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Background: Head and neck cancer (HNC) is the sixth most common cancer globally, and it is 

an aggressive malignancy with high morbidity and mortality [1-3]. Every year, 650,000 people 

are diagnosed with, and about 350,000 people die from, head and neck cancer [3]. Currently, 

40,000 new cases and 12,460 deaths are reported in the United States annually [4]. Therefore, it 

is important to investigate the underlying molecular mechanisms of head and neck 

carcinogenesis to save the lives of HNC patients. 

Squalene epoxidase (also called squalene monooxygenase, SQLE, or SM) is an enzyme 

that uses NADPH and molecular oxygen to oxidize squalene to 2,3-oxidosqualene (squalene 

epoxide). Squalene epoxidase catalyzes the first oxygenation step in sterol biosynthesis and is 
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thought to be one of the rate-limiting enzymes in this pathway. In cancer biology, SQLE is 

involved in human esophageal squamous cell carcinoma, lung squamous cell carcinoma, breast 

cancer, and leukemia [5-8]. SQLE has also recently been linked to nasopharyngeal cancer, but no 

study to date has described the role of SQLE in HNSCC [9]. Based on our TCGA and GEO 

database analysis, SQLE was found to be overexpressed in HNSCC tissues when compared to 

adjacent normal tissues (P < 0.0001). Besides, a significantly worse overall survival rate was 

observed in the HNSCC patients with high SQLE gene expression than those with low SQLE 

gene expression (P = 0.001). Thus, we hypothesize that SQLE may play an important role in 

HNSCC, and it is important to investigate the cellular and molecular mechanisms of SQLE in 

HNSCC. 

Objectives: This study aims to identify the role and regulatory mechanisms of SQLE in 

HNSCC. Considering the oncogenicity of SQLE in other types of cancers, a link between SQLE 

and HNSCC is worthy of further research. 

Methods: Phenotypic studies were conducted in two HNSCC cell lines (UMSCC1 and 

UMSCC23) with knockdown of SQLE. Western blotting was used to quantify protein expression 

levels. MTT, cell colony formation, EdU, migration, and invasion assays were utilized to assess 

the phenotype of cancer cells. RNA sequencing was used to analyze the global gene expression 

in cancer cells. 

Results: Based on the statistical analysis of existing TCGA and GEO datasets, we found that 

SQLE may play an important role in HNSCC. Therefore, we aimed to study the function of 

SQLE in HNSCC cell lines by knocking down the SQLE gene and assessing the altered 

phenotypes of the cancer cells. Knockdown of SQLE in UMSCC1 and UMSCC23 cells led to 
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significantly decreased proliferation, migration, and invasion potential. Considering that PD-L1, 

EGF, and FGF are therapeutically important in HNSCC, we also investigated their relationships 

with SQLE. However, the expression level of PD-L1 did not change after SQLE knockdown. 

Neither EGF nor FGF altered the expression of SQLE in HNSCC. In order to find potential 

downstream targets of SQLE, we performed RNA sequencing analysis of UMSCC1 cells with 

SQLE knockdown. In total, 2,994 genes were differentially expressed following SQLE 

knockdown, including 1,527 up-regulated and 1,467 down-regulated genes. Signaling pathways 

were found to be significantly altered by SQLE knockdowns, such as MAPK/ERK signaling, 

mTOR signaling, and cell cycle pathways. 

Conclusions: This study has demonstrated that SQLE plays a vital role in HNSCC progression 

by promoting cancer cell growth, migration, and invasion. RNA sequencing analysis indicates 

that SQLE may participate in the regulation of HNSCC through interacting with multiple critical 

regulatory pathways. These findings suggest that SQLE may be an essential target for clinical 

applications in HNSCC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



v 

The thesis of Yujiao Liu is approved. 
 
 
 
 

Diana V. Messadi 

Yong Kim 

Shen Hu, Committee Chair 

 
 
 
 
 

University of California, Los Angeles 

2021 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vi 

TABLE OF CONTENTS 

Abstract ........................................................................................................................................... ii 

Table of Contents ........................................................................................................................... vi 

List of Figures ............................................................................................................................... vii 

Introduction ......................................................................................................................................1 

Materials and Methods .....................................................................................................................7 

Results ............................................................................................................................................15 

Discussion ......................................................................................................................................26 

Conclusion .....................................................................................................................................29 

Figures............................................................................................................................................31 

References ......................................................................................................................................74 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 

LIST OF FIGURES 

Figure 1 ..........................................................................................................................................31 

Figure 2 ..........................................................................................................................................32 

Figure 3 ..........................................................................................................................................33 

Figure 4 ..........................................................................................................................................34 

Figure 5 ..........................................................................................................................................35 

Figure 6 ..........................................................................................................................................36 

Figure 7 ..........................................................................................................................................38 

Figure 8 ..........................................................................................................................................39 

Figure 9 ..........................................................................................................................................40 

Figure 10 ........................................................................................................................................41 

Figure 11 ........................................................................................................................................42 

Figure 12 ........................................................................................................................................43 

Figure 13 ........................................................................................................................................44 

Figure 14 ........................................................................................................................................45 

Figure 15 ........................................................................................................................................46 

Figure 16 ........................................................................................................................................47 

Figure 17 ........................................................................................................................................48 

Figure 18 ........................................................................................................................................49 

Figure 19 ........................................................................................................................................50 

Figure 20 ........................................................................................................................................51 

Figure 21 ........................................................................................................................................52 

Figure 22 ........................................................................................................................................53 

Figure 23 ........................................................................................................................................54 



viii 

Figure 24 ........................................................................................................................................55 

Figure 25 ........................................................................................................................................56 

Figure 26 ........................................................................................................................................57 

Figure 27 ........................................................................................................................................58 

Figure 28 ........................................................................................................................................59 

Figure 29 ........................................................................................................................................60 

Figure 30 ........................................................................................................................................61 

Figure 31 ........................................................................................................................................62 

Figure 32 ........................................................................................................................................63 

Figure 33 ........................................................................................................................................64 

Figure 34 ........................................................................................................................................65 

Figure 35 ........................................................................................................................................66 

Figure 36 ........................................................................................................................................67 

Figure 37 ........................................................................................................................................68 

Figure 38 ........................................................................................................................................69 

Figure 39 ........................................................................................................................................70 

Figure 40 ........................................................................................................................................71 

Figure 41 ........................................................................................................................................72 

Figure 42 ........................................................................................................................................73 

 

 

 
  



1 

INTRODUCTION 

Head and neck cancer (HNC) is the sixth most common cancer globally with high 

morbidity and mortality [1-3]. Every year, 650,000 people are diagnosed with, and about 

350,000 people die from, head and neck cancer [3]. HNC encompasses a great number of the 

malignancies of the upper aerodigestive tract, including oral cavity, nasal cavity, pharynx, 

larynx, and sinuses [2, 3]. Most of these epithelial malignancies are head and neck squamous cell 

carcinoma (HNSCC) [3]. Around 40,000 new cases and 12,460 deaths are reported in the United 

States annually [10]. The major etiologic factors of HNSCC include tobacco, alcohol, betel nut, 

and now human papillomavirus (HPV), which has been identified as the key risk factor for HPV-

related oropharyngeal cancer [1, 11]. Even though treatments have made significant progress in 

the past few decades, including surgery, radiation therapy, and chemotherapy with epidermal 

growth factor receptor (EGRF) inhibitor and immune-checkpoint inhibitors (ICI), nearly half of 

the HNC patients will relapse, and 5-year survival is a dismal 35%-45% [1, 12]. Therefore, new 

diagnostics and treatment approaches are needed to improve the survival rates of HNC patients. 

            Squalene epoxidase (SQLE, a.k.a., squalene monooxygenase) is a 574-amino acid protein 

encoded by the SQLE gene, which is located at the chromosome 8q24.13 and spans 

approximately 23.8 kilobase pairs [13]. It was first discovered in rat liver microsomes in 1969 

[14]. In humans, SQLE is highly expressed in the liver, neural tissue, gut, and skin, but non-

cholesterogemic tissues lack SQLE expression [15]. SQLE is located in the endoplasmic 

reticulum, as most of the cholesterogenic enzymes [16]. The enzyme is a member of the 

flavoprotein monooxygenase family, which catalyzes a variety of oxidative reactions [17].  

