
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Learning in the Presence of Adversaries

Permalink
https://escholarship.org/uc/item/8jf8q666

Author
Jain, Ayush

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8jf8q666
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Learning in the Presence of Adversaries

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Communication Theory and Systems)

by

Ayush Jain

Committee in charge:

Professor Alon Orlitsky, Chair
Professor Tara Javidi
Professor Daniel Kane
Professor Arya Mazumdar

2023



Copyright

Ayush Jain, 2023

All rights reserved.



The Dissertation of Ayush Jain is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii



DEDICATION

Dedicated to my mother, Shimla Jain, for her continued love, support and encouragement
throughout my life.

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Optimal Robust Learning of Discrete Distributions from Batches . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Result Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Comparison to Recent Results and Techniques . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.7 Organization of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Algorithm and its Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Extension to η > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Efficient Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Proof of Lemma 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Statistical Properties of the Good Batches . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Completing the proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Proof of the other Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.3 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 3 A General Method for Robust Learning from Batches . . . . . . . . . . . . . . . . . . 44
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



3.1.2 Summary of techniques and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Estimating distributions in F distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Learning distributions in total-variation distance . . . . . . . . . . . . . . . . . . . . 52
3.2.3 Learning univariate structured distributions . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Binary classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Other related and concurrent work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Overview of the filtering framework for learning in F distance . . . . . . . . . . . . . . . 58
3.5 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Vapnik-Chervonenkis (VC) theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 A framework for distribution estimation from corrupted sample batches . . . . . . . 65

3.7.1 Using subsets as filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.2 Filtering algorithms for finite collection of subsets . . . . . . . . . . . . . . . . . . 70
3.7.3 Robust covering theorem for learning in F distance and Proof of Theo-

rem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7.4 Computationally efficient algorithm for subsets generated by a partition . 75
3.7.5 Computationally efficient algorithm for learning in Fk distance and proof

of Theorem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.8 Properties of the Collection of Good Batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.8.1 Proof of Lemma 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.9 Remaining proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.9.1 Proof of Theorem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.9.2 Proof of Lemma 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.9.3 Proof of Theorem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.9.4 Proof of Theorem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 4 Robust Density Estimation from Batches:
The Best Things in Life are (Nearly) Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.1 Robust learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.2 Robust learning from batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.3 Robust learning large and continuous distributions . . . . . . . . . . . . . . . . . . 94
4.1.4 Overview of results and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1.5 Other related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.6 Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Main techniques, results, and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2.1 Density estimation in Ak distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2.2 Density estimation in TV distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.3 Application to interval-based classification . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.4 Application to the top k heavy hitters problem . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Two simplifications of Ak-distance learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.1 Discretization using partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.2 Reduction to learning k element subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Filtering algorithm for Ak distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vi



4.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.2 The filtering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.6 Overview of supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.7 Experiments for continuous distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.8 Essential properties of good batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.9 Two useful results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.10 The filtering algorithm and its analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.10.1 Proofs of Lemmas 60 and 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.11 Proof of some simple results in the main paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.12 Essential properties of good batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.12.1 Proof of Theorem 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.13 Cover of set Ak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.14 Concentration inequalities for good batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Chapter 5 Efficient List-Decodable Regression using Batches . . . . . . . . . . . . . . . . . . . . 162
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.5 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.5.1 How Batches Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.5.2 Clipping to Improve Sample Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.5.3 Estimating Parameters for Multifilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.6 Algorithm and Proof of Theorem 82 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.6.1 Regularity Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.6.2 Nice Triplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.6.3 Description of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.6.4 Finding Nice Triplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.9 Regularity conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.10 Guarantees for nice triplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.10.1 Proof of Theorem 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.10.2 Proof of Lemma 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.11 Subroutine FindClippingParameter and its analysis . . . . . . . . . . . . . . . . . . . . . . . 199
5.12 Correctness of estimated parameters for nice weight vectors . . . . . . . . . . . . . . . . . 202

5.12.1 Proof of Lemma 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.12.2 Proof of Lemma 98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.13 Multi-filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.13.1 Guarantees for the use of Multifilter in Algorithm 7 . . . . . . . . . . . . . . . 214

5.14 Eliminating Additional Distributional Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 216
5.15 Proof of Theorem 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.15.1 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

vii



5.15.2 Proof of Theorem 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Chapter 6 Linear Regression using Heterogeneous Data Batches . . . . . . . . . . . . . . . . . . 237
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.1.2 Comparison to Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.1.3 Techniques and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

6.2 Problem Formulation and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.2.3 Data Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6.2.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.3 Algorithm for recovering regression vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.6 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
6.7 Selecting a regression vector from a given list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

6.7.1 Proof of Theorem 110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.8 Properties of Clipped Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

6.8.1 Proof of Lemma 111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.8.2 Proof of Theorem 112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6.9 Estimation of clipping parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
6.10 Subspace Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6.10.1 Proof of Theorem 116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
6.11 Grad Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

6.11.1 Proof of Theorem 119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
6.12 Number of steps required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
6.13 Final Estimation Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
6.14 Proof of Lemma 118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
6.15 Removing the Additional Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
6.16 More Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Chapter 7 Robust Estimation for Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.1.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
7.1.3 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
7.1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

7.2 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.3 Mean- and Median-based Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.4 An Algorithm for Robust Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

7.4.1 Regularity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
7.4.2 An Inefficient Coarse Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
7.4.3 An Efficient Coarse Spectral Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

viii



7.4.4 A Fine Trimming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
7.5 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
7.6 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
7.7 Spectral norm properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
7.8 Concentration Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
7.9 Proofs for Mean- and Median-Based Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.9.1 Upper Bounds for Mean and Median Estimators without
Corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.9.2 Lower Bounds for Mean and Median Estimators under Corruptions . . . . 325
7.9.3 Upper Bounds for Prune-then-Mean/Median Algorithms . . . . . . . . . . . . . 325
7.9.4 Lower Bounds for Prune-then-Mean/Median Algorithms . . . . . . . . . . . . . 328

7.10 Upper Bound Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
7.10.1 Proof of Lemma 137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
7.10.2 Proof of Theorem 138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
7.10.3 Proofs for Lemma 142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
7.10.4 Proof of Lemma 153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
7.10.5 Proof of Theorem 154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
7.10.6 An Approximate Top Eigenvector Suffices . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.10.7 Proofs for Theorem 143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
7.10.8 Putting Things Together: Proof of Theorem 130 . . . . . . . . . . . . . . . . . . . . 340

7.11 Proof of Theorem 152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
7.12 Lower bound proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

ix



LIST OF FIGURES

Figure 2.1. L1 estimation error with different Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 4.1. Learning distributions in Ak distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 4.2. Learning Gaussian mixture 0.7N (−2, 1)+ 0.3N (1, 1) using different filters 114

Figure 4.3. Learning Beta mixture 0.7Beta(17, 4) + 0.3Beta(3, 10) using different
filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 6.1. Same input dist., k = 16, large minimum distance between regression
vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Figure 6.2. Different input dist., k = 16, large minimum distance between regression
vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Figure 6.3. Same input dist. (standard normal), k = 16, small minimum distance
between regression vectors, recovering all . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Figure 6.4. Different input dist, k = 100, large minimum distance between regression
vectors, recovering 4 components that have 1/16 fraction of batches each . 298

x



ACKNOWLEDGEMENTS

I extend my heartfelt thanks to my parents, Shimla and Kamlesh Jain whose sacrifices

and endless encouragement have paved the way for all my endeavors in life. Their love for me has

always been my strongest support. I also wish to express my appreciation to my dear sister, Shruti,

and my brother, Manan, for infusing my life with joy, care, and unwavering companionship.

I am deeply grateful for the guidance and support of my advisor, Professor Alon Orlitsky.

His tireless dedication to discussing research with me has left me indebted, and I’ve always felt

encouraged to express my thoughts openly. Alon’s down-to-earth behavior, patience, diligence,

enthusiasm, optimism, and unwavering dedication have been a constant source of inspiration. I

consider him not only a mentor but also a guardian, as his caring nature has provided me with

a sense of security throughout this journey. His teachings have extended far beyond academia,

enriching every facet of my life.

I would also like to thank my labmates Dheeraj Pichapati, Moein Falahatgar, Vaishakh

Ravindrakumar, and Yi Hao, for fostering an inclusive, supportive, and friendly environment.

Our insightful discussions have been invaluable. I have been privileged to collaborate with and

receive guidance from Ananda Theertha Suresh, Jayadev Acharya, Gautam Kamath, Jerry Li,

Clément Canonne, Rajat Sen, Weihao Kong, Abhimanyu Das during my Ph.D. journey.

During my time at UC San Diego, I was fortunate to have great teachers and mentors. I

am thankful to my Ph.D. committee members Prof. Daniel Kane, Prof. Tara Javidi, and Prof.

Arya Mazumdar for their willingness to dedicate their valuable time to serve on my committee,

engage thoughtfully with my work, and offer invaluable feedback.

I extend my heartfelt thanks to Professor Rakesh K. Bansal, my M. Tech. thesis advisor

at IIT Kanpur, whose introduction to information theory ignited my passion for research and

kindled my love for this field.

I am fortunate to have been surrounded by an incredibly caring and supportive group of

friends. To Akhil, Roshan, Sparsh, Siddharth, Yash, Stuti, Apoorva, Pranav, Mradula, Varun,

Waquar, Yeohee, Deeksha, Sameeksha, Rohit, Ashwin, Akshay, Harshita—thank you for being

xi



an integral part of my journey and for creating countless cherished memories. I also extend my

gratitude to my friends in India—Mukul, Anshik, Shivam, Sumit, Ajay, and Rajat—for their

unwavering friendship and support.

I acknowledge the technical help and support of my other co-authors. I also thank them

for allowing me to use the following manuscripts for my dissertation.

Chapter 2, in full, is a reprint of the material as it appears in Optimal robust learning

of discrete distributions from batches 2020. Ayush Jain, Alon Orlitsky. In ICML 2020. The

dissertation author was the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in A general method for robust

learning from batches 2020. Ayush Jain, Alon Orlitsky. In Neurips 2020. The dissertation author

was the primary investigator and author of this paper.

Chapter 4, in full, is a reprint of the material as it appears in Robust Density Estimation

from Batches: The Best Things in Life are (Nearly) Free 2021. Ayush Jain, Alon Orlitsky. In

ICML 2021. The dissertation author was the primary investigator and author of this paper.

Chapter 5, in full, is a reprint of the material as it appears in Efficient list-decodable

regression using batches 2023. Abhimanyu Das, Ayush Jain, Weihao Kong, and Rajat Sen. In

ICML 2023. The dissertation author was the primary investigator and author of this paper.

Chapter 6, in full, is a reprint of the material as it appears in Linear Regression using

Heterogeneous Data Batches 2023. Abhimanyu Das, Ayush Jain, Rajat Sen, Weihao Kong,

Abhimanyu Das, and Alon Orlitsky. Submitted in Neurips 2023. The dissertation author was the

primary investigator and author of this paper.

Chapter 7, in full is a reprint of the material as it appears in Robust estimation for random

graphs 2022. Jayadev Acharya, Ayush Jain, Gautam Kamath, Ananda Theertha Suresh, and

Huanyu Zhang. In COLT 2022. The dissertation author was the primary investigator and author

of this paper.

xii



VITA

2015 Bachelor of Technology and Masters of Technology (Dual Degree)
Electrical Engineering, Indian Institute of Technology, Kanpur

2017–2022 Master of Science, in Electrical Engineering (Communication Theory and Systems)
University of California San Diego

2017–2023 Research Assistant, University of California, San Diego

2023 Doctor of Philosophy, in Electrical Engineering (Communication Theory and
Systems)
University of California San Diego

PUBLICATIONS

Jain, Ayush, and Rakesh K. Bansal. "Point-wise analysis of redundancy in SWLZ algorithm for
ϕ-mixing sources." In 2015 IEEE Information Theory Workshop (ITW), pp. 1-5. IEEE, 2015.

Jain, Ayush, and Rakesh K. Bansal. "Exponential rates of convergence for waiting
times and generalized AEP." In 2015 IEEE Information Theory Workshop (ITW), pp. 1-5. IEEE,
2015.

Jain, Ayush, and Rakesh K. Bansal. "On redundancy rate of FDLZ algorithm and its
variants." In 2015 IEEE International Symposium on Information Theory (ISIT), pp. 1991-1995.
IEEE, 2015.

Jain, Ayush, and Rakesh K. Bansal. "On point-wise redundancy rate of Bender-Wolf’s
variant of SWLZ algorithm." In 2016 IEEE Information Theory Workshop (ITW), pp. 116-120.
IEEE, 2016.

Jain, Ayush, and Rakesh K. Bansal. "On optimality and redundancy of side informa-
tion version of SWLZ." In 2017 IEEE International Symposium on Information Theory (ISIT),
pp. 306-310. IEEE, 2017.

Jain, Ayush, and Himanshu Tyagi. "Effective memory shrinkage in estimation." In
2018 IEEE International Symposium on Information Theory (ISIT), pp. 1071-1075. IEEE, 2018.

Falahatgar, Moein, Ayush Jain, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh
Ravindrakumar. "The limits of maxing, ranking, and preference learning." In International
conference on machine learning, pp. 1427-1436. PMLR, 2018.

Hao, Yi, Ayush Jain, Alon Orlitsky, and Vaishakh Ravindrakumar. "Surf: A simple,

xiii



universal, robust, fast distribution learning algorithm." Advances in Neural Information
Processing Systems 33 (2020): 10881-10890.

Jain, Ayush, and Alon Orlitsky. "Optimal robust learning of discrete distributions
from batches." In International Conference on Machine Learning, pp. 4651-4660. PMLR, 2020.

Jain, Ayush, and Alon Orlitsky. "A general method for robust learning from batches."
Advances in Neural Information Processing Systems 33 (2020): 21775-21785.

Jain, Ayush, and Alon Orlitsky. "Linear-sample learning of low-rank distributions."
Advances in Neural Information Processing Systems 33 (2020): 19201-19211.

Jain, Ayush, and Alon Orlitsky. "Robust density estimation from batches: The best
things in life are (nearly) free." In International Conference on Machine Learning, pp. 4698-4708.
PMLR, 2021.

Jain, Ayush, Alon Orlitsky, and Vaishakh Ravindrakumar. "Robust estimation algo-
rithms don’t need to know the corruption level." arXiv preprint arXiv:2202.05453 (2022).

Canonne, Clément L., Ayush Jain, Gautam Kamath, and Jerry Li. "The price of toler-
ance in distribution testing." In Conference on Learning Theory, pp. 573-624. PMLR, 2022.

Acharya, Jayadev, Ayush Jain, Gautam Kamath, Ananda Theertha Suresh, and Huanyu
Zhang. "Robust estimation for random graphs." In Conference on Learning Theory, pp. 130-166.
PMLR, 2022.

Hao, Yi, Ayush Jain, Alon Orlitsky, and Vaishakh Ravindrakumar. "TURF: Two-Factor,
Universal, Robust, Fast Distribution Learning Algorithm." In International Conference on
Machine Learning, pp. 8427-8445. PMLR, 2022.

Das, Abhimanyu, Ayush Jain, Weihao Kong, and Rajat Sen. "Efficient list-decodable
regression using batches." In International Conference on Machine Learning, pp. 7025-7065.
PMLR, 2023.

Jain, Ayush, Rajat Sen, Weihao Kong, Abhimanyu Das, and Alon Orlitsky. "Linear
Regression using Heterogeneous Data Batches." Submitted to Neurips, 2023.

FIELDS OF STUDY

Major Field: Electrical Engineering (Communication Theory and Systems)

Studies in Data and Information Sciences
Professor Alon Orlitsky

xiv



ABSTRACT OF THE DISSERTATION

Learning in the Presence of Adversaries

by

Ayush Jain

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2023

Professor Alon Orlitsky, Chair

Modern applications, including natural language processing, sensor networks, collabora-

tive filtering, and federated learning, necessitate data collection from diverse sources. However,

these sources may be tainted by untrustworthy, erroneous, or adversarial data. Moreover, even in

the absence of corruption, the sources might not conform to a shared underlying distribution. They

could be categorized into different groups, with distinct and arbitrarily varying data distributions.

For instance, consider movie recommendation systems where users rate movies. The ratings

provided by different users can exhibit variations based on their genre preferences, highlighting

xv



the diversity in data distributions among sources.

In this thesis, we consider a range of issues within the aforementioned contexts:

1. Robust estimation of structured distributions, both discrete and continuous,

2. Robust classification,

3. List-decodable regression,

4. Mixed linear regression with small batches,

5. Robust parameter estimation in graph settings.

Previous approaches to these problems have suffered from limitations in terms of computational

complexity, estimation accuracy, and sample complexity due to the presence of corrupted data

sources.

This thesis introduces novel methodologies to address the limitations of previous ap-

proaches, focusing on robust learning from corrupted data sources. By doing so, it broadens the

horizons for achieving precise distribution estimation, regression, classification, and parameter

inference across diverse application domains.

xvi



Chapter 1

Introduction

Modern machine-learning applications have made remarkable progress, due in large part

to the advancements in machine-learning techniques. These applications, however, rely heavily

on the availability of a large amount of data. To meet this demand, data are often collected from

a multitude of sources. However, this collection process is not without its challenges. The data

aggregated from various sources can introduce noise, inaccuracies, faults, or even deliberate

adversarial manipulation, compromising the integrity of the data.

Instances of such scenarios are prevalent across different domains. For instance, in

sensor-based data collection, multiple sensors contribute data, and malfunctioning sensors might

provide inaccurate readings. When estimating author word frequencies from numerous texts,

misattributed texts can skew the results. User preference learning involves feedback from various

users, some of whom might intentionally offer biased responses. Crowdsourcing platforms can

feature unreliable workers, leading to untrustworthy data. Even in federated learning, where data

comes from decentralized devices, some users might deviate significantly from the majority’s

data distribution.

Traditional robust learning setups assume that data is generated independently and

identically distributed (i.i.d.) from a common distribution, with a fraction of the data being

outliers. However, the presence of outliers places constraints on the learning process. The fraction

of corrupt data imposes a fundamental limit on attainable accuracy, even when computational

1



resources and dataset sizes tend towards infinity.

At first glance, the implications of this situation might appear pessimistic: the existence

of an adversary corrupting a significant fraction of the data could lead to a large loss that is

unavoidable. Yet, this apprehension does not necessarily encapsulate the entire reality.

Fortunately, in the above-mentioned applications, each source typically provides a

batch consisting of multiple samples. This means that if a certain fraction of the sources are

compromised, the corresponding batches contain corruption, while the remaining batches from

the remaining fraction of the sources remain authentic and contain genuine samples.

This thesis delves into various fundamental learning paradigms, such as distribution

learning, classification, and regression. By leveraging the inherent batch structure present in the

data, we achieve significantly higher accuracy compared to approaches that ignore this structure.

Furthermore, this work develops sample-efficient and polynomial-time algorithms for each of

these learning scenarios, demonstrating their practical effectiveness through simulations.

Through a combination of innovative algorithms, novel theoretical analyses, and experi-

mental validations, this thesis contributes to advancing robust machine-learning techniques in

the face of challenges posed by corrupt, unreliable, diverse, and adversarial data sources.

1.1 Thesis Organization

Qiao and Valiant [125] showed that when batches are of size ≥ n and ≤ β fraction of

the batches are corrupt then distribution can be learned to a min-max L1 distance Θ(β/
√
n),

compared to the best possible distanceΘ(β) achievable without batches. However, their algorithm

ran in exponential time, and for some regimes required a suboptimal number of batches. Chapter 2

provides the first polynomial-time estimator that is optimal in the number of batches and achieves

essentially the best possible estimation accuracy.

In the subsequent Chapter 3, we develop a general framework of robust learning from

batches, and determine the limits of both distribution estimation, and notably, classification,

2



over arbitrary, including continuous, domains. Building on this framework, we derive the

first robust agnostic: (1) polynomial-time distribution estimation algorithms for structured

distributions, including piecewise-polynomial, monotone, log-concave, and gaussian-mixtures,

and also significantly improve their sample complexity; (2) classification algorithms, and also

establish their near-optimal sample complexity; (3) computationally-efficient algorithms for

the fundamental problem of interval-based classification that underlies nearly all natural-1-

dimensional classification problems.

The results of the previous chapter raise questions regarding the optimal sample complexity

for robustly learning structured distributions, stated explicitly in a concurrent work [31]. We

answer this question in Chapter 4, showing that, perhaps surprisingly, up to logarithmic factors,

the optimal sample complexity is the same as for genuine, non-adversarial, data! To establish

the result, we reduce robust learning of approximately piecewise polynomial distributions to

robust learning of the probability of all subsets of size at most k of a larger discrete domain

and learn these probabilities in optimal sample complexity linear in k regardless of the domain

size. In simulations, the algorithm runs very quickly and estimates distributions to essentially

the accuracy achieved when all adversarial batches are removed. The results also imply the

first polynomial-time sample-optimal algorithm for robust interval-based classification based on

batched data.

Chapter 5 shows the efficacy of batch structures in the context of list-decodable linear

regression. This chapter tackles scenarios where only a fraction α ∈ (0, 1] of batches contain

genuine samples from a common distribution and the rest can contain arbitrary or even adversarial

samples. When genuine batches have ≥ Ω̃(1/α) samples each, the proposed algorithm can

efficiently find a small list of potential regression parameters, with a high probability that one of

them is close to the true parameter. This is the first polynomial time algorithm for list-decodable

linear regression, and its sample complexity scales nearly linearly with the dimension of the

covariates. The polynomial time algorithm is made possible by the batch structure and may not

be feasible without it, as suggested by a recent Statistical Query lower bound [53].

3



Chapter 6 examines scenarios where batches align with one of the k unknown subgroups,

each potentially possessing distinct input distributions and linear regression models. Prior

work [95] showed that with abundant small-batches, the regression vectors can be learned with

only few, Ω̃(k3/2), batches of medium-size with Ω̃(
√
k) samples each. However, the paper

requires that the input distribution for all k subgroups be isotropic Gaussian, and states that

removing this assumption is an “interesting and challenging problem". This chapter introduces a

novel gradient-based algorithm that improves on the existing results in several ways. It extends

the applicability of the algorithm by: (1) allowing the subgroups’ underlying input distributions

to be different, unknown, and heavy-tailed; (2) recovering all subgroups followed by a significant

proportion of batches even for infinite k; (3) removing the separation requirement between

the regression vectors; (4) reducing the number of batches and allowing smaller batch sizes.

Moreover, the algorithm also accommodates sub-groups that are not targeted for recovery to

exhibit arbitrary input-output relationships. Note that in contrast to the previous chapter, in this

chapter we assume that no batches are adversarial, and develop algorithm that can operate with

smaller batches and has a better sample complexity for learning linear regression models that

generates α fraction of batches.

Finally, the concluding chapter 7 considers a situation where data exhibits a structure

akin to batch structures in the presence of adversarial agents. In this chapter, we study the

problem of robustly estimating the parameter p of an Erdős-Rényi random graph on n nodes,

where a β fraction of nodes may be adversarially corrupted. After showing the deficiencies of

canonical estimators, we design a computationally efficient spectral algorithm that estimates p

up to accuracy Õ(
√
p(1− p)/n + β

√
p(1− p)/

√
n + β/n) for β < 1/60. Furthermore, we

give an inefficient algorithm with similar accuracy for all β < 1/2, the information-theoretic

limit. Finally, we prove a nearly-matching statistical lower bound, showing that the error of our

algorithms is optimal up to logarithmic factors.

4



Chapter 2

Optimal Robust Learning of Discrete Dis-
tributions from Batches

2.1 Introduction

2.1.1 Motivation

Estimating discrete distributions from their samples is a fundamental modern-science

tenet. [86] showed that as the number of sample s grows, a k-symbol distribution can be learned

to expected L1 distance ∼
√

2(k−1)/(πs) that we call the information-theoretic limit.

In many applications, some samples are inadvertently or maliciously corrupted. A simple

and intuitive example shows that this erroneous data limits the extent to which a distribution can

be learned, even with infinitely many samples.

Consider the extremely simple case of just two possible binary distributions: (1, 0) and

(1− β, β). An adversary who observes a 1− β fraction of the samples and can determine the

rest, could use the observed samples to learn the underlying distribution, and set the remaining

samples to make the distribution appear to be (1− β, β). By the triangle inequality, even with

arbitrarily many samples, any estimator for p incurs an L1 loss ≥ β for at least one of the two

distributions. We call this the adversarial lower bound.

The example may seem to suggest a pessimistic conclusion. If an adversary can corrupt a

β fraction of the data, a loss ≥ β is unavoidable. Fortunately, that is not necessarily so.

5



In many applications data is collected in batches, most of which are genuine, but some

possibly corrupted. Here are a few examples. Data may be gathered by sensors, each providing a

large amount of data, and some sensors may be faulty. The word frequency of an author may be

estimated from several large texts, some of which are mis-attributed. Or user preferences may be

learned by querying several users, but some users may intentionally bias their feedback.

Interestingly, even when a β-fraction of the batches are corrupted, the underlying

distribution can be estimated to L1 distance much lower than β. Consider for example just

three n-sample batches, of which one is chosen adversarially. The underlying distribution can

be learned from each genuine batch to expected L1 distance ∼
√

2(k − 1)/(πn). It is easy to

see that the average of the two estimates pairwise-closest in L1 distance achieves a comparable

expected distance that for large batch size n is much lower than β.

This raises the natural question of whether estimates from even more batches can be

combined effectively to estimate distributions to within a distance that is not only much smaller

than the β achieved when no batch information was utilized, but also significantly smaller than the

O(
√
k/n) distance derived above when two batches were used. For example can the underlying

distribution be learned to a small L1 distance when, as in many practical examples, n ≤ k?

To formalize the problem, [125] considered learning a k-symbol distribution p whose

samples are provided in batches of size ≥ n. A total of m batches are provided, of which

a fraction ≤ β may be arbitrarily and adversarially corrupted, while in every other batch b

the samples are drawn according a distribution pb satisfying ||pb − p||1 ≤ η, allowing for the

possibility that slightly different distributions generate samples in each batch.

For this adversarial batch setting, they showed that for any alphabet size k ≥ 2, and any

number m of batches, the lowest achievable L1 distance is ≥ η + β√
2n

. We refer to this as the

adversarial batch lower bound.

For β < 1/900, they also derived an estimation algorithm that approximates p to L1

distanceO(max{η+β/
√
n,
√

(n+ k)/(nm)}), achieving the adversarial batch lower bound, for

m large enough. Surprisingly therefore, not only can the underlying distribution be approximated

6



to L1 distance O(
√
k/n) that falls below β, but the distance diminishes as β/

√
n, independent

of the alphabet size k.

Yet, the algorithm in [125] had three significant drawbacks. 1) it runs in time exponential

in the alphabet size, hence impractical for most relevant applications; 2) its guarantees are

limited to very small fractions of corrupted batches β ≥ 1/900, hence do not apply to practically

important ranges; 3) with m batches of size ≥ n each, the total number of samples is ≥ nm, and

for alphabet size k ≪ n, the algorithm’s distance guarantee falls short of the information-theoretic

Θ(
√
k/(nm)) limit.

In this paper we derive an algorithm that 1) runs in polynomial time in all parameters;

2) can tolerate any fraction of adversarial batches β < 1/2, though to derive concrete constant

factors in the theoretical analysis, we assume β ≤ 0.4; 3) achieves distortion O(max{η +

β
√

log(1/β)
n

,
√

k
nm
}) that achieves the statistical limit in terms of the number nm of samples, and

is optimal up to a small O(
√
log(1/β)) factor from the adversarial batch lower bound.

The algorithm’s computational efficiency, enables the first experiments of learning with

adversarial batches. We tested the algorithm on simulated data with various adversarial-batch

distributions and adversarial noise levels up to β = 0.49. The algorithm runs in a fraction of

a second, and as shown in Section 2.3, estimates p nearly as well as an oracle that knows the

identity of the adversarial batches.

To summarize, the algorithm runs in polynomial time, works for any adversarial fraction

β < 0.5, is optimal in number of samples, and essentially optimal in batch size. It opens the door

to practical robust estimation in sensor networks, federated learning, and collaborative filtering.

7



2.1.2 Problem Formulation

Let ∆k be the collection of all distributions over [k] = {1, . . . ,k}. The L1 distance

between two distributions p, q ∈ ∆k is

||p− q||1 ≜
∑
i∈[k]

|p(i)− q(i)| = 2 ·max
S⊆[k]
|p(S)− q(S)|.

We would like to estimate an unknown target distribution p ∈ ∆k to a small L1 distance from

samples, some of which may be corrupted or even adversarial.

Specifically, let B be a collections of m batches of n samples each. Among these batches

is an unknown collection of good batches BG ⊆ B; each batch b ∈ BG in this collection has

n independent samples Xb
1, X

b
2, ..., X

b
n ∼ pb with ||pb − p||1 ≤ η. Furthermore, the batches of

samples in BG are independent of each other.

For the special case where η = 0, all samples in the good batches are generated by the

target distribution p = pb. Since the proofs and techniques are essentially the same for η = 0 and

η > 0, for simplicity of presentation we assume that η = 0. We briefly discuss, at the end, how

these results translate to the case η > 0.

The remaining set BA = B \BG of adversarial batches consists of arbitrary n samples

each, that may even be chosen by an adversary, possibly based on the samples in the good batches.

Let α = |BG|/m, and β = |BA|/m = 1− α be the fractions of good and adversarial batches,

respectively.

Our goal is to use the m batches to return a distribution p∗ such that ||p∗ − p||1 is small

or equivalently |p(S)− p∗(S)| is small for all S ⊆ [k].

2.1.3 Result Summary

In section 2.2 we derive a polynomial-time algorithm that returns an estimate p∗ of p with

the following properties.

8



Theorem 1. For any given β ≤ 0.4, n, k, and m = Ω( k
β2 log(1/β)

), Algorithm 2 runs in time

polynomial in all parameters and its estimate p∗ satisfies ||p∗ − p||1 ≤ 100β
√

log(1/β)
n

with

probability ≥ 1−O(e−k).

The theorem implies that our algorithm can achieve the adversarial lower bound to a

small factor of O(
√

log(1/β)) using the optimal number of samples. The next theorem shows

that when the number of samples is not enough to achieve the adversarial batch lower bound our

algorithm achieves the statistical lower bound.

Theorem 2. For any given β ≤ 0.4, n and k andm, Algorithm 2 runs in polynomial time, and its

estimate p∗ satisfies ||p∗ − p||1 ≤ O(max{β
√

ln(1/β)
n

,
√

k
mn
}) with probability ≥ 1−O(e−k).

The above theorem follows from Theorem 1 and a short proof appears in Appendix 2.7.

Note that our polynomial time algorithm achieves the statistical limits for L1 distance and

achieves the adversarial batch lower bounds to a small multiplicative factor of O(
√

log(1/β)).

2.1.4 Comparison to Recent Results and Techniques

In a paper concurrent and independent of this work, [30] propose an algorithm that uses

the sum of squares methodology to estimate p to the same distance as ours. Their algorithm

needs Õ( (nk)
O(log(1/β))

β4 ) batches and has a run-time Õ( (nk)
O(log2(1/β))

βO(log(1/β)) ). Both the sample complexity

and run time are much higher than ours, and is quasi-polynomial. They also considered certain

structured distributions, namely t-piecewise degree-d polynomial, not addressed in this paper. For

this distribution class they provide an algorithm with similar quasi-polynomial run time and the

number of batches required was quasi-polylogarithmic in domain size k, and quasi-polynomial in

other parameters.

In the follow up work [76], we generalized our techniques to improve both the run time

and the number of batches required for learning piece-wise polynomial distributions. We gave

an algorithm that runs in polynomial time in all parameters and uses the number of batches

Ω( t·d·
√
n·log(n/β)
β3 ), which has an optimal linear dependence on t and d and is independent of

9



domain size k. Further, we developed first algorithm for robust classification in a similar

adversarial batch setting.

Another follow up work [31], concurrent and independent to [76], combined their previous

work [30] with the techniques presented here, and also obtained a polynomial time algorithm for

learning piecewise-polynomial distributions, which requires Ω( t
2·d2 log3 k·polylog(n/β)

β2 ) batches.

2.1.5 Other Related Work

The current results extend several long lines of work on learning distributions and their

properties.

The best approximation of a distribution with a given number of samples was determined

up to the exact first-order constant for KL loss [22], and L1 loss and χ2 loss [86]. These settings

do not allow adversarial examples, and some modification of the empirical estimates of the

samples is often shown to be near optimal. This is not the case in the presence of adversarial

samples, where the challenge is to devise algorithms that are efficient from both computational

and sample viewpoints.

Our results also relate to classical robust-statistics work [142, 74]. There has also been

significant recent work leading to practical distribution learning algorithms that are robust to

adversarial contamination of the data. For example, [47, 99] presented algorithms for learning

the mean and covariance matrix of high-dimensional sub-gaussian and other distributions with

bounded fourth moments in presence of the adversarial samples. Their estimation guarantees

are typically in terms of L2, and do not yield the L1- distance results required for discrete

distributions.

The work was extended in [29] to the case when more than half of the samples are

adversarial. Their algorithm returns a small set of candidate distributions one of which is a

good approximate of the underlying distribution. For more extensive survey on robust learning

algorithms in the continuous setting, see [135, 46].

Another motivation for this work derives from the practical federated-learning problem,

10



where information arrives in batches [108, 109].

2.1.6 Preliminaries

We introduce notation that will help outline our approach and will be used in rest of the

paper.

Throughout the paper, we use B′ to denote a sub-collection of batches in B and use B′
G

and B′
A for a sub-collection of batches in BG and BA, respectively. And S is used to denote a

subset of [k], we abbreviate singleton set of [k] such as {j} by j.

For any batch b ∈ B, we let µ̄b denote the empirical measure defined by samples in batch

b. And for any sub-collection of batches B′ ⊆ B, let p̄B′ denote the empirical measure defined

by combined samples in all the batches in B′. We use two different symbols to distinguish the

empirical distribution defined by an individual batch and the empirical distribution defined by a

sub-collection of batches. Let 1S(.) denote the indicator random variable for set S. Thus, for any

subset S ⊆ [k],

µ̄b(S) ≜
1

n

∑
i∈[n]

1S(X
b
i )

and

p̄B′(S) ≜
1

|B′|n
∑
b∈B′

∑
i∈[n]

1S(X
b
i ) =

1

|B′|
∑
b∈B′

µ̄b(S).

