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Abstract

Background: The tight epidemiological coupling between HIV and its associated opportunistic infections leads to
challenges and opportunities for disease surveillance.

Methodology/Principal Findings: We review efforts of WHO and collaborating agencies to track and fight the TB/HIV co-
epidemic, and discuss modeling—via mathematical, statistical, and computational approaches—as a means to identify
disease indicators designed to integrate data from linked diseases in order to characterize how co-epidemics change in time
and space. We present RTB/HIV, an index comparing changes in TB incidence relative to HIV prevalence, and use it to identify
those sub-Saharan African countries with outlier TB/HIV dynamics. RTB/HIV can also be used to predict epidemiological
trends, investigate the coherency of reported trends, and cross-check the anticipated impact of public health interventions.
Identifying the cause(s) responsible for anomalous RTB/HIV values can reveal information crucial to the management of
public health.

Conclusions/Significance: We frame our suggestions for integrating and analyzing co-epidemic data within the context of
global disease monitoring. Used routinely, joint disease indicators such as RTB/HIV could greatly enhance the monitoring and
evaluation of public health programs.
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Introduction

Epidemiological monitoring presents serious challenges in both

developing and developed nations. These challenges can stem

from a lack of data, but also from a wealth of data that can be

disconnected and analyzed in non-integrative ways. Linked

epidemics can offer unique epidemiological insights when

comparing interacting disease processes [1,2], and linked analyses

can be particularly insightful if we have a solid understanding of

how the epidemics interact. Here we consider analyzing data from

closely coupled epidemics—or co-epidemics, as we will refer to

them— focusing on the use of joint indicator quantities to

integrate data based on known mechanisms of interaction.

HIV offers many dramatic examples of linked emerging and re-

emerging epidemics, because it has enhanced the ability of

numerous human and zoonotic pathogens to proliferate to

unprecedented levels [3,4]. The epidemiological patterns of

several infectious diseases are therefore tightly linked to those of

HIV: when the prevalence (total number of persons infected) of

HIV increases, so does the incidence (number of new persons with

active disease, either because of a new infection, or because an

existing infection has become activated or reactivated) and

ultimately the prevalence of associated diseases [5,6]. Tuberculosis

(TB) ranks among the most deadly and prevalent re-emerging

infections of persons living with HIV/AIDS (PLWHA). In the last

20 years the number of new TB cases has tripled in high HIV

prevalence countries, and at least 33% of the world’s 33.2 million

PLWHA are infected with Mycobacterium tuberculosis [7]. Further-

more, drug-resistant TB can be more prevalent and virulent in

PLWHA [8–10]. There is great regional variation in TB/HIV co-

dynamics: approximately 80% of persons with TB/HIV co-

infections live in sub-Saharan Africa, where TB is the leading

cause of death among PLWHA [7,11]. The TB burden is expected

to increase considerably in Eastern Europe and China, where the

HIV epidemic is still rising [12]. Fortunately, because HIV is such

a major driving force in HIV associated infections, the incidence

and prevalence of opportunistic infections have also been

documented to decrease when HIV trends decrease [13,14].

Here we focus on TB and HIV, reviewing efforts of The World

Health Organization (WHO) and collaborative agencies to track

and fight the co-epidemic. We discuss the use of mathematical

modeling to help identify appropriate disease monitoring indica-

tors, i.e. variables used to measure progress towards the goals,

objectives and targets of public health programs [15]. Indicators

specifically designed to combine information from both diseases

provide an efficient approach to integrating the available data to

obtain a more comprehensive view of the entire system, and also

facilitate spatiotemporal comparisons of disease dynamics. We
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present a TB/HIV indicator, RTB/HIV, which permits us to

compare the rate of change of TB incidence relative to that of HIV

prevalence, and conduct a comparative study of TB/HIV co-

dynamics across sub-Saharan Africa. We also discuss the use of

other joint indicators, and conclude by placing our suggestions

within the context of global disease monitoring.

