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ABSTRACT 

Machine vision-based structure health monitoring (SHM) is gaining popularity due to the rich 
information one can extract from video and images. However, the extraction of characteristic parameters 
from images often requires manual intervention, thereby limiting its scalability and effectiveness. In 
contrast, deep learning overcomes the aforementioned shortcoming in that it can autonomously extract 
feature parameters (e.g., structural damage) from image datasets. Therefore, this study aims to validate 
the use of machine vision and deep learning for SHM by focusing on a particular application of detecting 
bolt loosening. First, a dataset that contains 200 images was collected. The dataset includes two bolt 
looseness states, namely, tight and loosened. Second, a faster regional convolution neural network (Faster 
R-CNN) was trained and evaluated. The test results showed that the average precision of bolt damage 
detection is 0.9503. Thereafter, bolts were loosened to various screw heights, and images obtained from 
different angles and lighting conditions were identified separately. The trained model was then employed 
to validate that bolt loosening could be detected with sufficient accuracy using various types of images. 
Finally, the trained model was connected with a webcam to realize real-time bolt loosening damage 
monitoring.  
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1. Introduction 

Aerospace, civil, marine, and mechanical structures can sustain damage any time during their entire 
operational life cycle. If damage is left undetected, it can propagate to cause component or catastrophic 
structural failure. Therefore, the aim of any structural health monitoring (SHM) system is to detect early 
stages of structural damage so that appropriate repairs can be conducted to maintain system performance 
and functionality. In addition to confirming whether damage exists or not, the goal is to also characterize 
severity, identify the location, and differentiate the types of damage in the system.  

Conventional SHM methods mainly rely on measuring structural response due to ambient or forced 
excitations, typically using sensors such as accelerometers, strain gages, displacement meters, and 
inclinometers. Then, modal analysis is used to determine the degree of structural damage [1], such as by 
using dynamic fingerprint analysis, system identification, and neural networks [2]. These methods are 
all based on characterizing the dynamic properties of the structure, which is highly dependent on 



environmental effects and insensitive to local damage. Furthermore, these detection methods only 
suitable for simple (or idealistic) structures. Although the deployment of dense sensor networks (e.g., 
wireless sensors) could improve structural monitoring performance, structural dynamic properties do not 
change significantly due to highly localized damage features (e.g., bolt loosening or fatigue crack).   

With the advancement of cameras and other image capturing technologies, machine-vision-based 
damage detection methods have developed rapidly, simply because machine vision can be adapted to 
diverse and complex engineering environments with high precision and high speed. A common approach 
is to feed image data streams to image processing algorithms for extracting abnormal features indicative 
of damage or change relative to a healthy baseline. Currently, machine vision has been applied in many 
fields, such as bridge monitoring [3-5], vehicle monitoring [6, 7], dam monitoring [8], and structural 
cracking detection [9-11]. Overall, vision-based damage detection methods are intuitive and effective at 
monitoring structural cracks, corrosion and other common types of damage.  

In recent years, with the rapid developments of deep learning, various algorithms have emerged with the 
ability to classify and recognize structural features at high accuracy. This enables automation and 
eliminates the need to manually process and compare processed image results with an assumed, constant, 
baseline. In fact, to date, deep learning has been widely used in medical diagnosis [12-15], data mining 
[16], autopilot [17-20], and literary translation [21-22], which have demonstrated remarkable results and 
success. In general, all of the deep learning fields are mainly divided into three domains: (1) image 
classification; (2) speech recognition; and (3) text understanding. In particular, significant achievements 
have been made in image classification largely due to the remarkable performance of convolutional 
neural networks (CNN). For example, in 2017, Cha et al. [23] proposed a crack recognition method based 
on CNN and introduced deep learning to the field of structural health monitoring for the first time. Their 
results showed that this method can meet the engineering needs and has high recognition accuracy. 
Therefore, combining deep learning with machine vision can be readily applicable for damage 
identification in civil engineering structures. 

One of the most important structural components in buildings is its connections, where bolt damage can 
adversely affect structural safety and performance. Currently, many researchers have used machine 
vision to study the problem of damage in the form of bolt loosening. For example, Hough transform was 
used to identify the bolt edge, and the degree of bolt damage was judged by identifying the rotation angle 
of the bolt edge [24]. The length of the bolt was also assessed by support vector machine to determine 
the degree of bolt looseness [25, 26]. While all of these methods have high accuracy, they all need to 
artificially extract damage characteristics through many intermediary steps. In addition, this procedure 
suffers from greater subjectivity when extracting damage characteristics. Thus, it is very difficult to 
actualize automated end-to-end damage monitoring using these aforementioned techniques. Based on the 
present situation, this paper proposes a new bolt looseness damage detection method using deep learning. 

