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1Department of Bioproducts and Biosystems Engineering, University of Minnesota, Minneapolis, MN, United States, 2Cereal

Disease Laboratory, USDA-ARS, Saint Paul, MN, United States, 3Department of Plant Pathology, University of Minnesota,
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Salinity stress has significant adverse effects on crop productivity and yield. The

primary goal of this study was to quantitatively rank salt tolerance in wheat using

hyperspectral imaging. Four wheat lines were assayed in a hydroponic system with

control and salt treatments (0 and 200mM NaCl). Hyperspectral images were captured

one day after salt application when there were no visual symptoms. Subsequent

to necessary preprocessing tasks, two endmembers, each representing one of the

treatment, were identified in each image using successive volume maximization. To

simplify image analysis and interpretation, similarity of all pixels to the salt endmember

was calculated by a technique proposed in this study, referred to as vector-wise

similarity measurement. Using this approach allowed high-dimensional hyperspectral

images to be reduced to one-dimensional gray-scale images while retaining all relevant

information. Two methods were then utilized to analyze the gray-scale images: minimum

difference of pair assignments and Bayesianmethod. The rankings of both methods were

similar and consistent with the expected ranking obtained by conventional phenotyping

experiments and historical evidence of salt tolerance. This research highlights the

application of machine learning in hyperspectral image analysis for phenotyping of plants

in a quantitative, interpretable, and non-invasive manner.

Keywords: Bayesian inference, histogram distance, hyperspectral imaging, image processing, machine learning,

plant phenotyping, salt stress, wheat

INTRODUCTION

Salinity stress is a major abiotic stress that has significant adverse effects on crop productivity and
yield. These negative effects include interference of root function in absorbing water, as well as the
prevention of physiological and biochemical processes such as nutrient uptake and assimilation
(Carillo et al., 2011). Unfortunately, many regions around the world are facing a rapid increase in
soil salinity and sodicity. It is estimated that at least 0.3 million hectares of farmland is becoming
unusable annually, and another 20–46 million ha are suffering decreases in production potential
each year (FAO and ITPS, 2015). Nevertheless, even with lower yield potential, these salt-affected
farmlands must continue to produce crops so the increasing demand for food can be met and
food security concerns mitigated. The lack of new productive land threatens food security, thus the
productivity of existing marginal lands must improve.
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There are numerous potential solutions for mitigating salt
stress, including genetic engineering of plants with salt tolerance
(Agarwal et al., 2013; Wei et al., 2017) and application of
exogenous compounds such as hormones, growth regulators,
or nanoparticles (Mbarki et al., 2018). Among the potential
solutions, selecting plant varieties with high tolerance to salt
stress appears to be one of the most promising approaches
in utilizing salt-affected soil for crop production (Ondrasek
et al., 2011; Sytar et al., 2017). Although some progress has
been made using measurement of photosynthetic parameters
as a more sensitive method to screen for salt tolerance (Sun
et al., 2016; Kalaji et al., 2018), the standard process of selecting
either conventionally–bred or transgenic salt-tolerant crop lines
relies on laborious phenotyping to assess tolerance. Despite
the emergence of innovative platforms, precise instrumentation,
sophisticated sensors, and rapid development of advanced
machine learning and deep learning algorithms, phenotyping is
still a barrier to variety development. While DNA sequencing
and plant genotyping has rapidly evolved, phenotyping still
depends on conventional methods which are not as accurate or
efficient. In general, these techniques can be time-consuming,
destructive, subjective, and costly. In recent years, non-contact
sensing technology, in particular imaging, has been extensively
deployed as a potential substitute for conventional methods for
high-throughput phenotyping of plants. Thanks to the advances
in developing sensors with high spatial and spectral resolution,
different imaging sensors including visible, fluorescence, thermal,
and spectral imaging are available, each tailored for specific
applications. Each of these sensing technologies can vary in
their application, as well as limitations, in the context of
plant phenotyping (Li et al., 2014). Among these techniques,
hyperspectral imaging (HSI) is uniquely suited to provide
insights into the internal activities of plants, leaf tissue structure,
leaf pigments, and water content (Mahlein et al., 2012). HSI
also provides the ability to investigate physiological dynamics
of plants caused by environmental variables (Wahabzada et al.,
2016), and consequently has drawn substantial attention for plant
phenotyping (Kuska et al., 2015).

Few research studies have attempted to identify salt stress in
plants using hyperspectral reflectance. In a previous study, three
potential indicators including blue, yellow, and red edge positions
of vegetation reflectance spectrum were calculated to detect four
levels of salt stress imposed on Chinese castor bean (Li et al.,
2010). The authors claimed that blue and red edge positions shift
to the shorter wavelength in response to salt stress and therefore
could be used to detect salt stress. However, the pattern of shifting
to the shorter wavelength was not consistent across all treatments
and hence further research is required. In another paper, the
application of HSI to identify plant tolerance to salt stress in
a high throughput phenotyping system was reviewed (Sytar
et al., 2017). They concluded more efficient and fully automated
methods are required to analyze complex hyperspectral images.

To leverage the full potential of HSI, a large high-quality
hyperspectral dataset and several preprocessing tasks are
necessary (e.g., radiometric calibration, normalization, mixed
pixel filtering, etc.). However, there are two major challenges that
hamper the application of HSI.

The first major challenge is accounting for the variance
caused by the complex interaction between incident light and
leaf surfaces due to non-Lambertian reflectance properties. The
direction of reflected light is a function of leaf geometry,
including leaf angle, and curvature. Several researchers have
focused on pre-processing techniques to address the problems
related to leaf angle and curvature (Behmann et al., 2015;
Makdessi et al., 2017; Wendel and Underwood, 2017). One
method to resolve this problem is to generate a high-resolution
3D representation of plants by upfront geometric calibration of
the hyperspectral camera (Behmann et al., 2015). However, this
proposed method depends on highly intensive processing and is
only suitable for close-range imaging.

The second major challenge is analyzing the complex and
high-dimensional hyperspectral images in order to extract
meaningful features and recognize latent patterns associated with
the desired phenotyping trait in a more interpretable manner.
To address this issue, machine learning (ML) and deep learning
algorithms can be leveraged. Recent reviews of various ML
algorithms emphasize the potential of these methods in the
context of agriculture and provide guidelines for plant scientists
to deploy them (Bauckhage and Kersting, 2013; Singh et al.,
2016; Coppens et al., 2017). Singh et al. (2016) reported that ML
algorithms are a promising approach to analyze large datasets
generated by sophisticated imaging sensors (e.g., hyperspectral
cameras) mounted to platforms that can cover large areas.
Despite several studies that focus on the application of HSI for
plant phenotyping, research is limited in the context of handling,
processing, and analyzing hyperspectral images.

