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Abstract New and improved techniques have been continu-
ously introduced into CT and MR imaging modalities for the
diagnosis and therapy planning of acute stroke. Nevertheless,
non-contrast CT (NCCT) is almost always used by every
institution as the front line diagnostic imaging modality due
to its high affordability and availability. Consequently, the
potential reward of extracting as much clinical information
as possible from NCCT images can be very great. Intravenous
tissue plasminogen activator (tPA) has become the gold stan-
dard for treating acute ischemic stroke because it is the only
acute stroke intervention approved by the FDA. ASPECTS
scoring based on NCCT images has been shown to be a
reliable scoring method that helps physicians to make sound
decisions regarding tPA administration. In order to further
reduce inter-observer variation, we have developed the first
end-to-end automatic ASPECTS scoring system using a novel

method of contralateral comparison. Due to the self-adaptive
nature of the method, our system is robust and has good
generalizability. ROC analysis based on evaluation of 103
subjects who presented to the stroke center of Chang Gung
Memorial Hospital with symptoms of acute stroke has shown
that our system’s dichromatic classification of patients into
thrombolysis indicated or thrombolysis contraindicated
groups has achieved a high accuracy rate with AUC equal to
90.2 %. The average processing time for a single case is 170 s.
In conclusion, our system has the potential of enhancing
quality of care and providing clinical support in the setting
of a busy stroke or emergency center.

Keywords ASPECTS . Biomedical image analysis . Brain
imaging . Computed tomography . Computer-aided analysis .
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Introduction

CTandMR are valuable imaging modalities for diagnosis and
therapy planning of acute stroke. Non-contrast CT (NCCT) is
often used initially to help differentiate between hemorrhagic
and ischemic stroke. Conventional MR imaging is also very
useful in detecting acute ischemic stroke within the first few
hours. Both CT angiography and MR angiography can be
used to characterize intravascular thrombi. CT perfusion is a
functional imaging technique that can be used to identify
salvageable brain tissue [1, 2]. Diffusion-weighted MR imag-
ing can be used for identifying infarcted brain tissue that is
irreversibly damaged, whereas perfusion-weighted MR imag-
ing can be used for identifying reversibly injured ischemic
brain tissue [3]. Although CT and MR are versatile imaging
modalities that are capable of depicting various aspects of
acute stroke-associated brain changes, their actual usage at a
particular institution depends to a large extent on the avail-
ability of equipment and the experience and expertise level of
that institution. NCCT, however, is almost always used with-
out exception by every institution as a first-line imaging
modality for acute stroke care, due to its high affordability
and availability. This fact puts NCCT in a unique position,
such that extracting as much clinical information as possible
from NCCT images can have exceptionally rewarding results
and implications [4], both clinically and economically.

Because it is the only acute stroke intervention approved by
the FDA, intravenous tissue plasminogen activator (tPA) has
become the gold standard for treating acute ischemic stroke
patients if it is able to be administered within 3 h of symptom
onset [5]. ASPECTS scoring has been proven to be a quanti-
tatively reliable, standardized method for robust assessment of
early ischemic changes on NCCT imaging for the ultimate
purpose of helping physicians to make a decision regarding
tPA administration [6–8]. Specifically, tPA is recommended if
the patient’s ASPECTS score is greater than 7, otherwise it is
discouraged due to increased intracranial bleeding risk.

The purpose of this study is not to propose an
alternative scoring method, different from ASPECTS,
but to introduce the first automatic end-to-end AS-
PECTS scoring system, powered by computer-aided im-
age analysis techniques, which offer the additional ben-
efit of reduced inter-observer variability [9–11] and a
potential for systematic improvement of ASPECTS scor-
ing reliability.

In the literature, two groups have published studies which
directly address the potential utility and impact of computer-
based analysis of NCCT images in the setting of acute stroke
care. Maldjian et al. presented an automated method to
identify potential acute ischemia in the lentiform nucleus
and insula as a demonstration of their method [12]. Lee,
Takahashi and colleagues [13–16] introduced an adaptive
partial median filter to enhance CT signals and a Z score

mapping method that calculates each pixel’s distance with
respect to its “normalized reference” counterpart as a helpful
aid in detecting anomaly. The Z score is calculated on a
voxel-by-voxel basis by referencing a standard CT brain
atlas using SPM software. There are limitations, however,
to using the SPM-based standard atlas. First of all, all pa-
tients must be scanned on the same type of scanner with the
same imaging parameters to eliminate image-affecting fac-
tors not attributable to the subjects themselves [17]. An
institution that uses more than one type of scanner may have
difficulty in using this approach. Secondly, difficulty in
normalizing atypical brains is a known issue [17]. Finally,
due to the low contrast of brain tissue in CT images, the
SPM-derived standard CT brain atlas may not be of suffi-
cient quality to enable reliable voxel-by-voxel registration.
The Z score mapping method seems to show promising early
results, but it may need further verification in studies with
increased numbers of subjects and scanners.

In this paper, we have developed an automated ASPECTS
scoring system, which outputs either a positive or negative
recommendation regarding thrombolytic therapy. Our novel
strategy of contralateral comparison eliminates the need for an
external image pattern standard against which to determine the
existence of acute ischemic changes. Each of the ten ROIs
defined for ASPECTS scoring consists of a pair of bilaterally
symmetric regions which reside on opposite sides of the brain.
For each ROI, we compare left and right paired regions based
on the two features that most effectively characterize the
ischemic condition for that ROI to determine if the difference
is large enough to declare an anomaly. Such a comparison
method is possible because of the rarity of having a simulta-
neous, acute bilateral MCA stroke. As a prerequisite of the
comparison, both left and right ROI pairs are segmented using
an improved version of our previously developed two-step
procedure [18] of approximate registration globally followed
by fine adjustments locally. Our method is more robust and
reliable than the generic SPM normalization. Instead of com-
paring against an external reference, our determination of
anomaly is based on comparison between contralateral ROIs,
and therefore, variations arising from different scanners and
different imaging parameters such as KVP, window center,
and window level, affect both sides equally and tend to cancel
out. Consequently, our algorithm is inherently adaptive and
robust.