There are two rate-limiting enzymes in the cholesterol biosynthesis pathway, 3-hydroxy-
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3-methylglutaryl-CoA reductase (HMGCR) and SQLE. HMGCR catalyzes the conversion of 

HMG-CoA to mevalonate. Statins can inhibit this process. Epidemiologists have reported that 

statins may inhibit the progression of certain types of cancers [18]. SQLE, the second rate-

limiting enzyme, oxidizes squalene to 2,3(S)-monooxidosqualene (squalene epoxide), which is 

further converted to lanosterol by the lanosterol synthase (Figure 1). This pathway finally leads 

to the production of cholesterol. Besides, in the shunt pathway, SQLE functions to provide a 

second epoxide for the synthesis of 2, 3(S), 22(S), 23-dioxidosqualene, and gives rise to the 

production of 24(S), 25-epoxycholesterol in the end [13]. Researchers have found that excess 

cholesterol accelerates the degradation of SQLE via the ubiquitin-proteasome system, which 

further controls cholesterol synthesis. This feedback regulation depends on the first 100 amino 

acids of SQLE in the N-terminal of SQLE structure (SM N100), and it is regulated by the E3 

ubiquitin ligase membrane-associated RING-CH protein 6 (MARCH 6) [19]. On the other hand, 

SQLE mRNA expression is upregulated when cholesterol level is low. This responsiveness is 

due to the activation of the SQLE promoter by sterol regulatory element binding proteins 

(SREBPs), which are usually activated under low sterol conditions and inhibited by elevated 

cholesterol [1, 20]. 

SQLE protein contains both regulatory and catalytic domains (Figure 2A). The N-

terminal region represents the regulatory domain, which takes up the first 100 amino acids of 

SQLE, but it is only found in vertebrates instead of lower organisms [19]. This domain is 

embedded into the ER membrane via the re-entrant loop and followed by the weakly membrane-

associated amphipathic helix, enabling the degradation of cholesterol via conformational change 

with excessive cholesterol [13]. Although the three-dimension structure of the regulatory domain 
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has not been determined so far, the importance of its role in sensing cholesterol cannot be 

ignored. In addition, the structure of the human SQLE catalytic domain was first discovered by 

using X-ray crystallography (Figure 2B). It exhibits a split structure that FAD and substrate-

binding domains are interspersed within the primary structure, followed by a helical membrane-

binding domain near the C-terminus. Flavin adenine dinucleotide (FAD) is a redox-active 

coenzyme associated with various proteins, which is involved with several enzymatic reactions 

in metabolism. Molecular docking experiment on the unliganded SQLE•FAD structure has 

revealed that most amino acid residues in the squalene binding pocket overlap with amino acids 

involved with inhibitor binding [21]. 

The primary substrate of SQLE is squalene, which was initially obtained from shark liver 

oil (hence its name, as Squalus is a genus of sharks). Squalene is a precursor for synthesizing of 

all plant and animal sterols, including cholesterol and steroid hormones in the human body [22]. 

Squalene in the human diet can be absorbed by the intestine and is detectable in human blood 

[23]. In addition to its role as the substrate of SQLE, squalene has gained more attention on its 

medical applications. Squalene may be conjugated to some drugs, such as paclitaxel, cytarabine, 

and gemcitabine. The formation of these lipid-drug conjugates has been proven to improve 

pharmacokinetics, decrease toxicity, and facilitate drug delivery of anticancer and antiviral 

agents [24]. Besides, squalene has been used in conjunction with surfactants in specific adjuvant 

formulations. An adjuvant using squalene is Seqirus' proprietary MF59, which is added to 

influenza vaccines to help enhance immune responses [25].  

SQLE has been confirmed to be correlated with many diseases, such as neuropathy, 

cardiovascular diseases, and cancers [26-28]. Since the correlation between SQLE and cancer 
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has been recently studied [28], we will briefly summarize the findings below about the role of 

SQLE in human cancer. In 1981, a study in cholesterol biosynthesis in the human gastrointestinal 

tract showed that tumoral tissues had higher amounts of SQLE enzyme than normal mucosa in 

the terminal portion of the colon, despite no substantial variations in enzyme production [29]. In 

the recent study of hormone receptor-positive breast cancer, SQLE has been found to directly 

interact with CASIMO1 (cancer-associated small integral membrane open reading frame 1), 

which has been discovered to be essential for cancer cell survival. This interaction may 

eventually activate downstream ERK signaling [30]. This study contributes to the evidence 

linking SQLE upregulation to ERK activation in cancers such as hepatocellular carcinoma and 

lung squamous cell carcinoma [31, 32]. According to another report, upregulation of SQLE in 

non-alcoholic fatty liver disease-associated hepatocellular carcinoma facilitates the synthesis of 

cholesteryl esters, driving cancer aggressiveness. Besides, SQLE also promotes epigenetic 

silencing of PTEN, leading to the activation of the AKT-mTOR pathway and the development of 

hepatocellular carcinoma [33]. Elevated SQLE expression has also been linked to the 

development of lethal prostate cancer, the occurrence of colorectal cancer, and squamous lung 

cancer [34, 35]. An increasing body of evidence indicates a correlation between SQLE 

overexpression and poor prognosis in various tumors [28]. Meanwhile, some researchers suggest 

that using terbinafine to target SQLE may be a successful method for preventing and treating 

tumors, such as hepatocellular carcinoma and breast cancer [28, 33, 36]. 

While SQLE has been identified as a critical regulator of tumorigenesis, it is uncertain if 

it plays a role in HNSCC carcinogenesis. Therefore, we have investigated the expression level of 

SQLE in HNSCC and overall survival rate of the HNSCC patients with high SQLE gene 
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expression by statistical analyses of existing Gene Expression Omnibus (GEO) and The Cancer 

Genome Atlas (TCGA) datasets. GEO is an international public repository that archives and 

freely distributes microarray, next-generation sequencing, and other forms of high-throughput 

functional genomics data submitted by the research community [37]. We obtained data and the 

titles of samples for Gene Series Expression (GSE) data from GEO.  TCGA is a public funded 

project that aims to catalogue and discover major cancer-causing genomic alterations to create a 

comprehensive "atlas" of cancer genomic profiles. So far, TCGA researchers have analyzed large 

cohorts of over 30 human tumors through large-scale genome sequencing and integrated multi-

dimensional analyses [38]. In our analysis, compared to adjacent normal tissues, SQLE gene 

expression was significantly higher in HNSCC tissues (P < 0.0001) based on five independent 

datasets (GSE30784, GSE13601, GSE6631, GSE37991, and TCGA-HNSCC) (Figure 3). The 

expression of SQLE in other cancers was also investigated in this study. Compared to the normal 

controls, SQLE was significantly overexpressed in the following cancer types, including bladder 

urothelial carcinoma (BLCA), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), 

liver hepatocellular carcinoma (LIHC), lung squamous cell carcinoma (LUSC), rectum 

adenocarcinoma (READ), stomach adenocarcinoma (STAD), and uterine corpus endometrial 

carcinoma (UCEC) (P < 0.0001) (Figure 4). In addition, based on the TCGA datasets of HNSCC, 

a significantly worse overall survival rate was observed in the HNSCC patients with high SQLE 

gene expression than those with low SQLE gene expression (P = 0.001) (Figure 5). High SQLE 

expression was also significantly associated with worse long-term overall survival rates among 

the cancer patients with adrenocortical carcinoma (ACC), BRCA, cervical squamous cell 

carcinoma and endocervical adenocarcinoma (CESC), kidney renal papillary cell carcinoma 



6 

(KIRP), LIHC, lung adenocarcinoma (LUAD), mesothelioma (MESO), pancreatic 

adenocarcinoma (PAAD), sarcoma (SARC), thyroid carcinoma (THCA), and uveal melanoma 

(UVM) (Figure 6). Based on these results, we hypothesized that SQLE may play an important 

role in HNSCC, and it is important to investigate the cellular and molecular mechanism of SQLE 

in HNSCC. 
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MATERIALS AND METHODS 

Cell culture 

Human head and neck squamous cancer cell (HNSCC) lines, UMSCC1 and UMSCC23, 

were maintained in Dulbecco’s modified eagle medium (DMEM) (Invitrogen, Carlsbad, CA, 

USA) containing 10% fetal bovine serum (FBS) and streptomycin (100 mg/ml) (Invitrogen, 

Carlsbad, CA, USA). UMSCC1 cells originated from the floor of the mouth, whereas UMSCC23 

cells are aroused from the larynx. The cells were maintained at 37 ℃, 5% CO2 in a humidified 

incubator and passaged or harvested at 95% confluency with trypsinization. 

UMSCC1 or UMSCC23 cells were treated with epidermal growth factor (EGF) or 

fibroblast growth factor (FGF) to determine their effects on SQLE expression levels. Twenty-

four hours following the passage to a 6-well plate, EGF or FGF (Gemini Bio, Sacramento, CA, 

USA) was added to separate wells of the plate to a final concentration of 10 ng/mL. The cells 

were incubated for two days and subsequently harvested for protein analysis. 

siRNA knockdown of SQLE in HNSCC cells 

UMSCC1 and UMSCC23 cells were maintained in 6-wells before transfection. After 

reaching 60% confluency, cells were treated with siRNA mixed with the lipofectamine 

RNAiMAX transfection reagent (Invitrogen, CA). Validated double-stranded siRNAs of SQLE 

and non-target control siRNAs (Sigma-Aldrich, MO) were used for the knockdown experiments. 

