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ABSTRACT OF THE DISSERTATION

Highly structured orientations of equivariant Thom spectra

by

Bar Roytman

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Michael Anthony Hill, Chair

We report significant progress toward establishing an obstruction theory of equivariant Thom

spectra with multiplicative structures arising from maps of EV spaces. Focusing on the Fujii-

Landweber Real bordism spectrum, we explain an argument to show that a homotopy ring

Real orientation of an Eρ-spectrum satisfying strong equivariant evenness and mild additional

commutativity condition lifts to an Eρ map.

First, we address the foundational issues. We discuss model categories for equivariant

C2-spectra indexed on Real inner product spaces and comparisons among them. We explain

which foundations are needed for our project and describe the parts that would be original

even non-equivariantly.

Next, we construct equivalences between several EV operads, including little disks and

Steiner operads. We show that algebras over EV ⊕R operads can be strictified to monoids in

the category of EV -algebras.

To compute obstruction groups for maps of EV algebras, we analyze the spectra of the

derived indecomposibles of augmented EV -algebras. We determine that such spectra are

V -fold desuspensions of a lift of the May delooping machine to the augmented algebras.

Next, we discuss the induced map on cohomology for a map between spaces whose

RO(C2)-graded cohomology carries obstruction classes for homotopy ring and Eρ ring maps

out of the Real bordism spectrum.
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Finally, we review the strategies for the proofs of the goal results of our project, explain-

ing how to use the technique of climbing the slice tower of the target to construct highly

structured orientations out of Real bordism.
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Chapter 1

Introduction

The Real bordism spectrumMUR has an essential role in equivariant approaches to chromatic

homotopy theory. Namely, Real bordism is the ring spectrum that carries the universal

formal group law of a formal group law with the genuine action of the cyclic group C2 realizing

the inverse of the formal group law. Real bordism was first introduced by Landweber in [45]

as the bordism theory of manifolds with C2 actions and Real vector bundles, i.e., complex

vector bundles with antilinear C2-actions. Development of the corresponding Real K-theory

of Atiyah only predated this by a couple years [4] with the basics of the cohomological

approach established by Fujii [23], [24] and later Araki [3].

However, the collaborations of Hu–Kriz [34] and Hill–Hopkins–Ravenel [30] that have

convincingly demonstrated the computational tractability and importance of Real bordism

in equivariant chromatic homotopy theory, with the resolution of most cases of the Kervaire

invariant problem. Subsequent inspirational computations performed in [31], [28], [9] show

that Real orientations make much of the structure of the Real Landweber exact spectra

tractable.

While Real orientations, in the sense we use here, are morphisms of homotopy ring genuine

C2-spectra out of MUR, one desirable tool of equivariant homotopy theory has not been

available for many of these computations. The inputs of ring operations are parameterized
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by sets of the form C2 × Σn
op/C2, while MUR and many interesting spectra have GE∞ or

similar structures that have operations with inputs of the form C2 ×Σn
op/Γ for other graph

subgroups Γ. See [10] for elaboration on this insight. Therefore, our computational toolbox

misses certain connected components, elements of equivariant π0, of spaces of potential

multiplicative structure for morphisms of highly structured ring spectra. The purpose of our

project is to rectify this situation.

Circumstantial evidence that this can be done satisfactorily can be found in the work

of Chadwick–Mandell, which proves that complex orientations of even E2-ring spectra with

commutative π0 can always be lifted to the category of E2-ring spectra [20]. Indeed, the

analogue of E2-ring spectra in C2-equivariant homotopy theory are the Eρ ring spectra, with

ρ the regular C2-representation and Eρ ring spectra admit multiplications of every kind,

lacking only in forms of equivariant homotopy coherent commutativity.

This dissertation focuses on the mathematically interesting aspects of the following result.

Some of the more lengthy and routine details of the proof will be excluded due to constrained

time; however, aspects of the proof with new ideas will be presented in more detail, with the

remainder summarized.

Anticipated theorem 1.1. Let R be an Eρ ring spectrum πnρ−1R are trivial for odd n > 0,

and πnρR are constant Mackey functors for n ≥ 0. Suppose also that π0(R) is a commutative

Green functor. Then, any homotopy class of homotopy ring maps MUR → R admits a lift to

a homotopy class of Eρ-ring maps. In particular, the Real Quillen idempotent is an Eρ map

and BPR admits a construction as an Eρ algebra.

The strategy of the proof is largely the same as the analogous one of [20] but following

their outline requires equivariant generalizations of the main computation Chadwick–Mandell

used and the non-equivariant theory they cited. First, because the task is to prove that there

are no obstructions to lifting ring morphisms, an appropriate carrier of obstruction classes

is required. Basterra–Blumberg–Hill–Lawson–Mandell have already developed this [6].
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We begin with a review of basic notions, including operads, in Chapter 2. Chapter 3 is

a discussion of the model categorical foundations of our work and why they matter. These

foundations are lengthy, incompletely written, and only definitions are included here.

In Chapter 4, we prove an equivariant generalization of [17, C] which shows that there

are homopically well-behaved EV +1-operads of the form O⊗BV Ass where O is an EV -operad

and Ass is the associative operad. In other words, a strictly associative operation can be

identified. There are essentially no conditions on the group on which V acts, and the method

of proof is entirely new and geometric, with the idea of using the radius parameter of an

embedded little cylinder to serve a secondary purpose in determining an ideal projection

with the non-disk coordinate. This strictification result is necessary for a convenient theory

of Thom spectra as right modules and is a key ingredient of an EV -Thom isomorphism

theorem generalizing [20, 2.1]. Along the way, we will also correct an error from [26] in the

comparison of little disk and Steiner operads.

In Chapter , we relate the equivariant delooping machine of May to the spectra of the

derived indecomposibles of EV augmented spectra. This applies well to algebras of the form

Σ∞+ X.

The computational backbone of our work is an equivariant lifting of the one in [20, 7.3]

and is our Theorem 6.1, to which Chapter 6 is dedicated. This chapter describes the effect of

the canonical map ΣρBUR(1) → BρBUR from the ρ-suspension of the space of units required

to orient all Real bundles in a homotopy ring genuine C2-spectrum to the space of units

required to orient all Real bundles with an Eρ-spectrum. The cofiber being even is what

ultimately causes the vanishing of the obstruction groups.

We close with Chapter 7 sketching a proof of Anticipated theorem 7.2.
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Chapter 2

Spaces and Operads

We begin with a review of basic notions required to study algebraic structures in equivariant

homotopy theory. The notions of operads are revisited in later chapters.

2.1 Spaces

Let us disambiguate some basic terminology. Strong familiarity with these notions is assumed

of the reader.

Notation 2.1. A space refers to a compactly generated weak Hausdorff topological space.

The category of spaces and continuous maps is denoted U . A subspace Y of a space X is

a space with underlying set a subset of the underlying set of X and whose topology is final

among compactly generated topologies at least as fine as the subspace topology. A based

space refers to a space equipped with a point known as the basepoint. A based map between

based spaces is a continuous map sending the basepoint of the source to the basepoint of the

target. The category of based spaces and based maps is denoted T .

We do, of course, need corresponding notions for equivariant homotopy theory.

Notation 2.2. A topological group refers to a group object in U . If G is a topological group,

an object in U with a continuous left G-action is called a G-space and a G-map between
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G-spaces is a continuous map of the underlying spaces that commutes with the G-action

maps. The category of G-spaces and G-maps is denoted GU . A based G-space is a G-space

equipped with a fixed point of the G action called the basepoint and a based G-map between

based G-spaces is a continuous map that sends the basepoint of the source to the basepoint

of the target. The category of based G-spaces and based G-maps is denoted GT . For

C2-spaces X, we write X+ to denote the based C2-space that is the coproduct of X and a

singleton basepoint as a space.

Note that the singleton space has a unique topological group structure and action on every

space, which is compatible with every continuous map. Therefore, the equivariant notions

can be regarded as a true generalization of the non-equivariant notions. We are usually

concerned with topological groups G with finitely many points, which can be identified with

finite groups and especially the cyclic group C2 of order 2. We often write as though G is

fixed, even when a statement applies to every topological group G.

Notation 2.3. The category GU is cartesian closed. The category GT has a closed sym-

metric monoidal product denoted ∧ called the smash product. The smash product X ∧ Y is

the topological quotient space X × Y /X ∨ Y where X ∨ Y is the coproduct of X and Y in

GT with the equivalence class X ∨ Y serving as the basepoint. Other points in X ∧ Y will

be referred to as (x, y), where x ∈ X, y ∈ Y , and neither x nor y are basepoints of X or Y ,

respectively. We will use similar notation in other situations where a point in a space is a

singleton equivalence class. Therefore G-spaces are the objects of a canonical GU -enriched

category UG with morphism spaces UG(X,Y ) obtained as the right adjoint ofX×(−) applied

to Y . The GT enriched category of based G-spaces TG is defined similarly.

As usual for equivariant homotopy theory, we make extensive use of representation

spheres.

Notation 2.4. If V is a G-space then SV is the one-point compactification of V . with the

basepoint taken to be the point at infinity. We will only use the notation SV in cases
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where V is an orthogonal G-representation with real scalars after possibly forgetting complex

structure. If V and W are both real orthogonal G-representations or both complex vector

spaces with real form arising as the fixed point subspace of a C2-action, then W − V is the

orthogonal complement of V in W with the induced G or C2-action. We write ΩVX for

TG(SV ,X) and call it the V -fold loop space of X. We write ΣVX for SV ∧X and call it the

V -fold suspension of X.

2.2 Operads

Operads are essentially parameterized operations and axioms for algebraic structures in

which one cannot refer to the same variable twice in an axiom internal to a symmetric

monoidal category. Much of the theory relies on a common extra condition for the symmetric

monoidal category.

Definition 2.5. A cocomplete symmetric monoidal category is a symmetric monoidal cat-

egory that is cocomplete with a monoidal product ⊗ such that for every object X, the

endofunctor X ⊗ (−) preserves colimits. An enriched category is said to be a cocomplete

symmetric monoidal category if its underlying category is cocomplete symmetric monoidal.

We will also occasionally need to weaken the unit axiom for symmetric monoidal cate-

gories.

Definition 2.6. A weak symmetric monoidal category is a category C bifunctor ⊗, a weak

unit U , associators, unitors, and braiding satisfying the standard axioms of [52, XI.1] (with

the weak unit as the unit), except for the axiom demanding that the unitor λX ∶ U ⊗X →X

is an isomorphism. A cocomplete weak symmetric monoidal category is a weak symmetric

monoidal category that is cocomplete (in an unenriched sense), and each endofunctor X⊗(−)

for objects X preserves colimits.

For use as mapping spaces, we often need the monoidal product to admit a right adjoint.
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Definition 2.7. A symmetric monoidal category or weak symmetric monoidal category is

closed if for every object X, the endofunctor X ⊗ (−) has a right adjoint.

Our notion of an enriched cocomplete symmetric monoidal category is weak and not

standard but is sufficient for our purposes. Operads are carriers of the axioms of the al-

gebraic structures of interest throughout this study. Raw collections of operations without

composition data are stored in collections.

Definition 2.8. A collection C in a category C is a collection of objects C(n) of C indexed

over n ∈ N together with an action of the opposite group of the symmetric group on n elements

Σn
op on C(n). A morphism f ∶ C → D of collections of C consists of a sequence indexed

over n ∈ N of morphisms fn ∶ C(n) →D(n) of Σn
op-objects. The category of collections in C

is denoted Coll(C ).

Examples of collections abound as underlying collections of operads but for the time

being, we have the following fundamental example.

Example 2.9. The (weak) unit collection UColl in a (weak) symmetric monoidal category C

is the collection with UColl(1) = U , U being the unit of C with the unique action by the trivial

group and UColl(n) = ∅ where ∅ is the initial object of C and has its unique action by Σn
op.

The elements of collections of free operads on free Σn sets of generators in the category

of sets are rooted planar trees with vertices labeled by the generators and a composition

relation determined by tree grafting. Considerations of symmetric group actions on the sets

of rooted planar trees lead one to consider maps such as the following.

Definition 2.10. Let k = (ki)ni=1 be a list of elements of N of length n. The map Γ = Γk ∶

Σn ×∏k
i=1Σki → Σ∑n

i=1 ki is the composite of the top row of the following diagram.

{1, . . . , k} ∐n
i=1{1, . . . , ki} ∐n

i=1{1, . . . , kσ−1(i)} {1, . . . , k}

{1, . . . , kj} {1, . . . , kj}

●−1 ●

ιj

τj

ισ(j)

7



The morphism marked ● is a bijection of totally ordered finite sets, where the source is a

coproduct of totally ordered finite sets with the concatenation ordering and ●−1 is the inverse

of a similarly defined bijection. The central morphism is produced via the universal property

of coproducts and is determined by the square in the diagram commuting for all choices of

j.

This definition of an operad is monochromatic, describing algebraic structures on a single

object, and describes algebraic operations algebraically. The following definition is standard

and abstracted from the original definition in U given in [57] with minor changes in the

presentation of equivariance axioms with one major difference. The original condition has a

condition on O(0) that we do not demand.

Definition 2.11. An operad in a weak symmetric monoidal category C is a collection O,

equipped with an identity map 1O ∶ U → O(1), and composition maps

γk ∶ O(n) ⊗
n

⊗
i=1

O(ki) → O(
n

∑
i=1

ki)

for every k = (ki)ni=1 ∈ ∐N∈NNn satisfying the following axioms.

1. (Left unit) For every n ∈ N, the following diagram commutes.

U ⊗O(n) O(1) ⊗O(n)

O(n)

1O⊗id

γ(n)1
i=1

λ

2. (Right unit) For every n ∈ N, the following diagram commutes.

O(n) ⊗U⊗n O(n) ⊗O(1)⊗n

O(n)

id⊗1⊗nO

γ(1)n
i=1

ρ

8



3. (Associativity) For every k = (ki)mi=1 ∈ ∐M∈N(∐N∈NN)n where ki = (ki,j)ni
j=1, the follow-

ing diagram commutes.

O(m) ⊗
m

⊗
i=1

O(ni) ⊗
m

⊗
i=1

ni

⊗
j=1

O(ki,j) O(m) ⊗
m

⊗
i=1

(O(ni) ⊗
ni

⊗
j=1

O(ki,j))

O(m) ⊗
m

⊗
i=1

O(
ni

∑
j=1

ki,j)

O(
m

∑
i=1

ni) ⊗
m

⊗
i=1

ni

⊗
j=1

O(ki,j) O(
m

∑
i=1

ni

∑
j=1

ki,j)

γ⊗id

γ○(id⊗α)

∼

id⊗⊗γ

γ

The top horizontal arrow of the diagram is a rearrangement of factors formed from the

symmetric monoidal structure.

4. (Equivariance) If [σ] denotes a morphism that permutes the n factors of a product in

C , the following diagram commutes.

O(n) ⊗⊗n
i=1 O(ki) O(n) ⊗⊗n

i=1 O(ki)

O(n) ⊗⊗n
i=1 O(kσ−1(i))

O(k) O(k)

σop⊗⊗ τi
op

γ

id⊗[σ]

γ

Γ(σ;(τi)
n
i=1)

op

A morphism of operads is a morphism of collections such that the diagrams induced by it

and the operad structure maps are commutative. The category of operads in a symmetric

monoidal category C is denoted Op(C )

Example 2.12. If C is a cocomplete symmetric monoidal category, the associative operad

AssC has collection defined by AssC (n) = U∐Σn with the action map corresponding to τ op ∈

Σn
op defined through the universal property of coproduct so that for each π ∈ Σn the diagram

9



below commutes.

U∐Σn U∐Σn

U

τop

ιπ
ιπτ

The composition maps are defined as the composites

U∐Σn ⊗⊗n
i=1U

∐Σki (U ⊗⊗n
i=1U)∐(Σn×∏

n
i=1 Σki

) U∐
Σ∑n

i=1 ki
∼ λ∐Γ

for all finite lists of naturals (ki)ni=1.

Example 2.13. If C is a cocomplete symmetric monoidal category, the commutative operad

CommC is the operad with CommC (n) = U for all n ∈ N, trivial Σn
op actions, and each

composition map is a composite of unitors.

Another family of fundamental examples of operads is endomorphism operads.

Example 2.14. Let C be a closed weak symmetric monoidal category and X be an object of

C . The endomorphism operad End(X) is the operad with End(X)(n) = F (X⊗n,X), where

F (Y,−) is the right adjoint of Y ⊗ (−) with the action of Σn
op induced by pulling back the

factor rearranging action of Σn on X⊗n. The operad composition takes the form

F (X⊗k,X) ⊗⊗k
i=1F (X⊗ni ,X)

F (X⊗k,X) ⊗ F (X⊗∑k
i=1 ni ,X⊗k)

F (X⊗∑k
i=1 ni ,X)

id⊗⊗

○

and the unit map is adjoint to the left unitor U ⊗X →X

Operads are useful insofar as their algebras are. If operads encode axioms for certain

types of algebraic structures, their algebras are the algebraic structures themselves.

10



Definition 2.15. A algebra A over an operad O, or O-algebra, in a symmetric monoidal

category C is an object A of C and maps

an ∶ O(n) ⊗A⊗n → A

satisfying the following axioms.

1. (Unit) The following diagram commutes.

U ⊗A O(1) ⊗A

A

1O⊗idA

λ
a1

2. (Associativity) The diagram

O(k) ⊗⊗k
i=1(O(ni) ⊗A⊗ni) O(k) ⊗A⊗k

(O(k) ⊗⊗k
i=1 O(ni)) ⊗A∑ni

O(∑k
i=1 ni) ⊗A∑ni A

f

γk,n

a∑ni

ak

id⊗⊗ani

commutes for every n = (ni)ki=1 ∈ ∐N∈NNN where f is the unique isomorphism, which is

the composite of symmetric monoidal category structure maps that do not rearrange

the order of factors labeled A or factors of the form O(−).

3. (Equivariance) The diagram

O(n) ⊗A⊗n O(n) ⊗A⊗n

A

σop⊗[σ−1]

an
an

commutes for every n ∈ N and σ ∈ Σn. A morphism of algebras over an operad O

11



is a map of underlying objects that induces commutative diagrams with O-algebra

structure maps. The category of O algebras in the symmetric monoidal category C is

denoted C [O].

Our first examples of algebras are standard algebraic notions.

Example 2.16. In a cocomplete weak symmetric monoidal category, algebras over Ass are

equivalent to monoid objects, with the algebra A over Ass corresponding to a monoid object

with operation

A⊗A U ⊗A⊗2 (∐σ∈Σ2
U) ⊗A⊗2 Aλ−1 ιe a2

Example 2.17. Algebras over Comm in a cocomplete symmetric monoidal category are

commutative monoid objects with equivalence realized in a manner similar to Example 2.16.

The free algebra adjunction for algebras over an operad assembles into a monad in the

usual manner of categorical algebra. We review standard notation and introduce the con-

struction next.

Notation 2.18. In a cocomplete weak symmetric monoidal category, if X has a right Σn
op

action and Y has a left Σn action we write X ⊗Σn Y for the colimit of the BΣn
op-shaped

diagram sending the object to X ⊗ Y and morphisms sending σ ↦ (σop)X ⊗ (σ−1)Y where

subscripted group elements denote the corresponding action map on the subscript.

Definition 2.19. Suppose C is a cocomplete symmetric monoidal category and let O be an

operad. The underlying functor of the free algebra monad is OX = ∐k∈N O(k)⊗Σk
X⊗k with

action maps induced by compositions and universal property of colimits. More generally, if

C is a weak symmetric monoidal category, the underlying functor of the free algebra monad

12



fits into the diagram below

U ⊗X O(1) ⊗X ∐k∈N O(k) ⊗Σk
X⊗k

X OX

1O⊗id ι1

λ

defining OX as a pushout.

Remark 2.20. The monad May originally used in [57] is not a special case of the one of

Definition 2.19, but we will need May’s construction later.

Proposition 2.21. Algebras over an operad and algebras over the associated monad are

isomorphic categories.

Proof. This can be checked directly from the definitions, and we omit the details.

We conclude this chapter with a central example of operads and algebras used in our

work.

Example 2.22. Let V be a finite-dimensional orthogonal G-representation over R. Let

D(V ) denote the open unit disk (or ball) in V . A V -little disk d ∶ D(V ) → D(V ) is a G-map

of the form d(v) = c + rv for some fixed c ∈ D(V ) and real number r ∈ (0,1 − ∣∣c∣∣]. We say

two little V -disks d and d′ are disjoint, written d ⊥ d′ if d and d′ have disjoint images. The

V -little disks operad DV is defined by DV (1) is the G-stable subspace of TG(D(V ),D(V ))

corresponding to the set of little V -disks and DV (n) is the subspace of DV (1)n consisting of

tuples of pairwise disjoint little V -disks. The group Σn
op acts on the left of DV (n) with σop

acting by the restriction of the canonical action of σ−1 on DV (1)n. The operad unit of DV

is the inclusion of the point corresponding to the identity map in DV (1). The composition

maps

γ ∶ DV (k) ×
k

∏
i=1

DV (ni) → DV (
k

∑
i=1

ni)

13



are induced by universal property as indicated in the following diagram.

