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Abstract

Recent proposals have employed optical circuit switch-
ing (OCS) to reduce the cost of data center networks.
However, the relatively slow switching times (10–100
ms) assumed by these approaches, and the accompany-
ing latencies of their control planes, has limited its use
to only the largest data center networks with highly ag-
gregated and constrained workloads. As faster switch
technologies become available, designing a control plane
capable of supporting them becomes a key challenge.
In this paper, we design and implement an OCS pro-

totype capable of switching in 11.5 µs, and we use this
prototype to expose a set of challenges that arise when
supporting switching at microsecond time scales. In re-
sponse, we propose a microsecond-latency control plane
based on a circuit scheduling approach we call Traffic
Matrix Scheduling (TMS) that proactively communi-
cates circuit assignments to communicating entities so
that circuit bandwidth can be used efficiently.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—circuit-switching net-

works, packet-switching networks, network topology

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Data Center Networks, Optical Networks

1. INTRODUCTION

As the size and complexity of data center deploy-
ments grow, meeting their requisite bisection bandwidth
needs is a challenge. Servers with 10 Gb/s link rates are
common today, and 40 Gb/s NICs are already commer-
cially available. At large scale, this translates into sig-
nificant bisection bandwidth requirements. For a large
data center with numerous, rapidly changing applica-
tions, supporting as close to full bisection bandwidth
as practical is important, since ultimately application

performance, and hence overall server utilization, may
suffer if insufficient bandwidth is available. The result
is that network complexity and expense is increasing.
To meet the required bandwidth demands, data cen-

ter operators have adopted multi-layer network topolo-
gies [12] (e.g., folded Clos, or “FatTree” [1, 14]), shown
in Figure 1(a). While these topologies scale to very
high port counts, they are also a significant source of
cost, due in part to the large amount of switches, op-
tical transceivers, fibers, and power each of their layers
requires. Recent efforts have proposed [6, 8, 24] using
optical circuit switches (OCS) to deliver reconfigurable
bandwidth throughout the network, reducing some of
the expense of multi-layer scale-out networks, shown in
Figure 1(b). A key challenge to adopting these pro-
posals has been their slow reconfiguration time, driven
largely by existing 3D-MEMS technology limitations.
This reconfiguration time is dominated by two com-
ponents: (1) the hardware switching time of the 3D-
MEMS OCS (10–100 ms), and (2) the software/control
plane overhead required to measure the communication
patterns and calculate a new schedule (100ms to 1s).
As a result, the resulting control plane is limited to
supporting only highly aggregated traffic at the core of
the network [8], or constrained applications with high
traffic stability [24].
As optical switches become faster, deploying them

more widely in data center networks requires a corre-
spondingly faster control plane capable of efficiently uti-
lizing short-lived circuits. The contribution of this pa-
per is such a control plane. To gain experience with
fast OCS switching, we start by designing and build-
ing a simple 24-port OCS prototype called Mordia,1

which has a switch time of 11.5 µs. Mordia is built
entirely with commercially available components, most
notably 2D-based MEMS wavelength-selective switches
(WSS). We use this prototype as a stand-in for future
low-latency OCS devices.
Using the Mordia prototype as a starting point, we

then identify a set of challenges involved in adopting ex-

1Microsecond Optical Research Data Center Interconnect
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per rack), and assume that the network is a FatTree. In
general, an N -level FatTree built from k-radix switches
can support kN/2N−1 servers, with each layer of switch-
ing requiring kN−1/2N−2 switches (though layer N it-
self requires half this amount). Therefore, the choice
of the number of layers in the network is determined
by the number of hosts and the radix k of each switch.
Given a particular data center, it is straightforward to
determine the number of layers needed to interconnect
each of the servers.
There are two trends that impact the cost of the net-

work by increasing the number of necessary layers of
switching: fault tolerance and high link rates. We con-
sider each in turn:
Fault tolerance: While a FatTree network can sur-

vive link failures by relying on its multi-path topology,
doing so incurs a network-wide reconvergence. This can
be highly disruptive at large scale, and so redundant
links are often used to survive such failures. Dual link
redundancy, for instance, effectively cuts the radix of
the switch in half since each logical link now requires
two switch ports.
High link rates: For mature link technologies like

10 Gb/s Ethernet, high-radix switches are widely avail-
able commercially: 10 Gb/s switches with 64 or even 96
ports are becoming commodity. In contrast, newer gen-
erations of switches based on 40 Gb/s have much lower
radices, for example 16 to 24 ports per switch. Hence,
as data center operators build out new networks based
on increasingly faster link rates, it will not always be
possible to use high radix switches as the fundamental
building block. This constraint will necessitate addi-
tional switching layers and, thus, additional cost and
complexity. Table 1 shows the number of core network
ports (ports used to connect one layer of switching to
an adjacent layer) for a set of data center sizes and
switch radices. Note that since this table shows fully-
provisioned topologies, it serves as an upper bound to
what might be built in practice since the network might
be only partially provisioned depending on the number
of nodes that need to be supported.
In summary, at large scale several switching layers are

likely necessary to deliver scalable bandwidth to a large
number of servers. Each layer of switching in the data
center network adds additional cost, wiring, and com-
plexity. This cost is driven primarily from three sources:
the switches, optical transceivers, and fiber links. Since
each layer in a fully provisioned FatTree network con-
sists of kN−1/2N−2 switches, these switches constitute
a considerable source of cost and motivate increased
adoption of OCS switching.