Note that p̄B′ is the mean of the empirical measures µ̄b defined by the batches b ∈ B′. For subset

S ⊆ [k], let med(µ̄(S)) be the median of the set of estimates {µ̄b(S) : b ∈ B}. Note that the

median has been computed using the estimates µ̄b(S) for all the batches in b ∈ B.

For r ∈ [0, 1], we let V(r) ≜ r(1−r)
n

, which we use to denote the variance of sum of n

i.i.d. random variables distributed according to Bernoulli(r).

We pause briefly to note the following two properties of the function V(r) that we use

later.

∀ r, s ∈ [0, 1], V(r) ≤ 1

4n
and |V(r)− V(s)| ≤ |r − s|

n
. (2.1)

11



Here the second property made use of the fact that the derivative |V ′(r)| ≤ 1/n, ∀ r ∈ [0, 1].

For b ∈ BG, 1S(Xb
i ) for i ∈ [n] are i.i.d. with distribution 1S(X

b
i ) ∼ Bernoulli(p(S)).

For b ∈ BG, since µ̄b(S) is average of 1S(Xb
i ), i ∈ [n], therefore,

E[ µ̄b(S) ] = p(S) and E[(µ̄b(S)− p(S))2] = V(p(S)).

For any collection of batches B′ ⊆ B and subset S ⊆ [k], the empirical probability µ̄b(S)

of S based on batches b ∈ B′ will differ for the different batches. The empirical variance of these

empirical probabilities µ̄b(S) for batches b ∈ B′ is denoted as

VB′(S) ≜
1

|B′|
∑
b∈B′

(µ̄b(S)− p̄B′(S))2.

2.1.7 Organization of the Paper

In Section 2.2 we present the algorithm, its analysis along with the key insights used in

developing the algorithm. Section 2.3 reports the performance of the algorithm on experiments

performed on the simulated data.

2.2 Algorithm and its Analysis

At a high level, our algorithm removes the adversarial batches — which are "outliers"

— possibly losing a small number of good batches as well in the process. The outlier removal

method forms the backbone of many robust learning algorithms. Notably [47, 48] have used this

idea to learn the mean of a high dimensional sub-gaussian distribution up to a small L2 distance,

even in an adversarial setting. The main challenge in designing a robust learning algorithm is

actually the task of finding the outlier batches efficiently. Several new ideas are needed to identify

the outlier batches in the setting considered here.

We begin by illustrating the difficulty of identifying the adversarial batches. Even if p

is known, in general, one cannot determine whether a batch b has samples from p or from a

12



distribution at a large L1 distance from p. The key difficulty is that, for a batch having n samples

from p, typically the difference between µ̄b(S) and p(S) is large for some of the subsets among

2k subsets of [k]. For example, consider batches of samples from a uniform distribution over k.

The empirical distribution of the samples in any batch of size n is at an L1 distance≥ 2(1−n/k),

which for the distributions with large domain size k can be up to two, which is the maximum L1

distance between two distributions. To address this challenge, we use the following observation.

For a fixed subset S ⊆ [k] and a good batch b ∈ BG, µ̄b(S) has a sub-gaussian distribution

subG(p(S), 1
4n
) and the variance is V(p(S)). Therefore, for a fixed subset S, most of the good

batches assign the empirical probability µ̄b(S) ∈ p(S)± Õ(1/
√
n). Moreover, the mean and the

variance of µ̄b(S) for b ∈ BG converges to the expected values p(S) and V(p(S)), respectively.

The collection of batches B along with good batches also includes a sub-collection BA

of adversarial batches that constitute up to an β−fraction of B. If for adversarial batches b ∈ BA,

the average difference between µ̄b(S) and p(S) is within a few standard deviations Õ( 1√
n
), then

these adversarial batches can only deviate the overall mean of empirical probabilities µ̄b(S) by

Õ( β√
n
) from p(S). Hence, the mean of µ̄b(S) will deviates significantly from p(S) only if for

a large number of adversarial batches b ∈ BA empirical probability µ̄b(S) differ from p(S) by

quantity much larger than the standard deviation Õ( 1√
n
).

We quantify this effect by defining the corruption score. For a subset S ⊆ [k], let

med(µ̄(S)) ≜ median{µ̄b(S) : b ∈ B}.

For a subset S ⊆ [k] and a batch b, corruption score ψb(S) is defined as

ψb(S) ≜


0, if |µ̄b(S)−med(µ̄(S))| ≤ 3

√
ln(6e/β)

n
,

(µ̄b(S)−med(µ̄(S)))2, else.

Because p(S) is not known, the above definition use median of µ̄b(S) as its proxy.

13



From the preceding discussion, it follows that for a fixed subset S ⊆ [k], corruption score

of most good batches w.r.t. S is zero, and adversarial batches that may have a significant effect

on the overall mean of empirical probabilities have high corruption score ψb(S).

The corruption score of a sub-collection B′ w.r.t. a subset S is defined as the sum of the

corruption score of batches in it, namely

ψ(B′, S) ≜
∑
b∈B′

ψb(S).

A high corruption score of B′ w.r.t. a subset S indicates the presence of many batches b ∈ B′ for

which the difference |µ̄b(S) − med(µ̄(S))| is large. Finally, for a sub-collection B′ we define

corruption as

ψ(B′) ≜ max
S⊆[k]

ψ(B′, S).

Note that removing batches from a sub-collection reduces corruption. We can simply make

corruption zero by removing all batches, but we would lose all the information as well. The

proposed algorithm reduces the corruption below a threshold by removing a few batches while

not sacrificing too many good batches in the process.

The remainder of this section assumes that the sub-collection of good batchesBG satisfies

certain deterministic conditions. Lemma 3 shows that the stated conditions hold with high

probability for sub-collection of good batches in BG. Nothing is assumed about the adversarial

batches, except that they form a ≤ β fraction of the overall batches B.

Conditions: Consider a collection of m batches B, each containing n samples. Among

these batches, there is a collection BG ⊆ B of good batches of size |BG| ≥ (1 − β)m and a

distribution p ∈ ∆k such that the following deterministic conditions hold for all subsets S ⊆ [k]:

1. The median of the estimates {µ̄b(S) : b ∈ B} is not too far from p(S).

|med(µ̄(S))− p(S)| ≤
√

ln(6)/n.

14



2. For all sub-collections B′
G ⊆ BG of good batches of size |B′

G| ≥ (1− β/6)|BG|,

|p̄B′
G
(S)− p(S)| ≤ β

2

√
ln(6e/β)

n
,∣∣∣ 1

|B′
G|
∑
b∈B′

G

(µ̄b(S)− p(S))2 − V(p(S))
∣∣∣ ≤ 6β ln(6e

β
)

n
.

3. The corruption for good batches BG is small, namely

ψ(BG) ≤
βm ln(6e/β)

n
.

Condition 1 and 3 above are self-explanatory. Condition 2 illustrates that for any sub-

collection of good batches that retains all but a small fraction of good batches, empirical mean

and variance estimate the actual values p(S) and V(p(S)).

Lemma 3. When samples in BG come from p and |BG| = Ω( k
β2 ln(1/β)

), then conditions 1- 3

hold simultaneously with probability ≥ 1−O(e−k).

We prove the above lemma by using the observation that for b ∈ BG, µ̄b(S) has a sub-

gaussian distribution subG(p(S), 1
4n
), and it has variance V(p(S)). The proof is in Appendix 2.4.

For easy reference, in the remaining paper, we will denote the upper bound in Condition 3

on the corruption of BG as

κG ≜
βm ln(6e/β)

n
.

Assuming that the above stated conditions hold, the next lemma bounds the L1 distance between

the empirical distribution p̄B′ and p for any sub-collection B′ in terms of how large its corruption

is compared to κG.

Lemma 4. Suppose the conditions 1- 3 holds. Then for anyB′ such that |B′∩BG| ≥ (1− β
6
)|BG|

15



and let ψ(B′) = t · κG, for some t ≥ 0, then

||p̄B′ − p||1 ≤ (10 + 3
√
t)β

√
ln(6e/β)

n
.

Observe that for any sub-collection B′ retaining a major portion of good batches, from

condition 2, the mean of µ̄b of the good batches B′ ∩BG approximates p. Then showing that a

small corruption score of B′ w.r.t. all subsets S imply that the adversarial batches B′ ∩BA have

limited effect on p̄B′ proves the above lemma. A complete proof is in Appendix 2.5.

We next exhibit a Batch Deletion procedure in Algorithm 1 that lowers the corruption score

of a sub-collection B′ w.r.t. a given subset S by deleting a few batches from the sub-Collection.

This will be a subroutine of our main algorithm. Lemma 5 characterizes its performance.

Algorithm 1. Batch Deletion
1: Input: Sub-Collection of Batches B′, subset S ⊆ [k], med=med(µ̄(S)), and β.

2: Output: A collection DEL ⊆ B′ of batches to delete.

3: DEL = {};

4: while ψ(B′, S) ≥ 20κG do

5: Samples batch b ∈ B′ such that probability of picking a batch b ∈ B′ is ψb(S)
ψ(B′,S)

;

6: DEL← DEL ∪ b ;

7: B′ ← {B′ \ b};

8: end while

9: return (DEL);

Lemma 5. For a given B′ and subset S procedure 1 returns a sub-collection DEL ⊂ B′, such

that

1. For subset S the corruption score ψ(B′ \DEL, S) of the new sub-collection is < 20κG.

2. Each batch b ∈ B′ that gets included in DEL is an adversarial batch with probability

≥ 0.95.

16



3. The subroutine deletes at-least ψ(B′, S)− 20κG batches.

Proof. Step 4 in the algorithm ensures the first property. Next, to prove property 2, we bound the

probability of deleting a good batch as

∑
b∈B′∩BG

ψb(S)

ψ(B′, S)
≤
∑

b∈BG
ψb(S)

ψ(B′, S)
≤ κG

20κG
,

here the last step follows from condition 3 and while loop conditional in step 4. Property 3

follows from the observation that the total corruption score reduced is ≥ (ψ(B′, S)− 20κG) and

corruption score of one batch is bounded as ψb(S) ≤ 1. ■

We will use procedure 1 to successively update B to decrease the corruption score for

different subsets S ⊆ [k]. The next lemma show that even after successive updates the resultant

sub-collection retains most of the good batches.

Lemma 6. Let B′ be the sub-collection after applying any number of successive deletion updates

suggested by the Algorithm 1 on B, for any sequence of input subsets S1, S2, .... ⊆ [k], then

|B′ ∩BG| ≥ (1− β/6)|BG|, with probability ≥ 1−O(e−k).

Therefore, one can make successive updates to the collection of all batches B by deleting

the batches suggested by procedure 1 for all subsets in S ⊆ [k] one by one. This will result in a

sub-collection B′ ⊆ B, which still has most of the good batches and corruption score ψ(B′, S)

bounded w.r.t. each subset S. However, this will take time exponential in k as there are 2k

subsets, and therefore, we want a computationally efficient method to find a subsets S with high

corruption score and use procedure 1 for only those subsets. Next, we derive a novel method to

achieve this objective.

We start with the following observation. A high corruption score of sub-collection B′

with respect to an affected subset S implies a higher empirical variance of µ̄b(S) for such S than

the expected value of the variance of µ̄b(S). While an affected subset S the empirical variance

VB(S) is higher than expected, it is not necessarily higher than the empirical variance observed

17



for all non-affected subset. This is because V(p(S)), the expected value of the variance of µ̄b(S),

for some subsets S may be larger compared to the other. Hence, simply finding the subset S with

the largest variance doesn’t work.

We use the following key insight to address this. Recall that the mean of empirical

probabilities µ̄b(S) for good batches b ∈ BG converges, or equivalently p̄BG
(S)→ p(S). This

implies that V(p̄BG
(S))→ V(p(S)). Also, since the empirical variance VBG

(S) converges to

V(p(S)), we get VBG
(S)− V(p̄BG

(S))→ 0. Therefore, without corruption by the adversarial

batches the difference between two estimators of the variance would be small for all subsets

S ⊆ [k], and its large value, we show in Lemma 7, can reliably detect any significant adversarial

corruption. This happens because empirical variance of µ̄b(S) depends on the second moment

whereas the other estimator V(p̄B′(S)) of variance depends on the mean of µ̄b(S), hence the

corruption affects the second estimator less severely. The next Lemma shows that the difference

between the two variance estimators for subset S can indicate the corruption score w.r.t. subset S

Lemma 7. Suppose the conditions 1- 3 holds. Then for any B′ ⊆ B such that |B′ ∩ BG| ≥

(1− β
6
)|BG| and let ψ(B′, S) = t · κG for some t ≥ 0, then following holds.

VB′(S)− V(p̄B′(S)) ≤
(
t+ 4

√
t+ 28

)
κG,

VB′(S)− V(p̄B′(S)) ≥
(
0.5t− 8

√
t− 25

)
κG.

The next Lemma shows that a subset for which VB′(S) − V(p̄B′(S)) is large, can be

found using a polynomial-time algorithm. In subsection 2.2.2 we derive the algorithm. We refer

to this algorithm as Detection− Algorithm. The next lemma characterizes the performance

of this algorithm. In subsection 2.2.2, we show that the algorithm achieves the performance

guarantees of the next Lemma.

Lemma 8. Detection−Algorithm has run time polynomial in number of batches in its input

18



sub-collection B′ and alphabet size k, and returns S∗
B′ such that

|VB′(S∗
B′)− V(p̄B′(S∗

B′))|

≥ 0.56max
S⊆[k]
|VB′(S)− V(p̄B′(S))|.

This leads us to the Robust distribution Learning Algorithm 2. Theorem 9 characterizes

its performance.

Algorithm 2. Robust Distribution Estimator
1: Input: All batches b ∈ B, batch size n, alphabet size k, and β.
2: Output: Estimate p∗ of the distribution p.
3: i← 1 and B′

i ← B.
4: while True do
5: S∗

B′
i
= Detection− Algorithm(B′

i)

6: if |∆B′
i
(S∗

B′
i
)| ≤ 75κG then

7: Break;
8: end if
9: med← med(µ̄(S∗

B′
i
)).

10: DEL←Batch-Deletion(B′
i, S

∗
B′

i
,med).

11: end while
12: return (p∗ ← p̄B′

i
).

Theorem 9. Suppose the conditions 1- 3 holds. Then Algorithm 2 runs in polynomial time and with

probability ≥ 1−O(e−k) returns a sub-collection B′
f ⊆ B such that |B′

f ∩BG| ≥ (1− β
6
)|BG|

and for p∗ = p̄B′
f
,

||p∗ − p||1 ≤ 100β

√
ln(6e/β)

n
.

Outline of the Proof of Theorem 9: In each round of the algorithm, Subroutine

Detection − Algorithm finds subsets for which the difference between the two variance

estimates is large. Lemma 7 implies that the corruption w.r.t. this subset is large. The deletion

subroutine updates the sub-collection of batches by removing some batches from it and reduces

the corruption w.r.t. the detected subset S.

19



The algorithm terminates when for some sub-collection B′
f subroutine Detection −

Algorithm returns a subset S small difference between the two variance estimators. Then

Lemma 8 implies that the difference is small for all subsets. Lemma 7 further implies that if the

difference between the two variance estimators is small then the corruption is bounded w.r.t. all

subsets for sub-collection B′
f . Finally, Lemma 4 bounds the L1 distance between p̄B′

f
and p. □

Proof of Theorem 1: Combining Lemma 3 and Theorem 9 yields Theorem 1.

2.2.1 Extension to η > 0

Recall that when η > 0, for each good batch b ∈ BG, the distribution pb of samples in

batch b is close to the common target distribution p, such that ||pb−p|| ≤ η, instead of necessarily

being the same. For simplicity, we have given the algorithm and the proof for only η = 0. The

algorithm and the proof naturally extend to this more general case; here we get an extra additive

dependence on η for the bounds in the lemmas and the theorems, and for the parameters of the

algorithm. And with this slight modification in the parameters algorithm estimates p to a distance

O(η + β
√
ln(1/β)/n), and has the same sample and time complexity.

2.2.2 Efficient Detection Algorithm

In this subsection, we derive the procedure Detection − Algorithm, that runs in the

polynomial time and achieves the performance in Lemma 8.

Given a collection B′ of batches, we construct two covariance matrices CEV
B′ and CEM

B′ of

size k × k.

For an alphabet size k, we can treat the empirical probabilities estimates µ̄b and p̄B′ as

a k-dimensional vector such that jth entry denote the empirical probability of the jth symbol.

Recall that p̄B′ is the mean of µ̄b, b ∈ B′.

The first covariance matrix, CEV
B′ , is the covariance matrix of µ̄b for b ∈ B′, with entries

for j, l ∈ [k],

CEV
B′ (j, l) =

1

|B′|
∑
b∈B′

(µ̄b(j)− p̄B′(j))(µ̄b(l)− p̄B′(l)).

20



The second covariance matrix CEM
B′ , is an expected covariance matrix of µ̄b if samples in

the batches b were drawn from the distribution p̄B′ . Hence, its entries are

CEM
B′ (j, l) = − p̄B

′(j)p̄B′(l)

n
for j, l ∈ [k], j ̸= l,

and

CEM
B′ (j, j) =

p̄B′(j)(1− p̄B′(j))

n
.

Let DB′ be the difference of the two matrices:

DB′ = CEV
B′ − CEM

B′ .

For a vector x ∈ {0, 1}k, let

S(x) ≜ {j ∈ [k] : x(j) = 1},

be the subset of [k] corresponding to the vector x.

Observations

1. The sum of elements in any row and or column for both the covariance matrices, and hence

also for the difference matrix, is zero, hence

CEV
B′ 1 = CEM

B′ 1 = DB′1 = 0.

21



Proof: We show for CEV
B′ , the proof for CEM

B′ is similar. For any j ∈ [k],

∑
l∈[k]

CEV
B′ (j, l) =

1

|B′|
∑
l∈[k]

∑
b∈B′

(µ̄b(j)− p̄B′(j))(µ̄b(l)− p̄B′(l))

=
∑
b∈B′

(µ̄b(j)− p̄B′(j))
∑
l∈[k]

(µ̄b(l)− p̄B′(l))

=
∑
b∈B′

(µ̄b(j)− p̄B′(j))(1− 1) = 0.

2. It is easy to verify that for any vector x ∈ {0, 1}k,

⟨CEV
B′ , xx⊺⟩ =

1

|B′|
∑
b∈B′

(µ̄b(S(x))− p̄B′(S(x)))2

= VB′(S(x)),

the empirical variance of µ̄b(S(x)) for b ∈ B′. Similarly,

⟨CEM
B′ , xx⊺⟩ =

p̄B′(S(x))(1− p̄B′(S(x)))

n

= V(p̄B′(S(x))).

Therefore,

⟨DB′ , xx⊺⟩ = ⟨CEV
B′ − CEM

B′ , xx⊺⟩

= VB′(S(x))− V(p̄B′(S(x))).

3. Note that y → 1
2
(y + 1) is a 1-1 mapping from {−1, 1}k → {0, 1}k, and that

⟨CEV
B′ ,

1

2
(y + 1)

1

2
(y + 1)⊺⟩ = ⟨CEV

B′ ,
1

4
(yy⊺ + 1y⊺ + y1⊺ + 11⊺)⟩

=
1

4
⟨CEV

B′ , yy⊺⟩.

22



100 200 300 400 500 600
Alphabet-size (k)

0.00

0.05

0.10

0.15

0.20

0.25

L_
1 

di
st

an
ce emp

oracle
Alg 2

(a) Support size k

200 400 600 800 1000
Batch-size (n)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

L_
1 

di
st

an
ce emp

oracle
Alg 2

(b) Batch size n

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
fraction of adversarial Batches ( )

0.00

0.05

0.10

0.15

0.20

0.25

0.30

L_
1 

di
st

an
ce emp

oracle
Alg 2

(c) Adversarial batches fraction β

2000 4000 6000 8000 10000
batch_total (m)

0.005

0.010

0.015

0.020

L_
1 

di
st

an
ce

oracle
Alg 2

(d) Number of batches m

Figure 2.1. L1 estimation error with different Parameters

23



Let

y = arg max
y∈{−1,1}k

|⟨DB′ , yy⊺⟩|.

Then from y one can recover the corresponding subset S(x), with x = 1
2
(y + 1), maximizing

|VB′(S(x))− V(p̄B′(S(x)))|.

In [5], Alon et al. derives a polynomial-time approximation algorithm for the above optimization

problem. The algorithm first uses a semi-definite relaxation of the problem and then uses

randomized integer rounding techniques based on Grothendieck’s Inequality. Their algorithm

recovers yB′ such that

|⟨DB′ , yB′y⊺B′⟩| ≥ 0.56 max
y∈{−1,1}k

|⟨DB′ , yy⊺⟩|.

Let xB′ = 1
2
(y + 1). Then from observation 3 it follows that

|⟨DB′ , xB′x⊺B′⟩| ≥ 0.56 max
x∈{0,1}k

|⟨DB′ , xx⊺⟩|.

Therefore for S∗
B′ = S(xB′) we get

|VB′(S∗
B′)− V(p̄B′(S∗

B′))| ≥ 0.56max
S⊆[k]
|VB′(S)− V(p̄B′(S))|.

2.3 Experiments

We evaluate the algorithm’s performance on synthetic data.

We compare the estimator’s performance with two others: 1) an oracle that knows the

identity of the adversarial batches. The oracle ignores the adversarial batches and computes the

empirical estimators based on remaining batches and is not affected by the presence of adversarial

batches. The estimation error achieved by the oracle is the best one could get, even without the

24



adversarial corruptions. 2) a naive-empirical estimator that computes the empirical distribution

of all samples across all batches.

Two non-trivial estimators have been derived for this problem. Both have prohibitively

large sample and/or computational complexity. The estimator in [125] has run time exponential

in k, making it impractical. The time and sample complexities of the estimator in [30] are

either super-polynomial or a high-degree polynomial, depending on the range of the parameters

(k,n,1/β), rendering their simulation prohibitively high as well.

We tried different adversarial distributions and found that the major determining factor of

the effectiveness of the adversarial batches is the distance between the adversarial distribution

and the target distribution. If the adversarial distribution is too far, then adversarial batches are

easier to detect. For this scenario our algorithm is even more effective than the performance

limits shown in Theorem 1 and the performance between our algorithm and the oracle is almost

indistinguishable. When the adversarial distribution is very close to the target distribution p,

the adversarial batches don’t affect the estimation error by much. The estimator has the worst

performance when the adversary chooses the distribution of its batches at an optimal distance

from target distribution. This optimal distance differs with the value of the algorithm’s parameters.

Hence for each choice of algorithm parameters, we tried adversarial distributions at varying

distances and reported the worst performance of our estimator.

All experiments were performed on a laptop with a configuration of 2.3 GHz Intel Core

i7 CPU and 16 GB of RAM. We choose the parameters for the algorithm by using a small

simulation. We provide all codes and implementation details in the supplementary material.

We show four plots here. In each plot we vary one parameter and plot the L1 loss incurred

by all three estimators. For each experiment, we ran ten trials and reported the average L1

distance achieved by each estimator.

For the first plot we fix batch-size n = 1000 and β = 0.4 and vary alphabet size k. We

generate m = k/(0.4)2 batches for each k. Our algorithm’s performance show no significant

change as the size of alphabet increases and its performance nearly matches the performance of

25



the Oracle and outperforms the naive estimator by order of magnitudes.

In the the second plot we fix β = 0.4 and k = 200 and vary batch size n. We choose

m = 40× k
β2 × 1000

n
, this keeps the total number of samples n×m, constant for different n. We

see that the L1 loss incurred by our estimator is much smaller than the naive empirical estimator

and it diminishes as the batch size increases and comes very close to the performance of the

oracle. Note that this roughly matches the decay O(1/
√
n) of L1 error characterized in both the

lower and the upper bounds.

For the next plot we fix batch size n = 1000 and k = 200. The number of good batches

(1− β)m = 400k is kept same. We vary the adversarial noise level and plot the performance of

all estimators. We tested our estimator for fraction of adversarial batches as high as 0.49 and still

our estimator recovered p to a good accuracy and in fact at the lower noise level it is essentially

similar to the oracle and it increases (near) linearly with the noise level β as in Theorem 1,

In the last plot we fixed all other parameters n = 1000, k = 200, and β = 0.4 and varied

the number of batches. We see that the performance of oracle keep improving as number of

bathes increases. But for our algorithm it decreases initially but later it saturates as predicted

by adversarial batch lower bound.

Appendix

2.4 Proof of Lemma 3

In this section, we show that conditions 1-3 holds with high probability and prove

Lemma 3. To prove the lemma we first prove three auxiliary lemmas; each of these three Lemma

will lead to one of the three conditions in Lemma 3. These three lemmas characterizes the

statistical properties of the collection of good batches BG. We state and prove these lemmas in

the next subsection.

26



2.4.1 Statistical Properties of the Good Batches

Recall that, for a good batch b ∈ BG and subset S ⊆ [k], 1S(Xb
i ), for i ∈ [n], are i.i.d.

indicator random variables and µ̄b(S) is the mean of these n indicator variables. Since the

indicator random variables are sub-gaussian, namely 1S(X
b
i ) ∼ subG(p(S), 1/4), the mean

µ̄b(S) satisfies µ̄b(S) ∼ subG(p(S), 1/4n). subG(.) is used to denote a sub-gaussian distribution.

This observation plays the key role in the proof of all three auxiliary lemmas in this section.

The first lemma among these three lemmas show that for any fixed subset S ⊆ [k], µ̄b(S)

for most of the good batches is close to p(S). This lemma is used to show Condition 1.

Lemma 10. For any ϵ ∈ (0, 1/4] and |BG| ≥ 12k/ϵ, ∀S ⊆ [k], with probability ≥ 1− e−k,

∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥
√

ln(1/ϵ)

n

}∣∣ ≤ ϵ|BG|.

Proof. From Hoeffding’s inequality, for b ∈ BG and S ⊆ [k],

Pr
[
|µ̄b(S)− p(S)| ≥

√
ln(1/ϵ)

n

]
≤ 2e−2 ln(1/ϵ) ≤ 2ϵ2 ≤ ϵ/2.

Let 1b(S) be the indicator random variable that takes the value 1 iff |µ̄b(S)−p(S)| ≥
√

ln(1/ϵ)/n.

Therefore, for b ∈ BG, E[1b(S)] ≤ ϵ/2. Using the Chernoff bound,

Pr[
∑
b∈BG

1b(S) ≥ ϵ|BG|] ≤ e−
1
3
· ϵ
2
|BG| ≤ e−2k.

Taking the union bound over all 2k subsets S completes the proof. ■

The next lemma show that even upon removal of any small fraction of good batches from

BG, the empirical mean and the variance of the remaining sub-collection of batches approximate

the distribution mean and the variance well enough.

Lemma 11. For any ϵ ∈ (0, 1/4], and |BG| ≥ k
ϵ2 ln(e/ϵ)

. Then ∀S ⊆ [k] and ∀B′
G ⊆ BG of size

27



|B′
G| ≥ (1− ϵ)|BG|, with probability ≥ 1− 6e−k,

∣∣∣p̄B′
G
(S)− p(S)| ≤ 3ϵ

√
ln(e/ϵ)

n
(2.2)

and

∣∣∣ 1

|B′
G|
∑
b∈B′

G

(µ̄b(S)− p(S))2 − V(p(S))
∣∣∣ ≤ 32

ϵ ln(e/ϵ)

n
. (2.3)

Proof. From Hoeffding’s inequality,

Pr
[
|BG||p̄BG

(S)− p(S)| ≥ |BG|ϵ
√

ln(e/ϵ)

n

]
= Pr

[∣∣ ∑
b∈BG

(µ̄b(S)− p(S))
∣∣ ≥ |BG|ϵ

√
ln(e/ϵ)

n

]
≤ 2e−

|BG|ϵ2
2/(4n)

· ln(e/ϵ)
n = 2e−2|BG|ϵ2 ln(e/ϵ) ≤ 2e−2k. (2.4)

Similarly, for a fix sub-collection UG ⊆ BG of size 1 ≤ |UG| ≤ ϵ|BG|,

Pr
[
|UG| · |p̄UG

(S)− p(S)| ≥ ϵ|BG|
√

ln(e/ϵ)

n

]
= Pr

[∣∣∣ ∑
b∈UG

(µ̄b(S)− p(S))
∣∣∣ ≥ ϵ|BG|

√
ln(e/ϵ)

n

]
≤ 2e

−2 ln(e/ϵ)
(ϵ|BG|)2

|UG| ≤ 2e−2ϵ|BG| ln(e/ϵ),

where the last inequality used |UG| ≤ ϵ|BG|. Next, the number of sub-collections (non-empty)

of BG with size ≤ ϵ|BG| is bounded by

⌊ϵ|BG|⌋∑
j=1

(
|BG|
j

)
≤ ϵ|BG|

(
|BG|
⌊ϵ|BG|⌋

)
≤ ϵ|BG|

(e|BG|
ϵ|BG|

)ϵ|BG|

≤ eϵ|BG| ln(e/ϵ)+ln(ϵ|BG|) < e
3
2
ϵ|BG| ln(e/ϵ), (2.5)

28



where last of the above inequality used ln(ϵ|BG|) < ϵ|BG|/2 and ln(e/ϵ) ≥ 1. Then, using the

union bound, ∀ UG ⊆ BG such that |UG| ≤ ϵ|BG|, we get

Pr
[
|UG| · |p̄UG

(S)− p(S)| ≥ ϵ|BG|
√

ln(e/ϵ)

n

]
≤ 2e−

1
2
ϵ|BG| ln(e/ϵ) < 2e−

k
2ϵ < 2e−2k. (2.6)

For any sub-collection B′
G ⊆ BG with |B′

G| ≥ (1− ϵ)|BG|,

|
∑
b∈B′

G

(µ̄b(S)− p(S))| = |
∑
b∈BG

(µ̄b(S)− p(S))−
∑

b∈BG/B
′
G

(µ̄b(S)− p(S))|

≤
∣∣∣ ∑
b∈BG

(µ̄b(S)− p(S))
∣∣∣+ ∣∣∣ ∑

b∈BG/B
′
G

(µ̄b(S)− p(S))
∣∣∣

≤ |BG| × |p̄BG
(S)− p(S)|+ max

UG:|UG|≤ϵ|BG|
|UG| × |p̄UG

(S)− p(S)|

≤ 2ϵ|BG|
√

ln(e/ϵ)

n
,

with probability ≥ 1− 2e−2k − 2e−2k ≥ 1− 4e−2k. Then

|p̄B′
G
(S)− p(S)| = 1

|B′
G|

∣∣∣ ∑
b∈B′

G

(µ̄b(S)− p(S))
∣∣∣ ≤ 2

ϵ|BG|
|B′

G|

√
ln(e/ϵ)

n

≤ 2ϵ

(1− ϵ)

√
ln(e/ϵ)

n
< 3ϵ

√
ln(e/ϵ)

n
,

with probability ≥ 1− 4e−2k. The last step used ϵ ≤ 1/4. Since there are 2k different choices

for S ⊆ [k], from the union bound we get,

Pr
[ ⋃
S⊆[k]

{
|p̄B′

G
(S)− p(S)| > 4ϵ

√
ln(e/ϵ)

n

}]
≤ 4e−2k × 2k = 4e−k.

This completes the proof of (2.2).

Let Yb = (µ̄b(S) − p(S))2 − V(p(S)). For b ∈ BG, µ̄b(S) − p(S) ∼ subG(1/4n),

29



therefore

(µ̄b(S)− p(S))2 − E(µ̄b(S)− p(S))2 = Yb ∼ subE(
16

4n
) = subE(

4

n
).

Here subE is sub exponential distribution [121]. Then Bernstein’s inequality gives:

Pr[
∣∣∣ ∑
b∈BG

Yb

∣∣∣ ≥ 8|BG|
ϵ

n
ln(e/ϵ)] ≤ 2e−

|BG|
2

(
8ϵ ln(e/ϵ)/n

4/n

)2
= 2e−2|BG|ϵ2 ln2(e/ϵ) ≤ 2e−2k.

Next, for a fix sub-collection UG ⊆ BG of size 1 ≤ |UG| ≤ ϵ|BG|,

Pr
[∣∣∣ ∑

b∈UG

Yb

∣∣∣ ≥ 16ϵ|BG|
ln(e/ϵ)

n

]
≤ 2e−

16ϵ|BG| ln(e/ϵ)n
2×4/n

≤ 2e−2ϵ|BG| ln(e/ϵ).

Then following the same steps as in the proof of (2.2) one can complete the proof of (2.3). ■

To state the next lemma, we make use of the following definition. For a subset S ⊆ [k],

let

Bd
G(S, ϵ) ≜

{
b ∈ BG : |µ̄b(S)− p(S)| ≥ 2

√
ln(6e/ϵ)

n
)
}

be the sub-collection of batches for which empirical probabilities µ̄b(S) are far from p(S) for a

given set S.

The last lemma of the section upper bounds the total squared deviation of empirical

probabilities µ̄b(S) from p(S) for batches in sub-collection Bd
G(S, ϵ). It helps in upper bounding

the corruption for good batches and show that Condition 3 holds with high probability.

Lemma 12. For any 0 < ϵ < 1/2, and |BG| ≥ 120k
ϵ ln(e/ϵ)

. Then ∀S ⊆ [k], with probability

≥ 1− 2e−k,

|Bd
G(S, ϵ)| ≤

ϵ

40
|BG|, (2.7)

30



and

∑
b∈Bd

G(S,ϵ)

(µ̄b(S)− p(S))2 <
ϵ

2
|BG|

ln(e/ϵ)

n
. (2.8)

Proof. The proof of the first part is the same as (with different constants) Lemma 10 and we skip

it to avoid repetition.

To prove the second part we bound the total squared deviation of any subset of size

≤ ϵ
40
|BG|.

