data: 
Repeated measures analysis of variance, covariance pattern model, and growth curve approaches. 
Psychological Methods, 17(1), 15–30. doi: 10.1037/a0026971 [PubMed: 22251268] 

Luce RD (1986). Response times. New York: Oxford University Press.

MacDonald SWS, Hultsch DF, & Dixon RA (2008). Predicting impending death: inconsistency in 
speed is a selective and early marker. Psychology and aging, 23(3), 595. [PubMed: 18808249] 

Mazur JE (2006, 3). Mathematical models and the experimental analysis of behavior. Journal of 
the experimental analysis of behavior, 85(2), 275–91. doi: 10.1901/JEAB.2006.65-05 [PubMed: 
16673829] 

McCulloch CE (2003). Chapter 2: Linear mixed models (LMMs). In Generalized linear mixed 
models (Vol. Volume 7, pp. 9–20). Beechwood OH and Alexandria VA: Institute of Mathematical 
Statistics and American Statistical Association.

Mestdagh M, Pe M, Pestman W, Verdonck S, Kuppens P, & Tuerlinckx F (2018, 12). Sidelining 
the mean: The relative variability index as a generic mean-corrected variability measure for 
bounded variables. Psychological Methods, 23(4), 690–707. doi: 10.1037/met0000153 [PubMed: 
29648843] 

Mitchell DJ, Fanson BG, Beckmann C, & Biro PA (2016, 10). Towards powerful experimental and 
statistical approaches to study intraindividual variability in labile traits. Royal Society Open 
Science, 3(10). doi: 10.1098/rsos.160352

Mitchell TJ, & Beauchamp JJ (1988). Bayesian variable selection in linear regression (with 
discussion). J. Amer. Statist. Assoc, 83(1988), 1023–1036.

Molenaar PCM (2004). A Manifesto on Psychology as Idiographic Science: Bringing the Person 
Back Into Scientific Psychology, This Time Forever. Measurement: Interdisciplinary Research & 
Perspective. doi: 10.1207/s15366359mea0204{\_}1

O’Hara RB, & Sillanpää MJ (2009). A review of bayesian variable selection methods: What, how and 
which. Bayesian Analysis, 4(1), 85–118. doi: 10.1214/09-BA403

Pang X, & Gill J (2009). Spike and slab prior distributions for simultaneous Bayesian hypothesis 
testing, model selection, and prediction, of nonlinear outcomes. Unpublished Manuscript.

Peterson C, Swartz M, Shete S, & Vannucci M (2013, 6). Bayesian Model Averaging for 
Genetic Association Studies. In Do K, Qin ZS, & Vannucci M (Eds.), Advances in 
statistical bioinformatics (pp. 208–223). New York: Cambridge University Press. doi: 10.1017/
cbo9781139226448.011

Pinheiro JC, & Bates DM (1996). Unconstrained parametrizations for variance-covariance matrices. 
Statistics and Computing, 6(3), 289–296. doi: 10.1007/BF00140873

Plummer M (2013). JAGS: Just Another Gibs Sampler. Retrieved from http://mcmc
jags.sourceforge.net/

Pratte MS, Rouder JN, Morey RD, & Feng C (2010, 10). Exploring the differences in distributional 
properties between Stroop and Simon effects using delta plots. Attention, Perception & 
Psychophysics, 72(7), 2013–2025. doi: 10.3758/APP.72.7.2013

Williams et al. Page 22

Psychol Methods. Author manuscript; available in PMC 2021 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/


R Core Team. (2017). R: A Language and Environment for Statistical Computing. Vienna, Austria: R 
Foundation for Statistical Computing.

Raftery AE, Madigan D, & Hoeting JA (1997). Bayesian Model Averaging for Linear 
Regression Models. Journal of the American Statistical Association, 92(437), 179–191. doi: 
10.1080/01621459.1997.10473615

Ram N, & Gerstorf D (2009). Time-structured and net intraindividual variability: Tools for examining 
the development of dynamic characteristics and processes. Psychology and aging, 24(4), 778. 
[PubMed: 20025395] 

Rast P, & Ferrer E (2018). A Mixed-Effects Location Scale Model for Dyadic Interactions. , 1–63. doi: 
10.1080/00273171.2018.1477577

Rast P, Hofer SM, & Sparks C (2012a). Modeling Individual Differences in Within-Person Variation 
of Negative and Positive Affect in a Mixed Effects Location Scale Model Using BUGS/
JAGS. Multivariate Behavioral Research, 47(2), 177–200. doi: 10.1080/00273171.2012.658328 
[PubMed: 26734847] 