DV (k) ×∏k
i=1 DV (ni) DV (1)k ×∏k

i=1 DV (1)n ∏k
i=1 DV (1) ×DV (1)ni

∏k
i=1 DV (1)ni ×DV (1)ni

∏k
i=1(DV (1) ×DV (1))ni

DV (∑k
i=1 ni) DV (1)∑ni

∏(∆×id)

f2

∏(○)
ni

⊆

f1⊆

The maps f1 and f2 are the expected rearrangement of cartesian factors so that every little

V -disk coordinate of DV (ni) is composed as the right factor with the ith coordinate of DV (k)

and the (lexicographic) ordering of the coordinates of ∏k
i=1 DV (ni) is respected.

Example 2.23. Spaces of the form ΩVX = TG(SV ,X) (regarded as objects of UG in the

exposition below) have canonical DV -algebra structures. Consider the function ζ = ζV ∶ V →

D(V ) defined by

ζ(u) = 1√
1 + ∣∣u∣∣2

u

for all u ∈ V . Note that ζ is a G-homeomorphism with inverse

ζ−1(u) = 1√
1 − ∣∣u∣∣2

u

There are G-maps fn ∶ DV (n) × SV → ⋁n
i=1 S

V described as follows. For points of the form

p = ((d1, . . . , dn), v) where there exists a di and a w ∈ V such that di(ζ(w)) = ζ(v) we have

fn(p) = (i,w), where (i,w) denote the point corresponding to w in the ith wedge summand

SV . All other points are taken to the basepoint by fn. The continuity of fn can be checked

using the properties of one-point compactification and the gluing lemma along closed sets.

The DV action on ΩVX has structure maps

14



DV (n) ×TG(SV ,X)n

TG(SV ,⋁n
i=1 S

V ) ×TG(⋁n
i=1 S

V ,X)

TG(⋁n
i=1 S

V ,X) ×TG(SV ,⋁n
i=1 S

V )

TG(⋁n
i=1 S

V ,X) ∧TG(SV ,⋁n
i=1 S

V )

TG(SV ,X)

swap

○

q

g1×g2

explained as follows. The map q is the canonical quotient map for smash products and ○

is the enriched composition of mapping spaces of based G-spaces. The morphism g1 is the

adjoint of fn up to restriction of the codomain, and g2 is induced by the universal property

of coproducts in based G-spaces.
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Chapter 3

Real Spectra

We continue with an introduction to Real spectra for the study of Real bordism. Due to the

subtle technical considerations in the multiplicative theory, we will confine our discussion of

Real bordism to the setting of certain categories of Real spectra that are explicitly discussed

here for the first time. The general theory of equivariant spectra when the group acts on the

real division algebra of scalars for the indexing vector spaces is not discussed below but is

worthy of attention for future work. The theory of Real spectra is equivalent to the theory

of genuine C2-spectra in a robust manner; however, the details of some comparisons are left

to later work. While it is possible to work with a version of Real bordism in C2-spectra for

our work, our choice not to is informed by the awareness that this would only complicate

the required comparison results. The purpose of this chapter is to precisely state a version

of the main results as applied to Real spectra.

In some sense, this chapter discusses material necessary to fill an omission in the liter-

ature about comparisons of models of multiplicative Thom spectra produced via forgetting

complex or quaternionic module structure to those produced geometrically and natively in

corresponding categories of spectra. A key comparison result in [30] shows the equivalence

between Real spectra and geniune C2-spectra. In general, for classical equivariant Thom

spectra indexed on vector spaces with G-actions twisted by automorphisms on the real di-
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vision algebra of scalars, no such comparison results are known, and there is potential for

fascinating new phenomena. Considering this, reviewing foundational principles in a new

context may be worthwhile.

Without this material, it is still possible to prove that a Thom spectrum equivalent to

MUR produced as a Thom spectrum via a map to BOC2 satisfies our result, but a multi-

plicative equivalence between such a Thom spectrum and theMUR of [30] would be missing.

Many definitions of this chapter are taken from [22, A] rather than [47] to modernize and

simplify the foundations.

3.1 Indexing Categories

The term “Real spectrum”, when used imprecisely, refers to an object in a category modeling

equivariant C2-spectra where complex vector spaces with real form, which we will define

shortly, are used as indexing objects. These are not C2-representations in the usual sense

but are modules over a real division algebra with a C2-action by automorphisms.

Definition 3.1. A real form W of a complex vector space V is a subspace of the underlying

real vector space VR of V such that the induced map C⊗RW → V is a linear isomorphism.

The C2-structure on a complex vector space with real form V is induced by the complex

conjugation action on C and the trivial actions on V (and R). A real form W of a complex

inner product space V with inner product ⟨−, ●⟩ is a real form of the underlying complex

vector space such that the image of the restriction ⟨−, ●⟩∣W×W is contained in R.

The next definition describes the objects of the various indexing categories.

Definition 3.2. A Real vector space V is a finite or countable dimensional complex in-

ner product space topologized as the colimit of their finite dimensional subspaces with the

Euclidean topology and equipped with a real form and the induced C2-space structure.
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The canonical example of a Real vector space is C∞ identified with C ⊗R R∞. Let us

introduce the categories with Real vector space objects relevant to this work.

Definition 3.3. The C2U -enriched category I c
R has objects Real vector spaces and mor-

phism spaces I c
R(V,W ), i.e., the C2-stable closed subspace of the exponential object W V

consisting of inner product preserving linear maps, also called Real linear isometries with

composition maps arising from being a subcategory of UC2 . The full subcategory of I c
R

consisting of finite-dimensional Real vector spaces is denoted IR.

The categories I c
R and IR are useful tools for describing and producing algebras over

linear isometry operads and are involved in the theory of Thom spectra It is useful to have

notation for the following category.

Definition 3.4. If U is a Real vector space of countable dimension, then it is called a Real

universe and the poset category of finite-dimensional Real subspaces of U is denoted fdSubUR.

We write fdSubR when U = C∞.

The next category can be regarded as a Thom space construction on the previous category.

It is used to index Real LMS spectra. The initials LMS refer to the authors of [47] where

the theory of the corresponding category of equivariant spectra is studied.

Definition 3.5. For every Real universe U , the based TC2- category IU
R is the category with

objects the finite dimensional Real subspaces of U and morphism spaces IU
R (V,W ) = SW−V

when V ⊆ W and IU
R (V,W ) is the singleton otherwise whose composition maps are the

canonical homeomorphisms

IU
R (V,W ) ∧ IU

R (U,V ) = SW−V ∧ SV −U → SW−U = IR(V,W )

obtained from + ∶W −V ×V −U →W −U and the trivial map otherwise. We often write IR

instead of IC∞
R .
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The next category is named after the authors of [53] who characterized orthogonal G-

spectra with an analogous category. It was first used in [30] to construct a model of MUR of

what they call “Real spectra” and we call “Real unitary spectra” to help distinguish models.

Definition 3.6. The Real Mandell–May category JR is the TC2-enriched category with ob-

jects Real vector spaces and morphism spaces JR(V,W ) defined as subspaces of IR(V,W )+∧

SW consisting of the basepoint and pairs (T,w) where w ⊥ imageT . In other words,

JR(V,W ) is the Thom space of the vector bundle on IR(V,W ) that is the orthogo-

nal complement of the canonical image image subbundle of the trivial bundle associated

with W . The composition JR(V,W ) ∧JR(U,V ) → JR(U,W ) is the based map sending

((T,w), (T ′,w′)) ↦ (TT ′,w+Tw′). The Real Mandell–May category is symmetric monoidal

with a symmetric monoidal structure induced by direct sum as an enriched functor and

corresponding vector addition.

3.2 Categories of Real Spectra

Let us begin by describing the various categories of Real spectra. The first is not the simplest,

but it is the best studied, having been treated in [30], as mentioned above.

Definition 3.7. The C2T -enriched category IRSR of Real unitary spectra is the enriched

functor category [JR,TC2]C2T . The category URS inherits a symmetric monoidal structure

from those on JR and TC2 by Day convolution.

We now turn to Real spectra resembling those of the categories discussed in [47].

Definition 3.8. The category of Real LMS prespectra PSR is the C2T -enriched functor

category [IR,TC2]C2T . Analogous categories PS U
R exist where U is a Real universe replac-

ing the role of C∞. as well as similar categories C PS U
R indexed by full subcategories C of

IU
R with set of objects that form cofinal full subcategories of fdSubUR.
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For our purposes, spectra modeled by presheaf categories are insufficient because we

require compatibility with tools from infinite loop space theory and direct access to a highly

structured version of the Thom diagonal.

Definition 3.9. The category of Real LMS spectra SR is the full subcategory of PSR

consisting of X such that for any nested finite-dimensional Real subspaces V ⊆ W ⊆ C∞,

the map X(V ) → ΩW−VX(W ) corresponding by adjunction to the structure map SW−V →

TC2(X(V ),X(W )) of X is a homeomorphism. Similarly, there are categories S U
R of Real

LMS spectra S U
R indexed on other Real universes as well as categories C S U

R spectra indexed

on full subcategories C of I U
R on objects forming a cofinal full subcategory of fdSubUR

The last type of Real LMS spectra described above is essentially canonically identified

with those of the form S U
R .

Proposition 3.10. If C is as in Definition 3.9 then the Real LMS spectrum category indexed

on C is equivalent to and a retract of S U
R via the pullback of the inclusion C → IU

R .

Proof. An inverse equivalence F can be obtained by choosing for every finite dimensional

Real U ⊆ U an object VU of C such that U ⊆ VU and setting F (X)(U) = ΩVU−UX(VU).

A fact similar to the one above justifies an equivalence between Real spectra and genuine

(LMS) C2-spectra, as studied in [47]. This equivalence says nothing about smash products

or the multiplicative aspects of algebra. One of the intentions behind this chapter of our

work is to illustrate the delicate topological structures involved in the multiplicative theory

of Real spectra and to provide convincing and technically accurate reasons for its equivalence

with the multiplicative theory of C2-spectra.

One of the weaknesses of SR is the lack of a canonical smash product. The development of

multiplicative algebra in SR and more sophisticated categories to remedy this issue requires

the establishment of a few facts.
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Notation 3.11. The category N is the poset category associated to the natural numbers N

with its usual order.

Theorem 3.12 ([47]). The inclusion SR → PSR admits a left adjoint LR ∶ PSR → SR

and there are similar left adjoints LR ∶ C PS U
R →S U

R .

Proof. The proof of this result is essentially the same as the one in [47] for LMS G-spectra

indexed by G-representatons. The strategy is to factor the inclusion of categories through

the full subcategory of Real inclusion prespectra. A Real inclusion prespectrum X is a Real

prespectrum such that for any nested finite-dimensional Real subspaces V ⊆ W ⊆ C∞, the

maps X(V ) → ΩW−VX(W ) corresponding by adjunction to the structure map SW−V →

TC2(X(V ),X(W )) of X is, up to isomorphism, the inclusion of a subspace. The proof of

the existence of a left adjoint to the inclusion of the category of Real inclusion prespectra in

Real prespectra is the same as that in the appendix of [47]. The left adjoint L′R of inclusion

of the category of Real LMS spectra in Real inclusion prespectra is described on objects

evaluated on objects by the formula

L′RX(V ) = colimW ∈V /fdSubR Ω
W−VX(W )

where the right-hand side is the colimit of a functor determined by adjunctions from the

structure maps of X. The fact L′RX is actually a Real LMS spectrum is a consequence of

two ingredients. First, the functor Ω(−)−VX(−) is valued in inclusions on morphisms. Second,

there is an interchange law between ΩU and N -indexed colimits (or equivalently, C -indexed

colimits for C admitting a cofinal functor N → C ,) in the subcategory of C2T consisting

of inclusions.

The first ingredient is a consequence of the functors ΩU preserving inclusions. The proof

of this uses the compactness of SU . The second ingredient is a based equivariant version of

[48, A.9.5], where Lewis describes a bijection between the underlying sets of both sides of
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the interchange. The argument that the bijection underlies a homeomorphism is similar to

portions of the argument of [65, 3.8].

Corollary 3.13. The category of LMS Real spectra and its variants are tensored and coten-

sored by TC2.

Proof. The tensoring on a reflective subcategory of a presheaf category can be obtained by

applying the tensoring on the presheaf level followed by the reflection left adjoint. A similar

statement holds for the cotensoring.

Next, we describe the twisted half-smash products following the approach of [22, A],

which are needed to describe the remaining categories of Real spectra we need. The twisted

half-smash product depends on the data of a C2-map α ∶ A → I c
R(U ,U ′) between two Real

universes, which we fix for now.

Definition 3.14. For every finite dimensional V ⊆ U and V ′ ⊆ U ′ let AV,V ′ denote the

pullback as in the following diagram.

AV,V ′ I c
R(V,V ′)

A I c
R(U ,U ′) I c

R(V,U ′)α

pV,V ′

Let TαV,V ′ be the based closed subspace of AV,V ′+ ∧ SV ′ consisting of the basepoint and

pairs (x, v′) such that v′ ⊥ imageα(pV,V ′(x)). In other words, TαV,V ′ is the Thom space

arising from pulling back the vector bundle realizing JR(V,V ′) as a Thom space along the

map AV,V ′ →I c
R(V,V ′).

If V ′′ is a finite-dimensional subspace of U ′ containing V ′, then applying I c
R(V,−) to the

chain of inclusions induces a C2-map f ∶ AV,V ′ → AV,V ′′ and a based C2-map TαV,V ′∧SV ′′−V ′ →

TαV,V ′ sending ((x, v),w)) ↦ (f(x), v +w). Up to adjunction, these are the data of a Real

prespectrum T αV . The Real spectrum MαV is defined as the spectrification LRT αV of

T αV .
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The following result is the Real analogue of [22, A.4.3], proven identically.

Proposition 3.15. Consider the (variant) Real prespectrum maps SW−V ∧ T αW → T αV

corresponding to pullback-induced maps of spaces aW,V,V ′ ∶ AW,V ′ → AV,V ′ with adjoints to

structure based G-maps SW−V ∧ TαW,V ′ → TαV,V ′ sending

(w, (x, v′)) ↦ (aW,V,V ′(x), v′ + (pW,V ′(x))(w)).

Applying LR results in an isomorphism of (variant) Real LMS spectra SW−V ∧MαW →MαV

where ∧ denotes the Real LMS spectrum tensoring.

Proof. Cofinal agreement at the Real pre-spectrum level is leveraged to isomorphism at the

Real LMS spectrum level.

Definition 3.16. The twisted half-smash product of A with Real prespectra α⋉P ∶PS U
R →

PS U ′
R , often written A⋉P (−), sends X to the colimit of the functor fdSubUR → SU ′

R sending

V to X(V ) ∧MαV and nested V ⊆W to the composites

X(V ) ∧MαV →X(V ) ∧ SW−V ∧MαW →X(W ) ∧MαW

with first map arising from Proposition 3.15 and the second map arising from an adjoint to

a structure map of X.

Definition 3.17. The twisted half-smash product of A with Real LMS spectra α⋉(−) ∶S U
R →

S U ′
R , often written A⋉ (−) is the composite LR(α⋉P (−))u, where u is the forgetful functor

to Real prespectra. We usually write A ⋉ (−) for α ⋉ (−). By properties of reflections held

by LR, A ⋉ (−) can be equivalently defined in the same way as A ⋉P (−), with the role of

Real prespectra replaced with the corresponding notions of Real LMS spectra.

Twisted half smash products were originally developed in [47] but we will draw Real

analogues of a few basic results from [22, A], which works from definitions corresponding to
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ours and are proven identically.

Proposition 3.18. ([22, A.6.2]) Let α ∶ A→I c
R(U ,U ′) and β ∶ B →I c

R(U ′,U ′′) be C2-maps

for Real universes U , U ′, and U ′′. If γ ∶ B ×A → I c
R(U ,U ′′) is the composite γ = ○(β,α),

then there is a natural isomorphism in all arguments

B ⋉ (A ⋉X) → (B ×A) ⋉X.

Proof. Unpacking definitions one finds the above isomorphism is induced by isomorphisms

of the form B ⋉MαV →M γV arising from the maps TβV ′,V ′′ ∧ TαV,V ′ → TγV,V ′′ defined by

((b, v′′), (a, v′)) ↦ ((b, a), v′′+β(b)v′). Checking that the natural transformation is a natural

isomorphism is done by reducing to the case of compact A and B and using a cofinality

argument.

Proposition 3.19. ([22, A.5.3]) For a C2-map idU ∶ ∗ →I c
R(U ,U) from the singleton space,

there is a natural isomorphism ∗ ⋉X →X.

With the twisted half-smash product in hand, we can describe the remaining categories

of Real spectra needed.

Definition 3.20. The monad LR on SR is has underlying functor I c
R(C∞,C∞) ⋉ (−) asso-

ciated with the identity map of C2-spaces id ∶ I c
R(C∞,C∞) → I c

R(C∞,C∞) and the monad

structure arises by Propositions 3.18 and 3.19 from this being a map corresponding to the

inclusion of the full subcategory of a single object of I c
R, equivalently regarded as a monoid.

The category of EKMM LR-spectra is the category SR[LR] of algebras over LR.

Convention 3.21. When using the map id ∶ I c
R(U ,U ′) → I c

R(U ,U ′) to form a twisted

half-smash product, we will not explicitly mention the use of id, which our notation already

suppresses.
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Unlike LMS Real spectra, the category of EKMM LR-spectra has a well-behaved but not

symmetric monoidal smash product. As a first step toward the concept, we consider smash

products that join differently indexed categories of LMS Real spectra.

Definition 3.22. Let U ,U ′ be Real universes and let CU and CU ′ be full subcategories of IU
R

and IU ′
R respectively so that their object sets are cofinal in fdSubUR and fdSubU

′

R respectively.

Let CU ,U ′ be the full subcategory of IU⊕U ′
R generated by all V ⊕V ′ where V and V ′ are objects

of CU and CU ′ , respectively.

The external smash products of Real prespectra

∧P ∶ CUPS U
R ×CU ′PS U ′

R → CU ,U ′PS U⊕U ′
R

is defined by

(X∧Y )(V ⊕ V ′) =X(V ) ∧ Y (V ′)

and on morphisms given by the dotted arrow induced by the universal property of quotients

in the commutative diagram below.

CU(V,W ) ×CU ′(V ′,W ′)

SW−V × SW ′−V ′ TC2(X(V ),X(W )) ×TC2(Y (V ′), Y (W ′))

S(W⊕W
′)−(V ⊕V ′) TC2(X(V ) ∧ Y (V ′),X(W ) ∧ Y (W ′))

CU ,U ′(V ⊕ V ′,W ⊕W ′)

q

Definition 3.23. Let U and U ′ be Real universes and CU ,U ′ is the full subcategory generated

by all V ⊕V ′ where V and V ′ are finite-dimensional Real subspaces of U and U ′ respectively.

The external smash product of Real LMS spectra ∧ ∶ S U
R ×S U ′

R → S U⊕U ′
R is defined as the
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composite

S U
R ×S U ′

R PS U
R ×PS U ′

R CU ,U ′PS U⊕U ′
R S U⊕U ′

R
u×u′ ∧P LR

where u and u′ are the right adjoints of the spectrification functors LR.

The external smash product of Real LMS spectra is compatible with twisted half-smash

products.

Proposition 3.24. ([22, A.6.3]) Let U1,U2,U ′1, and U ′2 be Real universes and let α ∶ A →

I c
R(U1,U ′1) and β ∶ B →I c

R(U2,U ′2) be C2-maps. There is a natural isomorphism

(A ×B) ⋉E1∧E2 → (A ⋉E1)∧(B ⋉E2)

in α,β, E1 ∈S U1

R and E2 ∈S U2

R .

We are now ready to define the smash product of spectra needed.

Definition 3.25. The smash product X ∧LR Y of two EKMM LR-spectra is defined via the

coequalizer diagram

(I c
R((C∞)⊕2,C∞) × (I c

R(C∞,C∞) ×I c
R(C∞,C∞))) ⋉ (X∧Y )

I c
R((C∞)⊕2,C∞) ⋉ (X∧Y )

X ∧LR Y

gf

where f and g are described as follows. The map f is induced by functoriality applied to
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the composite map

I c
R((C∞)⊕2,C∞) × (I c

R(C∞,C∞) ×I c
R(C∞,C∞))

I c
R((C∞)⊕2,C∞) ×I c

R((C∞)⊕2, (C∞)⊕2)

I c
R((C∞)⊕2,C∞)

○

id×⊕

, which is also the defining map for which the twisted half smash product in the source of f

is formed. The map g is the composite

(I c
R((C∞)⊕2,C∞) × (I c

R(C∞,C∞) ×I c
R(C∞,C∞))) ⋉ (X∧Y )

I c
R((C∞)⊕2,C∞) ⋉ (((I c

R(C∞,C∞) ×I c
R(C∞,C∞)) ⋉ (X∧Y ))

I c
R((C∞)⊕2,C∞) ⋉ ((I c

R(C∞,C∞) ⋉X)∧(I c
R(C∞,C∞) ⋉ Y ))

I c
R((C∞)⊕2,C∞) ⋉ (X∧Y )

obtained from Propositions 3.18 and 3.24 and the LR actions on X and Y .