Let Yb = (µ̄b(S) − p(S))2 − V(p(S)). Similar to the previous lemma, for a fix sub-

collection UG ⊆ BG of size 1 ≤ |UG| ≤ ϵ
40
|BG|, Bernstein’s inequality gives:

Pr
[∣∣∣ ∑

b∈UG

Yb

∣∣∣ ≥ 8
ϵ

20
|BG|

ln(e/ϵ)

n

]
≤ 2e−

8ϵ|BG| ln(e/ϵ)n
20×2×4/n

≤ 2e−
ϵ
20

|BG| ln(e/ϵ).

From (2.5), there are e 3
80
ϵ|BG| ln(e/ϵ) many sub-collections of size ≤ ϵ

40
|BG|. Then taking the

union bound for all sub-collections of this size and all subsets S ⊆ [k] we get,

∣∣∣ ∑
b∈UG

(
(µ̄b(S)− p(S))2 − V(p(S))

)∣∣∣ ≤ 2ϵ

5
|BG|

ln(e/ϵ)

n
,

for all UG of size ≤ ϵ
40
|BG|. Then using the fact that V(.) is upper bounded by 1

4n
, and therefore

|UG|V(p(S)) ≤ ϵ
4×40
|BG|, completes the proof. ■

2.4.2 Completing the proof of Lemma 3

We first show condition 1 holds with high probability.

It is easy to verify that |p(S) − med(µ̄(S))| ≥
√

ln 6/n, only if the sub-collection

31



T = {b : |p(S)− µ̄b(S)| ≥
√
ln 6/n} has at-least 0.5m batches. But

|T | = |T ∩BG|+ |T ∩BA|
(a)
< |BG|/6 + |BA| =

m

6
+

5

6
|BA|

(b)
≤ m

6
+

2m

6
= 0.5m,

where inequality (a) follows from Lemma 10 by choosing ϵ = 1/6 and (b) follows since

|BA| ≤ βm ≤ 0.4m.

Using ϵ = β/6 in Lemma 11 gives Condition 2.

Finally, we show the last condition. To show it we use ϵ = β in Lemma 12. From

Condition 1, note that for b ∈ BG \Bd
G(S, β)

|µ̄b(S)−med(µ̄(S))| ≤ |µ̄b(S)− p(S)|+ |p(S)−med(µ̄(S))| ≤ 2

√
ln(6e/β)

n
+

√
ln 6

n

≤ 3

√
ln(6e/β)

n
,

Then, for b ∈ BG \ Bd
G(S, β), from the definition of corruption score it follows that

32



ψb(S) = 0. Next set of inequalities complete the proof of condition 3.

ψ(BG) =
∑
b∈BG

ψb(S) =
∑

b∈BG\Bd
G(S,β)

ψb(S) +
∑

b∈Bd
G(S,β)

ψb(S)

=
∑

b∈Bd
G(S,β)

ψb(S)

(a)
≤

∑
b∈Bd

G(S,β)

(µ̄b(S)−med(µ̄(S)))2

=
∑

b∈Bd
G(S,β)

(µ̄b(S)− p(S) + p(S)−med(µ̄(S)))2

(b)
≤

∑
b∈Bd

G(S,β)

(µ̄b(S)− p(S))2 +
∑

b∈Bd
G(S,β)

(med(µ̄(S))− p(S))2

+ 2

√√√√( ∑
b∈Bd

G(S,β)

(µ̄b(S)− p(S))2
)( ∑

b∈Bd
G(S,β)

(med(µ̄(S))− p(S))2
)

(c)
≤ β

2
|BG|

ln(e/β)

n
+
β

40
|BG|

ln 6

n
+

√
β

2
|BG|

ln(e/β)

n
× β

40
|BG|

ln 6

n
< β|BG|

ln(e/β)

n
,

here (a) follows from the definition of the corruption score, (b) uses Cauchy-Schwarz inequality

and (c) follows from Lemma 12 and Condition 1.

2.5 Proof of the other Lemmas

We first prove an auxiliary Lemma that will be useful in other proofs. For a given

sub-collection B′ and subset S, the next lemma bounds the total squared distance of µ̄b(S) from

p(S) over the adversarial batches b ∈ B′ ∩BA in terms of corruption score ψ(B′, S).

Lemma 13. Suppose the conditions 1 and 3 holds. For subset S, let ψ(B′, S) = t · κG, for some

t ≥ 0, then

(t− 3− 2
√
t)κG ≤

∑
b∈B′∩BA

(µ̄b(S)− p(S))2 ≤ (t+ 17 + 2
√
t)κG.

33



Proof. For the purpose of this proof, let B′
G = B′ ∩BG and B′

A = B′ ∩BA. Then

∑
b∈B′

A

(µ̄b(S)− p(S))2 =
∑

b∈B′
A:ψb(S)>0

(µ̄b(S)− p(S))2 +
∑

b∈B′
A:ψb(S)=0

(µ̄b(S)− p(S))2 (2.9)

From the definition of corruption score, for batch b ∈ B′, with zero corruption score

ψb(S), we have |µ̄b(S) − med(µ̄(S))| ≤ 3
√

ln(6e/β)
n

. Then using Condition 1 and the triangle

inequality, for such batches with zero corruption score, we get

|µ̄b(S)− p(S)| ≤
√

ln(6)/n+ 3

√
ln(6e/β)

n
< 4

√
ln(6e/β)

n
. (2.10)

Next,

∑
b∈B′

A:ψb(S)>0

(µ̄b(S)− p(S))2

=
∑

b∈B′
A:ψb(S)>0

(µ̄b(S)−med(µ̄(S)) + med(µ̄(S))− p(S))2

(a)
≤

∑
b∈B′

A:ψb(S)>0

(µ̄b(S)−med(µ̄(S)))2 +
∑

b∈B′
A:ψb(S)>0

(med(µ̄(S))− p(S))2

+ 2

√√√√( ∑
b∈B′

A:ψb(S)>0

(µ̄b(S)−med(µ̄(S)))2
)( ∑

b∈B′
A:ψb(S)>0

(med(µ̄(S))− p(S))2
)

(b)
≤
∑
b∈B′

A

ψb(S) +
∑
b∈B′

A

ln 6

n
+ 2

√√√√(∑
b∈B′

A

ψb(S)

)( ∑
b∈B′

A

ln 6

n

)
(c)
≤ ψ(B′

A, S) + κG + 2
√
ψ(B′

A, S) · κG, (2.11)

here (a) uses Cauchy-Schwarz inequality, (b) follows from the definition of corruption score and

Condition 1, and (c) uses |B′
A| ≤ βm and (βm ln 6)/n ≤ κG.

34



A similar calculation as the above leads to the following

∑
b∈B′

A:ψb(S)>0

(µ̄b(S)− p(S))2 ≥ ψ(B′
A, S)− 2

√
ψ(B′

A, S) · κG, (2.12)

Next, we show the upper bound in the lemma. Combining equations (2.9), (2.10)

and (2.11) gives

∑
b∈B′

A

(µ̄b(S)− p(S))2 ≤ ψ(B′
A, S) + κG + 2

√
ψ(B′

A, S) · κG +
∑

b∈B′
A:ψb(S)=0

4

√
ln(6e/β)

n

≤ ψ(B′, S) + κG + 2
√
ψ(B′, S) · κG + 16|BA|

ln(6e/β)

n

≤ (t+ 17 + 2
√
t)κG,

here the second last inequality used B′
A ⊆ B′ and B′

A ⊆ BA. This completes the proof of the

upper bound.

To prove the lower bound, we first note that

ψ(B′, S) =
∑
b∈B′

ψb(S) =
∑
b∈B′

G

ψb(S) +
∑
b∈B′

A

ψb(S)

≤
∑
b∈BG

ψb(S) + ψ(B′
A, S)

≤ ψ(BG) + ψ(B′
A, S) ≤

βm ln(6e/β)

n
+
∑
b∈B′

A

ψb(S),

here the last inequality uses condition 3. The above equation implies that

ψ(B′
A, S) ≥ ψ(B′, S)− βm ln(6e/β)

n
= (t− 1)κG. (2.13)

35



By combining, equations (2.9) (2.12) and (2.13), we get the lower bound

∑
b∈B′

A

(µ̄b(S)− p(S))2 ≥ (t− 1)κG − 2
√
|t− 1|κG · κG = (t− 1− 2

√
|t− 1|)κG

≥ (t− 3− 2
√
t)κG.

■

2.5.1 Proof of Lemma 4

Proof. For the purpose of this proof, let B′
G = B′ ∩ BG and B′

A = B′ ∩ BA. Note that

|B′| ≥ |B′
G| ≥ (1− β/6)BG.

Fix subset S ⊆ [k]. Next,

p̄B′(S)− p(S) = 1

|B′|
∑
b∈B′

µ̄b(S)− p(S) =
1

|B′|
∑
b∈B′

(µ̄b(S)− p(S))

=
1

|B′|
∑
b∈B′

G

(µ̄b(S)− p(S)) +
1

|B′|
∑
b∈B′

A

(µ̄b(S)− p(S))

=
|B′

G|
|B′|

(p̄B′
G
(S)− p(S)) + 1

|B′|
∑
b∈B′

A

(µ̄b(S)− p(S))

36



Therefore,

|p̄B′(S)− p(S)| ≤ |B
′
G|
|B′|
|p̄B′

G
(S)− p(S)|+ 1

|B′|
∑
b∈B′

A

|µ̄b(S)− p(S)|

(a)
≤ β

2

√
ln(6e/β)

n
+

1

|B′|
∑
b∈B′

A

|µ̄b(S)− p(S)|

(b)
≤ β

2

√
ln(6e/β)

n
+

1

|B′|

√
|B′

A|
∑
b∈B′

A

(µ̄b(S)− p(S))2

(c)
≤ β

2

√
ln(6e/β)

n
+

1

|B′|

√
|B′

A| · (t+ 17 + 2
√
t)κG

(d)
≤ β

2

√
ln(6e/β)

n
+

1

|B′|

√
|B′

A| · (t+ 17 + 2
√
t)
βm ln(6e/β)

n

≤ β

2

√
ln(6e/β)

n
+

√
|B′

A| ·m
|B′|2

· (t+ 17 + 2
√
t)
β ln(6e/β)

n
, (2.14)

here in (a) uses Condition 2 and |B′
G| ≤ |B′|, inequality (b) follows from the Cauchy-Schwarz

inequality, inequality (c) uses Lemma 13, and (d) uses the definition of κG. Let |B′
A| = |BA|−D,

for some D ∈ [0, |BA|]. Also from Lemma note that

|B′
G| ≥ (1− β/6)|BG| = |BG| − |BG|β/6 = |BG| −mβ(1− β)/6.

Therefore,

|B′
A| ·m
|B′|2

=
|B′

A| ·m
(|B′

A|+ |B′
G|)2

≤ (|BA| − D)m

(|BA| − D + |BG| −mβ(1− β)/6)2

=
(βm− D)m

(m− D−mβ(1− β)/6)2
(a)
≤ (βm− D)m

(m− D− 0.04m)2

(b)
≤ βm2

(0.96m)2
≤ β

0.962
,

here (a) follows since β(1− β) takes maximum value at β = 0.4 in range β ∈ (0, 0.4], and (b)

37



follows since the expression is maximized at D = 0.

Then combining above equation with (2.14) gives

|p̄B′(S)− p(S)| ≤ β

2

√
ln(6e/β)

n
+

√
(t+ 17 + 2

√
t)
β2 ln(6e/β)

0.962n

≤
(
1/2 +

1

0.96

√
(t+ 17 + 2

√
t)
)
β

√
ln(6e/β)

n
(2.15)

(a)
≤
(
5 +
√
2.1t

)
β

√
ln(6e/β)

n
, (2.16)

here inequality (a) uses the fact that 2t1/2 ≤ t+ 1 and
√
x2 + y2 ≤ |x|+ |y|. Finally, using the

definition of L1 distance between two distributions complete the proof of the Theorem. ■

2.5.2 Proof of Lemma 6

Proof. From the second statement in Lemma 5, each batch that gets removed is adversarial

with probability ≥ 0.95. Batch deletion deletes more than 0.1βm good batches in total

over all runs iff it samples 0.1βm good batches in first 0.1βm + |BA| batches removed as

otherwise all adversarial batches would have been exhausted already and Batch deletion algorithm

would not remove batches any further. But the expected number of good batches sampled is

≤ 0.05(×0.1βm+ |BA|) ≤ 0.005βm+ 0.05βm < 0.06βm.

Then using the Chernoff-bound, probability of sampling (removing) more than 0.1βm

good batches in 0.1βm+ |BA| deletions is ≤ e−O(βm) ≤ e−O(k). Hence, with high probability

the algorithm deletes less than 0.1βm = 0.6βm/6 ≤ |BG|β/6 batches. ■

2.5.3 Proof of Lemma 7

Proof. For the purpose of this proof, let B′
G = B′ ∩ BG and B′

A = B′ ∩ BA. For batches b in

a sub-collection B′, the next equation relates the empirical variance of µ̄b(S) to sum of their

38



squared deviation from p(S).

|B′|VB′(S) =
∑
b∈B′

(µ̄b(S)− p̄B′(S))2 =
∑
b∈B′

(µ̄b(S)− p(S)− (p̄B′(S)− p(S)))2

=
∑
b∈B′

(
(µ̄b(S)− p(S))2 + (p̄B′(S)− p(S))2 − 2(p̄B′(S)− p(S))(µ̄b(S)− p(S))

)
=
∑
b∈B′

(µ̄b(S)− p(S))2 + |B′|(p̄B′(S)− p(S))2 − 2(p̄B′(S)− p(S))
∑
b∈B′

(µ̄b(S)− p(S))

=
∑
b∈B′

(µ̄b(S)− p(S))2 + |B′|(p̄B′(S)− p(S))2 − 2(p̄B′(S)− p(S))(|B′|p̄B′(S)− |B′|p(S))

=
∑
b∈B′

(µ̄b(S)− p(S))2 − |B′|(p̄B′(S)− p(S))2

=
∑
b∈B′

A

(µ̄b(S)− p(S))2 +
∑
b∈B′

G

(µ̄b(S)− p(S))2 − |B′|(p(S)− p̄B′(S))2. (2.17)

The next set of inequalities lead to the upper bound in the Lemma.

|B′|(VB′(S)− V(p̄B′(S)))

(a)
=
∑
b∈B′

A

(µ̄b(S)− p(S))2 +
∑
b∈B′

G

(µ̄b(S)− p(S))2 − |B′|(p(S)− p̄B′(S))2 − |B′|V(p̄B′(S))

(b)
≤ (t+ 17 + 2

√
t)κG + |B′

G|V(p(S)) + |B′
G|
6β ln(6e

β
)

n
− |B′|V(p̄B′(S))

(c)
≤ (t+ 17 + 2

√
t)κG + 6βm

ln(6e/β)

n
+ |B′|V(p(S))− |B′|V(p̄B′(S))

(d)
≤ (t+ 23 + 2

√
t)κG +m

|p(S)− p̄B′(S)|
n

,

here inequality (a) follows from (2.17), (b) follows from Lemma 13 and condition 2, and (c)

follows since |B′
G| ≤ |B′| and V(·) ≥ 0, and inequality (d) uses (2.1) and |B′| ≤ m. Next, from

39



equation (2.16) we have,

|p̄B′(S)− p(S)| ≤ (5 +
√
2.1t)β

√
ln(6e/β)

n

= (5 +
√
2.1t)β ln(6e/β)

√
1

n ln(6e/β)

≤ (5 +
√
2.1t)

nκG
m

. (2.18)

Combining the above two equations gives the upper bound in the lemma.

Next showing the lower bound,

|B′|(VB′(S)− V(p̄B′(S)))

(a)
=
∑
b∈B′

A

(µ̄b(S)− p(S))2 +
∑
b∈B′

G

(µ̄b(S)− p(S))2 − |B′|(p(S)− p̄B′(S))2 − |B′|V(p̄B′(S))

(b)
≥ (t− 3− 2

√
t)κG + |B′

G|V(p(S))− |B′
G|
6β ln(6e

β
)

n
− |B′|(p(S)− p̄B′(S))2

− |B′|V(p̄B′(S))

≥ (t− 9− 2
√
t)κG + |B′

G|V(p(S))− |B′|(p(S)− p̄B′(S))2 − |B′
G|V(p̄B′(S))

− |B′
A|V(p̄B′(S))

≥ (t− 9− 2
√
t)κG − |B′

G|(V(p̄B′(S))− V(p(S)))− |B′|(p(S)− p̄B′(S))2−

|B′
A|V(p̄B′(S))

(c)
≥ (t− 9− 2

√
t)κG − |B′

G|
|p(S)− p̄B′(S)|

n
− |B

′
A|

4n
− |B′|(p(S)− p̄B′(S))2

≥ (t− 9− 2
√
t)κG −m

|p(S)− p̄B′(S)|
n

− βm

4n
−m(p(S)− p̄B′(S))2

(d)
≥ (t− 15− 2

√
t−
√
2.1t)κG −m(p(S)− p̄B′(S))2,

here inequality (a) follows from (2.17), (b) follows from Lemma 13 and condition 2, (c) follows

from (2.1) and V(·) ≤ 1
4n

, and inequality (d) follows from (2.18).

Next, we bound the last tem in the above equation to complete the proof. From

40



equation (2.15),

(p(S)− p̄B′(S))2 ≤
(
1/2 +

1

0.96

√
(t+ 17 + 2

√
t)
)2
β2 ln(6e/β)

n

≤
(
1/4 +

1

0.962
(t+ 17 + 2

√
t) +

1

0.96

√
(t+ 17 + 2

√
t)
)
β · κG

(a)
≤
(
1/4 + 1.1(t+ 17 + 2

√
t) + 5 +

√
2.1t

)
β · κG

≤
(
24 + 1.1t+ 2.2

√
t+
√
2.1t

)
β · κG

(b)
≤ 0.4

(
24 + 1.1t+ 2.2

√
t+
√
2.1t

)
κG,

here inequality (a) uses the fact that 2t1/2 ≤ t+ 1 and
√
x2 + y2 ≤ |x|+ |y| and inequality (b)

uses β ≤ 0.4. Combining above two equations give us the lower bound in the Lemma. ■

2.6 Proof of Theorem 9

First, we restate the statement of the main theorem.

Theorem 14. Suppose the conditions 1- 3 holds. Then Algorithm 2 runs in polynomial time and

with probability≥ 1−O(e−k) returns a sub-collectionB′
f ⊆ B such that |B′

f∩BG| ≥ (1−β
6
)|BG|

and for p∗ = p̄B′
f
,

||p∗ − p||1 ≤ 100β

√
ln(6e/β)

n
.

Proof. Lemma 6 show that for the sub-collectionB′
i at each iteration i, |B′

i∩BG| ≥ (1− β
6
)|BG|,

hence, for sub-collectionB′
f returned by the algorithm |B′

f ∩BG| ≥ (1− β
6
)|BG|, with probability

≥ 1−O(e−k). This also implies that the total number of deleted batches are < (1 + 1/6)βm.

To complete the proof of the above Theorem, we state the following corollary, which is a

direct consequence of Lemma 7.

Corollary 15. Suppose the conditions 1- 3 holds. Then following hold for any B′ ⊆ B such that

|B′ ∩BG| ≥ (1− β
6
)|BG|.

1. |VB′(S)− V(p̄B′(S))| ≥ 75κG implies that ψ(B′, S) ≥ 25κG.

41



2. |VB′(S)− V(p̄B′(S))| ≤ 150κG implies that ψ(B′, S) ≤ 900κG.

In each iteration of Algorithm 2, except the last,Detection− Algorithm returns a subset

for which the difference between two variance estimate is ≥ 75κG. The first statement in the

above corollary implies that corruption is high for this subset. Batch Deletion removes batches

from the sub-collection to reduce the corruption for such subset. From Statement 3 of Lemma 5,

in each iteration Batch Deletion removes ≥ 25κG − 20κG batches. Since the total batches

removed are < 7/6βm, this implies that the algorithm runs for at-max 7βm
6×5κG

< n iterations.

The algorithm terminates when Detection− Algorithm returns a subset for which the

difference between two variance estimate is ≤ 75κG. Then Lemma 8 implies that the difference

between two variance estimate is ≤ 150κG for all subsets. Then the above corollary shows that

corruption for all subsets is ≤ 900κG. Therefore, ψ(B′) ≤ 900κG. Then Lemma 4 bounds the

L1 distance. ■

2.7 Proof of Theorem 2

We restate the theorem and give a short proof.

Theorem 16. For any given β ≤ 0.4, n and k and m, Algorithm 2 runs in polynomial time, and

its estimate p∗ satisfies ||p∗− p||1 ≤ O(max{β
√

ln(1/β)
n

,
√

k
mn
}) with probability≥ 1−O(e−k).

Proof. First we prove the theorem for m ≥ Ω(k). We further divide it into two case depending

on number of batches, m.

1. When the number of batches m ≥ Ω( k
β2 log(1/β)

), then Theorem 1 implies the above result.

2. When the number of batches m ≤ O( k
β2 log(1/β)

), then let β∗ such that m = Θ( k
β2
∗ log(1/β∗)

).

Clearly, β∗ ≫ β. From Theorem 1, the algorithm would achieve a distance

O(β∗

√
log(1/β∗)

n
) = O(

√
k
nm

).

This proves the theorem for m ≥ Ω(k).

For m ≤ O(k), there are two possibilities depending on the total number of samples, mn.

42



1. When mn ≤ O(k), one cannot learn the distribution, hence the L1 error is = Ω(1), and

the guarantees of the theorem trivially hold.

2. When mn ≥ Ω(k), divide each of the m batches into Θ(k/m) smaller batches so that

there are m′ = Θ(k) batches of n′ = Θ(mn/k) samples each. This operation preserves

the fraction β of adversarial batches. Since we already proved the theorem for m′ > Ω(k),

applying this result for the updated batches yields the following bound:

max{β ·
√

log(1/β)

n′ ,

√
k

m′n′} = max{β ·
√
k · log(1/β)

mn
,

√
k

mn
}

=

√
k

mn

≤ max{β ·
√

log(1/β)

n
,

√
k

mn
},

where the second equality follows as β < 1/2 implies β ·
√
log(1/β) < 1.

Thereby proving the theorem for the m ≤ O(k) range. ■

Chapter 2, in full, is a reprint of the material as it appears in Optimal robust learning

of discrete distributions from batches 2020. Ayush Jain, Alon Orlitsky. In ICML 2020. The

dissertation author was the primary investigator and author of this paper.

43



Chapter 3

A General Method for Robust Learning
from Batches

3.1 Introduction

3.1.1 Motivation

In many learning applications, some samples are inadvertently or maliciously corrupted.

A simple and intuitive example shows that this erroneous data limits the extent to which a

distribution can be learned, even with infinitely many samples. Consider p that could be one

of two possible binary distributions: (1
2
− β

2
, 1
2
+ β

2
) and (1

2
+ β

2
, 1
2
− β

2
). Given any number of

samples from p, an adversary who observes a 1− β fraction of the samples and can determine

the rest, could use the observed samples to learn p, and set the remaining samples to make the

distribution always appear to be (0.5, 0.5). Even with arbitrarily many samples, any estimator for

p fails to decide which p is in effect, hence incurs a total-variation (TV) distance ≥ β
2
, that we

call the adversarial lower bound.

The example may seem to suggest the pessimistic conclusion that if an adversary can

corrupt a β fraction of the data, a TV-loss of ≥ β
2

is inevitable. Fortunately, in many applications

it can be avoided.

In the following applications, and many others, data is collected in batches, most of which

are genuine, but some possibly corrupted. Data may be gathered by sensors, each providing a

44



large amount of data, and some sensors may be faulty. The word frequency of an author may

be estimated from several large texts, some of which are mis-attributed. User preferences may

be learned by querying several individuals, some intentionally biasing their feedback. Multiple

agents may contribute to a crowd-sourcing platform, but some may be unreliable or malicious.

Interestingly, for data arriving in batches, even when a β-fraction of which are corrupted, more

can be said.

Recently, [125] formalized the problem for finite domains. They considered estimating a

distribution p over [k] in TV-distance when the samples are provided in batches of size ≥ n. Out

of a total of m batches, a fraction ≤ β may be arbitrarily and adversarially corrupted, while in

every other batch b the samples are drawn according to a distribution p.

For β<1/900, they derived an estimation algorithm that approximates any p over a finite

domain to TV-distance O(β/
√
n), surprisingly, much lower than the individual samples limit of

Θ(β). They also derived a matching lower bound, showing that even for binary distributions, and

hence for general finite distributions, given any number m of batches, the lowest achievable TV

distance is ∆min := ∆min(β, n) :=
β

2
√
2n

. We refer to ∆min as the adversarial batch lower bound.

Their estimator requires Ω( n+k
n·∆2

min
) batches of samples, or equivalently Ω(n+k

∆2
min
) samples,

which is not optimal if n >> k. It also runs in time exponential in the domain size, rendering it

impractical.

Recently, [30] used a novel application of the sum-of-squares technique to reduce

the exponential time complexity. Using quasi-polynomial sample size and run time, both

roughly (k/∆)O(log(1/β)), they derived an estimator that achieves TV distance O(∆), where

∆ := ∆(β, n) := ∆min ·
√
ln(1/β).

Concurrently, [77] derived the first polynomial-time and optimal Ω(k/∆2) sample

estimator, that achieves the same O(∆) TV distance. To limit the impact of adversarial batches,

the algorithm filters the data by removing batches that skews the estimator.

For general distributions, the sample complexity of both TV-distance estimation, and

Bayes-optimal classification, grows linearly in the domain size, even when all samples are genuine.

45



Hence, general estimation and classification over large discrete, let alone continuous domains, is

infeasible. Since most modern applications are over very large or continuous domains, this may

again lead to the pessimistic conclusion that not much can be done.

Fortunately, typical distributions are not arbitrary and possess some structure. For

example, they may be monotone, smooth, Lipchitz, etc., or well approximated by structured

distributions. These structural properties enable learning over large and even infinite domains.

For example, as is well known, classifiers can be learned using a number of samples proportional

to the VC-dimension of the classifier class. But so far, our understanding of how to incorporate

the distribution structure in Robust batch learning has been quite limited.

The first application of structure to reduce the linear dependence of the sample complexity

[30] considered robust batch learning of t-piecewise degree-d polynomials over the finite set

[k] = {1, . . . ,k}. It learned these distributions with number of samples that grows only quasi-

poly-logarithmically in the domain size k. Yet this number still grows with k, hence does not

extend to continuous distributions. It is also quasi-polynomial in the other parameters t, d, batch

size n, and 1/β, much larger than in the non-robust setting. And the algorithm’s computational

complexity is quasi-polynomial in these parameters and the domain size k.

This leaves several natural questions: (1) Can other non-finite, and even continuous,

structured distribution classes, be learned robustly to an estimation error comparable to the

adversarial batch lower ∆min? (2) Can it be achieved with sample complexity comparable to the

non-adversarial learning? (3) Can robust learning of structured distributions be accomplished

in strict polynomial time? (4) Even more generally can other tasks such as classification be

accomplished with adversarial batches? (5) Most importantly, is there a general and systematic

theory of learning with adversarial batches?

3.1.2 Summary of techniques and contributions

VC theory helps answer some of the above questions when all the samples are generated

i.i.d. from a distribution. We adapt the theory to address robust batch learning as well. Let F be

46



a family of subsets of an Euclidean domain Ω. The F -distance between two distributions p and q

over Ω is the largest difference between the probabilities p and q assign to any subset in F ,

||p− q||F := supS∈F |p(S)− q(S)|.

It is easy to see that TV, and hence L1, distances are a special case of F -distance where F is the

collection Σ of all Borel subsets of Ω, ||p− q||Σ = ||p− q||TV = 1
2
||p− q||1.

Without adversarial batches, the VC inequality guarantees that for a subset family F

with finite VC-dimension, the empirical distribution of samples from p estimates p to a small

F -distance. But with adversarial batches, the F -distance between the empirical distribution and

p could be large.

For learning with adversarial batches over finite domains, [77] presented an algorithm

that learns the distribution to a small TV distance with a number of batches proportional to the

domain size. We generalize this algorithm to learn any finite-VC subset family F to a small

F-distance using samples linear in the family’s VC-dimension, rather than the domain size.

Recall that ∆min = β/(2
√
2n) is the adversarial batch lower bound for TV-distance

learning. No algorithm achieves an error below ∆min, even with the number of batches→∞.

Since the ∆min lower bound applies even to binary domains, it can be shown to also lower bound

F-distance learning.

Our proposed algorithm filters the batches and returns a sub-collection of batches whose

empirical distribution estimates p to F-distance O(∆), where ∆ = ∆min ·
√
log(1/β) is only

a small factor above the lower bound. The number of batches it requires for any VC family

F is only a logarithmic factor more than needed to achieve the same error without adversarial

batches, showing that robustness can be incorporated at little extra cost. This provides the first

demonstration that distributions can be learned (1) robustly and (2) sample-efficiently, over

infinite, and even continuous domains.

As expected from the setting’s vast generality, as in the non-adversarial setting, for some

47



VC families, one cannot expect to find a computationally efficient algorithm. We, therefore,

consider a natural and important VC family over the reals that, as we shall soon see, translates

into efficient and robust algorithms for TV-learning and classification over R.

LetFk be the family of all unions of at most k intervals overR. We derive a computationally

efficient algorithm that estimates distributions to Fk-distance O(∆) using only Õ(1/∆) times

more samples than the non-adversarial, or information-theoretic adversarial cases.

Building on these techniques, we return to estimation in total variation (TV) distance. We

consider the family of distributions whose Yatracos Class [151] have finite VC dimension. This

family consists of both discrete and continuous distributions, and includes piecewise polynomials,

Gaussians in one or more dimensions, and arguably most practical distribution families. We show

that all these distributions can be learned robustly from batches to a TV distance O(∆), which is

only a factor
√

log(1/β) above the adversarial TV-distance lower bound of ∆min. It also achieves

sample complexity that is at most a logarithmic factor more than required for non-adversarial

case.

These results too are very general, hence as in the non-adversarial case, one cannot

expect a computationally efficient algorithm for all cases. We therefore consider the natural and

important general class Pt,d of t-piecewise degree-d polynomial distributions over the reals.

To agnostically learn distributions Pt,d, we combine the results above with an existing,

non-adversarial, polynomial-learning algorithm [1]. We derive a polynomial-time algorithm

for estimating polynomials in Pt,d to a TV distance O(∆). The algorithm’s sample complexity

is linear in td, which is the best possible, and similar to learning in Fk-distance, only Õ(1/∆)

times above the non-adversarial, or information-theoretic adversarial sample complexity.

This is the first algorithm that achieves polynomial sample and time complexity for robust

learning for this class, and the first that applies to the non-finite domains.

The general formulation also allows us to use batch-structure for robustness in other

learning tasks. We apply this framework to derive the first robust agnostic classifiers. The goal is

to minimize the excess loss in comparison to the best hypothesis, in the presence of adversarial

48



batches.

We first modify the lower bound on distribution learning to show that any classification

algorithm with adversarial batches must incur an excess loss O(∆min), even with the number of

batches→∞. We then derive a general algorithm that achieves additive excess loss O(∆) for

general binary classification using a number of samples that is again only a logarithmic factor

larger than required to achieve the same excess loss in the non-adversarial setting.

Finally, we consider classification over R. Many natural and practical classifiers have

decision regions consisting of finitely many disjoint intervals. We apply the above results to

derive a computationally efficient algorithm for hypotheses consisting of k intervals. Similar

to previous results, its sample complexity is linear in k and only a factor O(1/∆) larger than

required in the non-adversarial setup.

The rest of the paper is organized as follows. Section 3.2 describes the main technical

results and their applications to distribution estimation and classification. Section 3.3 discusses

the other related work. Section 3.4 provides an overview of the filtering algorithm that enables

these results. Proofs and more details are relegated to the appendix.

3.2 Results

We consider learning from batches of samples, when a β−fraction of batches are

adversarial.

More precisely,B is a collection ofm batches, composed of two unknown sub-collections.

A good sub-collection BG ⊆ B of ≥ (1− β)m good batches, where each batch b consists of n

independent samples from a common distribution p over Ω. And an adversarial sub-collection

BA = B \BG of the remaining≤ βm batches, each consisting of the same number n of arbitrary

Ω elements, that for simplicity we call samples as well. Note that the adversarial samples may be

chosen in any way, including after observing the good samples.

The next subsection describes the main technical results for learning in F distance.

49



Subsequent subsections apply these results to learn distributions in TV distance and to achieve

robust binary classification.

3.2.1 Estimating distributions in F distance

Our goal is to use samples generated by a target distribution p to approximate it to a

small F -distance. For general families F , this goal cannot be accomplished even with just good

batches. Let F = Σ be the collection of all subsets of the real interval domain Ω = [0, 1]. For

any total number t of samples, with high probability, it is impossible to distinguish the uniform

distribution over [0, 1] from a uniform discrete distribution over a random collection of≫ t2

elements in [0, 1]. Hence any estimator must incur TV-distance 1 for some distribution.

This difficulty is addressed by Vapnik-Chervonenkis (VC) Theory. The collection F

shatters a subset S ⊆ Ω if every subset of S is the intersection of S with a subset in F . The

VC-dimension VF of F is the size of the largest subset shattered by F .

Let X t = X1, . . . ,Xt, be i.i.d. samples from a distribution p. The empirical probability

of S ⊆ Ω is

p̄t(S) := |{i : Xi ∈ S}|/t.

The fundamental Uniform deviation inequality of VC theory [145, 138] states that if F has finite

VC-dimension VF , then p̄t estimates p well in F distance. For all δ > 0, with probability> 1− δ,

||p− p̄t||F ≤ O
(√

(VF + log 1/δ)/t
)
.

The above is also the lowest achievable F-distance, hence we call it the information-theoretic

limit.

In the adversarial-batch scenario, a fraction β of the batches may be corrupted. It is easy

to see that for any numberm of batches, however large, the adversary can cause p̄t to approximate

p to F-distance ≥ β/2, namely ||p̄t − p||F ≥ β/2.