Methods

Joint Programs for Surveillance and Control of HIV and
TB

The tightly knit co-dynamics of HIV and its opportunistic

infections have led public health officials to promote and

intensify collaborative activities among programs directed

toward HIV/AIDS care and control with those focusing on

HIV-associated diseases. WHO and collaborators have estab-

lished a Global TB/HIV Working Group, elaborating frame-

works for expanding the scope of TB and HIV programs and

their partners [15–22] with the objective of improving

diagnostic, care, and prevention services for HIV and TB

patients. The ultimate goal is to decrease the TB burden in

PLWHA and the HIV burden in TB patients [17,23,24]. In

effect, these efforts have increased the number of TB patients

worldwide who were tested for HIV and accessed HIV

prevention, treatment, and care services from 22,000 in 2002

to 700,000 in 2006. Additionally, the number of countries

implementing collaborative TB/HIV activities rose from 7 in

2003 to 112 in 2006, with Kenya, Malawi, and Rwanda

showing exceptional progress. However, much work remains.

Many HIV health care facilities are not properly equipped to

avoid TB transmission [25] and in 2006, ,1% of PLWHA

worldwide were tested for TB and only 0.08% were placed on

isoniazid preventive therapy when latently infected with TB

[26].

Monitoring and evaluation (M&E) is an essential component of

health program management [15], and involves the routine

tracking of service and program performance (monitoring) and the

episodic assessment of results of program activities (evaluation). As

resources devoted to collaborative TB/HIV activities increase, so

does the need to assess their quality, effectiveness, coverage, and

delivery beyond the tools provided by the guidelines for M&E

and lists of indicators established independently by TB and HIV/

AIDS programs [15,17,27]. For example, monitoring HIV

prevalence among TB patients is an activity linked to both

programs, and is not exclusive to either one. If neither TB nor

HIV/AIDS programs commit funds or accept responsibility for

it, key indicators may not be properly surveyed and critical

information for adequate M&E may go amiss (10). Likewise,

redundancy of research, where both programs monitor the same

indicator, should be avoided to conserve limited resources [12].

Accordingly, WHO and the TB/HIV Working Group provide

guidance for TB/HIV operational research [12], including a

framework for the collection of the most appropriate data, the

definition of a core group of indicators, and the allocation of

responsibilities specifically targeted at TB/HIV collaborative

activities [15]. Furthermore, WHO, UNAIDS and UNICEF

provide data on key performance indicators for collaborative

TB/HIV activities [11,16,28].

Joint Indicators for Linked Epidemics: The Role of
Modeling

Further efforts on behalf of WHO and collaborating agencies in

the fight against the TB/HIV co-epidemic include the establish-

ment of research priorities specifically crafted to guide policy

development (health system and policy research) and implemen-

tation of joint TB/HIV activities (operational research and

targeted evaluation) [12]. The ultimate goal of this research is to

improve preventive measures for and care of people with HIV-associated TB,

and is directed primarily toward resource-limited settings in the

context of the roll-out of antiretroviral therapy (ARVT) programs.

To this end, joint data analysis of TB and HIV co-dynamics via

mathematical, statistical, and computational approaches can yield

substantial benefits at relatively low financial cost, particularly in

the implementation of scaled up or novel public health policies

[4,14,26,29–33]. Modeling can also offer essential insight in

defining optimal indicators, which is a key step in the successful

M&E of TB/HIV collaborative activities [15], because analytical

techniques can:

N Demonstrate the purpose of measuring an indicator by exposing

how the different components of the system interact in space

and time, potentially revealing hidden inter-relationships

between different indicators. Due to the complexity of

biological systems, it may not be obvious that certain indicators

are surrogate markers for critical population-level disease

processes.

N Allow us to quantify changes in the value of key indicators in

response to disturbances to the system—such as changes in risky

behavior, treatment of infected persons, development of drug

resistance [31,32]—thereby facilitating the M&E process by

enabling us to contrast expected and reported disease trends.