After 48 hours of incubation with siRNAs, cells were either collected for Western blot analysis 

or used for further phenotypic assays. 

Western blotting 

Protein samples were harvested in the RB buffer and separated with a 4-12% Bis-Tris 
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NuPAGE gel. The separated proteins were transferred onto a nitrocellulose membrane (NC) 

(Santa Cruz Biotech, CA) with a Tran-blot SD semi-dry transfer cell (Bio-Rad, CA), and the 

membrane was subsequently blocked with 5% non-fat milk for 60 minutes at room temperature. 

After blocking, the target proteins were incubated with anti-SQLE antibody (1:500, Cat# sc-

271651, Santa Cruz Biotech, CA) and anti-GAPDH antibody (1:300, Cat# GT239, GeneTex, 

Irvine, CA) in the 4 ℃ cold room overnight with constant agitation. After incubated with the 

mouse secondary antibody (1:2000, GE Healthcare) for 1 h and washed with 1x TBST buffer 

three times, an enhanced chemiluminescence (ECL) kit (GE Healthcare) was utilized to detect 

the Western blot signal. The resultant bands were quantified by the ImageJ software, and the p 

value was calculated based on triplicate results. 

Anti-PD-L1 antibody (1:1000, Cat#13684S, Cell Signaling Technology, Danvers, MA) 

was used to test the PD-L1 expression. The corresponding secondary antibody is rabbit antibody 

(1:10000, GE Healthcare). Other steps are the same as above. 

MTT assay 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium 

reduction assay was utilized to measure the proliferation of UMSCC1 and UMSCC23 cells 

following SQLE knockdown. After SQLE knockdown, cells were plated in a 96-well plate with 

2000 cells/well and incubated for 24 hours to allow for attachment. Five wells were used for each 

sample at each time point. The outermost wells of the plates were filled with PBS to minimize 

evaporation. After the incubation, 20 µl of 5 mg/ml MTT was transferred to each well on day 

one and incubated for 4 hours. After 4 hours, the supernatant was carefully removed from each 

well at day 1, and 200 µL of DMSO (dimethyl sulfoxide) was added to dissolve the precipitate. 
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The absorbance was read at 570 nm. DMSO was removed from the plate and the empty wells 

were filled with 200 µL of PBS. This procedure from the addition of MTT reagent was repeated 

for five days in total, and the medium was changed for all remaining wells after absorbance 

measurement on days 2 and 4. 

EdU assay 

Cells were plated at 5 × 103 cells per well in a 24-well Falcon plate after SQLE 

knockdown. After 24 hours, half of the media was removed, and a 2X EdU solution was added to 

obtain a 1X EdU solution. After 2 hours incubation, cells were fixed with 3.7% (v/v) 

formaldehyde in PBS, washed with 3% (w/v) bovine serum albumin in PBS, and permeabilized 

with 0.5% Triton X-100 (v/v). Cells were then incubated with the Click-iT reaction cocktail 

(Alexa Fluor 555; Invitrogen), followed by DNA staining with Hoechst 33342 solution. The 

plates were imaged by a fluorescence microscope (ECHO, RVL-100-G). To quantify the number 

of EdU-positive cells, images were analyzed with ImageJ software.  

Colony formation assay 

The siRNA transfected and control cells were maintained in a 6-well plate with 3000 

cells per well. Following 14 days’ culture, cells were fixed and stained with crystal violet. Cell 

images were captured, and the numbers of cells were counted within the area of each well by the 

NIH Image J software. 

Transwell migration assay 

Transwells (Corning™ 3464, Corning, NY) were used for the migration assays. 

Following 24-hr starvation, siRNA-treated cells were collected and resuspended in the serum-

free medium, and 1×105 cells were then loaded into the transwell inserts. Complete medium was 
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added to the lower chamber. After 24 h, the migrated cells were fixed with formaldehyde and 

stained with crystal violet. Four random areas for the migrated cells were counted, and an 

average number of cells in each area was plotted. 

Matrigel invasion assay 

The invasion assays were performed with the Matrigel-coated chambers 

(Corning™354480, Corning, NY). In a 24-well Falcon plate, the Matrigel chambers were first 

rehydrated for 2 hours with FBS-free medium in a humidified chamber. Complete medium was 

then added to the lower chambers, while 5.0×105 cells in FBS-free medium were seeded into the 

upper chamber. After 48 hours of incubation, all the medium was removed, the invaded cells 

were stained with a Diff-Quik stain kit and counted similarly as described in the migration assay. 

RNA preparation 

RNA was extracted from the cells with the Quick-RNA™ MiniPrep kit (Cat# R1054 & 

R1055, ZYMO RESEARCH, Irvine, CA) after successfully SQLE knockdown confirmed by 

Western blot. RNA degradation and contamination were monitored on 1% agarose gels. RNA 

purity was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). RNA 

integrity and quantitation were assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 

2100 system (Agilent Technologies, CA, USA). 

Library preparation for transcriptome sequencing  

A total amount of 1 µg RNA per sample was used as input material for the RNA sample 

preparations. Sequencing libraries were generated using NEBNext® UltraTM RNA Library Prep 

Kit for Illumina® (NEB, USA) following the manufacturer’s recommendations, and index codes 

were added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA 
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using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent 

cations under elevated temperature in NEBNext First-Strand Synthesis Reaction Buffer (5X) or 

using sonication with Diagenode bioruptor Pico for breaking RNA strands. First-strand cDNA 

was synthesized using a random hexamer primer and M-MuLV Reverse Transcriptase (RNase 

H-). Second strand cDNA synthesis was subsequently performed using DNA Polymerase I and 

RNase H. Remaining overhangs were converted into blunt ends via exonuclease/polymerase 

activities. After adenylation of 3’ ends of DNA fragments, NEBNext Adaptor with hairpin loop 

structure was ligated to prepare for hybridization. To select cDNA fragments of preferentially 

150~200 bp in length, the library fragments were purified with the AMPure XP system 

(Beckman Coulter, Beverly, USA). Then 3 µl USER enzyme (NEB, USA) was used with size-

selected, adaptor-ligated cDNA at 37 °C for 15 min followed by 5 min at 95 °C before PCR. 

Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers, 

and Index (X) Primer. At last, PCR products were purified (AMPure XP system), and library 

quality was assessed on the Agilent Bioanalyzer 2100 system. 

Clustering and sequencing  

According to the manufacturer’s instructions, the clustering of the index-coded samples 

was performed on a cBot Cluster Generation System using PE Cluster Kit cBot-HS (Illumina). 

After cluster generation, the library preparations were sequenced on an Illumina platform, and 

paired-end reads were generated. 

Differential expression analysis  

Differential expression analysis between the two groups was performed using the 

DESeq2 R package. DESeq2 provides statistical routines for determining differential expression 
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in digital gene expression data using a model based on the negative binomial distribution. The 

resulting P values were adjusted using Benjamin and Hochberg’s approach for controlling the 

False Discovery Rate (FDR). Genes with an adjusted P value < 0.05 found by DESeq2 were 

assigned as differentially expressed. 

Enrichment analysis  

A common way for searching shared functions among genes is to incorporate the 

biological knowledge provided by biological ontologies. Gene Ontology (GO) annotates genes to 

biological processes, molecular functions, and cellular components in a directed acyclic graph 

structure, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotates genes to pathways, 

Reactome annotates genes to pathways and reactions in human biology, Human Disease 

Ontology (DO) annotates genes to pathways and DisGeNET annotates genes to pathways.  

GO enrichment analysis. GO is the abbreviation of Gene Ontology 

(http://www.geneontology.org/), which is a major bioinformatics classification system to unify 

the presentation of gene properties across all species. GO enrichment analysis of differentially 

expressed genes was implemented by the clusterProfiler R package. GO terms with corrected P 

value less than 0.05 were considered significantly enriched by differential expressed genes.  

KEGG Pathway enrichment analysis. KEGG is a database resource for understanding high-level 

functions and utilities of the biological system, such as the cell, the organism, and the ecosystem, 

from molecular-level information, especially large-scale molecular datasets generated by genome 

sequencing and other high-throughput experimental technologies (http://www.genome.jp/kegg/). 

We used R package clusterProfiler to test the statistical enrichment of differential expression 

genes in KEGG pathways. KEGG terms with adjusted P value less than 0.05 were considered 
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significant enrichment.  

