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Abstract
Almost all brain cells contain cilia, antennae-like microtubule-based organelles. Yet, the significance of cilia, once considered 
vestigial organelles, in the higher-order brain functions is unknown. Cilia act as a hub that senses and transduces environ-
mental sensory stimuli to generate an appropriate cellular response. Similarly, the striatum, a brain structure enriched in 
cilia, functions as a hub that receives and integrates various types of environmental information to drive appropriate motor 
response. To understand cilia’s role in the striatum functions, we used loxP/Cre technology to ablate cilia from the dorsal 
striatum of male mice and monitored the behavioral consequences. Our results revealed an essential role for striatal cilia 
in the acquisition  and brief storage of information, including learning new motor skills, but not in long-term consolidation 
of information or maintaining habitual/learned motor skills. A fundamental aspect of all disrupted functions was the “time 
perception/judgment deficit.” Furthermore, the observed behavioral deficits form a cluster pertaining to clinical manifesta-
tions overlapping across psychiatric disorders that involve the striatum functions and are known to exhibit timing deficits. 
Thus, striatal cilia may act as a calibrator of the timing functions of the basal ganglia-cortical circuit by maintaining proper 
timing perception. Our findings suggest that dysfunctional cilia may contribute to the pathophysiology of neuro-psychiatric 
disorders, as related to deficits in timing perception.
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Introduction

Primary cilia, antennae-like microtubule-based organelles 
emanating from the cell surface, function as a signaling hub 
that senses environmental sensory stimuli and transduces 

them to generate appropriate cellular responses [1–4]. As 
an essential center for non-synaptic neuronal communica-
tions, cilia signaling is achieved through specific receptors 
and downstream pathways’ components such as the Sonic 
Hedgehog (Shh) signaling pathway, G-protein-coupled 
receptors (GPCRs), and ion channels [5–12].

Cilia’s dynamic structure, reflected by the vibrant length, 
morphology, and protein composition, allows cilia to quickly 
respond to environmental stimuli such as light, mechani-
cal stimuli, pH, and chemical signals (signaling molecules, 
neurotransmitters, and nutrients) [13–19]. Although most 
ciliopathies are associated with cognitive impairments, cilia 
have only been scarcely investigated for their roles in higher-
order cognitive functions [20–25]. We recently showed dys-
regulations of genes associated with cilia’s structural and 
functional components in four psychiatric disorders: schiz-
ophrenia, autism, bipolar disorder, and major depressive 
disorder [26]. Furthermore, many dysregulated cilia genes 
overlapped across these psychiatric disorders, indicating 
that common cilia signaling pathways’ dysfunctions may 
underlie some pathophysiological aspects of these psychi-
atric disorders.

Significance   
• Our study sheds light on the roles that striatal cilia may play in 
timing-dependent functions.
• Our findings reveal that cilia in the striatum, the input structure 
to the basal ganglia, act as a calibrator of the basal ganglia-cortical 
circuit “clock” function by maintaining proper timing perception.
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Like cilia, though at larger spatial and organizational scales, 
the striatum, which comprises the primary input station to 
the basal ganglia, functions as a hub receiving and integrat-
ing various environmental information, including contextual, 
motor, and reward [27–31]. Striatal neurons process the infor-
mation and project to the output structures of the basal ganglia, 
substantia nigra pars reticulata (SNr)/medial globus pallidus 
(GPm) (for review [32–35]). The striatum is enriched in cilia 
[36, 37]. Furthermore, a number of cilia-associated GPCRs are 
expressed in the striatum (e.g., dopamine receptors, serotonin 
receptor 6 (5-HT6), melanin-concentrating hormone receptor 
1 (MCHR1), and the orphan receptors GPR88) [5–10, 38–56].

As a central part of cortico-basal ganglia-thalamic-cortico 
circuits, the striatum controls various executive functions, 
including motor movements, planning, decision-making, 
working memory, and attention [57–60]. Dysfunctions of 
cortico-basal ganglia-thalamic circuits are involved in several 
neurological and psychiatric (neuro-psychiatric) disorders such 
as attention-deficit hyperactivity disorder (ADHD), Hunting-
ton’s disease (HD), Parkinson’s disease (PD), schizophrenia 
(SCZ), autism spectrum disorder (ASD), Tourette syndrome 
(TS), and obsessive–compulsive disorder (OCD) [61–76]. The 
overlap in clinical features of these disorders suggests common 
signaling pathways that may underlie some pathophysiologi-
cal aspects of these neuro-psychiatric disorders. Hence, it is 
tempting to ask whether cilia in the striatum mediate some 
of its functions and whether cilia are involved in psychiatric 
disorders associated with striatum dysfunctions.

According to our recent study, the striatum was the only 
brain structure that shared rhythmic cilia genes with every 
other brain region studied [18]. The spatiotemporal expres-
sions of circadian cilia genes in the basal ganglia-cortical 
neurons follow the same sequential order of this circuitry 
in controlling movement, though on different time scales. 
Therefore, this study aims to examine the behavioral conse-
quences of cilia ablation in the striatum and explore whether 
abnormal striatal cilia are a unifying pathophysiological 
factor in striatum-associated neuropsychiatric disorders. 
For this purpose, we used the loxP/Cre conditional dele-
tion system to selectively delete the intraflagellar transport 
(IFT88) gene, an essential factor for primary cilia formation, 
from the dorsal striatum. We then monitored the behavioral 
phenotypes resulting from striatal cilia ablation, focusing on 
neuropsychiatric phenotypes/manifestations of the striatum 
functional domains.

Material and Methods

Animals

The Ift88fl mice possess loxP sites flanking exons 4–6 of the 
intraflagellar transport 88 (Ift88) gene (Jackson Laboratories, 

#022,409). All experimental procedures were approved by 
the Institutional Animal Care and Use Committee of the 
University of California, Irvine, and were performed in com-
pliance with national and institutional guidelines for the care 
and use of laboratory animals. The experimental design is 
illustrated in Fig. 1a. Only male mice were used in this study.