This research was motivated by the need to identify salt
tolerant wheat lines to mitigate yield losses due to salinity, and
to ultimately maintain or improve production on saline soils.
The objectives of this study were to (i) rank wheat lines based
on their tolerance to salt stress, (ii) assess the difference between
the salt tolerance of lines to attain a quantitative ranking rather
than a qualitative ranking, and (iii) evaluate the feasibility of
precise ranking of wheat lines as early as one day after applying
salt treatment. We hypothesized that the spectral response of
wheat leaves experiencing salt stress would deviate from the
control leaves even one day after adding the stress, and this
deviation would be larger for a susceptible line compared to a
salt tolerant line. To the best of our knowledge, no previous
study has investigated early detection of salt tolerant plant lines
using advanced phenotyping tools and approaches. This research
proposes a machine learning approach to analyze hyperspectral
images of wheat lines to rank their salt stress tolerance in a
quantitative, interpretable, and non-destructive manner while
reducing cost, time, and labor input.

MATERIALS AND METHODS

Sample Preparation and Conventional
Phenotyping for Salt Tolerance Screening
To develop analytical methods for analysis of hyperspectral
images, four bread wheat (Triticum aestivum) lines were selected
with varying levels of salt tolerance. The cultivar Kharchia was
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included as it is historically known to maintain a stable harvest
index and yield well in high salt conditions (Schachtman et al.,
1992; Munns et al., 2006), and the salt-sensitive cultivar Chinese
Spring (CS) was selected as well (Zhang et al., 2016). Two
additional “unknown” lines were selected for screening from a
set of wheat alloplasmic lines developed in Japan (Tsunewaki
et al., 1996, 2002). Alloplasmic lines are created by substitution
backcrossing to replace the cytoplasmic genomes of one species
(in this case, bread wheat) with those of another (in this case,
wild wheat relatives) while maintaining the original nuclear
genome background, and have shown promise for improving
stress tolerance and other developmental traits (Liberatore
et al., 2016). The two alloplasmic lines selected were Aegilops
columnaris KU11-2 (CS) [abbreviated co(CS) hereafter] and Ae.
speltoides aucheri KU2201B (CS) [abbreviated sp(CS) hereafter]
with the cytoplasmic genome type preceding the nuclear genome
background, which in this case is Chinese Spring (CS).

Screening was performed in a hydroponic system in a
Conviron growth chamber to ensure uniform conditions.
Hydroponic systems are commonly used to screen plants for salt
tolerance, including wheat. In all experiments, growth conditions
in the Conviron were set at 22◦C during light conditions and
18◦C during the dark, 16 h photoperiod, 375 µmol m−2 s−1 light
intensity, and 50% relative humidity. Three hydroponic tanks
were used per treatment (control treatment: 0mM NaCl and
salt treatment: 200mM NaCl). Each hydroponic tank contained
a grid of 16 Cone-tainers (Ray Leach brand) filled with perlite.
Within each tank, there were four genotypes each with four
individual replicates (4 cone-tainers x 4 genotypes). For each
treatment (salt or control), there were three replicate tanks;
hence, there were a total of 48 (3 replications × 4 Cone-tainers
× 4 genotypes) Cone-tainers for each treatment. The grid was
placed into a tank just large enough to hold the grid, and
20 L of hydroponic solution was used per tank. Genotypes were
randomly assigned to positions in each cone-tainer grid using
the sample and matrix functions in R (version 3.4.0). Aeration
was supplied to each tank with an aquarium pump and two large
airstones (at either end of the tank). Lines were transplanted
into the tanks, and the lights and aeration were switched on 24 h
after transplanting. When leaf 1 emerged, ¼ strength Hoagland’s
solution (PhytoTech H353) was added, and the pH was adjusted
to 6.5. When leaf 2 emerged, the Hoagland’s was increased to ½
strength in all tanks and CaCl2 was added to the tanks destined
for salt treatment in a 15:1 molar ratio of NaCl to CaCl2. When
leaf 4 emerged, salt was added to the salt tanks gradually over 2
days to reach a final concentration of 200mM. The water level
and pH (to 6.5) were adjusted 3 times per week throughout the
experiment.

To compare the salt tolerance of four wheat lines, both aerial
and root biomass was harvested separately for each individual
plant 2 weeks after salt treatment was applied. Plant matter was
dried at 60-65◦C for 4 days and then weighed. Dry weight data
were analyzed in R (version 3.4.0) using ANOVA (car package,
version 2.1-5) and linear mixed-effect modeling (nlme package,
version 3.1-120). For linear mixed-effect modeling analysis, dry
weight was considered as the response in the analysis, salt level
and genotypes were considered as fixed effects, and tank number

was considered as a random effect. Model results were identical
if tank position was considered as a nested-random effect of tank
number, thus the results with tank number were used as the only
random effect. To compare the response of the alloplasmics to the
response of the euplasmic parents when the salt level is changed,
the coefficient estimates of the lme model were examined.

Hyperspectral Image Acquisition
All tanks were transferred from the Conviron to greenhouse
to take hyperspectral images under natural light conditions. To
ensure that each hyperspectral image contained both salt and
control plants of a single wheat line, individual cone-tainers
were removed from the randomized grid and arranged as salt
and control tanks, each containing 12 cone-tainers as shown
in Figure 1. After imaging, plants were placed back into their
original randomized grid positions to avoid confounding effects
from changing the tank position during the experiment.

Image acquisition was done ∼24 h after salt application when
there were no visual symptoms. To reduce the effects of sun angle
and shade, images were captured close to noon (i.e., between
11:00 and 13:00 local time). A push broom (along-track scanner)
hyperspectral camera (PIKA II, Resonon, Inc., Bozeman, MT
59715, USA) was used for image acquisition, which required
constant movement during image capture for two-dimensional
spatial information to be accurate. A glide gear slider was used to
mount the camera on a horizontal bar. A Dayton DC gearmotor
(model: 2L008, Dayton electric Mfg Co. Lake Forest, IL 60045,
USA) was utilized to move the slider along at a set speed, with
the camera oriented to face downwards. All of this was done
as per Moghimi et al. (2017). The camera scanned over 240
spectral channels ranging from 400 to 900 nm with a spectral
resolution of about 2.1 nm and captured 640 pixels in the cross-
track direction (i.e., perpendicular to the direction of camera
motion). The number of pixels in the along track direction was
set to 2,000 to assure both control and salt tanks of each line
were captured in a single image. Therefore, the pixel size of each
hyperspectral image, also known as hyperspectral data cube, was
2,000 × 640 × 240, meaning each pixel has a 240 dimensional
feature vector.