Our automated scoring system has demonstrated a high
degree of accuracy based on evaluation of 103 subjects. The
average time for image processing, score computation, and
anomaly visualization for a single case is 170 s, running on
MatLab code. The processing time can be improved by re-
placing the interpretation language-based code with compiled
language code such as C++. Therefore, the system and meth-
od have the potential to serve as useful clinical support tools in
the busy setting of a stroke or emergency center.
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Now that we have demonstrated that our automated scoring
system can serve as a stand-alone scoring system with perfor-
mance comparable with human experts, our future research is
to validate the hypothesis that the accuracy of a physician’s
ASPECTS scoring can be improved when consulting with our
automated scoring system as a second opinion in a controlled
clinical setting.

Materials and Methods

Subjects

All patients who presented to the stroke center of Chang Gung
Memorial Hospital with symptoms of acute stroke between
January 2011 and June 2011 were retrospectively considered
for this study. IRB approval by Chang Gung Memorial Hos-
pital was obtained before beginning any data collection and
associated research involving human subjects in this study.
Patients were selected if they (1) presented within 3 h of onset
of MCA stroke symptoms, (2) had baseline NCCT imaging,
and (3) were later confirmed to have suffered an ischemic
stroke. Among these selected patients were patients in which
the baseline NCCTappeared normal, but follow-up diffusion-
weighted MR imaging confirmed lacunar (15 mm in maximal
dimension) infarct within 7 days of ictus. Avery small number
of patients were excluded due to excessive motion artifacts.

A total of 103 cases were used in this study. NCCT images
were acquired using Siemens Sensation-16, Toshiba Aquillon
and GE Bright Speed scanners. The images had different
imaging parameters depending on their acquisition scanners.
All images had 512 rows and 512 columns, with a slice
thickness of 5 mm. The Siemens scanners had settings of
120 KVP, 320-mA exposure, dual window centers of 35/350
and corresponding window widths of 80/1,500. The Toshiba
scanners had settings of 120 KVP, 230-mA exposure, window
center of 40 and window width of 120. The GE scanners had
settings of 120 KVP, 61-mA exposure, window center of 45
and window width of 125. Approval for this retrospective
study and review of all images and charts were obtained from
the Institutional Review Board of Chang Gung Memorial
Hospital, Linkou Medical Center.

Image Processing Algorithm

Our method consists of five stages: (1) image preprocessing–
extracting the brain image, rotating the brain image if neces-
sary, noise-reduction filtering, and selection of the two slices
needed for ASPECTS scoring; (2) unsupervised tissue classi-
fication; (3) template-based image segmentation; (4) identifi-
cation and exclusion of old infarcts; (5) ASPECTS scoring for
each ROI using contralateral comparative method; and (6)
computation of global ASPECTS score and classification into

thrombolysis recommended or thrombolysis contraindicated
classes. A block diagram of our method is shown in Fig. 1.

Preprocessing of CT Images

Preprocessing of the CT images comprises the following
tasks: (1) stripping away background and skull so that only
the brain portion remains; (2) making any necessary rotational
corrections to position the image in the vertically-aligned
orientation (3) selection of the two pertinent CT image slices,
TARGETLS, and TARGETUS; and (4) reducing image noise
by a filtering operation. Figure 2 shows an original head image
and the brain image after image preprocessing.

The skull is characterized by very high pixel intensity with
respect to the rest of the brain image. Consequently, the skull
can be located and removed by simple thresholding and
characterization as approximately an elliptical-shaped ring.
Once the skull is located, the background that resides outside
of the skull can be removed as well.

The next step is to determine the bisecting line that sepa-
rates the left and right hemispheres of the brain. Subsequently,
the brain image is rotated in such a way that this bisecting line
becomes vertically oriented.

The ASPECTS scoring method requires that two standard
axial CT slices, one at the supraganglionic level (upper slice)
and the other at the ganglionic level (lower slice), be examined
and scored. However, ASPECTS does not prohibit image

Fig. 1 Block diagram of the automated ASPECTS scoring method
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interpreters from examining the complete set of CT images.
Our algorithm examines two slices only. However, we also
consider the slice immediately below the lower slice in deter-
mination of focal hypoattenuation for caudate head, internal
capsule, and lentiform nucleus regions.

The proper selection of the lower slice is crucial because it
affects the concomitant segmentation of the lower slice image
into various ROIs, such as caudate head, internal capsule, and
lentiform nucleus. A standardized brain image of the lower
slice is shown in Fig. 3. It was obtained by averaging the brain
images of patients who presented to our medical center for
workup of headache and who were subsequently found to
have no structural abnormalities on NCCT. A reference

template, TEMPLS, which is derived from the standardized
brain image for the purpose of singling out the lower slice, is
shown in Fig. 4. The one slice from the complete stack of
images that bears maximum similarity to the reference tem-
plate is selected as the lower slice for ASPECTS scoring. The
reference template is first resized to be the same size as the
target image and then overlaid on top of it. The similarity
measure is defined by Eq. (1).

Similarity ¼
X

pi ∈ Target image

weight pið Þ � intensity pið Þ ð1Þ

where weight(pi)=1 if pi is white in TEMPLS

Fig. 2 a Original CT head
image. bBrain image after image
preprocessing

Fig. 3 The normalized brain image of the lower slice
Fig. 4 The reference template, TEMPLS, that is used to single out the
lower slice from the stack of slices
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weight (pi)=0 if pi is black in TEMPLS
As an example, Fig. 5 contains a number of slice images,

from which Fig. 5(d) can be determined to have maximum
similarity with respect to the reference template, TEMPLS.