Genotyping

The genotyping protocol was provided by Jackson Labora-
tory (JAX). DNA was extracted from mice using the fol-
lowing protocol. One millimeter of the tip of the tail was 
cut and digested in lysis buffer along with proteinase K 
overnight followed by isopropanol to precipitate the DNA, 
and ethanol to wash the pellet, and finally dissolved in TE 
buffer. DNA concentration and purity were checked. The 
DNA was used for the following PCR reaction. The fol-
lowing primers were used Forward 5′-GAC​CAC​CTT​TTT​
AGC​CTC​CTG, Reverse 5′-AGG​GAA​GGG​ACT​TAG​GAA​
TGA. Amplification was performed using KAPA2GFast 
HotStart PCR kit (Roche Cat. No 07960930001). Touch-
down cycling was performed and ran on a 1% agarose gel 
with the  homozygous at ~ 410 bp, heterozygous at 365 bp 
and ~ 410 bp, and wildtype at 365 bp.

Stereotaxic Surgery

Eight-week-old male Ift88fl mice were subjected to stere-
otaxic surgery along with wild-type littermates. Mice 
were anesthetized with 2% isoflurane and mounted on the 
stereotaxic frame. The skin between the eyes and ears was 
shaved, and an incision was made to uncover the skull and 
reveal bregma. A small hole was drilled bilaterally, and 
all mice received 0.5 μl of the adenovirus expressing Cre: 
AAV.CamKII.HI.GFP-Cre.WPRE.SV40 (titer 2.4 × 10^13 
G.C./ml, serotype AAV9), which was bilaterally injected 
into the dorsal segment of the rostral striatum, at the stere-
otaxic coordinates anteroposterior at 1.3 mm, mediolat-
eral at ± 1.3 mm, and dorsoventral at 3.2 mm (Fig. 1b). 
AAV.CamKII.HI.GFP-Cre.WPRE.SV40 was a gift from 
James M. Wilson (Addgene viral prep # 105,551-AAV9 
http://​n2t.​net/​addge​ne:​105551; RRID:Addgene_105551). 
The skin was sutured with silk non-absorbable sutures, 
and mice were allowed a week to recover before behav-
ioral experiments. After the last behavioral experiment 
at approximately 16 weeks old, mice were perfused, and 
AAV infection was analyzed.

Behavioral Experiments

Two weeks after the surgery, mice were tested  in a battery 
of behavioral paradigms in the following order (Fig. 1a): 
locomotion and stereotypy/open field, rotarod, grooming, 
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social interaction and novelty, spontaneous T-maze 
alternation, novel object/location recognition, prepulse 
inhibition, forced swim, hot plate, and contextual fear 

conditioning. The sequence of specific assays spaced by 
3–6 days inter-assay interval was adapted from previously 
published reports [77–79]. 
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Fig. 1   Selective cilia deletion in the striatum and confirmation 
of mice’s normal gross growth and well-being. a Schematic view 
of experimental design and behavior assays performed and their 
sequence. Diagram was created with the BioRender.com webpage. 
b Schematic showing bilateral viral injection into the dorsal stria-
tum. c and d Verification of cilia removal in ciliated neurons of the 
striatum using immunostaining of ADCY3. Scale bar = 10  μm. c 
Representative images of ADCY3 immunostaining showing the 
intact cilia in the control mice and the conditional ablation of cilia 
in the dorsal striatum neurons of Ift88fl mice (counterstained with 
DAPI, blue); d Quantification of the ciliated cells in the rostral-dor-
sal striatum (n = 8 control, 6 IFT88-KO). Unpaired t-test (t = 17.26, 
P < 0.0001) ****P < 0.0001. Data are presented as means ± S.E.M. 
Scale bar = 10 μm. e–g ADCY3 immunostaining in the caudal stria-
tum. e Representative images of ADCY3 immunostaining in the 
caudal striatum showing that the selective removal of cilia from the 

dorsal  rostral striatum does not affect f the number of ciliated cells 
(t = 0.30, P > 0.05) or g the cilia length (t = 0.30, P > 0.05, n = 4) in 
the caudal striatum. Scale bar = 10 μm. h–j ADCY3 immunostaining 
in the ventral striatum (nucleus accumbens). h Representative images 
of ADCY3 immunostaining in the ventral striatum showing that the 
selective removal of cilia from the rostral striatum does not affect i 
the number of ciliated neurons (t = 0.52, P > 0.05) or j the cilia length 
(t = 0.08, P > 0.05, n = 4) in the ventral striatum. Scale bar = 10  μm. 
k Effect of cilia removal on body weight to confirm normal gross 
growth (n = 8 control, 6 IFT88-KO). Unpaired t-test (t = 0.2463, 
P = 0.8096) revealed no significant difference in body weight. ns, not 
significant. Data are presented as means ± S.E.M. l Verification of 
well-being (n = 8 control, 6 IFT88-KO). Unpaired t-test (t = 0.2060, 
P = 0.8403) showed normal response to nociceptive stimulus. ns, not 
significant. Data are presented as means ± S.E.M
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Locomotor Activity Test and Open Field

The locomotor activity and open field assays were car-
ried out as we previously described [78]. The experiment 
is divided into two phases of a total of 90 min experi-
ment, which is divided into 30 min acclimation and 60 min 
locomotor activity test [78]. Animals were placed in a 

40 × 40 cm locomotion chamber (Med Associates, Inc.), 
and their activity was logged every 5 min, over the assay 
duration using Activity Monitor 5 software (Med Associ-
ates, Inc.).

Open field assay was carried out in the first 10 min after 
placing the mice into the chambers, and the distance traveled 
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Fig. 1   (continued)
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and activity time in the central and peripheral zones were 
recorded and analyzed using Activity Monitor 5 software.