Let p̄B′ be the empirical distribution induced by the samples in a collection B′ ⊆ B. Our

50



first result states that if F has a finite VC-dimension, for total samples m · n ≥ Õ(VF/∆2), the

batches in B can be "cleaned" to a sub-collection B∗ where ||p − p̄B∗ ||F = O(∆), namely, a

simple empirical estimator of the samples in B∗ recovers p to a small F-distance.

Theorem 17. For any F , β ≤ 0.4, δ > 0, and mn ≥ Õ
(
VF+log 1/δ

∆2

)
, there is an algorithm that

w.p.≥1−δ returns a sub-collectionB∗⊆B s.t. |B∗∩BG| ≥ (1−β
6
)|BG| and ||p−p̄B∗||F ≤ O(∆).

The F -distance bound matches the lower bound ∆min up to a smallO(
√
log(1/β)) factor.

The number m · n of samples required to achieve this estimation error are the same (up to a

logarithmic factor) as the minimum required to achieve the same estimation error even for the

non-adversarial setting.

The theorem applies to all families with finite VC dimension, and like most other results

of this generality, it is necessarily non-constructive in nature. Yet it provides a road map for

constructing efficient algorithms for many specific natural problems. In Section 3.4 we use this

approach to derive a polynomial-time algorithm that learns distributions with respect to one of

the most important and practical VC classes, where Ω = R, and F = Fk is the collection of all

unions of at most k intervals.

Theorem 18. For any k > 0, β ≤ 0.4, δ > 0, andmn ≥ Õ
(
k+log 1/δ

∆3

)
, there is an algorithm that

runs in time polynomial in all parameters, and with probability ≥ 1− δ returns a sub-collection

B∗ ⊆ B, such that |B∗ ∩BG| ≥ (1− β
6
)|BG| and ||p− p̄B∗||Fk

≤ O(∆).

The above polynomial-time algorithm can achieve Fk error ∆ using the number of

samples only Õ(1/∆) times the minimum required to achieve the same estimation error by

any algorithm even for the non-adversarial setting. Note that the sample complexity in both

Theorems 17 and 18 are independent of the domain size and depends linearly on the VC dimension

of the subset family.

Section 3.4 provides a short overview of the algorithms used in the above theorems. The

complete algorithms and proof of the two theorems appear in the appendix.

51



3.2.2 Learning distributions in total-variation distance

Our ultimate objective is to estimate the target distribution in total variation (TV) distance,

one of the most common measures in distribution estimation. In this and the next subsection, we

follow a framework developed in [43], see also [44].

As noted earlier, the sample complexity of estimating distributions in TV-distance

grows with the domain size, becoming infeasible for large discrete domains and impossible

for continuous domains. A natural approach to address this intractability is to assume that the

underlying distribution belongs to, or is near, a structured class P of distributions.

Let optP(p) := infq∈P ||p− q||TV be the TV-distance of p from the closest distribution in

P . For example, for p ∈ P , optP(p) = 0. Given ϵ, δ > 0, we try to use samples from p to find an

estimate p̂ such that, with probability ≥ 1− δ,

||p− p̂||TV ≤ α · optP(p) + ϵ

for a universal constant α≥1, namely, to approximate p about as well as the closest distribution

in P .

Following [43], we utilize a connection between distribution estimation and VC dimension.

Let P be a class of distributions over Ω. The Yatracos class [151] of P is the family of Ω subsets

Y(P) := {{ω ∈ Ω : p(ω) ≥ q(ω)} : p, q ∈ P}.

It is easy to verify that for distributions p, q ∈ P , ||p − q||TV = ||p − q||Y(P). The Yatracos

minimizer of a distribution p is its closest distribution, by Y(P)-distance, in P ,

ψP(p) := argmin
q∈P
||q − p||Y(P),

where ties are broken arbitrarily. Theorem 6.3 in [43] uses these definitions and a sequence

52



of triangle inequalities to show that for any distributions p, p′, and any distribution class P ,

||p− ψP(p
′)||TV ≤ 3 · optP(p) + 4||p− p′||Y(P). (3.1)

Therefore, given a distribution p′ that approximates p in Y(P)-distance, its Yatracos minimizer

ψP(p
′) approximates p in TV-distance.

If the Yatracos class Y(P) has finite VC dimension, the VC-bound ensures that for the

empirical distribution p̄t of t i.i.d. samples from p, ||p̄t − p||Y(P) decreases to zero as t increases,

and ψP(p̄t) can be used to approximate p in TV-distance. This general method has led to many

sample-and computationally-efficient algorithms for estimating structured distributions, e.g., [1].

However, as discussed earlier, with a β-fraction of adversarial batches, the empirical

distribution of all samples can be at a Y(P)-distance as large as Θ(β) from p, leading to a large

TV-distance.

Yet Theorem 17 shows that data can be "cleaned" to remove outlier batches and retain

batches B∗ ⊆ B whose empirical distribution p̄B∗ approximates p to a much smaller Y(P)-

distance of O(∆). Letting p∗ = ψP(p̄B∗) and using Equation (3.1), we obtain a much better

approximation of p in TV distance.

Theorem 19. For a distribution class P with Yatracos Class of finite VC dimension v, for any

β ≤ 0.4, δ > 0, and mn ≥ Õ
(
v+log 1/δ

∆2

)
, there is an algorithm that w. p. ≥ 1−δ returns a

distribution p∗ ∈ P such that ||p− p∗||TV ≤ 3 · optP(p) +O(∆).

The estimation error achieved in the theorem for TV-distance matches the lower bound to

a small log factor of O(
√

log(1/β)), and is valid for any class P with finite VC Dimensional

Yatracos Class.

Moreover, the upper bound on the number of samples (or batches) required by the

algorithm to estimate p to the above distance matches a similar general upper bound obtained for

non-adversarial setting to a log factor. This results for the first time shows that it is possible to

learn a wide variety of distributions robustly using batches, even over continuous domains.

53



3.2.3 Learning univariate structured distributions

We apply the general results in the last two subsections to estimate distributions over the

real line. We focus on one of the most studied, and important, distribution families, the class

of piecewise-polynomial distributions. A distribution p over [a, b] is t-piecewise, degree-d, if

there is a partition of [a, b] into t intervals I1, . . . ,It, and degree-d polynomials r1, . . . ,rt such

that ∀j and x ∈ Ij , p(x) = rj(x). The definition extends naturally to finite distributions over

[k] = {1, . . . ,k}.

Let Pt,d denote the collection of all t-piecewise degree d distributions. Pt,d is interesting

in its own right, as it contains important distribution classes such as histograms. In addition, it

approximates other important distribution classes, such as monotone, log-concave, Gaussians,

and their mixtures, arbitrarily well, e.g., [1].

Note that for any two distributions p, q ∈ Pt,d, the difference p − q is a 2t-piecewise

degree-d polynomial, hence every set in the Yatracos class of Pt,d, is the union of at most 2t · d

intervals in R. Therefore, Y(Pt,d) ⊆ F2t·d. And since VFk
= O(k) for any k, Y(Pt,d) has VC

dimension O(td).

Theorem 19 can then be applied to show that any target distribution p can be estimated by

a distribution in Pt,d to a TV-distance ∆, using a number of samples, that is within a logarithmic

factor from the minimum required [27] even when all samples are i.i.d. generated from p.

Corollary 20. For any distribution p over R, t, d, β ≤ 0.4, δ > 0, and mn ≥ Õ
(
td+log 1/δ

∆2

)
,

there is an algorithm that with probability ≥ 1−δ returns a distribution p∗ ∈ Pt,d such that

||p− p∗||TV ≤ 3 · optPt,d
(p) +O(∆).

Next we provide a polynomial-time algorithm for estimating p to the same O(∆) TV-

distance, but with an extra Õ(1/∆) factor in sample complexity.

Theorem 18 provides a polynomial time algorithm that returns a sub-collectionB∗ ⊆ B of batches

whose empirical distribution p̄B∗ is close to p in F2td-distance. [1] provides a polynomial time

algorithm that for any distribution q returns a distribution in p′ ∈ Pt,d minimizing ||p′ − q||F2td

54



to a small additive error. Then equation (3.1) and Theorem 18 yield the following result. We

provide formal proof of the theorem in the appendix.

Theorem 21. For any distribution p over R, n, m, β≤0.4, t, d, δ > 0, and mn ≥ Õ
(
td+log 1/δ

∆3

)
,

there is a polynomial time algorithm that w. p. ≥1−δ returns a distribution p∗ ∈ Pt,d such that

||p− p∗||TV ≤ O(optPt,s
(p)) +O(∆).

3.2.4 Binary classification

Our framework extends beyond distribution estimation. Here we describe its application to

Binary classification. Consider a familyH : Ω→ {0, 1} of Boolean functions, and a distribution

p over Ω× {0, 1}. Let (X, Y ) ∼ p, where X ∈ Ω and Y ∈ {0, 1}. The loss of classifier h ∈ H

for distribution p is rp(h) := Pr(X,Y )∼p[h(X) ̸= Y ]. The optimal classifier for distribution p is

hopt(p) := argminh∈H rp(h), and hence the optimal loss is ropt
p (H) := rp(h

opt(p)). The goal is

to return a classifier h ∈ H whose excess loss rp(h)− ropt
p (H) compared to the optimal loss is

small.

Consider the following natural extension of VC-dimension from families of subsets to

families of Boolean functions. For a boolean-function familyH, define the family

FH := {({ω ∈ Ω : h(ω) = y}, ȳ) : h ∈ H, y ∈ {0, 1}}

of subsets of Ω× {0, 1}, and let the VC dimension ofH be VH := VFH .

The next simple lemma, proved in the appendix, upper bounds the excess loss of the

optimal classifier in H for a distribution q for another distribution p in terms of FH distance

between the distributions.

Lemma 22. For any classH and distributions p and q, rp(hopt(q))− ropt
p (H) ≤ 4||p− q||FH .

When q is an empirical distribution of the samples, hopt(q) is called the empirical-risk

minimizer. If q is the empirical distribution of the samples generated i.i.d. from p, from VC

55



inequality, the excess loss of the empirical-risk minimizer in the above equation goes to zero if

VC dimension ofH is finite.

Yet as discussed earlier, when a β-fractions of the batches, and hence samples, are chosen

by an adversary, the empirical distribution of all samples can be at a large FH-distance O(β)

from p, leading to an excess-classification-loss up to Ω(β) for the empirical-risk minimizer.

Theorem 17 states that the collection of batches can be "cleaned" to obtain a sub-collection

B∗ ⊆ B whose empirical distribution has a lower FH-distance from p. The above lemma then

implies that the optimal classifier hopt(p̄B∗) for the empirical distribution p̄B∗ of the cleaner

batches will have a small-excess-classification-loss for p as well. The resulting non-constructive

algorithm has excess-classification-loss and sample complexity that are optimal to a logarithmic

factor.

Theorem 23. For anyH, p, β ≤ 0.4, δ > 0, andmn ≥ Õ
(
VH+log 1/δ

∆2

)
, there is an algorithm that

with probability ≥1−δ returns a classifier h∗, whose excess lose is rp(h∗)− ropt
p (H) ≤ O(∆).

To complement this result, we show an information-theoretic lower bound of Ω(∆min) on

the excess loss. The proof is in the appendix. Recall that a similar lower bound holds for learning

distribution.

Theorem 24. For any β, n, andH s.t. VH ≥ 1, there are a distribution p and an adversary, such

that any algorithm, with probability ≥ 1/2, incurs an excess loss Ω(∆min), even as number of

batches m→∞.

To derive a computationally-efficient algorithm, we focus on the following class of binary

functions. For k ≥ 1, letHk denote the collection of all binary functions over R whose decision

region, namely values mapping to 0 or 1, consists of at most k-intervals. The VC dimension of

FHk
is clearly O(k).

Theorem 18 describes a polynomial-time algorithm that returns a cleaner data w.r.t. FHk

distance. From Lemma 22, the classifier that minimizes the loss for the empirical distribution of

56



this cleaner data will have a small excess loss. Furthermore, [105] derived a polynomial-time

algorithm to find the empirical risk minimizer h ∈ Hk for any given samples. Combining these

results, gives a robust computationally efficient classifier inHk. We provide a formal proof in

the appendix.

Theorem 25. For any k, p, β ≤ 0.4, δ > 0, and mn ≥ Õ
(
k+log 1/δ

∆3

)
, there is a polynomial-time

algorithm that w. p. ≥1−δ returns a classifier h∗, whose excess loss is rp(h∗)−ropt
p (Hk) ≤ O(∆).

3.3 Other related and concurrent work

The current results extend several long lines of work on estimating structured distributions,

including [115, 44, 8, 1]. The results also relate to classical robust-statistics work [142, 74]. There

has also been significant recent work leading to practical distribution learning algorithms that are

robust to adversarial contamination of the data. For example, [47, 99] presented algorithms for

learning the mean and covariance matrix of high-dimensional sub-gaussian and other distributions

with bounded fourth moments in presence of the adversarial samples. Their estimation guarantees

are typically in terms of L2, and do not yield the L1- distance results required for discrete

distributions. The work was extended in [29] to the case when more than half of the samples are

adversarial. Their algorithm returns a small set of candidate distributions one of which is a good

approximate of the underlying distribution. The filtering based method has also played a key

role in other robust learning algorithms in high dimension [48, 50, 135, 46]. These works apply

filtering on samples instead on batches of samples, as in [77] and in this paper, and recover in a

different metric. For a more extensive survey on robust learning algorithms see [135, 46].

Another motivation for this work derives from the practical federated-learning problem,

where information arrives in batches [108, 109].

Concurrent work Concurrent to our work, [31] also extends the filtering algorithm

of [77] to obtain robust batch learning algorithms for estimating piecewise polynomials. They

derive a polynomial-time algorithm that learns distributions in Pt,d over a finite domain [k] to the

57



same TV distance O(∆) as we do, but requires Õ((td)2 log3(k)/∆2) samples, where Õ hides a

logarithmic factor in 1/∆. In contrast, our results show that this accuracy can be achieved using

Õ(td/∆2) samples, and by a polynomial-time algorithm with sample complexity is Õ(td/∆3).

Importantly, our algorithms’ complexity does not depend on the alphabet size [k], which allows

us to extend them to more general non-finite and even continuous domains. In addition, we

considered other distribution classes and learning tasks such as classification.

Another concurrent work [96] focuses on the sample complexity of robust batch classifi-

cation using adversarial batches. Their results achieve an excess loss of O(
√
VH ·∆), where VH

is the VC-dimension of the hypothesis class, whereas we achieve an excess loss only O(∆).

3.4 Overview of the filtering framework for learning in F
distance

To derive both the information-theoretic and computationally-efficient algorithms for

general robust learning from batches, we generalize a finite filtering-based approach in [77].

We first describe the original algorithm and outline how it can be extended to general learning

problems. A more complete and formal presentation appears in the appendix.

Recall that B is the collection of all m batches and each batch b ∈ B has n samples

from the domain Ω. A batch b estimates the probability p(S) of a subset S ∈ Σ by its empirical

probability. Each subset S ∈ Σ, assigns to every batch b ∈ B, a corruption score ψb(S), defined

in the appendix, based on how far the batch’s estimate of p(S) is from the median of the estimates

for all batches. Similarly, each subset S assigns to every sub-collection B′ ⊆ B of batches a

corruption score ψB′(S) :=
∑

b∈B′ ψb(S), the sum of individual corruption score of each batch.

We first describe a general filtering approach to robust learning from batches. A collection

C ⊆ Σ of subsets, is learnable via filtering if one can "filter out" bad batches in B and find a

58



"good" subset B∗ ⊆ B of batches that approximates p to a small C-distance,

||p− p̄B∗ ||C = max
S∈C
|p(S)− p̄B∗(S)| ≤ O(∆). (3.2)

We describe two properties ensuring that C is learnable via filtering. A finite C ⊆ Σ is learnable

via filtering if there is a threshold τ such that all subsets S ∈ C and all sub-collection B′ ⊆ B

that contain most good batches, namely |B′ ∩BG| ≥ (1− β/6)|BG|, satisfy the following two

properties:

1. If the corruption score is low, ψB′(S)<τ , then B′ estimates p(S) well, |p(S)− p̄B′(S)| =

O(∆).

2. If ψB′(S) > τ , then there is a (probabilistic) method that removes batches in B′, while

ensuring that and each batch removed is adversarial with probability at least 0.95, until

ψB′(S) < τ .

A simple algorithm shows that these two properties imply that C is learnable by filtering.

Start with B′ = B, find a filter S ∈ C with ψB′(S) > τ , remove the batches from B′, and repeat

the process until the corruption is small, ψB′(S) < τ , for all filters in C. By property 2, each

deleted batch is adversarial with probability > 0.95. Since there are at most βm adversarial

batches, w.h.p. at most 0.1βm good batches are deleted. Consequently |B′∩BG| ≥ (1−β/6)|BG|.

By property 1, when the algorithm ends, B∗ = B′ achieves (3.2).

While this algorithm describes the core of the technique, three significant challenges

remain.

The above algorithm applies for finite classes C. However, the VC class F may be

infinite, or even uncountable. To apply the algorithm we need to find a finite subset C such that

learning in C distance implies learning in F distance. In the appendix, we prove an essential

Robust Covering Theorem, showing that for an appropriate ϵ, letting C be an ϵ-cover of F under

empirical density p̄B , suffices to learn p in F distance. This is despite the fact that a fraction β of

59



the batches in B may be adversarially chosen, and even depend on good samples.

The next key challenge is to show that the two properties hold for all subsets in the ϵ-cover.

We establish this fact by showing that with sufficiently many batches, w.h.p., the two properties

hold for all subsets S ∈ F . The proof requires addressing additional technical challenges, as

number of subsets in F could be infinite.

Choosing any finite ϵ-cover C ⊆ F under density p̄B, therefore yields an information-

theoretic algorithm with near-optimal sample complexity. This gives us the near sample optimal

algorithm in Theorem 17. However, computationally-efficient algorithms pose one additional

challenge. The size of C may be exponential in the VC dimension, and hence searching for a

subset in C with a high corruption score may be computationally infeasible.

For the VC class Fk, we overcome this difficulty by choosing the set C of filters from a

larger class than Fk itself so that that still obeys the two properties, but allows for an efficient

search. Though C is chosen from a larger class, we ensure that the sample complexity increase

is small. Specifically, we let C be the collection of all subsets of a k′-partition of Ω, for an

appropriate k′ that is linear in k. Subsets in such a cover C correspond to binary vectors in

{0, 1}k′ . A novel semi-definite-programming based algorithm derived in [77] finds a subset

S ∈ C with nearly the highest corruption ψB′(S) in time only polynomial in k′. This allows us

to obtain the polynomial-time algorithm in Theorem 18.

To summarize, this universal filtering approach allows us to "clean" the data and enables

the general robust distribution estimators and classifiers we construct.

Remark. In some applications the distributions underlying genuine batches may differ from the

common target distribution p by a small TV distance, say η > 0. For simplicity, in this paper

we presented the analysis for η = 0, where all the good batches have the same distribution

p. For η > 0, even for binary alphabets, [125] derived the adversarial batch lower bound of

Ω(η + β/
√
n) on TV distance. And even the trivial empirical estimator achieves O(η + β)

TV-error, which has optimal linear dependence on η. Therefore, filtering algorithms do not need

60



to do anything sophisticated for general η and incurs only an extra O(η) error as noted in [77]

for unstructured distributions, and the same holds for our algorithms for learning structured

distributions and binary classification.

Appendix

The Appendix is organized as follows: Section 3.5 introduces notation and states some

useful facts. Section 3.6 recounts basic tools from VC theory used to derive the results. Section 3.7

derives a framework for robust distribution estimation in F-distance and proves Theorem 17.

Building on this framework it then develops computationally efficient algorithms for learning in

Fk distance and proves Theorem 18. Section 3.8 gives the proof of the filtration properties and

other results used in Section 3.7. Section 3.9 gives the other remaining proofs of the main paper.

3.5 Preliminaries

We introduce terminology that helps describe the approach and results. Some of the work

builds on results in [77], and we keep the notation consistent.

Recall that B, BG, and BA are the collections of all-, good-, and adversarial-batches. Let

B′ ⊆ B, B′
G ⊆ BG, and B′

A ⊆ BA, denote sub-collections of all-, good-, and bad-batches. We

also let S denote a subset in the Borel σ-field Σ on domain Ω.

Let Xb
1, X

b
2, ..., X

b
n denote the n samples in a batch b, and let 1S denote the indicator

random variable for a subset S ∈ Σ. Every batch b ∈ B induces an empirical measure µ̄b over

the domain Ω, where for each S ∈ Σ,

µ̄b(S) :=
1

n

∑
i∈[n]

1S(X
b
i ).

61



Similarly, any sub-collection B′ ⊆ B of batches induces an empirical measure p̄B′ defined by

p̄B′(S) :=
1

|B′|n
∑
b∈B′

∑
i∈[n]

1S(X
b
i ) =

1

|B′|
∑
b∈B′

µ̄b(S).

We use two different symbols to denote empirical distribution defined by single batch and a

sub-collection of batches to make them easily distinguishable. Note that p̄B′ is the mean of the

empirical measures µ̄b defined by the batches b ∈ B′.

Recall that n is the batch size. For r ∈ [0, 1], let V(r) := r(1−r)
n

, the variance of a

Binomial(r, n) random variable. Observe that

∀ r, s ∈ [0, 1], V(r) ≤ 1

4n
and |V(r)− V(s)| ≤ |r − s|

n
, (3.3)

where the second property follows as |r(1− r)− s(1− s)| = |r − s| · |1− (r + s)| ≤ |r − s|.

For b ∈ BG, the random variables1S(Xb
i ) for i ∈ [n] are distributed i.i.d. Bernoulli(p(S)),

and since µ̄b(S) is their average,

E[ µ̄b(S) ] = p(S) and Var[ µ̄b(S) ] = E[(µ̄b(S)− p(S))2] = V(p(S)).

For batch collection B′ ⊆ B and subset S ∈ Σ, the empirical probability µ̄b(S) of S will

vary with the batch b ∈ B′. The empirical variance of these empirical probabilities is

VB′(S) :=
1

|B′|
∑
b∈B′

(µ̄b(S)− p̄B′(S))2.

3.6 Vapnik-Chervonenkis (VC) theory

We recall some basic concepts and results in VC theory, and derive some of their simple

consequences that we use later in deriving our main results.

62



The VC shatter coefficient of F is

SF(t) := sup
x1,x2,..,xt∈Ω

|{{x1, x2, .., xt} ∩ S : S ∈ F}|,

the largest number of subsets of t elements in Ω obtained by intersections with subsets in F . The

VC dimension of F is

VF := sup{t : SF(t) = 2t},

the largest number of Ω elements that are "fully shattered" by F . The following Lemma [43]

bounds the Shatter coefficient for a VC family of subsets.

Lemma 26 ([43]). For all t ≥ VF , SF(t) ≤
(
t e
VF

)VF
.

Next we state the VC-inequality for relative deviation [144, 7].

Theorem 27. Let p be a distribution over (Ω,Σ), and F be a VC-family of subsets of Ω and p̄t

denote the empirical distribution from t i.i.d samples from p. Then for any ϵ > 0, with probability

≥ 1− 8SF(2t)e
−tϵ2/4,

sup
S∈F

max
{ p̄t(S)− p(S)√

p̄t(S)
,
p(S)− p̄t(S)√

p(S)

}
≤ ϵ.

Another important ingredient commonly used in VC Theory is the concept of covering

number that reflects the smallest number of subsets that approximate each subset in the collection.

Let p be any probability measure over (Ω,Σ) and let F ⊆ Σ be a family of subsets. A

collection C ⊆ Σ of subsets is an ϵ-cover of F under distribution p if for any S ∈ F , there exists

a S ′ ∈ C with p(S△S ′) ≤ ϵ. The ϵ-covering number of F is

N(F , p, ϵ) := inf{|C| : C is an ϵ-cover of F}.

63



If C ⊆ F is an ϵ-cover of F , then C is an ϵ-self cover of F . The ϵ-self-covering number of F is

N s(F , p, ϵ) := inf{|C| : C is an ϵ-self-cover of F}.

Clearly, N s(F , p, ϵ) ≥ N(F , p, ϵ), and we establish the reverse relation.

Lemma 28. For any ϵ ≥ 0, N s(F , p, ϵ) ≤ N(F , p, ϵ/2).

Proof. If N(F , p, ϵ/2) =∞, the lemma clearly holds. Otherwise, let C be an ϵ/2-cover of size

N(F , p, ϵ/2). We construct an ϵ-self-cover of equal or smaller size.

For every subset SC ∈ C, there is a subset S = f(SC) ∈ F with p(SC△ f(SC)) ≤ ϵ/2.

Otherwise, SC could be removed from C to obtain a strictly smaller ϵ/2 cover, which is impossible.

The collection {f(SC) : SC ∈ C} ⊆ F has size ≤ |C|, and it is an ϵ-self-cover of F

because for any S ∈ F , there is an SC ∈ C with p(S△SC) ≤ ϵ/2, and by the triangle inequality,

p
(
S△ f(SC)

)
≤ ϵ. ■

Let NF ,ϵ := suppN(F , p, ϵ) and N s
F ,ϵ := suppN

s(F , p, ϵ) be the largest covering

numbers under any distribution.

The next theorem bounds the covering number of F in terms of its VC-dimension.

Theorem 29 ([143]). There exists a universal constant c such that for any ϵ > 0, and any family

F with VC dimension VF ,

NF ,ϵ ≤ cVF

(4e
ϵ

)VF
.

Combining the theorem and Lemma 28, we obtain the following corollary.

Corollary 30. There exists a universal constant c such that for any ϵ > 0, and any family F with

VC dimension VF ,

N s
F ,ϵ ≤ cVF

(8e
ϵ

)VF
.

The above corollary implies that for any distribution p, a VC class F has an ϵ self cover,

under distribution p, of size O
(
VF

(
8e
ϵ

)VF)
.

64



3.7 A framework for distribution estimation from corrupted
sample batches

We develop a general framework for learning distributions in F distance, leading to

Theorem 17. Building on this framework, we derive a computationally efficient algorithm for

learning in Fk distance, yielding Theorem 18.

Recall that the F distance between two distributions p and q is

||p− q||F = sup
S∈F
|p(S)− q(S)|.

Our goal is to estimate p to F -distance O(∆), where ∆ = O
(
β
√

ln(1/β)
n

)
is essentially the lower

bound.

At a high level, the filtering algorithm removes the adversarial, or "outlier" batches, and

returns a sub-collection B′ ⊆ B of batches whose empirical distribution p̄B′ is close to p in F

distance. The uniform deviation inequality in VC theory states that the sub-collection BG of

good batches has empirical distribution p̄BG
that approximates p in F distance, thereby ensuring

the existence of such a sub-collection when the number of batches m is sufficiently large.

[77] developed a filtering algorithm for learning in TV-distance for a finite domain

Ω = [k]. The main drawback of this approach is that applying filtering algorithm directly for

Σ-distance requires a number of samples linear in domain size, which is prohibitive for non-finite

domains. Here we focus on general domains Ω and any collection of its subsets that has a finite

VC-dimension.

Subsection 3.7.1 describes certain filtration properties for a subset of Ω and using the

subset that has these filtration properties as a filter. This can be viewed as a reinterpretation

of the similar properties used in the filtering algorithm of [77]. Subsection 3.7.2 uses these

properties to develop a filtering algorithm for any finite collection of subsets. Subsection 3.7.3

proves a Robust covering theorem to extends the filtering algorithm to VC family of subsets and

65



proves Theorem 17. Subsection 3.7.4 gives a computationally efficient filtering algorithm for

the collection of subsets generated by a finite partition of the domain. Building on this, the next

subsection 3.7.5 gives an efficient algorithm for learning in Fk distance and proves Theorem 18.

3.7.1 Using subsets as filters

We discuss how a subset S ∈ Σ can be used as a filter. For this section, we fix a subset

S ∈ Σ.

We show that if empirical estimates µ̄b(S) that batches b ∈ B assigns to this subset S

satisfy certain properties then we can accurately learn its probability and use this subset as a filter.

The following discussion develops some notation and intuitions that lead to these properties.

We start with the following observation. For every good batch b ∈ BG, the empirical

estimate n · µ̄b(S) has a binomial distribution Bin(p(S), n), which implies that µ̄b(S) has a

sub-gaussian distribution subG(p(S), 1
4n
) with variance V(p(S)). Hence, the empirical mean and

variance of µ̄b(S) over b ∈ BG converges to the expected values p(S) and V(p(S)), respectively.

Moreover, sub-gaussian property of the distribution of µ̄b(S) implies that, most of the good

batches b ∈ BG assign the empirical probability µ̄b(S) ∈ p(S)± Õ(1/
√
n).

In addition to the good batches, the collection B of batches also includes an adversarial

sub-collection BA of batches that constitute up to a β−fraction of B. If the difference between

p(S) and the average of µ̄b(S) over all adversarial batches b ∈ BA is ≤ Õ( 1√
n
), namely

comparable to the standard deviation of µ̄b(S) for the good batches b ∈ BG, then the adversarial

batches can change the overall mean of empirical probabilities µ̄b(S) by at most Õ( β√
n
), which is

within our tolerance. Hence, the mean of µ̄b(S) will deviate significantly from p(S) only in the

presence of a large number of adversarial batches b ∈ BA whose empirical probability µ̄b(S)

differs from p(S) by≫ Ω̃( 1√
n
).

To quantify this effect, for a subset S ∈ Σ, let

med(µ̄(S)) := median{µ̄b(S) : b ∈ B}

66



be the median empirical probability of S over all batches. Property 1 (defined later) shows that

w.h.p., the absolute difference between med(µ̄(S)) and p(S) is ≤ O(1/
√
n). The corruption

score of batch b for S is

ψb(S) :=


0 if |µ̄b(S)−med(µ̄(S))| ≤ O

(√
ln(1/β)

n

)
,

(µ̄b(S)−med(µ̄(S)))2 otherwise.

The preceding discussion shows that the corruption score of most good batches for the subset S

is zero and that adversarial batches that may significantly change the overall mean of empirical

probabilities have high corruption score.

The corruption score of a sub-collection B′ ⊆ B for a subset S is the sum of the

corruption score of its batches,

ψB′(S) :=
∑
b∈B′

ψb(S).

A high corruption score of B′ for a subset S indicates that B′ has many batches b with large

difference |µ̄b(S)−med(µ̄(S))|.

Next, we describe some essential properties that allows to a use subset S as a filter.

We later show that regardless of the samples in adversarial batches, with high probability, the

empirical estimates µ̄b(S) for b ∈ B satisfies the following four filtration properties.

1. The median of the estimates {µ̄b(S) : b ∈ B} is close to p(S),

|med(µ̄(S))− p(S)| ≤ O(1/
√
n).

2. For every sub-collection B′
G ⊆ BG containing a large portion of the good batches,

|B′
G| ≥ (1− β/6)|BG|, the empirical mean of µ̄b(S) estimate p(S) well,

|p̄B′
G
(S)− p(S)| ≤ O

(
β

√
ln(1/β)

n

)
= O(∆),

67



3. The corruption score of the collection BG of good batches for subset S is small,

ψB′(S) ≤ κG := O
(βm ln(1/β)

n

)
.

4. For every sub-collection B′
G ⊆ BG s.t. |B′

G| ≥ (1− β/6)|BG|, the empirical variance of

µ̄b(S) estimate V(p(S)) well,

∣∣∣ 1

|B′
G|
∑
b∈B′

G

(µ̄b(S)− p(S))2 − V(p(S))
∣∣∣ ≤ O(β ln(1/β)

n

)
.

If any of the four filtration properties holds for subset S, we say that S has that particular property.

Next we show how a subset S with the first three of the filtration properties, can be used

as a filter. The last filtration property will be used later for deriving computationally efficient

algorithms.

For subset S that has filtration properties and for every sub-collectionB′ ⊆ B that contain

most good batches, the next lemma upper bounds the absolute difference between p(S) and the

empirical estimate p̄B′(S) of the batches in B′ in terms of the corruption score of B′.

Lemma 31. If subset S has filtration properties 1- 3, then for any B′ such that |B′ ∩ BG| ≥

(1− β
6
)|BG| such that ψB′(S) ≤ t · κG, for some t ≥ 0, then

|p̄B′(S)− p(S)| ≤ O
(
(
√
t+ 1)∆

)
.

The lemma is related to Lemma 4 in [77], hence we provide only a high-level argument.

For any sub-collectionB′ retaining a major portion of good batches, from filtration property 2, the

mean of µ̄b(S) of the good batches B′ ∩BG approximates p(S). Showing that a small corruption

score of B′ implies that the adversarial batches B′ ∩BA have limited effect on p̄B′(S) proves the

lemma.

Next, we describe the Batch-Deletion algorithm of [77] and its performance guarantees.

68



Given a subset S with filtration property 3 and any sub-collection B′, the algorithm

successively removes batches from B′, ensuring that each batch removed is adversarial with high

probability. The algorithm stops deleting batches when the corruption score of the remaining

sub-collection for S is small.

Algorithm 3. Batch-Deletion
1: Input: Sub-Collection B′ of Batches, subset S, med=med(µ̄(S)), and κG

2: Output: A smaller sub-collection B′ of batches

3: Comment: The terms κG, ψb(S), and ψB′(S) used below are defined earlier in this section,

and computing ψb(S) and ψB′(S) require med(µ̄(S)) as input (that depends on all batches

B).

4: while ψB′(S) ≥ 20κG do

5: Select a single batch b ∈ B′ where batch b is selected with probability ψb(S)
ψB′ (S)

;

6: B′ ← {B′ \ b};

7: end while

8: return (B′);

The next lemma, characterizes the performance of the Batch-Deletion algorithm.

Lemma 32. Let B′ ⊆ B and subset S be the input of the Batch-Deletion algorithm. If subset S

has filtration property 3, then:

1. Each batch that gets removed from B′ by Batch-Deletion algorithm is an adversarial batch

with probability ≥ 0.95.