Once the lower slice, TARGETLS, is determined, the upper
slice, TARGETUS, can be determined based on the thickness of
CTslices because the average distance between upper and lower
slices is known. Furthermore, the selection of the upper slice is

Fig. 5 An example of slice
images of a CT study. d is
determined to have maximum
similarity with the reference
template, TEMPLS
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not critical because its segmentation into ROIs does not rely on
external templates but on inherent self-contained landmarks.

We have used the 3 by 3 median filter which is effective at
retaining sharp edges while reducing image noise [19, 20].

Unsupervised Tissue Classification

Tissue classification of the lower slice brain image,
TARGETLS, serves two distinct purposes: (1) extraction of
the conglomerate cluster, CRLV_QC, comprising lateral ventri-
cles, third ventricle and the quadrigeminal cistern, for the
purpose of template-based image registration and (2) identifi-
cation and exclusion of old infarcts.

Unsupervised tissue classification using the traditional k-
means clustering technique provides the optimal classification
in that it minimizes the total sum of squares of differences
between individual intensities and their corresponding inten-
sity cluster means.

Regarding segmentation of the lower slice brain im-
age into various ROIs, the most salient landmark is the
low intensity conglomerate region, CRLV_QC, comprising
lateral ventricles, third ventricle, and the quadrigeminal
cistern. A rectangle, REGUTC_L, of 155 pixel width and
123 pixel length is chosen to perform the k-means
clustering, with k=3. REGUTC_L is the larger green
rectangle shown in Fig. 6. The tissue intensity histo-
gram consists of three broad clusters—the low-intensity
cluster of CRLV_QC, the high-intensity cluster compris-
ing C, L, and thalami, and the intermediate-intensity
cluster comprising IC and other white matter. The real
purpose of this k-means clustering is to extract the

conglomerate region, CRLV_QC. The high contrast be-
tween CRLV_QC and its surroundings gives us excellent
clues for attaining the optimum image registration, as
illustrated in the next section.

Old infarcts manifest a very low image intensity, compara-
ble to that of the lateral ventricles. A rectangle, REGUTC_S, of
50 pixel width and 110 pixel length, which contains the
anterior horn of the lateral ventricles, is chosen to perform
the k-means clustering, with k=2. REGUTC_S is the smaller
rectangle in red shown in Fig. 6. Based on experimentation, a
REGUTC_S that encloses the anterior horns of the lateral ven-
tricles of the lower slice gives consistent and robust clustering
results.

Figure 7 illustrates the process with an example. The
smaller rectangle, REGUTC_S, is first resized properly to be-
come REGUTC_S’ and then superimposed on the target image
as shown in Fig. 7a. A k-means clustering with k=2 is per-
formed within the cropped rectangle of Fig. 7b and the final
clustering result is shown in Fig. 7c. Based on the clustering
results, the mean μAHLV and standard deviation σAHLV of the
anterior horn of the lateral ventricles can be determined. Pixels
whose intensities are lower than μAHLV+σAHLV are identified
and grouped into clusters. A cluster of size smaller than a
preset threshold is regarded as noise arising from random

Fig. 6 The two rectangles within which unsupervised k-means clustering
is performed

Fig. 7 a The rectangle that encloses the anterior horns of the lateral
ventricles of the same CT image as in Fig. 6. It is cropped in (b) and used
for the estimation of mean and standard deviation of lateral ventricles by
means of k-means (k=2) clustering. c The k-means clustering result
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fluctuation. Only clusters that meet the minimum size require-
ment are retained for further analysis.

Due to the similarity between old infarcts and the lateral
ventricles in terms of image intensity, the mean image inten-
sity, μOI, and standard deviation, σOI, of old infarcts are set to
be equal to μAHLVand σAHLV, respectively. Candidate clusters
comprising pixels whose intensities are lower than μOI+σOI
can be either old infarcts or CSF spaces, such as subarachnoid
space, ventricles and sulci. Further verification is needed
before a cluster can be determined to represent old infarcts.
Such verification is related to the ROI to which a pixel in
question belongs. Consequently such verification is deferred
until segmentation of the lower slice brain image is completed.

Template-Based Image Segmentation

The upper and lower slice images require segmentation into
ROIs for further analysis. Segmentation of the upper slice into
M4, M5, and M6 regions is accomplished by drawing hori-
zontal lines through the upper and lower poles of the ventricles
(Fig. 8). Since the upper and lower poles of the ventricles are
inherent salient landmarks derivable from the target image
itself, TARGETUS, no templates are needed.

Instead of using 3D spatial normalization [21], we use a
much less computationally-demanding 2D template method
for segmentation of the lower slice image. This 2D method is
possible since ASPECTS only requires evaluation of two
slices, which consequently renders the 3D spatial normaliza-
tion process unnecessary. Moreover, we have avoided the risk
of image quality degradation inherent in re-slicing of 3D
image datasets which comprise anisotropic voxels, a case that
is common for NCCT images.

Our reference template, TEMPSEG, consists of five pairs of
components—caudate head (C), internal capsule (IC),
lentiform nucleus (L), thalamus, and insular ribbon (I).
TEMPSEG of Fig. 9 was derived by manually delineating the
boundaries of the five pairs of components on the Reference
Image shown in Fig. 3. The insular ribbon (I) region is an area
that borders with regions C, IC, and L and extends radially in
such a way that these regions collectively form a fan-shaped
area. The remaining ROIs—M1, M2, and M3—are segment-
ed by horizontal lines passing through the upper poles of
lateral ventricles and the quadrigeminal cistern.