N Help define the optimal methodology and periodicity for indicator

surveillance. Different surveillance schemes will generate

different data types, and modeling can show how informative

these types are in regards to particular questions (e.g. via

sensitivity analysis, see below). Modeling can also inform on

the relative importance of spatial heterogeneity in determining

indicator trends [34], allowing us to optimize the spatial scale

of data collection. Furthermore, indicators may vary in the

amount of information they can provide at different points in

time, and modeling can be used to assess the optimal timing of

epidemiological surveys.

N Inform on the strengths and limitations of different indicators by

establishing their relative importance via sensitivity and

uncertainty analyses [29,35]. Additionally, these analyses

permit us to quantify how our level of uncertainty in the

surveillance of an indicator limits our ability to infer actual

disease trends from reported trends, or to evaluate the impact

of alternative interventions.

N Provide essential insight into spatial and temporal differences

in the processes acting on the system [14]. A key attribute of an

indicator is its comparability across settings, because pandemics

such as HIV and TB have a broad geographic distribution,

and are subjected to a diverse array of conditions that can

generate regional variation in their co-dynamics.

An Indicator for TB/HIV Dynamics
We can easily quantify how each individual disease varies in

time by defining a rate of change of any given measure (i.e.

incidence, prevalence, mortality). However, in the case of closely

interacting diseases such as TB and HIV, quantifying how the two

diseases vary together may provide additional and valuable

information both for the individual monitoring of the diseases,

and for collaborative control efforts [15,16]. As such, an essential

feature of TB/HIV co-epidemiology is the fact that HIV is the

major driver of these diseases’ co-dynamics. This occurs because

HIV-infected persons are highly prone to develop active TB

Monitoring Linked Epidemics
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[36,37]; in general this risk increases as a person progresses in their

HIV infection [38–40]. We therefore know how HIV affects TB,

and have a general understanding of how the trends of the two

diseases are related in time [6,13,41]. Hence, a TB/HIV indicator

that can capture this causality has the potential to provide greater

dynamic insight than a static indicator that provides a one-point-

in-time measure. Ideally the dynamic indicator will compare time

trends for the two diseases that account for the time lag expected

to occur between changes in HIV numbers and changes in TB

numbers in a population. By comparing HIV trends from a time

period earlier than that considered for TB, we can incorporate this

asymmetry in the interaction between the two diseases, where HIV

drives TB and not the reverse. As a concrete example of the

application of these principles, we present and generalize a

measure that was recently applied to HIV and TB co-dynamics in

sub-Saharan Africa. This indicator, which we call RTB/HIV,

compares how fast the incidence of active TB cases (including both

smear-positive and smear-negative disease) changes in relation to

changes in the prevalence of HIV in different countries or regions.

We examine changes in TB incidence in the context of varying

HIV prevalence—rather than relative changes in the incidence of

both diseases or, alternatively, in the prevalence of both diseases—

for several reasons. On the one hand, this approach allows us to

shorten the time lag between the HIV data and the TB data used

for the indicator, because we are capturing the shortest time

interval between the measures (HIV prevalence measures people

at all stages of their HIV infection, and in principle people that

have progressed in their HIV infection will develop active TB

disease more rapidly than those only recently infected, which is

what is measured by HIV incidence). This increases the total time

period over which the indicator can be reliably calculated, because

typically we have lower quality, less reliable data the farther we go

back in time (i.e., if we compared incidence in both diseases we

would need earlier data for HIV). Additionally, HIV incidence

and TB prevalence are harder to measure, and their estimation

involves a greater number of assumptions, than their counterparts

HIV prevalence and TB incidence.

RTB/HIV is an indicator that encompasses the ratio of two

measures: RTB, which quantifies the mean change in TB incidence

(ITB) over a defined time period in the context of parameters t1, n,

and r (see below),

RTB(t1,n,r)~
ITB(t1zrzn)

ITB(t1zr)
{1

� ��
n,

and RHIV, which quantifies the mean change in HIV prevalence

(PHIV) over an earlier time period,

RHIV(t1,n)~
PHIV(t1zn)

PHIV(t1)
{1

� ��
n:

RTB/HIV is a modified ratio of these two measures,

RTB=HIV(t1,n,r)~
1zRTB(t1,n,r)