The frame rate of the camera was adjusted based on the field
of view, the distance between lens and target, and the speed of
the camera motion as described by Moghimi et al. (2017). The
field of view of the camera lens was 33 degrees, and the distance
between the target and lens was about onemeter. The speed of the
camera was set to 0.025 m/s, thus the calculated frame rate was 27
frames per second to obtain square pixels (aspect ratio of 1:1).
Gain and exposure time were adjusted appropriately based on
light conditions to avoid over-exposure while taking advantage
of the full dynamic range (12 bits).

Image Preprocessing
Radiometric Calibration
Raw images were radiometrically calibrated to account for non-
uniform spatial and spectral responses of the sensor due to
variability in gain and offset of each detector. Raw digital
numbers (DNs) were converted to radiance (Wm−2sr−1nm−1)
using the radiometric calibration file provided by the camera
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FIGURE 1 | Two steps of creating vegetation binary mask, step I: segmentation of vegetation pixels from background using spectral indices (normalized difference

vegetation index and excessive green index), and step II: filtering of mixed pixels at leaf edges using morphological operation (erosion with a 3 × 3 matrix of ones as

structuring element).

manufacturer. Radiance was then converted to reflectance to
normalize image data based on incoming solar irradiance so
objects could be compared more objectively across images and
across capture dates. A Spectralon panel (Labsphere, Inc., North
Sutton, NH, USA) was placed in each image and was used as
a reference to convert from radiance to reflectance. Spectralon
reflects ∼99.7% of incident light equally in all directions
regardless of the illuminated light angle. Radiometric conversions
were performed using Spectronon Pro software (Resonon, Inc.,
Bozeman, MT, USA).

Noisy Band Removal
Due to high noise, the first and last five bands were removed
prior to any analysis. In addition, spectral bands from 753 to
766 nm and also from 813 to 827 nm were disregarded since they
were noisy bands near the O2 (∼760 nm) and H2O (820 nm)
absorption regions. Following band removal, 215 of 240 bands
were used for analysis. Subsequent analyses were performed
using MATLAB R2017a (MathWorks, Inc., Natick, MA, USA).

Vegetation Mask
Segmentation of the target of interest from background is a
key step in image analysis. To segment vegetation pixels from
background pixels, a binary mask was created by thresholding
the normalized difference vegetation index (NDVI) (Rouse
et al., 1973) and excessive green index (EGI) (Moghimi et al.,
2015). The masks were then multiplied together element-wise
to generate a primary mask for leaf segmentation (Figure 1
– step I). Pixels near leaf edges were likely to have spectral
characteristics of mixed pixels, because they were located near the
vegetation/background boundary. To assure these mixed pixels

would not pass the vegetation mask, a morphological operation
(erosion with 3 × 3 matrix of ones as structuring element) was
applied on the primary mask to check the connectivity of each
pixel with its neighbors. Pixels from the primary binary mask
that were connected with less than eight neighbors were excluded
from the final mask (Figure 1 – step II). This final mask was then
used to extract all vegetation pixels from the hyperspectral data
cube. The masked hyperspectral data cube was converted to a
2D matrix X whose rows were features (i.e., wavelengths) and
columns were samples (i.e., pixels) and subsequent analysis was
performed on matrix X.

Data Analysis
Normalized Reflectance Difference
Matrix X was split into two matrices: matrix C (d×nc) contained
only control pixels andmatrix S (d×ns) contained only salt pixels
where d denotes the number of bands, nc and ns represent the
number of control and salt pixels from a single hyperspectral
image, respectively. The average reflectance for pixels of both
treatments (control and salt) was calculated over all wavelengths
for each wheat line to determine how the reflectance patterns
varied due to salt stress. For this purpose, we proposed a method
referred to as the normalized reflectance difference (NRD). For
each wheat line, NRD was calculated as follows:

NRDi =
[ 1
nc

∑nc
k=1 Cik ]− [ 1

ns

∑ns
k=1 Sik ]

[ 1
nc

∑nc
k=1 Cik ]

, i = 1, . . . , d (1)

NRDi represents the difference between the average reflectance
of pixels representing control and salt treatments divided by the
average reflectance of the control at band i.
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Endmembers Extraction
It should be noted that those vegetation pixels that could pass the
segmentation steps might not be pure pixels because of limiting
factors such as leaf angle, leaf curvature, and shadow. Therefore,
to extract the spectral signatures for salt stressed and control
plants, the most pure pixels for each class (salt and control
class) should first be identified among the pixels passed from
the segmentation steps. These pure pixels can be considered
as endmembers of the two classes. Each hyperspectral image
contained only a single wheat line, but included both salt and
control treatments. Consequently, there were only two potential
classes and subsequently two respective endmembers in each
image. These endmembers are the most spectrally pure pixels in
the hyperspectral image. The assumption of pure pixels existence
can be correct because of the high spatial resolution we attained
(∼1mm).

Based on the strategy proposed byWinter (1999), endmember
pixels in a feature space are the vertices of a simplex that has
the maximum volume compared to any other simplex formed
by other pixels. To elaborate, consider each pixel as a point
in a d-dimensional feature space where d is the number of
bands. From prior assumption, there could be n endmembers
which are pure pixels in the image. These n endmembers are the
vertices of a (n−1)-simplex that has the maximum volume in a
d-dimensional spectral feature space spanned by all pixels (i.e.,
this simplex contains the majority of pixels in the feature space).
Several algorithms and techniques for extracting endmembers
based on this idea have been developed with the intention
of improving computational time and accuracy (Winter, 1999;
Thurau et al., 2010; Chan et al., 2011). To find the unique set of
two endmembers comprising the vertices of a 1-simplex in this
study, successive volume maximization (SVMAX) was utilized.
SVMAX has a modified objective function in which endmembers
are identified recursively through a successive optimization
problem (Chan et al., 2011). In each image, SVMAX identified
two pixels that were the furthest from each other in the high-
dimensional feature space, each representing one class: salt and
control.

Measurement of Pixels Similarity to Endmembers

Similarity measurement by solving a quadratic optimization

problem
Once endmembers were identified, other pixels were represented
as a convex combination of the endmembers. This is a
factorization problem in which the matrix of data X is factorized
as the product of two other matrices, W and H (Thurau et al.,
2010). Matrix W contains the endmembers extracted using the
SVMAX algorithm, and matrixH is the matrix of coefficients. To
find H, the Frobenius norm of ‖X −WH‖F can be minimized
with two constraints:

min ‖X −WH‖F

s.t.