Definition 3.26. IfX ∈ TC2 and V ⊆ C∞ is a finite-dimensional Real subspace, the Real shift

desuspension spectrum Σ∞V X is defined by Σ∞V X = LRΣ∞V,PX where Σ∞V,PX(W ) = SW−V ∧X

when V ⊆ W and is the singleton otherwise with structure maps induced by the usual

homeomorphisms relating spheres and their smash products. When V = 0, we write the

suspension Real spectrum of X Σ∞X for Σ∞V X and the sphere spectrum SR is Σ∞S0.

The next proposition gives suspension Real spectra the structure of LR algebras.

Proposition 3.27. ([22, A.5.5]) Let U and U ′ be Real universes and let α ∶ A→I c
R(U ,U ′).
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Then, there is an isomorphism

A ⋉Σ∞X → A+ ∧Σ∞X

natural in α.

Proof. The functors A ⋉ (−) and A ⋉P (−) are left adjoints with right adjoints F [α,−)

and similarly defined F [α,−)P . The former is defined by F [α,−)(V ) = S U ′
R (MαV ,−) and

structure maps induced by the isomorphisms MαV → SW−V ∧MαW and properties of the

tensoring and cotensoring. Composing adjoint functors yields a natural isomorphism

A ⋉Σ∞X = LR(A ⋉P LRΣ
∞
PX) → LR(A ⋉P Σ∞PX).

The defining diagram of A ⋉P Σ∞PX consists of isomorphisms. By evaluating at the Real

vector space 0 we obtain

A ⋉P Σ∞PX →X ∧Mα0

and Mα0 = Σ∞A+ by direct level-wise comparison of T α0 and Σ∞PA+. These facts together

with the observation that suspension spectra are the corresponding tensorings of the sphere

spectrum gives the result.

By virtue of the equivalence of Real LMS spectra and the corresponding C2-spectra SR

can be identified with the sphere spectrum SC2 in the other context, although we emphasize

again that this comparison ignores multiplicative considerations.

Although SR is not a unit for the smash product ∧LR we do have a weak version of the

statement.

Proposition 3.28. ([22, 1.8.3]) There is a natural transformation

λ ∶ SR ∧LR X →X
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of EKMM LR-spectra.

Proof. First note that the construction of ∧L implies ∧L commutes with colimits in either

argument. In particular, every EKMM LR-spectrum being an algebra over a monad has a

canonical resolution by free algebras (by a well-known result in [42], that is easier for most

English speakers to find in [5] ) and it suffices to check naturality on free algebras. By

properties of the twisted half-smash product, we can find an isomorphism

SR ∧L LRX → A ⋉ (SR∧X)

for an explicit map α ∶ A→I c
R((C∞)⊕2,C∞). Let ι2 ∶ C∞ → (C∞)⊕2 be the second argument

inclusion and observe that SR∧X is isomorphic to {ι2} ⋉X. Consequently SR ∧L LRX is

isomorphic to A ⋉ X for a map α′ ∶ A → I c
R(C∞,C∞). The desired natural map on free

algebras is induced by the terminal map of C2-spaces over I c
R(C∞,C∞).

We can finally define our last category of Real spectra.

Definition 3.29. The category MSR of EKMM SR-modules is the full subcategory of EKMM

LR-spectra consisting ofX such that λ ∶ SR∧LRX →X is an isomorphism. The smash product

∧ of EKMM SR-modules is the restriction of ∧LR .

The Real analogue of the remarkable and celebrated work we have reviewed a fraction of

to explain our notions yields the following.

Theorem 3.30. [22] The category of EKMM SR-modules is a C2T -enriched cocomplete

symmetric monoidal category with unit SR, smash product ∧, and left unitor λ. The category

of EKMM LR-spectra is a C2T -enriched cocomplete weak symmetric monoidal category with

product ∧LR.
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3.3 Algebraic Structures in Real Spectra

Since Real EKMM SR-modules form a symmetric monoidal category, the usual notion of

algebras over operads applies. Moreover, the suspension spectrum functor Σ∞ and Σ∞+ =

Σ∞(−)+ can be used to send operads in C2U or C2T to operads in MSR . The following fact

justifies this.

Proposition 3.31. Suspension spectra are SR-modules and Σ∞ ∶ TC2 →MSR is strong sym-

metric monoidal.

The situation is more subtle for Real LMS spectra and EKMM LR-spectra. For the

former, we have an alternative notion of algebra over an operad in UC2 based on the twisted

half smash product. We need the following result to make sense of equivariance axioms for

operadic algebras.

Proposition 3.32 ([47]). Let U be a Real universe and α ∶ Σn → I c
R(U⊕n,U⊕n) be the

permutation map. Note that the permutation map is compatible with composition. Then, for

every X ∈S U
R , Σn acts on X∧n in the sense that X∧n is an algebra over the monad Σn ⋉(−)

with multiplication arising from Proposition 3.18 and compatibility from composition and the

unit map arising from Proposition 3.19 and the inclusion of the identity of Σn.

Proof. We sketch here an original argument from Cole’s definitions, which we have adopted.

By computing the defining colimit of the source by restricting to the cofinal subcategory C

of finite dimensional Real subspaces of the form ⊕n
i=1 Vi in fdSubU

⊕n

R and one can show that

the canonical maps

Mα⊕n
1=1 Vi ⋁

σ∈Σn

Σ∞
⊕

n
i=1 Vσ−1(i)

S0 ⋁
σ∈Σn

⋀
n

i=1Σ
∞
Vσ−1(i)

S0∼ ∼

are isomorphisms by comparing defining Real prespectra. Levelwise comparison yields an
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isomorphism for all Y ∈S U⊕n
R

colimU∈C Σ∞U S
0 ∧ Y (U) Y∼

whenever U ranges over a cofinal full subcategory of fdSubU
⊕n

R . Therefore, the natural (in

C ) isomorphism

(
n

⋀
i=1

X(Vi)) ∧Mα⊕n
1=1 Vi ⋁

σ∈Σn

(
n

⋀
i=1

X(Vi)) ∧⋀
n

i=1Σ
∞
Vσ−1(i)

S0

⋁
σ∈Σn

⋀
n

i=1X(Vσ−1(i)) ∧Σ∞Vσ−1(i)
S0

∼

∼

after passing to colimits yields an isomorphism

Σn ⋉X⊗n → ⋁
σ∈Σn

X

and the action map is the composite of this with the fold map. The remainder of the proof

consists of formal checks given the required facts.

There is a canonical operad that bears a strong relationship to the twisted half-smash

product on which we rely.

Definition 3.33. The Real linear isometries operad LR has spaces

LR(n) =I c
R((C∞)⊕n,C∞)

with Σn
op acting by precomposition with permutations of the copies of C∞. The composition
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is

I c
R((C∞)⊕k,C∞) ×∏

k
i=1 I c

R((C∞)⊕ni ,C∞)

I c
R((C∞)⊕k,C∞) ×I c

R((C∞)⊕∑ni , (C∞)⊕k)

I c
R((C∞)⊕∑ni ,C∞)

id×⊕

○

and the unit is the inclusion of the identity C∞ → C∞.

We can now define operadic algebras in SR. This is a notion necessary to develop the

theory of Thom spectra.

Definition 3.34. Let O be an operad in C2U equipped with a map ϕ ∶ O →LR. An algebra

A over the operad O with respect to ϕ in SR is a Real LMS spectrum A equipped with maps

an ∶ O(n) ⋉A∧n → A

satisfying the following axioms.

1. (Unit) The diagram

∗ ⋉A O(1) ⋉A

A

1O⋉id

a1
f

commutes, where f is the map of Proposition 3.19.
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2. (Associativity) The diagrams

O(k) ⋉⋀
k

i=1 (O(ni) ⋉A∧ni) O(k) ⋉A∧k

O(k) ⋉ (
k

∏
i=1

O(ni) ⋉A∧∑ni)

(O(k) ×
k

∏
i=1

O(ni)) ⋉A∧∑ni

O (
k

∑
i=1

ni) ⋉A∧∑ni A

id⋉⋀ani

ak

g1

g2

γ⋉id

a∑ni

commute for all (ni)ni=1 ∈ ∐N∈NNN where g1 and g2 are maps induced from Propositions

3.24 and 3.18 respectively.

3. (Equivariance) The diagrams

O(n) ⋉ (Σn ⋉A∧n) (O(n) ×Σn) ⋉A∧n (Σn
op ×O(n)) ⋉A∧n

O(n) ⋉A∧n

O(n) ⋉A∧n A

h1

an

h2

an

∼

h3

commute for every n ∈ N and σ ∈ Σn where h1 and h3 are action maps (with h3

well-defined since ϕ is an operad map) and h2 is the map of Proposition 3.18.

A morphism of algebras over operads is a morphism of LMS Real spectra that induces

commutative squares with each structure map pair of the source and target. The category

of O-algebras (with respect to ϕ) is denoted SR[O].

The following construction is useful for finding a well-behaved replacement of an operad
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with another over the linear isometries operad.

Definition 3.35. If C is a symmetric monoidal category, O and P are operads in C , then

there is an operad O ⊗∣∣P called the parallel product of O and P described as follows. The

underlying collection is O ⊗∣∣ P(n) = O(n) ⊗P(n) with the diagonal Σn
op action. The

composition is defined by using the braidings and associators to sort factors of the source

and apply the compositions of O and P.

Convention 3.36. The operad O ×∣∣ LR is regarded as an operad over LR via the second

projection.

Another way to realize operads in UC2 in the context of spectra is by the suspension

spectrum.

Proposition 3.37. The functors Σ∞(−)+ ∶ UC2 → SR[LR] and Σ∞(−)+ ∶ UC2 → MSR are

strong symmetric monoidal and consequently induce functors on corresponding categories of

operads and algebras.

The utility of these constructions is noted in [20, 3.5.i]. It is stated there, and appears to

have been regarded as folklore beforehand, that the categories SR[LR][O] and SR[O ×∣∣LR]

are equivalent because of an argument that compares the monad OLR with the monad for

free O ×LR-algebras. Unfortunately, the statement is incorrect because of the necessity of

the pushout of Definition 2.19 in the weak symmetric monoidal context. Nevertheless, the

difference between the two is a mild technical point, and we have the following relationship

implied by the relationships between respective free algebras.

Proposition 3.38. The category SR[LR][O] is equivalent to a reflective subcategory of

SR[O ×∣∣LR].

With the standard model structures on SR[LR][O] and SR[O ×∣∣ LR], the inclusion

functor of 3.38 is a right Quillen equivalence.
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We do not describe any of the comparison functors of our various categories of spectra

and operadic algebras in this document, but note that all the ideas and definitions needed

parallel material found in the existing work of [20, 30, 53]. In particular, ideas of [30, B] are

needed to establish model categorical structures for algebras over equivariant operads. The

indexed smash product in that setting has a reformulation that applies to ours. One simply

takes the indexed smash product as a non-equivariant object to obtain analogues of Real

spectra that are TC2×C2 valued functors from an enriched category on which the left C2 factor

acts trivially on mapping spaces and then applies the forgetful functor along the diagonal

subgroup. We also note that the construction of a model structure on operads SR[O] is

needed considering the non-equivalence of categories of Proposition 3.38.

It also appears that we need mixed model structures for Real LMS spectra, LR-spectra,

and EKMM SR modules in the sense of [18] so that the cofibrant objects in the mixed

structure are objects homotopy equivalent to the cofibrant objects of the standard structure.

These model structures may be necessary for applying space-level results about the May

delooping machine of [26] to algebras over operads in EKMM SR-modules because the free

algebra functors for relevant operads only preserve the mixed cofibrancy notion.

3.4 Fujii–Landweber Real Bordism

We now summarize the relevant aspects of the Real analogue of the classical highly structured

theory of Thom spectra from [47]. The proofs apply verbatim to our situation after replacing

the corresponding categories and objects.

We have a functor UR(−) ∶ I c
R → TC2 such that UR(V ) is the unitary group of V .

Abusing notation, we also use UR to denote UR(C∞). The space BH denotes the geometric

realization of the simplicial bar construction ∣B(∗,H,∗)∣ on a topological monoid H, and

E∣H denotes ∣B(∗,H,H)∣ similarly. (We use this unusual notation because BUR is used later

for a C2-space homotopy equivalent but not homeomorphic to BUR.) The category I c
R is
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symmetric monoidal as a C2U -enriched category with direct sum acting as the symmetric

monoidal product. The functors UR(−), BUR(−), and E∣UR are lax symmetric monoidal

in the enriched sense and and this structure allows one to define actions of LR on their

evaluations at C∞. Such functors are called I c
R-FCPs.

Before proceeding with a discussion of Thom spectra, let us introduce definitive Real

models of MUR, starting from [30].

Definition 3.39. The Real unitary Real bordism spectrum MUR is the functor JR → TC2

with MUR(V ) = B(∗, (UR(V ))+, SV ) is a two-sided bar construction for the based monoid

object (UR(V ))+ acting on SV in the canoncial manner. On morphisms, the map is adjoint

to the based C2-map

JR(V,W ) → TC2(B(∗, (UR(V ))+, SV ),B(∗, (UR(W ))+, SW ))

that can be described simplicially by sending (T, v) to the map that applies UR(T ) to every

UR(V ) coordinate of the source and v + T (−) to the V coordinate.

For a well-behaved Thom spectrum functor, we must look to Real prespectra or Real

LMS spectra. The analogue of MUR is not difficult to produce.

Definition 3.40. The Real prespectrum MUP
R is composite of IR →JR and MUR. The

Real LMS spectrum MULMS
R is LRMUP

R .

In addition, the EKMM SR-module MUEKMM
R is SR ∧LR MULMS

R (although we will not

justify this construction here) and another model obtained from MUR by a (derived) left

Quillen functor IRSR → MSR . With their corresponding algebra over operad structures,

over Comm or LR in the various senses depending on the setting, each of these models can

and needs to be compared by following the techniques of [53].

Next, we describe a functor that assigns a Thom spectrum to a C2-map f ∶ X → BUR.

Although the theory has a few more minor technicalities, one can generalize this as in the
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non-equivariant theory of Thom spectra of [47] to a functor assigning Thom spectrum to

a map f ∶ X → BF where F is the colimit of the subspaces of the ΩV SV consisting of

non-equivariant homotopy automorphisms of SV .

Definition 3.41. Let f ∶ X → ϕ∗BUR be a map of O-algebras where ϕ ∶ O → LR is an

operad map and ϕ∗ is the forgetful functor. Then, the Thom Real pre-spectrum MfP is

defined by setting MfP(V ) to be the coequalizer

UR(V )op+ × (X ×BUR(V ) E∣UR(V ))+ ∧ SV

(X ×BUR(V ) E∣UR(V ))+ ∧ SV

MfP(V )

πa

where π is the projection and a is the action map with each t ∈ UR(V ) acts on the (X ×BUR

E∣UR)+ factor by multiplication by UR and on SV via its action on V . When V ⊆ W ,

the structure map SW−V → TC2(MfP(V ),MfP(W )) is defined as the based map sending

w ∈W − V to the map defined as the geometric realization of a simplicial map that results

from applying the inclusion UR(V ) → UR(W ) and adding w to the last coordinate (unless it

is the basepoint). The Thom spectrum Mf is LRMfP .

The operad action map O(n) ⋉Mf∧n →Mf is constructed up to canonical isomorphism

by applying LR to a map O(n)⋉PMfP∧n →Mf constructed using the universal property of

colimit for the appropriate diagram with objects ranging over the data of compact subspaces

K ⊆ O(n), finite dimensional subspaces V1, . . . , Vn in C∞ with cocone maps

(
n

⋀
i=1

MfP(Vi)) ∧M (ϕn∣K)⊕n
i=1 Vi
→MfP
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induced by maps

hK;V1,...,Vn ∶ (
n

⋀
i=1

MfP(Vi)) ∧Σ∞⊕n
i=1 Wi,P

T (ϕn∣K)⊕n
i=1 Vi,W →MfP

by way of a canonical isomorphism LRΣ∞W,PT (ϕn∣K)⊕n
i=1 Vi,W →M (ϕn∣K)⊕n

i=1 Vi
for sufficiently

large W (which can be chosen to be minimal to specify a unique map). The map hK,V1,...,Vk

is the based map arising from a simplicial map that applies the O-algebra structure map to

X and UR coordinates (after identifying every UR(V ) with a subspace of UR(C∞) and if the

vector coordinates together are listed in order as ((vi)ni=1,w) for a point with K coordinate

k, the vector coordinate of the output is ϕn(k)(v1 ⊕ . . .⊕ vn) +w.

An additional compatibility of operad action maps in the above definition is that O(n)⋉

Mf∧n factors through M(fan), where an ∶ O(n) ×Xn → X is the action map on X. The

main utility of this notion of Thom spectrum is a highly structured model of the Thom

diagonal.

Proposition 3.42. The commutative triangle

BUR BUR ×BUR

BUR

∆

π2
id

with π1 the second projection induces a map M id→Mπ2 of Thom spectra which is

MULMS
R → BUR+ ∧MULMS

R

after composing with isomorphisms.

It is important for this project to transport this Thom diagonal to the Real EKMM

SR-module setting. The fact that BUR+ appears in a tensoring rather than as part of a

suspension spectrum is a technically significant point and aids in keeping the factors of
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BUR+∧MULMS
R separate as Quillen equivalences are applied to find highly structured Thom

diagonals in other models.
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Chapter 4

Strictification

Recall the V -little disks operad DV of Example 2.22 and that V -fold loop spaces as exam-

ples of its algebras in UG. The spectrum MUEKMM
R and other commutative ring spectra

in symmetric monoidal categories are DV -algebras as well. The [20] argument begins with

a cohomological Thom isomorphism theorem for DV -algebras in spectra in which the target

is a DV ⊕R algebra. It is cumbersome to replicate the argument equivariantly without devel-

oping an equivariant analogue to the result of [17] which allows one to replace algebras (in

symmetric monoidal categories enriched by U ) over little n + 1-cubes operad with monoid

objects in the categories of algebras over little n-cubes with a canonical symmetric monoidal

structure that commutes with the forgetful functor to the underlying category.

In this chapter, we demonstrate an equivariant version of the result that applies for

all topological groups G using concrete methods. We will also prove equivalences between

operads similar to DV , including the Steiner operads, which have applications in infinite

loop space theory. Recent work of Szczesny [66] has compared little disk operads and their

perpendicular products, in our lexicon, in the setting of colored operads.
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4.1 Geometric Operads

Mostly for exposition, we begin by defining geometric operads and follow that with several

examples that will be shown to be EV operads. In this chapter, G refers to an arbitrary

topological group.

Definition 4.1. An operad O in UG is unital if O(0) ≃ ∗.

The following notion can be defined for arbitrary unital operads and implicitly appears

as part of a result of Boardman and Vogt [14], which we recall as Theorem 4.32 below.

Definition 4.2. Let O be a unital operad in UG. The disjointness relation ⊥=⊥O associated

to O is a relation on O(1) defined by x ⊥ y if and only if there exists a z ∈ O(2) such that

γ(z; 1,∗) = x and γ(z;∗,1) = y.

Roughly speaking, a geometric operad is a unital operad that arises from a monoid and

a well-behaved binary relation.

Definition 4.3. Let M be a monoid in UG and ⊥ be a binary relation on M that satisfies

the following properties for all a, b, c ∈M .

1. (Symmetry) If a ⊥ b, then b ⊥ a.

2. (Left invariance) If a ⊥ b, then ca ⊥ cb.

3. (Right stability) If a ⊥ b, then a ⊥ bc.

4. (Non-degeneracy) The condition 1 /⊥ a holds.

Then the geometric operad OM associated to (M,⊥) has M (n) given by the G × Σn
op-

invariant subspace of Mn consisting of (a1, . . . , an) such that for distinct i, j, the relation

ai ⊥ aj holds. The unit is the identity element of M regarded as OM(1). The composition is

defined in the same way as the composition of DV was in Example 2.22. A geometric operad

is an operad O equipped with data (M,⊥) and an isomorphism ϕ ∶ O → OM .
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Non-degeneracy is included in the above definition because it guarantees that symmetric

group actions on the spaces of the operad are free and because the patterns of reasoning we

use in concrete situations working with examples rely on it. Note that if M is the geometric

operad associated to (M,⊥), then M (1) =M with the operad composition and unit agreeing

with those of the monoid.

The fundamental example of operads used in our work are the little disk operads which

we recall again here with some additional notation.

Example 4.4. Let V be an orthogonal G-representation and let D(V ) denote the open

unit disk in V . The subspace of UG(D(V ),D(V )) consisting of d[c, r] for c ∈ D(V ) and

r ∈ (0,1−∣∣c∣∣] defined by d[c, r](x) = c+rx forms a submonoid DV (1). The relation ⊥ defined

by f ⊥ g if and only if the image of f and the image of g are disjoint satisfies the four

necessary properties, and there is a corresponding geometric operad DV .