Reactome enrichment analysis. We used an R package called clusterProfiler for statistical 

Reactome enrichment of differential expression genes. Most importantly, clusterProfiler applies 

biological term classification and enrichment analyses to gene cluster comparison, helping to 

better understand higher-order functions of the biological system. In general, Reactome terms 

with adjusted P value less than 0.05 were considered significant enrichment.  

DO enrichment analysis. The Human Disease Ontology (DO, http://www.disease-

ontology.org) is a community driven standards-based ontology that provides the disease interface 

between data resources through ongoing support (term review and integration) of disease 

terminology needs, which is associated with human disease and gene function. We used an R 

package called clusterProfiler for statistical DO enrichment of differential expression genes. DO 

terms with adjusted P value less than 0.05 were considered significant enrichment.  

DisGeNET enrichment analysis. The DisGeNET(https://www.disgenet.org) is a discovery 

platform containing one of the largest publicly available collections of genes and variants 

associated with human diseases. We used an R package called clusterProfiler for statistical 

DisGeNET enrichment of differential expression genes. DisGeNET terms with adjusted P value 

less than 0.05 were considered significant enrichment. 

Statistical analysis 

The t-test was used for statistical analysis with the GraphPad Prism (version 9.0, 

GraphPad Software Inc., CA), and P values < 0.05 were considered statistically significant. Error 

bars and standard deviations were measured and provided for each experiment. The data were 

presented as the mean ± standard deviation. The ImageJ software (NIH, Bethesda, MD, USA) 
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was utilized to quantify Western blots, migration, invasion, and colony formation assays. 
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RESULTS 

siRNA knockdown of SQLE 

In order to study the function of SQLE in HNSCC cell lines, we decided to knockdown 

SQLE and further assess phenotypes. Knockdown of SQLE was performed in UMSCC1 and 

UMSCC23 cell lines to evaluate phenotypic effects of SQLE down-regulation on cell 

proliferation, migration, and invasion. In each cell line, knockdown was confirmed by Western 

blot analysis (Figure 7A). Protein levels showed a reduction in both UMSCC1 and UMSCC23 

cells when transfected with siSQLE (***, P < 0.001) (Figure 7B). 

Knockdown of SQLE inhibits HNSCC cell proliferation 

Cell proliferation is how quickly a cancer cell copies its DNA and divides into 2 cells. If 

the cancer cells are dividing more rapidly, it means the cancer is faster growing or more 

aggressive. The rate of cancer cell proliferation can be estimated by doing MTT assay, colony 

formation assay and EdU cell proliferation assay. In MTT assay, the proliferation rates of 

UMSCC1 and UMSCC23 cells were measured following SQLE knockdown for five days. The 

results illustrated an inhibited proliferative capacity of both cell lines when compared to their 

respective control groups. SQLE knockdown resulted in a significant decrease in cell 

proliferation in UMSCC1 cells and UMSCC23 cells (***, P < 0.001) (Figure 8). Besides, a 

significantly lower number of colonies were formed when SQLE was knocked down in 

UMSCC1 and UMSCC23 cells (**, P < 0.01, ***, P < 0.001) (Figure 9). In addition, the EdU 

cell proliferation assay was used to determine the impact of SQLE on the cell proliferation of 

UMSCC1 and UMSCC23 cells. A 2 hours’ pulse of EdU was found to label more than half of 

the control cells, as expected for a rapidly dividing population, but it only labeled less than one-
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fifth of the cells that were transfected with SQLE siRNA (Figures 10 and 11). The results 

indicate that the knockdown of SQLE significantly suppressed the proliferation rate of UMSCC1 

and UMSCC23 cells (**, P < 0.01, ***, P < 0.001). 

Knockdown of SQLE suppresses HNSCC cell migration 

The study of cell migration in cancer research is of particular interest as the main cause of 

death in cancer patients is related to metastatic progression. In order for cancer to spread and 

disseminate throughout the body, cancer cells must migrate and invade through extracellular 

matrix (ECM), intravasate into blood circulation, attach to a distant site, and finally extravasate 

to form distant foci [39-42]. The transwell cell migration assay measures the chemotactic 

capability of cells toward a chemo-attractant [43]. In our study, transwell migration assays were 

performed to investigate the migration capacity of UMSCC1 and UMSCC23 cells following the 

siRNA knockdown of SQLE. When compared to the control groups, both UMSCC1 and 

UMSCC23 cells with SQLE knockdown had shown a significant reduction in migration capacity 

(***, P < 0.001) (Figures 12 and 13). 

Knockdown of SQLE suppresses HNSCC cell invasion 

Cell invasion is related to cell migration and defines the ability of cells to become motile 

and to navigate through the extracellular matrix within a tissue or to infiltrate neighboring 

tissues. Cancer cells that become invasive may disseminate to secondary sites and form 

metastases. The transwell cell invasion assay measures both cell chemotaxis and the invasion of 

cells through extracellular matrix, a process that is commonly found in cancer metastasis [43]. In 

our study, the invasion capabilities of UMSCC1 and UMSCC23 cells following siRNA 

knockdown of SQLE were evaluated by Matrigel invasion assay. After 48-h incubation, both 
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UMSCC1 and UMSCC23 cells with SQLE knockdown showed significantly reduced invasive 

capability versus the control cells (***, P < 0.001) (Figure 14 and 15). 

Knockdown of SQLE shows no significant effect on PD-L1 expression 

Expression of programmed death-ligand 1 (PD-L1) is frequently observed in HNSCC. 

Binding of PD-L1 to its receptor PD-1 on activated T cells inhibits anti-tumor immunity by 

counteracting T cell-activating signals [44]. Upregulation of PD-L1 may allow cancers to evade 

the host immune system. Compared with traditional therapies, the emerging PD-1/PD-L1 

blockade immunotherapy exhibited more satisfactory curative effects and lower toxicity for 

patients with advanced HNSCC [45]. Therefore, we also want to investigate the relationship 

between PD-L1 and SQLE. However, western blot analysis showed that protein expression of 

PD-L1 was not significantly altered after SQLE knockdown in UMSCC1 and UMSCC23 cells 

(Figure 16). This result may indicate that SQLE is not involved in the regulation of PD-L1 

expression. 

EGF treatment does not alter the expression of SQLE in HNSCC cells 

Epidermal growth factor (EGF) is a protein that stimulates cell growth and differentiation 

by binding to its receptor, EGFR. EGFR is expressed on normal human cells and also across a 

range of malignancies. Tumor EGFR expression correlates with poor prognosis and resistance to 

therapy. Therefore, EGFR has been recognized as an important therapeutic target in cancer [46]. 

Cetuximab, an EGF inhibitor, received authorization in 2004 from the European Medicines 

Agency (EMA) and in 2006 from the Food and Drug Association (FDA) for the treatment of 

patients with squamous cell cancer of the head and neck in combination with radiation therapy 

for locally advanced disease [47]. Considering the importance of EGF/EGFR pathway in 
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HNSCC, we performed western blot analysis to detect the expression of SQLE after treated with 

EGF. Western blot analysis showed that when treated with EGF, protein expression of SQLE 

was not significantly changed in UMSCC1 and UMSCC23 cells (Figure 17), indicating that EGF 

may not participate in the regulation of SQLE. 

FGF treatment does not alter the expression of SQLE in HNSCC cells 

Fibroblast growth factor receptors (FGFRs) are a family of tyrosine kinase receptors 

(RTKs). These receptors share the same canonical protein structure and their signaling axes are 

involved in cell proliferation, differentiation, tissue modeling and angiogenesis [48]. The 

FGF/FGFR signaling network is engaged in the progression of different human tumors by acting 

on both tumor and stromal cell compartments, thus affecting oncogenesis through different 

mechanisms, including cell signaling deregulation, angiogenesis and resistance to cancer 

therapies [49]. The FGF/FGFR signaling pathway is also frequently found in HNSCC. Targeted 

therapy with tyrosine kinase inhibitors (TKIs) or monoclonal antibodies against FGF receptors 

also represents a promising approach for the treatment of HNSCC [50]. Therefore, we decided to 

detect whether FGF would involve in SQLE regulation. However, our western blot analysis 

showed that when treated with FGF, protein expression of SQLE was not significantly changed 

in UMSCC1 and UMSCC23 cells (Figure 18), which indicates that FGF may not participate in 

the regulation of SQLE. 

RNA sequencing analysis  

Experimental design and approach 

The primary goal of RNA-seq analysis is to discover genes that are differentially 

expressed and coregulated and deduce biological significance for future research. The ability to 
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interpret results is dependent on proper experimental design, the use of controls, and correct 

interpretation. This study uses two groups of UMSCC1 cells, including the SQLE knockdown 

group (KD_S) and control group (CTRL), and each group contains two replicates.  