This paper combines machine vision and deep learning to propose a new monitoring method that can 
realize automated, end-to-end, bolt looseness damage detection without having to rely on feature 
extraction. First, a test structure was designed, and image datasets were collected using a typical smart 
phone. The dataset was separated such that 64% of it was used for training, 16% for validation, and 20% 
for testing. Then, a faster region based convolution neural network (Faster R-CNN) algorithm was trained 
and evaluated using the aforementioned image datasets. Second, this study then examined its 
applicability for damage detection by considering the extension of the bolt as a potential damage state of 
interest. In order to verify the accuracy of the new method, images of different bolts tightened to various 



heights and angles were identified. Third, to further introduce realism, the effect of lighting conditions 
on recognition accuracy of the detection method was analyzed. It was found that images that was taken 
in poorly lit conditions made damage detection more challenging; nevertheless, this method still showed 
strong detection capabilities under different lighting conditions. Then, to validate this method, four 
images of loosened bolts that were acquired from other structures were successfully detected by the 
trained model. Finally, in order to meet the needs of real-time monitoring, the trained model was 
connected with a webcam to detect and locate bolt looseness damage status. In summary, the new method 
not only enabled high precision and accurate damage detection, but it also met the requirement of real-
time monitoring, which is a necessary step for realizing automated, end-to-end, damage monitoring. 

 

2. Experimental Details 

2.1 Experimental Test Structure  
This paper proposes a new detection method that combines deep learning with machine vision to identify 
and locate bolt looseness damage. In this method, looseness of the bolt was defined by the extension 
length of the screw (or threaded bolt). Two states were defined: tight (intact) and loose (damaged). Figure 
1 shows the test structure employed, where multiple bolts of different states could be introduced 
simultaneously. The test structure consisted of three iron plates, in which two plates were used as the 
supports, and the other large, horizontal plate was used for installing nine M28 bolts. The dimensions of 
the plate was 400 mm long, 240 mm wide, and 10 mm thick. The spacing between bolts was 70 mm. 
Then, the Faster R-CNN algorithm was trained and assessed using image datasets obtained from this test 
setup. Thereafter, the trained model was used to detect the bolt looseness or damage. 

 
Figure 1. Schematic diagram of experiment structure 

2.2 Image Datasets 
The image datasets of the test structure that were used in this article were collected as shown in Figure 
2. Initially, whena bolt is tightened, the length of the extend screw was 0 cm. Then, by loosening the bolt, 
the length of the extended portion of the screw was ~ 3 cm. Smart phones were used to acquire images 
of the bolts and test structure, and these images were taken at various angles and distances. The 
specifications of the onboard camera of smartphone are shown in Table 1. A total of 200 photos were 
acquired (4032×3016 pixels). In order to increase the training speed of the deep learning algorithm, all 
of the pictures were uniformly converted to 640×478 pixels. The datasets were then separated into 64% 
for training (128 images), 16% for validation (32 images), and 20% for testing (40 images). In addition, 
a tagging tool was used to tag all images as shown in Figure 2. 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a) A loosened and (b) tightened bolts, as well as the corresponding tagged images for 
the (c) damaged and (d) intact bolts, are shown. 

Table 1. Smart phone camera specifications 
Parameters Value 

Size 4032×3016 pixels 
Vertical resolution 72 dpi 

Horizontal resolution 72 dpi 
Bit depth 24 
Aperture f/1.8 

 
2.3 Hardware and Software Configurations 
The training of deep learning networks requires ample computing power. Thus, a Dell 7810 workstation 
was used for training the model. The workstation featured NVIDIA Geforce GTX 1080 Ti (with 11 GB 
of memory) and ran software such as the Ubuntu system, CUDA8.0, cuDNN6.0, python3.6, and 
tensorflow1.4, among others. The deep learning network used in this study is Faster R-CNN, as 
mentioned previously, and the convolutional neural network framework is VGG16. 

3. Faster R-CNN 

The central hypothesis of this study is that convolutional neural networks can be employed to extract 
structural damage features, such as bolt loosening, from image datasets. However, the problem of image 
positioning needs to be solved first. In the past, sliding windows were mostly used to divide an intact 
picture into multiple smaller pictures. Then these small pictures were classified and recognized for image 
positioning, which can be inefficient. Instead, locating objects can be achieved by integrating an object 
detection algorithm with CNN. There are two main approaches to implement this. The first is to treat it 
as a regression problem, and the second is to use the anchor boxes. The Faster R-CNN used in this study 
belongs to the latter. Faster R-CNN can not only accurately find the location of an object, but it can also 
identify the category of the object [27-29]. The overall framework of the Faster R-CNN is shown in 



Figure 3. 

