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Integrating Knowledge Sources in Language Comprehension

Jill Fain Lehman and Richard L. Lewis and Allen Newell
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Multiple types of knowledge (syntax, semantics, prag-
maltics, etc.) contribute to establishing the meaning of
an utterance. Immediate application of these knowl-
edge sources is necessary o satisfy the real-time con-
straintof 200 to 300 words per minute for adultcompre-
hension, since delaying the use of a knowledge source
introduces computational inefficiencies in the form of
overgeneration. On the other hand, ensuring that all
relevant knowledge is brought to bear as each word in
the sentence is understood is a difficult design prob-
lem. As a solution to this problem, we present NL-
Soar, a language comprehension system that integrates
disparate knowledge sources automatically. Through
experience, the nature of the understanding process
changes from deliberate, sequential problem solving
to recognitional comprehension that applies all the rel-
evant knowledge sources simultaneously to each word.
The dynamic character of the system results directly
from its implementation within the Soar architecture.

Introduction

Language comprehension is the process by which knowl-
edge is used to map an utleranceé [0 a meaning. Many
sources of knowledge contribute to this process: morphol-
0gy, syntax, semantics, pragmatics, and discourse conven-
tions are those most often considered. In addition to pro-
viding knowledge that may be critical in finding the correct
mapping, each source may contribute significantly to re-
ducing the effects of local ambiguity on the search for a
meaning. Reducing search is a computational necessity;
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without multiple knowledge sources even common con-
structions such as prepositional phrase attachment can lead
to an exponential number of interpretations. More impor-
tant, search reduction is necessary to satisfy the real-time
constraint of 200 to 300 words per minute required to model
adult comprehension. To guarantee the correct mapping we
need all knowledge sources. To guarantee a minimal search
space we must be able to bring each type of knowledge to
bear as soon as it is relevant.

Immediate application of multiple knowledge sources isa
key component in many psychological theories of compre-
hension and parsing (e.g., [Altmann and Steedman, 1988,
Marslen-Wilson and Tyler, 1980, Thibadeau et al., 1982]).
However, constructing a system to bring its knowledge to
bear at the right moment is difficult. There seems to be a
trade-off betwecn search efficiency and ease of engineer-
ing. At one end of the spectrum is a pipeline design in
which knowledge sources are ordered (morphology, syn-
tax, semantics, etc.), and each source generates a set of
structures based on the previous phase’s output. A system
with separated knowledge sources is relatively easy to cre-
ate and extend, and exhibits few surprising or inconsistent
behaviors as the grammar becomes large. Yet, by delay-
ing the application of a type of knowledge, initial stages
overgenerate, producing extra interpretations and unneces-
sary scarch!. Al the other end of the spectrum is a fully-
integrated design which encodes all the knowledge in the
generator. In short, all knowledge sources contribute at once
to the meaning structure produced as each word is compre-
hended. Although overgenecration is prevented, building
such a system requires anticipating and keeping track of all

'The work in principle-based parsing [Fong and Berwick,
1990] is an attempt to control the overgeneration in a syntactic
pipeline while preserving its ease of engineering. However, since
there 1s no single optimal ordering of modules, computing the op-
timal ordering for each sentence, while inexpensive, is heuristic.
Consequently, overgeneration may still result. Similarly, black-
board models like Hearsay [Erman et al, 1980] and READER
[Thibadeau et al., 1982] may reduce inefficiency by allowing for
more flexible interaction than the pipeline approach, but cannot
guarantee against overgeneration to the same degree full inte-
gration can. Furthermore, the same flexibility that can increase
efficiency makes creating and extending the knowledge sources
difficult.



the points at which each type of knowledge is relevant. With
multiple knowledge sources, fully specifying the points of
interaction becomes quite complex, and unexpected incon-
sistencies tend to arise as the grammar becomes large. In
fact, no fully-integrated system has been attempted to date.
Instead, most attempts at integration have combined only
syntax and semantics, generally through the use of semantic
grammars [Birnbaum and Selfridge, 1981], domain-specific
syntactic grammars [Sager, 1981], or semantic annotations
to syntactic rules [Shieber, 1986].