2.2 OCS Model

We now describe a simple model of an OCS suitable
for supporting a greater share of overall network traffic

than previous proposals. This model is similar to that
assumed by previous hybrid network designs [6, 8, 24],
with a key difference: orders of magnitude faster switch-
ing speed.
We consider a model consisting of an N-port optical

circuit switch, with a reconfiguration latency of O(10)
µs. Each input port can be mapped to any output port,
and these mappings can be changed arbitrarily (with
the constraint that only one input port can map to any
given output port). The OCS does not buffer packets,
and indeed does not interpret the bits in packets either
— the mapping of input ports to output ports is entirely
controlled by an external scheduler. This scheduler is
responsible for determining the time-varying mapping
of input ports to output ports and programming the
switch accordingly.
For this reason, we assume that TORs attached to

the OCS support per-destination flow control, mean-
ing that packets for destination D are only admitted to
a switch input port when that input port connects to
D. Packets to destinations other than D are queued in
the edge TOR during this time. Furthermore, during
the OCS reconfiguration period, all packets are queued
in the TOR. Since the OCS cannot buffer packets, the
TOR must be synchronized to only transmit packets
at the appropriate times. This queueing can lead to
significant delay, especially for small flows that are par-
ticularly sensitive to the observed round-trip time. In
these cases, packets can be sent to a packet switch in
the spirit of other hybrid network proposals. In this
work, we focus on the OCS and its control plane in iso-
lation, focusing particularly on reducing the end-to-end
reconfiguration latency. In this way, our work is comple-
mentary to other work in designing hybrid networks.

3. MICROSECOND SCHEDULING

A key challenge in supporting microsecond-latency
OCS switches is effectively making use of short-lived
circuits. In this section, we describe our approach to cir-
cuit scheduling, called Traffic Matrix Scheduling (TMS).
For now, we assume that the network-wide traffic de-
mand is known and return to the issue of estimating
demand at the end of the section.

3.1 Overview

Existing approaches that integrate OCS hardware into
the data center amortize the long switching time (tens
of milliseconds) of previous generation optical technol-
ogy by reconfiguring the OCS only once every few 100s
of milliseconds or even several seconds. The substantial
interval between reconfigurations affords their underly-
ing control loops the opportunity to estimate demand,
calculate an optimal OCS configuration, and commu-
nicate it across the network every time the switch is
repositioned.
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Previous hybrid networks perform what we call hotspot
scheduling (HSS). HSS (a) measures the inter-rack traf-
fic matrix, (b) estimates the traffic demand matrix, (c)
identifies hotspots, and (d) uses a centralized sched-
uler to establish physical circuits between racks to of-
fload only the identified hotspot traffic onto the circuit-
switched network. The remaining traffic is routed over
the packet-switched network. Because of the substantial
delay between reconfigurations, HSS can employ com-
plex methods and algorithms to estimate demand and
identify hotspots. Errors in identifying hotspots, how-
ever, can lead to significant losses in efficiency. If a
selected hotspot does not generate sufficient traffic to
saturate a circuit, then the remaining capacity goes to
waste for the (non-trivial) duration of the current con-
figuration.
When the OCS can be reconfigured on the order of

10s of µs, however, it is possible to route most or even
all traffic demand over circuits. In contrast to HSS, we
propose an approach called “Traffic Matrix Switching”
(TMS) that estimates demand and calculates a short-
term schedule that moves the OCS rapidly through a
sequence of configurations to service predicted demand.
By rapidly time-sharing circuits across many destina-
tions at microsecond time scales, TMS is able to make
more effective use of the circuit bandwidth (and reduc-
ing to hotspot scheduling when demand is extremely
concentrated). The key insight is that by sending the
upcoming schedule to both the OCS and the TORs,
they can effectively make use of each circuit as it be-
comes available. Moreover, while the current schedule
is being carried out, the control loop can enter its next
iteration. In this way, the running time of the control
plane is decoupled from the switch speed. In particular,
the control plane only needs to recompute schedules fast
enough to keep up with shifts in the underlying traffic
patterns, rather than the circuit switch operation.

3.2 Example

For instance, consider the situation of eight racks run-
ning Hadoop and generating a perfectly uniform all-to-
all communication pattern. Figure 2(a) shows the racks
physically connected to the same core-circuit switch;
Figure 2(b) shows the logical connectivity, and Fig-
ure 2(c) shows the inter-rack traffic demand matrix with
sources as rows, destinations as columns, and values as
fractions of the total link rate. The diagonal is not zero
because hosts send to other hosts in the same rack. Al-
though this intra-rack traffic does not transit the core
circuit switch, it is still accounted for in the traffic de-
mand matrix. This matrix is the desired transmission
rate of the hosts, and it is the responsibility of the net-
work to satisfy this demand.
The Gantt chart in Figure 2(d) shows a circuit switch

schedule that partitions time into eight equal-duration
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Figure 2: Eight racks running Hadoop with an
all-to-all communication pattern: (a) physical
topology, (b) logical topology, (c) inter-rack traf-
fic demand matrix, (d) circuit switch schedule.
(Figure reproduced with permission from [7].)