 
Figure 3. The Faster R-CNN framework 

3.1 Convolutional Neural Networks 
Deep learning extracts the features of pictures using a convolutional neural network. In particular, Faster 
R-CNN uses the Convolutional layers, ReLU layers, and Pooling layers to extract feature maps of images. 
This feature map is used by region proposal networks and the fully connected layer. In Faster R-CNN, 
all of the convolutional layers are expanded to convert the original image size of M×N to (M+2)×
(N+2), and the output is M×N after the convolution of 3×3. This process is shown in Figure 4. Similarly, 
the matrix will changes to (M/2)×(N/2) after each pooling layer. Thus, the convolutional layer does not 
change the sizes of the input and output in this convolutional network; however, the pooling layer 
changes both the length and width of the output to become half of the input. Therefore, the size of the 
matrix changes from M×N to (M/16)×(N/16) when it is processed by the convolutional section. 
Because the feature map is defined by the matrix, there is direct correspondence between the feature map 
and the original image. 

 
Figure 4. The convolution process after the original image is expanded  

3.2 Region Proposal Networks 
In the past, the speed of object detection algorithms that generated region proposals are very slow, such 
as the case for sliding windows and selective search. The Faster R-CNN uses region proposal networks 
to generate rectangular object proposals, which greatly improves the generation speed of region proposals. 
The region proposal network is illustrated in Figure 5. First, Faster R-CNN will reset any size of image 
to 800×600 pixels, followed by generating nine rectangular object proposals corresponding to the size 
of the reset image, including three ratios 1:1, 1:2, and 2:1. These rectangular object proposals basically 
cover the various dimensions and shapes of the reset image. Each point on the feature map will match 



those of the nine detection boxes, although it should be noted that these original detection boxes are 
inaccurate. In addition, there are also two bounding box regressions to correct the position of the 
detection boxes. More importantly, this method can share convolutional features with the region proposal 
and object detection. Then, the fully connected layer and Softmax layer are used to calculate the category 
of each region. At the same time, bounding box regression is used to calculate the offset of each object 
proposal position for obtaining a more accurate object detection proposal. 

 
Figure 5. Region Proposal Network 

3.3 VGG16  
The network framework used in this study is VGG16, which includes 13 Convolutional layers, 13 ReLU 
layers, 5 Max pooling layers, 3 Fully connected layers, and 1 Softmax layer, as shown in Figure 6. For 
all the convolutional layers, kernel size is 3, and pad is 1. For all pooling layers, kernel size is 2, and 
stride is 2. The size of the input image is 224×224 pixels. The kernel size of 3 increases the ability of 
nonlinear expression, thereby making the segmentation plane more separable. VGG16 uses min-batch 
gradient descent to optimize multinomial logistic leans. 

Faster R-CNN was trained on a model that was already well-trained, such as VGG, ZF, and Res. The 
network model used in this article is VGG16, as was mentioned earlier and shown in Figure 6. The 
training process of Faster R-CNN was as follows: (1) training the RPN on the training model, where this 
step collected a series of region proposals; (2) training the Fast R-CNN; (3) training RPN next, where 
this section collected a series of region proposals again; and (4) training Fast RCNN for the second time. 
This training process repeated a total of two times. The reason of only repeating two times was that the 
training effect was not greatly improved as the number of repetitions was increased further. 



 
Figure 6. Microarchitecture of VGG16 

4. Bolt Damage Object Detection based on Deep Learning 

4.1 Training Process  
In this study, Faster R-CNN based on TensorFlow frame was used to identify and locate bolt looseness 
damage. The training process with a learning rate of 0.001, momentum of 0.9, and weight decay of 0.0005 
for 3,000, 5,000 and 10,000 iterations was utilized. The aforementioned parameters were shared with the 
region proposal networks and object detection algorithm. Then, the anchor scales for RPN were 8, 16, 
and 32, while the anchor ratios for RPN were 0.5 and 1.2. The evaluation parameter of IOU was 0.3. In 
order to ensure convergence of the training results, three iterations were attempted to train the datasets. 
The training results are shown in Table 2, and total loss is plotted with respect to the total number of 
iterations as shown in Figure 7. 