{

1T . hj = 1
0 ≤ hij ≤ 1

(2)

The jth column of X (xj : 215 × 1) can be represented as matrix
multiplication of W (215 × 2) and the vector of coefficients

located at the jth column of H (hj : 2 × 1), which can be
interpreted as the abundance of corresponding endmembers
in a particular pixel. These coefficients are most commonly
used in spectral unmixing techniques to identify the abundance
of each endmember. However, these endmember coefficients
are interpreted as the “similarity” of a given pixel to the salt
and control endmembers in the current study. Therefore, all
coefficients should be non-negative and less than or equal to
one. Furthermore, the summation of coefficients (each column
of H) for each pixel needs to be equal to one. Larger coefficients
represent more spectral similarity between a given pixel and its
corresponding endmember.

The matrix of coefficient H can be calculated by solving
Equation (3) as a quadratic optimization problem as follows.

min
hj

1

2
hTj Qhj + cThj , j = 1, . . . , N

s.t.

{

1T . hj = 1
0 ≤ hij ≤ 1

(3)

where

Q = 2WTW

c = −2WTxj (4)

The algorithm (interior-point-convex) used to solve this
optimization problem ran iteratively N times, where N was the
number of pixels. Such an algorithm is not scalable for high-
throughput phenotyping on a large scale due to the fact that there
are hundreds of images, each containing thousands of pixels, and
the algorithm should iteratively run for every single pixel.

Vector-wise similarity measurement
In this study, a more efficient technique, referred to here
as vector-wise similarity measurement (VSM), is proposed to
obtain the matrix of coefficients based on the concept that
the two endmembers representing the salt and control classes
are the two most separated pixels in the feature space. Thus,
other pixels can be projected to a line passing between these
two endmembers. The distance between the projected point
and each of the endmembers can be a measure of similarity,
indicating how similar the spectrum of a given pixel is to
salt and control endmembers. Figure 2 depicts the graphical
illustration of the VSMmethod. For the purpose of visualization,
Figure 2 illustrates the similarity of a given pixel to either of the
endmembers only in a two-dimensional feature space spanned by
two bands. Note that this technique was implemented in the full
dimensional feature space of hyperspectral images.

In Figure 2, −→w 1 and −→w 2 are the vectors of control and salt
endmembers, respectively, and −→r is a vector representing a
given pixel. The distance between a given pixel and the two
endmembers is calculated as follows:

Pc =
|〈c , L〉|

‖L‖

Ps =
|〈s , L〉|

‖L‖
(5)
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FIGURE 2 | Graphical illustration of the vector-wise similarity measurement

(VSM) method to determine the similarity of a given pixel to control and salt

endmembers in a 2D feature space.

where−→c =
(−→r −

−→w 1
)

,−→s =
(−→r −

−→w 2
)

,
−→
L = (−→w 1−

−→w 2),
Pc and Ps are the absolute values of the scalar projection of

−→c and
−→s on

−→
L , respectively. In order to impose the constraints similar

to Equation (2), Pc and Ps were normalized based on the distance

between the two endmembers (
−→
L ).

Dc =
Pc

‖L‖
=

|〈c , L〉|

‖L‖2

Ds =
Ps

‖L‖
=

|〈s , L〉|

‖L‖2
(6)

where Dc and DS are the normalized distance between the
projected point of a given pixel to the control and salt
endmember, respectively; their summation is equal to one (Dc +

Ds = 1). Note that similarity S can be defined as S = 1 – D (i.e.,
similarity decreases as distance increases).

The processing time for VSM (∼70 s) was ∼3,500 times
faster than the quadratic optimization algorithm (∼0.02 s) using
the same dataset (∼15,000 pixels) and processing power. It
was substantially faster because the similarity of all pixels can
be calculated through matrix multiplication rather than going
through an iterative loop. In addition, no constraint was needed
for VSM, whereas two constraints had to be met in each
optimization loop of the quadratic optimization approach.

Since the two distances calculated for pixels complement each
other (i.e., they sum up to one), each pixel can be represented
with a single value that represents the similarity of a pixel to
either of the treatments. Representing pixels in this manner
allows dimensionality to be reduced from 215-D to 1-D andmore
notably, allows for quantification of pixel similarity to either
endmember. In this study, the similarity of individual pixels to
the salt endmember was extracted as a row vector from the
coefficient matrix obtained by VSM for further analyses. The

equivalent row and column subscript values corresponding to
a single index of similarity vector were determined to assign
similarity values to the corresponding non-zero pixels that could
pass the mask in a given image. Figure 3 shows the result of
mapping from similarity vector of the CS line to a gray scale
image. In this image non-zero pixels represent the similarity of
control and salt pixels to the CS salt endmember and pixels
equal to zero represent the masked background. To illustrate the
structure of similarity values in a proper manner, the gray scale
image was transferred to a colormap image (Figure 3B).

Analysis of Similarity Vector Obtained by VSM
Two methods were used to analyze the similarity vector/gray-
scale image obtained by VSM for each line.

Histogram distance
The similarity vector obtained by VSM can be represented as a
univariate histogram per each class to investigate the distribution
of two classes for each line. To assess the tolerance of a wheat
line to salt stress, histogram distance between the control and
salt class was measured. The histogram distance indicates how
much the imposed salt treatment caused a shift in the similarity
distribution between the control and salt classes.

A metric distance measure called the minimum difference of
pair assignments (MDPA) was used to measure the histograms
distance (Cha and Srihari, 2002). MDPA was selected because
the type of similarity histogram was ordinal in which order
of bins matters. Moreover, similarity/difference between non-
overlapping parts of control and salt histograms should be
considered in measuring histograms distance. According to Cha
and Srihari (2002), MDPA accounts for the similarities of the
entire histograms, including overlapping and non-overlapping
bins, while other methods such as Bayes error only consider the
intersection of histograms for distance calculation. In addition,
commonly used methods such as Euclidean distance and
Bhattacharyya distance will remain unchanged if we permute the
histogram bins. This “shuffling invariant” property is not suitable
for calculating the similarity of two ordinal type histograms.

MDPA was calculated based on the equation proposed by Cha
and Srihari (2002) as follows:

D
(

H(C),H(S)
)

=

b−1
∑

i=0

∣

∣

∣

∣

∣

∣

i
∑

j=0

(Hj(C)− Hj(S))

∣

∣

∣

∣

∣

∣

(7)

where H(C) and H(S) are the similarity histogram of control and
salt classes to salt endmember, respectively; and b is the number
of bins. In this study, the number of bins was set to 100 and
therefore, the width of each bin was 0.01 because the similarity
ranged from zero to one.