time slots. Over the course of the schedule, each source
port will connect to each destination port for exactly
1/8 of the total time. It thus implements the logical
full mesh topology in Figure 2(b) and allows all of the
traffic to be routed. The schedule then repeats. A cir-
cuit switch schedule has two sources of waste. First,
loopback traffic does not leave the rack and transit the
circuit switch, so any circuit switch loopback assign-
ments are wasted, such as the assignment from t = 0 to
t = T . Second, the circuit switch takes a non-negligible
amount of time to switch and setup new circuits (tsetup),
which we represent as black bars at the end of each
time slot. No traffic can transit the circuit switch dur-
ing this time. Reducing loopback waste requires careful
scheduling, whereas reducing setup waste requires faster
switching. Finally, note that although this example pro-
duces a repeating schedule, TMS can generate arbitrary
time-varying circuit assignments as we describe below.

3.3 Schedule computation

The TMS algorithm is divided into two phases as
shown in Figure 3. In phase 1, the traffic demand ma-
trix (TDM) is scaled into a bandwidth allocation ma-
trix (BAM). A TDM represents the amount of traffic,
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P1

t1 t2 tk
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+ ++

Step 1. Gather traffic matrix M

Step 3. Decompose M´ into schedule

Step 4. Execute schedule in hardware

Step 2. Scale M into M´

t1 t2 tk

Figure 3: Steps of the traffic matrix scheduling
algorithm. (Figure reproduced with permission
from [7].)

in units of circuit line rate, that the hosts in a source
rack wish to transmit to the hosts in a destination rack.
A BAM, on the other hand, represents the fraction of
circuit bandwidth the switch should allocate between
each input-output port pair in an ideal schedule. In
general, the TDM may not be admissable (i.e., the to-
tal demand is greater than the network capacity). In
practice, though, the network is rarely driven to full
utilization, so we need to scale “up” the TDM to arrive
at a BAM. If no rack wishes to send more than its link
rate (its row sum is less than or equal to 1) and no
rack wishes to receive more than its link rate (its col-
umn sum is less than or equal to 1), then we say that
the TDM is both admissible and doubly substochastic.
The goal of scaling the TDM is to compute a doubly
stochastic BDM where its row sums and column sums
are all exactly equal to 1 — meaning the circuits would
be fully utilized. By scaling the TDM into a BAM,
we simultaneously preserve the relative demands of the
senders and receivers while satisfying the constraints of
the circuit switch. Several matrix scaling algorithms
can be used for this purpose. Sinkhorn’s algorithm [17]
is particularly attractive because it works even when
the originally TDM is not admissible (i.e., the network
is over driven).
In phase 2, the BAM is decomposed into a circuit

switch schedule, which is a convex combination of per-
mutation matrices that sum to the original BAM,

BAM =

k∑

i

ciPi (1)

where 0 ≤ i ≤ k, and k = N2 − 2N + 2. Each per-

mutation matrix, Pi, represents a circuit switch assign-
ment, and each scalar coefficient, ci, represents a time
slot duration as a fraction of the total schedule dura-
tion. A variety of matrix decomposition algorithms ex-
ist. We employ an algorithm originally due to Birkhoff-
von Neumann (BvN) [5, 23] that can decompose any
doubly stochastic matrix, implying we can always com-
pute a perfect schedule given a BAM. Improved ver-
sions of the classic BvN algorithm have running times
between O(n log2 n) and O(n2) [10].

3.4 Longest time-slot first scheduling

While BvN always produces a schedule that even-
tually serves all input-output pairs according to their
demand, sometimes it may be better not to schedule
all traffic over the circuit switch and to simply schedule
only the longest time slots. The reason is that the BvN
decomposition algorithm generates time slots of differ-
ent lengths, some of which can be quite short (e.g., less
than 1% of the entire schedule). With such a short time
slot, it is likely that the OCS switching time (tsetup)
would dominate any bandwidth delivered during those
small slots. In these cases, it is better to route that
traffic over the packet-switched network.
The greatest benefit comes from scheduling the first

n time slots, where n is chosen based on both the min-
imum required duty cycle, D, as well as the maximum
allowed schedule length, Tschedule. We extend our defi-
nition of D to variable-length time slots as follows

Tsetup = ntsetup (2)

D =
Tstable

Tsetup + Tstable

=
Tstable

Tschedule

(3)

where n ≤ k is the number of time slots in the schedule,
Tschedule is the duration of the entire schedule period,
and tstable is the average time that the circuit is estab-
lished. This definition allows us to choose to schedule
only the first n time slots. Traffic that is not sched-
uled over the circuit-switched network instead transits
the packet-switched network. Using the same randomly
generated TDM used in [7], Table 3.4 shows the trade-
offs in choosing the right number of time slots for the
schedule.
As n increases, an increasing fraction of the total traf-

fic routes over the circuit-switched network. In the limit
when n = k, all traffic routes over the circuit-switched
network. However, the duty cycle decreases with in-
creasing n. Because Tschedule is held constant, Tstable

must decrease as Tsetup increases. For example, if the
minimum required duty cycle was 95%, then by setting
n = 5, 80.6% of the total traffic would be routed over
circuit switches. Alternatively, at the cost of increased
host buffering, we could increase Tschedule to increase n
to 6 or 7 while keeping the duty cycle at 95%.
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n Circuit Packet D