Determining intra- and intergroup sample variability 

When evaluating variability among samples, the intergroup variability, depicting 

variations between experimental and control settings, should be greater than the intragroup 

variability, representing technical or biological variability. 

Principal component analysis (PCA) is one approach to visualize the variation in a 

dataset. PCA is a statistical procedure, which uses an orthogonal transformation to convert a set 

of observations of possibly correlated variations into a set of values of linearly uncorrelated 

variations. The results are presented as a two-dimensional plot or a three-dimensional plot, 

describing the variation by principal components (PCs). PC1 describes the most variation within 

the data, PC2 describes the second most, and so forth. In the PCA 2D plot, PC1 accounts for 

64.83% of the variance, and PC2 accounts for 22.48% (Figure 19A). In PCA 3D plot, PC1 

accounts for 61.24% of the variance, PC2 accounts for 23.69%, and PC3 accounts for 15.07% 

(Figure 19B). These data demonstrated that the intergroup variability is greater than intragroup 

variability.  

Another method for estimating intra- and intergroup variability is to measure distance as 

presented by correlation among samples. The Pearson’s correlation expresses the linear 

relationship between two factors that accounts for variations in their mean and standard 

deviation. The closer the correlation coefficient is to 1, the more similar the expression pattern is. 

The Pearson’s correlation analysis shows all the variation between samples with a correlation 
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value r > 0.9, indicating that all these samples belong to the same cell type (Figure 19C). 

However, the correlation value between the knockdown and control samples is smaller than the 

correlation value between two knockdown samples or two control samples, further suggesting 

that the intergroup variability is more evident than intragroup variability.  

Identification of differentially expressed genes (DEGs) and visualization 

Gene expression level analysis is the core task in RNA-seq experiments. In the process of 

differential expression analysis, FPKM was applied in calculating the relative gene expression 

levels, and remarkably DEGs were identified by a corrected padj <0.05 and |log2 fold change| > 

0. FPKM stands for Fragments Per Kilobase of transcript per Million mapped reads. In RNA-

Seq, the relative expression of a transcript is proportional to the number of cDNA fragments that 

originate from it. 

The co-expression Venn diagram presents the number of uniquely expressed genes within 

each group, with the overlapping regions showing the number of genes that are co-expressed in 

two groups. In total, 613 genes and 477 genes were uniquely expressed in the SQLE knockdown 

group and control group. 11,437 genes were found co-expressed in both groups (Figure 20). 

After SQLE knockdown, 2,994 genes were differentially expressed, including 1,527 

upregulated and 1,467 downregulated genes (Figure 21). Besides, a volcano plot is used to infer 

the overall distribution of differentially expressed genes (Figure 22). It shows statistical 

significance (p value) versus magnitude of change (fold change) on the y and x axes. It is 

constructed by plotting the -log10 of the corrected p value on the y axis. The smaller the 

corrected p value is, the bigger -log10 (corrected p value) will be, meaning the difference is more 

significant. The x axis is the log2 of the fold change of genes. In a volcano plot, the most 
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upregulated genes are towards the right, the most downregulated genes are towards the left, and 

the most statistically significant genes are towards the top. As labeled in the figure, the top 5 

upregulated genes are AHNAK2, MX1, MYL9, KRT17, and BNIP3. The top 5 downregulated 

genes are SQLE, EI24, GCLM, TFRC, and COMMD8. 

Cluster analysis on differential expression indicates genes with similar expression 

patterns under various experimental conditions. By clustering genes with similar expression 

patterns, it is possible to predict unknown functions of previously characterized genes or 

unknown genes. Hierarchical clustering analysis is carried out of log2 (FPKM+1) of union 

differential expression genes within the SQLE knockdown and control groups (Figure 23).  From 

the heat map of hierarchical clustering, we found that two SQLE knockdown samples were 

clustered together, and two control groups were clustered together. Besides, the hierarchical 

cluster also revealed four main clusters. Clusters I, II, III, and IV had 69 (2.3%), 6 (0.2%), 1,461 

(48.8%), and 1,458 genes (48.7%), respectively (Figure 24). Genes in the four clusters showed 

different expression patterns. In clusters I and IV, high levels of expression were observed in 

knockdown groups. In clusters II and III, genes were more abundantly expressed in control 

groups. The top 5 significant genes in cluster I are AHNAK2, MX1, MYL9, BNIP3, and OAS2. 

The top 5 significant genes in cluster II are SQLE, EI24, GCLM, COMMD8, and SNRPD1. The 

top 5 significant genes in cluster III are TFRC, LRRC58, FBXO45, CASC4, and TMEM167A. 

Finally, the top 5 significant genes in cluster IV are KRT17, TPM4, KIAA0513, TIMP2, and 

STC2. 

Functional Analysis 

Through the enrichment analysis of the differential expressed genes, we can determine 
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which biological functions or pathways are significantly associated with differentially expressed 

genes. ClusterProfiler [51] software was used for enrichment analysis, including GO Enrichment, 

DO Enrichment, KEGG, Reactome Enrichment, and DisGeNET database Enrichment. 

GO Enrichment Analysis. GO is the abbreviation of Gene Ontology, which is a major 

bioinformatics classification system to unify the presentation of gene properties across all 

species. GO terms with padj < 0.05 are significant enrichment. In GO enrichment analysis for all 

genes, ribonucleoprotein complex biogenesis (133 unigenes), actin cytoskeleton (128 unigenes), 

and protein serine/threonine kinase activity (116 unigenes) take up top-3 counts of unigenes 

(Figure 25). Besides, GO functional analysis indicated 2,994 unigenes in three major categories: 

molecular function (MF), biological process (BP), and cellular component (CC) (Figure 26). 

Among molecular functions, the most significant group was ATPase activity (109 unigenes), 

followed by cadherin binding (98 unigenes) and ubiquitin-like protein ligase binding (93 

unigenes). For the category of biological process, the most significantly enriched group was the 

defense response to virus (72 unigenes) and response to type I interferon (38 unigenes). As to the 

cellular component category, the most dominant groups were chromosomal region (101 

unigenes), cell-cell junction (113 unigenes), and actin cytoskeleton (128 unigenes). 

To be more specific, upregulated genes and downregulated genes were analyzed 

separately. In the result of upregulated genes analysis, actin binding (83 unigenes), cellular 

response to type I interferon (29 unigenes), and actin cytoskeleton (104 unigenes) are the most 

significant groups in molecular function, biological process, and cellular component categories, 

respectively (Figure 27 and 28). As for the downregulated genes, catalytic activity, acting on 

RNA (79 unigenes), ribonucleoprotein complex biogenesis (118 unigenes), and chromosomal 
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region (86 unigenes) are the most significantly enriched groups in molecular function, biological 

process, and cellular component categories, respectively (Figure 29 and 30), which indicates that 

DNA replication, transcription, and translation may be decreased by SQLE knockdown. 

DO Enrichment Analysis. The Human Disease Ontology (DO) is a community-driven 

standards-based ontology that provides the disease interface between data resources through 

ongoing support (term review and integration) of disease terminology needs, which is associated 

with human disease and gene function. DO terms with padj < 0.05 are significant enrichment. 

Germ cell cancer (101 genes) and embryonal cancer (93 genes) are the dominant cancer types in 

the analysis (Figure 31). However, there are no significantly enriched diseases when analyzing 

upregulated genes and downregulated genes separately. 

KEGG Enrichment Analysis. The interactions of multiple genes may be involved in 

certain biological functions. KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection 

of manually curated databases containing resources on genomic, biological-pathway, and disease 

information [52]. Pathway enrichment analysis identifies significantly enriched metabolic 

pathways or signal transduction pathways associated with differentially expressed genes, 

comparing the whole genome background. KEGG terms with padj < 0.05 are significant 

enrichment. KEGG pathway analysis showed that the differentially expressed genes after SQLE 

knockdown were significantly enriched in several pathways, including cell cycle and DNA 

replication (Figure 32). In KEGG analysis of cell cycle, TGF-β and Cip1 are upregulated, both of 

which can arrest the cell cycle at the G1 stage to stop proliferation (Figure 33). On the other 

hand, MCM, ORC, and E2F1, 2, 3 are downregulated, which indicates the decrease of DNA 

synthesis.  
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To be more specific, some upregulated genes following SQLE knockdown were 

significantly enriched in some other pathways, such as MAPK/ERK signaling and mTOR 

signaling pathways (Figure 34). In the MAPK/ERK signaling pathway, TGFBR and HSP72 are 

downregulated (Figure 35), both of which have been linked to the development of some cancers 

[53]. In mTOR signaling pathway KEGG analysis, frizzled, the receptor in the Wnt signaling 

pathway, is downregulated, which might explain the inhibition of HNSCC by SQLE knockdown 

(Figure 36). This may be due to the role of Wnt signaling in the development of cancers [54]. In 

KEGG analysis for downregulated DEGs, spliceosome, DNA replication and cell cycle are the 

top 3 significant pathways (Figure 37), which further illustrates the reduction of mitosis in 

SQLE-knockdown HNSCC cells. 