According to the MDPA equation, the distance between
control and salt histograms is the minimum required sample
replacements among bins such that the salt histogram becomes
identical to the control histogram. This requires that the number
of samples (i.e., pixels) be identical for both control and salt
class. However, it is rare that the number of samples/pixels
belonging to the control and salt classes be equal after initial
image processing. To account for the problems associated with
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FIGURE 3 | Similarity of pixels to the salt endmember for CS line. (A) Similarity of pixels to salt endmember represented as a gray scale image (bright colors denote

more similarity). (B) Similarity of pixels to salt endmember represented as a colormap (larger values in colorbar denote more similarity).

an imbalanced dataset, the larger dataset was sub-sampled using
a stratified random sampling method in which each bin was
randomly sub-sampled based on the ratio between samples of
the smaller and larger datasets. The stratified random sampling
assured that the distribution of the sub-sampled dataset remained
unchanged, which was required for MDPA to achieve proper
results. In addition, MDPA, obtained from Equation (7) for each
wheat line, was divided by the number of pixels belonging to
one of its histograms (either salt or control histogram since they
have equal number of pixels after subsampling) to account for the
difference between the numbers of pixels among the wheat lines.

Bayesian inference
After sub-sampling, the gray-scale image obtained by VSM per
each wheat line had equal number of salt and control pixels,
each representing the similarity to the salt endmember. To
make inferences about the tolerance of each wheat line using
these gray-scale images, the posterior probability of salt class
was calculated using Bayesian inference. The framework of the
Bayesian inference is Bayes’ rule, which was written in this study
as:

P
(

salt
∣

∣x
)

=
P

(

salt
)

× P(x|salt)

P(x)

=
P

(

salt
)

× P(x|salt)

P
(

salt
)

× P
(

x
∣

∣salt
)

+ P(control)× P(x|control)
(8)

where P
(

salt
∣

∣x
)

is the posterior probability of salt class given an
observation x. P(x|salt) is the class-conditional probability which

is the conditional probability of observation x given salt class,
and P(x) is the evidence representing the occurrence probability
of observation x. P

(

salt
)

is the prior probability, and it was
calculated as the ratio of the number of salt pixels to the total
number of vegetation pixels in a single image. The posterior
would have been biased toward the larger class if the dataset
were imbalanced, and this is why stratified random sampling
was performed in an earlier step. After sub-sampling, each class
had an equal number of pixels, and therefore, an equal prior
[P

(

salt
)

= P
(

control
)

= 0.5]. As a result, Equation (8) can be
simplified by canceling out the equal prior of salt and control
classes from the numerator and denominator.

In this study, the similarity of pixels to the salt endmember,
denoted as s, was considered as the observation x. To compute
the class-conditional probability for salt and control classes, the
similarity values of each class, which were continuous, were
discretized into two ordinal bins by specifying 0.5 as the split
point. Pixels withmore similarity to the salt endmember (s > 0.5)
were categorized in one bin and pixels with more similarity to the
control endmember (s ≤ 0.5) were categorized in the other bin.
Afterward, the posterior probability of salt class for pixels with
more similarity to the salt endmember [i.e., P

(

salt
∣

∣s > 0.5
)

] was
calculated for each of the wheat lines as follows:

P
(

salt
∣

∣s > 0.5
)

=
P(s > 0.5|salt)

P
(

s > 0.5
∣

∣salt
)

+ P(s > 0.5|control)
(9)

Equation (9) was derived from Equation (8) by canceling out the
equal prior of salt and control classes and considering s > 0.5 as
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the observation. The numerator of Equation (9) is the fraction
of salt pixels with more similarity to the salt endmember to the
total number salt pixels, and the denominator represents the
fraction of all vegetation pixels with s > 0.5 to the total number
of vegetation pixels within a single image.

For a susceptible line, the spectral response of pixels
representing the salt stressed plants become more district from
that of the control plants because of physiological and metabolic
alteration in stressed plants. As a result, the salt pixels shift
more toward the salt endmember and become more distinct
from the control endmember; and hence, the number of similar
pixels to the salt endmember among salt treatment pixels [P(s>
0.5|salt)] is much larger than the number of pixels similar to
the salt endmember among control pixels [P(s > 0.5|control)].
Therefore, it can be inferred that a susceptible line should have a
larger posterior probability of salt class [P

(

salt
∣

∣s > 0.5
)

] than a
tolerant line in which a given pixel with more similarity to the
salt endmember can be assigned to the salt class with a lower
confidence as its posterior probability of salt class is relatively
lower.

RESULTS

Conventional Biomass Measurement to
Assess Salt Tolerance
The primary objective of this research was to quantitatively rank
wheat lines based on salt tolerance using HSI. As a case study,
four Triticum aestivum bread wheat lines (see Methods for full
description) were selected for assessment of salt tolerance with
destructive biomass measurements in parallel with HSI.

Many different molecular, physiological, and growth
parameters can be used to assay salt tolerance differences
between genotypes, including Na+ uptake, the ratio of K/Na+,
photosynthetic activity (Nxele et al., 2017), gene expression
(Agarwal et al., 2013), and aerial and root biomass in salt versus
control conditions over extended growing periods (Munns
and James, 2003). To assess salt tolerance, salt treatments were
applied for 2 weeks, and then root and aerial biomass were
measured on a dry weight basis (see Methods).

According to previous studies, Kharchia is a salt tolerant line
since it maintains a stable harvest index and yields well in high
salt conditions (Schachtman et al., 1992; Munns et al., 2006),
while CS is a salt-sensitive cultivar (Zhang et al., 2016). Therefore,
the main objective of performing conventional phenotyping
was to identify the tolerance of the two unknown additional
alloplasmic lines, co(CS) and sp(CS). The results of biomass
measurements for these two lines were compared with CS since
they contain the exact same nuclear background as CS, which
allowed for a direct comparison of biomass to CS.