Rotarod Test

In order to evaluate motor coordination, mice were subjected 
to the rotarod assay. Animals were placed on an elevated 
rotating rod divided into 5 lanes with trip plates below each 
lane to stop the timer when a subject falls. Each trial is 420 s 
with a starting speed at 4 RPM that continues to incremen-
tally speed up to 60 RPM. Animals were subjected to 3 trials 
with 15 min between each trial. Data were analyzed based 
on latency and speed to fall over each trial.

T‑maze Spontaneous Alternation

Mice were placed in the entrance at the base of the T-maze. 
Mice were acclimated at the base of the T-maze for 30 sec. 
After acclimation, the doors were opened, and animals were 
free to explore either the left or right arm of the maze. After 
a choice had been made, the door was closed, allowing the 
animal to explore the sidearm chosen for 30 sec. Mice were 
then returned to the maze base to start the subsequent trial. 
Eight total trials were carried out with 7 possible alterna-
tions, and the alternation percentage was calculated as 100x 
(number of alternations/7). The time taken to make the alter-
nation decision was recorded as well.

Self‑Grooming Behavioral Assay

Mice were placed in an empty cage for 20 min. They were 
first allowed to acclimate to the environment for 10 min 
and then were monitored for grooming activity for the last 
10 min. Time spent grooming over the 10 min was recorded. 
Videos were recorded, and grooming was manually scored 
for grooming activities such as licking, face swiping, 
scratching, or nibbling. Each video was scored by three per-
sons blinded to the animal genotype, and the average of the 
scores was recorded.

Social Interaction and Social Novelty

The 3-chamber box used for these assays is a rectan-
gular plexiglass box consisting of a left, middle, and 
right chamber with removable doors, which separate 
the chambers. Empty mesh wire cups were placed in the 
middle of both the left and right chambers. In the social 
interaction assay, mice were allotted 5 min to explore 
the middle chamber. After 5 min, a control mouse of the 
same gender, age, and strain as the experimental mouse 
was placed inside one of the cups in either the right or 
left chamber. The doors were then removed, allowing 
the experimental mice to explore all three chambers for 

10 min. The total time experimental mice spent inter-
acting with both the empty cup and the control mouse 
cup was recorded.

Immediately following the social interaction assay, 
the social novelty assay began. The experimental mouse 
was returned to the middle chamber, and a new control 
mouse was placed underneath the empty cup. Doors 
were removed, and the experimental mouse was allot-
ted 10 min to explore all three chambers. The total time 
experimental mice spent interacting with the mouse 
from the social interaction assay and the novel mouse 
was recorded. ANY-maze software (Stoelting, Wood 
Dale, IL, USA) was used to record and analyze these 
interactions.

Novel Object Recognition

Novel object recognition (NOR) consists of a training 
and testing phase. All mice were handled for 1–2 min 
a day for 3 days prior to the training phase. Mice were 
then allowed to habituate to the experimental appara-
tus, a rectangular  box for 3 consecutive days without 
the presence of objects. During the training phase, mice 
were exposed to two identical objects in the apparatus 
and allowed to explore for 10 min. After 24 h, mice were 
subjected to the testing phase, where they were allotted 
5 min to explore the apparatus with the familiar object 
and a novel object. The total time each subject mouse 
spent interacting with both the familiar and novel object 
was recorded individually. ANY-maze software (Stoelt-
ing, Wood Dale, IL, USA) was used to document and 
analyze these interactions.

Novel Location Recognition

Novel location recognition (NLR) consists of the training 
and testing phase. All mice were handled for 1–2 min a 
day for 3 days prior to the training phase. Mice were then 
allowed to habituate to the experimental apparatus, a rec-
tangular  box for 3 consecutive days without the presence 
of objects. During the training phase, mice were exposed 
to two identical objects in the apparatus and allowed to 
explore for 10 min. After 24 h, mice were subjected to 
the testing phase, where one location of the object is 
moved. Mice were allotted 5 min to explore the apparatus 
with the familiar location and a novel location. The total 
time each subject mouse spent interacting with both the 
familiar and novel location was recorded individually. 
ANY-maze software (Stoelting, Wood Dale, IL, USA) 
was used to document and analyze these interactions.
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Forced Swim

Mice were placed in a cylinder containing water at 25 °C 
for 6 min. Mice were recorded, and following the assay, 
the last 4 min were scored and analyzed. The immobility 
time or time the mice spent floating was recorded. ANY-
maze software was used to record and analyze immobility 
time (Stoelting Co.).

Prepulse Inhibition

Mice were habituated to the startle chambers for 5 min with 
65 dB of background noise. The PPI sessions consisted of 
5 trials, either no stimulus (65 dB), 3 prepulse (20-ms pre-
pulse at 68 dB, 71 dB, or 77 dB, a 100-ms interstimulus 
interval, followed by a 40-ms duration startle stimulus at 
120 dB. The amount of prepulse inhibition was calculated 
as a percentage score for each acoustic prepulse intensity: 
% PPI = 100 - ([(startle response for prepulse + pulse trials) 
/ (startle response for pulse − alone trials)] X 100).

Hot Plate

Mice were habituated to the hot plate  with no heat to estab-
lish a baseline. Following the habituation, mice were sub-
jected to a 52 °C hot plate, and were monitored for an initial 
response of either a rear paw lift, paw shake, or paw lick in 
response to the heat or once the cutoff time is reached. Once 
the initial response was seen, the time was recorded, and 
animals were returned to their home cage.

Contextual Fear Conditioning

This assay consists of a training and a testing session 24 h 
following the training session. On day 1, mice were placed 
in the conditioning chamber for 3 min, received a 2-s 0.7 mA 
foot shock at 2.5 min, and were placed back into their home 
cage on day 2, animals were returned to the same chamber 
for 5 min without shock. Freezing behavior was measured 
pre- and post-shock sessions and was scored as freezing  
(1) or not (0) within a 5-s interval and calculated as 100x 
(the number of intervals of freezing / total intervals).