Image registration for the lower slice is a two-step pro-
cess—initial global registration followed by local refinement.
Initially, the Reference Image, along with its corresponding
template of ROIs, is scaled by a factor ofWTarget/WReference and
HTarget/HReference in X and Y directions, respectively, so that it
has the same size as the target image, an example of which is
shown in Fig. 10. Next, the properly resized reference tem-
plate is allowed tomovewithin a small two-dimensional range
of displacement—±nxpixels in the horizontal direction and ±ny
pixels in the vertical direction—in search of the best match
between the target brain image and the reference template.

Our algorithm calculates the goodness of match based on the
four red boundaries shown in Fig. 9. The UR_reg_boundary
depicts the high contrast boundary between C and the lateral
ventricle on the right hemisphere, whereas the LR_reg_boundary
depicts the high contrast boundary between the thalamus and the
conglomerate region comprising the third ventricle and the
quadrigeminal cistern on the right hemisphere. Likewise,
UL_reg_boundary and LL_reg_boundary are the counterparts
of UR_reg_boundary and LR_reg_boundary on the opposite
hemisphere.

Fig. 8 Segmentation of M4, M5 and M6 regions
Fig. 9 The reference template, TEMPSEG, that is used in image segmen-
tation of the lower slice image
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At each trial displacement, (Δx, Δy), the goodness of
fit for the four red boundaries is evaluated independently.
In other words, the trial displacement, (Δx, Δy)UR, which
gives the best match to the UR_reg_boundary determines
the segmentation of C in the right hemisphere; whereas
the trial displacement, (Δx, Δy)LR, which gives the best

match to the LR_reg_boundary determines the segmenta-
tion of the thalamus in the right hemisphere. However,
(Δx, Δy)UR and (Δx, Δy)LR need not be the same, al-
though they do tend to track each other in general. Anal-
ogous remarks apply to (Δx, Δy)UL and (Δx, Δy)LL on the
left hemisphere. Finally, IC, L, and I can be segmented
using the reference template and linear interpolation, after
C and thalami are segmented. Precise calculation of the
goodness-of-match metric is described in the Appendix.

The procedure of our template-based image segmenta-
tion is illustrated in Fig. 11. The larger rectangle for
unsupervised tissue classification, REGUTC_L, is properly
resized and then superimposed on the target brain image
in Fig. 11a, and then a k-means clustering (k=3) is per-
formed. It results in three clusters, as shown in Fig. 11b,
which is displayed in three colors—a red cluster depicting
the conglomerate region, CRLV_QC, comprising lateral
ventricles, the third ventricle and the quadrigeminal cis-
tern, a blue cluster depicting C, L, and thalami, and a
green cluster depicting IC and other white matter. Once
the conglomerate region, CRLV_QC, has been segmented,
the appropriately resized reference template, TEMPSEG’,
is superimposed over the target image in search of the
best registration of C and thalami based on the four

Fig. 10 An example of a lower slice target image to be segmented into
various ROIs

Fig. 11 aThe larger rectangle for
unsupervised tissue classification,
REGUTC_L, is superimposed on
the target brain image. b The
result of k-means clustering (k=3)
applied to the rectangle in (a). The
red cluster depicts the
conglomerate region, CRLV_QC,

comprising lateral ventricles, the
third ventricle and the
quadrigeminal cistern, the blue
cluster depicts C, L and thalami,
and the green cluster depicts IC
and other white matter. cThe final
result of image segmentation
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boundaries, as described above. Once C and thalami have
been registered onto the target image, regions IC, L, and I
can be segmented according to the reference template.
Figure 11c shows the final segmentation result.

Identification of old Infarcts and CSF Spaces

Old infarct regions need to be identified and differentiated from
regions of early ischemic hypoattenuation. As illustrated in
section D, candidate clusters comprising pixels whose intensi-
ties are lower than μOI+σOI can be either old infarcts or CSF
spaces, such as subarachnoid space, ventricles, and sulci.

Old infarcts that occur in the territories of C, IC, and L are
relatively easy to identify because noCSF spaces exist in these
regions under normal conditions. Therefore, pixels whose
intensities are lower than μOI+σOI are determined to be old
infarcts and are therefore excluded.

Old infarcts that occur in the territory of I are identified by
differentiating them from subarachnoid space pixels based on
shape properties. If a candidate cluster’s ratio of its major-axis-
length to its minor-axis-length is larger than a preset threshold,
it is determined to be a CSF space instead of old infarct.

A candidate cluster that occurs in the territories of M1
through M6, is classified as CSF space if it satisfies both of
the following conditions: (1) the cluster’s ratio of its major-
axis-length to its minor-axis-length is larger than a preset
threshold and (2) the cluster is connected to the outer bound-
ary of the brain image. Otherwise, the candidate cluster is
determined to be an old infarct. Clusters that fail to satisfy the
above two conditions are determined to be old infarcts.

Figure 12a shows an old infarct in the territories of C, IC, and
L, whereas Fig. 12b shows an old infarct in the territory of M3.

Principle of Contralateral Comparison

The fundamental strategy we have employed in detecting
early ischemic anomaly is to compare corresponding
ROIs in contralateral hemispheres, a strategy that makes
use of the bilateral symmetry present in the human brain.
Such a strategy is more robust than that of comparing the
target image against a standard, normalized image inten-
sity pattern that is derived from averaging a large number
of images of normal subjects. The reason is because such
a normalized image depends to a certain extent on the
demographic profile of the subjects collected in the data-
base and the scanner parameters that were used in the
image acquisition. By contrast, our method is highly
adaptive because the reference is derived from within
the target image itself. Anatomic peculiarity of a particu-
lar individual tends to cancel out when comparing sub-
images of opposite hemispheres. Likewise, equipment
artifacts arising from different scanner hardware/software
and associated scanner parameters also tend to diminish in
significance when both sides are affected equally. The fact
that a strictly controlled standard - in terms of image
scanners, acquisition procedures and resultant output im-
ages - is not necessary presents a very favorable situation
at an institution like ours, in which a number of different
CT scanners made by different manufacturers are in use.
We also have cases of referred patients who come from
regional hospitals where CT images have already been
acquired on different scanners.