The biomass measurements revealed that both CS and sp(CS),
unlike co(CS), showed a reduction in both aerial and root
biomass after growth in the presence of 200mMNaCl (Figure 4).
The analysis of variance found significant interactions at all
levels for aerial and root biomass, including between salt level
and genotype (Supplemental Table 1). A closer examination of
effect sizes using linear mixed modeling showed significantly less
change in aerial and root biomass from 0 to 200mM in co(CS)
when compared to CS (Supplemental Table 2), indicating that
the alloplasmic line co(CS) is more salt tolerant than the nuclear
donor CS in terms of salt effect on biomass. However, overall

FIGURE 4 | Aerial and root biomass in control (left bars) and salt (right bars) conditions. The upper panel shows aerial biomass and the lower panel shows root

biomass for Chinese Spring (CS), the two alloplasmic lines Ae. columnaris(CS) [co(CS)] and Ae. speltoides(CS) [sp(CS)], and Kharchia.
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growth rate may be impacted in co(CS), as biomass in the absence
of salt is less than that of CS. A possible explanation for this
observation is that altered nuclear-cytoplasmic communication
in this line could lead to improper expression of organellar
(or nuclear) transcripts involved in stress tolerance, therefore
“priming” the alloplasmic for stress and reducing sensitivity to
salt stress (as measured by the difference in biomass between 0
and 200mM).

The response of the other alloplasmic line [i.e., sp(CS)]
was not significantly different when compared to CS
(Supplemental Table 2); however, it trended toward less
change in response to salt compared to CS for aerial biomass.
The change in root biomass was almost identical to that of CS.
Based on these observations, it can be inferred that sp(CS) is
slightly more tolerant than CS.

Although it is historically known that Kharchia is more
tolerant than CS, the result of biomass measurements of
Kharchia was also compared with CS to examine if the
conventional biomass measurement could capture the difference
between these two lines with dissimilar genome backgrounds.
Intriguingly, the magnitude of aerial biomass change between
the control and treatment in the highly salt-tolerant Kharchia
cultivar was not significantly different when compared with
salt-sensitive CS (Figure 4 and Supplemental Table 2). However,
similar to sp(CS), the trend was also toward a smaller change
in response to salt than CS. This indicates that biomass
measurement, although a convenient parameter to measure
in a lab environment, may not always reflect the actual field
performance in desirable traits such as harvest index or yield.
This is consistent with previous results that showed a substantial
biomass decrease for Kharchia in the presence of salt, yet
also a high relative yield and harvest index (Schachtman
et al., 1992). Without the substantial historical knowledge of
how Kharchia was derived from Indian landraces adapted
to sodic soils (Munns et al., 2006), the assessment of salt
tolerance with hydroponic screening and biomass measurement
for this study may have missed this highly valuable source of
germplasm.

Based on the results of our conventional salt tolerance
and historical knowledge, we can conclude that Kharchia
and co(CS) are more salt-tolerant than sp(CS) and CS.
In addition, the time-consuming and laborious process
of conducing the conventional biomass measurement for
salt tolerance assessment underscored the need for more
informative and quantitatively precise screening techniques to
rapidly and non-destructively assess salt tolerance, particularly
when comparing cultivars with drastically different genetic
backgrounds and growth regimes, such as Kharchia and CS that
differ in vernalization requirements and photoperiod sensitivity
(Koebner et al., 1996). However, since co(CS) and sp(CS) have
identical nuclear backgrounds to CS but only differ in their
organellar genomes, direct comparisons of biomass are more
valid.

Normalized Reflectance Difference
To gain an overall view of how the four wheat lines differed in
response to salt-stress, normalized reflectance difference (NRD)

was examined. NRD in Equation (1) indicates how much the
reflectance of the salt class changed compared to the control class
in response to the imposed stress (Figure 5). According to the
NRD, Kharchia is the most tolerant among the four lines, which
is consistent with previous studies and historical knowledge
(Schachtman et al., 1992; Munns et al., 2006) but inconsistent
with assessment of salt tolerance with biomass measurement. On
the other hand, CS appears to be the most susceptible due to
the larger difference between average reflectance of control and
salt pixels. This observation was consistent with both previous
studies (Zhang et al., 2016) and biomass measurement in this
study. Based on NRD, the two alloplasmic lines, co(CS), and
sp(CS), are somewhere in between Kharchia and CS. The NRD
method alone provides a rapid and brief insight to identify the
tolerant lines, but not in a quantitative manner. A quantitative
ranking can be generated by calculating the area under the NRD
curve as the summation area of all trapezoids formed between
two successive bands and the NRD curve. To give more physical
meaning to the area under NRD, wavelength (nm) of the x-
axis was converted to energy (J) using the Planck equation.
Consequently, area under the curve (AUC) can be presented
in the unit of energy. The results of AUC for the wheat lines
are shown in Figure 6. The order of lines in terms of their
tolerance to salt based on AUC is similar to the results achieved
by conventional biomass assessment, except that we could detect
the strong salt tolerance of Kharchia more readily with AUC. It is
also notable that both alloplasmic lines show smaller AUC than
the CS nuclear donor.

Endmembers Extraction Using SVMAX
Figure 7 presents the salt and control endmember locations
of CS with respect to other pixels where all of the pixels

FIGURE 5 | Normalized reflectance difference (NRD) of wheat lines, indicating

how much the averaged reflectance of the salt pixels changed compared to

the control pixels in response to the imposed salt stress on each wheat line.
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FIGURE 6 | Area under the normalized reflectance difference (NRD) curve calculated as the summation area of all trapezoids formed between two successive bands

and the NRD curve [wavelength (nm) on x-axis was converted to energy (J) using the Planck equation].

extracted to find endmembers have been projected onto
the first three components of principal components
analysis for visualization purposes. It is evident that the
endmembers identified by SVMAX are the pixels located at
the extremes in the space spanned by the first three principal
components.

For this study, the endmembers are assumed to be the pixels
that represent either the control or salt treatments. Afterwards,
the reflectance of other pixels can be represented as the similarity
to either of these endmembers while reducing the dimensionality
from 215 to one.

Figure 7 illustrates how pixels belonging to each of the
two classes are intertwined (i.e., many occupy similar feature
space) while a slight shift toward the lower values of PC1 can
be observed. One explanation for this intertwinement is that
reflectance of a plant is not only a function of health status but
it also depends on other parameters such as leaf angle, geometry
of leaf, and configuration of sensor, leaf surface, and light source.
As a result, we focused on the distribution of similarity to salt
endmember for control and salt pixels rather than a pixel-by-
pixel analysis.

Histogram Distance Measure
The distributions of pixel similarity to the salt endmember for
control or salt treatments are illustrated via histogram (Figure 8).
CS had the largest mean shift of salt pixels toward the salt
endmember frommc = 0.50 toms = 0.66 indicating that it is the
least tolerant line. It is also notable that the standard deviation
decreased with salt induction causing the pixels to aggregate
toward the salt endmember. In the similarity distribution of the
salt stress class of CS, there were no pixels similar to the control
endmember.