Immunohistochemistry

Ninety minutes after the fear conditioning assay, mice were 
anesthetized with isoflurane and transcardially perfused 
with saline and 4% paraformaldehyde (PFA). Brains were 
harvested, kept in PFA overnight, and switched to 30% 
sucrose. Brains were coronally sectioned at 20 μm using a 
microtome. Using the Allen Brain Atlas, 3–4 sections were 
selected from specific regions of interest. Sections were 
blocked with goat serum in PBS with 0.3% Triton X-100 for 

1 h. Next, brain sections were incubated in blocking buffer 
with the primary antibody, either cFos, 1:500 (Abcam cFos 
ab190289 Rb pAb to cFos Lot#: GR339395) or ADCY3, 
1:500 (LSBIO-C204505 ADCY3 Lot#: 193037). Following 
the primary antibody incubation, sections were washed with 
PBS and then incubated with the secondary antibody, 1:500 
(Invitrogen AlexaFluor546 goat anti-rabbit ref: A101035 
Lot: 2,273,730), and DAPI, 1:10,000 (Thermo Scientific 
Ref: 62,248 Lot: WF3296471). Sections were washed with 
PBS and mounted on slides. Images were carried out using 
the Leica SP8 confocal microscope with a 63 × objective 
lens (UCI optical biology core facility) for visualizing cilia, 
and Keyence BZ-9000 microscope with a 10x objective lens 
for visualizing cFos positive neurons. 

Image Analysis

cFos positive neurons and ADCY3 were counted bilaterally, 
and the mean of the three sections per 4–6 brains was calcu-
lated. All image analysis and cell counts were performed in 
Fiji (ImageJ). Automatic particle quantification and analy-
sis methods were used for counting cFos labeled neurons. 
Briefly, images were opened in Fiji, and color channels were 
split into the appropriate color. Color images were then con-
verted to grayscale. All regions were defined with specific 
dimensions across all images for cohesiveness. Once in gray-
scale, a threshold was set to highlight fluorescent particles 
and create a binary image. The "analyze particle" function 
was used to select the size of particles and set the circular-
ity of the particles. Cilia length was measured using the line 
measurement tools in Fiji, and the length unit was converted 
from pixels to micron.

Statistical Analysis

GraphPad Prism (GraphPad Software, Inc.) was employed 
to perform statistical analysis. Data were presented as 
means ± S.E.M. Results were analyzed using student 
t-test or ANOVA followed by the appropriate post hoc 
comparisons, and P < 0.05 was considered statistically 
significant.

Results

Selective Deletion of Cilia in the Striatum

To examine the physiological role of primary cilia in the 
striatum, we used the conditional deletion system and dis-
rupted intraflagellar transport (IFT) machinery by delet-
ing the Ift88 gene. Stereotactic infusion of IFT88fl/fl mice 
with AAV.CamKII.HI.GFP-Cre into the striatum (Bregma 
level 1.3 mm, ± 1.3 mm, 3.2 mm) resulted in mice with 
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primary cilia deficiency exclusively in the dorsal part of 
the rostral striatum (Fig. 1b).

Cilia deletion from the dorsal-rostral striatum did not 
affect the number of striatal neurons, indicating that the 
dorsal-rostral striatum of IFT88-KO mice is intact, and 
the neurons were viable. Next, we performed a coexpres-
sion analysis of primary cilia with GFP-Cre via immu-
nohistochemistry, using an antibody against ADCY3, a 
well-known marker of primary cilia. While the numbers 
of neurons expressing primary cilia and the cilia length 
were comparable in caudal striatum and nucleus accum-
bens between the control and IFT88-KO mice, these num-
bers were markedly reduced in the dorsal-rostral striatum 
of IFT88-KO mice (Fig. 1c–j). Furthermore, comparable 
body weights and normal response to nociceptive stimulus 
(hot plate) confirmed that the IFT88-KO mice have normal 
gross growth and well-being (Fig. 1k, l).

Primary Cilia in the Striatum Are Required 
to Maintain Normal Motor Coordination But Not 
the Spontaneous Motor Activity

Although the striatum is identified as a brain site for motor 
control timing, it is unknown whether striatum primary cilia 
play a role in regulating motor functions. To address this 
question, spontaneous motor activity and motor coordination 
were monitored in IFT88-KO mice. After the habituation 
period, IFT88-KO mice displayed similar locomotor activity 
to the control mice, measured by distance traveled (Fig. 2a, 
b). However, the locomotor activity in the first 10 min after 
placing mice into the open box was significantly lower in the 
IFT88-KO than in the control mice. In addition, IFT88-KO 
mice showed a reduced latency to fall and a lower rotation 
speed at which they fall in the rotarod test (Fig. 2c, d), indi-
cating an impairment of motor coordination in the IFT88-
KO mice. This may also be interpreted as impairment of 
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showed that IFT88-KO mice displayed similar locomotor activity 
to the control mice; ns, not significant. b Total locomotor activity 
in the locomotor assay. Unpaired t-test (t = 0.9608, P = 0.3556), ns, 
not significant. Data are presented as means ± S.E.M. c and d Motor 
skill learning on the accelerated rotarod. c Speed to fall in rotarod 
assay (n = 8). Two-way ANOVA (cilia removal factor: F(1,42) = 9.399, 
P = 0.0038, trial factor F(2,42) = 1.927, P > 0.05) followed by Bonfer-
roni post hoc test: IFT88-KO vs control, **P < 0.001. Data are pre-
sented as means ± S.E.M; d Latency to fall in rotarod assay (n = 8). 