 
Figure 7. Total loss after 5,000 iterations 

Table 2. Average precision (AP) corresponding to different iterations 
Iterations AP for Tight AP for Loose mAP 

3,000 0.9100 0.9091 0.9095 
5,000 0.9005 1.0000 0.9503 

10,000 0.8559 0.9960 0.9260 



When the number of iterations reached 5,000, the training result successfully converged, as shown in 
Figure 7. The average precision results are summarized in Table 2, where the mean average precision 
(mAP) was found to be 0.9503, which is acceptable for engineering applications. The mean average 
precision for 10,000 iterations is 0.9260, which is smaller than the case for 5,000 iterations. Based on 
these results, it was decided that 5,000 iterations were used for the model. 

4.2 Bolt Looseness Damage Detection under Different Conditions 
(1) Minimum resolution for bolt looseness detection 
It was mentioned earlier that loosened bolts were defined as those with a screw height of 3 cm. However, 
the model which was trained by deep learning has the potential to generalize the definition of loosening, 
which can therefore be used to identify loosened bolts with different screw heights. Thus, in this section, 
a series of images with different screw heights were tested for finding the minimum resolution for bolt 
looseness detection. 

  
(a) 2 cm (b) 1 cm 

  
(c) 0.5 cm (d) 0.4 cm 

Figure 8. The detection result of different screw heights 

Representative test results are shown in Figure 8. The four images with screw heights of 2 cm, 1 cm, 0.5 
cm, and 0.4 cm were identified in Figure 8. Among them, the loosened bolts with screw heights of 2 cm, 
1 cm, and 0.5 cm were correctly identified as “Loose”, and it was found that their recognition accuracy 
decreased as the height decreases (which makes sense, as these became more difficult to recognize 
visually). Therefore, the screw heights of bolts can affect bolt looseness recognition. On the other hand, 
the loosened bolt with a screw height of just 0.4 cm was mistakenly identified as “Tight”. Based on test 
results obtained in this study, it can be concluded that the minimum resolution for bolt looseness detection 
was 0.5 cm, based on the parameters of testing. Nevertheless, even though the detection method was 
trained with screw heights of 3 cm, the technique was successfully generalized to detect loosened bolts 
of different screw heights up to a minimum of 0.5 cm. These results also indicated that the recognition 



effect of this method was not limited to just the characteristics of the datasets and possessed a strong 
learning ability. 

(2) Looseness detection under different angles 
In order to verify that the training model could identify bolt looseness damage based on images acquired 
at different angles, bolts of different loosened heights (i.e., 3 cm, 2 cm, and 1 cm) were photographed at 
a low angle (0°), medium angle (0° to 45°), and high angle (45° to90°), as shown in Figure 9. Then, these 
images were used to see if the Faster R-CNN framework could identify that these bolts were in fact loose. 

 
(a) Low angle 

 
(b) Medium angle 

 
(c) High angle 

Figure 9. The detection result of different angles  

The test results are shown in Figure 9. The images acquired at low and medium angles successfully 
identified that all three bolts were loose. On the contrary, for the high angle image, the bolt with a 
loosened height of 1 cm was incorrectly identified as being tight. These results are important, since it 
clearly shows that detection methods based on machine vision is often restricted by camera shooting 
angle, which can lead to some errors during damage detection and is unavoidable. Overall, the precision 



of bolt damage detection based on this method is acceptable. 

(3) Looseness detection under different lighting conditions  
In order to detect the stability of the training model, images taken under different lighting conditions 
were evaluated. These pictures are divided into two categories, namely, normal lighting and dark lighting. 
Using the image datasets, the individual bolts were identified, and the training results showed that the 
framework could locate and identify looseness damage of multiple bolts simultaneously. The looseness 
damage of nine bolts on the test structure was obtained from one image, where the image size was 3,264
×2,448 Pixel. Each image was tested separately, and the average time required for each image was 0.280 
s. Some representative recognition results are shown in Figure 9. In addition, the statistics of the test 
results are summarized in Table 3. 

  
(a) (b) 

  
(c) (d) 

Figure 10. The detection results of bolt looseness under different lighting conditions 

As can be seen from Figure 10, the recognition accuracy of this method was still high under normal 
and dark lighting conditions. Table 3 computes statistical parameters that quantifies recognition 
performance. In Table 3, P is positive, N is negative, TP is true positive, TN is true negative, FP is 
false positive, and FN is false negative. The identification accuracy, prediction accuracy, and recall 
rate for all kinds of cases encountered are listed in Table 3. The recall rate of all four images was 
100%; the precision of three images are 100%, while the other image had a damage detection error of 
one bolt, mainly because of the effect of shooting angle. In addition, as a result of the dark lighting 
condition, two bolts in the back row were not clearly photographed, so they were not identified. This 
caused the recognition accuracy to be 77.78% in Figures 10c and 10d. Therefore, based on these 
results, poor lighting had a degree of influence on recognition precision of the framework, but it still 
satisfied the requirement of identifying and locating the bolts in the test structure. This experiment 
showed that the sharpness of the image had an important influence on recognition results, but shadow 



and poor lighting did not adversely affect recognition accuracy. 