A related family of operads is the Steiner operads, first studied in [64].

Example 4.5. Let V be an orthogonal G-representation and let R(V ) be the submonoid of

UG(V,V ) consisting of embeddings f ∶ V → V such that

∣∣f(v) − f(w)∣∣ ≤ ∣∣v −w∣∣ (4.1)

for every pair of vectors v,w ∈ V , regarded as a based space with the identity as the basepoint.

Let KV (1), the space of Steiner paths for V , be the space of based maps I → R(V ) where

the unit interval I = [0,1] is given the basepoint 1 with the pointwise multiplication monoid

structure inherited from R(V ). The relation ⊥ defined by f ⊥ g if and only if f(0) and g(0)

have disjoint images satisfies the four necessary properties. These give rise to a geometric

operad KV called the Steiner operad for V .

A map f satisfying inequality 4.1 is also called Lipschitz with constant 1. We will use

basic properties of the relationship between differentiable and Lipschitz functions in Section

42



4.4.

Recall the parallel product of operads of Definition 3.35. Geometric operads are closed

under the parallel product, and we will record this fact here.

Proposition 4.6. Suppose (Oα)α∈A is a family of geometric operands. Then, the parallel

product ∏∥α∈A Oα is the geometric operad associated to (∏α∈A Oα(1),⊥∥) where (xα)α∈A ⊥∥

(yα)α∈A if and only if for all α ∈ A, xα ⊥Oα yα.

However, there is another well-behaved product for geometric operads that we will define

and use.

Definition 4.7. Suppose (Oα)α∈A is a family of geometric operads. The monoid ∏α∈A Oα(1)

has a binary relation ⊥⊥ defined by (xα)α∈A ⊥⊥ (yα)α∈A if and only if there exists an α ∈ A

such that xα ⊥Oα yα. Then the perpendicular product of (Oα)α∈A is the geometric operad

∏⊥α∈A Oα.

Another way of producing new geometric operads from old ones is as follows.

Proposition 4.8. Suppose O is the geometric operad associated to (M,⊥) and f ∶ N →M is

a map of monoid objects. If f∗ ⊥ is defined by xf∗ ⊥ y if and only if f(x) ⊥ f(y), then there

is a geometric operad P associated to (N,⊥) and a morphism of operads P → O extending

the map of unary operations f .

The geometric operad structure on the Steiner operads can be understood in this way by

mapping to a similarly defined geometric operad of tuples of disjoint embeddings V → V .

4.2 Boardman–Vogt Tensor Products

In this section, we review the Boardman–Vogt tensor product introduced in [13], state the

main result of the chapter, and discuss its main application.

We mention the following basic bit of relevant theory to help define the Boardman–Vogt

tensor product.
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Proposition 4.9. In a cocomplete symmetric monoidal category C , there is a left adjoint

FOp ∶ Coll(C ) → Op(C ) to the forgetful functor and Op(C ) is cocomplete.

Proof. The proof is routine after using the result of [41] reinterpreting operads as monoids

for a certain monoidal product on Coll(C ) with unit UColl.

Definition 4.10. The Boardman–Vogt tensor product O ⊗BV P of two operads O and P in

a cocomplete cartesian monoidal category C is defined as a coequalizer diagram of the form

FOp

⎛
⎝
Σn × ∐

(m1,m2)∈N2∶m1m2=n

O(m1) ×P(m2)
⎞
⎠

O∐P O ⊗BV P
f

g

where f is induced by the map

O(m1) ×P(m2)

O(m1) ×P(m2)m1

O ∐P(m1) ×O ∐P(m2)m1

O ∐P(m1m2)

id×∆

γ

ι1×(ι2)
m1

and g is induced by the map

O(m1) ×P(m2)

P(m1) ×O(m2)

P(m1) ×O(m2)m1

O ∐P(m2) ×O ∐P(m1)m2

O ∐P(m1m2)

∼

γ

id×∆

ι2×(ι1)
m2
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on underlying G-spaces of collections. More generally, if C is symmetric monoidal and O

and P are cocommutative comonoid objects in Op(C ) with respect to the parallel product

(⊗∣∣) of operads, then O ⊗BV P is defined in the same way with × replaced with ⊗.

Our interest in the Boardman-Vogt tensor product lies in the following result.

Proposition 4.11. Let C be a cocomplete symmetric monoidal category. Then Ass and

Comm are canonically cocommutative comonoids. For any cocommutative comonoid O in

Op(C ) with respect to ⊗∣∣, C [O] is symmetric monoidal with monoidal product X ⊗Y lifting

the C monoidal product with the action maps given as the composites

O(n) ⊗ (X ⊗ Y )⊗n

(O(n) ⊗O(n)) ⊗ (X ⊗ Y )⊗n

(O(n) ⊗X⊗n) ⊗ (O(n) ⊗ Y ⊗n)

X ⊗ Y

∆⊗id

f

γ

with f being a rearrangement of factors. The category of monoids in this symmetric monoidal

structure is equivalent to the category C [O ⊗BV Ass].

Our work here in spaces will be useful for work in symmetric monoidal categories of

spectra because of the following elementary categorical fact.

Proposition 4.12. Colimit -preserving strong symmetric monoidal functors induce functors

that preserve cocommutative coalgebras in operads, preserve ⊗BV between pairs of them, and

preserves Ass .
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4.3 EV Operads

The notion of equivalence of operads in GU we use is that of what we name here a Strøm

weak equivalence, a stronger notion than the standard one developed in [27] obtained by

asking for levelwise equivariant weak equivalences on H fixed point sets for graph subgroups

(as they are called in [10]) of G × Σn
op. The Strøm weak equivalences are also defined in

greater generality.

Definition 4.13. A Strøm weak equivalence of operads ϕ ∶ O →P in GU is a morphism of

operads such that each n ≠ 1, ϕn ∶ O(n) →P(n) is a homotopy equivalence in the category

(G×Σn
op)U and O(1) →P(1) is a homotopy equivalence in (G×Σ1

op)TG between spaces

based by respective operad identities.

The relevance of this definition lies in the fact that change of operads behaves better in

the topologically sensitive settings, especially the Real LMS and EKMM SR-module settings

in which we are interested. Change of operads arising from a strong symmetric monoidal

functor from UG by a Strøm weak equivalence will induce a Quillen equivalence in any

reasonable setting. Changes of operads that are Quillen equivalences compatible with the

Thom diagonal are needed, and the extra strength of our equivalences will be useful to

maintain control over the two smash factors of the target.

With our notion of equivalence fixed, we can define the notion of an EV -operad.

Definition 4.14. An operad O is an EV operad (with respect to Strøm weak equivalences)

if and only if there exist operads O1, . . . ,On (with n odd, for convenience in this statement)

and a zig-zag of morphisms of operads

O ← O1 → . . .← On → DV

such that each morphism is a Strøm weak equivalence.
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A technical detail that should be considered is whether for an EV operad O (in our

sense), the operad Σ∞O+ has category of algebras equivalent to the category of algebras of

a cofibrant replacement for an appropriate model category on operads in MSR .

The main result of this chapter can now be stated.

Theorem 4.15. The operad Ass ⊗BV DV is an EV ⊕R operad.

We prove this from first principles in the remainder of the chapter.

4.4 From Little Disks to Steiner Paths

The goal of this section is to prove the following two results.

Theorem 4.16. Let V be a finite-dimensional orthogonal G-representation. Then, the

Steiner operad KV is an EV operad.

Theorem 4.17. Let (Vℓ)mℓ=1 be a finite family of orthogonal G-representations. Then, the

perpendicular product ∏⊥1≤ℓ≤m DVℓ
is an E⊕1≤ℓ≤m Vℓ

operad.

Our first task will be to construct and describe intermediate operads for use in zig-zags.

We work with a family (Vℓ)mℓ=1 of orthogonal G-representations, and statements for a single

vector space V are provided for a notationally simple and essentially comprehensive case.

We must relate ⊕m
ℓ=1 Vℓ to the cartesian product of disks ∏m

ℓ=1D(Vℓ) to relate the operands

to which they correspond. Let ζ ∶ ⊕m
ℓ=1 Vℓ →∏m

ℓ=1D(Vℓ) be the diffeomorphism given by

ζ(u) =
⎛
⎝

1√
1 + ∣∣u1∣∣2

u1, . . . ,
1√

1 + ∣∣um∣∣2
um
⎞
⎠

(4.2)

for all direct sum decompositions u = (u1 . . . um) with each uℓ ∈ Vℓ. This is indeed invertible

with inverse

ζ−1(v) =
⎛
⎝

1√
1 − ∣∣v1∣∣2

v1, . . . ,
1√

1 − ∣∣vm∣∣2
vm
⎞
⎠
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for all direct sum decompositions of v = (v1, . . . , vm) ∈ ∏m
ℓ=1D(Vℓ). This ζ is a generalization

of the map used in Example 2.23 to establish V -fold loop spaces are algebras over DV . For

any orthogonal G-representaion V , we will also similarly refer to V → D(V ) defined by

v ↦ 1√
1+∣∣u1∣∣2

u1 as ζ.

The following notion of a sufficiently small product of little disks will be used to form

intermediate operads in our zig-zag.

Definition 4.18. For an orthogonal G-representation V , a ζ-little V -disk is an element

d ∈ DV (1) such that

∣∣ζ−1dζ(v) − ζ−1dζ(w)∣∣ ≤ ∣∣v −w∣∣. (4.3)

for all v,w ∈ V . The subspace of DV (1) consisting of ζ-little V disks is denoted D ζ
V (1).

We warm up by establishing some of the basic point-set topology of the subspace.

Proposition 4.19. For any orthogonal G-representation V , the subspace of ζ-little V disks

is G-stable and closed. The subspace ∏⊥1≤i≤m D ζ
Vi
(1) (which will earn its name before the end

of the section) of ∏m
i=1 DVi

(1) = ∏⊥1≤i≤m DVi
(1) consisting of d1 × . . .× dm where di is a ζ-little

Vi-disk that is G-stable and closed. For every d ∈ ∏⊥1≤i≤m D ζ
Vi
(1), ζ−1dζ satisfies the inequality

that appears as 4.3.

Proof. The group G acts by isometries on V and D(V ). For every pair of points v,w ∈ V ,

both sides of the inequality 4.3 are continuous in d ∈ UG(D(V ),D(V )). Since D(V ) is locally

compact and Hausdorff, UG(D(V ),D(V )) has the compact-open topology, and thus DV (1)

can be seen to be a closed subspace by the usual methods. The claims on products of disks

follow from properties of products. The last claim follows because distance-reducing maps

of m metric spaces commute with the ℓ2 product metric functor.

There is an alternative proof of the above proposition replacing the discussion of the

topology of DV (1) with the following characterization.
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Proposition 4.20. For any G-representation V , there is a homeomorphism

DV (1) → {(c, r) ∶ c ∈ D(V ), r ∈ (0,1 − ∣∣c∣∣]} ⊆ D(V ) × (0,1].

such that

d↦ (d(0),2∣∣d(1
2
v) − d(0)∣∣)

for any unit vector v ∈ V . This map is the inverse of (c, r) ↦ d[c, r]. This induces a

homeomorphism on products ∏⊥1≤i≤m DVi
(1) → {(c1, r1, . . . , cn, rn) ∶ ci ∈ D(Vi) and ri ∈ (0,1 −

∣∣ci∣∣]}

Proof. In the case of a single representation, fixing a choice for the vector v helps to prove

the continuity of the map. The continuity of the inverse map follows by universal property.

The product of homeomorphisms is a homeomorphism.

We now turn our attention to characterizing the ζ-little V -disks among all little V -disks.

We begin by checking a crucial algebraic property.

Lemma 4.21. The subspace D ζ
V (1) of DV (1) is closed under the monoid operation, compo-

sition. This operation is described by the equation

d[c1, r1]d[c2, r2] = d[c1 + r1c2, r1r2]

for all c1, c2 ∈ D(V ), r1 ∈ (0,1 − ∣∣c1∣∣], and r2 ∈ (0,1 − ∣∣c2∣∣]. The subspace ∏⊥1≤i≤m D ζ
Vi
(1) of

∏⊥1≤i≤m DVi
(1) is closed under the monoid operation.

Proof. If d and d′ are ζ-little V -disks then ζ−1dd′ζ = (ζ−1dζ)(ζ−1d′ζ) and inequality 4.23 can

be applied for d and d′ to obtain it for dd′. This conclusion passes to products. The explicit
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formula for products of little disks is checked by

d[c1, r1]d[c2, r2](p) = d[c1, r1](c2 + r2p)

=c1 + r1(c2 + r2p)

=(c1 + r1c2) + r1r2p

= d[c1 + r1c2, r1r2](p)

for every p ∈ D(V ).

The next proposition provides some elementary examples and closure properties of ζ-

little V -disks. Every little V -disk centered at the origin and every little V -disk smaller than

a ζ-little V disk with the same center is a ζ little V -disk.

Lemma 4.22. For a G-representation V and for every r ∈ (0,1], d[0, r] ∈ D ζ
V (1). If 0 < r′ ≤

r ≤ 1, and c ∈ D(V ) is such that d[c, r] ∈ D ζ
V (1), then d[c, r′] ∈ D

ζ
V (1).

More generally, for every (r1, . . . , rm) ∈ (0,1]m, d[0, r1]× . . .×d[0, rm] ∈ ∏⊥1≤i≤m D ζ
Vi
(1). If

for each i between 1 and m, 0 < r′i ≤ ri ≤ 1 and ci ∈ D(Vi) is such that d[c1, r1]×. . .×d[cm, rm] ∈

∏⊥1≤i≤m D ζ
Vi
(1), then d[c1, r′1] × . . . × d[cm, r′m] ∈ ∏⊥1≤i≤m D ζ

Vi
(1)

Proof. For every non-zero p ∈ V , the derivative D(ζ−1d0,rζ)p is a symmetric linear operator

with eigenvalue r(1+(1−r2)∣∣p∣∣2)−3/2 on eigenspace Rp and eigenvalue r(1+(1−r2)∣∣p∣∣2)−1/2

on the eigenspace (Rp)⊥. Because these eigenvalues are positive and bounded above by 1

and V is convex, the first claim of the result follows. The claims on the cartesian product

follow similarly by eigenspace decompositions of the derivative on each Vi.

The second conclusion follows from lemma 4.21 and the first because when dc,r is a ζ-little

disk and 0 < r′ ≤ r, the identity d[c, r′] = d[c, r]d[0, r′/r] holds. In the case of the product

one composes on the right with d[0, r′1, r1] × . . . × d[r′m/rm].

We employ more analysis to find sufficiently many ζ-little V -disks and begin with a useful

inequality. The strategy of the proof repeats the strategy of Lemma 4.22.
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Lemma 4.23. The maps ζ ∶ V → D(V ) for an orthogonal G-representation V and ζ ∶

⊕m
i=1 Vi →∏m

i=1D(Vi) decrease distances, i.e.

∣∣ζ(v) − ζ(w)∣∣ ≤ ∣∣v −w∣∣

for all v,w in the domain of ζ.

Proof. We prove this for the case of V1, . . . , Vm. The same proof applies to V as a list of

length 1. The Fréchet derivative of ζ at a point p = (p1, . . . , pm), Dζp, is a symmetric linear

operator with eigenvalue (1 + ∣∣pi∣∣2)−3/2 for eigenspace Rpi (when pi ≠ 0) and eigenvalue

(1+∣∣pi∣∣2)−1/2 for eigenspace (Rpi)⊥Vi , with each in the interval (0,1] Since ⊕m
i=1 Vi is convex

and open in itself, ζ is Lipschitz with constant 1.

Computing minimal Lipschitz constants for little V -disks or finding that there are none

is a difficult geometric task. Rather than doing this, we use the next two propositions to

argue enough ζ-little V -disks exist for our purposes.

Lemma 4.24. The evaluations at the origin

D ζ
V (1) → D(V ) and more generally ∏

1≤i≤m

D ζ
Vi
(1) →

m

∏
i=1

D(V )

, sending d ↦ d(0) and d1 × . . . dm ↦ d1(0) × . . . × dm(0) have a G-equivariant continuous

section.

Proof. It suffices to consider the case of a single V by the universal property of products.

For c ∈ D(V ), we define

r(c) =min

⎧⎪⎪⎨⎪⎪⎩

1 − ∣∣c∣∣
2

,(1 − (1 + ∣∣c∣∣
2
)
2

)
3/2⎫⎪⎪⎬⎪⎪⎭

.

It suffices to show by proposition 4.20 and continiuty of r(c) in the variable c ∈ D(V ) that

dc,r c is a ζ-little V -disk because G acts orthogonally.
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The restriction ζ̃−1 of ζ−1 to the compact ball BV (c, 1−∣∣c∣∣2 ) has derivative D(ζ̃−1)p at

p ∈ D(V ) which is symmetric everywhere with maximal eigenvalue (1 − (1+∣∣p∣∣2 )2)−3/2. This

eigenvalue depends only on and increases in ∣∣p∣∣, which is maximized at 1+∣∣c∣∣
2 c. Because

the domain BV (c, 1−∣∣c∣∣2 ) is convex and open in D(V ), it follows that ζ̃−1 is Lipschitz with

constant (1 − (1+∣∣c∣∣2 )2)3/2.

We have a codomain restriction ̃d[c, r(c)] ∶ D(V ) → BV (c, 1−∣∣c∣∣2 ) of d[c, r(c)]. By the above

analysis and lemma 4.23 the product of Lipschitz constants of the factors of ζ̃−1 ̃d[c, r(c)]ζ =

ζ−1dw,rwζ gives a Lipschitz constant of at most 1 for the composite, as desired.

Proposition 4.25. If d[c, r] ∈ D ζ
V (1) and c′ ∈ V satisfies ∣∣c′∣∣ ≤ ∣∣c∣∣, then d[c′, r] ∈ D ζ

V (1). If

d[c1, r1] × . . .× d[cn, rn] ∈ ∏⊥1≤i≤n DVi
(1) and ∣∣c′i∣∣ < ∣∣ci∣∣ for all i, then d[c1, r′1] × . . .× d[cn, r′n].

Proof. The case of products follows from the case of a single orthogonal G-representation V

using the ℓ2 functoriality trick.

Let p ∈ V be arbitrary aside from the finite number of exceptions to the claims we make

in our argument. Our goal is to compare D(ζ−1dc′,rζ)p to D(ζ−1dc,rζ)p′ for a well-chosen

p′ ∈ V . We assume dc′,rζ(p) ≠ 0 and note that at most one element of V is excluded in this

way. Let c′′ be the intersection of the ray beginning at c′ and extending in the direction

parallel to the ray from 0 to ζ(p) with the sphere of radius ∣∣c∣∣ centered at 0. Let T ∶ V → V

be a (not neccessarily G-equivariant) orthogonal linear isomorphism such that Tc′′ = c and

take p′ = T −1p.

We will use a few basic relevant facts. First note that D(dc′,r)y = rid =D(dc′′,r)y for each

y ∈ D(V ). Let T̃ ∶ D(V ) → D(V ). Then T̃ ζ = ζT̃ , T̃ dc′′,r = dc,rT̃ , and T =DTx for any x ∈ V .

The construction of c′′ implies dc′′,rζ(p) = adc,rp for some a ≥ 1. This implies that

D(ζ−1)dc′,rζ(p) and D(ζ−1)dc′′,rζ(p) have the same eigenspaces, with corresponding eigenvalues

on the latter greater than those of the former. This yields the crucial inequality

∣∣Dζ−1dc′,rζ(p)w∣∣ ≤ ∣∣Dζ
−1
dc′′,rζ(p)

w∣∣
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for every w ∈ V .

Putting all these pieces together we have

∣∣D(ζ−1dc′,rζ)pv∣∣ = ∣∣D(ζ−1)dc′,rζ(p)D(dc′′,r)ζ(p)Dζpv∣∣

≤ ∣∣D(ζ−1)dc′′,rζ(p)D(dc′′,r)ζ(p)Dζpv∣∣

= ∣∣D(ζ−1dc′′,rζT )p′T −1v∣∣

= ∣∣D(Tζ−1dc,rζ)p′′T −1v∣∣

= ∣∣TD(ζ−1dc,rζ)p′T −1v∣∣

= ∣∣D(ζ−1dc,rζ)p′T −1v∣∣

for all v ∈ V and ∣∣T −1v∣∣ = ∣∣v∣∣. From this and the convexity of V , we can conclude that the

minimal Lipschitz constant of ζ−1dc′,rζ is no more than the minimal Lipschitz constant of

ζ−1dc,rζ, which is bounded above by 1, by hypothesis. We can extend these conclusions by

continuity to the excluded p (when it exists) or provide a similar argument. The conclusion

follows.

This completes our focused study of D ζ
V (1) and more generally ∏⊥1≤i≤m D ζ

Vi
(1). The space

Dζ
V (1), as the notation suggests, is the space of unary operations of the operad defined next.