Two-way ANOVA (cilia removal factor: F(1,42) = 9.246, P = 0.0041, 
trial factor: F(2,42) = 1.93, P > 0.05) followed by Bonferroni post 
hoc test: IFT88-KO vs control, ***P < 0.001. Data are presented as 
means ± S.E.M. e Repetitive behavior in grooming behavior assays 
(n = 8 control, 6 IFT88-KO), unpaired t-test (t = 4.357, P = 0.0009), 
IFT88-KO vs control. Data are presented as means ± S.E.M. f and g 
Performance of mice in PPI assay. f Startle reactivity in prepulse inhi-
bition assay (n = 8), unpaired t-test (t = 1.424, P = 0.1763), ns, not sig-
nificant. g  Prepulse inhibition in PPI assay (n = 8), two-way ANOVA 
(cilia removal factor: F(1,56) = 41.69, P < 0.0001, prepulse intensity 
factor: F(3,56) = 19.55, P < 0.0001), control vs IFT88-KO, **P < 0.01, 
***P < 0.001, ****P < 0.0001. Data are presented as means ± S.E.M
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procedural learning as trial 1 shows IFT88-KO mice just as 
coordinated as the control mice.

Ablation of Primary Cilia in the Striatum Increases 
Repetitive Behavior and Impairs Sensorimotor 
Gating

The IFT88-KO mice showed a higher level of compulsive 
grooming than the control mice (Fig. 2e), indicating an 
enhanced compulsive, repetitive behavior in these animals. 
Grooming was measured as the time mice spent face swip-
ing, paw licking, rubbing of the head and ears, and cleaning 
the entire body. IFT88-KO mice also exhibited reduced val-
ues of prepulse inhibition of the startle reaction at 71 dB and 
77 dB prepulses, as well as the average prepulse, although 
the startle reactions were comparable to those in the control 
mice (Fig. 2f, g). The average PPI value was also lower in 
IFT88-KO mice than the control ones. These results indi-
cate that ablation of cilia in the striatum causes a deficit in 
sensorimotor gating without affecting the startle reaction.

Primary Cilia in the Striatum Are Not Involved 
in Anxiety, Sociability, and Depressive‑Like 
Behaviors

To test whether cilia ablation affects anxiety-like behavior, 
we used open field assay, which is based on the assump-
tion that mice placed in a new environment tend to avoid 
open space and, therefore, spend more time in the peripheral 
than central arenas. Cilia ablation did not affect anxiety-like 
behavior, revealed by the longer times spent in the periph-
eral than central arenas in IFT88-KO mice, which were 
comparable to those in the control mice (Fig. 3a). Although 
the total distance and the distance traveled in the periph-
eral zone were significantly lower in the IFT88-KO mice 
than the control mice (Fig. 3b, c), this does not indicate an 
altered anxiety-related behavior; rather, it reflects a slower 
response to the new environment. The immobility time in the 
forced swim test, which measures helplessness behavior, was 
similar in the control and IFT88-KO mice (Fig. 3d). Fur-
thermore, IFT88-KO mice showed normal social behavior, 
revealed by spending significantly more time with a stranger 
mouse than an empty cup (Fig. 3e, f). These results indicate 
that cilia ablation in the striatum does not affect anxiety, 
sociability, and depressive-like behavior.

Primary Cilia in the Striatum Are Required 
for Spatial Working Memory But Not Other Memory 
Types

We examined the effects of cilia ablation in the striatum 
on different types of memories, including spatial work-
ing memory, social recognition memory, object recognition 

memory, spatial memory (location recognition), and con-
textual memory. Spatial working memory was tested in the 
T-maze paradigm, which is based on the mice’ tendency to 
repeatedly alternate between the right and left arms in order 
to optimize their navigation of their environment [80]. The 
short-term social memory (social recognition) was tested 
using the three-chamber assay, which is based on the instinc-
tive tendency of mice to investigate and spend more time 
with unfamiliar social subjects (strange mouse) than familiar 
ones [81]. Long-term memory formation involves encoding, 
short-term memory consolidation (storage), and long-term 
memory reconsolidation and retrieval [82] and is usually 
tested in mice 24 h after conditioning [71].

The spatial working memory was significantly impaired 
in the IFT88-KO mice, revealed by the higher incorrect 
choices in these mice than in the control mice (Fig. 4a). 
Associated with working memory impairment in IFT88-KO, 
the latency for decision-making was significantly longer in 
these mice compared with than the control mice (Fig. 4b). 
Interestingly, while the ablation of primary cilia in the stria-
tum did not affect social behavior, it caused an impairment 
in social recognition memory (Fig. 4c, d), as reflected by 
the similar time IFT88-KO mice spent with the old and new 
stranger mice.

Ablation of primary cilia in the striatum did not affect the 
object recognition memory, as evidenced by the more time 
mice spent with the novel object than the old object (Fig. 4e, 
f). Similarly, in the novel location recognition assay, IFT88-
KO spent more time with the novel location than the old 
location (Fig. 4g, h), indicating a normal spatial memory. 
In addition, the contextual memory, measured using the 
fear conditioning test, was intact in the IFT88-KO mice, as 
revealed by the similar freezing time on the test day com-
pared with the control mice (Fig. 4i).

Neural Activity Is Changed in Striatal Input 
and Output Nuclei Pathways

The expression of the immediate-early gene cFos was used 
as a molecular marker of neural activity. We examined cFos 
immunoreactivity (number of cFos-positive cells) in struc-
tures that are parts of striatal circuits and those known to pro-
ject to or receive projections from the striatum (Fig. 5a, b). 
First, the rostral dorsal striatum, but not the caudal striatum 
of IFT88-KO mice, exhibited a significant decrease of cFos 
immunoreactivity (Fig. 5c, d). Within the basal ganglia cir-
cuit, there was a trend for cFos immunoreactivity reductions 
in the output regions (SNr and the GPm), but not in the nuclei 
of the indirect pathway structures (lateral globus pallidus and 
subthalamic nucleus) (Fig. 5c, d). The main input regions to 
the striatum include the dopaminergic neurons of the substan-
tia nigra pars compact (SNc) and the glutamatergic neurons 
of the cortices. While IFT88-KO mice exhibited significant 
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decreases in cFos immunoreactivity in several cortices, 
including the prefrontal cortex, primary motor area, second-
ary motor area, and somatosensory area, there was a trend for 
cFos decrease in the SNc, albeit not significant (Fig. 5c, d).