2. Batch-Deletion returns updated sub-collection B′ such that ψB′(S) < 20κG.

Proof. The first statement in the lemma follows as

Pr[Deleting a batch from BG ∩B′] =
∑

b∈B′∩BG

ψb(S)

ψB′(S)
≤
∑

b∈BG
ψb(S)

ψB′(S)
≤ κG

20κG
≤ 0.05,

69



here we used filtration property 3. The second statement in the Lemma follows from step 4 of

Batch-Deletion algorithm. ■

Lemma 31 implies that if a sub-collection B′ has most of the good batches and has a

small corruption score for subset S, then µ̄b(S) is close to p(S).

Lemma 32 implies that if sub-collection B′ has large corruption for subset S, then there

is a probabilistic method that removes more adversarial batches from B′ then good batches and

lowers the corruption.

The next subsection builds on these two Lemma and gives a simple filtering algorithm

for any finite collection of subsets C ⊆ Σ whose subsets S ∈ C has filtration properties 1-3.

3.7.2 Filtering algorithms for finite collection of subsets

Given any finite collection of subsets C ⊆ F ′, algorithm 4, described next, uses the

Batch-Deletion algorithm to successively update B and decrease the corruption score for each

subset S ∈ C.

70



Algorithm 4. Filtering Algorithm
1: Input: Collection B of Batches, finite subset family C ⊆ Σ, adversarial batches fraction β

2: Output: A sub-collection B∗ of batches.

3: Comment: The terms κG, ψB′(S), and med(µ̄(S)) used below are defined earlier in this

section

4: B′ = B;

5: for S ∈ C do

6: if ψB′(S) ≥ 20κG then

7: med← med(µ̄(S));

8: B′ ←Batch-Deletion(B′, S,med);

9: end if

10: end for

11: B∗ ← B′

12: return (B∗);

The next lemma characterizes the algorithm’s performance.

Lemma 33. Let C ⊆ Σ be a finite collection of subsets. If all subsets in C have filtration

properties 1, 2 and 3, then algorithm 4 returns a sub-collection of batches B∗ such that with

probability ≥ 1− e−O(βm), |B∗ ∩BG| ≥ (1− β
6
)|BG| and

||p− pB∗ ||C = max
S∈C
|p(S)− pB∗(S)| ≤ O(∆).

The proof of the lemma is immediate from Lemmas 31 and 32.

We note that |B∗| ≥ (1− β
6
)|BG| ≥ (1− β

6
)(1−β)m > m/2, as β ∈ (0, 0.4]. Therefore,

w.h.p. B∗ retains at least half of the overall batches.

71



3.7.3 Robust covering theorem for learning in F distance and Proof of
Theorem 17

A subset family F , with finite VC dimension, can have potentially uncountable subsets,

hence, even if all subsets in F have filtration properties 1-3, we may not be able to use filtering

algorithm directly for subset family F . The Robust covering theorem proved here overcomes this

challenge.

Recall that the collection B includes adversarial batches that can cause the empirical

distribution of all batches p̄B to be at an F-distance O(β) from p.

Yet for any ϵ > 0, any sub-collection B′ ⊆ B consisting of at least half of the batches,

and for any ϵ-cover C of F under the empirical distribution p̄B of all batches B, the next theorem

upper bounds, ||p̄B′ − p||F , the F-distance between p and the empirical distribution induced by

B′ in terms of ||p̄B′ − p||C , the C-distance between them.

Let G be a VC-class of subsets such that F ⊆ G. The theorem allows the ϵ-cover C of F

to include subsets from a larger class of subsets G. Although, one can always choose a cover

of F from within the class, as we will see in later subsections, for computationally efficient

algorithms some additional structure in the cover may be desired. And to choose such a cover,

we will choose its elements (subsets) from a larger class of subsets than F .

Theorem 34 (Robust covering). For any ϵ > 0, any subset family G ⊇ F with VC dimension

VG , and m · n ≥ O(VG log(1/ϵ)+log(1/δ)
ϵ2

), let C ⊆ G be an ϵ-cover of family F under the empirical

distribution p̄B. With probability ≥ 1− δ, for every sub-collection of batches B′ ⊆ B of size

|B′| ≥ m/2,

||p̄B′ − p||F ≤ ||p̄B′ − p||C + 5ϵ.

72



Proof. Consider any batch sub-collectionB′ ⊆ B. For every S, S ′ ∈ Σ, by the triangle inequality,

|p̄B′(S)− p(S)| (3.4)

=
∣∣∣(p̄B′(S ′) + p̄B′(S \ S ′)− p̄B′(S ′ \ S)

)
−
(
p(S ′) + p(S \ S ′)− p(S ′ \ S)

)∣∣∣
≤ |p̄B′(S ′)− p(S ′)|+ p̄B′(S \ S ′) + p̄B′(S ′ \ S) + p(S \ S ′) + p(S ′ \ S)

= |p̄B′(S ′)− p(S ′)|+ p̄B′(S△S ′) + p(S△S ′). (3.5)

Since C is an ϵ-cover under p̄B , for every S ∈ F there is an S ′ ∈ C such that p̄B(S△S ′) ≤ ϵ. For

such pairs, we bound the second term on the right in the above equation.

p̄B′(S△S ′) =
1

|B′|n
∑
b∈B′

∑
i∈[n]

1S△S′(Xb
i )

≤ 1

|B′|n
∑
b∈B

∑
i∈[n]

1S△S′(Xb
i )

=
|B|
|B′|
· 1

|B|n
∑
b∈B

∑
i∈[n]

1S△S′(Xb
i )

=
m

|B′|
p̄B(S△S ′) ≤ mϵ

|B′|
. (3.6)

Choosing B′ = BG in the above equation and using BG = (1− β)m ≥ m/2 gives,

p̄BG
(S△S ′) < 2ϵ. (3.7)

Then

p(S△S ′) ≤ |p(S△S ′)− p̄BG
(S△S ′)|+ p̄BG

(S△S ′)

(a)
≤ sup

S, S′∈G
|p(S△S ′)− p̄BG

(S△S ′)|+ 2ϵ

(b)
≤ ϵ+ 2ϵ,

73



with probability ≥ 1 − δ, here (a) used the fact that C,F ⊆ G and equation (3.7) and (b)

follows from Lemma 40. Combining equations (3.5), (3.6) and the above equation completes the

proof. ■

In contrast to the classF , which could be infinite, we can always choose a cover C of finite

size and therefore run filtering algorithm 4 for C = C to learn in C distance. Robust covering

theorem implies that if C is ϵ-cover of family F , under distribution p̄B, where ϵ = O(∆), then

for learning in C distance suffices to learn in F distance.

The only step that remains is to find a cover whose subsets have filtration properties. The

next lemma establishes that every subsets in a given VC-subset family G has filtration properties.

Lemma 35. For any given subset family G with finite VC dimension and the number of batches

m ≥ O(VG log(n/β)+log(1/δ)
β2 ). With probability≥ 1−δ, all subsets inG has filtration properties 1- 4.

The proof of the lemma appears in section 3.8.

Note that the number of samples required in the lemma increase with the VC-complexity

of G. Therefore, to obtain sample optimal algorithm, we choose G = F , and C to be any finite

ϵ-self-cover of F under distribution p̄B, where ϵ ≤ O(∆). The existence of such a self-cover is

guaranteed by Corollary 30.

The above lemma implies that w.h.p. all subsets in C has filtration property. Therefore,

we run algorithm 4 for C = C. Then combining Lemma 33 and robust covering theorem 34

implies learning in F distance and gives Theorem 17.

Theorem 36 ( Theorem 17 restated). For any β ≤ 0.4, δ > 0, F , and m · n ≥

O
(
VF log(1/∆)+log 1/δ

∆2 · log( 1
β
)
)

, there is a non-constructive algorithm that with probability

≥ 1− δ returns a sub-collection of batches B∗ such that |B∗ ∩BG| ≥ (1− β
6
)|BG| and

||p− p̄B∗||F ≤ O(∆).

74



3.7.4 Computationally efficient algorithm for subsets generated by a
partition

For estimating p in F -distance, in the previous subsection, we chose C to be a cover of F

and estimated p in C distance. Then to estimate p in C distance, algorithm 4 iterates through all

subsets in C one by one, and therefore, has run-time at least linear in the size of the subset family

C. But the size of the cover of F may grow exponentially with the VC-dimension of family F .

This makes the algorithm 4 computationally prohibitive even for subset family F with moderate

VC-dimension. Here we show that if subset collection C has a certain structure then this time

complexity can be reduced significantly.

For any ℓ > 0, we consider C which is the collection of all subsets generated by an

ℓ-partition of the domain Ω. Here we give a filtering algorithm that has run time only polynomial

in ℓ, whereas the size of subset collection C is 2ℓ.

For any integer ℓ > 0, let ξ : Ω → [ℓ] be any function. This function ξ partitions the

domain Ω into ℓ disjoint parts. For j ∈ [ℓ], let ξj := ξ−1(j) denote the jth partition element in

the partition created by ξ. Clearly the partition elements ξj’s are disjoint and their union is Ω.

We refer to ξ as partition function. Note that a partition function ξ is uniquely determined by the

corresponding partition elements ξj’s.

For a subset D ⊆ [ℓ], let

SξD := ∪j∈Dξj,

be the union of the partition elements ξj’s corresponding to the elements of D. Define the

collection of subsets

Cξ := {SξD : D ∈ 2[ℓ]}

to be the family of all possible unions of ξj’s. Clearly, |Cξ| = 2ℓ.

We show that if all subsets S ∈ Cξ have filtration properties 1- 4, then p can be estimated

to a small Cξ-distance in time polynomial in ℓ rather than exponential.

For finite domain Ω′ = [ℓ], [77] derived a method that for any batch sub-collection B′,

75



containing a majority of good batches, can find a subset in 2[ℓ] for which the corruption score of

B′ is within a constant times the maximum in time only polynomial in the domain size ℓ, when

all subsets in 2[ℓ] have filtration properties 1- 4. Then instead of iterating over all 2ℓ subsets, as

in algorithm 4, they find the subsets with high corruption score efficiently and use the Batch

Deletion procedure for these subsets. This leads to a computationally efficient algorithm for

learning discrete distributions p.

To obtain a computationally efficient algorithm for learning in Cξ distance, we first

reduce this problem to that of robustly learning distributions over finite domains in total variation

distance and then use the algorithm in [77].

Theorem 37. Let ξ : Ω→ [ℓ] be any partition function and let Cξ be the collection of all possible

unions of the partition elements ξj’s. If all subsets in Cξ have filtration properties 1- 4, then there

is an algorithm that runs in time polynomial in all parameters ℓ, m, and n, and with probability

≥ 1−e−O(βm) returns a sub-collection of batchesB∗ ⊆ B such that |B∗∩BG| ≥ (1−β/6)|BG|

and

||p− p̄B∗ ||Cξ ≤ O(∆).

Proof. First note that ξ transforms any distribution q over Ω to the discrete distribution qξ over

Ω′ = [ℓ], where qξ(j) := q(ξj) for each j ∈ [ℓ]. Recall that any subset D ⊆ [ℓ], corresponds

one to one with a subset SξD = ∪j∈Dξj in Cξ. It follows that for any distribution q over Ω, and

D ⊆ [ℓ],

q(SξD) = qξ(D).

Recall that p̄B′ denotes the empirical distribution induced by a sub-collectionB′, therefore

p̄ξB′ denotes the empirical distribution induced by a sub-collectionB′ over the transformed domain

[ℓ].

From the one-to-one correspondence between subsets in Cξ and subsets in 2[ℓ] it follows

that all subsets in Cξ have filtration properties iff all subsets in 2[ℓ] have filtration properties for

76



the transformed distributions pξ and transformed empirical distribution of the sample batches.

Theorem 9 in [77] implies that, if all subsets in 2[ℓ] have filtration properties 1- 4 then

algorithm 2 therein runs in time polynomial in the domain size ℓ, the number of batches m, and

the batch-size n, and with probability≥ 1− e−O(βm) returns a sub-collection of batches B∗ ⊆ B

such that |B∗ ∩BG| ≥ (1− β/6)|BG| and

||pξ − p̄ξB∗||TV ≤ O(∆).

Next, for any pair of distributions q1 and q2 over the domain Ω, we show that Cξ-distance between

them is the same as the total variation distance between qξ1 and qξ2. For every distribution pair

q1, q2 over Ω,

||q1 − q2||Cξ = max
S∈Cξ

|q1(S)− q2(S)|

= max
Sξ
D∈Cξ

|q1(SξD)− q2(S
ξ
D)|

= max
D∈2[ℓ]

|qξ1(D)− qξ2(D)|

= ||qξ1 − q
ξ
2||TV .

Therefore,

||p− p̄B∗||Cξ = ||pξ − p̄ξB∗||TV ≤ O(∆). ■

3.7.5 Computationally efficient algorithm for learning in Fk distance
and proof of Theorem 18

Recall that Fk is the collection of all unions of at most k intervals over R.

In the previous subsection we showed that for a partition function ξ, we can learn in

Cξ-distance efficiently. To obtain a computationally efficient algorithm for learning inFk distance,

we give a partition function ξ∗ : R→ [ℓ], for an appropriate ℓ to be chosen later, such that the

collection of subsets Cξ∗ forms an ϵ-cover of Fk under the empirical distribution p̄B.

77



Recall that B is a collection of m batches and each batch has n samples. Let s = n ·m

and let xs = x1, x2, . . . ,xs ∈ R be the samples of B arranged in non-decreasing order. And

recall that the points xs induce an empirical measure p̄B over R, where for S ⊆ R,

p̄B(S) = |{i : xi ∈ S}|/s.

Let t := s
ℓ
, and for simplicity assume that it is an integer. Recall that a partition function

ξ is uniquely determined by the corresponding partition elements ξj’s. Let ξ∗ : R→ [ℓ] be the

partition function with partition elements {ξ∗1 , . . . ,ξ∗ℓ } of R, where

ξ∗j :=


(−∞, xt] j = 1,

(x(j−1)t, xjt] 2 ≤ j < ℓ,

(xs−t,∞) j = ℓ.

Note that all elements of the partition {ξ∗1 , . . . ,ξ∗ℓ } are intervals of R. Recall that Cξ∗ is is formed

by all possible unions of these ℓ intervals. Clearly Cξ∗ ⊆ Fℓ, as Fℓ contains all unions of ℓ

intervals over R.

We show that Cξ∗ is an 2k/ℓ−cover of Fk under the empirical distribution p̄B of points

xs1.

Lemma 38. For any k, and ℓ, Cξ∗ is a 2k
ℓ

-cover of Fk under p̄B.

Proof. Any set S ∈ Fk is a union of k real intervals I1 ∪ I2 ∪ . . . ∪ Ik. Let S∗ ⊆ R be the union

of all ξ∗j -partition elements (intervals) that are fully contained in one of the intervals I1, . . . ,Ik.

By definition, S∗ ∈ Cξ, and we show that p̄B(S△S∗) ≤ 2k/ℓ. By construction, S∗ ⊆ S, hence,

p̄B(S△S∗) = p̄B(S \ S∗) =
k∑
j=1

p̄B(Ij \ S∗) =
k∑
j=1

|{xi ∈ Ij \ S∗}|
s

≤
k∑
j=1

2 · t
s
=

2k

ℓ
,

where the inequality follows as each Ij \ S∗ contains at most t points and the left and right. ■

78



Next choose ℓ = 2k
ϵ

then the lemma implies that the corresponding Cξ∗ is an ϵ-cover

of Fk under p̄B. As discussed earlier Cξ∗ ⊆ Fℓ. Then choosing G = Fℓ in Lemma 35 implies

that w.h.p. all subsets in Cξ∗ has filtering properties. Then combining Theorem 37 and robust

covering theorem 34, and choosing ϵ = O(∆), we get the following theorem that implies learning

in Fk distance.

We note that this computationally efficient algorithm uses O(1/∆) times more sample

than information theoretic algorithm in section 3.7.3, because here we chose the cover of Fk

from the class G = Fk/∆. And Fk/∆ has VC dimension O(k/∆), which is O(1/∆) times the

VC-dimension of the class Fk.

Theorem 39 (Theorem 18 restated). For any given β ≤ 0.4, δ > 0, k > 0, and m · n ≥

O
(
k log(1/∆)+log 1/δ

∆3 · log( 1
β
)
)

, there is an algorithm that runs in time polynomial in all parameters,

and with probability ≥ 1 − δ returns a sub-collection of batches B∗ such that |B∗ ∩ BG| ≥

(1− β
6
)|BG| and

||p̄B∗ − p||Fk
≤ O(∆).

3.8 Properties of the Collection of Good Batches

Lemma 40. Let G be a VC family of subsets of Ω. Then for any δ > 0 and |BG| · n ≥

O(VG log(1/ϵ)+log(1/δ)
ϵ2

), with probability ≥ 1− δ,

sup
S,S′∈G

max
{ p̄BG

(S△S ′)− p(S△S ′)√
p̄BG

(S△S ′)
,
p(S△S ′)− p̄BG

(S△S ′)√
p(S△S ′)

}
≤ ϵ.

Proof. Consider the collection of symmetric differences of subsets in G,

G△ := {S△S ′ : S, S ′ ∈ G}.

The next auxiliary lemma bounds the shatter coefficient of G△.

Lemma 41. For t ≥ VG , SG△(t) ≤
(
t e
VG

)2VG .

79



Proof. For t ≥ VG and x1, x2, .., xt ∈ Ω, let

G(xt1) = {{x1, x2, .., xt} ∩ S : S ∈ G}.

Note that SG(t) = maxx1,...,xt |G(xt1)|.

From the definition of shatter coefficient |G(xt1)| ≤ SG(t). Then

|G△(xt1)| = |{{x1, . . . ,xt}△{x′1, . . . ,x′t} : S, S ′ ∈ G(xt1)}| ≤ (SG(t))
2 ≤

( t e
VG

)2VG . ■

Applying Theorem 27 for family of subsets G△, and using Lemma 41, for |BG| · n ≥

O(VG log(1/ϵ)+log(1/δ)
ϵ2

), with probability ≥ 1− δ,

sup
S∈G△

max
{ p̄BG

(S)− p(S)√
p̄BG

(S)
, sup
S∈G

p(S)− p̄BG
(S)√

p(S)

}
≤ ϵ. ■

3.8.1 Proof of Lemma 35

First we list some auxiliary properties for a subset S, each of which is either one of the

filtration property or helps in deriving one of the filtration property.

(i) For every B′
G ⊆ BG, such that |B′

G| ≥ (1− β/6)|BG|

|p̄B′
G
(S)− p(S)| ≤ O

(
β

√
ln(1/β)

n

)
.

(ii) For every B′
G ⊆ BG, such that |B′

G| ≥ (1− β/6)|BG|

∣∣∣ 1

|B′
G|
∑
b∈B′

G

(µ̄b(S)− p(S))2 − V(p(S ′))
∣∣∣ ≤ O(β ln( 1β )

n

)
.

80



(iii)

∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥ O

(√
ln(1/β)

n

)}∣∣ ≤ O(β) · |BG|.

(iv)

∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥ O
(

1√
n

)}∣∣ ≤ O(1) · |BG|.

(v) For every B′
G ⊆ BG, such that |B′

G| ≤ O(β) · |BG|

∑
b∈B′

G

(µ̄b(S)− p(S))2 < O
(
β|BG|

ln(1/β)

n

)
,

The next lemma shows that these properties hold for a fix subset S.

Lemma 42. For any given subset S ∈ Σ and for |BG| ≥ O( log 1/δ
β2 ln(1/β)

). With probability ≥ 1− δ,

subset S has all auxiliary properties (i)–(v). Further, if these auxiliary properties hold for subset

S then subset S has filtration properties 1- 4.

The above Lemma, though not stated explicitly, is implied by Section A.1 and Section

A.2 in [77]. In particular, the auxiliary properties (i) and (ii) are implied by Lemma 11, (iii)

and (iv) are implied by Lemma 10, and (v) is implied by Lemma 12, and section A.2 therein

showed that these auxiliary properties imply filtration properties 1- 4. Hence, we use the lemma

without proving it again here.

Therefore, to prove Lemma 35, it suffices to show these auxiliary properties for subsets in

G.

The next Lemma extends the auxiliary properties to all subsets in given a VC class G.

Lemma 43. For any given subset family G with finite VC-dimension and |BG| ≥

81



O(VG log(n/β)+log 1/δ
β2 ). With probability ≥ 1− δ, all subsets in G has all auxiliary properties (i)–

(v).

Proof. From Corollary 30, there exist a self ϵ-cover C∗ of G under the distribution p of size

O
(
VG(

8e
ϵ
)VG
)
. For this section, fix ϵ = O(β2

n
).

For any S ∈ C∗, for |BG| ≥ O
(

log
2|C∗|

δ

β2 ln(1/β)

)
= O(VG log(n/β)+log 1/δ

β2 ln(1/β)
), Lemma 42 implies

that the auxiliary properties (i)–(v) with probability ≥ 1− δ
2|C∗| .

Therefore, taking the union bound over the complement, the auxiliary properties (i)–(v)

hold for all subsets in C∗ with probability ≥ 1− δ
2
.

Next, we extend these properties for all subsets in G.

For subset S ∈ G choose S ′ ∈ C∗ such that p(S△S ′) ≤ ϵ. Existence of such a subset

S ′ ∈ C∗ is guaranteed for all S ∈ G as C∗ is an ϵ−cover under p. The properties for S ′ holds,

since it is a part of the cover C ′. To extend the auxiliary properties to all subsets in G, we show

that if the properties hold for S ′, then they also hold for subset S.

Note that for any subset S, S ′ ∈ G with p(S△S ′) ≤ O(β2

n
) = O(ϵ).

For |BG| ·n ≥ O(VG log(n/β)+log 1/δ
β2 ·n), Lemma 40 implies that with probability≥ 1−δ/2

p̄BG
(S△S ′) ≤ O(β

2

n
) = O(ϵ). (3.8)

For any batch b ∈ B

µ̄b(S)− p(S) =
(
µ̄b(S

′) + µ̄b(S \ S ′)− µ̄b(S ′ \ S)
)
−
(
p(S ′) + p(S \ S ′)− p(S ′ \ S)

)
=
(
µ̄b(S

′)− p(S ′)
)
+
(
µ̄b(S \ S ′)− µ̄b(S ′ \ S)

)
−
(
p(S \ S ′)− p(S ′ \ S)

)
.

82



From the above equation, we get

∣∣∣(µ̄b(S)− p(S))− (µ̄b(S ′)− p(S ′)
)∣∣∣ ≤ µ̄b(S \ S ′) + µ̄b(S

′ \ S) + p(S \ S ′) + p(S ′ \ S)

= µ̄b(S△S ′) + p(S△S ′)

≤ µ̄b(S△S ′) +O(ϵ). (3.9)

Next, we extend property (i) to subset S.

|p̄B′
G
(S)− p(S)| =

∣∣∣ 1

|B′
G|
∑
b∈B′

G

µ̄b(S)− p(S)
∣∣∣ = ∣∣∣ 1

|B′
G|
∑
b∈B′

G

(
µ̄b(S)− p(S)

)∣∣∣
(a)
≤
∣∣∣ 1

|B′
G|
∑
b∈B′

G

(
µ̄b(S

′)− p(S ′)
)∣∣∣+ ∣∣∣ 1

|B′
G|
∑
b∈B′

G

(
µ̄b(S△S ′) +O(ϵ)

)∣∣∣
≤
∣∣∣ 1

|B′
G|
∑
b∈B′

G

µ̄b(S
′)− p(S ′)

∣∣∣+ ∣∣∣ 1

|B′
G|
∑
b∈BG

µ̄b(S△S ′)
∣∣∣+O(ϵ)

≤ |p̄B′
G
(S ′)− p(S ′)|+ |BG|

|B′
G|
p̄BG

(S△S ′) +O(ϵ)

(b)
≤ O

(
β

√
ln(1/β)

n

)
+

1

(1− β/6)
· O(ϵ) +O(ϵ)

≤ O

(
β

√
ln(1/β)

n

)
,

here (a) uses (3.9) and (b) uses that the property (i) holds for S ′.

Next, we extend property (i) to subset S. From equation (3.9) we get

(µ̄b(S)− p(S))2 ≤
(
|µ̄b(S ′)− p(S ′)|+ (µ̄b(S△S ′) +O(ϵ))

)2
= (µ̄b(S

′)− p(S ′))2 + 2|µ̄b(S ′)− p(S ′)|(µ̄b(S△S ′) +O(ϵ)) + (µ̄b(S△S ′) +O(ϵ))2.

83



Therefore,

∑
b∈B′

G

(µ̄b(S)− p(S))2 −
∑
b∈B′

G

(µ̄b(S
′)− p(S ′))2

≤
∑
b∈B′

G

2|µ̄b(S ′)− p(S ′)|(µ̄b(S△S ′) +O(ϵ)) +
∑
b∈B′

G

(µ̄b(S△S ′) +O(ϵ))2

≤ 2

√∑
b∈B′

G

(µ̄b(S ′)− p(S ′))2
√∑

b∈B′
G

(µ̄b(S△S ′) +O(ϵ))2 +
∑
b∈B′

G

(µ̄b(S△S ′) +O(ϵ))2,

here the last inequality follows from Cauchy-Schwarz inequality. Next, we bound the last terms

in the above expression.

∑
b∈B′

G

(µ̄b(S△S ′) +O(ϵ))2 ≤
∑
b∈B′

G

(µ̄b(S△S ′) +O(ϵ))(1 +O(ϵ))

≤ 2 ·
∑
b∈B′

G

(µ̄b(S△S ′) +O(ϵ))

≤ 2 ·

(
|B′

G|O(ϵ) +
∑
b∈BG

(µ̄b(S△S ′)

)

≤ 2|B′
G|
(
O(ϵ) + |BG|

|B′
G|
p̄BG

(S△S ′)

)
≤ |B′

G|O(ϵ).

Also, from the property (ii) for S ′ implies

∑
b∈B′

G

(µ̄b(S
′)− p(S ′))2 ≤ |B′

G|V(p(S ′)) + |B′
G|O

(
β ln( 1

β
)

n

)

≤ |B′
G|O

(
1

n

)
,

here we used equation (3.3), that implies V (·) ≤ 1/4n, and β ln(1/β) = O(1). Combining the

84



above three equations we get

∑
b∈B′

G

(µ̄b(S)− p(S))2 −
∑
b∈B′

G

(µ̄b(S
′)− p(S ′))2

≤ 2

√
|B′

G|O
(
1

n

)√
|B′

G|O(ϵ) + |B
′
G|O(ϵ) < |B′

G|O
(√

ϵ

n

)
.

Similarly, one can prove the other direction

∑
b∈B′

G

(µ̄b(S
′)− p(S ′))2 −

∑
b∈B′

G

(µ̄b(S)− p(S))2 < |B′
G|O

(√
ϵ

n

)
.

Combining the two equations gives

∣∣∣ ∑
b∈B′

G

(µ̄b(S)− p(S))2 −
∑
b∈B′

G

(µ̄b(S
′)− p(S ′))2

∣∣∣ < |B′
G|O

(√
ϵ

n

)
.

And from equation (3.3) we get

|V(p(S))− V(p(S ′))| ≤ |p(S)− p(S
′)|

n
≤ |p(S△S

′)|
n

≤ O
( ϵ
n

)
.

Combining the above two equations we get

∣∣∣ 1

|B′
G|
∑
b∈B′

G

(µ̄b(S)− p(S))2 − V(p(S))
∣∣∣

≤
∣∣∣ 1

|B′
G|
∑
b∈B′

G

(µ̄b(S
′)− p(S ′))2 − V(p(S ′))

∣∣∣+O(√ ϵ

n

)
+O

( ϵ
n

)
(a)
≤ O

(
β ln( 1

β
)

n

)
+O

(√
ϵ

n

)
+O

( ϵ
n

)
(b)
≤ O

(
β ln( 1

β
)

n

)
, (3.10)

here inequality (a) uses that the property (ii) holds for S ′, (b) uses ϵ = O
(
β2

n

)
.

85



This completes the proof of the extension of property (ii) to subset S and in a similar

fashion property (v) can be extended.

Next, we extend property (iii) to subset S.

Note that

∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥ t
}∣∣

(a)
≤
∣∣{b ∈ BG : |µ̄b(S ′)− p(S ′)|+ µ̄b(S△S ′) +O(ϵ) ≥ t

}∣∣
≤
∣∣{b ∈ BG : |µ̄b(S ′)− p(S ′)| ≥ 2

3
· t
}∣∣+ ∣∣{b ∈ BG : µ̄b(S△S ′) ≥ t

3
−O(ϵ)

}∣∣
≤
∣∣{b ∈ BG : |µ̄b(S ′)− p(S ′)| ≥ 2

3
· t
}∣∣+ ∑b∈BG

µ̄b(S△S ′)
t
3
−O(ϵ)

≤
∣∣{b ∈ BG : |µ̄b(S ′)− p(S ′)| ≥ 2

3
· t
}∣∣+ |BG|

p̄BG
(S△S ′)

t
3
−O(ϵ)

≤
∣∣{b ∈ BG : |µ̄b(S ′)− p(S ′)| ≥ 2

3
· t
}∣∣+ |BG|

O(ϵ)
t
3
−O(ϵ)

.

here inequality (a) uses (3.9).

Choosing t = O
(√

ln(1/β)
n

)
in the above equation and putting ϵ = O(β2/n) gives

∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥ O

(√
ln(1/β)

n

)}∣∣
≤
∣∣{b ∈ BG : |µ̄b(S ′)− p(S ′)| ≥ O

(√
ln(1/β)

n

)}∣∣+ |BG|
O(β2/n)

O
(√

ln(1/β)/n
)
−O(β2/n)

≤ O(β)|BG|. (3.11)

here the last step uses property (ii) for S ′. This extends property (iii) to subset S. Property (iv)

can be extended similarly. ■

Proof of Lemma 35. The previous lemma showed that the auxiliary properties hold for all

subsets in G. Lemma 42 showed that these auxiliary properties implies the filtration properties.

Combining the two Lemmas completes the proof of Lemma 35.

86



3.9 Remaining proofs

3.9.1 Proof of Theorem 21

To prove the above theorem we use the following result.

Theorem 44 ([1]). There is an algorithm which, given any t samples x1, x2, ..., xs ∈ R, returns

an t-piecewise degree-d polynomial p′ which minimizes ||p′ − p̄s||F2td
distance between p′ and

the empirical distribution p̄s, to within additive error γ in time poly(s, t, d, 1/γ).

We note that the t-piecewise degree-d polynomial p′ returned in the above theorem may

not always integrate to 1 and is only an approximate Yatracos minimizer, and hence we can not

directly use equation (3.1).

But there is a simple generalization of this equation in [43], which applies even when

p′ returned in the above theorem doesn’t integrate to 1 and is only an approximate Yatracos

minimizer.

Recall that Y(P) is Yatracos class of P . Let p′ ∈ P be such that ||p′ − p̄||Y(P) =

minq∈P ||q − p̄||Y(P) + γ Then [43] (exercise 6.2) implies that

||p− p′||TV ≤ 5 · optP(p) + 4||p− p̄||Y(P) + 5γ.

Recall that Yatracos class of t-piecewise degree d polynomials, (including those that

don’t integrate to 1), is F2td.

Theorem 18 provides a polynomial time algorithm that returns a sub-collection B∗ ⊆ B

of batches whose empirical distribution p̄B∗ is close to p in F2td-distance. Then running the

algorithm in Theorem 44 for samples in p̄B∗ returns a t-piecewise degree-d polynomial p∗. Then

the above equation implies that p∗ approximates p in TV distance, to complete the proof of the

theorem.

87



3.9.2 Proof of Lemma 22

Proof. For two distributions p and q over Ω× {0, 1}, the largest difference between the loss of

any classifier h ∈ H is related to their FH-distance,

sup
h∈H
|rp(h)− rq(h)|

= sup
h∈H
|Pr(X,Y )∼p[h(X) ̸= Y ]− Pr(X,Y )∼q[h(X) ̸= Y ]|

≤ sup
h∈H

∑
y∈{0,1}

|Pr(X,Y )∼p(h(X) = ȳ, Y = y)− Pr(X,Y )∼q(h(X) = ȳ, Y = y)|

≤ 2||p− q||FH . (3.12)

Then,

rp(h
opt(q))− ropt

p (H)

= rp(h
opt(q))− rp(hopt(p))

= rp(h
opt(q))− rq(hopt(q)) + rq(h

opt(q))− rq(hopt(p)) + rq(h
opt(p))− rp(hopt(p))

≤ rq(h
opt(q))− rq(hopt(p)) + 2 sup

h∈H
|rq(h)− rp(h)|

≤ 2 sup
h∈H
|rq(h)− rp(h)|

≤ 4||p− q||FH ,

here the last inequality uses (3.12). ■

3.9.3 Proof of Theorem 24

Proof. Let H : Ω → {0, 1} of Boolean functions with VC dimension VH ≥ 1. And let

(X, Y ) ∼ p, where X ∈ Ω and Y ∈ {0, 1}.

Since VH ≥ 1, then there is at-least one ω∗ ∈ Ω and h1, h2 ∈ H, s.t. h1(ω∗) ̸= h2(ω
∗),

w.l.o.g., let h1(ω∗) = 1 and h2(ω∗) = 0.

88



Next, we define two distributions p1 and p2. Let γ = c β√
n
, for some small enough constant

c > 0 to be chosen later. Let p1(ω∗, 1) = p2(ω
∗, 0) = 1

2
+ γ, and p1(ω∗, 0) = p2(ω

∗, 1) = 1
2
− γ.

Both p1 and p2 assigns zero probability to all other points in Ω× {0, 1}.

It is easy to see that, for distribution p1, hypothesis h1 achieves the optimal loss 1
2
− γ

and similarly for distribution p2, hypothesis h2 achieves the optimal loss 1
2
− γ.

Next, note that for distribution p1 the loss of any classifier f : Ω→ {0, 1} is

Pr
(X,Y )∼p1

(f(ω∗) ̸= Y ) = Pr(f(ω∗) = 1)× (
1

2
− γ) + Pr(f(ω∗) = 0)× (

1

2
+ γ).

Similarly its loss for distribution p2 is

Pr
(X,Y )∼p2

(f(ω∗) ̸= Y ) = Pr(f(ω∗) = 1)× (
1

2
+ γ) + Pr(f(ω∗) = 0)× (

1

2
− γ).