We believe that NL-Soar [Lehman er al., 1991], the model
of language comprehension we have implemented in Soar
[Laird et al., 1987, Lewis et al., 1990, Newell, 1990}, is a
significant step toward a fully-integrated system. It comes
closer to achieving ideal search behavior than previous ap-
proaches by bringing all sources of knowledge to bear as
soon as possible. At the same time, the system maintains the
modularity of a pipeline design. We achieve this combina-
tion of advantages by virtue of Soar’s learning mechanism,
chunking. Initially, comprehension proceeds by deliberate
problem solving using independently represented knowl-
edge sources. Through chunking, new knowledge is added
to the system that applies all these sources in a single pro-
cessing step for each word.

Overview of NL-Soar

Soar distinguishes between knowledge made available
through search in problem spaces and knowledge avail-
able immediately through recognition. The computational
model underlying Soar supports this view by committing
to a long-term recognition memory (realized as a parallel
production system) that yields knowledge in constant time.
Problem solving proceeds recognitionally when Soar can se-
lect or apply operators in a problem space by simply drawing
on this memory. Given the mapping of Soar onto human
cognition [Newell, 1990], there is time for only a few (1-3)
operators per word within the 200-300 millisecond per word
constraint. Therefore, achieving recognitional comprehen-
sion is cast as the problem of creating a comprehension
operator [Newell, 1990] that is directly implemented by
productions in the recognition memory. A comprehension
operator applied to a word must simultaneously bring to
bear all the knowledge necessary to understand the word
in the given context. Thus, the comprehension operator is
a realization of the immediacy of interpretation principle
[Thibadeau et al., 1982]. Fully-integrated comprehension
for the whole sentence proceeds via word-by-word applica-
tion of comprehension operators.

Comprehension operators map an utterance to its mean-
ing. The representation for meaning used in NL-Soar is a
model of the situation that the utterance is about [Johnson-
Laird, 1983, Newell, 1990, Polk et al., 1989]. The essential
property of models is that the elements in the representation
map one-to-one into the situation. The right-hand side of
Figure 1 shows the situation model that results from com-
prehending the sentence The star above the circle is red. To
aid in building the situation model, NL-Soar also constructs
an utterance model (Figure 1, left-hand side). This model is
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complement
isa star
color red
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prep- spect’(fe/ ys terminer

above the

isa circle

Utterance model
(dependency structure)

Situation model

Figure 1: The models for The star above the circle is red.

a type of dependency structure [Hays, 1964, McCord, 1989,
Mel'tuk, 1988], in which nodes correspond to words, and
arcs label grammatical relations between words. Thus, the
utterance model reflects the syntactic structure of the ut-
terance, while the situation model reflects the structure of
the situation being discussed. The relationship between the
two models is one of reference; parts of the utterance model
may refer to objects in the situation. Both models provide
context for the comprehension process?.

If models come from the application of comprehen-
sion operators, where do comprehension operators come
from? As noted above, hand-coding fully-integrated oper-
ators for each word is an extremely difficult and complex
task. In NL-Soar, however, hand-coding is unnecessary—
comprehension operators arise automatically. To under-
stand how, examine the system’s problem spaces in Fig-
ure 2. The Comprehension space is where the recognitional
comprehension capability is to reside. When Soar first at-
tempts to apply the comprehend operator for a word in anew
context, however, an impasse arises because the knowledge
is not immediately available in recognition memory. Soar
responds to this impasse (as it does all impasses) by creat-
ing a new subgoal to acquire the needed knowledge through
search in another problem space. Knowledge in NL-Soar
then chooses the Language space to deliberately implement
comprehension by searching the space of partial utterance
and situation models. For the operators in the Language
space to construct and modify the two models, various syn-
tactic, semantic, and pragmatic constraints on those opera-
tors must be satisfied. Ensuring that the constraints are met
happens through the sequential application of operators in
the Constraint space. If an impasse arises while checking se-
mantic constraints, the Semantics space accesses the current
situation model or general world knowledge to deliberately
justify a semantic relation.