1zRHIV(t1,n)
{1: ð1Þ

Here t1 = 0,1,2…, is the index of time progression. The parameter n

represents the total duration of the HIV prevalence time series. We

delay the time frame of the TB data relative to that of the HIV data

by r years, to account for the average time-lag involved in individuals

developing active TB after becoming HIV infected. By doing this, we

are essentially designing an indicator measure that incorporates the

causal mechanism at play in this epidemiological interaction (see

above). To analyze any particular data set it is convenient to set t1 = 0

as the first year for which HIV prevalence data is available and

t1zrzn as the last year for which TB incidence data is available,

provided HIV prevalence data is available at least until t1zn (Fig. 1).

Thus, although our indicator is a single number, it evaluates changes

in TB incidence relative to HIV prevalence over a period of n years,

where n could be 1 but may be larger if data are collected on a less

than annual basis or if averaging over a longer period is desirable (or

necessary to smooth the data).

The reason for adding 1 to the rates and then subtracting 1 from

their ratio is simply to center the indicator so that it has the

intuitive properties listed in Table 1. The sign of the index tells us

which disease is increasing or decreasing relative to the other. If TB

incidence changes at the same rate as HIV prevalence over the

period in question, then RTB=HIV(t1,n,r)~0. If TB incidence

increases relative to HIV prevalence, then RTB=HIV(t1,n,r)w0.

This result can occur either because both diseases increase and TB

does so at a faster rate, or because TB increases and HIV

decreases, or alternatively because both diseases decrease but TB

does so at a slower rate than HIV. The reverse situations will lead

to RTB=HIV(t1,n,r)v0, implying that TB incidence decreases

relative to HIV prevalence.

RTB/HIV can be used to analyze the direction of relative change

of the two diseases over time in a given geographic area (e.g. town,

district, country). However, it has added value because it is a

quantity easily comparable across different areas, such as the

Figure 1. Timeline used to generate RTB=HIV(t1,n,r) values depicted in Figure 2. The HIV time frame starts at t1 = 0, corresponding to 1997. In
order to track the impact of HIV on TB, we delay the TB time frame by r = 3 years. Accordingly, we analyze TB data starting at t1+r = 3 years, i.e. 3 years
after 1997, which corresponds to the year 2000. We have TB data until the year 2006, such that the length of our TB time frame spans 2000–2006, for
a total of n = 7 years of TB data. Under our formulation this corresponds to t1+r+n = 10. Because optimally we compare trends for the same number of
years for the two diseases, we also use 7 years of HIV data, t1+n = 7 years, i.e. from 1997–2003. Dashed lines indicate HIV, dotted lines indicate TB.
doi:10.1371/journal.pone.0008796.g001
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districts within a country, or different countries within a continent.

Therefore one can gain insight into the epidemics’ co-dynamics

not only because of the numerical value of the measure in a given

area, but by comparing its value to neighboring areas (see below).

In any case, here we are working with an index of relative growth

rate, and consequently from a public health perspective any

imbalance generally will be more significant the higher the

absolute numbers of TB and HIV for a given region—that is, a

given difference in RTB/HIV will raise more concerns in badly-

affected areas (see below).

Results and Discussion

Case Study: TB and HIV in Sub-Saharan Africa
Recently we applied an indicator related to (1) in the course of a

study evaluating the potential impact of shortening treatment

duration for TB [14,30,33]. We focused on high HIV prevalence

areas, and used Kenya to calibrate our TB/HIV model because this

country provides a cohesive spatial monitoring unit with a sound

surveillance record for both diseases. However, our mathematical

model could not reconcile reported TB and HIV trends. In an effort

to understand TB/HIV co-dynamics in Kenya, we investigated

TB/HIV patterns in the whole of Africa by comparing the rates of

change of TB as compared to those of HIV [14]. We used a measure

related to that shown above, with certain modifications due to data

availability. Our analysis singled out Kenya as a clear outlier

(together with two other countries), with TB/HIV co-dynamics that

were incongruous with the rest of sub-Saharan Africa because of its

notable increase in TB trends in relation to HIV trends. Possible

explanations for the mismatch included real epidemiological

differences or problems with the reported data. The latter appears

to have been the case in Kenya, because following the completion of

our study the official trends for both diseases have been revised: TB

numbers have been revised downwards [42] and HIV numbers are

in the process of being revised upwards [43]. That is, in recent years

the decrease in HIV was overestimated in Kenya, while

improvements in the detection of TB had not been taken into

account [14,42–44]. Our joint analysis of TB/HIV data via

mathematical modeling and the RTB/HIV indicator identified the

anomalous co-dynamics rendered by paradoxical TB and HIV data

reported for Kenya in 2006 [44–47].