Reactome Enrichment Analysis. The Reactome is a database of reactions, pathways, 

and biological processes, which can be used to browse pathways and submit data to a suite of 

data analysis tools, containing curated annotations that cover a diverse set of topics in molecular 

and cellular biology. Reactome terms with padj < 0.05 are considered as significant enrichment. 

It is apparent that most of the pathways were related to different phases of the cell cycle and 

transitions between them, stimulus-based changes in gene expression, DNA damage repair, and 

DNA damage-induced programmed cell death (Figure 38). Genes involved in interferon 

alpha/beta signaling and interferon signaling are most significantly upregulated, and genes that 

participated in cell cycle and DNA replication are downregulated, both of which were in 

accordance with the results of the GO enrichment analysis (Figure 39 and 40). 

DisGeNET Enrichment Analysis. The DisGeNET is a discovery platform containing 

one of the largest publicly available collections of genes and variants associated with human 
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diseases. DisGeNET terms with padj < 0.05 are significant enrichment. However, there is no 

significantly affected disease observed in this study. 

Function Annotation of Oncogene. An oncogene is a potentially cancer-causing gene, 

which is typically mutated or expressed at a high level. Proto-oncogene as a normal gene, 

involved in cell development, cell division, and cell differentiation, turns into oncogene when 

sequence mutation happens. Generally, the expression of some specific oncogenes is upregulated 

in tumor or malignant cell lines. Studies on the differential expression of oncogenes help reveal 

the mechanism of disease development and cancer occurrence. By using the COSMIC database 

(Catalogue of Somatic Mutations in Cancer), 123 significant oncogenes are discovered following 

SQLE knockdown. Among the top 4 significant oncogenes, a head and neck cancer-associated 

oncogene, TGFBR2, was significantly decreased in the SQLE knockdown group, which 

indicates that TGFBR2 is positively associated with the oncogenicity of SQLE in head and neck 

cancer (Figure 41). 
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DISCUSSION 

Based on our informatic analyses, SQLE expression was significantly overexpressed in 

HNSCC tissues compared with adjacent normal tissues. Furthermore, the overall survival rate of 

HNSCC patients with higher SQLE expression levels was significantly lower than that of 

patients with lower SQLE expression levels. Similar findings were observed in a number of other 

cancers, indicating that SQLE may be an important molecular target in HNSCC. In our studies, 

the knockdown of SQLE suppressed the proliferation, migration, and invasion of the two 

HNSCC cell lines, UMSCC1 and UMSCC23, indicating that SQLE may play an important role 

in the progression of HNSCC. RNA sequencing analysis showed that SQLE may participate in 

the regulation of head and neck tumors through interacting with many important regulatory 

pathways, such as cell cycle, MAPK signaling pathway, and mTOR signaling pathway. 

It is well known that HNSCC carcinogenesis involves many molecular events, such as 

up-regulation of proto-oncogenes and down-regulation of tumor suppressor factors [55]. SQLE is 

the rate-limiting enzyme in cholesterol biosynthesis and considered to be the proto-oncogene 

[56]. Previous studies have provided clues for understanding the role of SQLE in cancer-related 

molecular mechanisms. In a hormone receptor-positive breast cancer study, overexpression of 

the CASIMO1 microprotein (cancer-associated small full-membrane open reading frame 1) was 

deemed necessary for cancer cell survival [30]. The tumor-promoting effect of CASIMO1 is 

achieved through the direct interaction and stabilization of SM (SQLE) thus stimulating 

downstream MAPK/ERK signaling pathway and cancer cell growth (Figure 42A). It has also 

been demonstrated in hepatocellular and lung squamous cell carcinoma that SQLE promoted the 

growth of cancer cells through activating MAPK/ERK signaling pathway [31, 32]. But no direct 
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link between SQLE and MAPK/ERK signaling pathway has been reported in HNSCC. Based on 

our findings in RNA sequencing analysis, proto-oncogenes involved in MAPK/ERK signaling 

pathway are downregulated following SQLE knockdown, such as TGFBR and HSP72 (Figure 

35). Transforming growth factor-β (TGF-β) is a homo-dimeric protein known to be a 

multifunctional regulator in target cells and to serve a pivotal role in numerous types of cancer, 

including HNSCC [57]. Accumulating evidence suggested that deregulation of TGF-β signaling 

is of great importance in HNSCC and may be the result of defected TGF-β signaling [58-60].The 

effects of TGF-β signaling at a cellular level include the regulation of tumor cells and other 

stromal cells, as well as the possible mechanisms underlying the conversion from a tumor 

suppressor to a tumor promoter in HNSCC [61]. Some scientists reported that TGF-β signaling 

pathway serves as a tumor suppressor at an early stage, whereas it serves as a tumor promoter in 

transformed epithelial cells at a later stage[62]. However, the exact role of TGF-β in HNSCC is 

not completely understood. Therefore, the relationship between SQLE and TGF-β requires 

further investigation.  

Another study found that upregulation of SQLE in nonalcoholic fatty liver-related 

hepatocellular carcinoma enhanced the synthesis of cholesteryl esters, which promotes cancer 

aggressiveness [33]. Increased SQLE activity leads to reactive oxygen species-induced silencing 

of PTEN and activation of oncogenic Akt signaling, a pathway in the mTOR signaling pathway 

(Figure 42B). In the mTOR signaling pathway (KEGG analysis of our result), frizzled (FZDs), 

serving as receptors in the Wnt signaling pathway, was found to be downregulated (Figure 36). 

Knockdown of FZDs may suppress the Wnt signaling pathway resulting in the reduction of cell 

growth, invasion, and metastasis of cancer cells [63]. Based on previous literature, FZDs are 
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highly expressed in cancer tissues and may serve as potentially valuable therapeutic targets [64]. 

Therefore, future studies are warranted to investigate the relationship between SQLE and FZDs. 

Recent reports have also emphasized the role of lipid droplets (LDs) in adaptation to 

changes in SQLE activity, possibly accommodating excess squalene (Figure 42C). In breast 

cancer cells, the use of terbinafine to inhibit SM (SQLE) increases the formation of lipid droplets 

[30]. Meanwhile, the ability of neuroendocrine cell lines to adequately isolate squalene is a key 

determinant of their sensitivity to NB-598, a potent competitive inhibitor of squalene epoxidase 

[65]. Since lipid droplets are involved in aberrant cell proliferation and cancer aggressiveness 

[66], it is necessary to study the connection between SQLE and LDs’ activities in HNSCC in the 

future. 

High expression of SQLE has been associated with the pathogenesis of fatal prostate 

cancer [34], colorectal cancer [35], and the appearance and development of squamous lung 

cancer. Noteworthy, fungal SQLE inhibitor terbinafine dose-dependently reduced the number 

and viability of several cultured human malignant cells, thereby disrupting the cell cycle during 

the G0/G1 transition [36, 67-69]. In addition, a murine xenograft model study revealed that the 

tumor size decreased after intraperitoneal injection of terbinafine [67]. Based on the therapeutic 

effect of terbinafine on other cancers, the role of terbinafine as SQLE inhibitor may also provide 

positive therapeutic potential in HNSCC.  
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CONCLUSION 

This study has preliminarily characterized the role of SQLE in HNSCC tumor growth and 

progression. The effect of SQLE on the proliferation, migration, and invasion of head and neck 

cancer cells was studied by the inhibition of SQLE through siRNA transfection. To determine 

the potential downstream targets of SQLE and related molecular mechanisms of SQLE's 

regulation, we also conducted RNA sequencing analysis of HNSCC cells with siSQLE 

knockdown and identified the differentially expressed genes.  

Although the phenotypic effect of SQLE knockdown is recognized, the limitations of this 

study confine the full characterization of the existing mechanisms. Future studies are needed by 

overexpressing SQLE in HNSCC cells, which serve as rescue experiments of SQLE knockdown 

cells to further confirm the functional role of SQLE in promoting HNSCC progression. Based on 

the RNA sequencing analysis, both MAPK/ERK and mTOR signaling pathways were found to 

be significantly inhibited by SQLE downregulation. Specifically, TGFBR is downregulated after 

SQLE knockdown. Considering the paradoxical role of TGF-β in HNSCC, as a tumor suppressor 

in the early stages of oncogenesis or a potent tumor promoter in the epithelium at a later stage 

[70, 71], the relationship between SQLE and TGFBR warrants further investigation. 