The result of the deliberate problem solving in the lower
three spaces is to resolve the impasse for the comprehend

?Additional models may be needed (e.g. a discourse model) as
new knowledge sources are added to the system.



Comprehension space
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Operators:
justify
find
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Figure 2: The NL-Soar tower of problem spaces.

operator, that is, to determine the appropriate changes to the
two models in response to the word being comprehended.
As these changes are made, Soar’s chunking mechanism
stores away the results of the problem solving and their pre-
impasse conditions in the form of new productions (chunks)
inrecognition memory for the Comprehension space. These
chunks form a recognitional comprehension capability, so
thatin future similar situations, comprehension can proceed
withoutdeliberate search. The chunks simultaneously bring
to bear all the knowledge sources that were sequentially
accessed in the lower problem spaces®.

Examples of NL-Soar’s behavior

The description of NL-Soar’s problem spaces given above
says little about the specific knowledge in the system or the
particular type of processing that results. In this section,
we make these ideas concrete by tracing the system'’s be-
havior with three simple examples. The characterization
that emerges is that of a single-path comprehension system
that combines both bottom-up (data-driven) and top-down
(expectation-driven) knowledge with a limited capability
for repairing misinterpretations.

*We have concentrated on how chunking creates new produc-
tions in the Comprehension space. However, chunking takes place
whenever an impasse is resolved. Thus, knowledge is constantly
moving up the tower of problem spaces in Figure 2, making pro-
cessing more efficient in all spaces.
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Figure 3: Deliberate and recognitional comprehension
of rich.

the

Constructing the utterance and situation models

Consider comprehension of the word rich in The barber is
rich. When the system cannot recognitionally implement
the comprehend operator for rich, an impasse arises and
problem solving continues in the Language space. Figure 3
illustrates the chain of operator applications that follows the
creation of the Language space’s initial state. As shown
in the first grey box, the state consists of a partial utterance
model and asingle object in the situation model representing
the barber. The first operator to be applied is lexical-access
which retrieves two senses of rich: an adjective describ-
ing food (richl), and an adjective meaning wealthy (rich2).
Next, link operators are proposed for each sense. A link
operator specifies a relationship between the word being
comprehended and a word on the active edge of the ut-
terance model*. Thus, functional, structural, and lexical
ambiguity contributes to the parallel generation of multi-

“The active edge is a subset of the nodes in the ulterance
model corresponding to non-closed constituents. When rich is



ple link operators. In the absence of other knowledge, the
system arbitrarily chooses which link operator to try.

In this case an attempt is made to link the first sense
of rich (food). Associated with each link operator is a
set of constraints which must be met before the operator
can be applied. When knowledge of the success or failure
of these constraints is not immediately available, the con-
straints are checked independently in the Constraint space.
The current link operator evokes only two constraints: one
for word order (the verb assigning a predicate complement
must come before the complement), and another requiring
semantic consistency between the predicate and the subject.
Semantic consistency may be justified by using pragmatic
knowledge (finding an appropriate referent already in the
situation model) or by simple inference in the Semantics
space. Since richl describes food and not people, there is
neither a barber who is rich (in the food sense) in the model,
nor a justifying inference available from world knowledge.
Thus the semantic constraint fails, and the link operator
terminates with failure as well.

Next, the link for rich2 is tried. Again, word order passes,
and this time the semantic check passes as well (although
no instance of a rich barber could be found in the model,
knowledge exists in Semantics that allows a referent that isa
person to be rich in the sense of wealthy). Since both con-
straints pass for rich2, this link operator succeeds, making
the correct addition to the utterance model. This new piece
of structure then triggers the refer operator, which updates
the situation model by adding a “wealthy” property to the
barber object. In general, the refer operator may create new
objects, properties, and relations or resolve a reference to
an existing object in the situation.