Here we present a re-analysis with the revised TB and HIV

numbers. We have calculated the RTB/HIV values with the

officially reported country estimates for TB incidence [42] and

HIV prevalence [43] for Africa (Figs. 1 and 2). We set r = 3, i.e. we

define the optimal time lag at which to begin tracking potential

changes in TB incidence in a population as a response to changes

in HIV prevalence as 3 years [38], although r = 2 or 4 would yield

rather similar results. For HIV in Kenya we are working with

preliminary ranges (the final official estimates are not yet

available), and have estimated the HIV prevalence as the mid-

point of the low and high bounds of the preliminary ranges. As

such, TB incidence in Kenya was estimated at 420 in 2000 and

384 in 2006, while the midpoint average HIV prevalence for the

same years is 10.6 and 7, respectively. The following calculations

give us Kenya’s RTB/HIV value:

RTB~
384

420
{1

� ��
7~{0:012

RHIV ~
7

10:6
{1

� ��
7~{0:049

9>>>=
>>>;

RTB=HIV ~
1z {0:012ð Þ
1z {0:049ð Þ{1~0:038:

The RTB/HIV for all other countries can be calculated with the same

basic reasoning. With this re-analysis with the updated data, the

incongruency is largely resolved and Kenya’s value of RTB/HIV ranks

8th out of 38 countries while in our earlier analysis it ranked 3rd [14].

In any case, many sub-Saharan countries are showing a stabilization

of their TB incidence rates following a stabilization or decrease of

their HIV prevalence trends. The joint TB/HIV trends reported in

Africa therefore provide further evidence that substantial benefits

follow from decreases in HIV prevalence, in terms of concomitant

reductions in HIV-associated opportunistic infections.

Our analysis of TB/HIV co-dynamics in Africa further supports

the idea that interacting diseases can be used to monitor each

other—an innovative approach to the difficult science of disease

surveillance [14]. Analyses of this nature can be used to identify

those countries where the reported patterns of linked diseases are

incongruent. Looking beyond Kenya, our analysis reveals that TB

appears to be outpacing HIV in central Africa, particularly in

Rwanda and Burundi (RTB/HIV = 0.096 in both countries), while

HIV is greatly outpacing TB in northwestern Africa, namely in

Mauritania, Senegal, and The Gambia (RTB/HIV = 20.318,

20.233, and 20.085, respectively). Once we have identified the

countries with outlier co-dynamics, determining the reasons for the

imbalance should be a priority because they can reveal

information crucial to public health. These reasons may relate to

epidemiological mechanisms or surveillance issues or both. For

example, if TB is growing disproportionately compared to HIV

(indicated by a high value of RTB/HIV), possible causes could

include social conditions linked to poverty, malnutrition and high

population density, which can boost TB transmission, or else the

spread of more transmissible and virulent TB strains. However,

changes in surveillance practices could also contribute or explain

the mismatch. Conversely, a disproportionate relative increase in

HIV (indicated by low RTB/HIV values) may indicate that HIV

prevention programs are not effective, and that we can expect to

Table 1. Value of RTB/HIV (R in the table) as determined by the relative rates of the TB and HIV epidemics.

HIV increases HIV constant HIV decreases

TB increases R.0 if: TB increase . HIV increase

R = 0 if: TB increase = HIV increase R.0 R.0

R,0 if: TB increase , HIV increase

TB constant R,0 R = 0 R.0

TB decreases R.0 if: TB decrease , HIV decrease

R,0 R,0 R = 0 if: TB decrease = HIV decrease

R,0 if: TB decrease . HIV decrease

doi:10.1371/journal.pone.0008796.t001
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see rising TB numbers in the coming years. RTB/HIV can therefore

help us predict possible disease trends in the near future.