0 0% 100.0% N/A
1 39.4% 60.6% 100.0%
2 53.8% 46.2% 98.0%
3 63.8% 36.2% 97.0%
4 72.7% 27.3% 96.0%
5 80.6% 19.4% 95.0%
6 87.3% 12.7% 94.0%
7 92.3% 7.7% 93.0%
8 96.6% 3.4% 92.0%
9 99.3% 0.7% 91.0%

10 100.0% 0% 90.0%

Table 2: Example of tradeoffs between the num-
ber of schedule time slots (n), the amount of
traffic sent over the optical-circuit switched net-
work (Circuit) vs. the packet-switched network
(Packet), and the duty cycle (D) for a randomly
generated TDM. tsetup = 10 µs, Tschedule = 1 ms.
(Used with permission from [7].)

3.5 Demand estimation

Traffic matrix scheduling, just like hotspot schedul-
ing, requires an estimate of the network-wide demand.
There are several potential sources of this information.
First, packet counters in the TORs can be polled to de-
termine the traffic matrix, and from that the demand
matrix can be computed using techniques presented in
Hedera [2]. This method would likely introduce signif-
icant delays, given the latency of polling and running
the demand estimator. A second potential approach, if
the network is centrally controlled, is to rely on Open-
Flow [13] network controllers to provide a snapshot of
the overall traffic demand. Third, an approach simi-
lar to that taken by c-Through [24] may be adopted: A
central controller, or even each TOR, can query individ-
ual end hosts and retrieve the TCP send buffer sizes of
active connections. Asynchronously sending this infor-
mation to the TORs can further reduce the latency of
collecting the measurements. Finally, application con-
trollers, such as the Hadoop JobTracker [15], can pro-
vide hints as to future demands. Our prototype imple-
mentation does not implement demand estimation.

4. ANALYSIS

The throughput of a network that uses circuit switch-
ing is constrained by the network’s duty cycle, and its
feasibility is constrained by the amount of buffering re-
quired. We consider these issues in turn.

4.1 Duty Cycle and Effective Link Rate

In a circuit-switched network, there is a finite recon-
figuration time or setup time tsetup during which no
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Figure 4: Virtual output queue (VOQ) buffer
occupancies for a TOR from cold start. (Figure
reproduced with permission from [7].)

data can be sent. If the link data rate is Rlink, then the
effective data rate R of each circuit is

R = DRlink, where D = tstable
tsetup+tstable

(4)

is the duty cycle and tstable is the time that the circuit
is “open” and can carry traffic. For example, if Rlink

is 10 Gb/s and D is 90%, which is representative of
the Mordia OCS, then the effective link rate Reffective is
9 Gb/s.
The duty cycle can be increased by reducing the setup

time or increasing the duration that a circuit is open.
Reducing setup time tsetup depends on switch technol-
ogy. The duration tstable that a circuit is open is con-
trollable. However, having circuits that are open for a
long period of time affects the amount of buffering that
is required at the host, as we discuss below.
Interestingly, since the Mordia OCS is rate agnostic,

it is possible to increase overall delivered bandwidth by
using faster optical transceivers to increase the link rate
while simultaneously reducing the duty cycle for the
circuit-switched portion of the network.

4.2 Buffer Requirements

Buffering is required at the source in a circuit-switched
network because there is not always a circuit established
between a particular source and destination. In this sec-
tion, we analyze these buffering requirements.
Assume that each TOR connected to the Mordia switch

maintains a set of N virtual output queues (VOQs) [20],
one for every possible circuit destination. Strict VOQ
is not required, but the TOR must maintain at least
one set of queues for each possible destination. When a
circuit is established, all traffic destined for that partic-
ular destination is drained from the respective queue.
Figure 4 shows the buffer occupancies of these VOQs
of a TOR from a cold start, in units of the slot time
T (without loss of generality, we assume uniform slot
times here). In less than one complete scheduling pe-
riod a TOR has filled its VOQs to the steady-state level.
A particular queue fills at a rate dictated by the traffic
matrix until a circuit is established to the appropriate
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5.1.2 Data Plane

The Mordia OCS prototype is physically constructed
as a unidirectional ring of N = 24 individual wave-
lengths carried in a single optical fiber. Each wave-
length is an individual channel connecting an input port
to an output port, and each input port is assigned its
own specific wavelength that is not used by any other
input port. An output port can tune to receive any of
the wavelengths in the ring, and deliver packets from
any of the input ports. Consequently, this architecture
supports circuit unicast, circuit multicast, circuit broad-
cast, and also circuit loopback, in which traffic from
each port transits the entire ring before returning back
to the source. We note that although the data plane is
physically a ring, any host can send to any other host,
and the input-to-output mapping can be configured ar-
bitrarily (an example of which is shown in Figure 5).
Wavelengths are dropped and added from/to the ring

at six stations. A station is an interconnection point
for TORs to receive and transmit packets from/to the
Mordia prototype. To receive packets, the input con-
taining all N wavelengths enters the WSS to be wave-
length multiplexed. The WSS selects four of these wave-
lengths, and routes one of each to the four WSS out-
put ports, and onto the four TORs at that station. To
transmit packets, each station adds four wavelengths to
the ring, identical to the four wavelengths the station
initially drops. To enable this scheme, each station has
a commercial 1× 4-port WSS.