Adding the two losses we get

Pr
(X,Y )∼p1

(f(ω∗) ̸= Y ) + Pr
(X,Y )∼p2

(f(ω∗) ̸= Y ) = 1

Therefore, every classifier incurs a loss of ≥ 1/2 for at least one of the two distributions. Since

the optimal loss for both distributions is 1/2− γ, any classifier incurs an excess loss of γ for at

least one of the distributions among p1 and p2.

The distribution p of the data (X, Y ), is chosen to be one of the two distributions p1 and

p2 each with probability 1/2. Then we show that depending on which distribution is chosen as

p, the adversary can choose its batches such that, even with infinitely many batches, the two

distributions are indistinguishable. Therefore, any classifier incurs an excess loss of γ with

probability ≥ 1/2.

Note that for every batch, the number of Y = 1’s is a sufficient statistic for determining

weather p is p1 or p2, and it is distributed either B(n, 1
2
+ γ) or B(n, 1

2
− γ). From equation 2.15

in [3], for any c < 1/12 and γ = cβ/
√
n, the total variation distance between B(n, 1

2
+ γ) or

89



B(n, 1
2
− γ) is ≤ 2β.

Therefore, the adversary can choose distributions q1 and q2, over the number of Y = 1’s

in the adversarial batches, such that

(1− β)B(n,
1

2
+ γ) + βq1 = (1− β)B(n,

1

2
− γ) + βq2.

Hence, if the good batches are distributed asB(n, 1
2
+γ) then adversary chooses q1 as distribution

of the adversarial batches and if good batches are distributed as B(n, 1
2
− γ) then adversary

chooses q2 and in both the cases the resultant joint distribution of all the batches is same. Hence

the two cases are indistinguishable. ■

The theorem implies that even with access to infinitely many batches, even for the simplest

of the hypothesis class, no algorithm can avoid an excess loss Ω(β/
√
n) with probability 1/2.

3.9.4 Proof of Theorem 25

Proof. To prove the theorem, we show how to use algorithm in Theorem 18 that gives "cleaner"

batches for Fk-distance, to get "cleaner" batches for FHk
-distance.

Recall that

FHk
= {({x ∈ R : h(x) = y}, ȳ) : h ∈ Hk, y ∈ {0, 1}}.

Divide the collection of sets FHk
into two parts: F0

Hk
:= {({x ∈ R : h(x) = 0}, 1) : h ∈ Hk}

and F1
Hk

:= {({x ∈ R : h(x) = 1}, 0) : h ∈ Hk}. Note that FHk
= F0

Hk
∪F1

Hk
. Then, from the

definition of F distance, it follows

||p− q||FHk
= max{||p− q||F0

Hk
, ||p− q||F1

Hk
}

Hence, it suffices to estimate p in both F0
Hk

and F1
Hk

distances.

90



Since decision regions for each hypothesis h ∈ Hk, consists of at most k-intervals, these

collections can be rewritten as F0
Hk

:= {(S, 0) : S ∈ Fk} and F1
Hk

:= {(S, 1) : S ∈ Fk}.

To learn in F0
Hk

distance, w.l.o.g., we can remap all points of the form (x, 1) to (∞, 0).

Then this problem is identical to learning in Fk distance as y = 0 is the same for all samples after

remapping. Similarly to learn in F1
Hk

distance we remap all points of the form (x, 0) to (∞, 1).

Then use the algorithm in Theorem 18 to first remove the adversarial batches for F0
Hk

distance, and then for the remaining batches again use the same algorithm to remove adversarial

batches for F1
Hk

distance. The empirical distribution p̄B∗ of the batches B∗ ⊆ B remaining in

the end, approximates p in both F0
Hk

and F1
Hk

distances to an accuracy O(∆). Therefore, it

estimates p in FHk
distance to the same accuracy.

Then use the polynomial-time algorithm [105] to find the empirical risk minimizer

h ∈ Hk for empirical distribution p̄B∗ . Then Lemma 22 implies that the optimal classifier

hopt(p̄B∗) for the empirical distribution p̄B∗ , of the cleaner batch collection B∗, will have a

small-excess-classification-loss O(∆) for p. This completes the proof of the theorem. ■

Chapter 3, in full, is a reprint of the material as it appears in A general method for robust

learning from batches 2020. Ayush Jain, Alon Orlitsky. In Neurips 2020. The dissertation author

was the primary investigator and author of this paper.

91



Chapter 4

Robust Density Estimation from Batches:
The Best Things in Life are (Nearly) Free

4.1 Overview

4.1.1 Robust learning

In many learning applications, some samples are inadvertently or maliciously corrupted. A

natural and intuitive example shows that regardless of the number of samples available, such corrup-

tion severely curtails the learning accuracy even for the simplest of tasks, a binary hypothesis test.

Consider independent binary samples distributed either all Ber(1/2 + β/2) or all

Ber(1/2− β/2). With genuine samples, the underlying distribution can be identified with error

that plummets to 0 exponentially fast in the number of samples.

However, if an adversary can observe a fraction 1− β of the samples and select the rest,

our best error is destined to remain a half, regardless of the number of samples available. The

poltergeist could simply use the observed samples to determine the underlying distribution, and

set the rest so the whole sequence appears to be generated by a Ber(1/2) distribution, leaving us

with no better than a random guess.

This elemental example propagates to essentially all learning tasks, hard-limiting the

performance of all learning algorithms. For example, the total variation (TV) distance between

the two indistinguishable distributions above is β. Hence the triangle inequality implies that for

92



any number of samples, if a β fraction are adversarial, then even binary, let alone general discrete

and continuous, distributions cannot be learned to TV distance less than β/2. Similar hard limits

follow for classification and other learning tasks.

The foregoing seems to suggest the discouraging conclusion that with a β fraction of

adversarial data, an Ω(β) loss is inevitable, which as real-life β may be quite large, could be

rather foreboding. Fortunately, that is not necessarily so.

In the following and many other applications, data are collected from multiple sources,

most typically genuine, but some possibly corrupted or adversarial. Data may be gathered

by sensors, each providing a large amount of data, and some sensors may be faulty. The

word frequency of an author may be estimated from several large texts, some of which are

mis-attributed. User preferences may be learned by querying several individuals, some

intentionally biasing their feedback. Multiple agents may contribute to a crowd-sourcing

platform, but some may be unreliable or malicious.

The collection of data generated by each source, or during a time period, is called a batch.

Interestingly, for data generated in batches, a fraction β of which are corrupted or adversarial,

significantly higher accuracy can be achieved.

4.1.2 Robust learning from batches

To formalize this setting, [125] considered estimating an unknown distribution p over

the finite domain [ℓ] = {1, . . . ,ℓ} in TV-distance. Estimation is based on m batches with ≥ n

samples each. In most batches, the samples are drawn independently according to p, but a

fraction β < 0.5 of the batches are adversarial and may be arbitrarily corrupted, possibly even

with knowledge of the good batches.

Unlike the strict Θ(β) accuracy limit for individual samples, they derived a batch-setting

algorithm that approximates p to a much lower TV-distanceO(β/
√
n), where the implied constant

factor is independent of ℓ. They also showed a matching adversarial lower bound (for batches),

that even for binary distributions, and hence for general finite ones, the lowest achievable TV

93



distance with any number of batches is ≥ ∆min := ∆min(β, n) := β/(2
√
2n).

However, their estimator had some limitations as well. When all samples are genuine,

and none is adversarial, estimating p to TV distance ϵ requires Θ(ℓ/ϵ2) samples, e.g., [86]. Since

robust learning is at least as hard, this also forms a statistical lower bound on the number of

samples required to achieve error ϵ with adversarial batches.

To achieve TV distance O(β/
√
n) = O(∆min), the estimator in [125] required Ω( n+ℓ

n·∆2
min
)

batches, hence Ω( n+ℓ
∆2

min
) samples that for n ≫ ℓ exceeds the statistical lower bound. Crucially,

and much more significantly, its run-time was exponential in the domain size ℓ, rendering its

application, or even simulation, infeasible for even moderate size domains.

The first polynomial-time, and practical, algorithm for the problem was derived in [77].

The algorithm efficiently finds and removes, or filters, "outlier" adversarial batches that signif-

icantly perturb the empirical distribution away from the underlying p, and then estimates p as

the empirical distribution of the remaining batches. It achieves TV distance O(∆), where ∆ :=

∆(β, n) := ∆min ·
√

ln(1/β) is essentially the adversarial lower bound. To achieve this error they

requireO(ℓ/∆2) samples, matching the statistical lower bound even when all samples are genuine.

4.1.3 Robust learning large and continuous distributions

Since many modern applications utilize very large, often continuous, domains, even linear

ℓ/∆2 dependence of the sample complexity on the domain size may be prohibitive.

Fortunately, common distributions often possess some structure that facilitates more

efficient learning. One of the most popular, and important structures is piecewise polynomials.

A distribution q over [a, b] is t-piecewise degree-d if for some partition of [a, b] into

t intervals I1, . . . ,It, and degree-d polynomials r1, . . . ,rt, ∀j, x ∈ Ij , q(x) = rj(x). Let Pt,d

denote the set of all t-piecewise degree d distributions.

Piecewise-polynomials include important distribution families, e.g., Pt,0 for histograms

and Pt,1 for piecewise-linear distributions. They can also approximate any piecewise continuous

distribution. Importantly, with very low t and d, they arbitrarily closely approximate many staple

94



one-dimensional distribution families, including Gaussians and their mixtures, log-concave,

low-modal, and monotone hazard e.g., [1].

For genuine, non-adversarial, samples, several works, e.g., [1, 67], derived efficient

algorithms that learn t-piecewise degree-d polynomials to TV distance ϵ, with optimal O(td/ϵ2)

sample complexity.

Pt,d can be similarly defined as discrete distributions over the interval domain [ℓ]. [30]

showed that these distributions can be robustly learned from batches to TV-distance O(∆)

with sample complexity only quasi-poly-logarithmic in ℓ. However their sample complexity

was quasi-polynomial in the other parameters t, d, batch size n, and 1/β. And the algorithm’s

computational complexity was quasi-polynomial in these parameters and the domain size ℓ.

If computation time is no object, [76] presented an exponential-time estimator that

achieves TV distance O(∆) with Õ(td/∆2) samples, the same, up to log logarithmic factors,

as the minimum genuine samples required.

To obtain polynomial-time algorithms with low sample complexity, subsequent works

adapted the filtering approach of [77]. For example, [31] achieved TV-distance O(∆) using

Õ((td log ℓ)2/∆2) samples, and concurrently [76] achieved the same TV distance using

Õ(td/∆3) samples, in particular, removing the dependence of sample complexity on the domain

size, and for the first time, enabling robust learning over infinite and continuous domains.

4.1.4 Overview of results and applications

Still, both Õ((td log ℓ)2/∆2) and Õ(td/∆3) exceed the O(td/∆2) optimal sample

complexity of genuine samples, leading [31] to raise the open question of the optimal sample

complexity of robust polynomial Pt,d estimators.

This paper essentially answers this question. We derive a filter-based polynomial-time

algorithm that achieves TV distance O(∆) using only Õ(td/∆2) samples, that up to poly-

logarithmic factors matches the statistical lower bound of even genuine samples. It therefore

essentially determines the sample complexity of robust and efficient learning of piecewise

95



polynomials to optimal accuracy. It also shows that for this large and general class, robustness

can be achieved at the small cost of at most a poly-logarithmic increase in the number of samples.

These results apply to both continuous and discreet distributions, and as described in

Subsection 4.2.2 also learn distributions that can be approximated by Pt,d, hence apply to

monotone, log-concave, Gaussian, Gaussian mixtures, and other fundamental distribution classes.

While we present the results in terms of robust density estimation, their distance to other

fundamental learning staples is minute. We demonstrate two such applications.

The first is to robust classification. We show that a simple extension of the results yields

the first sample-optimal, polynomial-time, robust, classifier based on batched training data. We

demonstrate the method’s efficacy on the fundamental and practical problem of interval-based

classification over the real line.

The second application is to the common top k or heavy hitters problem that calls for

finding the k highest-probability elements in a distribution over a large domain. The problem

arises in many applications ranging from caching, to recommendation systems, and vaccine

design. We show that in the batch setting, the top k elements can be approximated robustly

with sample complexity linear in k regardless of the domain size.

4.1.5 Other related works

This paper builds on several long and impressive lines of work, briefly summarized

herein. Structured-distribution estimation was studied in [27, 115, 44, 8, 1, 67]. Robust-statistics

was introduced in the classical works of [142, 74]. Efficient algorithms for learning the mean

and covariance matrices of high-dimensional sub-gaussian and other distributions with bounded

fourth moments in the presence of the adversarial samples was studied in [99, 47]. When more

than half of the samples are adversarial, the underlying distribution cannot be estimated well, and

instead, [29] returned a small set of candidate distributions one of which is a good approximate

of the underlying distribution. For extensive surveys on robust learning algorithms see [135, 46].

The filtering approach to robust estimation was introduced in [47], and used in several

96



subsequent applications including high dimensional estimation [48, 50, 135, 46]. These estimators

applied to single samples and learned in L2 distance. By contrast, the results in this paper and

those in [77, 76] address batch learning under TV-distance.

Several recent works considered related "multi-source" or "collaborative" PAC learning

scenarios. As in our setting, they assume multiple sources, some genuine and others possibly

adversarial, where each source provides multiple labeled samples, but some specific assumptions

differ. [10] considers only the realizable case and allow actively acquisition of more data from the

source of choice. [124] also focuses on realizable case where sources share a common labelling

function, but may have different input distributions. [96] considers the setting that most closely

resembles ours and the more general prior work [76], but they do not present efficient algorithms

and incur sub-optimal O(
√
k∆) excess loss, higher than the O(∆) we achieve.

4.1.6 Organization of the paper

In the next section we describe the main results we obtain, the techniques used to derive

them, and some of their applications. In Section 4.3, we simplify the learning problem to that

of learning all k-element subsets of a large discrete set. In Section 4.4 we describe an efficient

filtering algorithm for this problem. In Section 4.5 we describe the experiments. The appendix

contains most of the proofs.

4.2 Main techniques, results, and applications

While we would like to learn continuous distribution in TV distance, as in [30, 76, 31], it

will prove advantageous to first learn them in a weaker (smaller) distance.

4.2.1 Density estimation in Ak distance

Recall that the TV distance between two real distributions q and q′ is the maximum of

|q(S)− q′(S)| over all Borel sets S ⊆ R. This notion generalizes to arbitrary collections S of

97



real sets. The S-distance between q and q′ is

||q − q′||S := max
S∈S
|q(S)− q′(S)|.

For k ≥ 1, let Ak be the collection of all unions of at most k real intervals. Clearly

||q − q′||Ak
≤ ||q − q′||TV for any q, q′, with equality when the domain size ℓ ≤ k. Hence from

now on we assume ℓ > k, and can also be infinite.

One nice property of Ak distance is that with only genuine samples, the empirical

distribution itself, already estimates any discrete or continuous distribution to Ak distance ϵ with

O(k/ϵ2) samples, which is also optimal.

To learn distributions inAk distance, [76] and [31] adapted the filtering algorithm in [77].

First removing outlier batches, and retaining batches whose empirical distribution approximates

p in Ak, rather than TV, distance.

However, both algorithms had suboptimal sample complexity. For∆ = ∆min
√
ln(1/β) =

Θ(β
√
ln(1/β)/n), essentially the best Ak distance achievable with n-sample batches, they

required Õ(k/∆3), and Õ((k log ℓ)2/∆2) samples, respectively.

Our fundamental contribution is an algorithm that learns any discrete or continuous

distribution toAk-distance∆with sample complexity Õ(k/∆2), optimal up to logarithmic factors.

Theorem 45. For some constants c < 1/2 andC > 1, for any k, β < c, δ < 1,n > Ω(logC(1/β)),

and discrete or continuous p, the algorithm uses m · n = Õ(k+log(1/δ)
∆2 ) total samples, and in time

poly(k, n,m, β, δ) outputs an estimate p̂ that with probability ≥ 1− δ satisfies

||p̂− p||Ak
≤ O(∆).

Remark.

Theorem 45 achieves AK distance O(∆), within a small O(
√

log(1/β)) factor from the

adversarial lower bound for unlimited samples. The algorithm uses a poly-logarithmic factor

98



more samples than the min-max number required for this distance even with strictly genuine

data. When the number of samples does not suffice to achieve the minimal AK distance of

O(∆), the algorithm can be modified to achieve AK distance Õ(
√
k/(mn)), again within a

poly-logarithmic factor from the statistical lower bound as achieving AK distance ϵ requires at

least k/ϵ2 genuine samples. This result can be derived by augmenting Theorem 45 with the

steps taken in the derivation of Theorem 2 in [77]. A similar observation also holds for all the

applications stated next.

To derive the algorithm, we first reduce robustAk learning over any domain, even continu-

ous, to robust learning the probability of all 2k-element subsets of discrete distributions over large

domains. We propose a filtering algorithm that learns these probabilities with optimal sample

complexity linear in k and independent of the domain’s size. The new, simpler, formulation allows

for a tight SDP relaxation, that with more refined analysis yields near optimal sample complexity.

The algorithm has several important implications. We apply it to three robust-learning

tasks using batched data: (i) learning distributions in or near Pt,d, (ii) interval-based binary

classification, (iii) learning the top-k heavy hitters. For all three problems we achieve the nearly

best possible TV distance O(∆) with the same sample complexity as with genuine samples

up to logarithmic factors.

4.2.2 Density estimation in TV distance

Theorem 45 described an optimal, robust, batch-based, algorithm for learning any

distribution over the reals inAk distance. Yet ||q− q′||Ak
≤ ||q− q′||TV for any q, q′. This section

extends the results to robustly learn in the more standard, and stringent, TV-distance.

In Theorem 47 we present a batch-based algorithm that robustly learns Pt,d and related

distributions Pt,d, including monotone, log-concave, Gaussian, Gaussian mixtures, and other

fundamental distributions.

For real distribution p, let optt,d(p) := infq∈Pt,d
||p − q||TV be p’s TV-distance to its

nearest distribution in Pt,d. We wish to find a distribution p̂ such that for a small ϵ and universal

99



constant α, with probability ≥ 1− δ,

||p̂− p||TV ≤ α · optt,d(p) + ϵ.

This ensures that we learn distributions not just in Pt,d, but also nearby. While not emphasized

here, the α we derive is roughly 3, and same as the best known factor for learning Pt,d with

only genuine samples.

To convert learning Ak- to TV-distance, we use a transformation that maps Ak neighbor-

hoods of distributions in or near Pt,d to TV -neighborhoods.

Theorem 46. [1] For a constant α (roughly 3) and any t, d, and ϵ, an algorithm they describe

runs in time poly(t, d, ϵ) and converts any real distribution p′ to a distribution p′′ such that for

every distribution p,

||p− p′′||TV ≤ α · optt,d(p) +O(||p− p′||At(d+1)
) + ϵ.

The theorem shows that if p is near Pt,d, then an At(d+1) distance approximation of p

can be converted to a TV-distance approximation of p, hence it suffices to approximate p in

the weaker At(d+1) distance.

Combining Theorems 45 and 46 for k = t(d+1), we derive a polynomial-time algorithm

that robustly estimates any real distribution nearly as well as its best Pt,d approximation, using

the optimal number of samples.

Theorem 47. For some constants α (roughly 3), c < 1/2, and C > 1, for any t, d, β < c,

δ < 1, n > Ω(logC( 1
β
)), and real or discrete distribution p, a simple combination of the

above algorithms uses m · n = Õ( t(d+1)+log(1/δ)
∆2 ) total samples, and in time poly(t, d, n,m, β, δ)

outputs an estimate p̂ that with probability ≥ 1− δ satisfies

||p̂− p||TV ≤ α · optt,d(p) +O(∆).

100



Note that the adversarial-batch lower bound on the approximation’s TV distance is

∆min = β/(2
√
2n), while the theorem, like all other robust-learning results so far, applies to a

slightly higher TV distance ∆ = O(∆min
√

log(1/β)). Based on evidence from Gaussian robust

mean estimation, [31] suggested that the extra O(
√
log(1/β)) factor may be necessary for any

polynomial time algorithm.

4.2.3 Application to interval-based classification

We now show that though presented for density estimation, a simple extension of our

results yields the first polynomial-time, sample-optimal, robust batch classifier, and demonstrate

it on the fundamental and practical problem of interval-based binary classification over the reals.

Without loss of generality let the observations be distributed over [0, 1]. Each good

batch therefore contain n labeled samples from a distribution p over [0, 1]× {−1, 1}, while the

adversarial batches contain n arbitrary pairs.

Consider a hypothesis family of Boolean functionsHk : [0, 1]→ {−1, 1} whose decision

regions, the inverse images of −1 and 1, consist of at most k-intervals. The loss of classifier

h ∈ Hk for any distribution q over [0, 1] × {−1, 1} is rq(h) := Pr(X,Y )∼q[h(X) ̸= Y ]. The

optimalHk classifier for a distribution q is hopt(q) := argminh∈Hk
rq(h), and the optimal loss is

ropt
q (Hk) := rq(h

opt(q)).

Given samples from an underlying distribution p, the goal is to return a classifier h ∈ Hk

whose excess loss rp(h)− ropt
p (Hk) relative to the optimal loss is small.

Map any distribution q over [0, 1] × {−1, 1}, to a new distribution q[−1,1] over [−1, 1],

where q[−1,1](z) := Pr(X · Y = z) for (X, Y ) ∼ q. Note that there is a 1-1 correspondence

between q and q[−1,1], and that we can define Ak distance over the new domain [−1, 1].

Lemma 6 in [76] upper bounds the excess loss when the optimal classifier for distribution

q is applied to distribution p in terms ofAk distance between p[−1,1] and q[−1,1]. For completeness

we present a short proof in Appendix 4.11.

101



Lemma 48. For any distributions p, q over [0, 1]× {−1, 1},

rp(h
opt(q))− ropt

p (Hk) ≤ 2||p[−1,1] − q[−1,1]||A2k
.

Furthermore, [105] derived an algorithm that for any empirical distribution q over

[0, 1]× {−1, 1} finds the optimal classifier hopt(q) in polynomial time in the number of samples

and k. Then from the above Lemma to obtain an excess loss O(∆) it suffices to estimate p[−1,1]

to Ak distance O(∆).

Theorem 45 provides an algorithm to learn any real distribution to Ak distance O(∆)

using Õ(k/∆2) samples, implying the following.

Theorem 49. For some constants c < 1/2 andC > 1, for any k, β < c, δ < 1,n > Ω(logC(1/β)),

and p over [0, 1] × {−1, 1}, the above algorithm uses m · n = Õ(k+log(1/δ)
∆2 ) pairs, and in

poly(k, n,m, β, δ) time outputs a classification h∗ with excess loss rp(h∗)− ropt
p (Hk) ≤ O(∆).

Since the VC-dimension of the collection Hk is O(k), any algorithm achieving excess

loss ϵ requires Ω(k/ϵ2) samples, even with genuine data. Therefore, achieving excess loss O(∆)

requires Ω(k/∆2) samples, even with genuine data, showing that our algorithm is sample optimal

up to logarithmic factors.

[76] showed that the best possible excess loss for this problem is Ω(∆min). They used

a similar reduction from Ak distance, to derive a polynomial-time algorithm with O(∆) excess

loss, but required a suboptimal Õ(k/∆3) number of samples.

4.2.4 Application to the top k heavy hitters problem

Our last application is to the prevalent top k, or heavy hitters, problem. Given samples

from a distribution over a large domain, we would like to find the k elements with highest

probability. This problem arises in numerous applications including deciding which pages to

store in a cache, results to show on the front page of a web search, viruses to inoculate for in an

influenza vaccine [150, 25], and products to recommend to online shoppers.

102



As in the rest of the paper, we consider samples that arrive in batches, some possibly corrupt

or adversarial. For example, some shoppers biasing consumer ratings towards select products.

The top k elements clearly have the highest total probability among all k-element subsets.

However, this set cannot always be found as some elements with nearly identical probabilities

cannot be identified. Instead, we therefore aim to robustly find a k-element subset whose total

probability is maximal up to a O(∆) difference.

The results in this section apply to all discrete distributions, that without loss of generality

we assume range over the integers. They can be trivially extended to mixed distributions over the

reals as well.

A natural approach may be to learn p robustly to TV distance ∆ as in [77], and return

the k element subset with highest estimated probability. However, this approach would require

number of samples proportional to the domain size, while in a typical k-hitter problem, k is

significantly smaller.

Instead, we first estimate p to anAk distanceO(∆), which from Theorem 45 can be done

efficiently using Õ(k/∆2) samples. We then return the k-element subset with highest estimated

probability. Since the collection Ak is a superset of the collection of all subsets of size ≤ k,

learning to an Ak distance O(∆) implies learning the probability of all such subsets to accuracy

O(∆). By the triangle inequality, the k-element subset with highest estimated probability is

maximal up to a 2O(∆) probability difference.

4.3 Two simplifications of Ak-distance learning

4.3.1 Discretization using partitioning

Let B denote a collection of all m batches. Recall that each batch has n samples. For

s = n ·m, let xs = x1, x2, . . . ,xs ∈ R be the samples of B sorted in non-decreasing order, and

define p̄B to be the empirical distribution of xs.

Given samples xs, for j ≥ 1, let Pj = P j
1 , P

j
2 , . . . ,P

j
k·j , partition R into k · j disjoint

103



intervals, or parts, each containing ≈ s
k·j samples, and given by

P j
i :=


(−∞, x⌊ s

k·j ⌋] i = 1,

(x⌊ (i−1)s
k·j ⌋, x⌊ i·s

k·j ⌋
] 2 ≤ i < k · j,

(x⌊ (i−1)s
k·j ⌋,∞) i = k · j.

Let C(Pj) be the collection of real subsets formed by unions of parts of Pj . Unions

of consecutive parts of Pj are themselves intervals in R that we call intervals over Pj .

Let Ak(Pj) be the collection of all unions of at most k intervals over Pj . Clearly,

Ak(Pj) ⊆ Ak, hence ||q− q′||Ak(Pj) ≤ ||q− q′||Ak
for any distributions q and q′. Interestingly a

reverse relation holds for the underlying distribution p.

Lemma 50. For m · n = Ω̃(k/∆2), w.h.p., for all j ≥ 1
∆

and all distributions q over R,

||q − p||Ak
≤ ||q − p||Ak(Pj) +O(∆).

To prove the lemma we need the following results, proved in Appendix 4.11.

Lemma 51. For any subset S ∈ Ak, there are sets S ′, S ′′ ∈ Ak(Pj) such that S ′ ⊆ S ⊆ S ′′ and

p̄B(S
′′ \ S ′) ≤ 2/j.

Lemma 52. For β < 1/2, m · n = Ω̃(k+log 1/δ
∆2 ), with probability > 1 − δ, for all S ∈ C(Pj),

p(S) ≤ 2 · p̄B(S) +O(∆).

Proof of Lemma 50. From Lemma 51 for any subset S ∈ Ak, let S ′, S ′′ ∈ Ak(Pj) be

the sets such that S ′ ⊆ S ⊆ S ′′ and p̄B(S ′′ \ S ′) ≤ O(1/j). Clearly S ′′ \ S ′ ⊆ C(Pj), then from

104



Lemma 52, w.h.p., p(S ′′ \ S ′) ≤ 2 · p̄B(S ′′ \ S ′) +O(∆) ≤ O(1/j +∆). Then

p(S)− q(S) ≤ p(S)− q(S ′)

= p(S ′)− q(S ′) + p(S \ S ′)

≤ p(S ′)− q(S ′) + p(S ′′ \ S ′)

≤ ||q − p||Ak(Pj) +O(1/j +∆).

A similar bound for q(S)− p(S) completes the proof. ■

The lemma shows that to approximate p in Ak-distance it suffices to estimate it in

Ak(Pj)-distance for any j = Ω( 1
∆
). The advantage of this reduction is that the set Ak(Pj) is

finite in contrast to Ak.

Given a distribution q on R, for any j ≥ 1 let qj ∈ Rk·j be the discrete distribution over

the indices of partition Pj , defined by qj(i) = q(P j
i ) for i ∈ [k · j].

Map every subset S ∈ C(Pj) to the binary vector vS ∈ {0, 1}k·j whose ith coordinate

indicates whether P j
i ⊆ S. Observe that for any distribution q over R, we can express q(S) as

the inner product qj · vS . Let Vℓk denotes the collection of binary vectors {0, 1}ℓ with at most k

runs of ones. Since each interval over Pj corresponds to a single run of ones, if S ∈ Ak(Pj),

then vS ∈ Vk·jk ⊆ {0, 1}kj .

This discussion and Lemma 50 show that if for the discretized versions of an estimator

p̂ and underlying distribution p, maxv∈Vk·j
k
|p̂j · v − pj · v| ≤ O(∆) then ||p̂ − p||Ak

≤ O(∆).

However, the collection Vk·jk is rather complicated and does not have a tight convex relaxation.

Previous relaxations of Vk·jk [31] lead to sub-optimal sample complexities. Instead, we show

in the next section that this problem can be further reduced to robust learning of the probabilities

of all subsets of a fixed size 2k over a large discrete domain. In Section 4.4, we show that these

probabilities can be robustly estimated with optimal sample-complexity Õ(k).

105



4.3.2 Reduction to learning k element subset

Let I(Pj) ⊆ C(Pj) consist of all unions of at most 2k parts of Pj . Let {0, 1}ℓk denote

the set of binary vectors of length ℓ with at most k ones. Observe that every subset in S ∈ I(Pj)

corresponds to a binary vector vS ∈ {0, 1}k·j2k . Note that I(P2) = C(P2), as {0, 1}2k2k = {0, 1}
2k.

We now show that to estimate p inAk distance it suffices find a q such that ∀j ∈ 2[log(1/∆)],

the powers of two between 2 and 1/∆, the distances ||p− q||I(Pj) are small.

Theorem 53. For every m · n = Ω̃(k+log 1/δ
∆2 ) and distribution q over R, with probability > 1− δ,

||q − p||Ak
≤

∑
j∈2[log(1/∆)]

max
v∈{0,1}k·j2k

|qj · v − pj · v|+O(∆).

Note that for any j, the set I(Pj) ⊂ A2k, therefore the sample complexity of estimating

p in I(Pj) distance is at most that of learning in A2k-distance.

Importantly, this reduces the more complicated set Vk·jk to more manageable sets {0, 1}k·j2k ,

which, as we see in the next section, have nice convex relaxations.

To prove Theorem 53, note a simple geometric observation, proved in Appendix 4.11.

Lemma 54. For any i ≥ 1, any interval over partition P2i is the union of at-most 2 parts from

each partition P2i ,P2i−1
, ...,P22 and one interval over P2.

The following result is a simple consequence.

Lemma 55. For any i ≥ 1, any subset inAk(P2i) is the union of one subset from each of I(P2i),

I(P2i−1
),...,I(P21).

Proof of Lemma 55. Any subset inAk(P2i) is a union of at most k intervals over partition

P2i , and Lemma 54 implies that it can be expressed as a union of at-most 2k parts from each

partition P2i , . . . ,P22 and at most k intervals over P2. The lemma follows as any union of

intervals over P2 is in C(P2), and C(P2) = I(P2). ■

106



Proof of Theorem 53. For any distribution q over R, Lemma 55 and the triangle inequality

imply

||q − p||Ak(P2i ) = max
S∈Ak(P2i )

|q(S)− p(S)|

≤
i∑

ℓ=1

max
S∈I(P2ℓ )

|q(S)− p(S)|.

Letting i = ⌊log2( 2
∆
)⌋ and Lemma 50 complete the proof. ■

4.4 Filtering algorithm for Ak distance

4.4.1 Notation

We begin with notation that helps describe the filtering algorithm. Recall that B is the

collection ofm batches, each consisting of≥ n samples. LetBG denote the collection of all good

batches in B whose samples are drawn independently from common unknown real distribution p.

We refer to the batches in remaining set BA := B \BG as adversarial. Note that |BA| ≤ βm.

Let µ̄b denote the empirical distribution of samples in batch b ∈ B. Note that µ̄b is

a collection of n Dirac delta functions. Let B′ denote any sub-collection of B. For a batch

sub-collection B′ ⊆ B, consider the average of the empirical distributions of batches in B′.

p̄B′ ≜
1

|B′|
∑
b∈B′

µ̄b.

Note that p̄B′ is also the empirical distribution of all samples in batches of B′.

Recall that for any distribution q over R, qj ∈ Rk·j is the discrete distribution induced

over the the parts of partition Pj , and let µ̄jb and p̄jB′ be the corresponding empirical distributions

of batch b and batch collection B′, respectively.

For any discrete distribution, or normalized frequency vector, q, let MulN(q, n) denote

the distribution of a normalized multinomial frequency vector µ, where n · µ ∼ Mul(q, n). Also,

107



let C(q) := 1
n
(Diag(q)− qq⊺) be the covariance of MulN(q, n).

Let µ1, . . . ,µm ∼ MulN(q, n) be m i.i.d. normalized frequency vectors, and let µ̄ and V

be the mean and covariance of the µi’s. Intuitively speaking, both V and C(µ̄) converge to the

covariance of MulN(q, n), hence their difference tends to zero.

If the partition Pj was fixed beforehand, not after obtaining the samples, then for b ∈ BG,

the frequency vector µ̄jb would follow a normalized multinomial distribution MulN(pj, n). Even

though the partition depends on the samples, the above multinomial-distribution intuition is still

useful as the distribution of µ̄jb is still essentially MulN(pj, n).

For any batch b, and sub-collectionB′, letCj
b,B′ := (µ̄jb− p̄

j
B′)(µ̄

j
b− p̄

j
B′)⊺ be the deviation

of batch b relative to batch collection B′.

The filtering statistics of a batch b w.r.t. a sub collection B′, F j
b,B′ = Cj

b,B′ − C(p̄jB′) is

the difference between the deviation of batch b relative to batch collection B′ and covariance

matrix of a frequency vector µ generated using the distribution µ ∼ Mul(p̄jB′ , n). Finally, the

filtering statistics of a batch sub collection B′ ⊆ B is the average F j
B′ := 1

|B′|
∑

b∈B′ F
j
b,B′ of the

filtering scores of all batches b ∈ B′ w.r.t. this sub collection B′.