Joint Epidemiological Indicators: An Open Field
Studying epidemiological trends of linked infections yields spatial

information to include in epidemiological assessments at both small

and large spatial scales, spanning regional, country, and district

levels. For example, a finer-grained analysis of Kenyan data shows

that TB growth in relation to HIV trends is proportionally much

higher in the Nairobi district than in the Kisumu district, which

could reflect environmental factors favoring TB spread in the high-

density settlements around Nairobi [14].

Joint indicators can also be used to investigate the temporal

coherency of epidemiological trends from the same area by

comparing changes in different time frames from the same

localities. We expect the RTB/HIV of a specific area or country to

vary within certain limits over time; accordingly, this indicator can

reveal unexpected co-dynamics with data collected independently

by TB and HIV control programs for other purposes. Unexpected

RTB/HIV values can result, for example, from TB and HIV

programs placing greater resources in monitoring their corre-

sponding diseases in different areas at different times, which can

yield distorted district and aggregated country estimates. Unequal

distribution of public health resources, such as skewed drug

delivery programs or imbalanced geographic placement of TB and

HIV clinics [34] can also result in differential TB/HIV patterns

that can be captured by measures such as RTB/HIV.

Another important aspect of the analysis of joint epidemiolog-

ical indicators is that we can interpret changes to their values in

the context of changing control programs for one or both diseases.

As an example (Fig. 3), we anticipate that if antiretrovirals are

newly introduced into a population, HIV numbers will decrease

and in consequence, with a certain time lag, TB numbers will also

decrease. Within this predictive scenario, we can compare

expected trends with observed trends in order to see if TB control

is reaping the benefits expected from the progressive reduction in

HIV numbers, and if so by what magnitude, quantified in terms of

a joint indicator. By quantifying with a common measure the

relative decrease of TB (or any other opportunistic infection) in

relation to HIV, we will facilitate comparing the benefits obtained

across populations. Comparing data across populations is an

excellent research tool that substitutes for ethically unacceptable

experimental approaches. As such, anomalous or outlier trends

will indicate those localities where benefits are either lower or

higher than expected or commonly reported. By identifying these

localities we can better investigate which pre-existing conditions,

drug delivery systems, ecological settings, or any other relevant

factors may maximize TB control benefits in the presence of

HIV antiretroviral programs. On the other hand, a reduction in

RTB/HIV is expected if a scale-up in TB control programs is

implemented while HIV programs remained at comparable

implementation levels.

Different questions will benefit from defining and using different

joint disease indicators. Naturally, we expect there to be a trade off

between the complexity of calculating an indicator, the data it

requires, the information it provides, and the ease with which it

can be adopted by researchers and monitoring agencies. In

conjunction, these factors will ultimately determine its usefulness in

Figure 2. RTB=HIV(t1,n,r) for Africa for the time point t1 corresponding to the year 1997. Here n = 7 and r = 3. This index quantifies the
change in TB incidence per 100,000 over the period 2000–2006 relative to the change in percent HIV prevalence over the period 1997–2003.
doi:10.1371/journal.pone.0008796.g002

Monitoring Linked Epidemics

PLoS ONE | www.plosone.org 5 January 2010 | Volume 5 | Issue 1 | e8796



public health. Easily computed indicators that make intuitive sense

are very appealing. However, complex indicators may provide

more insight and there use may be warranted in finer analyses—

particularly when oddities surface that need to be investigated

further. Above we present a relatively simple joint indicator, RTB/

HIV (1), which is not difficult to compute and is easily understood.