The feasibility of using a contralateral comparative method
that relies on a self-generated standard derived from the target
itself stems from the fact that it is very rare to have an acute
bilateral MCA stroke. Consequently, the image pattern of the

Fig. 12 a An old infarct
encircled in red that occurs in the
territory of C-IC-L. bAn old
infarct that occurs in the M3
region
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unaffected hemisphere serves as the gold standard against
which its counterpart is to be compared.

Due to imperfect bilateral symmetry, however, pixel by pixel
comparison between corresponding ROIs of contralateral hemi-
spheres is not reliable. A pragmatic approach is to compare
characteristic properties (or features in the terminology of
pattern recognition and classification) of corresponding ROIs
of contralateral hemispheres. Generally speaking, the selection
of a suitable feature vector involves a tradeoff between com-
plexity and differentiating power. Our goal is to select the
feature vector of smallest dimensionality that has sufficient
power to detect early ischemic changes. After intensive inves-
tigation, we have selected a two-tuple feature vector, <diffuse
hypoattenuation, focal hypoattenuation> for the analysis of C,
IC, and L, and <diffuse hypoattenuation, GM-WM contrast
degradation> for the analysis of I and M1 through M6, where
GM and WM stand for gray matter and white matter
respectively.

Detection of Early Ischemic Changes for Regions C, IC, and L

To detect diffuse hypoattenuation of a particular region, the
two-sample Kolmogorov–Smirnov statistic is computed for
the bilateral ROI pair corresponding to that region, after any
old infarcts have been removed. The two-sample Kolmogo-
rov–Smirnov statistic is a non-parametric test that can be
used on two sets of pixels whose intensities have an arbi-
trary probability distribution. The null hypothesis is that the

two samples are drawn from two populations that share an
identical probability distribution. If the computed p value is
less than a preset threshold, THdif_hypo, diffuse
hypoattenuation is determined to exist.

To detect focal hypoattenuation pixels in an ROI, we again
first exclude old infarcts, as described above. Next, we estimate
the mean intensity, μuas, and standard deviation, σuas, , based on
the ROI on the unaffected side. For a normal subject, the image
intensity for each type of region C, IC or L can be modeled to
have a Gaussian distribution. We can use the ratio of
Intensity Pixel x;yð Þð Þ−μ

σ as an indicator of a pixel intensity’s deviation
from the average intensity of the ROI, μ, in units of standard
deviation, σ, and call it the “normalized deviation from aver-
age”, DevNorm. In a sense, DevNorm measures the likelihood
that pixel(x,y) has focal hypoattenuation. The smaller, or more
negative, the value of DevNorm, the higher the likelihood that it
is a focal hypoattenuation pixel.

Next, we compute the normalized deviation from average,
DevNorm, for each pixel of the affected side ROI. A pixel whose
DevNorm is smaller (i.e., more negative) than a preset threshold is
considered to be a candidate of focal hypoattenuation and is used
in the subsequent attempt to form focal hypoattenuation clusters.
In comparison with the Z score method [14–16] which derived a
standardizedmean,μ, and standard deviation,σ, from a cohort of
normal subjects, our approach has the benefit of being more
adaptive to the variations of scanner parameters, such as KVP,
milliampere exposure, windowwidth and center settings, as well
as variations between individual subjects.

Fig. 13 a1, a2, a3 Three CT
images. b1, b2, b3Detected focal
hypoattenuation changes as
shown in red

J Digit Imaging (2014) 27:392–406 401



To enhance the reliability of focal hypoattenuation identi-
fication, we have also taken the slice immediately beneath
the lower slice at the ganglionic level into consideration.
Initially, pixels with image intensity lower than μuas−N×σuas
(where N is a predetermined constant) are identified as
potential focal hypoattenuation candidates: pixels_(FH on
slice L). Next, potential focal hypoattenuation pixels on the
slice immediately beneath the lower slice, pixels_(FH on
slice L-1), are also identified in a similar manner. Then
pixels_(FH on slice L) and pixels_(FH on slice L-1) are
grouped into connected clusters, and the largest cluster is
determined. Under this cross-slice clustering scheme, a pixel
P(x,y,z) on slice L has nine connectable neighbors {P(x−1, y−
1, z−1), P(x−1, y, z−1), P(x−1, y+1, z−1), P(x, y−1, z−1),
P(x, y, z−1), P(x, y+1, z−1), P(x+1, y−1, z−1), P(x+1, y, z−
1), P(x+1, y+1, z−1)} on the slice L-1 in addition to the
eight connectable neighbors on the same slice. Focal
hypoattenuation is determined to exist for the ROI under
investigation if the number of pixels contained in the largest
cluster is larger than a preset threshold, THfocal_hypo. Fig-
ure 13 shows several cases of detected focal hypoattenuation.

Detection of Early Ischemic Changes for Regions I and M1–
M6

The same method as used above for regions C, IC, and L is
also used for the detection of diffuse hypoattenuation in re-
gions I and M1–M6.

The feature used for the detection of contrast degradation is
the measure of dissimilarity of the GM-WMcontrasts between
an ROI and its bilateral counterpart, or in other words, the loss
of contrast between gray matter and white matter in a partic-
ular region, using the corresponding contralateral ROI on the
unaffected side as a reference. To evaluate this feature, the
contrast, CONTRAST(P(x,y)), between each pixel, P(x,y),
and its eight neighbors is calculated for all pixels within the
ROI in question, according to the SOBEL operator used in
edge detection, as shown in Eqs. (2)–(4).