The clinical applicability of SQLE as a prognostic or therapeutic target for oral/head and 

neck cancer can be inferred from studies in other types of cancers and its role in cancer-related 

biological processes such as epithelial-mesenchymal transition (EMT). SQLE has been identified 

as a direct downstream target gene of miR-133b, a miRNA under-expressed in human 

esophageal squamous cell carcinoma (ESCC) [5]. The study demonstrated that ectogenic miR-

133b expression followed by SQLE knockdown inhibits proliferation, metastasis, invasion, and 
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decreases the EMT of ESCC in vitro. Besides, the potential of SQLE as a prognostic target has 

been demonstrated in lung squamous cell carcinoma, breast cancer, and leukemia, and 

association with SQLE correlated to poor outcomes in prognosis as well as an increase in 

metastasis [6-8]. 

In summary, this study has uncovered a promoting role of SQLE in HNSCC 

development. SQLE could be used as a prognostic biomarker if further validated in large patient cohorts. 

However, further detailed studies are needed to investigate the relevant molecular pathways of 

SQLE in HNSCC. Whether SQLE can be used as a therapeutic target in HNSCC also warrants 

further studies in the future. 
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Figure 1. Squalene monooxygenase is the gateway enzyme to the shunt pathway, a branch of the 
mevalonate pathway [13]. 
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Figure 2. Structure of SQLE protein. (A) Linear view of SQLE protein with known structural 
features [16]. (B) Structure of the catalytic domain of human SQLE [16]. The FAD binding domain 
is shown in green, the substrate-binding domain in magenta, and the C-terminal membrane-
associated helical domain in orange. FAD (yellow) and the inhibitor NB-598 (blue) are shown in 
stick representation.  
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Figure 3. The gene expression level of SQLE is significantly higher in HNSCC tissues than 
adjacent normal tissues based on GSE and TCGA datasets (P < 0.0001). 
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Figure 4. SQLE gene expression is significantly upregulated in many cancers, including bladder 
urothelial carcinoma (BLCA), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), 
liver hepatocellular carcinoma (LIHC), lung squamous cell carcinoma (LUSC), rectum 
adenocarcinoma (READ), stomach adenocarcinoma (STAD), and uterine corpus endometrial 
carcinoma (UCEC) (P < 0.0001). 
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Figure 5. HNSCC patients with high SQLE gene expression show worse overall survival than 
those with low SQLE gene expression (P = 0.001). 
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Figure 6. Adrenocortical carcinoma (ACC), BRCA, cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC), kidney renal papillary cell carcinoma (KIRP), LIHC, lung 
adenocarcinoma (LUAD), mesothelioma (MESO), pancreatic adenocarcinoma (PAAD), sarcoma 
(SARC), thyroid carcinoma (THCA), and uveal melanoma (UVM) patients with high SQLE 
expression had a worse long-term overall survival rate than those patients with low SQLE 
expression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



38 

A                                                           SCC1             SCC23      
                                                         KD    CTRL    KD   CTRL       
                          
  
                       
                             SQLE                            
 
          
 
                                    
 
 
                        GAPDH 
 
 
 
 
B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. siRNA knockdown of SQLE in UMSCC1 and UMSCC23 cells. (A) Western blot 
analysis showing knockdown of SQLE with siSQLE vs siControl. (B) Quantification of Western 
blot results showing significant downregulation of SQLE in both cell lines by siSQLE (***, P < 
0.001). Each experiment was repeated in triplicate. All values are expressed as the mean ± standard 
deviation. 
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Figure 8. MTT assay of UMSCC1 and UMSCC23 cells transfected with SQLE siRNA or control 
siRNA. The proliferation rates of UMSCC1 cells or UMSCC23 cells transfected with siSQLE 
were significantly lower than the control cells at all time points except for the first day (***, P < 
0.001). Each experiment was repeated in triplicate. All values are expressed as the mean ± standard 
deviation. 
 
 

0 2 4 6
0.0

0.5

1.0

1.5

SCC1

Days

A
bs

or
ba

nc
e 

(5
70

nm
) siSQLE

siCTRL

***

0 2 4 6
0.0

0.5

1.0

1.5

SCC23

Days

A
bs

or
ba

nc
e 

(5
70

nm
) siSQLE

siCTRL

***



40 

                                   siSQLE                                                    siCTRL 
                                       
 
 
 
SCC1 
 
 
 
 
 
 
 
 
 
 
 
SCC23 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Colony formation assay of UMSCC1 and UMSCC23 cells transfected with SQLE 
siRNA or control siRNA. SQLE knockdown significantly suppressed the colony formation of both 
UMSCC1 and UMSCC23 cells (**, P < 0.01, ***, P < 0.001). Each experiment was repeated in 
triplicate. All values are expressed as the mean ± standard deviation. 
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Figure 10. EdU cell proliferation assay. UMSCC1 cells were treated with SQLE siRNA (A) or 
control siRNA (B). The left image shows proliferating cells labeled with EdU. The middle one 
shows a total population of cells, in which nucleic acid were stained with Hoechst 33342. The right 
one represents the overlapping images showing the proliferating cells. C presents the percentage 
of proliferating cells out of total cell population. The figures show significantly reduction in the 
proliferation rate in UMSCC1 cells treated with SQLE siRNA (***, P < 0.001). Each experiment 
was repeated in triplicate. All values are expressed as the mean ± standard deviation. 
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Figure 11. EdU cell proliferation assay. UMSCC23 cells were treated with SQLE siRNA (A) or 
control siRNA (B). The left image shows proliferating cells labeled with EdU. The middle one 
shows a total population of cells, in which nucleic acid were stained with Hoechst 33342. The right 
one represents the overlapping images showing the the proliferating cells. C presents the 
percentage of proliferating cells out of total cell population. The figures show significantly 
reduction in the proliferation rate in UMSCC23 cells treated with SQLE siRNA (**, P < 0.01). 
Each experiment was repeated in triplicate. All values are expressed as the mean ± standard 
deviation. 
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Figure 12. Migration Assay for UMSCC1 cells. (A) Visualization of migration of UMSCC1 cells 
through Transwells (4x and 10x). (B) Quantification of the relative migrated cell number per field, 
showing a significant reduction of migration in the cells with SQLE knockdown (***, P < 0.001). 
Each experiment was repeated in triplicate. All values are expressed as the mean ± standard 
deviation. 
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Figure 13. Migration Assay for UMSCC23 cells. (A) Visualization of migration of UMSCC23 
cells through Transwells (4x and 10x). (B) Quantification of the relative migrated cell number per 
field, showing a significant reduction of migration in the cells with SQLE knockdown (***, P < 
0.001). Each experiment was repeated in triplicate. All values are expressed as the mean ± standard 
deviation. 
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Figure 14. Invasion Assay for UMSCC1 cells. (A) Visualization of invasion of UMSCC1 cells 
through Matrigel chambers (4x and 10x). (B) Quantification of the relative invaded cell number 
per field, showing a significant reduction of invasion in the cells with SQLE knockdown (***, P 
< 0.001). Each experiment was repeated in triplicate. All values are expressed as the mean ± 
standard deviation. 
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Figure 15. Invasion Assay for UMSCC23 cells. (A) Visualization of invasion of UMSCC23 cells 
through Matrigel chambers (4x and 10x). (B) Quantification of the relative invaded cell number 
per field, showing a significant reduction of invasion in the cells with SQLE knockdown (***, P 
< 0.001). Each experiment was repeated in triplicate. All values are expressed as the mean ± 
standard deviation. 
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Figure 16. The expression level of PD-L1 after siRNA knockdown of SQLE in UMSCC1 and 
UMSCC23 cells. (A) Western blot analysis showing PD-L1 expression level with siSQLE vs 
siControl. (B) Quantification of Western blot results showing no significantly alteration of PD-L1 
expression in both cell lines after siSQLE. Each experiment was repeated in triplicate. All values 
are expressed as the mean ± standard deviation. 
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Figure 17. Western blot analysis of SQLE in UMSCC1 and UMSCC23 cells after treated with 
EGF. (A) Protein expression levels of SQLE when treated with EGF. (B) Quantification of protein 
expression showing no significant alteration in the expression level of SQLE in EGF-treated 
UMSCC1 and UMSCC23 cells compared to the corresponding control cells. Each experiment was 
repeated in triplicate. All values are expressed as the mean ± standard deviation. 
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Figure 18. Western blot analysis of SQLE in UMSCC1 and UMSCC23 cells after treated with 
FGF. (A) Protein expression level of SQLE when treated with FGF. (B) Quantification of protein 
expression showing no significant alteration in the expression level of SQLE in FGF-treated 
UMSCC1 and UMSCC23 cells compared to the corresponding control cells. Each experiment was 
repeated in triplicate. All values are expressed as the mean ± standard deviation. 
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Figure 19. Assessing intra- and intergroup variability. Principal component (PC) analysis plot 
displaying all 4 samples along PC1 and PC2 (A), or PC1, PC2 and PC3 (B). PC analysis was 
applied to normalized (reads per kilobases of transcript per 1 million mapped reads) and log-
transformed count data. (C) Pearson’s correlation plot visualizing the correlation (r) values 
between samples. According to all gene expression level (RPKM or FPKM) of each sample, 
correlation coefficient of sample between groups is calculated and drawn as heat maps. Scale bar 
represents the range of the correlation coefficients (r) displayed. The closer correlation coefficient 
is to 1, the higher similarity the samples have. 
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Figure 20. A Venn diagram was generated from the number of genes that were uniquely expressed 
in SQLE knockdown group (yellow circle) and control group (purple circle), with 11437 
overlapped genes.  
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Figure 21. Differentially expressed genes (DEGs) counts. In a total number of 2994 DEGs, 1467 
genes are downregulated and 1527 genes are upregulated. 
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Figure 22. Volcano plot highlights significant genes, labeled with top significant genes. Horizontal 
axis represents the fold change of genes. Vertical axis represents statistically significant degree of 
changes in gene expression levels, the smaller the corrected pvalue, the bigger -log10(corrected 
pvalue), the more significant the difference. The points represent genes, blue dots indicate no 
significant difference in genes, red dots indicate upregulated differential expression genes, green 
dots indicate downregulated differential expression genes. Corrected pvalue<0.05, |log2Fold 
Change|>0. 
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Figure 23. Hierarchical clustering heatmap. The overall results of FPKM cluster analysis, 
clustered using the log2(FPKM+1) value. Red color indicates genes with high expression levels, 
and blue color indicates genes with low expression levels. The color ranging from red to blue 
indicates that log2(FPKM+1) values where from large to small. 
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Figure 24. Genes grouped into four clusters (I, II, III, and IV) on the basis of the similarity of 
expression. The number of the expressed genes in each cluster are indicated. The blue line on each 
plot represents the mean expression profile for the cluster. 
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Figure 25. GO (Gene Ontology) enrichment analysis for all DEGs. (A) Histogram: the horizontal 
axis is customized as -log10 (padj) of significantly enriched term and the vertical axis is 
customized as the number of significantly enriched term. Top 20 significantly enriched terms in 
the GO enrichment analysis are displayed. (B) Scatter plot: the horizontal axis is customized as 
GeneRatio and the vertical axis is customized as the term's description. The size of every spot 
represents the number of the differential expression genes and the color of every spot represents 
the range of padj. 
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Figure 26. GO classifcation of all assembled unigenes. 2,994 unigenes in total were divided into 
three main categories: molecular function, biological process, and cellular component. 
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Figure 27. GO enrichment analysis for upregulated DEGs. (A) Histogram: the horizontal axis is 
customized as -log10 (padj) of significantly enriched term and the vertical axis is customized as 
the number of significantly enriched term. Top 20 significantly enriched terms in the GO 
enrichment analysis are displayed. (B) Scatter plot: the horizontal axis is customized as GeneRatio 
and the vertical axis is customized as the term's description. The size of every spot represents the 
number of the differential expression genes and the color of every spot represents the range of 
padj. 