Rast P, Hofer SM, & Sparks C (2012b). Modeling Individual Differences in Within-Person Variation 
of Negative and Positive Affect in a Mixed Effects Location Scale Model Using BUGS/
JAGS. Multivariate Behavioral Research, 47(2), 177–200. doi: 10.1080/00273171.2012.658328 
[PubMed: 26734847] 

Ridderinkhof KR, Scheres A, Oosterlaan J, & Sergeant JA (2005). Delta Plots in the Study of 
Individual Differences: New Tools Reveal Response Inhibition Deficits in AD/HD That Are 
Eliminated by Methylphenidate Treatment. Journal of Abnormal Psychology, 114(2), 197–215. 
doi: 10.1037/0021-843X.114.2.197 [PubMed: 15869351] 

Röcke C, & Brose A (2013). Intraindividual Variability and Stability of Affect and Well-Being. 
GeroPsych, 26(3), 185–199. doi: 10.1024/1662-9647/a000094

Rouder JN, Kumar A, & Haaf JM (2019). Why most studies of individual differences with inhibition 
tasks are bound to fail. PsyArXiv, 1–37.

Rouder JN, Morey RD, Speckman PL, & Province JM (2012, 10). Default Bayes factors for ANOVA 
designs. Journal of Mathematical Psychology, 56(5), 356–374. doi: 10.1016/j.jmp.2012.08.001

Rouder JN, Tuerlinckx F, Speckman P, Lu J, & Gomez P (2008). A hierarchical approach for fitting 
curves to response time measurements. Psychonomic Bulletin and Review, 15(6), 1201–1208. doi: 
10.3758/PBR.15.6.1201 [PubMed: 19001591] 

Rouder JN, Yue Y, Speckman PL, Pratte MS, & Province JM (2010). Gradual growth versus 
shape invariance in perceptual decision making. Psychological Review, 117(4), 1267–1274. doi: 
10.1037/a0020793 [PubMed: 21038978] 

Rousselet GA, & Wilcox RR (2019). Reaction times and other skewed distributions: problems with the 
mean and the median. bioRxiv, 383935. doi: 10.1101/383935

Schwarz W, & Miller J (2012, 8). Response time models of delta plots with negative-going slopes. 
Psychonomic Bulletin & Review, 19(4), 555–574. doi: 10.3758/s13423-012-0254-6 [PubMed: 
22610358] 

Shieh G (2016). Choosing the best index for the average score intraclass correlation coefficient. 
Behavior Research Methods, 48(3), 994–1003. doi: 10.3758/s13428-015-0623-y [PubMed: 
26182855] 

Townsend JT (2008, 10). Mathematical Psychology: Prospects For The 21 Century: A Guest Editorial. 
Journal of mathematical psychology, 52(5), 269–280. doi: 10.1016/j.jmp.2008.05.001 [PubMed: 
19802342] 

van de Schoot R, Verhoeven M, & Hoijtink H (2013, 1). Bayesian evaluation of informative 
hypotheses in SEM using Mplus: A black bear story. European Journal of Developmental 
Psychology, 10(1), 81–98. doi: 10.1080/17405629.2012.732719

von Bastian CC, Souza AS, & Gade M (2016, 2). No evidence for bilingual cognitive advantages: 
A test of four hypotheses. Journal of experimental psychology. General, 145(2), 246–258. doi: 
10.1037/xge0000120 [PubMed: 26523426] 

Wagenmakers EJ, & Brown S (2007). On the Linear Relation Between the Mean and the Standard 
Deviation of a Response Time Distribution. Psychological Review, 114(3), 830–841. doi: 
10.1037/0033-295X.114.3.830 [PubMed: 17638508] 

Williams et al. Page 23

Psychol Methods. Author manuscript; available in PMC 2021 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wagner H, & Duller C (2012). Bayesian model selection for logistic regression models with 
random intercept. Computational Statistics and Data Analysis, 56(5), 1256–1274. doi: 10.1016/
j.csda.2011.06.033

Wang H (2015). Scaling it up: Stochastic search structure learning in graphical models. Bayesian 
Analysis, 10(2), 351–377. doi: 10.1214/14-BA916

Watts A, Walters RW, Hoffman L, & Templin J (2016). Intraindividual variability of physical activity 
in older adults with and without mild Alzheimer’s disease. PLoS ONE, 11(4). doi: 10.1371/
journal.pone.0153898

Williams DR, Carlsson R, & Bürkner P-C (2017). Between-litter variation in developmental 
studies of hormones and behavior: Inflated false positives and diminished power. Frontiers in 
Neuroendocrinology(August), 0–1. doi: 10.1016/j.yfrne.2017.08.003

Williams DR, Martin SR, & Rast P (2019). Putting the Individual into Reliability: Bayesian Testing of 
Homogeneous Within-Person Variance in Hierarchical Models. PsyArXiv. doi: 10.31234/OSF.IO/
HPQ7W

Williams DR, & Rast P (2018). A Bayesian Nonlinear Mixed-Effects Location Scale Model for 
Learning., 1–18.