Note that F j
B′ = 1

|B′|
∑

b∈B′ C
j
b,B′ − C(p̄jB′) is the difference between the empirical

covariance matrix of {µ̄jb}b∈B′ , and the covariance matrix of the normalized multinomial

distribution with parameter q = p̄jB′ , the mean of frequency vectors µ̄jb in B′.

We note that this filtering statistics was first used in [77] to robustly learn discrete

distributions in TV distance, and later used in [76, 31] for learning in Ak distance.

4.4.2 The filtering algorithm

If there were no adversarial batches, the empirical distribution p̄B of all batches would

estimate p in Ak distance. However, the presence of adversarial outlier batches can move the

empirical distribution p̄B away from p.

We derive a filtering algorithm that finds a sub-collection B′ of batches such that

108



∀ j ∈ 2[log(1/∆)]

max
v∈{0,1}k·j2k

|p̄jB′ · v − pj · v| ≤ O( β
log2 j

√
log( 1

β
)

n
) = O( ∆

log2 j
). (4.1)

Note that
∑

j∈2[log(1/∆)]
1

log2 j
≤
∑

i
1
i2
= O(1) and∆ = β

√
(1/n) · log(1/β). Hence Theorem 53

implies that p̄B′ estimates p to Ak distance O(∆).

Inequality (4.1) characterizesB′ whose empirical distribution approximates the underlying

distribution p inAk distance. However, its definition involves the unknown p itself. It is naturally

more convenient to work with inequalities that does not include p.

One attempt at such an inequality is

max
v∈{0,1}k·j2k

⟨vv⊺, F j
B′⟩ ≤ O(

β log 1
β

n·log4 j ) = O(
∆2

β log4 j
).

While under mild conditions this inequality can be shown to imply (4.1), it is still not easy to use

as the set {vv⊺ : v ∈ {0, 1}k·j2k } is not convex, hence it is unclear how to efficiently optimize the

left hand side.

To circumvent this difficulty, we define a semi-definite programing (SDP) relaxation of

{vv⊺ : v ∈ {0, 1}k·j2k } as

Rj := {M ∈ Rk·j×k·j :M ≽ 0,Mii ≤ 1,
∑

iMii ≤ 2k}.

This leads to the following B′ inequality, ∀ j ∈ 2[log(1/∆)],

max
M∈Rj

⟨M,F j
B′⟩ ≤ O(

β log 1
β

n·log4 j ) = O(
∆2

β log4 j
). (4.2)

Lemma 60 in the appendix shows that any B′ with |BG ∩B′| ≤ (1− 2β)|BG| that satisfies this

inequality also satisfies Inequality (4.1).

Next, we describe a filtering algorithm that finds B′ ⊆ B satisfying the new inequality.

109



To find such a batch sub-collection, we show that for all B′ ⊆ B such that |BG ∩B′| ≤

(1− 2β)|BG| good batches, the following conditions hold:

1. There is a computationally efficient algorithm for finding argmax{⟨M,F j
B′⟩ :M ∈ Rj}.

2. Given an M for which ⟨M,F j
B′⟩ is large, we can delete batches from B′ such that in

expectation we delete 3 times more adversarial batches than good.

3. If B′ has no adversarial batches, it satisfies (4.2).

The algorithm consists of a main part (Algorithm 5) that sequentially over j ∈ 2[log(1/∆)]

checks if Equation (4.2) is satisfied for partition Pj . If not, it iteratively calls sub-routine

Batch-Deletion (Algorithm 6), to delete the appropriate batches. Due to space limitations we

present the pseudo code for Algorithm 5 and Algorithm 6 in the appendix. Next, we argue that

the algorithm identifies B′ for which (4.2) holds.

It starts withB′ = B, and sequentially over j ∈ 2[log(1/∆)], perform the following recursive

algorithm. Efficiently find M maximizing ⟨M,F j
B′⟩ (condition 1). Use M to delete batches

b ∈ B′ for which ⟨M,Cj
b,B′⟩ is high. Continue until Equation (4.2) holds for j. As the algorithm

proceeds, so long as Equation (4.2) fails to hold, Condition 2 ensures that the algorithm removes

more adversarial batches than good batches (in expectation). Observe that without adversarial

batches, Equation (4.2) holds. Hence, at the latest, when all adversarial batches are removed,

the condition 3 ensures Equation (4.2) will hold and algorithm will stop. The second condition

ensures that w.h.p. the algorithm does not remove more than more than |BA|/2 = β(1−β)BG/2,

which for β ≤ 1/6 is ≤ 2βBG good batches, before removing all adversarial batches.

Hence in the end B′ will satisfy Equation (4.2), and therefore Equation (4.1). The

empirical distribution p̄B′ achieves the guarantee in Theorem 45.

In the appendix, we derive the above filtering conditions by using the following

concentration properties of good batches.

Essential Properties of good batches: For all sub-collections B′
G ⊆ BG of good batches,

j ∈ 2[log(1/∆)], and M ∈ Rj:

110



1. If |B′
G| ≥ (1− 2β)|BG|, then

(a) ⟨M, (p̄jB′
G
− pj)⊗2⟩ ≤ O

(
∆2

log4 j

)
,

(b) ⟨M,F j
B′

G
⟩ ≤ O

(
∆2

β log4 j

)
.

2. If |B′
G| ≤ 2β|BG|, then∑

b∈B′
G
⟨M, (µ̄jb − pj)⊗2⟩ ≤ O

(
|BG| · ∆2

β log4 j

)
.

10 20 30 40 50
value of k

0.02

0.04

0.06

0.08

0.10

0.12

A k
-d

ist
an

ce oracle
emp
This work
JO20

(a) Ak distance vs. k with constant
no. of samples to k ratio

0 1 2 3 4 5
multiplier for number of batches

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A k
-d

ist
an

ce oracle
emp
This work
JO20

(b) Ak distance vs. number of
samples (batches)

Figure 4.1. Learning distributions in Ak distance
The next theorem shows that w.h.p. the good batch collection BG satisfies the above

properties.

Theorem 56. For some constants c < 1/2 andC > 1, for any k, β < c, δ < 1,n > Ω(logC(1/β)),

and discrete or continuous p. If |BG| · n = Ω̃(k+log(1/δ)
∆2 ), then the essential properties hold with

probability ≥ 1− δ.

Crucially, the Theorem shows that for carefully chosen SDP relaxation Rj of the set of 2k

sparse binary vectors, the filtering properties hold with only Ω̃(k) samples. By comparison, [31]

used a convex relaxation of binary vectors that are sparse in Haar basis, and for that relaxation

they showed Õ(k2) sample complexity.

Let Lji : {v ∈ Rj : ||v||∞ = 1, ||v||22 ≤ i}. The next theorem shows that to prove that the

above properties hold for all elements in Rj it suffices to show that the property holds for the

following strictly smaller set {vv⊺ : v ∈ Lk·j2k }.

111



Theorem 57. Consider an n× n symmetric matrix A of real numbers. Then there is a universal

constant KG ≤ 1.7822 such that

max
M∈Rj

|⟨M,A⟩| ≤ 2 ·KG max
v∈Lk·j

2k

|⟨vv⊺, A⟩|.

We derive the above theorem in Appendix 4.12 using Grothendieck’s inequality.

The set {vv⊺ : v ∈ Lk·j2k } is still infinite. Even its o(1) cover can be shown to have

size exponential in Ω̃(k · j). Taking the union bound on the cover elements, as in the previous

works, would yield only a sub-optimal maxj Õ(k · j/∆2) = Õ(k/∆3) sample complexity. But

applying a much more nuanced and complex technique, we obtain the optimal sample complexity

Õ(k/∆2). Due to space constraint we leave the details to Appendix 4.12 and 4.14.

4.5 Experiments

We corroborate our results by performing simulations.

We present here experiments for our main technical contribution, robustly learning

arbitrary distributions to Ak distance using just O(k) samples, even when the domain size is

much larger than k. The simulations for learning continuous distribution in TV distance are

relegated to the appendix.

For discrete distributions we set the domain size ℓ to 500. We select this rather large

value to show that the algorithm is practical for large domains, where exploiting the structure

becomes more important.

We show two plots, for both we set the fraction of adversarial batches to a relatively high

value β = 0.4 and the batch size to a moderate value of 500. This shows that the algorithms

perform well even when corruption is high and batch size is only moderate. Note that the

algorithm’s performance will improve if we increase the batch size or decrease β.

We compare the performance of our algorithm with three other estimators. The first is a

powerful oracle, who knows which batches are good batches and uses their empirical distribution

112



as its estimate. The performance of Oracle shows the information theoretic limit in absence of

adversarial batches. The second estimator is the standard empirical estimator that simply returns

the empirical distribution of all samples in B. The third estimator is the [76] filtering-based

estimator. We also considered the estimator of [31], however for the large domain size we test

our algorithm on, the implementation of their algorithm provided with their paper took several

hours even for a single run, while our estimator took on average less than three minutes.

The simulations were performed on a laptop with a configuration of 2.3 GHz Intel Core

i7 CPU and 16 GB of RAM. We took the average of 10 runs to plot the results. For both plots we

select p by generating a random vector in [0, 1]ℓ and normalizing it. We tried various adversarial

distribution: a randomly chosen distribution similar to p; a randomly generated k piecewise

histogram; and their linear combination with p. For each estimator we plot the results for worst

adversarial distribution.

In our first simulation we verify that our algorithm can learn large discrete distributions

in Ak distance, with a number of samples only linear in k. We choose the a rather large alphabet

size ℓ = 500 and test for various values of k from 10, 20, 30, 40, 50. For each k we choose the

number of good batches to be k/β2. Our plots show that the error achieved by our algorithm

essentially remains the same as k increases, demonstrating the linear dependence of the sample

complexity on k. Our algorithm nearly achieves the performance of the oracle that enjoys the

best statistical guarantee, even for the non-adversarial setting. Note that results in Ak learning

imply the other results.

In the second plot, we keep k constant and increase the number of good batches as fk/β2,

for factor f = [0.01, 0.25, 0.5, 0.75, 1, 1.5, 2, 5].

Appendix

113



4.6 Overview of supplementary material

The paper’s main part motivated robust learning, described our major results, outlined

some of their implications, and presented experiments confirming the theoretical results and

showing that our algorithms accurately and rapidly recover discrete distributions. It relegated

experiments for continuous distributions and almost all the proofs to this supplement.

Continuing where we left off, the next section describes experiments for continuous

distributions, again showing excellent distribution reconstruction with relatively few batches.

The rest, and bulk, of this supplement is devoted to proving results stated in the main paper.

Section 4.8 restates essential properties of good batches that play a central role in establishing

the filtering performance. Section 4.9 introduces two useful results that will be used in several

parts of the proof. Section 4.10 describes the filtering algorithm and proves its correctness.

Section 4.11 proves a few simple lemmas stated in the main paper. Section 4.12 shows that the

essential properties follow from a concentration bound. Section 4.13 recalls some facts from VC

theory and derives some of their implications. Section 4.14 is rather long and establishes the

concentration bounds required to prove the essential properties.

4.7 Experiments for continuous distributions

-6 -5 -4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

D
en

si
ty

 E
st

im
at

e

Density
This work
Oracle
Empirical
JO20

(a) Using piecewise-linear polynomials

-6 -5 -4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
en

si
ty

 E
st

im
at

e

Density
This work
Oracle
Empirical
JO20

(b) Using piecewise-degree 2 polynomials

Figure 4.2. Learning Gaussian mixture 0.7N (−2, 1) + 0.3N (1, 1) using different filters

114



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

D
en

si
ty

 E
st

im
at

e

Density
This work
Oracle
Empirical
JO20

(a) Using piecewise-linear polynomials

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

D
en

si
ty

 E
st

im
at

e

Density
This work
Oracle
Empirical
JO20

(b) Using piecewise-degree 2 polynomials

Figure 4.3. Learning Beta mixture 0.7Beta(17, 4) + 0.3Beta(3, 10) using different filters

Table 4.1. TV error of estimating Gaussian and Beta mixtures using various batch filters,
extrapolated by polynomials of degree 1 and 2

Distribution→ 0.7 · N (−2, 1) + 0.3 · N (1, 1) 0.7 · Beta(17, 4) + 0.3 · Beta(3, 10)
Running SURF on samples in ↓ degree 1 degree 2 degree 1 degree 2

All batches (Empirical) 0.1859 0.1863 0.1724 0.1730
Batches filtered using [76] 0.0724 0.0719 0.0573 0.0520

Batches filtered using this work 0.0223 0.0188 0.0218 0.0190
Good batches (Oracle) 0.0205 0.0188 0.0222 0.0202

We now show the algorithm’s actual performance for recovering continuous distributions

in the presence of adversarial batches. These are the first experiments performed for learning

continuous distributions robustly using batches. To show the algorithm’s efficacy, we applied it

to two of the most common and practical continuous distributions, Gaussian mixtures and beta

mixtures.

To estimate the distributions robustly, we first used our algorithm to filter out suspicious

batches. In all experiment in this section we run our Ak filtering algorithm for k = 10. The

algorithm does not need to know anything else about the underlying distribution.

We then used the remaining batches as input to the recent SURF Algorithm [67] for

learning piecewise-polynomial distributions for genuine samples. SURF is an alternative to the

115



algorithm in [1] and has the advantage that we need to specify only the degree d of the estimating

polynomial, SURF then automatically finds the best number of pieces t.

We compared the results of our filtering algorithm to those obtained by the following

filters. The naive empirical filter that keeps all batches, the oracle filter that knows the identity of

the good batches and keeps only these batches, and the filtering algorithm in [76].

One can not run algorithm of [31] for continuous distributions. We tried combining it

with the partition idea. However the size of the partition required is the power of 2 closest to k
√
n

β
,

and for this partition size the implementation of their algorithm provided with their paper does

not terminate even after running for several hours, while our estimator took on average less than

three minutes.

As for the discrete experiments in the main paper, we used adversarial fraction β = 0.4

and batch size n = 500. For Gaussian mixtures, we considered the distribution 0.7 · N (−2, 1) +

0.3 · N (1, 1) for the good batches and N (0, 1) for the adversarial batches. For Beta mixtures,

we considered the distribution 0.7 · Beta(17, 4) + 0.3 · Beta(3, 10) for the good batches, and

Beta(2, 2) for the adversarial batches.

For both distributions, we ran both our algorithm and [76] to filter for Ak distance for the

moderate value k = 10. From Theorem 45, our algorithm uses only ⌊ k
β2 ⌋ = 62 good batches,

and ⌊ 62
1−β ⌋ = 104 total batches. We ran SURF with degree-1 (linear) and degree-2 (quadratic)

piecewise polynomials.

Each of Figures 4.2 and 4.3 plots the underlying distribution and its four estimates for a

single run. Table 4.1 shows the TV-distance for the four estimators, each averaged over 10 runs.

As can be observed from the figures, the empirical filter that keeps all samples tries to

estimate the mixture of the underlying and adversarial distributions and lands far from its target.

The [76] filter has sub-optimal sample complexity and also misses the mark. Both the current

estimator and the unrealizable oracle filters perform very well in all four cases, and are barely

distinguishable from the underlying distributions.

Similar conclusions can be drawn from Table 4.1. Consider for example Gaussian

116



distribution and degree 1 approximation. The empirical estimator achieves TV distance 0.1859,

the [76] filter achieves TV distance 0.0724, the current filter 0.02223, and the oracle filter a

slightly better 0.0205. Curiously, for the Beta distribution the current filter slightly outperforms

the optimal oracle filter, in the third decimal place. We do not know whether that is because the

estimator removes outlier batches, or the difference, because of the interaction with SURF, or if

this tiny difference is within statistical tolerance.

Note that the oracle filter assumes knowledge of the good and adversarial batches,

information that we do not assume to be available. As shown in [67] when combined with SURF

it achieves the information theoretic limit for learning these densities (to log factors), showing that

our algorithm essentially matches the best performance even with knowledge of the adversarial

batches.

4.8 Essential properties of good batches

In this short section, we restate important properties that hold for large collections of

good batches that play an essential role in the analysis of the filtering algorithm.

Let v⊗2 denote the outer product vv⊺ of a vector v with itself.

Theorem 56 (Essential properties of good batches). For some constants c < 1/2

and C > 1, for any k, β < c, δ < 1, n > Ω(logC(1/β)), and discrete or continuous p. If

|BG| · n = Ω̃(k+log(1/δ)
∆2 ), then with probability ≥ 1 − δ, the following properties hold for all

sub-collections B′
G ⊆ BG of good batches, j ∈ 2[log(1/∆)], and M ∈ Rj:

1. If |B′
G| ≥ (1− 2β)|BG|, then

(a) ⟨M, (p̄jB′
G
− pj)⊗2⟩ ≤ O

(
∆2

log4 j

)
,

(b) ⟨M,F j
B′

G
⟩ ≤ O

(
∆2

β log4 j

)
.

2. If |B′
G| ≤ 2β|BG|, then

117



|B′
G|⟨M, (p̄jB′

G
− pj)⊗2⟩ ≤

∑
b∈B′

G

⟨M, (µ̄jb − p
j)⊗2⟩ ≤ O

(
|BG| ·

∆2

β log4 j

)
.

4.9 Two useful results

The following lemmas help prove the essential properties of the good batches and establish

the filtering conditions.

Recall that v⊗2 := vv⊺ denotes the outer product of a vector v with itself, and that for

any discrete distribution q, the covariance matrix of the normalized mutational distribution

MulN(q, n) is

C(q) =
1

n
(Diag(q)− q⊗2).

The following result bounds the change in C(q) as q changes. The symbol ⊙ denotes

element-wise product of two matrices or vectors.

Lemma 58. For any j ≥ 0, pair of discrete distributions q, q̂ ∈ Rj , and collection of vectors

U ⊆ {u ∈ Rj : ||u||∞ ≤ 1},

max
u,v∈U
⟨uv⊺, C(q)− C(q̂)⟩ ≤ 3

n
max

u∈U,w∈{−1,1}j
|(u⊙ w) · (q − q̂)|.

Proof. Note that for any vectors u, v and w

⟨uv⊺, w⊗2⟩ = (u · w)(v · w).

118



Then, for any u, v ∈ U and distributions q, q′ ∈ Rj

⟨uv⊺, q⊗2 − q̂⊗2⟩ = (u · q)(v · q)− (u · q̂)(v · q̂)

= (u · q)(v · (q − q̂)) + (v · q̂)(u · (q − q̂))

≤ (||u||∞||q||1) ·
∣∣∣v · (q − q̂)∣∣∣+ (||v||∞||q̂||1) ·

∣∣∣u · (q − q̂)∣∣∣
≤
∣∣∣v · (q − q̂)∣∣∣+ ∣∣∣u · (q − q̂)∣∣∣

≤ 2max
u∈U

∣∣∣u · (q − q̂)∣∣∣,
where the last inequality used the facts that ||u||∞, ||v||∞ ≤ 1 and for any pair of distributions

||q + q̂||1 = 2.

Hence for any u, v ∈ U ,

⟨uv⊺, C(q)− C(q̂)⟩ = 1

n
⟨uv⊺,Diag(q − q̂)− q⊗2 + q̂⊗2⟩

≤ 1

n
|⟨uv⊺,Diag(q − q̂)⟩|+ 1

n
|⟨uv⊺, q⊗2 − q̂⊗2⟩|

=
1

n

∣∣∣ j∑
i=1

ui · vi · (qi − q̂i)
∣∣∣+ 2

n
max
u∈U
|u · (q − q̂)|

≤ 1

n

∣∣∣ j∑
i=1

ui · |qi − q̂i|
∣∣∣+ 2

n
max
u∈U
|u · (q − q̂)|

=
1

n
max

w∈{−1,1}j
|(u⊙ w) · (q − q̂)|+ 2

n
max
u∈U
|u · (q − q̂)|,

where the second inequality uses the fact that ||v||∞ ≤ 1 and the last equality follows by letting

wi = sign(qi − q̂i) and w = (w1, . . . ,wj). The statement of lemma follows. ■

Generalizing a familiar result for scalars, the next lemma decomposes the "squared

distance" of a set of vectors from some given vector to their squared distance from their mean

and the squared distance between their mean and the given vector.

119



Lemma 59. Let µ̂ = 1
t

∑t
i=1 µi be the average of µ1, . . . ,µt ∈ Rj . Then for any µ ∈ Rj ,

t∑
i=1

(µi − µ)⊗2 =
t∑
i=1

(µi − µ̂)⊗2 + t · (µ̂− µ)⊗2.

Proof.

t∑
i=1

(µi − µ)(µi − µ)⊺ =
t∑
i=1

(µi − µ̂+ µ̂− µ)⊗2

=
t∑
i=1

(
(µi − µ̂)⊗2 + 2(µ̂− µ)(µi − µ̂)⊺ + (µ̂− µ)⊗2

)
=

t∑
i=1

(µi − µ̂)⊗2 + t · (µ̂− µ)⊗2 + 2(µ̂− µ)
( t∑
i=1

µi − t · µ̂
)⊺

=
t∑
i=1

(µi − µ̂)⊗2 + t · (µ̂− µ)⊗2 + 2(µ̂− µ)(t · µ̂− t · µ̂)⊺

=
t∑
i=1

(µi − µ̂)⊗2 + t · (µ̂− µ)⊗2. ■

4.10 The filtering algorithm and its analysis

We present the filtering algorithm, explain how it works, and prove its correctness.

The algorithm consists of a main part (Algorithm 5) that sequentially over j ∈ 2[log(1/∆)]

checks if Equation (4.2) is satisfied for partition Pj . If not, it iteratively calls sub-routine

Batch-Deletion (Algorithm 6), to delete the appropriate batches.

As stated in the main paper, Theorem 53 implies that any distribution satisfying Equa-

tion (4.1) learns p to the desired Ak distance O(∆). Hence to prove the algorithm’s correctness

it suffices to show that it returns a batch sub-collection whose empirical distribution satisfies

Equation (4.1).

The next technical lemma, proved in the next subsection, shows that if a batch sub-

collection B′ ⊆ B retains at least a (1− 2β) fraction of all good batches in B, and its empirical

distribution satisfies Equation (4.2), then it also satisfies Equation (4.1).

120



Algorithm 5. Robust Estimator in Ak distance
1: Input: Batch size n, β, k, and Batch collection B such that an unknown BG ⊆ B of size
≥ (1− β)|B| satisfy essential properties.

2: Output: B′ ⊆ B such that ||p− p̄B′ ||Ak
≤ O(∆).

3: B′ ← B ;
4: for j ∈ 2[log(1/∆)] {Running for partition size k · j.} do
5: while maxM∈Rj |⟨M,F j

B′⟩| ≥ Ω(
β log 1

β

n·log4 j ) {Checking if Equation (4.2) holds for j} do
6: M∗ = argmax

M∈Rj

⟨M,F j
B′⟩ ;

7: ∀ b ∈ B′ calculate ξb = |⟨M∗, Cj
b,B′⟩| ;

8: Bo = { Batches with top β|B| scores} ;
{Suspect batches with top β|B| scores as the possible outliers.}

9: Bdel ←Batch-Deletion(B0, {ξb}) ;
10: B′ ← B′ \Bdel ;
11: end while
12: end for
13: return (B′ ← B′).

Algorithm 6. Batch-Deletion
1: Input: Sub-Collection B0 of suspected outliers, and the scores {ξb} for all b ∈ B0.
2: Output: Batches Bdel ⊆ B0 to delete.
3: Bdel = {}, ξtotal =

∑
b∈B0 ξb and ξdel = 0 ;

4: while ξdel ≤ 0.5 · ξtotal do
5: Samples batch b ∈ B0 such that probability of picking a batch b ∈ B0 is ∝ ξb;
6: ξdel ← ξdel + ξb;
7: B0 ← B0 \ {b} and Bdel ← Bdel ∪ {b} ;
8: end while
9: return (Bdel);

Lemma 60. If the essential properties of good batches hold, then ∀ j ∈ 2[log(1/∆)], ∀B′ s.t.

|B′ ∩BG| ≥ (1− 2β)|BG|,

max
v∈{0,1}k·j :||v||0≤2k

|p̄jB′ · v − pj · v| ≤ O

(
∆

log2 j
+

√
β · max

M∈Rj
⟨M,F j

B′⟩

)
.

In the main paper we argued that one can use filtering to find a batch sub-collection

B′ achieving Equation (4.2) if for all B′ ⊆ B such that |BG \ B′| ≤ 2β · |BG|, the following

conditions hold:

121



1. There is a computationally efficient algorithm for findingM∗ := argmax{⟨M,F j
B′⟩ :M ∈

Rj}.

2. If Equation (4.2) do not hold for B′, then using M∗ we can delete batches from B′ such

that in expectation we delete 3 times more adversarial batches than good.

3. If B′ has no adversarial batches, it satisfies Equation (4.2).

For completeness we first repeat the argument. Suppose that the three condition hold.

To find the collection B′ achieving Equation (4.2), start with B′ = B, and sequentially over

j ∈ 2[log(1/∆)], perform the following recursive algorithm. Efficiently find M maximizing

⟨M,F j
B′⟩ (condition 1). Use M to delete batches b ∈ B′ for which ⟨M,Cj

b,B′⟩ is high. Continue

until Equation (4.2) holds for j. As the algorithm proceeds, so long as Equation (4.2) fails to

hold, Condition 2 ensures that in expectation we remove more adversarial batches than good

batches. Observe that without adversarial batches, Equation (4.2) holds. Hence, at the latest,

when all adversarial batches are removed, Condition 3 ensures that Equation (4.2) will hold

and the algorithm will stop. The second condition ensures that w.h.p. the algorithm do not

remove more than more than |BA|/2 = β(1− β)BG/2 ≤ 2βBG good batches before removing

all adversarial batches.

Next we show that with high probability the three condition hold for any B′ ⊆ B such

that |BG \B′| ≤ 2β · |BG|.

The first filtering condition always holds since the set Rj is convex, hence for any matrix

A one can solve the optimization problem argmax{⟨M,A⟩ :M ∈ Rj} efficiently.

The third condition holds with high probability as it is essential property 1b of good

batches.

To establish the second condition, we now describe a corresponding Batch-Deletion

procedure. Its Pseudo-code is presented in Algorithm 6 at the end of this section.

Suppose Equation (4.2) do not hold for a batch sub collection B′ such that |B′ ∩BG| ≥

122



(1 − 2β)|BG|. Given M∗ = argmax
M∈Rj

⟨M,F j
B′⟩, compute the score ⟨M∗, Cj

b,B′⟩ of each batch

b ∈ B′. Let Bo be the sub collection of β|B| batches with highest scores in B′.

We delete batches in Bo with probability proportional to their score until total score of

the remaining batches is half the initial total score of all batches in B0.

Since B′ has at most β|B|, adversarial batches, and Bo has the β|B| batches with highest

scores in B′, the total score of batches in Bo is at least as large as the total scores of adversarial

batches in B′.

Lemma 61 shows that if Equation (4.2) does not hold, then the ratio of the total score of

any collection of β|B| good batches to the total score of all adversarial batches in B′ is ≤ 1
8
.

Lemma 61. There exists an absolute constant c such that if the essential properties of good

batches hold for BG, then ∀ j ∈ 2[log(1/∆)] and ∀B′ s.t. |B′ ∩ BG| ≥ (1 − 2β)|BG|, if

maxM∈Rj⟨M,F j
B′⟩ ≥ c ∆2

βlog4 j
, then ∀B′′

G ⊆ BG∩B′ s.t. |B′′
G| ≤ β|B|, M∗ := argmax

M∈Rj

⟨M,F j
B′⟩

satisfies

∑
b∈B′′

G

⟨M∗, Cj
b,B′⟩ ≤

1

8

∑
b∈B′∩BA

⟨M∗, Cj
b,B′⟩.

Together these results imply that the score of all good batches in Bo is at most 1
8

of the

total score of all batches inBo. Recall that sub-routine Batch Deletion starts withB0 that contains

the β|B| batches with highest scores, and then removes batches with probability proportional

to their score, until it is left with batches with half the initial total score. It follows that at any

point the ratio of total scores of good batches in B0 to scores of all batches in B0 always remains

below 1/4. Therefore, in each deletion step the probability of deleting a good batch is ≤ 1/4.

And the second property follows. This completes the proof of the correctness of the Algorithm

and shows that it learns p to Ak distance O(∆).

123



4.10.1 Proofs of Lemmas 60 and 61

To prove the two lemmas we first derive some useful relations and establish a preliminary

technical lemma.

For any β less than some small absolute constant. Let B′ be any batch sub-collection

such that |B′ ∩ BG| ≤ (1 − 2β)|BG|. For the purpose of this section, let B′
G = B′ ∩ BG and

B′
A = B′ ∩BA. Then for β ≤ 1/6,

|B′| ≥ |B′
G| ≥ (1− 2β)BG ≥ (1− 2β)(1− β)|B| ≥ |B|

2
, (4.3)

and

|B′
A| ≤ |BA| ≤ β|B| ≤ 2β|B′

G|. (4.4)

Note that

p̄jB′ =
1

|B′|
∑
b∈B′

µ̄jb =
1

|B′|
∑
b∈B′

G

µ̄jb +
1

|B′|
∑
b∈B′

A

µ̄jb

=
|B′

G|
|B′|

p̄jB′
G
+
|B′

A|
|B′|

p̄jB′
A
.

Hence

|B′
G|(p̄

j
B′

G
− p̄jB′) = −|B′

A|(p̄
j
B′

A
− p̄jB′).

124



Next,

∑
b∈B′

A

Cj
b,B′ −

∑
b∈B′

A

Cj
b,B′

A
=
∑
b∈B′

A

(µ̄jb − p̄
j
B′)

⊗2 −
∑
b∈B′

A

(µ̄jb − p̄
j
B′

A
)⊗2

= |B′
A|(p̄

j
B′

A
− p̄jB′)

⊗2

=
|B′

G|2

|B′
A|

(p̄jB′
G
− p̄jB′)

⊗2, (4.5)

where the second last step uses Lemma 59 and the last equation follows from the previous

equation.

Similarly,

∑
b∈B′

G

Cj
b,B′ −

∑
b∈B′

G

Cj
b,B′

G
=
∑
b∈B′

G

(µ̄jb − p̄
j
B′)

⊗2 −
∑
b∈B′

G

(µ̄jb − p̄
j
B′

G
)⊗2

= |B′
G|(p̄

j
B′

G
− p̄jB′)

⊗2. (4.6)

In addition to the essential properties of good batches, we will need the following simple

consequence of our partition scheme. It will be convenient to prove this lemma along with the

essential properties.

Lemma 62. For any batch sub-collection B′ ⊆ B of size |B′| ≥ |B|/2, and for any j ≥ 1 the

following bound holds

max
M∈Rj

⟨M,C(p̄B′)⟩ ≤ O
(

1

jn

)
.

The following technical lemma will be useful in several proofs.

Lemma 63. If the essential properties of good batches hold, then ∀ j ∈ 2[log(1/∆)], ∀B′ s.t. for

B′
G = B′ ∩BG |B′

G| ≥ (1− 2β)|BG|,

max
M∈Rj

⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩ ≤ 8β max
M∈Rj

⟨M,F j
B′⟩+O

( ∆2

log4 j

)
.

125



Proof. Recall that F j
B′ = 1

|B′|
∑

b∈B′ C
j
b,B′ − C(p̄jB′). Let B′

A = B′ \ B′
G. We use the essential

properties to lower bound F j
B′ . Let

M̃ := argmax
M∈Rj

⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩ and τ :=
⟨M̃, (p̄jB′

G
− p̄jB′)⊗2⟩

∆2/log4 j
.

Then

max
M∈Rj

⟨M,F j
B′⟩ =

1

|B′|
max
M∈Rj

∑
b∈B′

⟨M,Cj
b,B′ − C(p̄jB′)⟩ ≥

1

|B′|
∑
b∈B′

⟨M̃, Cj
b,B′ − C(p̄jB′)⟩.

For any M ∈ Rj ,

∑
b∈B′

⟨M,Cj
b,B′ − C(p̄jB′)⟩

=
∑
b∈B′

G

⟨M,Cj
b,B′ − C(p̄jB′)⟩+

∑
b∈B′

A

⟨M,Cj
b,B′ − C(p̄jB′)⟩

=
∑
b∈B′

G

⟨M,Cj
b,B′

G
− C(p̄jB′

G
)⟩+

∑
b∈B′

G

⟨M,Cj
b,B′ − Cj

b,B′
G
⟩

+ |B′
G|⟨M,C(p̄jB′

G
)− C(p̄jB′)⟩+

∑
b∈B′

A

⟨M,Cj
b,B′⟩ − |B′

A|⟨M,C(p̄jB′)⟩.

We individually bound each of the five terms on the right. The bound on the first term is

implied by essential property 1b

|
∑
b∈B′

G

⟨M,Cj
b,B′

G
− C(p̄jB′

G
)⟩| = |B′

G||⟨M,F j
B′

G
⟩| ≤ |B′

G| max
M∈Rj

|⟨M,F j
B′

G
⟩| ≤ |B′

G|O( ∆2

β log4 j
).

The second term is evaluated exactly using Equation (4.6),

∑
b∈B′

G

⟨M,Cj
b,B′ − Cj

b,B′
G
⟩ = |B′

G|⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩.

126



For the third term,

|B′
G||⟨M,C(p̄jB′

G
)− C(p̄jB′)⟩|

(a)

≤ |B′
G| · 2KG · max

u∈Lk·j
2k

|⟨u⊗2, C(p̄jB′
G
)− C(p̄jB′)⟩|

(b)

≤ |B′
G|KG ·

6

n
max
u∈Lk·j

2k

|u · (p̄jB′
G
− p̄jB′)|

= |B′
G|KG ·

6

n
max
u∈Lk·j

2k

√
⟨u⊗2, (p̄jB′

G
− p̄jB′)⊗2⟩

(c)

≤ |B′
G|KG ·

6

n
max
M∈Rj

√
⟨M, (p̄jB′

G
− p̄jB′)⊗2⟩

= |B′
G|KG ·

6

n

√
τ

∆2

log4 j

= 6KG ·
√
τ |B′

G|
∆2

β log4 j
· β log

2 j

n ·∆
(d)

≤ 6KG ·
√
τ |B′

G|
∆2

β log4 j
·

√
log2 j√

n log(1/β)

(e)
= 6KG ·

√
τ |B′

G|
∆2

β log4 j
, (4.7)

where (a) uses Theorem 57, (b) uses Lemma 58 and the observation that u ∈ Lk·j2k and

w ∈ {−1, 1}k·j implies u ⊙ w ∈ Lk·j2k , (c) follows as for all u ∈ Lk·j2k , uu
⊺ ∈ Rj , (d) uses

∆ =
β
√

log(1/β)
√
n

, and finally (e) uses j ≤ 1
∆

and n ≥ log4 1
∆

.