59 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. GO classifcation of upregulated unigenes. 1,527 unigenes in total were divided into 
three main categories: molecular function, biological process, and cellular component. 
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Figure 29. GO enrichment analysis for downregulated DEGs. (A) Histogram: the horizontal axis 
is customized as -log10 (padj) of significantly enriched term and the vertical axis is customized as 
the number of significantly enriched term. Top 20 significantly enriched terms in the GO 
enrichment analysis are displayed. (B) Scatter plot: the horizontal axis is customized as GeneRatio 
and the vertical axis is customized as the term's description. The size of every spot represents the 
number of the differential expression genes and the color of every spot represents the range of 
padj. 
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Figure 30. GO classifcation of downregulated unigenes. 1,467 unigenes in total were divided into 
three main categories: molecular function, biological process, and cellular component. 
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Figure 31. DO (Disease Ontology) enrichment analysis for all DEGs. (A) Histogram: the 
horizontal axis is customized as -log10 (padj) of significantly enriched term and the vertical axis 
is customized as the number of significantly enriched term. Top 20 significantly enriched terms in 
the DO enrichment analysis are displayed. (B) Scatter plot: the horizontal axis is customized as 
GeneRatio and the vertical axis is customized as the term's description. The size of every spot 
represents the number of the differential expression genes and the color of every spot represents 
the range of padj. 
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Figure 32. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis for all 
DEGs. (A) Histogram: the horizontal axis is customized as -log10 (padj) of significantly enriched 
term and the vertical axis is customized as the number of significantly enriched term. Top 20 
significantly enriched terms in the KEGG enrichment analysis are displayed. (B) Scatter plot: the 
horizontal axis is customized as GeneRatio and the vertical axis is customized as the term's 
description. The size of every spot represents the number of the differential expression genes and 
the color of every spot represents the range of padj. 
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Figure 33. Cell cycle KEGG pathway. 
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Figure 34. KEGG enrichment analysis for upregulated DEGs. (A) Histogram: the horizontal axis 
is customized as -log10 (padj) of significantly enriched term and the Vertical axis is customized 
as the number of significantly enriched term. Top 20 significantly enriched terms in the KEGG 
enrichment analysis are displayed. (B) Scatter plot: the horizontal axis is customized as GeneRatio 
and the vertical axis is customized as the term's description. The size of every spot represents the 
number of the differential expression genes and the color of every spot represents the range of 
padj. 
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Figure 35. MAPK signaling pathway with upregulated genes. 
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Figure 36. mTOR signaling pathway with upregulated genes. 
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Figure 37. KEGG enrichment analysis for downregulated DEGs. (A) Histogram: the horizontal 
axis is customized as -log10 (padj) of significantly enriched term and the vertical axis is 
customized as the number of significantly enriched term. Top 20 significantly enriched terms in 
the KEGG enrichment analysis are displayed. (B) Scatter plot: the horizontal axis is customized 
as GeneRatio and the vertical axis is customized as the term's description. The size of every spot 
represents the number of the differential expression genes and the color of every spot represents 
the range of padj. 
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Figure 38. Reactome enrichment analysis for all DEGs. (A) Histogram: the horizontal axis is 
customized as -log10 (padj) of significantly enriched term and the vertical axis is customized as 
the number of significantly enriched term. Top 20 significantly enriched terms in the Reactome 
enrichment analysis are displayed. (B) Scatter plot: the horizontal axis is customized as GeneRatio 
and the vertical axis is customized as the term's description. The size of every spot represents the 
number of the differential expression genes and the color of every spot represents the range of 
padj. 
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Figure 39. Reactome enrichment analysis for upregulated DEGs. (A) Histogram: the horizontal 
axis is customized as -log10 (padj) of significantly enriched term and the vertical axis is 
customized as the number of significantly enriched term. Top 20 significantly enriched terms in 
the Reactome enrichment analysis are displayed. (B) Scatter plot: the horizontal axis is customized 
as GeneRatio and the vertical axis is customized as the term's description. The size of every spot 
represents the number of the differential expression genes and the color of every spot represents 
the range of padj. 
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Figure 40. Reactome enrichment analysis for downregulated DEGs. (A) Histogram: the horizontal 
axis is customized as -log10 (padj) of significantly enriched term and the vertical axis is 
customized as the number of significantly enriched term. Top 20 significantly enriched terms in 
the Reactome enrichment analysis are displayed. (B) Scatter plot: the horizontal axis is customized 
as GeneRatio and the vertical axis is customized as the term's description. The size of every spot 
represents the number of the differential expression genes and the color of every spot represents 
the range of padj. 
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Figure 41. Function Annotation of Oncogene. Top 4 most significant oncogenes are displayed. 
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Figure 42. (A)Both oleate and CASIMO1 microprotein can increase SM (SQLE) levels. In breast 
cancer cell lines, this leads to more lipid droplets (LD), enhanced ERK signaling, and cancer cell 
phenotype [13]. (B) In non-alcoholic fatty liver disease-related hepatocellular carcinoma 
(NAFLD-HCC), increased SM protein levels elevate reactive oxygen species (ROS), which 
epigenetically silence the PTEN promoter and enhance oncogenic Akt signaling [13]. (C) LDs 
formed by DGAT and ACAT enzymes serve as protective storage depots for toxic squalene. Some 
neuroendocrine cancer cells are sensitive to squalene accumulation upon SM inhibition by NB-
598 as they lack the capacity to sequester squalene in LDs [13]. 
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