Definition 4.26. For an orthogonalG-representation V , the ζ-little V -disks operad D ζ
V is the

geometric operad for the submonoid D ζ
V (1) of DV (1) with the restriction of the disjointness

relation of DV as in proposition 4.8. The operad ∏⊥1≤i≤m D ζ
Vi

is defined as in 4.7.

Proposition 4.27. For each n, in the commutative squares of inclusions

D ζ
V (n) DV (n) ∏⊥1≤i≤m D ζ

V (n) ∏⊥1≤i≤m DV (n)

D ζ
V (1)n DV (1)n (∏⊥1≤i≤m D ζ

V (1))n (∏⊥1≤i≤m DV (1))n

each map is the inclusion of a closed subset.
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Proof. The ⊥ relation for DV is closed, as can be checked with Proposition 4.20 since dc1,r1 ⊥

dc2,r2 if and only if r1 + r2 ≤ ∣∣c1 − c2∣∣. Since DV (1) is locally compact Hausdorff, DV (1)n

has the ordinary product topology identified with a Euclidean topology and DV (n) is the

intersection of closed sets corresponding to ⊥ holding for each pair of coordinates. The

product of the closed sets D ζ
V (1)n ⊆ DV (1)n is closed and its intersection with the subspace

DV (n) is also closed.

Definition 4.28. For a G-space X, F (X,n) denotes the configuration G-space of n distinct

points in X. That is, F (X,n) is the G-invariant open subspace of (x1, . . . , xn) ∈X such that

xi ≠ xj for all pairs of indices i, j with i ≠ j.

Proposition 4.29. The inclusion map

D ζ
V → DV

or more generally,
⊥

∏
1≤i≤m

D ζ
Vi
→

⊥

∏
1≤i≤m

DVi

is a Strøm weak equivalences of operads. For every n ∈ N, there is a commutative diagram

∏⊥1≤i≤n D ζ
Vi
(n) ∏⊥1≤i≤n DVi

(n)

F (∏1≤i≤nD(Vi), n)

⊆

ϕ1 ϕ2

in G×Σn
op-spaces corresponding to the evaluation at the origins of the little disks, and each

map in the diagram is a G ×Σn
op-equivariant homotopy equivalence.

Proof. The first step of this proof is that ϕ1 has a section ψ1. It follows from this that ϕ2

has a section ψ2 such that the restriction of ψ2 to D ζ
V (n) is the inclusion composed with ψ2.

For n = 1, Lemma 4.24 supplies the section. Let rj be defined as r in the proof of Lemma
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4.24 for the choice of V = Vj. We define ψ1 by

ψ1(c1, . . . , cn) = (d1, . . . , dn)

where with the notation ci = (ci1, . . . , cin) and di = (di1, . . . , din) the coordinates are given by

dij = d[cij,min(rj(cij),
1

2
min
k≠i

max
ℓ
∣∣ciℓ − ckℓ ∣∣)]

and note that the map is well-targeted. The c and r coordinates realize ∏⊥1≤i≤n D ζ
Vi
(n) and

∏⊥1≤i≤n DVi
(n) as subsets of Euclidean space. Up to this homeomorphism ψ1ϕ1 and ψ2ϕ2 are

homotopic to their respective identities by a linear homotopy.

Proposition 4.30. There is a Strøm weak equivalence of operads D ζ
V → KV or more gen-

erally ∏⊥1≤i≤m D ζ
Vi
→K⊕m

i=1Vi
. For each n, there is a commutative square

∏⊥1≤i≤m D ζ
Vi
(n) KV1⊕...⊕Vm(n)

F (∏n
i=1D(Vi), n) F (⊕m

i=1Vi, n)

ϕ1 ϕ3

∼

with each map a G ×Σn
op-equivariant homotopy equivalence.

Proof. The last claim implies the rest. Take the map ϕ3 to be evaluation at 0 ∈ I and

0 ∈ V . The bottom arrow induced by ζ is an isomorphism, ϕ1 is an equivariant homotopy

equivalence by Proposition 4.29, and ϕ3 is a G ×Σn
op-equivariant homotopy equivalence by

the proof of a result of [Steiner]. We need to construct the operad map and in such a way

that the resulting diagram commutes.
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For this purpose, we take the map f ∶ ∏⊥1≤i≤m D ζ
Vi
(1) →K⊕m

i=1 Vi
(1) defined by

f((d[c1, r1], . . . d[cn, rn]))(t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ζ−1d[(1 − 2t)c1, r1] × . . . × d[(1 − 2t)cn, rn]ζ, if 0 ≤ t ≤ 1
2 ,

ζ−1d[0, (2 − 2t)r1 + (2t − 1)] × . . . × d[0, (2 − 2t)rn + (2t − 1)]ζ, if 1
2 ≤ t ≤ 1

and we check that f is a monoid homomorphism preserving ⊥ and inducing a map of geo-

metric operads. Most notably, it is well defined by Lemmas 4.25, 4.22, and 4.21. Continuity

and the monoid homomorphism property can be checked using the previous results of this

section. Unpacking the definitions also shows the required triangles commute.

We prove the main results of this section together.

Proof of Theorems 4.16 and 4.17. There is a zig-zag of Strøm weak equivalences

⊥

∏
1≤i≤m

DVi
←

⊥

∏
1≤i≤m

D ζ
Vi
→K⊕m

i=1 Vi
← D ζ

⊕
m
i=1 Vi
→ D⊕m

i=1 Vi

by Propositions 4.29 and 4.30.

4.5 Strictification

The main theorem of this section is the following.

Theorem 4.31. Let V be an orthogonal G-representation. There is a Strøm weak equivalence

η ∶ DR ×⊥ DV →Ass ⊗BV DV where R denotes the trivial representation.

The case of V = 0 is well known; therefore, we assume V ≠ 0 in this section. We will need

to use the following result.
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Theorem 4.32 ([14]). Let O be a unital operad in UG such that the corresponding relation

⊥ is closed. Consider the relation ∼ on Ass(n) ×O(1)n where

(π1, x11, . . . , x1n) ∼ (π2, x21, . . . , x2n)

if and only if x1i = x2i for all i and regarding π1 and π2 as elements of Σn, if π−11 (i) < π−11 (j)

and π−12 (i) > π−12 (j), then x1i ⊥ x1j . Then, there is a homeomorphism Ass(n) × O(1)n/ ∼→

Ass ⊗BV O(n) sending [(π,x1, . . . , xn)] ↦ γ(π ⊗ 1; 1⊗ x1, . . . ,1⊗ xn).

Proof. The theorem of Boardman and Vogt is as above, except that the category from which

O is taken is that of Bourbaki topological spaces, and there is no condition on ⊥. The proof

for the above statement is identical, except for the use of ⊥ being closed to guarantee that

the quotient spaces constructed in the argument are in UG.

We use the notation [π;x1, . . . , xn] for γ(π⊗1; 1⊗x1, . . . ,1⊗xn) in the remainder of this

section. It is helpful to have a better understanding of the equivalence relation involved in the

above theorem. We relate the equivalence classes to partial orders through the combinatorial

fact, which we prove next.

Definition 4.33. For each pi ∈ Σn, let <π denote the total order on {1, . . . n} such that i <π j

if and only if π−1(i) < π−1(j)

Let ⊥ be a symmetric antireflexive relation on {1, . . . , n}. To each π ∈ Σn we can assign

a strict partial order <⊥π defined by i <π j if and only if there exists a finite sequence i =

k0, k1, . . . , km = j in {1, . . . , n} such that π−1(k0) < π−1(k1) < . . . < π−1(km) and kℓ /⊥ kℓ+1 for

integers ℓ such that 0 ≤ ℓ <m.

Proposition 4.34. Suppose ⊥ is a symmetric antireflexive relation on {1, . . . , n} and ∼ is

the equivalence relation on Σn characterized by π1 ∼ π2 if and only if for all i, j ∈ {1, . . . , n},

if π−11 (i) < π−11 (j) and π−12 (i) > π−12 (j), then i ⊥ j. Then π1 ∼ π2 if and only if the strict

partial orders <⊥π1
and <⊥π2

are the same relation.
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Proof. First suppose that π1 ∼ π2 and take i, j arbitrary such that i <⊥π1
j. We find a sequence

i = k0, k1, . . . , km = j as in Definition 4.33 and note that the elements of this sequence are

necessarily distinct. Therefore, it follows π−12 (kℓ) ≠ π−12 (kℓ+1) for each ℓ with 0 ≤ ℓ <m. The

assumption that π−12 (kℓ) > π−12 (kℓ+1) is contradictory because it implies kℓ ⊥ kℓ+1 and by

the trichomotomy law π−12 (kℓ) < π−12 (kℓ+1). We conclude that i <⊥π2
j. Because i and j are

arbitrary and because ∼ is symmetric, it follows <⊥π1
and <⊥π2

are the same relation.

Conversely, suppose <⊥π1
and <⊥π2

are the same relation and fix i, j ∈ {1, . . . , n} such that

π−1(i) < π−11 (j) and π−12 (i) < π−12 (j). Assume towards a contradiction that i /⊥ j. Then i <⊥π1
j

and i >⊥π2
j, the latter of which is equivalent to i >⊥π1

j by hypothesis, contradicting that <⊥π1

is a strict partial order. We conclude i ⊥ j. This proves π1 ∼ π2.

We begin by constructing η. We will need some notation.

Definition 4.35. For any n ∈ N and strict partial order ≺ on {1, . . . , n}, let X(n,≺) be the

G-stable subspace of DR ×⊥ DV (n) with elements

((d[c1, r1], d1), . . . , (d[cn, rn], dn))

such that for every distinct i, j ∈ {1, . . . , n},

1. if i ≺ j, then ci ≤ cj or di ⊥DV
dj, and

2. if i /≺ j and j /≺ i, then di ⊥DV
dj.

The subspaces X(n,≺) is G-stable because ⊥ is a G-stable relation and the action of G

on D(R) is trivial. The additional properties required are described by the following two

lemmas.

Lemma 4.36. Each X(n,≺) is closed in DR×⊥DV (n) and the subspaces X(n,≺) as ≺ varies

cover DR ×⊥ DV (n).
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Proof. The first claim is checked using the fact that ⊥DV
is a closed relation. An arbitrary

element ((d[c1, r1], d1), . . . , (d[cn, rn], dn)) is in X(n,<π) where π is the element of Σn such

that π−1(i) < π−1(j) if and only if ci < cj or both ci = cj and i < j.

Lemma 4.37. There is an intersection identity X(n,≺) ∩X(n,≺′) = X(n,≺′′) where ≺′′ is

defined by a ≺′′ b if and only if a ≺ b and a ≺′ b, i.e. ≺′′=≺ ∩ ≺′.

Proof. (⊆) Take ((d[c1, r1], d1), . . . , (d[cn, rn], dn)) ∈ X(n,≺) ∩X(n,≺′) and fix distinct i, j ∈

{1, . . . , n}.

1. Suppose i ≺′′ j. Then i ≺ j, from which ci ≤ cj or di ⊥DV
dj follow.

2. Suppose i /≺′′ j and j /≺′′ i. Suppose toward a contradiction that di /⊥DV
dj. This

hypothesis implies i and j are ordered by both ≺ and ≺′ by the definition of X(n,≺

) ∩X(n,≺′). The assumptions regarding ≺′′ imply that the two orders disagree, from

which we obtain ci = cj, which implies d[ci, ri] /⊥DR d[cj, rj]. The definition of DR×⊥DV

as a geometric operad guarantees from the non-disjointness of the first coordinates that

di ⊥DV
dj, which gives the desired contradiction. We conclude that di ⊥DV

dj.

(⊇) By symmetry, it suffices to show X(n,≺′′) ⊆X(n,≺). Fix

((d[c1, r1], d1), . . . , (d[cn, rn], dn)) ∈X(n,≺′′)

and fix distinct i, j ∈ {1, . . . , n}.

1. Suppose i ≺ j. In the case i ≺′ j, then i ≺′′ j, implying that ci ≤ cj or di ⊥DV
dj. In

the remaining case of i /≺′ j, we have i /≺′′ j and j /≺′′ i. Consequently, di ⊥DV
dj, which

tautologically implies ci ≤ cj or di ⊥DV
dj.

2. Suppose i /≺ j and j /≺ i. Therefore, i /≺′′ j and j /≺′′ i, which implies di ⊥DV
dj.

Hence ((d[c1, r1], d1), . . . , (d[cn, rn], dn)) ∈X(n,≺), as desired.
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Definition 4.38. Suppose ≺,≺′ are two strict partial orders on a set S. Then, for all

s1, s2 ∈ S, s1 ≺ s2 implies s1 ≺′ s2, then we say ≺′ is a stronger order then ≺.

Lemma 4.39. There is a map η ∶ DR ×⊥ DV → Ass ⊗BV DV such that for every n ∈ N the

restriction of ηn ∶ DR ×⊥ DV (n) →Ass ⊗DV (n) to X(n,≺) maps

((d11, d12), . . . , (dn1 , dn2)) ↦ [π;d12, . . . , dn2 ]

for every partial order ≺ on {1, . . . , n} and for every π ∈ Σn such that <π is a strong order

than ≺.

Proof. The restrictions of η to X(n,≺) as prescribed are well-defined by Proposition 4.34 as

well as the fact that for every partial order ≺ on {1, . . . , n}, there is a total order stronger

than ≺, which corresponds to an element of Σn. The map η is well-defined and continuous

by Lemma 4.36 on the level of G-spaces by gluing the prescribed maps on the closed cover

comprised of the subspaces X(n,≺) of their respective DR ×⊥ DV (n).

The resulting glued map is Σk equivariant by a routine argument. The operad unit is

preserved, i.e. η1(1) = η1((d[0,1], d[0,1]) = [1; 1] = 1. Compatibility with composition is a

consequence of the existence of commutative diagrams of the form

X(k,≺0) ×∏k
i=1X(ni,≺i) X(∑k

i=1 ni,≺0 ●(≺1, . . . ,≺k))

DR ×⊥ DV (k) ×∏k
i=1 DR ×⊥ DV (ni) DR ×⊥ DV (∑k

i=1 ni)

with vertical maps as inclusions and ≺0 ●(≺1, . . . ,≺k) defined by p ≺0 ●(≺1, . . . ,≺k)q if and

only if

1. there exist distinct ℓ1, ℓ2 ∈ {1, . . . , k} such that ∑ℓ1−1
i=1 ni < p ≤ ∑ℓ1

i=1 ni, ∑ℓ2−1
i=1 ni < q ≤

∑ℓ2
i=1 ni, and ℓ1 ≺0 ℓ2, or

2. there exists an ℓ ∈ {1, . . . , k} such that ∑ℓ1−1
i=1 ni < p ≤ ∑ℓ1

i=1 ni, ∑ℓ−1
i=1 ni < q ≤ ∑ℓ

i=1 ni, and
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p −∑ℓ−1
i=1 ni ≺ℓ q −∑ℓ−1

i=1 ni.

If elements π0, . . . , πk with π0 ∈ Σk =Ass(k) and πi ∈ Σni
=Ass(ni) are such that for each i,

<πi
is stronger than ≺i, then we observe that <γ(π0;π1,...,πk) is stronger than ≺0 ●(≺1, . . . ,≺k).

This implies η commutes with composition maps.

We fix n ∈ N. The strategy of the proof of Theorem 4.31 below, is to find subspaces

X and Y (up to homeomorphism) of the source and target of ηn respectively such that the

inclusion maps of X and Y are homotopy equivalences and ηn restricts to a homeomorphism

X → Y . For notational simplicity, however, we describe X as a subspace of a Euclidean

space.

Construction 4.40. Let F ∶ DR ×⊥ DV (1) → ([−∞,∞]2 × V ×R) be the map defined by

F ((d[a, s], d[c, r])) = (ζ−1(a − s), ζ−1(a + s), c, r)

where ζ ∶ [−∞,∞] → [−1,1] is a monotone homeomorphism, such as the one from Section 4.4

continuously extended to the extended reals. Note that F is G-equivariant homeomorphism

onto its image. The restriction of the nth cartesian power of F to DR ×⊥ DV (n), F n ∶

DR ×⊥DV (n) → (([−∞,∞]2 × V ×R))n, is also a G ×Σn
op-equivariant homeomorphism onto

its image X0. The underlying set of X0 is the set of ((x1, y1, c1, r1), . . . , (xn, yn, cn, rn)) such

that

1. xi < yi and ri ≤ 1 − ∣∣ci∣∣ for all i ∈ {1, . . . , n}, and

2. at least one of yi < xj, yj < xi, or ∣∣ci − cj ∣∣ ≤ ri + rj hold for all pairs of distinct

i, j ∈ {1, . . . , n}.

The G × Σn
op-invariant subspace X1 of X0 consists of elements that satisfy the additional

condition

3. for all i ∈ {1, . . . , n}, xi, yi ∈ R.
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The G ×Σn
op invariant subspace X of X1 consists of elements satisfying the conditions

4. the equation for all i ∈ {1, . . . n},

ζ(yi + xi
2
) + 1 = yi − xi = 2ri

holds for all i ∈ {1, . . . n}, and

5. the inequality

min
i≠j

min(∣∣ci − cj ∣∣, ∣
yi + xi

2
− yj + xj

2
∣) ≥ 2max

k
rk

is satisfied, where the minimum is taken over distinct indices i, j ∈ {1, . . . , n} and the

maximum is taken over k ∈ {1, . . . , n}

Our next goal is the following result.

Lemma 4.41. The inclusion map X →X0 is a G×Σn
op equivariant homotopy equivalence.

Proof. This is a consequence of the following pair of lemmas.

Lemma 4.42. The inclusion map X1 →X0 is a G×Σn
op-equivariant homotopy equivalence.

Lemma 4.43. The inclusion map X → X1 admits a G × Σn
op-equivariant deformation re-

traction.

The next result is at the heart of our proof of Lemma 4.42.

Proposition 4.44. Consider the subspace A of [−∞,∞]2 consisting of (x, y) such that x < y

and let B = A∩R2. The inclusion ι ∶ B → A is a homotopy equivalence via linear homotopies

with a homotopy inverse f = (f1, f2) ∶ A → B such that if h = (h1, h2) is a homotopy from id

to ιf ,

x ≤ h1((x, y), t) < h2((x, y), t) ≤ y (4.4)

for all (x, y) ∈ A and t ∈ I.
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Proof. Conjugating with ζ reduces the proposition to the same question except A is a sub-

space of [−1,1]2 and B = A ∩ (−1,1)2. In this case, we use f(x, y) = (2x+y3 , x+2y3 ) and linear

homotopies to arrive at the conclusion.

Proof of Lemma 4.42. Apply Proposition 4.44 to each pair of coordinates labeled (xi, yi).

The homotopies are well-targeted because inequality 4.4 guarantees condition 2 of 4.40 is

satisfied for every t ∈ I. Equivariance is a routine check.

Proof of Lemma 4.43. We first define several auxiliary maps X1 → R as follows. Let

d(p) =min
i≠j

min(∣∣ci − cj ∣∣, ∣
yi + xi

2
− yj + xj

2
∣)

υ1(p) =max(0,max
i
(yi + xi

2
− ζ−1(min(1, yi − xi

2
− 1)))),

υ2(p) =max
i
(yi + xi

2
− ζ−1(2ri − 1)),

υ3(p) =max
i
(yi + xi

2
) − ζ−1(d(p) − 1)),

and

ϕ(p) =max(υ1(p), υ2(p), υ3(p))

where p = ((x1, y1, c1, r1), . . . , (xn, yn, cn, rn)). Now we define ϵ ∶X1 →X by

ϵ = ((x′1, y′1, c′1, r′1), . . . , (x′n, y′n, c′n, r′n))

where

x′i(p) =
yi + xi

2
− ϕ(p) − 1

2
(ζ(yi + xi

2
− ϕ(p)) + 1),

y′i(p) =
yi + xi

2
− ϕ(p) + 1

2
(ζ(yi + xi

2
− ϕ(p)) + 1),

c′i(p) = ci, and

r′i(p) =
1

2
ζ(yi + xi

2
− ϕ(p))
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with many properties to check, tediously but routinely. We note that ϕ is identically 0

on X and so ϵ restricts to the identity on X. Routine checks also verify that the linear

interpolation homotopy between the inclusion ι ∶ X1 → (R2 ×D(V ) ×R)n and ιϵ has image

in X1 and that this homotopy is equivariant.

This completes our analysis of the source of ηn. We now turn our attention to the target

of ηn.

Construction 4.45. We define Y0 as the subspace of Ass ⊗BV DV (n) consisting of

q = [π;d[c1, r1], . . . , d[cn, rn]]

such that

1. rπ−1(i) < rπ−1(j) whenever π−1(i) < π−1(j) and d[cπ−1(i), rπ−1(i)] /⊥ d[cπ−1(j), rπ−1(j)], and

2. ri < 1 − ∣∣ci∣∣ for all i ∈ {1, . . . , n}.

Let Y1 be defined as the subspace of D(V ) × (0,1])n such that a point

p = ((c1, r1), . . . , (cn, rn)) ∈ Y1

if and only if

1. the strict inequality for little disks ri < 1 − ∣∣ci∣∣ holds, and

2. for any pair of distinct i, j ∈ {1, . . . , n} such that ∣∣ci − cj ∣∣ < ri + rj we have ri ≠ rj.