5.1.3 TORs

Each TOR connects to the OCS via one or more op-
tical uplinks. Each TOR internally maintains N − 1
queues of outgoing packets, one for each of the N − 1
OCS output ports. The TOR participates in a control
plane, which is used to inform each TOR of the short-
term schedule of impending circuit configurations. In
this way, the TORs know which circuits will be estab-
lished in the near future, and can use that foreknowl-
edge to make efficient use of circuits once they are es-
tablished.
Initially, the TOR does not send any packets into

the network, and simply waits to become synchronized
with the Mordia OCS. This synchronization is necessary
since the OCS cannot buffer any packets, and so the
TOR must drain packets from the appropriate queue
in sync with the OCS’s circuit establishment. Synchro-
nization consists of two steps: (1) receiving a schedule
from the scheduler via an out-of-band channel (e.g., an
Ethernet-based management port on the TOR), and (2)
determining the current state of the OCS. Step 2 can be
accomplished by having the TOR monitor the link up
and down events and matching their timings with the
schedule received in Step 1. Given the duration of cir-
cuit reconfiguration is always 11.5 µs, the scheduler can

artificially extend one reconfiguration delay periodically
to serve as a synchronization point. The delay must
exceed the error of its measurement and any variation
in reconfiguration times to be detectable (i.e., must be
greater than 1 µs in our case). Adding this extra delay
incurs negligible overhead since it is done infrequently
(e.g., every second).
We use the terminology day to refer to a period when

a circuit is established and packets can transit a cir-
cuit, and we say that night is when the switch is being
reconfigured, and no light (and hence no packets) are
transiting the circuit. The length of a single schedule
is called a week, and the week lengths can vary from
week-to-week. When the OCS is undergoing reconfigu-
ration, each TOR port detects a link down event, and
night begins. Once the reconfiguration is complete, the
link comes back up and the next “day” begins.
During normal-time operation, any data received by

the TOR from its connected hosts is simply buffered
internally into the appropriate queue based on the des-
tination. The mapping of the packet destination and
the queue number is topology-specific, and is config-
ured out-of-band via the control plane at initialization
time and whenever the topology changes. When the
TOR detects that day i has started, it begins draining
packets from queue i into the OCS. When it detects
night time (link down), it re-buffers the packet it was
transmitting (since that packet likely was ‘runted’ mid-
transmission), and stops sending any packets into the
network.

5.1.4 Data plane example

Figure 5 shows an overview of the prototype’s data
path. In this example, there are a three circuits estab-
lished: one from H6 to H4, one from H8 to H1, and one
from H4 to H5. Consider the circuit from H4 to H5.
H4 has a transceiver with its own frequency, shown in
the Figure as λ4. This signal is introduced into the
ring by an optical mux, shown as a black diamond, and
transits to the next station, along with the other N − 1
frequencies. The WSS switch in Station 2 is configured
to forward λ4 to its first output port, which corresponds
to H5. In this way, the signal from H4 terminates at
H5. The N − 4 signals that the WSS is not configured
to map to local hosts bypass the WSS, which is shown
as λ{1−4,9−24}. These are re-integrated with the sig-
nals from hosts H5 through H8 originating in Station 2,
and sent back into the ring. A lower-bound on the end-
to-end reconfiguration time of such a network is gated
on the switching speed of the individual WSS switches,
which we evaluate in Section 6.1.

5.1.5 Implementation details

The implementation of the hardware for the Mordia
prototype consists of four rack-mounted sliding trays.
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Three of these trays contain the components for the six
stations with each tray housing the components for two
stations. The fourth tray contains power supplies and
an FPGA control board that implements the scheduler.
This board is based on a Xilinx Spartan-6 XC6SLX45
FPGA device. Each tray contains two wavelength-selective
switches, which are 1×4 Nistica Full Fledge 100 switches.
Although these switches can be programmed arbitrarily,
the signaling path to do so has not yet been optimized
for low latency. Thus we asked the vendor to modify
the WSS switches to enable low-latency operation by
supporting a single signaling pin to step the switch for-
ward through a programmable schedule. As a result,
although our prototype only supports weighted round-
robin schedules, those schedules can be reprogrammed
on a week-to-week basis. This limitation is not funda-
mental, but rather one of engineering expediency.

5.2 Emulating TORs with Commodity Servers

To construct our prototype, we use commodity servers
to emulate each of the TORs. Although the Mordia
OCS supports 24 ports, our transceiver vendor was not
able to meet specifications on one of those transceivers,
leaving us with 23 usable ports in total. Each of our
23 servers is an HP DL 380G6 with two Intel E5520 4-
core CPUs, 24 GB of memory, and a dual-port Myricom
10G-PCIE-8B 10 Gb/s NIC. One port on each server
contains a DWDM 10 Gbps transceiver, taken from the
following ITU-T DWDM laser channels: 15-18, 23-26,
31-34, 39-42, 47-50, and 55-58. Each server runs Linux
2.6.32.