These changes to the utterance and situation models com-
plete the application of the top-level comprehend operator
for rich. Soar’s chunking mechanism now integrates all
four types of knowledge—lexical, syntactic, semantic, and
pragmatic—used in the lower spaces into new productions
in recognition memory. Figure 4 shows an example of one
of these productions. These new productions directly im-

IF comprehending rich [lexical]
and there is a verb on the edge, [syntactic]
and the verb has an unfilled pred-complementrole, [syntactic]
and the subject of the verb isa person, [semantic]
and the subject's referent isn't already wealthy [pragmatic]

THEN the sense of rich is wealthy, [lexical]
assign rich 1o be the pred-complement of the verb,  [syntactic]
assert the wealthy property of the subject’s referent  [pragmatic]

Figure 4: A new production learned for rich’s compre-
hension operator.

plement the comprehension operator for rich in utterances
similar to the example. As shown at the bottom of Figure 3,
this part of rich’s comprehension operator will transfer to all
predicate complement utterances in which the subject has a
referent in the model with the appropriate semantic features.

comprehended, only is is in the edge set available for attachment.

.2'.
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NL-Soar differs from previous attempts at integration
(e.g., semantic grammars, domain-specific syntactic gram-
mars, and syntactic grammars augmented with selectional
restrictions) in three important ways. One, the single com-
prehension operator avoids generating any of the interme-
diate structures of the deliberate search. Two, the integra-
tion of referent resolution permits the context (the situation
model) to aid in disambiguation. Three, the system is de-
signed to be extendible to other knowledge sources while
maintaining both modularity and recognitional comprehen-
sion.

Adding expectations and top-down knowledge

Often it is impossible to link an incoming word directly into
the dependency structure. Consider the word the in Mary
loves the barber. 1t does not properly attach to either Mary
or loves; itmust attach to an as yet unseen noun. Rather than
buffer such words, NL-Soar uses expectations (o maintain
a connected utterance model. Figure 5 shows the creation

check

Language
sSpace
(lookahead)

| barber |

Figure 5: Creating and merging expectations.

of an expectation during comprehension of the (we omit the
situation model in this and subsequent figures). Ignore for
the moment the impasse on the expect operator and follow
the states along the top row of the figure. First, expect
produces an empty node—the expectation—that reserves a
place for the future word. Next, two link operators are ap-
plied sequentially: the first assigning the as the specifier of
the expectation, and the second assigning the expectation as
the object of loves. As the links are made, the expectation



accretes the properties necessary 10 satisfy the constraints of
the links. Thus, there is no special knowledge encoded in the
expect operator about what to expect; instead, this knowl-
edge is generated dynamically as a side effect of linking
the expectation into the existing model. When the expected
word finally arrives, the merge operator (Figure 5, bottom)
merges it with the expectation, making sure that the new
word is consistent with the constraints previously recorded.

How does the system know when 1o create an expecta-
tion? There are no specific conditions for proposing the
expect operator—it may be attempted at any time. But it
is only appropriate when it makes progress toward the suc-
cessful comprehension of the incoming word as a cohesive
part of the utterance to this point. This idea is cast as a
progress constraint in the Constraint space (the impasse on
the expect operator in Figure 5). To determine whether
positing an expectation makes progress, NL-Soar searches
in a copy of the Language space. This lookahead search
reveals that the can be linked to the expectation, and the
expectation linked to loves. Therefore a cohesive structure
integrating the is possible. Chunks learned during looka-
head search encode the conditions that determine when an
expectation is needed.

All operators in the Language space use local, bottom-up
knowledge. But like expect, all operators in the Language
space also have a progress constraint. Thus, the scheme out-
lined above provides a general mechanism for automatically
acquiring top-downknowledge in acomprehension operator
via lookahead to pass the progress constraint. If an expecta-
tion is created in order to comprehend the current word, then
the creation of the expectation and its links is combined with
the necessary syntactic, semantic, and pragmatic constraints
in the chunks that define the comprehension operator for that
word. By integrating over all available knowledge sources,
this conception of “top-down” subsumes and moves beyond
that found in standard syntactic parsing stralegies.