However, its comparability across datasets is limited because it is not

standardized. We can modify RTB/HIV by normalizing, thus

transforming the measure for each individual country into a

dimensionless z-score joint indicator, ZTB/HIV:

ZTB=HIV(t1,n,r)~
RTB=HIV(t1,n,r){�RRTB=HIV(t1,n,r)

sTB=HIV(t1,n,r)
:

Here RTB/HIV corresponds to the measure (1) for a given country,
�RRTB=HIV is the mean of all of the individual country RTB/HIV for a

given dataset, and sTB=HIV is the standard deviation of RTB/HIV

for this particular dataset. In the case of the two datasets discussed

here—the TB and HIV data for Africa available in [14] and the

one available at present, see above—the mean of the first dataset is

0.067 and of the second is 20.015, while the corresponding

sTB=HIV are 0.085 and 0.070. Thus, the ZTB/HIV for Kenya is

1.508 in the first dataset and 0.752 in the second (their RTB/HIV

were 0.195 and 0.038, respectively). Therefore, the updated

Kenyan TB and HIV estimates indicate that the relative growth of

new TB cases in regards to HIV prevalence is actually

approximately half of what was reported in 2006, which reduces

the fear that some anomalous conditions are promoting an

uncontrollable TB surge in Kenya.

With this example we can see how although ZTB/HIV requires

us to do further calculations beyond computing all the RTB/HIV

values for the data of interest, it provides additional insights over

these RTB/HIV values because it allows us to account for different

Figure 3. Schematic illustrating the population-level response of the HIV and TB epidemics to a novel HIV control measure. The
relative growth rates of percent HIV prevalence (solid line) and TB incidence (dashed line) epidemics before and after the novel intervention (which
for example could be the delivery of a new antiretroviral) are captured by RTB=HIV(ti,n,r) in three different time intervals i = 1, 2 and 3. These intervals
start before the novel intervention (with t1 representing the first year for which we have data), when the novel intervention is first implemented (at
year t2), and for the period starting at the point when TB incidence first decreases in scenario A (at year t3). Years t2 and t3 are represented by vertical
lines. Because this diagram is a simple schematic we will not define exact values for the parameters ti, n and r. While in both scenarios HIV prevalence
decreases, in (A) TB incidence decreases after a certain time lag such that (omitting subscripts and common argument values)
R(t1A)~R(t3A)~0vR(t2A), while in (B) TB incidence continues to increase and R(t1B)vR(t2B)vR(t3B), indicating that TB control is not reaping
the benefits anticipated from the new HIV control measure.
doi:10.1371/journal.pone.0008796.g003
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levels of variability in the data under comparison. When using

RTB/HIV a direct comparison between the two analyses is

complicated by the fact that in [14] we used TB case

notifications because of concerns with the reliability of the data,

while here we are using the more desirable measure of TB

incidence. The values of these two indicators can vary

substantially, and in consequence the RTB/HIV values also are

very different between the two datasets. However, when

standardizing with ZTB/HIV we facilitate comparing datasets

representing different indicators characterized by different units

of measurement.

If we needed to investigate questions such as causes of mortality

or biases in death reporting systems, we could define indicators

that for example compare mortality trends in the interacting

diseases, or incidence and mortality trends. Additionally, with the

joint indicators RTB/HIV and ZTB/HIV defined here we are

averaging over the time period of choice, and thus will miss any

irregularities that occur within the time period. If there are

important non-monotonicities in the data such as peaks or troughs,

we may benefit from quantifying trend differences not just at the

beginning and end of a lengthy time interval, but on a year-to-year

(or month-to-month, etc.) comparison. In this case we could

average the, for example, year-to-year changes in the trends of

both diseases over a certain time period, and then compare the

changes in these yearly rates.

As with any other epidemiological measure, the reliability of a

joint indicator will be determined by the quality of the

surveillance system. We can calculate confidence intervals for

our joint indicators that will give an indication of the likely range

in which the value of the indicator will fall. Again, however, the

reliability of these intervals will be determined by the reliability of

the data. In any case, regardless of the statistical complexities we

add to our analyses, the main value of using joint indicators for

epidemiological monitoring lies in the fact that when contrasting

patterns of closely interacting diseases these indices will provide

insights into how the diseases are changing with respect to one

another over time, in addition to the purely temporal trend

information we have of each disease on its own. If the monitoring

of one or both diseases is systematically flawed, then anomalous

values of the joint indicator will highlight the need for closer

scrutiny.