Table 3. The detailed analysis of damage detection results based on different lighting conditions 
Test sample P N TP TN FP FN Accuracy Precision Recall 

10a 5 4 5 4 0 0 100% 100% 100% 
10b 5 4 4 4 1 0 88.89% 80% 100% 
10c 5 4 5 2 0 0 77.78% 100% 100% 
10d 5 4 5 2 0 0 77.78% 100% 100% 

 
(4) Bolt looseness detection on other structures 
In order to prove that the model could be generalized and used for different applications (even though 
training was based on bolts on the experimental test structure), images of loosened bolts were obtained 
from the two other completely different structures for validation. The detection results are shown in 
Figure 11. Because the bolts used for model training and those on the other structures are not of the same 
type, the localization accuracy of this method was inferior as compared to that of the previous section; 
nevertheless, high recognition accuracy was achieved. To further enhance bolt and damage detection 
capabilities, one could introduce different types of bolts to the training dataset in the future.  

  
(a) (b) 

  
(c) (d) 

Figure 11. Bolt detection validation results when bolts were installed on different structures 

5. Real-time Bolt Looseness Monitoring using a Webcam  

The above parts are the bolt looseness damage detection based on image. First, the data sets were used 
to complete the model training. Second, the bolt damage images under different conditions were collects. 
And then these images were copied to the compute for testing by the training model. Obviously, the 
whole process is not continuous, it cannot meet the requirements of real-time monitoring. So the webcam 
is connected with the deep learning network in this section. The training model was used to directly 



recognize the images collected by the webcam in real time, this process as shown in the Figure 11. This 
experiment adopts USB industrial camera, some parameters of lens are listed: M1214-MP2, focal length 
12mm, maximum imaging size 8.8 × 6.6 (Ф11), aperture range F1.4~F16C, working distance 
0.15~inf(m), filter thread M30 .5×P0.5, mechanical dimensions Ф33.5×28.2. 

 
Figure 12. Bolt looseness real-time monitoring 

It can be seen from Figure 12 that the status of the nine bolts were collected in real time using the webcam, 
and the deep learning model can directly locate and identify the bolt looseness damage of the images 
captured by the camera. Six of the nine bolts on the experimental structure were in the looseness state 
and the others were in the tightened state. The bolt damage identification method based on deep learning 
can accurately identify and locate the nine bolts damage, and the identification probability of each bolt 
state is greater than 0.98. It shows that the detection method not only has high recognition accuracy, but 
also can meet the online recognition using the webcam. Therefore, a bolt looseness real-time monitoring 
system can be built, it can meet the actual needs of the engineering to the greatest extent and provide the 
early damage warning for the safety of the engineering. 

6. Conclusion 

This paper proposes a new bolt looseness damage monitoring method based on deep learning. The Faster 
R-CNN was used to train the data sets, the network doesn’t require a large data sets to get a good 
recognition effect, greatly reducing the difficulty of data sets collection. At the same time, the network 
is based on the identification algorithm of the region proposals, which can complete the object detection 
and location in a network. The test results show that the training model has high recognition accuracy 
and the average precision can reach 0.9503. Although the screw length of the all loosened bolt in the data 
sets are 3cm, but the training model can still accurately identify the bolt looseness damage with a screw 
length of 0.5cm. However, the recognition accuracy is limited by the shooting angle. The recognition 
results under different angles of view may also be different. This is a common problem of machine vision 
and can be solved by rotating the camera to reduce the possibility of misclassification. The bolt looseness 
damage images taken in different environments and different structures have excellent recognition effects, 
indicating that the training model has strong generalization ability and robustness. Finally, in order to 
meet the requirements of the damage real-time monitoring in the engineering, the deep learning is 
connected with the webcam, which can identify and locate the damage that appears in the webcam's 
visual field in real time. In short, the bolt looseness damage monitoring technology based on deep 
learning has high recognition accuracy, and can realize the real-time monitoring of damage, greatly 
improving the ability of practical application in engineering. 
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