5.2.1 Explicit synchronization and control

Each of the emulated TOR must transmit packets
from the appropriate queue in sync with the OCS with
microsecond precision. The source code to our NIC
firmware is not publicly available, and so we cannot
detect link up and down events in real time and cannot
implement the synchronization approach presented in
Section 5.1.3. Instead, we have modified our prototype
to include a separate synchronization channel between
the scheduler and the servers that the scheduler uses to
notify the servers when the switch is being reconfigured.
Ethernet NICs do not typically provide much direct con-
trol over the scheduling of packet transmissions. Thus
we have implemented a Linux kernel module to carry
out these tasks. We now describe how we modified the
Linux networking stack on each server to support cir-
cuit scheduling, and to remain synchronized with the
OCS.
We modify the OS in three key ways. First, we adapt

the Ethernet NIC driver to listen for synchronization
packets from the scheduler so that the host knows the
current state of the OCS. Second, we modify the NIC
driver to ignore the “link-down” events that occur when
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Figure 6: A software implementation of multi-
queue support in Linux using commodity Ether-
net NICs. Sync frames coordinate state between
each emulated TOR (server) and the scheduler,
so that each Qdisc knows when to transmit Eth-
ernet frames.

the OCS is reconfiguring. Third, we add a custom queu-
ing discipline (Qdisc) that drains packets from queues
based on the configuration of the OCS.
Synchronization packets: The OCS FPGA con-

troller transmits synchronization packets to a separate
10G packet-switched network which connects to a sec-
ond Ethernet port on each server. These packets are
sent before and after reconfiguration so that all con-
nected devices know the state of the OCS. The packets
include the slot number, the slot duration, and whether
the circuits are being setup or torn down. A map is
maintained between the slot number and each destina-
tion. The Ethernet NIC driver also maintains a data
structure with a set of per-circuit tokens to control the
data transmission time and rate.
Link-down events: Since the OCS is switching rapidly,

the host NIC ports attached to the OCS experience nu-
merous link-up and link-down events. When Linux re-
ceives a link-down event, it normally disables the inter-
face and resets and closes any open sockets and TCP
connections. To prevent these resets, we disable the
link-down and link-up calls in the NIC driver. Our NIC
vendor believes that with access to the firmware source
code, synchronization could be implemented entirely in
hardware, obviating the need for the out-of-band syn-
chronization channel.
Mordia Qdisc (Figure 6): When a user’s applica-

tion sends data, that data transits the TCP/IP stack (1)
and is encapsulated into a sequence of Ethernet frames.
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The kernel enqueues these frames into our custom Qdisc
(2), which then selects (3) one of multiple virtual out-
put queues (VOQs) based on the packet’s IP address
and the queue-to-destination map (4). The Ethernet
frame is enqueued (5) and the qdisc dequeue function
is scheduled (6) using a softirq. The qdisc dequeue func-
tion reads the current communication slot number (7)
and checks the queue length (8). If there is no frame to
transmit, control is yielded back to the OS (9). If there
is a frame to transmit, the frame is DMA copied to the
Ethernet NIC (10–12). The total number of packets
sent directly corresponds to the number of tokens accu-
mulated in the Ethernet NIC’s data structure to control
the timing and the rate. The qdisc dequeue function is
then scheduled again (13) until VOQ is empty and con-
trol is yielded back to the OS (9). When the next sync
frame arrives (14), it is processed, and the scheduling
state is updated (15). Then the qdisc dequeue function
is scheduled with a softirq in case there are frames en-
queued that can now be transmitted (16). Given that
all the packets are only transmitted during the times
that the slot is active, the code for receiving packets
did not need to be modified.

6. EVALUATION

Our evaluation seeks to answer the following research
questions:

1. What is the baseline end-to-end reconfiguration
time of the Mordia OCS as seen by TORs?

2. How closely can the control plane keep TOR de-
vices synchronized with the OCS?

3. What is the overall throughput and circuit utiliza-
tion delivered by Mordia?

4. How well does TCP perform over the OCS portion
of the hybrid network?

We evaluate each of these questions below.

6.1 End-to-end reconfiguration time

We know from other work [8] that the raw switch-
ing speed of the underlying OCS does not determine
the end-to-end switching speed, since additional time is
required for reinitializing the optics and software over-
heads. In this section, we empirically measure the OCS
switching speed as perceived at a packet level by the
devices connected to it. This fundamental switching
speed gates the expected performance we expect to see
in the remainder of our evaluation.
We first connect 23 emulated TORs (which we refer

to as hosts) to the OCS prototype (with host i con-
nected to port i). Host 1 transmits fixed-size Ethernet
frames at line rate, ignoring synchronization packets.
Host 1 transmits continuously, even during gaps. Hosts
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Figure 8: Histogram of tsetup using 705 samples.
A normal curve is fitted to the data.