For Kharchia, the mean of the salt pixels’ similarity to the salt
endmember remained approximately unchanged compared to
the control pixels (mc

∼= ms), and the standard deviation changed
slightly (Figure 8). This suggests that the distribution of control
and salt pixels between the two endmembers was similar for both
conditions.

The mean of salt pixels’ similarity to the salt endmember for
co(CS) and sp(CS) shifted to the larger value indicating that salt
stress caused the spectral response of pixels to change. However,
this shift was lower compared to CS line in which salt stress made
a large difference between the control and salt distribution.
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FIGURE 7 | Control and salt endmembers identified by SVMAX for CS line as the furthest away pixels form each other illustrated in a space spanned by the first three

principal components (i.e., PC1, PC2, and PC3). Green and yellow circles represent control and salt pixels, respectively.

Except for Kharchia (the most tolerant wheat line), salt stress
caused the similarity distribution of pixels belonging to the salt
class to shift toward the salt endmember and caused the standard
deviation to decrease.

To quantify the histogram shift due to the imposed salt stress,
MDPA was calculated based on Equation (7). Based on MDPA,
CS has the largest distance between its salt and control classes,
whereas Kharchia has the lowest distance (Figure 9). Except
for Kharchia, that has been discussed ad nauseam, the results
of MDPA for ranking wheat lines are similar to the results of
conventional biomass measurement.

Posterior Probability
To provide an additional method to quantify salt tolerance of
lines, we also calculated the posterior probability of salt class for
each line if a given pixel is more similar to the salt endmember
[i.e., P

(

salt
∣

∣s > 0.5
)

]. Table 1 presents the posterior probability,
prior, class-conditional probability, and evidence for each wheat
line. As expected, CS had the largest posterior probability. This
indicated that if a pixel of CS was more similar to the salt
endmember, then this pixel could be classified as salt class with a
higher confidence in comparison with other lines. The relatively
large posterior probability of salt class for CS also implied that
the spectral response of salt treated plants became more distinct
than control plants even after a short time (only one day after
salt application) such that the salt pixel were more similar to
the salt endmember and more distinct from the control pixels.
This can be attributed to the susceptibility of CS to salt stress.
However, no such inference could be made for Kharchia because
pixels with more similarity to the salt endmember could not

be classified with high confidence to salt class. In addition, the
subtle difference of posterior and prior probabilities of Kharchia
implied that the imposed salt stress did not have a significant
impact on the spectral response, and hence, the salt and control
pixels of Kharchia were alike in terms of similarity to the salt
endmember.

The quantified ranking of wheat lines based on Bayes’ rule
is consistent with the MDPA ranking, and similar to the results
of biomass measurement. Again, we could readily detect the
robust salt tolerance of Kharchia compared to CS, which was
missed with conventional phenotyping. We could also quantify
differences between the nuclear donor CS and the two alloplasmic
lines, co(CS) and sp(CS). The result of posterior probability
indicates that HSI could be useful to measure subtle changes
which are less noticeable with conventional phenotyping.

The similarity values were also discretized into 10 ordinal
bins to observe how the posterior probability of both salt and
control class vary over the variation range of similarity to the salt
endmember (i.e., posteriori = {P

(

classi
∣

∣sj
)

s.t. sj ∈ binj, j =

1, . . . , 10}, and i ∈ {control, salt}) (Figure 10). The distribution
of posterior probability of the two classes for Kharchia, the
most tolerant line, represented a high degree of uncertainty
in making inference because posterior probabilities of the two
classes fluctuated throughout the similarity bins. This fluctuation
can be associated with the absence of significant difference in
spectral response of control and salt pixels due to the high
degree of tolerance to salt stress in Kharchia. For the other
wheat lines, the posteriors of two classes intersect at one point,
which can be considered as the threshold of decision for making
inferences. For co(CS), the second most tolerant line, posteriors
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FIGURE 8 | Histogram of similarity to salt endmember for control and salt pixels of the four wheat lines. Kharchia, as a tolerant line, and CS, as a susceptible line,

have the smallest and largest mean shift of salt pixels (mc) toward the salt endmember, respectively.

FIGURE 9 | Results of the minimum difference of pair assignments (MDPA) for

calculating histogram distance between distribution of similarity to salt

endmember for control and salt pixels.

fluctuated after the threshold point, such that the posterior of
salt class is highly likely indicating the moderate tolerance of
co(CS) line to salt stress. However, for CS and sp(CS), the two

TABLE 1 | Bayes’ rule components (prior, class-conditional probability, evidence,

and posterior) for wheat lines.

P (salt)

(%)

P (s > 0.5|salt)

(%)

P (s > 0.5)

(%)

P (salt|s > 0.5)

(%)

Kharchia 50.00 68.61 68.32 50.21

CS 50.00 89.77 70.88 63.33

co(CS) 50.00 86.21 74.84 57.60

sp(CS) 50.00 89.32 75.70 59.00

most susceptible lines, posterior probability of control and salt
classes diverged after the decision point. In general, P(salt|sj) of
these two susceptible lines monotonically increased as similarity
to the salt endmember increased. The trend of posteriors for
these two wheat lines indicated how salt pixels became more
distinct than control pixels in response to the imposed salt
stress.

To illustrate the result of posterior probability more
intuitively, P(salt|sj) for all pixels in each wheat line image is
shown as a colormap in which a distinct color was used to
highlight the difference between posterior probability of pixels in
control and salt regions (Figure 11). According to Figure 11, the
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FIGURE 10 | Posterior probability of belonging to control and salt classes given similarity to salt endmember. Posterior probability was calculated for each individual

10 bins of similarity to salt endmember.

control and salt pixels of CS, the most susceptible line, can be
visually distinguished, whereas the majority of Kharchia pixels,
regardless of belonging to either class, have a similar posterior
probability.

DISCUSSION

Three methods including area under the NRD curve, MDPA,
and posterior probability were utilized in this study to analyze
hyperspectral images of wheat lines. In all methods, salt stress
treatment of each line was compared to its control treatment
because differences in spectral responses of a given line may
not necessarily be related to the imposed stress, but rather to
differences in inherent characteristics such as having waxy and/or
darker leaves. The order of ranking of the examined wheat lines
was similar for all of these methods. Kharchia was ranked as
the most tolerant line followed by co(CS) and sp(CS). CS was
identified as the most susceptible line by all three methods.
In addition to ranking the wheat lines, more inferences could
be made from calculating the posterior probability compared
to the other two methods. For instance, it could provide the
ability to observe the variations of posterior probability over

all similarity bins (Figure 10). This observation can be used to
define a threshold of making a decision for classification purposes
if the classification of salt and healthy plants is of interest.