The subspace Y of Y1 consists of all points p satisfying the addition condition that

3. the inequality

min
i≠j

min(∣∣ci − cj ∣∣, ∣ζ−1(2ri − 1) − ζ−1(2rj − 1)∣) ≥ 2max
k
rk
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is satisfied.

Our analysis of the target will show that Y is homotopy equivalent to it.

Lemma 4.46. There is a sequence of maps Y → Y1 → Y0 → Ass ⊗BV DV (n) consists of

G ×Σn
op-equivariant homotopy equivalences.

Proof. This will be shown by Lemmas 4.47, 4.48, and 4.49.

Lemma 4.47. The inclusion map Y → Y1 admits a G × Σn
op-equivariant deformation re-

traction.

Lemma 4.48. The map F ∶ Y1 → Y0

F ((c1, r1), . . . , (cn, rn)) = [π;d[c1, r1], . . . , d[cn, rn]]

where π ∈ Σn is any element such that rπ−1(i) < rπ−1(j) and ∣∣ci − cj ∣∣ ≤ ri + rj implies π−1(i) <

π−1(j) is a well-defined G ×Σn
op-equivariant homeomorphism.

Lemma 4.49. The inclusion map Y0 →Ass ⊗BV DV (n) is a G×Σn
op-equivariant homotopy

equivalence.

Proof of Lemma 4.47. Let ψ ∶ Y1 → R be the G ×Σn
op-equivariant map defined by

d(p) =min
i≠j

max(∣∣ci − cj ∣∣, ∣ζ−1(2ri − 1) − ζ−1(2rj − 1)∣),

let ϕ ∶ Y1 → R be the equivariant map defined by

ϕ(p) =max(0,max
i
(ζ−1(ri)) − ζ−1(d(p) − 1))

for all p = ((c1, r1), . . . , (cn, rn)) ∈ Y1. Define ϵ ∶ Y1 → Y by

ϵ = ((c′1, r′1), . . . , (c′n, r′n))
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where

c′i(p) = ci, and

r′i(p) =
1

2
(ζ(ζ−1(2ri − 1) − ϕ(p)) + 1)

This ϵ is a deformation retraction via a linear homotopy.

Proof of Lemma 4.48. Well-definedness of F requires the existence of π, which follows from

the existence of π such that <π extends the transitive closure ≺ of the relation R such that

iRj if and only if rπ−1(i) < rπ−1(j) and ∣∣ci − cj ∣∣ ≤ ri + rj. Suppose π′ is another element of Σn

satisfying the same conditions and i, j are such that π−1(i) < π−1(j) and π′−1(i) > π′−1(j).

Then π−1(i) /> π−1(j) and π′−1(i) /< π′−1(j). Using the conditions on π and π′, it becomes a

matter of Boolean logic to show that ∣∣ci − cj ∣∣ ≤ ri + rj.

Up to homeomorphism, the inverse map is well-defined and continuous by the universal

property of quotients.

Proof of Lemma 4.49. Let

ki(q) = ∑max((rj + rk) − ∣∣cj − ck∣∣,0)

where the sum is indexed over pairs (j, k) such that i <⊥π j and i <⊥π k. The definition of <⊥π
implies the independence of the choice of representative π in the definition of ki.

We define a homotopy inverse to the inclusion g ∶Ass ⊗BV DV (n) → Y0 by

g(q) = [π;d[c1, r′1(q)], . . . , d[cn, r′n(q)]]

where

r′i(q) =
1

21+ki(q)
min

ℓ
rℓ
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and note that the well-definedness of all ki implies the well-definedness of r′i and g as well.

Note that for each π ∈ Σn, g lifts to a map on DV (1)n, which is homotopic to the identity up

to a linear homotopy (after identifying DV (1)n with a subspace of a euclidean space using

the ci, ri coordinates). The linear homotopies jointly preserve the ∼ equivalence relation, so

g is homotopic to the identity. This homotopy restricts to a homotopy between g∣Y0 and

idY0 .

When comparing Y with X, we should observe redundancy among the conditions.

Lemma 4.50. Condition 3 of Construction 4.45 implies Condition 2 of Construction 4.45.

Proof. Suppose condition 4 holds. Condition 2 is satisfied because otherwise condition 4

gives 0 ≥ 2maxk rk, which is impossible.

Proof of Theorem 4.31. The diagram

X Y

DR ×⊥ DV (n) Ass ⊗BV DV (n)ηn

where the top horizontal map is the projection removing the xi and yi coordinates (which

is well-defined as seen using Lemma 4.50), and the vertical maps are homotopy equivalences

by Lemmas 4.41 and 4.46. The map X → Y is a homeomorphism because it is surjective

and has an inverse guaranteed by Condition 4 of Construction 4.40.

4.6 Mixed cofibrancy of EV operads

In this final section, we compare our EV operads to a cofibrant operad in UG in the sense of

[27] when G is a compact Lie group. We will show that the cofibrant replacement is a Strøm

weak equivalence for EV operads in our sense.
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Definition 4.51. The operad D ′V in UG is the geometric operad associated to DV (1) and

the relation ⊥′ defined by d[c1, r1] ⊥′ d[c2, r2] if and only if ∣∣c1 − c2∣∣ < r1 + r2, i.e. the closure

of the images of d[c1, r1] and d[c2, r2] are disjoint.

Definition 4.52. For a finite-dimensional orthogonal G-representation V , the operad DV in

UG is the non-geometric suboperad of D ′V such that DV (n) = D ′V (n) for n ∈ {0,1} and DV (n)

is the set of (d[c1, r1], . . . , d[cn, rn]) in D ′V (n) such that ∣∣ci∣∣ + ri < 1 for each i ∈ {1, . . . , n}.

Proposition 4.53. For every finite dimensional G-representation V , the inclusion map

DV → DV is a Strøm weak equivalence.

Proof. The map DV (n) → DV (n) sending

(d[c1, r1], . . . , d[cn, rn]) ↦ (d[c1, r1(1 −
√
∣∣c1∣∣)], . . . , d[cn, rn(1 −

√
∣∣cn∣∣)])

is well-defined, G ×Σn
op-equivariant, and based when n = 1. Both witnessing homotopies of

the desired equivalence take the form

((d[c1, r1], . . . , d[cn, rn]), t)

(d[c1, tr1(1 −
√
∣∣c1∣∣) + (1 − t)r1], . . . , trn(1 −

√
∣∣cn∣∣) + (1 − t)rn]

which completes the proof up to routine verifications.

Let us consider the case of V being an orthogonalG-representation that is topologized as a

colimit of its finite-dimensional subspaces with their euclidean topology. Every construction

in this and the previous two sections has been functorial in the finite G-representations

involved an under our new hypothesis that G is compact, and every V we are now considering

is a colimit of finite dimensional ones. We extend the definition of each of the operad

families we have discussed indexed by a vector space by taking colimits along the diagram

of subspaces. All our results hold in this case.
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The next result is an application of Illman’s work. In the case where G is a finite group,

the necessary results are found in the 1970s paper [38]. Certainly, the difficulties of the

compact Lie case are handled in the sequel paper [36], which proves that G-equivariant tri-

angulations exist for any manifold with smooth G-action and that G-equivariant triangulated

spaces are G-CW structures with the same cells. However, it was not until Illman’s turn of

the century paper [37] that a statement regarding extending G-triangulated structures of G

manifolds from closed G-submanifolds appeared under a hypothesis of real analyticity, which

is superfluous for our purposes.

Proposition 4.54. If V is a countable dimensional orthogonal G-representation such that

V is the union of its finite dimensional subrepresentations, then DV (n) has a G×Σn
op-CW

structure for each n ∈ N.

Proof. Choose an exhaustive increasing sequence of finite-dimensional subrepresentations

W1 ⊆W2 ⊆ . . . ⊆ V and observe that colimDWm(n) = DV (n).

First, consider the case of n ≠ 1. Note that the (c1, r1, . . . , cn, rn) coordinate system

witnessesWm(n) as an open subset of a Euclidean space with a real analytic G×Σn
op-action,

closed in Wm+1(n). By Illman’s theorem [36][37] and by induction, there is a G ×Σn
op-CW

structure on each DWm(n) such that DWm(n) is a subcomplex of DWm+1(n). Passing to the

colimit yields a G-CW structure on DV (n).

In the n = 1 case we have a G × Σ1
op-equivariant homeomorphisms ψn ∶ DWm(1) →

D(Wm) × (0,1] given by d[c, r] ↦ (c, (1 − ∣∣c∣∣)−1r) and commuting with inclusion maps.

Each DWm(1) is open in Wm with real analytic G action and is closed in DWm+1(1). Using

Illman’s theorem [36,37] again, we obtain a G×Σ1
op-CW structure on colimD(Wm). Taking

any CW -decomposition of (0,1], we note that the homeomorphisms ψn glue together to a

homeomorphism DV (1) → colim(D(Wm) × (0,1]) ≃ (colimD(Wm)) × (0,1] and that DV (1)

inherits a G ×Σ1
op-CW structure.

We now turn to the main result of this section.
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Proposition 4.55. If O is an EV -operad with respect to Strøm weak equivalences, then the

cofibrant replacement QO → O in the model category of operads in UG is a Strøm weak

equivalence.

Proof. Fix a zig-zag of Strøm weak equivalences

O ← O1 → . . .← On → DV

connecting O and DV and note that it extends to a zig-zag of Strøm weak equivalences

connecting O and D○V by Proposition 4.53. In particular, this is a zig-zag of weak equivalences

of fibrant objects in the category of operads, because all operads are fibrant in TopG. Hence,

by cofibrancy ofWO, there exists a commutative diagram in the model categorical homotopy

category of operads

WO

O O1 . . . On DV D○V

extending the zig-zag with maps from WO to each stage of the zig-zag. By induction on the

stages of the zig-zag and the two-out-of-three property of isomorphisms, the maps WO → Oi

stages are isomorphisms in the model categorical homotopy category of operads. We choose

representatives in the category of operads WO → Oi which must be weak equivalences

because they lift an isomorphism. By Proposition 4.54 and since WO(n) has a G × Σn
op-

CW structure, the map WO → D○V is a Strøm weak equivalence. For each k, we have a

commutative diagram

WO(k)

O(k) O1(k) . . . On(k) DV (k) D○V (k)∼ ∼ ∼ ∼ ∼

∼
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in the homotopy category of TopG×Σn
op with G ×Σk

op homotopy equivalences marked with

∼. Inductively, using the 2-out-of-3 property for homotopy equivalences, we obtain that

WO(k) → O(k) is a G ×Σk
op-equivariant homotopy equivalence, as desired.
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Chapter 5

Derived Indecomposibles of

Augmented Algebras

In the study of obstruction theory for algebras in spectra, the maps from the source to any

k invariant of the target factors through the spectrum of derived indecomposibles. This

chapter describes these spectra for augmented algebras with the intention of applying them

to Σ∞B∣UR+, which is augmented by the sphere spectrum SR.

In this chapter, we work in the category of EKMM SR-modules or EKMM SG-modules

with a mixed model structure that has the usual weak equivalences and collection of cofibrant

objects consisting of all objects that are homotopy equivalent to the cofibrant objects of the

standard model structures. The construction and basic properties of this model structure,

including facts about geometric realizations of simplicial objects, have not been fully written

yet, and the results in this chapter are conditional on their verification. Alternatively and

more easily, one can work in orthogonal G-spectra or Real unitary spectra, where the model

structures are well understood.

Analogous non-equivariant results of the same type with significant point-set differences

are proven in [7]. One difference between our work and the previous work is that our approach

only requires the base algebra (that has reserved notation A below) for the augmentation
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to be EV ⊕1 rather than commutative. This is needed to apply the ideas to operadic algebra

analogues of the rigid algebraic Thom spectra of [2].

5.1 Notions of Highly Structured Algebra

We begin by reviewing some essential definitions.

Definition 5.1. Let A be an algebra over an operad O. The universal enveloping operad

UOA is defined as the collection underlying the coequalizer

⋁k∈N O(n + k) ∧Σk
(OA)∧k ⋁k∈N O(n + k) ∧Σk

A UOA(n)

formed through the map induced by the operad action and the map induced by the compo-

sition map of O obtained after unpacking the definition of OA. Considering the summand

with k = 0 in the parallel pair, the unit arises from the map of O(1) → UOA(1) and composi-

tion maps for UOA are induced by universal property of colimit from composing the O and

concatenating copies of A.

Definition 5.2. A module M over an algebra A over an operad O is a left UOA(1)-module.

Equivalently, these are algebras over an operad UOA[1] such that UOA[1](1) = UOA(1) and

UOA[1](n) is trivial otherwise, with composition induced by multiplication.

Definition 5.3. Let A be an O⊗BV Ass operad for a unital operad O with a cocommutative

comonoid structure for the parallel product. The operad PO,A for left A-modules in the

category of O-algebras is given by PO,A(n) = O(n) ∧ A with unit map arising from the

operad unit in O(1) and the unital operad unit in O(0) via the composition

SR SR ∧ SR O(1) ∧O(0) O(1) ∧A
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and multiplication of the form

(O(k) ∧A) ∧ ⋀k
i=1(O(ni) ∧A)

(O(k) ∧O(k) ∧A) ∧ ⋀k
i=1(O(ni) ∧A)

(O(k) ∧ ⋀k
i=1 O(ni)) ∧ (A ∧ (O(k) ∧A∧k))

O(∑k
i=1 ni) ∧A

∆

∼

where the last map is a wedge of an instance of composition in O and application of the

O ⊗BV Ass(k + 1) operations that use O(k) to multiply k arguments and apply the ordinary

binary multiplication of Ass(2) to multiply the result with another copy of A. This multi-

plication can be seen to be unital and associative, the latter using the interchange law of the

Boardman–Vogt tensor product.

Definition 5.4. If A is an Ass -algebra, i.e., a monoid object, then the operad L M odA/

is defined by L M odA/(k) = A when k = 0 or k = 1 and L M odA/(k) is the initial object

initial otherwise. Every composition map is either trivial due to its source being trivial or

the monoid multiplication, and the unit is the unit of A. The algebras of L M odA/ are left

modules of A under A.

Definition 5.5. An operad O is without constants when O(0) is an initial object. If O is

any operad in a cocomplete symmetric monoidal category, then the associated operad without

constants O is the operad without constants such that O(n) = O(n) for n ≠ 0 with the same

unit as O and composition maps initial when involving O(0), and induced by O otherwise.

Definition 5.6. If O is an operad and I is an O-algebra, thenQI is defined by the coequalizer

diagram in the symmetric monoidal category of G-sepctra

⋁n≥2 O(n) ∧ I∧n I QI
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with the upper map arising from the operad action and the lower map trivial.

Definition 5.7. The square-zero extension ZM of a module M over and algebra A over an

operad O has underlying object A ∨M with operad action maps such that the composite

O(n + k) ∧A∧n ∧M∧k O(n + k) ∧ (A ∨M)n+k A ∨M

is the action map for A when k = 0, the module structure map when k = 1, and the zero map

when k ≥ 2.

Definition 5.8. Let A be a DV ⊗BVAss -algebra in a symmetric monoidal category of spectra.

The monad PA
V is the monad on the category of left A modules under A associated to the

change of operads L M odA/ →PA.

The monad above is a structured spectral analogue of the monads used throughout [57].

Definition 5.9. If O is an operad and X is an O-algebra augmented by the initial object

O(0), then the functor Oaug defined via pushout squares

OO(0) OX

O(0) OaugX

for each O(0) augmented object with the induced unit and multiplication maps.

Proposition 5.10. The monad PA
V induces a monad PA,aug

V on the category of augmented

left A-modules, i.e., the slice category of L M odA/-algebras over the initial object A.

Proof. We first observe that the base change of operads is computed by a coequalizer diagram

PDV ,A(A ∨ (A ∧X)) PDV ,AX PA
VX
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where the upper morphism is induced by the left module under A structure and the lower

morphism is induced by the operad composition combined with the morphism of operads.

With this description, when X is over A, the claimed structure map PA
VX → A is arises from

the universal property of coequalizers applied to the composite

PDV ,AX PDV ,AA Aα

where α is the map associated to the initial algebra structure on PDV ,A(0) = S∧A ≃ A. Rou-

tine diagrammatic methods are used to show that the resulting endofunctor on augmented

left A-modules has multiplication and unit lifted from the category of left A-modules under

A.

Definition 5.11. Suppose X is an augmented A-bimodule and Y is an augmented left

A-module. The augmented smash product X ∧augA Y is defined as the pushout

X ∨A Y A

X ∧A Y X ∧augA Y

where X∨AY is the coproduct of X and Y in the category of left A-modules under A regarded

as an augmented left A-module.

We will mostly apply the above definition in the case where X = SV
+,A which is defined as

follows.

Definition 5.12. The augmented A bimodule SV
+,A is defined by a pushout square

A ∧ (SR ∧LR LRΣ∞S0) A ∧Σ∞S0

A ∧ (SR ∧LR LRΣ∞SV ) SV
+,A

where the left vertical map is induced by a map of spaces and the top horizontal map is
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induced by the LR action on suspension spectra.

In the model category of augmented A-modules, SV
+,A is a cofibrant model of A ∧ SV

+ .

Notation 5.13. Let n ∈ N. We set Un,0 to be the subspace of SV × DV (n) consisting of

(x, (d1, . . . , dn)) such that x is either the basepoint of SV or an element of V in the comple-

ment of the images of the little disks d1, . . . , dn.

For i0 = 1, . . . , n, we define Un,i0 as the subspace S
V ×DV (n) consisting of (x, (d1, . . . , dn))

such that either x is in the image of di or (x, (d1, . . . , dn)) ∈ Un,0.

For each n = (ni)ki=1 ∈ ∐k∈NNk, we setWn,0 to be the subspace of SV ×DV (k)×∏k
i=1DV (ni)

that is the preimage of U
∑

k
i=1 ni,0

under the composition map SV ×DV (k) × ∏k
i=1DV (ni) →

SV ×DV (∑k
i=1 ni). Similarly Wn,i0,j0 is the preimage of U

∑
k
i=1 ni,j0+∑

i0−1
i=1 ni

under the same map

SV ×DV (k) ×∏k
i=1DV (ni) → SV ×DV (∑k

i=1 ni).

5.2 The May Delooping Machine

Proposition 5.14. There exists a natural transformation

SV
+,A ∧augA PA

VX → SV
+,A ∧augA X

in the category of augmented left A-modules that gives SV
+,A ∧

aug
A (−) the structure of a right

module over the monad PA
V .

Proof. (Sketch). We now indicate the structure of the cumbersome proof. First, we express

SV
+,A ∧A PA

VX as an iterated colimit of simpler pieces. If Y is the coequalizer

⋁k∈N⋁k
i=1A ∧Σ∞+ (∗ ×L LUk,0) ∧A ∧X∧k

⋁k∈N⋁k
i=0A ∧Σ∞+ (∗ ×L LUk,i) ∧A ∧X∧k

Y

77



where the left map sends the wedge summand indexed by (k, i) into (k,0) isomorphically,

and the right map is induced by the inclusion of the corresponding summands. With this

Y , we have a pushout square

SV
+,A ∧A (A ∧Σ∞+ (∗ ×L L∗) ∧A ∧X) Y

SV
+,A ∧A (A ∧ SR ∧A ∧X) SV

A,+ ∧A PDV ,AX

corresponding to correcting the operadic unit in the lifting of DV to DV . Then, we have a

canonical pushout square

SV
+,A ∧A PDV ,A(A ∨ (A ∧X)) SV

A,+ ∧A PDV ,AX SV
+,A ∧A PA

VX

and note that the source of the coequalizer pair can be written as an iterated colimit of

diagrams in a manner similar to that of the target. The defining pushout square of SV
+,A ∧

aug
A

PA
VX completes the description as an iterated colimit.

The maps ϕk,i ∶ Uk,i → SV mapping Uk,0 to the basepoint and any other (x, (d1, . . . , dn))

to the unique y ∈ V such that di(y) = x, together with defining pushout squares, assemble to

the desired natural transformation. As the most non-trivial example, we use maps

A ∧Σ∞+ (∗ ×L LUk,i) ∧A ∧X∧k

A ∧Σ∞+ (∗ ×L L(Uk,i)) ∧Σ∞+ (∗ ×L L(Uk,i)) ∧A ∧X∧k

A ∧Σ∞+ (∗ ×L LSV ) ∧Σ∞+ DV (k − 1) ∧A ∧A ∧ . . . ∧A ∧X ∧A ∧ . . . ∧A´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i

SV
+,A ∧

aug
A X

α2

α0

α1

where the maps are described as follows. The map α0 is the composite of the map induced
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by the diagonal map on Uk,i with known natural isomorphisms. The map α1 is constructed

using the map ϕk,i on the left factor and the map induced by the projection Uk,i → DV (k−1)

sending (x, (d1, . . . , dk)) ↦ (d1, . . . , d̂i, . . . , dk). The map α2 arises from applying theDV (k−1)

operad multiplication to the last k − 1 copies of A.