2 through 23 capture the first 22 octets of each frame
using tcpdump. Each frame contains an incrementing
sequence number so we can detect loss. After each ex-
periment, we merge the pcap files from each host.
Figure 7 shows an experiment with regular-sized Eth-

ernet frames (1500 bytes) and variable-length slots (80 µs,
160 µs, and 240 µs). The x-axis is time and the y-axis
is packet sequence number. The OCS was programmed
with a round-robin schedule, meaning that during slot
k, input port i was connected to output port i + k
mod 23. The slot durations vary in size, which allo-
cates bandwidth proportionally to different hosts based
on the slot length. Gaps are highlighted as gray vertical
strips, and frames transmitted during gaps are lost. The
remaining frames are received by the other hosts. The
last packet transmitted during a slot often gets dropped
by the receiving NIC because it is cut off in the middle
by the OCS.
From a merged pcap trace of approximately one mil-

lion packets, we extracted 705 gaps in packet transmis-
sion. The length of each gap is a measurement of tsetup.
Figure 8 shows the resulting histogram. The data fits a
normal distribution with a mean of 11.55 µs and a stan-
dard deviation of 2.36 µs. Note that this packet capture

10





rate degrades from 9.81 Gb/s, which we attribute to
the kernel and NIC. The EPS is capable of delivering
TCP traffic at 8.69 Gb/s, which is within 1.6% of UDP
traffic. However, this throughout relies on TCP seg-
mentation offloading (TSO) support in the NIC, which
is incompatible with our Mordia kernel module. The
happens because, when circuits are reconfigured, any
packets in flight are ‘runted’ by the link going down,
and we lose control over the transmission of packets
when relying on TSO. Consequently, Mordia requires
disabling TSO support. On an all-electrical packet net-
work, TCP without TSO support is limited to 6.26 Gb/s
(EPS-TCP), which we use as an upper bound on the
performance we expect to see over the OCS.
Figure 10 shows the raw bandwidth available to each

host (calculated as the duty cycle) from the OCS as
OCS-IDEAL. It is important to remember that this line
does not account for the 23.5 µs NIC delay which acts
to reduce measured duty cycle even more. For the ex-
periments, we varied the OCS slot duration between
61–300 µs to observe the effect of different duty cycles
(due to the programming time of our WSSs, the small-
est slot duration we support is 61 µs). The OCS’s UDP
throughput (OCS-UDP) ranges from 5.726-8.429 Gb/s,
or within 4.6% of EPS-UDP. The major reasons for the
discrepancy are duty cycle, NIC delay, the OS’s delay in
handling a softirq, and synchronization jitter (see dis-
cussion below).
TCP throughput on the OCS (OCS-TCP) ranges from

2.231–5.501 Gb/s, or within 12.1% of EPS-TCP for
large slot durations. TCP throughput suffers from all
of the issues of UDP throughput, but suffers from two
addition issues. First, TCP traffic cannot use TSO to
offload, and so the TCP/IP stack becomes CPU-bound
handling the required 506 connections. Second, the ob-
served 0.5% loss rate invokes congestion control, which
decreases throughput. However, TCP does show an up-
ward trend in bandwidth with increasing duty cycle.
We attempted the kernel bypass techniques from Vat-
tikonda et al. [22] to eliminate NIC delay and the softirq
variance, but found that it was difficult to minimize loss
rate below 5% due to interruptions from the OS that
would cause packets to be sent to the wrong host dur-
ing reconfiguration.
We mention above that synchronization jitter causes

a reduction in throughput, and is also responsible for
packet loss. Synchronization packets are generated in
hardware to minimize latency and jitter, but the OS
can add jitter in how its devices receive the packets and
schedule softirqs. To measure this jitter, we set the day
and night to 106 µs and 6 µs, respectively, and cap-
ture 1,922,507 synchronization packets across 3 random
hosts. We compute the difference in timestamps be-
tween each packet and expect to see packets arriving
with timestamp deltas of either 6±1 µs or 100±1 µs.
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Figure 11: Synchronization jitter as seen by our
software TOR switches’ OS.

We found that 99.31% of synchronization packets ar-
rive at their expected times, 0.47% of packets arrive
with timestamp deltas of zero, and 0.06% packets ar-
rive with timestamp deltas between 522 µs and 624 µs
(see Figure 11). The remaining 0.16% of packets arrive
between 7–99 µs. We also point out that the 0.53% of
synchronization packets that arrive at unexpected times
is very close to our measured loss rate. Our attempts
to detect bad synchronization events in the Qdisc did
not change the loss rate measurably. Firmware changes
in the NIC could be used to entirely avoid the need for
these synchronization packets by directly measuring the
link up/down events.
Summary: Despite the non-realtime behavior inher-

ent in emulating TORs with commodity PCs, we are
able to achieve 95.4% of the bandwidth of a compara-
ble EPS with UDP traffic, and 87.9% of an EPS, send-
ing non-TSO TCP traffic. We are encouraged by these
results, which we consider to be lower bounds of what
would be possible with more precise control over the
TOR.