Discussion

In this study, we examined the role of cilia in the striatum 
using a selective conditional deletion system. Our data 
provide the first evidence for the essential role of striatal 
primary cilia in specific functions of the striatum, namely, 
sensorimotor and executive functions.

Methodological Considerations

To examine whether striatal cilia mediate some of the stria-
tum functional domains, we used loxP/Cre technology to 
selectively delete IFT88, an essential protein for cilia gen-
esis, from the dorsal striatum. The deletion of IFT88 resulted 
in cilia ablation in the dorsal striatum, as evidenced by the 
profound decrease in ADCY3-immunostaining. We moni-
tored the behavioral phenotypes resulting from striatal cilia 
ablation, focusing on neuropsychiatric phenotypes related 
to three striatum functional domains: the sensorimotor, 
associative, and limbic domains. The sensorimotor domain 
is essential for habitual behaviors that are automatically 
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Fig. 3   Primary cilia removal in the dorsal striatum does not affect 
anxiety, sociability, and depressive-like behaviors. a Time spent in 
central vs time in peripheral zones in open field assay (n = 8 control, 
6 IFT88-KO), two-way ANOVA (cilia removal factor: F(1,24) = 0.00, 
P > 0.999, zone factor: F(1,24) = 538.1, P < 0.0001) followed by 
Bonferroni post hoc test. ****P < 0.0001. Data are presented as 
means ± S.E.M. b Total distance traveled in open field assay, unpaired 
t-test (t = 3.598, P = 0.0037), IFT88-KO vs control, **P < 0.01. Data 
are presented as means ± S.E.M. c Distance traveled in central vs time 
in peripheral zones in open field assay (n = 8 control, 6 IFT88-KO), 

two-way ANOVA (cilia removal factor: F(1,24) = 21.1,  P = 0.0001, 
zone factor: F(1,24) = 68.31,  P < 0.0001), followed by Bonferroni 
post hoc test, ****P < 0.0001. e Social interaction (n = 8), two-
way ANOVA (cup factor: F(1,28) = 26.25, P < 0.0001, cilia removal 
factor: F(1,28) = 2.28,  P = 0.1420); Empty cup vs stranger mouse, 
**P < 0.0001. Data are presented as means ± S.E.M. f Social inter-
action discrimination index, unpaired t-test (t = 0.2422, P = 0.8121), 
control vs IFT88-KO, ns, not significant. Data are presented as 
means ± S.E.M
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evoked, whereas the associative (cognitive) domain is 
responsible for driving consciously formed actions and goal-
directed behaviors. The dorsal striatum mediates these two 
functional domains, whereas the limbic domain, associated 
with motivational and affective behaviors, is sited in the ven-
tral striatum (nucleus accumbens in rodents) [83–88].

Cilia in the Dorsal Striatum Are Necessary 
for Sensorimotor Learning and Execution 
of Goal‑Directed Behaviors, But Not Affective 
Behaviors

Cilia ablation from the dorsal striatum did not affect spontane-
ous motor in mice, evidenced by the normal locomotor activity 

in the IFT88-KO mice. However, motor activity was lower 
in IFT88-KO directly after placing them into the open field 
apparatus, indicating that their reactions to a new environment 
are diminished. Interestingly, the performance of cilia-ablated 
mice in the first trial of the rotarod assay was comparable to 
that of the control mice, indicating that cilia-ablated mice can 
walk normally on the rotarod. In contrast to the control group, 
however, in the second and third trials, cilia-ablated mice’ per-
formance not only did not improve but also worsened. The 
proper performance in rotarod assay reflects motor coordina-
tion and learning, which are dependent on striatal function in 
processing and integrating new sensory information and coor-
dinating the time sequence of motor response [89–92]. Our 
findings indicate an essential role for striatal cilia in acquiring 
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mouse vs new mouse, **P < 001, ns, not significant. Data are pre-
sented as means ± S.E.M. d Discrimination index in social novelty 
recognition (n = 8), unpaired t-test (t = 3.604, P = 0.0029), control vs 
IFT88-KO, **P < 0.01. e Novel object recognition (n = 8), two-way 
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tor: F(1,28) = 0.02662, P = 0.8716): old object vs new object: *P < 0.05, 
**P < 0.01. Data are presented as means ± S.E.M. f Discrimination 
index in novel object recognition (n = 8), unpaired t-test (t = 0.90, 
P = 0.38), control vs IFT88-KO, ns, not significant. Data are pre-
sented as means ± S.E.M. g Novel location recognition (n = 8), two-
way ANOVA (object factor: F(1,28) = 20.30, P < 0.0001, cilia removal 
factor: F(1,28) = 0.2.46, P = 0.8716): *P < 0.05, **P < 0.01. h Dis-
crimination index in novel location recognition (n = 8), unpaired t-test 
(t = 0.46, P = 0.65), control vs IFT88-KO, ns, not significant. i Fear 
conditioning (n = 8), two-way ANOVA (P > 0.05) followed by Bon-
ferroni post hoc test: control vs. IFT88-KO. ns, not significant. Data 
are presented as means ± S.E.M
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new motor skills learning, but not in maintaining habitual or 
already learned motor skills. While we cannot make a con-
crete conclusion on whether this function of cilia is mediated 
through processing and integrating new sensory information 
or by coordinating the time sequence of motor response, we 
speculate that cilia might be involved in both mechanisms.

In support of this assumption, we found that cilia ablation 
in the striatum impaired sensorimotor gating, as revealed by 
the reduced PPI levels [93]. Sensorimotor gating, a largely 
striatum-thalamus-dependent phenomenon, represents the 
ability of the brain to respond to a sensory stimulus by sup-
pressing a motor response. Through this mechanism, the 
brain filters irrelevant sensory information input, prior pro-
cessing and transmitting to motor output systems. The PPI 
deficits in cilia-ablated mice further support an essential role 
for cilia in the sensorimotor integration process and motor 
executing actions.