In this section, results and achievements of this research study
are discussed.

Quantitative Ranking
Our findings revealed that conventional phenotyping methods
to identify salt tolerant wheat lines could be replaced by the
fast and non-invasive methodology proposed in this study. It
was surprising to find that the conventional assessment of salt
tolerance with biomass measurement was not consistent with the
anecdotal and historical evidence of salt tolerance for the Indian
landrace Kharchia. However, biomass measurements of Kharchia
were indeed consistent with previous studies that documented a
significant biomass decrease, yet stable harvest index and yield
in response to salt stress (Schachtman et al., 1992). Kharchia
does show a significantly reduced level of Na+ uptake in the
5th leaf when compared to salt-sensitive cultivars, which likely
explains the stable harvest index of this line (Schachtman et al.,
1992). Based on these contradictory findings, it appears that
the most informative way to conventionally assess salt tolerance
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FIGURE 11 | Posterior probability of belonging to salt class given similarity to salt endmember for control and salt pixels of each wheat line [i.e., P(salt|s)].

is to measure multiple growth and physiological parameters
simultaneously. However, this is laborious, expensive, and not
feasible for many lines or populations simultaneously as is
required for breeding programs. In contrast, our method could
be used to quantitatively and objectively rank salt tolerance of
individual wheat lines in a non-destructive and cost-effective
manner. Moreover, the proposed method could be successfully
used to detect subtle differences between lines, such as between
alloplasmics and euplasmics.

Early Detection
Detection of tolerant wheat lines was achieved as early as one
day after the salt treatment when no visual symptoms were
observed, and physiological and growth measurements were not
yet possible. Early detection enables faster screening cycles and

reduces the energy and costs needed to maintain plants in a
controlled environment. The findings of this experiment provide
evidence that breeders and plant geneticists would be able to
properly manage time, energy, cost, and space in greenhouses
while maintain accuracy and improve precision by implementing
HSI and the proposed analytical methods. Faster assessment of
stress tolerance is a major advantage to breeding programs and
basic research alike.

Analysis of Complex and High Dimensional
Hyperspectral Images
Appropriate preprocessing tasks and machine learning
techniques were utilized to leverage the full potential of
HSI in a phenotyping context. The achievements of this study in
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the context of hyperspectral image analysis are discussed in the
following sub-sections.

Elimination of Mixed Pixels
A mixed pixel contains spectral information derived from a
combination of objects that inherently have varying spectral
characteristics. Mixed pixels are often located along the edges
of objects in images, especially when the spatial resolution
of an image is finer than the individual objects contained in
the image (e.g., a leaf). In this study, mixed pixels along the
edges of leaves were eliminated from the binary vegetation
mask using morphological image processing. Without masking,
these mixed pixels would have led to reduced accuracy through
the endmember selection and subsequently in computing the
similarity of pixels to the salt endmember on which further
analyses were based. Prior to using morphological operations,
filtering based on vegetation indices allowed us to appropriately
mask pixels that were covered by shadows from other leaves or
objects.

Interaction Between Incident Light and Leaf Surface
The interaction between incident light and the leaf surface is
complex due to leaf angle and curvature. The intensity of the
reflected light from leaves is both a function of physiology and
leaf geometry, and tends to cause a significant change in the
spectral response of vegetation. Behmann et al. (2015) reported
60% of the spectral response of sugar beets could be influenced
by the geometry of plant leaves. This provides explanation for
observing several control and salt pixels having similar spectral
properties (pixels were not perfectly distributed in two well-
separated classes). Although we did not explicitly address the
issue of leaf geometry, we could mitigate its negative effects on
the results by considering the similarity distribution of pixels
to the salt endmember. By deploying a fuzzy concept (i.e.,
where each pixel can be partially similar to either endmember)
rather than a hard classification (i.e., binary classification where
each pixel is a member of only a single class), downstream
processing techniques were possible, such as posterior probability
and histogram distance.

Complex Interpretation of Hyperspectral Images
In this research, the curse of dimensionality in analysis of
hyperspectral images was addressed by projecting from a high
dimension (215-D) feature space onto one dimension. The
one-dimensional feature space, which can be represented as a
gray-scale image, denoted the similarity of each pixel to the
salt endmember while maintaining the required information
for making further inferences. As a result, interpretation of
hyperspectral images could be performed in a much more
efficient manner with more meaningful information. By reducing
dimensionality, results are simpler and are easier to comprehend.
Because agricultural research groups are oftentimes comprised
of many scientific disciplines, this directness is imperative.
In general, the proposed strategy helps to interpret complex
hyperspectral images by discovering the underlying hidden

features caused by salt stress. This strategy will also provide
more flexibility in selecting ML methods to analyze images.
For instance, MDPA was utilized to measure the distance
between the similarity distributions of control and salt pixels to
the salt endmember. Another benefit of conversion to a one-
dimensional feature space is that visualization of relevant spectral
information is possible in a more meaningful manner while
involving all bands in similarity measurement and maintaining
spatial integrity.

The other important advantage is that the required
computational time and data storage space for analyzing
and storing hyperspectral data was significantly reduced due
to converting from a high-dimensional to one-dimensional
space. For instance, the average size of a hyperspectral image
(2000 × 640 × 215) was ∼400MB while the size of obtained
gray scale image (2000 × 640 × 1) was less than 1MB. It is
also noteworthy that the VSM method used for computing
the coefficient matrix proposed herein significantly reduced
the processing time compared to the quadratic optimization
problem that is commonly used.

CONCLUSION

In this study, we investigated the application of hyperspectral
imaging in assessment of salt stress in four wheat lines one
day after salt treatment. A novel pipeline was proposed for
hyperspectral image analysis to leverage the full potential of HSI
in a salt stress phenotyping context. The proposed pipeline can
be applied for other plant phenotyping traits. The results of
this study demonstrated the feasibility of quantitative ranking of
wheat lines based on their salt tolerance by integrating HSI and
novel analytical approaches. Quantitative and objective ranking
methods are much needed, and provide invaluable information
that can accelerate genomics research, such as GWAS or QTL
mapping, used in breeding programs. The quantitative ranking of
salt stress tolerance helps breeders integrate salt tolerance results
with other desired traits (e.g., grain yield), which ultimately
accelerates the development of new plant varieties. In future
work, we will focus on identifying sensitive wavelengths to
aid in development of a multispectral camera for salt stress
phenotyping, and consequently reducing the cost of the sensor
as well as the complexity of data collection associated with a
hyperspectral line scanner.
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