Wolsiefer K, Westfall J, & Judd CM (2017, 8). Modeling stimulus variation in three common implicit 
attitude tasks. Behavior Research Methods, 49(4), 1193–1209. doi: 10.3758/s13428-016-0779-0 
[PubMed: 27519882] 

Woodrow H (1932). Quotidian variability. Psychological Review, 39(3), 245.

Wright BC (2017, 8). What Stroop tasks can tell us about selective attention from childhood 
to adulthood. British journal of psychology (London, England : 1953), 108(3), 583–607. doi: 
10.1111/bjop.12230

Williams et al. Page 24

Psychol Methods. Author manuscript; available in PMC 2021 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A) Illustrative mixture prior distributions for testing correlations in the distribution of 

random effects. sρ is the scale parameter for the slab (k = 2, 3), whereas cρ−1 is a constant, 

that when multiplied by sρ, produces the “spike” (k = 1). The basic idea is that the mixture 

components are competing hypotheses. Hence it is possible to compare, say, ℋ0 : k = 1 vs. 

ℋ1 : k = 2, which results in a one-sided hypothesis test. B) Location and scale intercepts for 

each individual (black dots). The former is reaction time means and the latter is reaction 

time standard deviations (S D). The pink error bars denote 90 % credible intervals that 

excluded the fixed effect (dotted line). This is a key aspect of the MELSM, as location only 

mixed-effects models customarily assume a common reaction time S D for all subjects. C) 

Hierarchical shrinkage that effectively smooths the individual estimates towards the fixed 

effect. The “Hierarchical” estimates (orange) were obtained from the MELSM, whereas the 

“Empirical” estimates (grey) were obtained from the data by computing the means and S 
Ds for each individual. This reveals that there is hierarchical shrinkage for both the random 

scale and location effects. D) The posterior distribution for ρ01 (Equation 6) that captures 

the correlation between the individual means and S Ds in the distribution of random effects 

(Equation 3). The blue corresponds to the positive slab (k = 2), where Pr(k = 2∣Y) = 1.0, 

which results in decisive evidence. That is, the slowest individuals tended to be the least 

consistent.
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Figure 2. 
A) Location random slopes that correspond to the experimental effects on reaction time. 

MELM is the mixed-effects location only model and MELSM is the mixed-effects location 

scale model. The pink error bars denote 90 % credible intervals that excluded the fixed effect 

(dotted line) and the grey lines denote the empirical mean differences between conditions 

for each person. This plot reveals that the MELM estimates exhibit more shrinkage than the 

MELSM estimates. This results in less pronounced individual differences, in that, for the 

MELM, fewer slopes excluded the fixed effect. B) Hierarchical shrinkage for the Flanker 

task. The stronger shrinkage was especially severe for the experimental effects, as they 

gravitated towards a common slope in the MELM. The MELSM also provided shrinkage, 

but it was less pronounced than the MELM.
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Figure 3. 
A) Scale random intercepts and slopes for the Stroop task. The former is the residual within

person variance, or intraindividual variability (IIV), in each subjects’ congruent responses. 

The latter is the difference in IIV between the congruent and incongruent responses. That 

is, the experimental effect on within-person variance. Exponentiation allows for interpreting 

the estimates in terms of percentage change in IIV (e.g., +150 % denotes a 150 % increase 

in IIV compared to the congruent responses). The pink error bars denote 90 % credible 

intervals that excluded the fixed effect (dotted line). B) Scatter plots of the random effects. 

Each dot corresponds to a study subject. The correlations correspond to those in Equation 

(16). The heatmap is a two-dimensional density estimate, where the gradient goes from dark 

red (low density) to light yellow (high density).
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Figure 4. 
A) Scale random intercepts and slopes for the Flanker task. The former is the residual 

within-person variance, or intraindividual variability (IIV), in each subjects’ congruent 

responses. The latter is the difference in IIV between the congruent and incongruent 

responses. That is, the experimental effect on within-person variance. Exponentiation allows 

for interpreting the estimates in terms of percentage change in IIV (e.g., +150 % denotes 

a 150 % increase in IIV compared to the congruent responses). The pink error bars denote 

90 % credible intervals that excluded the fixed effect (dotted line). B) Scatter plots of 

the random effects. Each dot corresponds to a study subject. The correlations correspond 

to those in Equation (16). The heatmap is a two-dimensional density estimate, where the 

gradient goes from dark red (low density) to light yellow (high density).
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