Looking Forward: The Broader Context
The methodical integration and analysis of epidemiological

data for interacting epidemics, both individually and jointly,

provides information critical to the design of effective public

health measures. The ultimate value of epidemiological indica-

tors, whether for single or linked epidemics, lies in their

continued usage over a large proportion of the area covered by

an epidemic. The more analyses that are conducted and that can

be compared, the more useful an indicator will be. Here we

outline key steps in the process of disease monitoring and

evaluation, highlighting the use of indicators and analytical

techniques relevant to the study of closely linked epidemics. Most

of these steps are already being implemented by the correspond-

ing monitoring agencies in many countries and by supra-national

agencies.

1. Individual and joint population-level disease indicators must be

monitored [15,16,48]. It would be valuable to extend this

practice to evaluate the co-dynamics of different strains of the

linked diseases, particularly regarding drug-resistant strains

[4,31,32]. Data should be ‘‘broken down and reported by the

smallest administrative unit possible’’ [15].

2. Consistent statistical guidelines need to be established for

calculating uncertainty ranges for individual and joint measures

comparable across all spatial scales.

3. Analyses of long-term temporal trends of key indicators [17] at

multiple spatial scales should be conducted using standardized

methods in order to ensure the clear communication of

analyses and results among monitoring agencies, research

groups, and public health personnel. Ideally these analyses

should include composite temporal measures as discussed

above [14], and graphical and geographic information systems

(GIS) analyses whenever applicable.

4. Protocols for acceptable mathematical models need to be

developed [49] to analyze past and present trends, and predict

future trends. Close collaboration between monitoring agencies

and mathematically specialized personnel with training in the

dynamics of infectious diseases is strongly recommended.

5. Guidelines should be established for appropriate response to

unanticipated epidemiological patterns. These guidelines

should identify the personnel of local, national, and supra-

national agencies to whom anomalies can be reported, so that

further evaluation can take place to identify the underlying

cause(s) and prepare suitable response measures.

6. To maximize the utility of data, methods, analyses, and results,

information should be disseminated publicly in formats

understandable by personnel of different backgrounds

[12,15,16,50].

Conclusions
Advocating, designing, planning and evaluating public health

actions rely on sound data analyses [16,51]. Integrating informa-

tion from diverse sources can maximize both our understanding of

co-infection epidemiology, and our ability to predict accurately the

effectiveness of different public health interventions [1]. Accord-

ingly, comprehensive analyses are indispensable for achieving

proper integration of TB/HIV collaborative activities, and are

critically needed with the on-going scale-up of ARVT programs

[12]. Furthermore, M&E of collaborative TB/HIV activities

promote a ‘‘learning culture’’ within the programs that guarantees

continuous improvement [17]. In our experience, integrating TB

and HIV clinical and epidemiological data via a mathematical

model, and comparing TB/HIV national trends across Africa via

a simple composite measure, permitted us to infer the incon-

gruency of Kenyan TB and HIV estimates. The effort invested in

the mathematical model and in the pan-African analysis with the

joint co-epidemic indicator, although substantial, was much less

than the effort of conducting and evaluating additional surveys.

However, the insights provided by our analyses are valuable within

the context of TB/HIV global monitoring. Although HIV

prevalence among TB patients is probably the most sensitive

and reliable indicator for the TB/HIV co-epidemic [17], in our

study the relative growth rate of the two diseases, characterized by

RTB/HIV, was even more informative for evaluating Kenyan TB/

HIV trends [14]. Importantly for their broad applicability, indices

such as RTB/HIV can be calculated with the joint analysis of data

that are gathered regularly and independently by monitoring

agencies. We therefore argue that simple indicators specifically

designed to integrate information from closely linked diseases can

allow us to gauge how the co-dynamics of epidemics are changing

in time, and are powerful tools for spatial comparisons. If used as a

routine monitoring tool, these joint indicators could allow public

health officials to maximize the use of existing data by evaluating a

single number.
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