To verify that this is a right module structure, one similarly decomposes SV
+,A ∧

aug
A PV

APV
A

using the spacesWn,i,j serving a similar role to the spaces Uk,i. The proof is a lengthy formal

check.

Proposition 5.15. The functor Z is the left adjoint of a Quillen adjunction

LModaugA LModA
Z

I

�

between the category of left A-modules and augmented left A-modules. This induces an ad-

junction between categories of algebras over monads (or equivalently an operad in the case

of the source of the left adjoint) pictured below.

Alg(PDV ,A) (LModaugA )P
A
V

I

Z

�

One of the omitted model categorical details of our work is that the above adjunction is

a Quillen adjunction for the mixed model structure.

5.3 Derived Indecomposibles via Delooping Machine

We now state the main theorem of this chapter.

Theorem 5.16. There is a natural equivalence ZLSV
A ∧A QLIRR ≃ B(SV

+,A ∧
aug
A (−),PA

V ,R)

of augmented left A-modules for PA
V -algebras R. In other words, the augmentation module of

the equivariant EV topological André–Quillen homology over A of an augmented EV -algebra

R is the V -fold suspension lifting of the May delooping machine to the category of augmented
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left A-modules.

As a first step, we show the following relationship.

Proposition 5.17. For any augmented cofibrant space X, the 0-cell map

SV
+A ∧Σ∞X+ → B(SV

+,A ∧augSR
(−),PA

V ,A ∧Σ∞+ DV (X)))

is a weak equivalence.

Proof. Note that PSR
V = (Σ∞(DV )+)aug = Σ∞+ (Daug). The case A = SR follows from the extra

degeneracy argument (which goes through even though the augmentations are incompatible

with the extra degeneracy, because it is irrelevant to the extra degeneracy argument), and the

general case follows from the commutativity of base change with the relevant constructions.

Disregarding standard methods of resolutions, the main technical problem in passing

from the Proposition 5.17 to Theorem is that the suspension is modeled via a smash product

with a sphere with basepoint at the augmentation unit in one and at the spectral basepoint

in the other. Considering this, we introduce some notation.

Notation 5.18. The spectrum SV
A is defined as the pushout

SR ∧A SV
A,+

∗ SV
A

corresponding to the pushout identifying the augmentation point of SV
+ (or point at infinity

of V ) with the basepoint. We set PA
V to be the monad of the operad PDV ,A without constants.
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For a G-space X, we define a modified suspension spectrum F (X) by a pushout diagram

SR ∧LR LRΣ∞∗+ ∗

SR ∧LR LRΣ∞X+ F (X)

Lemma 5.19. The natural map

SV
A ∧A (A ∧ F (X)) → B(SV

A ∧A (−),PA
V ,PA

V (A ∧ F (X)))

is a weak equivalence for augmented cofibrant space X. Here SV
A ∧A (−) has the induced right

PA
V -module structure from the action of PA

V on SV ∧augA (−).

Proof. We have a canonical zig-zag of weak equivalences in the homotopy category of PDV ,A-

algebras

PDV ,A(Y )

PA
V (A ∧Σ∞+ X) PDV ,A(A ∧Σ∞+ I ∧Σ∞+ X) PDV ,A(A ∧Σ∞+ X)

A ∧Σ∞+ DV (X)

ι0 ι1

∼

and obtain Y via a choice of cofibrant replacement and the dotted morphisms to it using

fibrancy of the target and cofibrancy of the sources. For the zig-zag passing through Y ,

we describe the augmentations for each algebra. The left end has an augmentation arising

from the augmentation on X, and the right end has an augmentation arising from the

terminal map of G-spaces. The augmentation on PDV ,A(Y ) is induced by any map Y →

A ∨ (A ∧ Σ∞+ X) is constructed to represent the difference between the maps induced by

augmentation and the identity of X smashed with A (c.f. [7, Proof of 7.7]). This gives

us a zig-zag of weak equivalences between B(SV
A,+∧

aug
A ,PA

V ,PA
V (A ∧ Σ∞+ X)) and B(SV

A,+ ∧
aug
A
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(−),PA
V ,A ∧Σ∞+ D

aug
V (X)).

The derived fiber of the augmentation IR can be computed as the cofiber of the structural

coagmentation map, and applying this yields an isomorphism in the homotopy category

between B(SV
A ∧A (−),PA

V ,PA
V (A ∧ F (X))) and B(SV

A ∧A (−),PA
V ,A ∧Σ∞D

aug
V (X)).

We construct a similar zig-zag of equivalences of augmented left A-modules

Z

SV
+,A ∧

aug
A Σ∞+ X SV

+,A ∧
aug
A Σ∞+ X ∧Σ∞+ I A ∨ (SV

A ∧A (A ∧Σ∞X))

where the vertical morphism is a cofibrant replacement, the dotted arrows are induced maps

from cofibrant objects to fibrant objects, I has basepoint 0, and the right horizontal map

has the right wedge summand factor through

SV
A ∧A (A ∧Σ∞X) → SV

+,A ∧augA Σ∞+ X ∧Σ∞+ {1}

so that taking 1 as the basepoint of {1}, the induced map of augmented A modules A∨(SV
A ∧A

(A ∧Σ∞X)) → SV
+,A ∧

aug
A Σ∞+ X ∧Σ∞+ {1} is a homotopy inverse to the canonical map of non-

augmented left A modules. This zig-zag is compatible with the zig-zag of bar constructions of

augmented algebras, and so the resulting zig-zag of cofibers of coagmentations are compatible

zig-zags as well. The result follows.

Theorem 5.16 is now a formal consequence of our work. We split the remaining work

into two lemmas.

Lemma 5.20. For any cofibrant left A-module M , the natural unit composed with 0-cell map

SV
A ∧AM → B(SV

A ∧A (−),PA
V ,PA

VM)

is a weak equivalence.
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Proof. First suppose that M = A ∧N for a cofibrant SR-module N . The simplicial object

B●(SV
A ∧A (−),PA

V ,PA
VM) has a level-wise filtration arising from the arity of the relevant total

composite DV operation arity in expressing each level as a wedge sum. Studying the action

of PA
V on SV

+,A∧
aug
A (−) and because the action of PA

V on SV
A ∧A is induced by taking cofibers of

respective coaugmentations, the action map is level preserving by sending every summand

corresponding to an arity greater than 1 identically to the spectral basepoint and sending

arity 1 pieces to themselves (up to composing with the unit map to get an endomorphism).

After forgetting the left A-module structures we can rewrite the geometric realization in the

form ⋁m>0 B(m) ∧Σm N∧m as in [7, 7.6]. Take N to be F (m+) where m+ is a cofibrant

augmented G-space replacing the discrete topological space {1, . . . ,m}+ to find a case where

B(m) is a retract of B(m) ∧Σm N∧m for all M . Now apply Lemma 5.19 for this X and

see that B(1) ≃ SV
A and B(m) is weakly contractible for m ≥ 2. The result follows for

free M . For other values of cofibrant left A-modules M , we note that both the source and

target of the map and the filtration behave well in the module argument with respect to

filtered colimit and every cofibrant left A-module M is a filtered homotopy colimit of free

left A-modules (up to an actual homotopy equivalence of the colimit of the projective model

categorical cofibrant replacement, as every object is fibrant).

We now use Lemma 5.20 to begin studying equivariant topological André–Quillen ho-

mology.

Lemma 5.21. For any cofibrant PA
V -algebra T , the natural map

f ∶ B(SV
A ∧A,PA

V , T ) → SV
A ∧A QT

is a weak equivalence

Proof. Once again, we begin with the free case, which is T = PA
VM here for some cofibrant left

A-moduleM . The functor QPA
V is naturally isomorphic to endofunctor Σ∞+ DV (1)∧(−), which
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is naturally homotopy equivalent to the identity functor. Now, making this identification

Lemma 5.20 states that a morphism that splits f is a weak equivalence. Hence f itself must

be a weak equivalence. The general case follows from expressing T as a filtered colimit of

free algebras up to weak equivalence.

Proof of Theorem 5.16. The result is reduced to Lemma 5.21 by application of the weak

equivalence creating functor IR implemented as the cofiber of the coaugmentation.
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Chapter 6

Loop Spaces and Cohomology

This chapter describes a simple computation at the heart of our claim the existence of

Eρ maps out of MUR. We assume a basic understanding of C2-Mackey functors. The

material in [29] more than suffices. We also assume familiarity with the equivariant Serre

spectral sequence of Kronholm [43]. We will begin to assume some standard notations from

those sources. For example, ρ being the regular representation for C2, σ and is the sign

representation.

6.1 Equivariant deloopings of Bott periodicity

The main result of this chapter is the Real equivariant analogue of [20, 7.3].

Theorem 6.1. The canonical map ΣρBUR(1) → BρBUR induces a quotient map in RO(G)-

graded Mackey functor-valued cohomology, as indicated in the diagram below.

H⋆(BρBUR,Z) H⋆(ΣρBUR(1),Z)

H⋆(C2/C2,Z)[cm ∶m ≥ 2] H⋆(C2/C2,Z)[cm ∶m ≥ 2]/(cmcn ∶m,n ≥ 2)

∼ ∼

where ∣ci∣ = iρ, ∣xm∣ = (m + 1)ρ and the map is the identity on coefficients and sends cm+1 ↦
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(−1)mxm.

In the statement of the above theorem, it is important for our intended application that

Bρ(−) is the functor corresponding to the May delooping machine. This aligns the results

of this chapter with Theorem 5.16.

Proposition 6.2. Let SUT denote the C2-space that has SU as its underlying space with

C2 generator g acting by g ⋅ A = AT . Then, the map SU → (SUT )C2 defined by A ↦ AAT

descends to a homeomorphism SU/SO → (SUT )C2.

Proof. It suffices to show that the restrictions SU(n)/SO(n) → (SUT (n))C2 are bijections

for each n because the source is compact and the target is Hausdorff. If AAT = BBT

for special unitary A and B, using the identity AT = A−1 we can rewrite this as BA−1 =

BA−1, demonstrating injectivity. Surjectivity is an application of the Autonneâ€“Takagi

factorization, where one makes choices to ensure that the determinant of each matrix involved

is 1. Explicitly, if M ∈ (SUT )C2 , then we may write M =X + iY for two real matrices X and

Y , and the fact that M is unitary implies XY = Y X. Therefore, we may choose a special

orthogonal V such that V XV T and V Y V T are both diagonal. The determinant of 1 can

be ensured by adjusting the first column of V with a sign if needed. Therefore, VMV T is

a complex diagonal matrix of determinant 1, and there exists a complex diagonal matrix D

with D2 = VMV T . By replacing the first column of D with its negative if needed, D can be

chosen so that its determinant is 1. Now M = (V TD)(V TD)T , proving surjectivity.

As we appeal to the classical descriptions of Bott periodicity, we replace the BUR of Chap-

ter 3 with another equivalent model, as defined in the statement of the following proposition.

Proposition 6.3. There is a weak equivalence of algebras over LR BUR → ΩσSUR where

ΩσSUR inherits its algebra structure from SUR and SUR = colimV ⊆C∞ SUR(V ) and BUR =

colimV ⊆C∞ UR(V ⊕ V )/UR(V ) ×UR(V ) have algebra structures induced by IR-FCPs SUR(−)

and BUR(−).
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Proof. This is a consequence of Bottâ€™s famous periodicity theorem [15] and for relevant

maps treated explicitly see [21]. Note that in [21] ΩX is the component of the trivial map

in the based loop space of X. Observe that the Bott map BU → ΩSU is equivariant when

the source and target are given the C2-space structures BUR and ΩσSUR respectively. The

map BUR → ΩσSUR also respects the Real linear isometry operad action because it can be

assembled from BUR(V ) → ΩσSUR(V ). The compactness of Sσ and the structure maps of

SUR(−) being inclusions guarantees that colimV ⊆C∞ ΩσSUR(V ) is canonically isomorphic to

ΩσSUR. The main step is to show that the classical map BUR → ΩσSUR is a C2-equivariant

weak equivalence. Let SUT denote the special unitary group with the transpose C2-action.

Note that A↦ AAT defines a map SU → (SUT )C2 . We have a fiber sequence

ΩσSUR SUR TC2(C2+, SUR) SUT

that arises from the cofiber sequence C2+ → C2/C2+ → Sσ in the first three terms as a classical

homotopy fiber and the C2-locally trivial fibration defined by B ↦ B(e)B(g)−1 in the last

three terms where g is the generator of C2. Consequently, there is an explicit equivariant

weak equivalence ΩσSUR → ΩSUT arising as the composite

ΩσSUR (T (C2+, SUR) ×hSUT
∗) ×hT (C2+,SUR)

∗ ΩSUT

and the composite BUR → ΩSUT agrees with the map BUR → ΩσSUR upon application of

the forgetful functor to topological spaces. We show that BUR → ΩSUT is an equivariant

weak equivalence by checking that the induced natural transformation of fixed point functors

is a weak equivalence. Indeed, on objects and restriction maps, it is precisely the diagram
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From Bott periodicity, we know that the classical commutative diagram

BO BU

ΩSU/SO ΩSU

∼∼

of Bott maps has vertical arrows that represent the desired weak equivalences, completing

the proof.

Proposition 6.4. There is a commutative diagram in the category of algebras over the Real

linear isometries operad LC

SUR UR

ΩBSUR ΩBUR

where the vertical maps are weak equivalences and

BSUR = UR(C∞ ⊕C∞)/SUR(C∞) ×UR(C∞)

inherits its LC structure from a similar colimit diagram as BUR does.

Proof. We will show the existence of the weak equivalence for UR. The proof for SUR and

the existence of the commutative square induced by inclusion is straightforward. The desired

map is defined by

A↦
⎛
⎜⎜⎜
⎝
t↦
⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

cos θ − sin θ

sin θ cos θ

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

A 0

0 id

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

cos θ − sin θ

sin θ cos θ

⎞
⎟⎟
⎠

−1⎤⎥⎥⎥⎥⎥⎥⎦∼UR×UR

⎞
⎟⎟⎟
⎠

where θ = 0 when t is the basepoint and θ = π
2 + πt

2
√
1+t2

for t ∈ R. This θ is a reparameterization

of the interval [0, π]. Compatibility with the linear isometries operad structure can be

argued with J -FCPs again and equivariance is immediate from the definition. The inclusion

UR ≃ UR(C∞ ⊕ 0) → UR(C∞ ⊕C∞)/1 ×UR(C∞) is a filtered colimit of closed embeddings of
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manifolds with smooth G action along h-cofibrations and is thus an h-cofibration. Therefore,

we can choose a morphism that completes the commutative diagram

UR ΩBUR

UR(C∞ ⊕C∞)/1 ×UR(C∞) PBUR

BUR

relating two fiber sequences of C2-spaces with contractible total spaces. The contractibility

of the source follows from the Puppe sequence associated to the fiber sequence

UR UR(C∞ ⊕C∞)

UR(C∞ ⊕C∞)/1 ×UR(C∞)

and the map UR(n) → UR and its composite with UR → UR(C∞⊕C∞) induces isomorphisms

on all πH
n (−). By the five lemma, UR → ΩBUR is a weak equivalence.

Theorem 6.5. Let U be a Real universe, KU the corresponding Steiner operad, and E be

the infinite loop space machine sending KU -algebras to LMS spectra of [26, 2.11]. Then,

Ω∞E is connected to the identity functor by a zig-zag of natural transformations, which

consists of weak equivalences on group-like objects and induces a natural isomorphism g in

the homotopy category of spaces. For every G-representation V ⊆ U , there is a natural map

ωV ∶ EΩVZ → ΩVEZ for KU -spaces Z where ΩVZ has the KU structure inherited from

mapping into Z. Assume that the inclusion of the identity element of Z is an h-cofibration.

If either Z is group-like and V contains a copy of the trivial representation (or is 0), or Z
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is connected, then there is a commuting natural triangle

ΩVZ

Ω∞EΩVZ ΩVΩ∞EZΩ∞ωV

of weak equivalences. Moreover, under the same conditions, there is a natural weak equiv-

alence f ∶ BVZ → EZ(V ) and a functorial commutative square in the (model categorical)

homotopy category of KU -spaces

Z ΩVBVZ

Ω∞EZ ΩV (EZ(V ))

g ΩV f

∼

where g is the induced isomorphism.

Proof. The first claim is proven in [26, 2.13]. The second claim follows from the argument

of [58, 15.1] with minor changes (e.g. replacing ordinary spheres with representation spheres

and using ΣV and ΩV in place of Σ and Ω). Before embarking on the proof of the last claim,

we recall a characterization of weak equivalences of G-spaces that follows immediately from

a result of Waner (and Lewis in the compact Lie case) [46, 1.2]. A map of G-spaces is a weak

equivalence if application of the representation sphere homotopy set functors

πK
(ιKV −V K)⊕Rn(−) = [G+ ∧K SιKV −V K⊕Rn

,−]G

where ιK is the forgetful functor toK-representations induce isomorphisms. These homotopy

set functors will also be useful for describing the space EZ(V ) as we will see. Towards the
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final claim, we describe EZ(V ) with a chain of G-homeomorphisms below.

EZ(V )

colimV ⊆W⊆U ΩW−VB(Σ∞(−)(W ),KU , Z)

colimV ⊆W⊆U ΩW−VB(colimW⊆U⊆U ΩU−WΣU ,KU , Z)

B(colimV ⊆U⊆U ΩU−VΣU ,KU , Z)

α0

α1

α2

The G-homeomorphism α0 exists because EZ is the spectrification of the geometric re-

alization B(Σ∞,KU , Z)● taken in prespectra and because geometric realization preserves

inclusion prespectra. Similarly and more simply, α1 follows from the suspension prespec-

tra being an inclusion prespectra. The map α2 is built from a zig-zag of straightforward

equivalences induced by the following facts. The loop space functors commute with colim-

its of inclusions that have a cofinal N -sequence. Second, ΩW−V can be moved inside the

two-sided bar construction (as a functor composed on the left of the left argument) home-

omorphically when each of the homotopy set functors πK
ιK(W−V )−(W−V )K⊕Rn(−) indexed by

subgroups K of G and n < dim(W − V )K vanish level-wise and inclusions of basepoints

are h-cofibrations level-wise. The natural transformation BVZ → EZ(V ) is now induced

by the natural transformation of functors ΣV → colimV ⊆U⊆U ΩU−VΣU . Suppose now that K

is a subgroup of G and n < dimV K . Then, for every m ∈ N, the levels B(ΣV ,KV , Z)m

and B(colimV ⊆U⊆U ΩU−VΣU ,KU , Z)m have vanishing πK
ιKV −V K⊕Rn(−), the first from being a

V -fold suspension and the latter from being a colimit of inclusions with cofinal N -sequence

of spaces that also have vanishing πK
ιKV −V K⊕Rn(−). Indeed, by adjunction, for a given U , we

have an isomorphism

πK
ιKV −V K⊕Rn(ΩU−VΣU(KV )○mZ) πK

ιKU−UK⊕Rn(ΣU(KV )○mZ)
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and the vanishing of the target follows from basic G-connectivity properties of suspensions.

We need to verify that the remaining homotopy groups are isomorphisms and take n ≥

dimV K . By applying the change of groups adjunction, we may assume without loss of

generality reduce to the case that G = K. Note that our task is now to compare homotopy

groups of maps out of S(V −V
K⊕Rn) ≃ Sn−dimV K ∧ SV . Therefore, it suffices to show that the

induced map ΩVBVZ → ΩVEZ(V ) ≃ Ω∞EZ is a weak equivalence because it suffices for the

map of equivariant homotopy groups πK
n (ΩVBVZ) → πK

n (Ω∞BVZ) is an isomorphism. It is

not difficult to verify the commutativity of the diagram of KU -spaces

Z B(KV ,KV , Z) B(ΩVΣV ,KV , Z) ΩVBVZ

Z B(KU ,KU , Z) B(Ω∞Σ∞,KU , Z) Ω∞EZ

α

whose rows are taken from [26, 1.13, 2.12] and consist of weak equivalences. Therefore, the

rightmost vertical map is a weak equivalence. The morphism marked α is a weak group

completion because V contains a copy of the trivial representation. Therefore, because

Z is grouplike, α is a weak equivalence. Therefore, the map BVZ → EZ(V ) is a weak

equivalence. Moreover, the diagram above also produces the desired triangle in the homotopy

category.

Lemma 6.6. Let X be a cofibrant grouplike KU algebra for a G-universe U and U ⊆ W

be nested finite-dimensional subrepresentations of U . Suppose at least one of the following

holds.

1. The representation W −U has a trivial summand.

2. The representation W contains a trivial summand and X is G-connected.

3. Both X and ΩUX are G-connected.

Then, there exists an equivalence f ∶ BW−UX → BWΩUX in the homotopy category of G-

spaces such that in the homotopy category of KW -spaces, there is a commutative diagram of
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isomorphisms

ΩW−UBW−UX ΩW−UBWΩUX

X

βα

ΩW f

where the α and β are induced by the zig-zag from [26, 1.13].