CONTRASTx P x; yð Þð Þ
¼ int P xþ 1; y−1ð Þð Þ þ 2� int P xþ 1; yð Þð Þ þ int P xþ 1; yþ 1ð Þð Þ
− int P x−1; y−1ð Þð Þ − 2 � int P x−1; yð Þð Þ − int P x−1; yþ 1ð Þð Þ

ð2Þ

CONTRASTy P x; yð Þð Þ
¼ int P x−1; yþ 1ð Þð Þ þ 2� int P x; yþ 1ð Þð Þ þ int P xþ 1; yþ 1ð Þð Þ
− int P x−1; y−1ð Þð Þ − 2 � int P x; y−1ð Þð Þ − int P xþ 1; y−1ð Þð Þ

ð3Þ

CONTRAST P x; yð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CONTRAST2

x P x; yð Þð Þ þ CONTRAST2
y P x; yð Þð Þ

q

ð4Þ

By such a computation, we have obtained a “contrast
map” with each pixel’s intensity being CONTRA

ST(P(x,y)) shown above rather than the original image’s
intensity. Since we are interested in the contrast between
GM and WM, we would like to minimize the confound-
ing effects caused by (1) the high contrast between
brain and CSF spaces and (2) the low GM–GM and
WM–WM contrasts. In order to eliminate the high con-
trast between the brain and CSF spaces, we have iden-
tified and excluded all pixels whose intensities are less
than μAHLV+σAHLV (as defined in section D), which
constitute ventricles, subarachnoid space pixels and sulci
pixels, as well as old infarcts, from the computation of
contrast. The GM–GM and WM–WM contrasts are
smaller than the GM–WM contrasts, and therefore, only
pixels that reside within the upper 50th percentile of the
contrast histogram are retained for further analysis.
Next, the two-sample Kolmogorov–Smirnov (KS) statis-
tic is computed by comparing the upper 50 % of con-
trast intensities of the affected side against the upper
50 % of contrast intensities of the unaffected side. If the
computed p value is less than a preset threshold,
THcontrast, a contrast degradation between GM and
WM is determined to exist.

Results

A total of 103 subjects consisting of 61 (59 %) males and 42
(41 %) females were included in our study after excluding
nine cases, in which consensus in image interpretation could
not be reached. Age ranged from 40 to 95 years, with mean
and standard deviation being 67.9 and 12, respectively. The
mean and standard deviation of National Institutes of Health
Stroke Scale (NIHSS) for our study population were 11.33
and 9.34, respectively. The minimum and maximum NIHSS
scores were 0 and 38, respectively. The demographic profile
of our study population is listed in Table 1. The gold standard
for performance evaluation of our automatic ASPECTS scor-
ing system was the consensus reading of the initial NCCT
images acquired within 3 h of stroke together with follow-up
CT and MR images by experienced neuroradiologists and
neurologists. All 103 subjects had follow-up CT images taken
within 1 week. The mean and standard deviation of the gold-
standard ASPECTS scores were 7.66 and 2.34, respectively.

All 103 cases were automatically registered with high
accuracy, demonstrating that the registration algorithm is very

Table 1 Demographic profile of the study population

Gender Male=59 %; female=41 %

Age Min=40, max=95, mean=67.9, S.D.=12

NIHSS Min=0, max=38, mean=11.33, S.D.=9.34

ASPECTS (gold standard) Min=0, max=10, mean=7.66, S.D.=2.3
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robust, irrespective of variations in scanner types and system
parameters such as KVP, milliampere exposures and window
center and window level. Figure 14 shows registration results
of increasing complexity. Figure 14a is an example of an
image that has a high degree of bilateral symmetry, whereas
Fig. 14b is an example of an image that has moderate bilateral
symmetry. In both cases, independent registration is carried
out on both left and right hemispheres. Figure 14c is an
example in which excessive deformation of structures on the
affected side defies accurate registration. Therefore, the cal-
culated registration on the affected side is discarded and
replaced by mirroring the calculated registration of the unaf-
fected side along the hemisphere-dividing line.

Our algorithm has proven to be very effective in identifying
old infarcts, which manifest themselves as areas whose pixel
intensities are comparable to that of ventricles.

The primary goal of this study has been to develop an
automated scoring system that implements ASPECTS scoring
for NCCT images to identify early ischemic changes and to
facilitate well-founded decisions regarding the suitability of
tPA thrombolytic treatment. The scoring performance for

ROIs in three broad categories - regions C, IC and L; region
I; and regions M1 through M6—are listed in Fig. 15. The
performance results for these three categories, in terms of area
under the ROC curve (AUC), are 89.1, 90.6, and 86.3 %,
respectively.

The issue of decision making regarding thrombolysis
can be modeled as a dichromatic classification problem
in which the rate of misclassification is to be mini-
mized. The original clinical group that developed AS-
PECTS observed that the outcome of tPA treatment for
patients with an ASPECTS score higher than 7 is
significantly better than for patients with an ASPECTS
score of 7 or lower. Consequently, the above-mentioned
classification into thrombolysis indicated and thrombol-
ysis contraindicated classes is equated to classification
into groups of ASPECTS score greater than 7 versus 7
or less. Our system’s accuracy rate of dichromatic clas-
sification of patients into thrombolysis-indicated or
thrombolysis-contraindicated groups is evaluated under
the framework of ROC analysis. Sensitivity and speci-
ficity are defined as follows:

Fig. 14 a and b are examples in
which registration is carried out
independently on each side; c
registration of the unaffected side
is mirrored over to the affected
side when there exists excessive
deformation of structures on the
affected side
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Sensitivity ¼ True positive

True positiveþ False negative

Specificity ¼ True negative

True negativeþ False positive

where positive and negative means the computed ASPECTS
score is between 0 and 7 inclusive, or greater than 7, respec-
tively. The result is shown in Fig. 16. The area under the ROC
curve (AUC) is 90.2 %.