7. SCALABILITY

Supporting large-scale data centers requires an OCS
that can scale to many ports. We briefly consider these
scalability implications.
WDM: The Mordia prototype we built uses a sin-

gle ring with 24 wavelength channels in the C-band to
create a 24×24-port OCS. Since the C-band contains
44 DWDM channels, it is straightforward to scale the
prototype to 44 ports. Increasing the number of wave-
lengths on a single ring beyond 44 is more difficult. Mor-
dia happens to rely on 100 GHz spacing, but we could
have used 50 GHz, 25 GHz, or even 12.5 GHz spacing.
Each smaller increment doubles the number of chan-
nels. SFP+ modules with lasers on the 50 GHz grid
are commercially available, meaning that it is straight-
forward to scale to 88 ports. However, the technology
to support 10G, 40G, and 100G Ethernet over narrower
DWDM channels might not yet be commercially avail-
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Figure 12: Multiple independent rings can be
stacked to increase the total port count. Each of
the k rings has N ports. Every input port jN+ i,
where j ∈ {0..k − 1} and i ∈ {1..N}, is bundled
together into a k × k ring-selection OCS before
being sent to its default ring. This approach
allows an input normally destined for one ring
to arrive at a different ring.

able or might be cost prohibitive in a data center envi-
ronment. An alternative could be to keep the 100 GHz
spacing but to extend into the L-band. This would allow
a doubling of the number of channels, but would make
amplification more difficult. Thus the use of WDM pro-
vides a small level of scalability up to a couple of hun-
dred ports.
Discrete: Another way to scale beyond 88 ports is

to use multiple stacked rings, with each ring reusing the
same wavelength channels, as shown in Figure 12. For
example, an 8×8 ring-selection OCS would allow the
construction of a 8×88 = 704-port OCS. It is important
that all inputs assigned to the same wavelength channel
be connected to the same ring-selection OCS, or else
there could be a collision within a particular ring. The
ring-selection OCS is only used for the input ports; the
output ports directly connect to the individual rings.
While the single-ring architecture is fully non-blocking,

the stacked-ring architecture is blocking, meaning that
not all input-output port mappings are possible. Fun-
damentally the challenge comes from reusing a finite
number of wavelength channels across a larger number
of switch ports. One possible solution to this prob-
lem is to introduce another degree of freedom by us-
ing tunable lasers that can transmit on any wavelength
channel rather than on a specific channel. This should
restore the fully non-blocking property of the OCS at
the cost of additional optical and algorithmic complex-
ity. Even without tunable lasers, the blocking version
of the stacked-ring OCS can still potentially be useful
for realistic communication patterns.
Integrated: Finally, it is possible to build an inte-

grated scale-out OCS by interconnecting smaller OCS
switches in a multi-stage topology on a single board, us-
ing waveguides instead of discrete fibers. This approach
greatly reduces loss, since the couplers used to connect

the switch to the fibers can be a significant source of
loss. Multi-stage, integrated OCSes have been built [3],
but rely on slower 3D-MEMS technology.

8. RELATED WORK

Optical switching technologies: Realistic optical
switches that can be used in practice require a lim-
ited overall insertion loss and crosstalk, and must also
be compatible with commercial fiber optic transceiv-
ers. Subject to these constraints, the performance of
a switch is characterized by the switch speed and port
count. Optical switches based on electro-optic modula-
tion or semiconductor amplification can provide nanosec-
ond switching speeds, but intrinsic crosstalk and inser-
tion loss limit their port count. Analog (3D) MEMs
beam steering switches can have high port counts (e.g.,
1000 [4]), but are limited in switching speed on the or-
der of milliseconds. Digital MEMs tilt mirror devices
are a “middle-ground”. They have a lower port count
than analog MEMs switches, but have a switching speed
on the order of a microsecond [9] and a sufficiently low
insertion loss to permit constructing larger port-count
OCSes by composition.
“Hotspot Schedulers”: Mordia is complementary

to work such as Helios [8], c-Through [24], Flyways [11],
and OSA [6], which explored the potential of deploying
optical circuit switch technology in a data center envi-
ronment. Such systems to date have all been examples
of hotspot schedulers. A hotspot scheduler observes
network traffic over time, detects hotspots, and then
changes the network topology (e.g., optically [6,8,24] or
wirelessly [11]) such that more network capacity is allo-
cated to traffic matrix hotspots and overall throughput
is maximized.
Optical Burst Switching: Optical Burst Switch-

ing [16,21] is a research area exploring alternate ways of
scheduling optical links through the Internet. Previous
and current techniques require the optical circuits to be
setup manually on human timescales. The result is low
link utilization. OBS introduces statistical multiplex-
ing where a queue of packets with the same source and
destination are assembled into a burst (a much larger
packet) and sent through the network together. Like
OBS, the Mordia architecture has a separate control
plane and data plane.
TDMA: Time division multiple access is often used

in wireless networks to share the channel capacity among
multiple senders and receivers. It is also used by a few
wired networks such ITU-T G.hn “HomeGrid” LANs
and “FlexRay” automotive networks. Its applicability
to data center packet-switched Ethernet networks was
studied in [22].

9. CONCLUSIONS

In this paper, we have presented the design and im-
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plementation of the Mordia OCS architecture, and have
evaluated it on a 24-port prototype. A key contribution
of this work is a control plane that supports an end-
to-end reconfiguration time 2–3 orders of magnitude
smaller than previous approaches based on a novel cir-
cuit scheduling approach called Traffic Matrix Schedul-
ing. While Mordia is only one piece in a larger effort,
we are encouraged by this initial experience building an
operational hardware/software network that supports
microsecond switching.
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