Proof. The map f arises from the zig-zag

BW−UX E(X)(W −U) ΩUE(X)(W ) E(ΩUX)(W ) BWΩUX∼ ωU

with the unmarked maps arising from Theorem 6.5. Taking ΩU (which preserves weak

equivalences) and using more of Theorem 6.5 and [26, 1.13,2.12] with forgetful functors. we

have a commutative diagram of equivalences in the homotopy category of KW -spaces

ΩW−UE(X)(W −U) ΩW−UΩUE(X)(W ) ΩW−UE(ΩUX)(W )

Ω∞E(X) Ω∞E(ΩUX)

ΩW−UBW−UX ΩW−UBWΩUX

X

∼ ωU

∼∼

ωU

∼

as desired.

Proposition 6.7. Let U,V,, and W be G-representations (over R) in a G-universe U such

that U ⊆W and V ⊆W and let ϕ ∶ O →KU be a weak equivalence from a cofibrant G-operad to

the Steiner operad of the G-universe U . Suppose X and Y are cofibrant grouplike O-algebras

for and g ∶ QOΩUX → ΩV Y is a map of O-algebras where QO is the cofibrant replacement in

O-algebras. Assume that (U,W,X) and (V,W,Y ) satisfy one of the numbered hypotheses of

93



Lemma 6.6. If ϕ∗ is the change of operads functor, then there is a morphism

f ∶ BW−Uϕ∗X → BW−V ϕ∗Y

in the homotopy category of G-spaces via a morphism f such that the diagram

ΩUX ΩUΩW−UBW−Uϕ∗X ΩWBW−Uϕ∗X

QOΩUX

ΩV Y ΩVΩW−VBW−V ϕ∗Y ΩWBW−V ϕ∗Y

ΩW−Uf

g

∼

∼

∼

∼

∼

commutes in the homotopy category of G-spaces. If g is a weak equivalence, so is f .

Proof. Recall that ϕ∗ induces an isomorphism on homotopy categories and that because all

G-spaces are fibrant, the forgetful functor ϕ∗ (which we will often suppress in the notation

below) from KU -algebras to O-algebras is derived and induces an adjoint to ϕ∗ in homotopy

categories. Because X and Y are cofibrant, we can find an equivalence of O-algebras lifting

the unit in homotopy categories Y → ϕ∗ϕ∗Y and X → ϕ∗ϕ∗X. Applying the homotopical

endofunctors ΩU and ΩV on O-algebras and composing, we obtain the zig-zag in the top row

of the commutative diagram

ΩUϕ∗ϕ∗X ΩUX QOΩUX ΩV Y ΩV ϕ∗ϕ∗Y

ϕ∗ΩUϕ∗X ϕ∗ϕ∗QOΩUX ϕ∗ΩV ϕ∗Y

∼∼ ∼

∼

which induces a zig-zag

ΩUϕ∗X ϕ∗QOΩUX ΩV ϕ∗Y

by adjunction. It follows ϕ∗QOΩUX → ΩUϕ∗X is a weak equivalence from the two-out-of-
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three property after applying the weak equivalence reflecting functor ϕ∗ as in the second row

of the first diagram. The next diagram defines g.

BW−Uϕ∗X BWΩUϕ∗X

BWΩV ϕ∗Y BW−V ϕ∗Y

α

The horizontal morphisms are the isomorphisms in the homotopy category of G-spaces of

Lemma 6.6. The final claim about the commutative square in the homotopy category of

spaces is verified by using the diagram below. Applying ΩW , and naturality of the zig-zag

of [26, 1.13] we have the commutative diagram in the homotopy category of G-spaces

ΩWBW−Uϕ∗X ΩUΩW−UBW−Uϕ∗X

ΩWBWΩUϕ∗X ΩUΩW−UBWΩUϕ∗X ΩUϕ∗X

ΩWBWΩV ϕ∗Y ΩVΩW−VBWΩV ϕ∗Y ΩV ϕ∗Y

ΩWBW−V ϕ∗Y ΩVΩW−VBW−V ϕ∗Y

ΩWBWα

∼

∼

∼

∼

α

Because each morphism save α and ΩWBWα in the diagram is an equivalence, this completes

the proof.

Let BUR(1) = UR(C∞ ⊕C)/UR(C∞) ×UR(C).

Proposition 6.8. Consider the canonical map F ∶ ΣρBUR(1) → Bρϕ∗BUR induced by the

inclusion map BUR(1) → BUR and various natural transformations. Then, there exists a
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commutative diagram

ΣρBUR(1) ΣρBUR

Bρϕ∗BUR

B1ϕ∗SUR BSUR

BUR

F

λ β

in the homotopy category of G-spaces such that the upper triangle is induced by inclusions,

λ is an equivalence, and β is an equivariant lift of the equivariant Bott map.

Proof. We begin with the chain of maps

ΩρBSUR

BUR(1) BUR ΩσSUR ΩσUR ΩρBUR

≃

of inclusions and the maps of Propositions 6.3 and 6.4 with homotopy commutative factor-

ization through ΩρBSUρ. The upward-pointing diagonal map is a factorization given by the

same formulas as the composite BUR → ΩρBUR and it is straightforward to check that it is

well defined. The composite BUR → ΩρBUR is the (adjoint of the) equivariant Bott map.

Using Proposition 6.7 we can form a commutative diagram

ΣρBUR(1) ΣρBUR BSUR BUR

ϕ∗BSUR

Bρϕ∗BUR B1ϕ∗SUR ϕ∗BUR

∼
F

in the homotopy category of spaces. To verify that the induced map ΣρBUR → BUR is the

equivariant Bott map, we apply more of the statement of Proposition 6.7 to compare the
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adjoint to the original chain of maps to complete the proof.

6.2 Cohomology computation

We will need to make some comments on the RO(G) equivariant Serre spectral sequence

of [43], building on [44]. The idea of using hypercohomology to understand the RO(G)-

grading of this sequence is an insight from Mike Hill. Let f ∶ X → Y be a map of G-

spaces. First, the spectral sequence of [43] is not stated to be Mackey functor valued, but

by functoriality in the coefficients and because Mackey functors have corresponding Mackey

functors of Mackey functors, we can take it to be Mackey functor valued. More precisely,

we invoke the fact that any abelian group valued functor F from the category of G-Mackey

functors is the evaluation at G/G of a unique G-Mackey functor valued functor F ′ from

G-Mackey functors such that F ′(M) = F (M(G × −)). Then, there is an induced functor

of equivariant simplices ∆G(X) → ∆G(Y ) and an uninteresting version (due to having no

easily computable pages in general) of the equivariant Serre spectral sequence that looks

like the hypercohomological Grothendieck spectral sequence converging to associated to the

composition of hypercohomological functors appearing as the vertical arrows below.

[∆op
G (E),A −Mod] D+([∆G(E)op,A −Mod])

D+([∆G(B)op,A −Mod])

D+(A −Mod) (A −Mod)Z

limR ○FR(S−V ,−)

limR

H∗(FR(−,M))

ι

Here, the first functor is the result of applying the Mackey functor analogue of the Hom

functor (adjoint to the box product) out of the chain complex associated to the constant

functor of the cellular chain complex of a representation sphere SV (using duality to extend

this notion for virtual representations) and then applying a fiber-wise derived limit functor.
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The second functor is simply a derived limit functor. When the map E → B is a G-fibration

(and when beginning with a cochain complex of coefficients concentrated in degree 0 as

shown), the functor [∆op
G (E),A −Mod] → D+([∆G(B)op,A −Mod]) is well-behaved and

we can describe the E2 page as Ep,q
2 (V ) = Hp(B,H q+V (f,M)) for an RO(G) graded local

coefficient system H ⋆(f,M), i.e., a collection of functors indexed on the G-representation

group from ∆G(B) to G-Mackey functors that factors through the G-fundamental groupoid

of X in a designated way. In the special case where B is G-simply connected and F is the

fiber of E → B, the E2 page is E
p,q
2 (V ) =Hp(B,Hq+V (f,M)). However, we can work just as

easily with the more general spectral sequence for which the lower limR functor of the base

is replaced with limR ○FR(SW ,−) for another G-representation W . An essential reason for

this is that the functors FR(S−V ,−) commute with the limit functors, and applying them

with the first or second composite results in the same total complex but different filtrations.

Consequently, following the arguments of [43], we have the following computational tool,

which is presented in the special case we use.

Proposition 6.9. There exists a functorial spectral sequence of HZ∗+⋆ ◻HZ∗
′+⋆′-algebras

of bidegree (r,1 − r) with parameters (⋆,⋆′) from RO(G) × RO(G) (or strictly speaking, a

groupoid with objects in RO(G) × RO(G) and morphisms of homotopy classes of equiva-

lences of the corresponding representation sphere) for G-fibrations with E → B with simply

connected base B and fiber F of the form

Ep,q
2 (W,V ) =Hp+W (B,Hq+V (F,Z)) ⇒Hp+q+W+V (E,Z)

which converges strongly. Moreover, there exists a cup product structure

Ep,q
r (W,V ) ◻Ep′,q′

r (W ′, V ′) → Ep+p′,q+q′

r (W ⊕W ′, V ⊕ V ′)

(for pairs of equivalences SW ∧ SW ′ → SW⊕W ′
and SV ∧ SV ′ → SV ⊕V ′) converging to the cup
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product

Hp+q+W+V (E,Z) ◻Hp′+q′+W ′+V ′(E,Z) →Hp+p′+q+q′+W+W ′+V +V ′(E,Z).

We will now use this spectral sequence to make our computation relatively straightfor-

ward.

Proposition 6.10. The inclusion BSUR → BUR induces on Mackey functor-valued RO(C2)-

graded cohomology with coefficients in Z the quotient map

HZ⋆[[cn ∶ n ≥ 1]] →HZ⋆[[cn ∶ n ≥ 2]]

sending c1 ↦ 0. Here ci is in degree iρ evaluated at the G-set G/G.

Proof. The cohomology of BUR is computed as stated in [34, 2.25] using the Thom iso-

morphism and because HZ is Real-oriented by truncation. We compute the cohomology of

BSUR → BUR via the spectral sequence associated to the C2-fibration

Sσ ≃ UR(1) → BSUR → BUR

and has the one associated to

Sσ → BSUR(1) ≃ ∗ → BUR(1)

as a retract via the inclusion and determinant maps Note that BUR and BUR(1) are classify-

ing spaces of G-connected spaces and thus G-simply connected. The Serre spectral sequence

as stated thus applies, and by a freeness argument, the result is determined.

Proposition 6.11. The cohomology ring of ΣρBUR(1) with Z coefficients is abstractly iso-

morphic to HZ⋆[[cn ∶ n ≥ 2]]/(cicj ∶ i, j ≥ 2).
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Proof. Suspension of a based space shifts cohomology apart from the basepoint summand

and has cup product structure given by the square zero extension of the cohomology of a

point by standard arguments. Since BUR(1) has polynomial Z-cohomology ring, the result

follows.

Proof of Theorem 6.1. We identify the map ΣρBUR(1) → BρBUR with ΣρBUR(1) → BSUR

as justified by Proposition 6.8. Evaluation of cohomology Mackey functors at the C2-set

C2/e admits a natural isomorphism with non-equivariant cohomology; therefore, the lower

square of the diagram below commutes.

Hnρ(BSUR,Z)(C2/C2) Hnρ(BSUR,Z)(C2/C2)

Hnρ(BSUR,Z)(C2/e) Hnρ(ΣρBUR(1),Z)(C2/e)

H2n(BSU,Z) H2n(Σ2BU(1),Z)

∼ ∼

∼ ∼

The upper square of the diagram is formed by the restriction structure maps of Mackey

functors and consists of isomorphisms. What we have shown reduces our problem to [20,

7.3].
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Chapter 7

Orientations

We conclude this report with a review of how the main arguments of [20] and results of equiv-

ariant stable homotopy theory would complete the proof of 7.2. All results are unoriginal or

conditional on the rest of the project, and we will not prove any claims.

Throughout this chapter, we set G as a finite group. An EV -algebra refers to an algebra

over an EV operad, modulo technicalities combining the categories.

7.1 Obstruction Theory

We begin by summarizing obstruction theory in genuine equivariant stable homotopy theory.

One powerful source of computational information since the Kervaire Invariant One work of

[30] has been the slice spectral sequence. The genuine equivariant stable homotopy category

admits a filtration, called the slice filtration, along which key examples of spectra, including

MUR and Real Landweber exact theories, lend themselves to tractable analysis. We use the

regular slice tower and filtration of [67] rather than the original one in [30].

Definition 7.1. A slice sphere Ŝ is a cofibrant spectrum equivalent to one of the form

G+ ∧H SnρH for some n ∈ Z in which case the dimension of the slice sphere dim Ŝ is n∣H ∣,

where H is a subgroup of G and ρH is the real regular representation of H.
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Proposition 7.2 ([30]). There is a functorial tower

. . . P 2X → P 1X → P 0X → P −1X → P −2X → . . .

for G-spectra X with homotopy limit X such that P nX is the universal (in the homotopical

sense) spectrum under X for which, for every slice sphere Ŝ, the set of homotopy classes of

maps [Ŝ, P nX] is 0 when dim Ŝ > n. Moreover, the natural map [Ŝ,X] → [Ŝ, P nX] is an

isomorphism when dim Ŝ ≤ n.

Definition 7.3. The nth slice P n
nX of a genuine G-spectrum X is the fiber of the map

P nX → P n−1X. An n-slice is a spectrum equivalent to its nth slice.

The slice filtration is sufficiently refined.

Proposition 7.4. If X and Y are n-slices the G-space mapping spectrum F (X,Y ) has

vanishing homotopy groups outside the coefficient system (or Mackey functor) π0F (X,Y ).

The slice tower can be constructed through Bousfield localization, and an elementary

explanation of the construction of P nX is that one attaches cells of dimension at least n+2

(corresponding to slice spheres of dimension at least n+1 to induce vanishing of the slice

sphere-sourced homotopy groups, as in one of the classical constructions of Eilenberg–Mac

Lane spaces from Moore Spaces.

One perspective on slice spheres is that they are the result of applying a multiplicative fol-

lowed by an additive change of group functors to non-equivariant spheres of non-equivariant

stable homotopy theory. From this viewpoint, slice spheres, which arise from an external-

ized multiplicative phenomenon, are well suited for filtering multiplicative objects. In the

multiplicative case, connectivity is required of an operad O and its algebra A for each P nA

to admit a canonical algebraic structure.

The behavior of the slice filtration under the smash product makes the following fact a

routine exercise.
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Proposition 7.5. If O is a connective operad and R is a connective algebra over O, then

P nR has a canonical structure of a module over the algebra P 0R over O in the homotopy

category.

The following obstruction theory has been identified.

Theorem 7.6 ([6]). Let O be a connective operad and R be an algebra over O. Then, the

slice tower of R can be constructed to be a tower of O-algebras and there are homotopy

pullback squares
P n+1R P 0R

P nR P 0R ∨Σ1P n+1
n+1R

where P 0R ∨Σ1P n+1
n+1R has a O-algebra structure a square-zero extension of P 0R.

Our contribution begins when we turn to Thom spectra. Suppose the O-algebra map

f ∶ X → BG with X based and connected is an input for O-algebra Thom spectrum that

admits an O-algebra Thom diagonal, and O a well-chosen EV operad (in a sense appropriate

to its category), where V contains a copy of the trivial representation. Further, suppose that

R is a connective EV algebra where the Green functor structure on P 0R induced by the EV

structure is commutative. Suppose there is a given map Mf → P nR for some n. To lift this

to a map Mf → P n+1R, it is necessary and sufficient to show the composite

Mf → P nR → P 0R ∨Σ1P n+1
n+1R

is homotopic to the composite

Mf → P nR → P 0R → P 0R ∨Σ1P n+1
n+1R.

The conditions we assumed for R and the discreteness of the endomorphism mapping

spaces of the slices of R can be used to find an essentially unique algebra over EV ⊕R operad
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structure on P 0R ∨Σ1P n+1
n+1R extending the O-structure. Our strictification result Theorem

4.15 allows us to regard P 0R ∨Σ1P n+1
n+1R as a monoid in EV algebras.

Let B be any EV ⊕R-algebra under Mf as an EV -algebra; we apply our conclusions to

the choice P 0R∨P n+1
n+1R. The homology Thom isomorphism theorem states that a homotopy

class of maps of G-spectra

B ∧Mf → B ∧Σ∞+ X,

namely the one corresponding to the geometric cap product with the orientation obtained

from the map Mf → B, is an isomorphism.

With the assumed highly structured Thom spectrum construction, this map can be ob-

tained as the adjoint to the composite of O-algebra maps

Mf →Mf ∧Σ∞+ X → B ∧Σ∞X

under the adjunction between the categories of O-algebras and the category of left B-modules

in the category of O-algebra maps. Because the free (only with respect to B-module struc-

ture) left B-modules in O-algebras B ∧Mf and B ∧Σ∞+ X are isomorphic, the set of maps

Mf → B and Σ∞+ X → B of O-algebras are in bijection in the homotopy category.

In the case of interest, the map Σ∞+ X → P 0
0R∨Σ1P n+1

n+1R has a target that is a square-zero

extension of P 0
0R and the fact that X is connected and based determines the map Σ∞+ X →

P 0
0R and by general properties of augmented algebras, one can lift essentially uniquely to a

map ℓ ∶ Σ∞+ X → SG ∨ P n+1
n+1X between two O-algebras with SG augmentation. Moreover, ℓ is

trivial if and only if the obstruction we are studying vanishes.

By Theorem 5.16 and some adjunctions between augmented algebras, the obstruction to

lifting Mf → P nR to a map Mf → P n+1R lies in the group (P n+1
n+1R)V (BVX).
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7.2 Orientations of Real Bordism

There are several more ingredients to Anticipated Theorem .

First, for orientations of non-connective spectra, we need a mild generalization of [31, 2.7].

Proposition 7.7. If R is a fibrant O-algebra in a symmetric monoidal category of G-spectra,

where O is a connective operad, then there is an O-algebra map r ∶ R → R that is a connective

cover on the underlying spectrum.

Sketch. The idea behind the proof of the above proposition is to perform the same procedure

as one would with CW approximation, but only using connective cells everywhere. One

reduces to the case where O is build from non-negative dimensional slice cells and applies

basic properties of the slice tower.

Let us now consider the question of lifting a homotopy ring map from MUR to an Eρ

map. For a homotopy ring spectrum B, homotopy ring maps MUR → B correspond to maps

Σ∞ρ BUR(1) → B such that the composite

S ≅ Σ∞ρ ΣUR(1) → Σ∞ρ BUR(1) → B

is the homotopy ring unit. Lifting a homotopy ring map to a Eρ map is therefore equivalent

to the following extension problem.

OaugΣ∞ρ BUR(1) R (∗)

MUR

We also recall that Σ∞ρ BUR(1) is the Thom spectrum associated to the inclusion BUR(1) →

BUR.

Suppose R is an Eρ connective ring spectrum such that the homotopy groups πnρ−1R are

trivial for odd n > 0, and πnρR are constant Mackey functors for n ≥ 0. Further, suppose that
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π0(R) is a commutative Green functor. Let f ∶MUR → R be a homotopy ring map. Then,

because the homomorphism induced by the unit π0(SR) → π0(MUR) is an epimorphism, the

homotopy ring map MUR → R → P 0R is guaranteed to lift to the Eρ algebra category.

Now assume that we have an Eρ liftMUR → P nR of the homotopy ring mapMUR → R →

P nR and seek to lift one more stage of the tower. Using the argument of the previous section,

the compatibility of the Thom spectrum construction with the free algebra construction,

and computing the derived indecomposibles of free augmented algebras, the lifting problem

becomes the problem of extending a nullhomotopy of the horizontal arrow to the diagonal

arrow in the following commutative triangle.

Σ∞BUR(1) Σ1P n+1
n+1R

Σ−ρΣ∞BρBUR

Known facts about the slice tower for C2-spectra, Theorem 6.1 and the conditions we

have placed on the homotopy groups of R guarantee that the extension problem is solvable.

One must know more to lift up the entire slice tower to the homotopy limit.

Theorem 7.8 (Milnor sequence for spaces [16, IX.3.1]). There is a short exact sequence of

pointed sets

∗ lim1
n∈N op πq+1(Xn) πq(limn∈N op Xn) limn∈N op πq(Xn) ∗

where for any inverse sequence of groups H ∶N op → Grp, the pointed set lim1
n∈N op Hn is the

set of orbits of ∏n∈NHn acting on itself via the left action

(gn)n∈N ⋅ (hn)n∈N = (gnhnH([n ≤ n + 1]op)(gn+1)−1)n∈N.

For inverse sequences of abelian groups, lim1 has an abelian group structure, and the short

exact sequence above is one in the category of groups for q ≥ 1 and in the category of abelian
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groups for q ≥ 2.

The proof of Anticipated Theorem 7.2 goes through the argument described above in a

topologically enriched setting and inductively shows each relevant fundamental group in the

Milnor sequence (with q = 0) with Xn as the space of solutions to the extension problem (*)

vanishes, from which the theorem follows.
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