The average execution time for end-to-end image process-
ing and displaying of detected early ischemic changes was
170 s, with algorithms implemented as MatLab code and
execution on a desktop computer equipped with an Intel i3-
2120 CPU running at 3.3 GHz and 4-GB RAM. We avoided
computationally demanding 3D re-slicing and also the asso-
ciated potential risk of image degradation, as described in the
“Materials and Methods” section.

Conclusion

In this study, we have reported an automated ASPECTS
scoring system which provides an objective assessment of
early ischemic changes based on NCCT images. Algorithms
that can enhance image quality and improve image segmen-
tation and detection of anomalies have been reported in the
literature. Our system, however, is the first stand-alone system
that is able to perform end-to-end NCCT image analysis and
produce an all-inclusive score that can be used by clinicians to
facilitate decision making regarding thrombolytic therapy. Its
performance is evaluated based on a retrospective study of
103 consecutive cases that presented to the stroke center of
Chang Gung Memorial Hospital, Linkou Medical Center,

with symptoms of acute stroke between January 2011 and
July 2011. Images involved in these cases were acquired from
different scanners with varying parameter settings. Therefore,
the robustness and generalizability of our method has been
demonstrated. The performance of our system is quite satis-
factory, both when evaluated based on individual ROIs and
also based on global ASPECTS score. Its potential role of
serving as a standalone system that offers recommendations
for or against thrombolytic treatment has been demonstrated
by its classification accuracy based on ROC analysis.

The system’s comparatively quick processing time of 170 s
per case on a typical desktop computer suits the clinical setting
of a busy stroke or emergency center, and this performance
can be significantly improved if needed by rewriting the
program in a compiled programming language.

The next step of our research is to evaluate the potential
beneficial effects of using our system when tested in a con-
trolled clinical practice environment and verification setting to
evaluate its ability to improve the quality of acute stroke care.
To be specific, changes in classification accuracy, interpreter
confidence, as well as comparisons of response times in
connection with utilizing our system as a second opinion
consultant will be measured and evaluated quantitatively.
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Appendix

Calculation of goodness-of-match metric between target im-
age and reference template

The calculation of goodness of match between the target
image and the reference template based on the four red
boundaries in Fig. 9 can be expressed mathematically as
follows. At each trial displacement, (Δx, Δy), the goodness

Fig. 15 ROC curves for three broad categories - regions C, IC and L
(Green); region I (red); and regions M1 through M6 (blue). Their AUCs
are 89.1, 90.6, and 86.3 %, respectively

Fig. 16 ROC curve for the global ASPECTS score. AUC is equal to
90.2 %
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of match for UR_reg_boundary, GUR(Δx, Δy), is defined by
Eq. (5):

GUR Δx;Δyð Þ ¼
X

pi ∈ UR reg boundary

Bpi

� �
Δx;Δy

þ More than 10% of UR reg boundary in lateral ventriclesð Þ � −1; 000ð Þ
ð5Þ

where Bpi=1 if pixel(xpi+Δx, ypi+Δy) has at least one but not
all of its eight neighbors overlapping with the lateral ventricles
of the target image

Bpi=0 otherwise
(More_than_10%_of_UR_reg_boundary_in_lateral_vent-

ricles)=1
if more than 10 % of UR_reg_boundary pixels fall within

the lateral ventricles,
(More_than_10%_of_ UR_reg_boundary_in_lateral_

ventricles)=0 otherwise;
At each trial displacement, (Δx, Δy), a pixel, pi, may find

itself in one of three possible locations with respect to the
lateral ventricle in the right hemisphere: (1) the pixel is away
from the lateral ventricle if none of the eight neighbors of
(xpi+Δx, ypi+Δy) belong to the lateral ventricle, (2) the pixel is
on the boundary of the lateral ventricle if at least one but not
all of its eight neighbors of (xpi+Δx, ypi+Δy) belong to the
lateral ventricle, and (3) the pixel is inside the lateral ventricle
if all of its eight neighbors of (xpi+Δx, ypi+Δy) belong to the
lateral ventricle. The first term counts the number of pixels of
the UR_reg_boundary of the reference template that coincide
with the right lateral ventricle boundary on the target image.
Each such coincidence is given a point. On the other hand, the
number of pixels of UR_reg_boundary of the reference tem-
plate that fall within the lateral ventricle on the target image is
also counted. Avery large penalty of −1,000 points is imposed
if the number of such pixels exceeds 10 % of
UR_reg_boundary. The trial displacement, (Δx, Δy)UR, that
has the largest value of GUR(Δx, Δy) is the best match.

Likewise, at each trial displacement, (Δx, Δy), the good-
ness of match for LR_reg_boundary, GLR(Δx,Δy), is defined
by Eq. (6) below:

GLR Δx;Δyð Þ ¼
X

pi ∈ LR reg boundary

Bpi

� �
Δx;Δy

þ More than 10% of LR reg boundary in 3V or QCð Þ � −1; 000ð Þ
ð6Þ

where Bpi=1 if pixel(xpi+Δx, ypi+Δy) has at least one but not
all of its eight neighbors overlapping with the conglomerate

region comprising the third ventricle and the quadrigeminal
cistern

Bpi=0 otherwise;
(More_than_10%_of_LR_reg_boundary_in_3V_or_Q-

C)=1 if more than 10 % of LR_reg_boundary pixels fall
within the conglomerate region comprising the third ventricle
and the quadrigeminal cistern,

(More_than_10%_of_upper_boundary_ in_3V_or_QC)=
0 otherwise;

Goodness-of-match metrics for the two boundaries on the
left hemisphere, GUL(Δx, Δy) and GLL(Δx, Δy), can be cal-
culated in a similar manner.