The role of cilia in sensorimotor functions is further 
evidenced by our finding that cilia-ablated mice exhib-
ited excessive repetitive behavior, revealed by increased 

self-grooming. Repetitive behaviors result from excessive 
automatized actions or exaggerations of habitual behav-
iors, for which the dorsal striatum plays an essential role 
[94–96]. Our results, thus, indicate that these actions of 
the dorsolateral striatum are mediated through its pri-
mary cilia. One important question posed by our find-
ings is whether the failure of acquiring new motor skills 
in cilia-ablated mice is causally correlated with their 
enhanced repetitive behavior. Robust evidence, lending a 
premise to this posit, is that repetitive behaviors arise from 
the inflexibility in switching and transitioning between 
habitual and novel motor behavioral patterns [97–99]. 
Accordingly, cilia may provide an adaptation mechanism 
that adjusts the transition of habitual behaviors to repeti-
tive behaviors.

We tested the effects of cilia ablation in the striatum on 
the three types of memory: working memory, short-term 
memory, and long-term memory. Our results reveal that 
striatal cilia ablation impairs spatial working memory and 
short-term social memory and delays decision and task 
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Fig. 5   Effects of cilia removal in the dorsal striatum on cFos expres-
sion in the striatum, its input and output structures. a Schematic view 
of neuronal circuits in mice brain. Amy, amygdala; CTX, cortex; 
GPL, lateral globus pallidus; GPm, medial globus pallidus; Hipp, hip-
pocampus; Hyp, hypothalamus; SNc, substantia nigra pars compacta; 
SNr, substantia nigra pars reticulata; STN, subthalamic nucleus; STR, 
striatum; THA, thalamus; VTN, ventral tegmental area. Diagram was 
created with the BioRender.com webpage. b cFos immunostaining 
in four levels of the mouse brain. c Representative images of cFos 
immunostaining in the striatum and its input and output structures: 

striatum (STR), substantia nigra pars compacta (SNc), substantia 
nigra pars reticulata (SNr), lateral globus pallidus (GPl), medial glo-
bus pallidus (GPm), subthalamic nucleus (STN), prefrontal cortex 
(PFC), primary motor cortex (PMC), secondary motor cortex (SMC), 
primary somatosensory area (PSSA). Scale bar = 10 μm. d Quantifi-
cation of the cFos-positive cells in the control and IFT88-KO mice. 
Two-way ANOVA, control vs IFT88-KO (F(1,88) = 94.28, P < 0.0001), 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not signifi-
cant. Data are presented as means ± S.E.M; n = 3 sections of 5 mice 
per group
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execution in the working memory test but does not affect 
any long-term memory types.

Working memory encodes and stores information in its 
temporal context and permits its further manipulation to 
guide decision-making and behavior execution [100, 101]. 
The dorsal striatum is involved in the initial storage of tem-
poral information in working memory, and dysfunctions 
of the striatum or dopaminergic projections to the striatum 
are known to impair the execution of working memory 
[102–104]. The striatum also plays an essential role in social 
recognition, in which different sensory cues are acquired 
for coding social information [105–107]. Taken together, 
our results indicate that cilia in the striatum are essential for 
initial acquisition and brief storage of information but not 
for its long-term consolidation or retrieval. Our results also 
suggest that cilia are key components of brain networks for 
action selection and timing of the decision process. Previous 
studies have shown that cilia removal from the hippocampus 
and cortex resulted in deficits in fear conditioning memory 
[23, 108]. However, our finding of the lack of an impact of 
cilia loss from the rostral striatum on the contextual fear 
memory does not seem to contradict with these previous 
results, since the hippocampus and cortex rather than the 
striatum are known to be involved in contextual fear memory 
formation.

Dorsal Striatal Cilia Ablation Does Not Affect Limbic 
Functional Domains

Cilia ablation in the dorsal striatum did not impair moti-
vational and affective functions, as revealed by the normal 
sociability, anxiety, nociception, and depressive-like behav-
iors in the cilia-ablated mice. These results are interesting, 
though not surprising, given that the dorsal striatum has a 
minor role in these functions  compared with the ventral 
striatum (nucleus accumbens in rodents), which is the main 
site for limbic functional domains [109–111].

Striatal Cilia Ablation Alters Neuronal Activities 
in Striatum Input Structures

Associated with the behavioral phenotype induced by striatal 
cilia ablation, cFos expression, as a marker for neural activ-
ity, was altered in the dorsal striatum itself and in the cortical 
structures that project to the dorsal striatum, including nuclei 
of sensorimotor and associative cortical-basal ganglia-tha-
lamic-cortical circuits. The striatum receives projections 
from the cortex, thalamus, and SNc [28, 31, 112], and its 
neurons project to the outputs of the basal ganglia SNr/GPm 
via the direct and indirect pathways via GPl and the sub-
thalamic nucleus (STN) (for review [32–35]). The primary 
motor cortex is responsible for generating the signals that 
control movement execution, whereas the secondary motor 

areas control motor planning. The thalamus, a main output 
target of the basal ganglia, is under the inhibitory (GABAe-
rgic) tone of the SNr and GPm, and in its turn projects, using 
glutamate transmitter, back to the cortex [113–116]. On the 
other hand, the dopaminergic neurons of the SNc project 
to the striatum, stimulating the direct pathway through D1 
receptors and inhibiting the indirect pathway via D2 recep-
tors. Surprisingly, none of the basal ganglia structures that 
receive projections from the striatum showed altered cFos 
expression. This finding is interesting and, together with the 
finding of decreased cFos in the cortical regions, indicates 
that cilia removal from the striatum decreases the activity 
of presynaptic neurons projecting to the striatum more than 
neurons that receive projections from the cilia-ablated neu-
rons. It is noteworthy, however, that cFos expression was 
analyzed in mice' brains 90 min after the fear conditioning 
retrieval test. Given that cilia-ablated mice showed normal 
performance in this assay, the profound changes in cFos 
expressions in several brain regions suggest that striatal 
cilia ablation caused alteration in the constitutive cFos lev-
els [117, 118].