Adding recognitional repair

Since NL-Soar maintains a single interpretationduring com-
prehension of a sentence [Altmann and Steedman, 1988,
Frazier and Rayner, 1982, Pritchett, 1988], some mecha-
nism is needed to recover if the system is led astray by a
local ambiguity. Consider the sentence Mary knows Sharyn
loves the barber. Sharyn is initially assigned the object role
of knows. At the point of comprehending loves, Sharyn
must be reassigned to be the subject of loves so that the
embedded clause may serve as the object. When a previous
interpretation proves to be incorrect, the snip operator is
applied to undo part of the utterance model. An interpre-
tation was incorrect if no link or expect operator can make
progress. A snip operator is proposed for each link con-
neccted to a node in the edge set (lookahead may be evoked
to determine which snip will be successful). Figure 6 shows
the processing during comprehension of loves. First, snip
cuts the object link between knows and Sharyn. Next, link
operators apply, attaching Sharyn as the subject of loves and
then loves as the clausal direct object of knows. The snip
operator itself only disconnects a piece of the utlerance; the

||0V€S|

knows link knows
loves| snip '/ loves Wik
Mary + _> Mary

465

.Sharynll

Figure 6: Repairing a misinterpretation in Mary knows
Sharyn loves the barber.

actual repair is carried out by the same link and refer opera-
tors we saw above. In contrast 1o an arbitrary backtracking
scheme, the repair mechanism does not require maintaining
a complete memory of previous choice points’.

As in the case of creating expectations, if the compre-
hension of a word in the current context requires a repair,
the effects of all the separate actions that went into mak-
ing the repair will be captured in new productions for a
single operator in the Comprehension space. In this way,
limited recognitional repair becomes another part of NL-
Soar’s comprehension capability.

Summary

We have seen examples of sentences in which NL-Soar’s
processing proceeded strictly bottom-up (The barber is
rich), included a top-down component (Mary loves the bar-
ber), or required repair (Mary knows Sharyn loves the bar-
ber). In each case, the operators that were applied accessed
many different types of knowledge at different times. What
is important to note about these examples is that the mod-
ularity of both the search control strategies and the knowl-
edge sources is irrelevant in the Comprehension space. The
comprehension operators produced by chunking are fully
integrated, simply making changes to the models directly
(and without search) for each word. Currently in NL-Soar,
chunking is a compilation mechanism rather than a lan-
guage acquisition mechanism. What changes is not the set
of utterances that can be assigned meaning structures but
the process by which a meaning is assigned. Chunking
transforms the mapping process from a search-intensive se-
quential application of operators representing different but
necessary types of knowledge, to the simultaneous applica-
tion of all knowledge sources by a single operator.

Up to this point, the system’s development has been
driven by two types of demands. The first type of demand
has been the satisfaction of basic psychological criteria:
word-by-word, incremental comprehension under the real-
time constraint. The second (and related) type of demand
has been functional: how to compose meaning structures,
how to prevent overgeneration, how to commit to structures
before all relevant information is available, how to undo
incorrect commitments. As a result of this emphasis, cer-
tain knowledge sources have been completely ignored to

5The limited nature of the repair means that garden path phe-
nomena may arise. We are currently investigating NL-Soar's pre-
dictions in this area.



date (the discourse level, for example). Given the auto-
matic way in which comprehension operators arise within
NL-Soar, however, we believe the system can be extended
to include additional knowledge sources without sacrificing
the benefits of fully-integrated processing, In addition to
the lack of some knowledge sources, both the system's syn-
tactic and semantic coverage remain underdeveloped. The
system’s grammatical coverage is currently limited to about
75% of Allen’s basic English grammar [Allen, 1987]. Its
world model is a simple class hierarchy in the Semantics
space. So far this degree of coverage has been adequate for
preliminary work in three areas: a natural language inter-
face 1o a robot arm [Laird et al., 1990], instruction taking
for simple reasoning experiments in psychology [Lewis et
al., 1989], and predicting garden path phenomena. To con-
tinue to extend the system’s coverage in realistic and useful
ways, we are exploring integrating NL-Soar with other Soar
systems. For a more detailed description of the system, see
[Lehman er al., 1991].
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