References

1. Lin K, Rapalino O, Law M, Babb JS, Siller KA, Pramanik BK:
Accuracy of the Alberta stroke program early CT score during the
first 3 hours of middle cerebral artery stroke: comparison of
noncontrast CT CT angiography source images, and CT perfusion.
AJNR Am J Neuroradiol 29:931–936, 2008

2. Aviv RI, Mandelcorn J, Chakraborty S, Gladstone D, Malham S,
Tomlinson G, Fox AJ, Symons S: Alberta stroke program early CT
scoring of CT perfusion in early stroke visualization and assessment.
AJNR Am J Neuroradiol 28:1975–1980, 2007

3. Srinivasan A, Goyal M, Al Azri F, Lum C: State-of-the-art imaging
of acute stroke. RadioGraphics 26:S75–S95, 2006

4. Symons SP, Cullen SP, Buonanno F, González RG, Lev MH:
Noncontrast conventional computed tomography in the evaluation
of acute stroke. Semin Roentgenol 37:185–191, 2002

5. Smith MC. Reperfusion Therapy for Acute Ischemic Stroke. 2012
Summer.http://www.neurologyreport.com/stroke/pdf/Smith.pdf.
Accessed 6 Feb 2013

6. Demaerschalk BM, Silver B, Wong E, Merino JG, Tamayo A,
Hachinski V: ASPECT scoring to estimate 1/3 middle cerebral artery
territory infarction. J Neurol Sci 33:200–204, 2006

7. Pexman JH, Barber PA, Hill MD, Sevick RJ, Demchuk AM, Hudon
ME, Hu WY, Buchan AM: Use of the Alberta stroke program early
CT Score (ASPECTS) for assessing CT scans in patients with acute
stroke. Am J Neuroradiol 22:1534–1542, 2001

8. Barber PA, Demchuk AM, Zhang J, Buchan AM: Validity and
reliability of a quantitative computed tomography score in predicting
outcome of hyperacute stroke before thrombolytic therapy. Lancet
355(9216):1670–1674, 2000

9. Grotta JC, Chiu D, Lu M, Patel S, Levine SR, Tilley BC, Brott TG,
Haley Jr, EC, Lyden PD, Kothari R, Frankel M, Lewandowski CA,
Libman R, Kwiatkowski T, Broderick JP, Marler JR, Corrigan J, Huff
S, Mitsias P, Talati S, Tanne D: Agreement and variability in the
interpretation of early CT changes in stroke patients qualifying for
intravenous rtPA therapy. Stroke 30:1528–1533, 1999

10. Coutts SB, Hill MD, Demchuk AM, Barber PA, Pexman JH, Buchan
AM: ASPECTS reading requires training and experience. Stroke 10:
179, 2003

11. von Kummer R, Holle R, Gizyska U, Hofmann E, Jansen O, Petersen
D, Schumacher M, Sartor K: Interobserver agreement in assessing
early CT signs of middle cerebral artery infarction. AJNR Am J
Neuroradio 9:1743–1748, 1996

12. Maldjian JA, Chalela J, Kasner SE, Liebeskind D, Detre JA:
Automated CT segmentation and analysis for acute middle cerebral
artery stroke. Am J Neuroradiol 22:1050–1055, 2001

13. Lee Y, Takahashi N, Tsai DY, Ishii K: Adaptive partial median filter for
early CT signs of acute cerebral infarction. Int J Cars 2:105–115, 2007

J Digit Imaging (2014) 27:392–406 405

http://www.neurologyreport.com/stroke/pdf/Smith.pdf


14. Takahashi N, Tsai DY, Lee Y, Kinoshita T, Ishii K: Z-score
mapping method for extracting hypoattenuation areas of hy-
peracute stroke in unenhanced CT. Acad Radiol 17(1):84–92,
2010

15. Takahashi N, Tsai DY, Lee Y, Kinoshita T, Ishii K, Tamura H,
Takahashi S: Usefulness of z-score mapping for quantification
of extent of hypoattenuation regions of hyperacute stroke in
unenhanced computed tomography: analysis of radiologist’s
performance. J Comupter Assited Tomogr 34(5):751–756,
2010

16. Lee Y, Takahashi N, Tsai DY. Computer-Aided Diagnosis for Acute
Stroke in CT Images. Computed Tomography—Clinical Applications.
2012

17. Mechelli A, Price CJ, Friston KJ, Ashburner J: Voxel-based mor-
phometry of the human brain: methods and applications. Curr Med
Imaging Rev 1(1):9, 2005

18. Shieh Y, Chang CH: Automated ASPECTS Scoring System as a
Clinical Support System for Acute Stroke Care. IEEE-EMBS
International Conference on Biomedical and Health Informatics,
2012, pp. 691–694

19. Arias-Castro E, Donoho DL: Does median filtering truly preserve
edges better than linear filtering? Ann Stat 37:1172–1206, 2009

20. Dougherty G: Digital image processing for medical applications.
Cambridge University Press, Cambridge, 2009

21. Bankman IN: Handbook of Medical Image Processing and Analysis,
2nd edition. Academic Press, MA, 2009

406 J Digit Imaging (2014) 27:392–406


	Computer-Aided...
	Abstract
	Introduction
	Materials and Methods
	Subjects
	Image Processing Algorithm
	Preprocessing of CT Images
	Unsupervised Tissue Classification
	Template-Based Image Segmentation
	Identification of old Infarcts and CSF Spaces
	Principle of Contralateral Comparison
	Detection of Early Ischemic Changes for Regions C, IC, and L
	Detection of Early Ischemic Changes for Regions I and M1–M6

	Results
	Conclusion
	Appendix
	References