Striatal Cilia as a Modulator of Timing Perception

An interesting observation made of the reconciliation 
of our results is that the disrupted functions in striatum 
cilia-ablated mice share a common fundamental aspect: 
“impaired time perception,” i.e., losing the ability of quick 
and timely adjustment of behavior in response to changing 
environmental cues and, thus, failing to maintain appropri-
ate, goal-directed motor response [119]. Time perception is 
embedded in the processing and integration of environmen-
tal sensory information and in motor and executive actions. 
Timing judgment allows for the timely selection of appro-
priate responses to the environment sensory. In this sense, 
prepulse inhibition of startle reaction, repetitive motor, and 
motor coordination all involve a sequence of motor actions, 
for which execution requires precise timing and coordina-
tion, usually in the millisecond timescale. Therefore, the 
exclusive impairments of these functions in cilia-ablated 
mice may indicate a disruption of time judgment and adjust-
ment, which may impede the successful execution of these 
motor activities [120–125]. Time perception is also critical 
for cognitive processes. Successful performance of work-
ing memory, attention, decision-making, and executive func-
tion requires accurate and precise timing judgment, usually 
within a millisecond to minute timescale [126–133]. In the 
context of working memory, the encoding, maintenance, 
and synchronization of stimulus attributes are presented in 
specific temporal sequences [134, 135]. Memory forma-
tion begins when environmental stimuli first elicit a tim-
ing mechanism, in which information about elapsed time is 
stored in working memory or short term. When the stimulus 
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ends or another event happens, the value of that duration is 
stored in long-term memory [100, 136]. The impairments of 
working memory and the delay in the decision and executive 
function in cilia-ablated mice further support the specula-
tion of interval timing disruption in these mice. This specu-
lation is in line with the known role of the basal ganglia 
circuit in performing central clock functions in the brain 
[137, 138]. Particularly, the SNc and striatum are the two 
basal ganglia regions necessary for interval timing and are 
parts of cortical-basal-ganglia circuits that form neuronal 
clocks [139–146]. These circuits coordinate the estimation 
and reproduction of time, wherein dopamine modulates the 
clock speed and timing judgment functions [147–149]. For 
example, increased dopamine levels result in a faster internal 
clock process, whereas decreased dopamine slows down the 
clock speed [147–149]. Furthermore, dysfunctions of the 
striatum have been shown to cause impairments of interval-
timing judgments, particularly as related to the spatial work-
ing memory [104, 150–152]. Interestingly, we recently found 
that most cilia transcripts in the primate basal ganglia-corti-
cal circuit are circadian, and they peak in a sequential pattern 
similar to the sequential order of activation of structures of 
this circuit during movement coordination albeit on com-
pletely different time scales. Taken together, our findings, in 
line with robust evidence from the literature, suggest a criti-
cal role for striatal cilia in the brain’s central clock function.

Implications of Cilia Dysfunctions 
in Neuropsychiatric Disorders

Intriguingly, the distinctive behavioral phenotype induced 
by striatal cilia ablation in mice appears to pertain to clini-
cal manifestations of specific neurological and psychiatric 
disorders related to both the striatum functions and timing 
deficits. We base our view on the following notions:

1-	 The behavioral deficits in cilia-ablated mice represent 
a cluster that extensively overlaps across specific dis-
orders, including SCZ, PD, HD, ASD, OCD, ADHD, 
and TS, with some of these deficits more significant in 
particular disorders than in others. Motor coordination 
deficits, for example, are the main features of PD and 
HD but are also observed in TS, ASD, OCD, SCZ, and 
ADHD [153–162]. On the other hand, repetitive behav-
ior is a common feature of ASD, TS, OCD, and SCZ but 
is also found in ADHD and PD [163–174]. While senso-
rimotor gating deficit is a characteristic feature of SCZ, 
it is also observed in ASD, HD, PD, ADHD, OCD, and 
TS [175–187]. Furthermore, social recognition memory 
is impaired in ASD, SCZ, and OCD [188–193]. Lastly, 
decision execution and working memory deficits are 

common features in SCZ, ASD, ADHD, PD, HD, and 
OCD [194–204].

2-	 Dysfunctions of the striatum, as a target of dopaminer-
gic pathways and an essential part of the cortico-basal 
ganglia-thalamic circuits, underlie fully or partially the 
pathophysiology of these neuro-psychiatric disorders 
[61–76].

3-	 A common feature of striatum-related disorders and 
the seven discussed disorders is a profound decrease 
in patients’ ability to accurately calculate the timing 
of the initiation and termination of voluntary actions 
[205–220]. While time perception deficits have been 
extensively studied in the PD, SCZ, ADHD, and HD 
individuals, timing judgment deficits in ASD, OCD, and 
TS have recently begun to receive attention [205–220].

It is also important to note that it is possible that the dis-
ruption of cilia may alter the morphology and function of 
other parts of the neuron, and thus, the manipulation might 
cause some indirect effects on neuron morphology which 
may alter connectivity or excitability.  Based on our find-
ings and the discussion above, we propose a model in which 
cilia in the striatum act as a calibrator of the timing function 
of the basal ganglia-cortical circuit by maintaining proper 
timing perception. According to this model, abnormal cilia 
functions might be a unifying factor contributing to the 
pathophysiology of neurological and psychiatric disorders, 
particularly as related to the deficits in timing judgment.

In conclusion, our findings shed light on the roles that 
striatal cilia may play in timing-dependent functions. These 
findings enhance our understanding of brain function in the 
context of the crucial roles played by this previously unap-
preciated organelle and may open new avenues for therapeu-
tic intervention through cilia-targeted therapies.
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