For the fourth term, using Equation (4.5),

∑
b∈B′

A

⟨M,Cj
b,B′⟩ =

∑
b∈B′

A

⟨M,Cj
b,B′

A
⟩+ |B

′
G|2

|B′
A|
⟨M, (p̄jB′

G
− p̄jB′)

⊗2⟩

≥ |B
′
G|2

|B′
A|
⟨M, (p̄jB′

G
− p̄jB′)

⊗2⟩

≥ |B
′
G|

2β
⟨M, (p̄jB′

G
− p̄jB′)

⊗2⟩, (4.8)

where the first inequality uses the fact that M and the Cj
b,B′

A
’s are PSD matrices and the second

inequality uses Inequality (4.4).

127



Finally the last term is bounded using Lemma 62

|B′
A||⟨M,C(p̄jB′)⟩| ≤ |B′

A|O(
1

jn
) ≤ O(β|B| 1

jn
) ≤ O(|B′

G|
∆2

β log4 j
),

where in the last inequality we used |B′
G| ≥

|B|
2

, and ∆2

β log2 j
= β log(1/β)

n log2 j
≥ β

n·j .

Combining the bounds on all five terms,

∑
b∈B′

⟨M,Cj
b,B′ − C(p̄jB′)⟩

≥ −O(|B′
G|

∆2

log4 j
) + |B′

G|⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩ − 6KG ·
√
τ |B′

G|
∆2

β log4 j

+
|B′

G|
2β
⟨M, (p̄jB′

G
− p̄jB′)

⊗2⟩ − O(|B′
G|

∆2

β log4 j
). (4.9)

Choosing M = M̃ ,

∑
b∈B′

⟨M̃, Cj
b,B′ − C(p̄jB′)⟩ ≥ −O(|B′

G|
∆2

log4 j
) + τ |B′

G|
∆2

log4 j
− 6KG ·

√
τ |B′

G|
∆2

β log4 j

+
1

2β
τ |B′

G|
∆2

log4 j
−O(|B′

G|
∆2

β log4 j
)

≥ |B′
G|

∆2

β · log4 j
(
τ

2
+ βτ − 6KG ·

√
τ −O(β + 1))

≥ |B′
G|

∆2

β · log4 j
(
τ

4
−O(1)).

128



Therefore,

max
M∈Rj

⟨M,F j
B′⟩ ≥

1

|B′|
∑
b∈B′

⟨M̃, Cj
b,B′ − C(p̄jB′)⟩

≥ |B
′
G|
|B′|

∆2

β · log4 j
(
τ

4
−O(1))

=
|B′

G|
|B′|

∆2

β · log4 j

(⟨M̃, (p̄jB′
G
− p̄jB′)⊗2⟩

4∆2/log4 j
−O(1)

)
=
|B′

G|
|B′|
⟨M̃, (p̄jB′

G
− p̄jB′)⊗2⟩

4β
−O

( |B′
G|
|B′|

∆2

β · log4 j

)
≥
⟨M̃, (p̄jB′

G
− p̄jB′)⊗2⟩

8β
−O

( ∆2

β · log4 j

)
,

where the last step uses |B′
G| ≥ 2|B| ≥ 2|B′| and |B′

G| ≤ |B′|.

Hence,

max
M∈Rj

⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩ ≤ 8β max
M∈Rj

⟨M,F j
B′⟩+O

( ∆2

log4 j

)
. ■

We now prove Lemmas 60 and 61. For completness, we repeat their statements.

Lemma 60. If the essential properties of good batches hold, then ∀ j ∈ 2[log(1/∆)], ∀B′

s.t. |B′ ∩BG| ≥ (1−O(β))|BG|,

max
v∈{0,1}k·j :||v||0≤2k

|p̄jB′ · v − pj · v| ≤ O

(
∆

log2 j
+

√
β · max

M∈Rj
⟨M,F j

B′⟩

)
.

Proof. From Lemma 63,

max
M∈Rj

⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩ ≤ 8β max
M∈Rj

⟨M,F j
B′⟩+O

( ∆2

log4 j

)
.

129



Next,

max
M∈Rj

⟨M, (pj − p̄jB′)
⊗2⟩ = max

M∈Rj
⟨M, (pj − p̄jB′

G
+ p̄jB′

G
− p̄jB′)

⊗2⟩

≤ 2 max
M∈Rj

⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩+ 2 max
M∈Rj

⟨M, (pj − p̄jB′
G
)⊗2⟩

≤ 16β max
M∈Rj

⟨M,F j
B′⟩+O

( ∆2

log4 j

)
,

here the last step uses the previous equation and essential property 1a.

Next note that if v ∈ {0, 1}k·j2k then v⊗2 ∈ Rj . Hence,

max
v∈{0,1}k·j2k

(v · (p− p̄jB′))
2 = max

v∈{0,1}k·j2k

⟨v⊗2, (p− p̄jB′)
⊗2⟩

≤ max
M∈Rj

⟨M, (p− p̄jB′)
⊗2⟩

≤ 16β max
M∈Rj

⟨M,F j
B′⟩+O

( ∆2

log4 j

)
.

The lemma follows by taking square roots. ■

Lemma 61. There exists an absolute constant c such that if the essential properties

of good batches hold for BG, then ∀ j ∈ 2[log(1/∆)] and ∀B′ s.t. |B′ ∩ BG| ≥ (1− 2β)|BG|, if

maxM∈Rj⟨M,F j
B′⟩ ≥ c ∆2

βlog4 j
, then ∀B′′

G ⊆ BG∩B′ s.t. |B′′
G| ≤ β|B|, M∗ := argmax

M∈Rj

⟨M,F j
B′⟩

satisfies

∑
b∈B′′

G

⟨M∗, Cj
b,B′⟩ ≤

1

8

∑
b∈B′∩BA

⟨M∗, Cj
b,B′⟩.

Proof. Let

κ :=
⟨M∗, F j

B′⟩
∆2

β·log4 j

and τ := max
M∈Rj

⟨M, (p̄jB′
G
− p̄jB′)⊗2⟩

∆2

log4 j

.

130



For any M ∈ Rj , from Lemma 63

max
M∈Rj

⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩ ≤ 8κ
∆2

log4 j
+O

( ∆2

log4 j

)
.

Hence

τ≤ 8κ+O(1).

A calculation similar to Equation (4.9) shows that

∑
b∈B′

⟨M,Cj
b,B′ − C(p̄jB′)⟩

≤ O(|B′
G|

∆2

log4 j
) + |B′

G|⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩+ 6KG ·
√
τ |B′

G|
∆2

β log4 j
+
∑
b∈B′

A

⟨M,Cj
b,B′⟩.

Then

∑
b∈B′

A

⟨M,Cj
b,B′⟩

≥
∑
b∈B′

⟨M,Cj
b,B′ − C(p̄jB′)⟩ − O(|B′

G|
∆2

log4 j
)− |B′

G|⟨M, (p̄jB′
G
− p̄jB′)

⊗2⟩

− 6KG ·
√
τ |B′

G|
∆2

β log4 j

≥ |B′|⟨M,F j
B′⟩ − O(|B′

G|
∆2

log4 j
)− |B′

G|(8κ+O(1)) ∆2

log4 j

− 6KG ·
√

8κ+O(1)|B′
G|

∆2

β log4 j

131



For M =M∗,

∑
b∈B′

A

⟨M∗, Cj
b,B′⟩

≥ |B′| κ∆2

β · log4 j
−O(|B′

G|
∆2

log4 j
)− |B′

G|(8κ+O(1)) ∆2

log4 j

− 6KG ·
√

8κ+O(1)|B′
G|

∆2

β log4 j

≥ |BG|∆2

β · log4 j

(
κ|B′|
|BG|

− O( |B
′
G|β
|BG|

)− (8κ+O(1))|B′
G|β

|BG|
−

6KG ·
√

8κ+O(1)|B′
G|

|BG|

)

≥ Ω

(
|BG|

∆2

β log4 j
(κ−

√
κ− 1)

)
,

where in the last step we assumed that β is sufficiently small, and Equation (4.3).

Next, for any B′′
G ⊆ B′

G of size ≤ β|B| = β |BG|
(1−β) ≤ 2β|BG|,

∑
b∈B′′

G

Cj
b,B′ −

∑
b∈B′′

G

Cj
b,B′′

G
=
∑
b∈B′′

G

(µ̄jb − p̄
j
B′)

⊗2 −
∑
b∈B′′

G

(µ̄jb − p̄
j
B′′

G
)⊗2

= |B′′
G|(p̄

j
B′′

G
− p̄jB′)

⊗2

= |B′′
G|
(
(p̄jB′′

G
− pj) + (pj − pjB′

G
) + (pjB′

G
− p̄jB′)

)⊗2
.

where the second to the last equality uses Lemma 59. It follows that for any PSD matrix M

∑
b∈B′′

G

⟨M,Cj
b,B′⟩

≤ |
∑
b∈B′′

G

⟨M,Cj
b,B′′

G
⟩|+ 3|B′′

G|
(
⟨M, (p̄jB′′

G
− pj)⊗2⟩+ ⟨M, (pj − pjB′

G
)⊗2⟩

+ ⟨M, (pjB′
G
− p̄jB′)

⊗2⟩
)

≤ O(|BG|
∆2

β log4 j
) +O(|BG|

∆2

β log4 j
) +O(|B′′

G|
∆2

log4 j
) + |B′′

G|(8κ+O(1)) ∆2

log4 j

≤ O(|BG|(β2κ+ 1)
∆2

β log4 j
),

132



where in the second inequality, the first two terms are bounded using the essential property 2, third

term using the essential property 1a of the good batches, and the last term is bounded from the

definition of τ and the relation τ ≤ 8κ+O(1), and the last inequality follows as |B′′
G| ≤ 2β|BG|.

The above bound holds for all M including M∗

Note that for β smaller than some absolute constant and κ larger than some absolute

constant the ratio ∑
b∈B′′

G
⟨M∗, Cj

b,B′⟩∑
b∈B′

A
⟨M∗, Cj

b,B′⟩
,

can be made smaller than 1/8, completing the lemma’s proof. ■

4.11 Proof of some simple results in the main paper

In the previous section we established the filtering conditions and used them to show the

correctness of the filtering Algorithm. In the next section we show that the essential properties of

good batches has essential properties with high probability. In this section we establish some of

the less intricate results, Lemmas 48, 51, 52, and 54. For the reader’s convenience we restate

each lemma before proving it.

Lemma 48. For any k and distributions p, q over [0, 1]× {−1, 1},

rp(h
opt(q))− ropt

p (Hk) ≤ 2||p[−1,1] − q[−1,1]||A2k
.

Proof. For h ∈ Hk, let S+1
h := {x : x ∈ [0, 1] : h(x) = −1}, similarly S−1

h := {−x : x ∈

[0, 1] : h(x) = 1}, and finally Sh := S+1
h ∪ S

−1
h . Observe that h(x) ̸= y iff x · y ∈ Sh.

The definition ofHk implies that S+1
h and S−1

h consist of at-most k intervals. Therefore,

Sh consists of at most 2k intervals, and Sh ∈ A2k.

For two distributions p and q over [0, 1]×{−1, 1}, the largest difference between the loss

133



of any classifier h ∈ Hk is

sup
h∈Hk

|rp(h)− rq(h)| = sup
h∈Hk

|Pr(X,Y )∼p[h(X) ̸= Y ]− Pr(X,Y )∼q[h(X) ̸= Y ]|

= sup
h∈Hk

|Pr(X,Y )∼p[X · Y ∈ Sh]− Pr(X,Y )∼q[X · Y ∈ Sh]|

≤ sup
S∈A2k

|Pr(X,Y )∼p[X · Y ∈ S]− Pr(X,Y )∼q[X · Y ∈ S]|

≤ ||p[−1,1] − q[−1,1]||A2k
.

Using a sequence of triangle inequalities, followed by this result,

rp(h
opt(q))− ropt

p (Hk)

= rp(h
opt(q))− rp(hopt(p))

= rp(h
opt(q))− rq(hopt(q)) + rq(h

opt(q))− rq(hopt(p)) + rq(h
opt(p))− rp(hopt(p))

≤ rq(h
opt(q))− rq(hopt(p)) + 2 sup

h∈Hk

|rq(h)− rp(h)|

≤ 2 sup
h∈Hk

|rq(h)− rp(h)|

≤ 2 · ||p[−1,1] − q[−1,1]||A2k
. ■

Lemma 51. For any subset S ∈ Ak, there are sets S ′, S ′′ ∈ Ak(Pj) such that

S ′ ⊆ S ⊆ S ′′ and p̄B(S ′′ \ S ′) ≤ 2/j.

Proof. Any set S ∈ Ak is a union of k real intervals I1 ∪ I2 ∪ . . . ∪ Ik. Let I ′j be the largest

interval over Pj that is fully contained in Ij , and let S ′ = I ′1 ∪ I ′2 ∪ . . . ∪ I ′k. By definition,

S ′ ∈ Ak(Pj). Similarly, let I ′′j be the smallest interval over Pj that is fully contained in Ij ,

and let S ′′ = I ′′1 ∪ I ′′2 ∪ . . . ∪ I ′′k . Again, S ′′ ∈ Ak(Pj). It is easy to see that I ′′j \ I ′j consists

of at most two parts, one each on the right and left. Therefore, S ′′ \ S ′ contains at most 2k

parts. Since all k · j parts of the partition contain an equal number of samples in B, we obtain

p̄B(S
′′ \ S ′) ≤ 2/j. ■

134



Lemma 52. For β ≤ 1/2, j ≤ 1/∆, and m · n = Ω̃(k+log 1/δ
∆2 ), with probability > 1− δ,

for all S ∈ C(Pj), p(S) ≤ 3 · p̄B(S) +O(∆).

Proof. First we bound the empirical probability assigned bu good batches BG to subset S.

p̄BG
(S) =

Number of samples in BG that lie in S
|BG| · n

≤ Number of samples in B that lie in S
|BG| · n

=
p̄B(S) · |B| · n
|BG| · n

=
p̄B(S)

(1− β)
.

Collection of all samples in BG can be thought of as |BG| · n i.i.d. samples from underlying

distribution from p. Next note that C(Pj) ⊆ Ak·j . The set Ak·j has VC dimension O(k · j).

Applying Theorem 67 for Ak·j , for |BG| · n ≥ Ω(k·j log(1/ϵ)+log(1/δ)
ϵ2

), with probability

≥ 1− δ,

sup
S∈Ak·j

p(S)− p̄BG
(S)√

p(S)
≤ ϵ.

Since |BG| · n = (1− β)m · n = Ω̃(k+log 1/δ
∆2 ) and j ≤ 1

∆
, we can choose ϵ =

√
∆
4

in the above

equation. We get

p(S) ≤ p̄BG
(S) +

√
∆ · p(S)
4

≤ p̄BG
(S) +

p(S)

8
+

∆

8
,

here the last inequality used
√
ab = |a|+ |b|/2. Hence

p(S) ≤ 8p̄B(S)

7(1− β)
+

∆

7
≤ 16

7
p̄B(S) +

∆

7
.

■

Lemma 54. For all i ≥ 1, any interval over partition P2i can be expressed as the union

of at-most 2 parts from each partition P2i ,P21 , ...,P22 and one interval over P2.

Proof. First we show the following claim.

135



Claim: For all j, any interval over P2j can be expressed as the union of an interval over

Pj , and at-most two parts of P2j .

Proof of claim: Recall that any interval I over P2j is a union of consecutive elements

of P2j , namely I = ∪iei=isP
2j
i for some 0 ≤ is ≤ ie ≤ k · 2j. Observe that by definition,

P 2j
2i−1 ∪ P

2j
2i = P j

i . We consider four cases based on whether the numbers is and ie are even or

odd, and prove the claim for each case separately.

First, when both is and ie are odd,

ie⋃
i=is

P 2j
i =

( ie−1
2⋃

i= is+1
2

(
P 2j
2i−1

⋃
P 2j
2i

))⋃
P 2j
ie

=
( ie−1

2⋃
i= is+1

2

P j
i

)⋃
P 2j
ie
.

Noting that
⋃ ie−1

2

i= is+1
2

P j
i is an interval over partition Pj , and P 2j

ie
is a part of P2j proves the claim

for this case.

Next, for even is and odd ie,

ie⋃
i=is

P 2j
i = P 2j

is

⋃( ie−1
2⋃

i= is+2
2

(
P 2j
2i−1

⋃
P 2j
2i

))⋃
P 2j
ie

=
( ie−1

2⋃
i= is+2

2

P j
i

)⋃
P 2j
is

⋃
P 2j
ie
.

Noting that
⋃ ie−1

2

i= is+2
2

P j
i is an interval over partition Pj , and P 2j

is
and P 2j

ie
are two parts of P2j

proves the claim for this case. The two remaining cases can be proved similarly to complete the

proof of the claim.

From the claim, any interval I over P2i can be expressed as a union of some interval I ′

over P2i−1 and at-most 2 parts of P2i . Applying the claim again, interval I ′ can be expressed as

a union of an interval I ′′ over P2i−2 and at-most 2 parts of P2i−1 . Applying the claim i times, we

136



obtain the lemma. ■

4.12 Essential properties of good batches

This section is devoted to establishing the Essential properties of the good batches and

proving Theorem 56. In the process we also derive Lemma 62, used in Section 4.10.1. To

establish these properties we use Theorem 57, stated in the main paper. We start by proving this

theorem.

Recall Lji : {v ∈ Rj : ||v||∞ = 1, ||v||22 ≤ i}. The next lemma shows that if the essential

properties hold for {v⊗2 : v ∈ Lk·j2k }, the self outer products of vectors in Lk·j2k , then they hold for

all M ∈ Rj . The following well known result will be useful.

Theorem 64 (Grothendieck’s inequality). For any matrix A ∈ Rn×n,

max
M≽0,Mii≤1

|⟨M,A⟩| ≤ KG max
u,v:||v||∞≤1,||u||∞≤1

|⟨uv⊺, A⟩|,

where KG ≤ 1.783 is an absolute constant.

We use this inequality to derive Theorem 57 in the main paper. Recall that Rj := {M ∈

Rk·j×k·j :M ≽ 0,Mii ≤ 1,
∑

iMii ≤ 2k}.

Theorem 57. There is a universal constant KG ≤ 1.7822 such that for all real symmetric

matrices A ∈ Rk·j×k·j ,

max
M∈Rj

|⟨M,A⟩| ≤ 2 ·KG ·max{|⟨v⊗2, A⟩| : v ∈ Lk·j2k }.

Proof. AnyM ∈ Rj is PSD and satisfiesMii ≤ 1. Consider the diagonal matrixD = Diag(Mii),

and let M̂ = D−1/2MD−1/2. Observe that M̂ is also PSD and M̂ii ≤ 1. Then

⟨M,A⟩ = ⟨D1/2M̂D1/2, A⟩ = ⟨M̂,D1/2AD1/2⟩,

137



where the last step follows from the standard property that ⟨A1A2A3, A4⟩ = ⟨A2, A3A4A1⟩.

From Grothendieck’s inequality, there is some u, v such that ||u||∞, ||v||∞ ≤ 1 and

|⟨M̂,D1/2AD1/2⟩| ≤ KG|⟨uv⊺, D1/2AD1/2⟩|

= KG|⟨D1/2uv⊺D1/2, A⟩| = KG|⟨D1/2u(D1/2v)⊺, A⟩| = |⟨ûv̂⊺, A⟩|,

where û = D1/2u and v̂ = D1/2v. Note that since Dii =
√
Mii ≤ 1, hence ||û||∞ ≤ ||u||∞ ≤ 1

and

||û||22 =
∑
i

D2
iiu

2
i ≤

∑
i

Mii ≤ 2k,

where the last inequality used the facts that |ui| ≤ ||u||∞ ≤ 1 and that
∑

iMi,i ≤ 2k for all

M ∈ Rj . A similar observation holds for v. Hence,

max
M∈Rj

|⟨M,A⟩| ≤ KG ·max{|⟨uv⊺, A⟩| : u, v ∈ Lk·j2k }.

Let x = u+v
2

and y = u−v
2

. Since for any norm ||u+v
2
||, ||u−v

2
|| ≤ ||u||+||v||

2
, if u, v ∈ Lk·j2k

then x, y ∈ Lk·j2k . Also note that u = x+ y and v = x− y. Then, since A is symmetric

⟨uv⊺, A⟩ = ⟨x⊗2, A⟩ − ⟨y⊗2, A⟩.

Combining the last two statements, we obtain

max
M∈Rj

|⟨M,A⟩| ≤ KG ·max{|⟨uv⊺, A⟩| : u, v ∈ Lk·j2k } ≤ 2KG ·max{|⟨xx⊺, A⟩| : x ∈ Lk·j2k }. ■

Next, we represent outer products of vectors in Lk·j2k as sums of outer products of binary

vectors. This conversion has the advantage that, for example, the product of binary bit vectors

with µ̄jb and pj , corresponds to µ̄b(S) and p(S) for some set S of reals. Since for any S ∈ R

and good batch b, n · µ̄b(S) has binomial distribution Bin(p(S), n), this allow us to use the

138



concentration properties of binomial random variables.

Let yi denote the ith bit in the binary representation of y ∈ [0, 1]. Represent 1 as

0.1111.... and if any other number has two such representations, either can be used. Note that

y =
∑∞

i=1 2
−iyi.

For any x ∈ [−1, 1] let x+ = max{0, x} and x− = max{0,−x}. It is easy to see that

0 ≤ x+, x− ≤ |x|, and x = x+−x−. Therefore, for any x ∈ [−1, 1], x =
∑∞

i=1 2
−i(x+,i−x−,i).

Next we extend these these definition to vectors with bounded elements. For any vector

v = (v1, v2, ...) of reals such that ||v||∞ ≤ 1, let v+,i = (v+,i1 , v+,i2 , ...) and v−,i = (v−,i1 , v−,i2 , ...).

It follows that v =
∑∞

i=1 2
−i(v+,i − v−,i).

Then for any vector v such that ||v||∞ ≤ 1

v⊗2 =
( ∞∑
i=1

2−i(v+,i − v−,i)
)( ∞∑

i=1

2−i(v+,i − v−,i)
)⊺

=
∞∑
i′=1

∞∑
i=1

2−(i+i′)(v+,i − v−,i)(v+,i′ − v−,i′)⊺

Observe that v+,i are binary bit vectors, and 2−i||v+,i||2 ≤ ||v||2. Further, since v+,i is

binary bit vectors ||v+,i||2 =
√
||v+,i||0, we get ||v+,i||0 ≤ 22i||v||22. The same observation also

holds for v−,i.

For any v ∈ Lk·j2k , and any matrix A ∈ Rk·j×k·j ,

⟨v⊗2, A⟩ ≤
∞∑
i′=1

∞∑
i=1

4 · 2−(i+i′) ·max{|⟨ûv̂⊺, A⟩| : v̂, û ∈ {0, 1}k·j, ||û||∞

≤ min{2k · 22i, 2kj}, ||v̂||∞ ≤ min{2k · 22i′ , 2kj}}. (4.10)

We recall a few definitions from Section 4.3. For any distribution q on R, for any j ≥ 1

qj ∈ Rk·j is the discrete distribution over the indices of partition Pj , defined by qj(i) = q(P j
i )

139



for i ∈ [k · j]. Every subset S ∈ C(Pj) to the binary vector vS ∈ {0, 1}k·j whose ith coordinate

indicates whether P j
i ⊆ S and the inner product q(S) = qj · vS .

For any j ≥ 1 and 1 ≤ i ≤ j let I(Pji ) ⊆ C(Pj) consist of all unions of at most k · i

parts of Pj . Recall that for any 0 ≤ i ≤ j, {0, 1}ji denote the set of binary vectors of length j

with at most j ones. Observe that every subset in S ∈ I(Pji ) corresponds to a binary vector

vS ∈ {0, 1}k·jk·i and vice versa.

For any i ≤ j the subsets in I(Pji ) are a union of at most k · i parts, hence the set

I(Pji ) ⊆ Ak·i. Next recall that all k · j parts of partition Pk has equal number of samples among

all samples in B. Therefore, for any subset S ∈ I(Pji ), p̄B(S) = O
(
k·i
k·j

)
= O

(
i
j

)
. Then

Lemma 52 implies that p(S) = O
(
i
j
+∆

)
= O

(
i
j

)
, as j = O( 1

∆
).

We use these observations to make the following reductions:

For any B′ any j ≤ 1
∆

, any 1 ≤ i′ ≤ i ≤ j,

max
u∈{0,1}k·jk·i

max
v∈{0,1}k·j

k·i′

⟨uv⊺, (p̄jB′ − pj)⊗2⟩

= max
u∈{0,1}k·jk·i

max
v∈{0,1}k·j

k·i′

(p̄jB′ · u− pj · u)(p̄jB′ · v − pj · v)

= max
S∈I(Pj

i )
max

S′∈I(Pj

i′ )
(p̄B′(S)− p(S))(p̄B′(S ′)− p(S ′))

≤ max
S∈Ak·i,p(S)≤O( i

j
),

max
S′∈Ak·i′ ,p(S

′)≤O( i
′
j
)

(p̄B′(S)− p(S))(p̄B′(S ′)− p(S ′))

(4.11)

Recall that for any binary vectors u, v and any discrete distribution q,

⟨uv⊺, C(q)⟩ = 1

n
⟨uv⊺,Diag(q)− q⊗2⟩ = 1

n
⟨uv⊺,Diag(q)⟩ − ⟨uv⊺, q⊗2⟩

Using the above equation, and following the similar calculation as (4.11), it is easy to

140



show

max
u∈{0,1}k·jk·i

max
v∈{0,1}k·j

k·i′

⟨uv⊺, C(p̄jB′)⟩

≤ max
S∈Ak·i,p(S)≤O( i

j
)

max
S′∈Ak·i′ ,p(S

′)≤O( i
′
j
)

(
1

n
(p̄B′(S ∩ S ′)− p̄B′(S) · p̄B′(S ′))

)

≤ max
S:p(S)≤O( i

j
)

max
S′:p(S′)≤O( i

′
j
)

(
1

n
(p̄B′(S ∩ S ′)− p̄B′(S) · p̄B′(S ′))

)
≤ min{i, i′}

jn
(4.12)

Similarly, one can also show

max
u∈{0,1}k·jk·i

max
v∈{0,1}k·j

k·i′

1

|B′|
∑
b∈B′

⟨uv⊺, (µ̄jb − p
j)⊗2⟩ − ⟨uv⊺, C(pj)⟩

≤ max
S∈Ak·i,p(S)≤O( i

j
)

max
S′∈Ak·i′ ,p(S

′)≤O( i
′
j
)

(
1

|B′|
∑
b∈B′

(µ̄b(S)− p(S))(µ̄b(S ′)− p(S ′))

− 1

n
(p(S ∩ S ′)− p(S) · p(S ′))

)
. (4.13)

In Section 4.14 we obtain the following concentration bound.

Let

ξ(S, i) := max
(√

p(S) log
( 2

p(S)

)
,

√
i

log3 1
∆

)
.

Theorem 65. For |BG| = Ω̃(k+log(1/δ)
β2 ), with probability ≥ 1− δ, for all 1 ≤ i′ ≤ i ≤ 1

∆
,

1. For all B′
G ⊆ BG such that |BG \B′

G| ≤ O(β|BG|),

max
S∈Ci
|p̄B′

G
(S)− p(S)| ≤ O

(
∆ · ξ(S, i)

)
,

141



and

max
S∈Ci

max
S′∈Ci′ :p(S′)≤ 2i′

i

∣∣∣∣∣ 1

|B′
G|
∑
b∈B′

G

(µ̄b(S)− p(S))(µ̄b(S ′)− p(S ′))

− 1

n
(p(S ∩ S ′)− p(S) · p(S ′))

∣∣∣∣∣ ≤ O
(
∆2

β
· ξ(S, i)ξ(S, i′)

)
.

2. For all B′
G ⊆ BG, such that |BG| ≤ O(β|BG|),

max
S∈Ci

max
S′∈Ci′

∣∣∣∣∣ ∑
b∈B′

G

(µ̄b(S)− p(S))(µ̄b(S ′)− p(S ′))

∣∣∣∣∣ ≤ O
(
|BG|

∆2

β
· ξ(S, i)ξ(S, i′)

)
.

Now we are ready to prove Theorem 56.

142



4.12.1 Proof of Theorem 56

For B′
G ⊆ BG such that |BG \B′

G| ≤ O(β|BG|) and A = (p̄jB′
G
− pj)⊗2,

|⟨M, (p̄jB′
G
− pj)⊗2⟩| = |⟨M,A⟩|

(a)

≤ 2 ·KG · max
v∈Lk·j

2k

|⟨v⊗2, F j
B′

G
⟩|

(b)

≤ 2 ·KG ·
∞∑
i′=1

∞∑
i=1

4 · 2−(i+i′)·

max{|⟨uv⊺, A⟩| : v, u ∈ {0, 1}k·j, ||u||∞ ≤ min{2k · 22i, 2kj}, ||v||∞ ≤ min{2k · 22i′ , 2kj}}
(c)

≤ 2 ·KG ·
∞∑
i′=1

∞∑
i=1

4 · 2−(i+i′) max
S∈Ak·min{2i,j},p(S)≤O(

min{2i,j}
j

),

max
S′∈A

k·min{2i′ ,j},p(S
′)≤O(

min{2i′ ,j}
j

)

|(p̄B′
G
(S)− p(S))(p̄B′

G
(S ′)− p(S ′))|

(d)

≤ 2 ·KG ·
∞∑
i′=1

∞∑
i=1

4 · 2−(i+i′) max
S∈Ak·min{2i,j},p(S)≤O(

min{2i,j}
j

)

max
S′∈A

k·min{2i′ ,j},p(S
′)≤O(

min{2i′ ,j}
j

)(
ξ(S,min{2i, j})ξ(S ′,min{2i′ , j}) · O(∆2)

)
(e)

≤ O
(

∆2

log4 j

)
, (4.14)

where (a) uses Theorem 57, (b) uses Equation (4.10), (c) uses Equation (4.11), (d) uses the first

statement of Theorem 65, and the last step (e) can be verified by a slightly lengthy but standard

calculation. This proves the essential property 1a.

For B′
G ⊆ BG such that |BG \ B′

G| ≤ O(β|BG|) and A = 1
|B′

G|
∑

b∈B′
G
(µ̄jb − pj)(µ̄

j
b −

pj)− C(pj), a similar calculation as the above uses the second statement of Theorem 65, and

shows

∣∣∣⟨M,
1

|B′
G|
∑
b∈B′

G

(µ̄jb − p
j)⊗2 − C(pj)⟩

∣∣∣ ≤ O( ∆2

β log4 j

)
. (4.15)

143



Next, from lemma 59

∑
b∈B′

G

(µ̄jb − p
j)⊗2 =

∑
b∈B′

G

(p̄jB′
G
− pj)⊗2 + |B′

G|(µ̄
j
b − p̄

j
B′

G
)⊗2. (4.16)

Then

∣∣∣⟨M,
∑
b∈B′

G

(µ̄jb − p
j)⊗2 −

∑
b∈B′

G

(µ̄jb − p̄
j
B′

G
)⊗2⟩

∣∣∣ = |B′
G|
∣∣∣⟨M, (p̄jB′

G
− pj)⊗2⟩

∣∣∣ ≤ |B′
G|O

(
∆2

log4 j

)
,

where the last inequality follows from the essential property 1a, that we already proved.

A similar calculation as (4.7), gives

|⟨M,C(pj)− C(p̄B′
G
)⟩| ≤ ∆2

β log4 j

Combining the last Equations and (4.15) we get

|⟨M,F j
B′

G
⟩| =

∣∣∣⟨M,
1

|B′
G|
∑
b∈B′

G

(µ̄jb − p̄B′
G
)⊗2 − C(p̄B′

G
)⟩
∣∣∣ ≤ O( ∆2

β log4 j

)
.

This proves the essential property 1b.

For B′
G ⊆ BG such that |B′

G| ≤ O(β|BG|) and A = 1
|B′

G|
∑

b∈B′
G
(µ̄jb − pj)(µ̄

j
b − pj), a

similar calculation as in Equation (4.14) using the third statement of Theorem 65, shows

⟨M,
∑
b∈B′

G

(µ̄jb − p
j)⊗2⟩ ≤ O

(
|BG|

∆2

β log4 j

)
.

144



Then from Equation (4.16)

|B′
G|⟨M, (p̄jB′

G
− pj)⊗2⟩ = ⟨M,

∑
b∈B′

G

(µ̄jb − p
j)⊗2⟩ − ⟨M,

∑
b∈B′

G

(µ̄jb − p̄
j
B′

G
)⊗2⟩

≤ ⟨M,
∑
b∈B′

G

(µ̄jb − p
j)⊗2⟩,

Combining the last two equations we get the last essential property 2. ■

4.13 Cover of set Ak

We recall some basic concepts and results in VC theory, and use them to derive some

simple consequences for the set Ak that we use to derive Theorem 65 in the next section. Let S

be a collection of subsets of R. The VC shatter coefficient of S is

SCS(t) := sup
x1,x2,..,xt∈R

|{{x1, x2, .., xt} ∩ S : S ∈ S}|,

the largest number of subsets of t elements in obtained by intersections with subsets in S. The

VC dimension of S is

VS := sup{t : SCS(t) = 2t},

the largest number of R elements that are "fully shattered" by S. The following Lemma [43]

bounds the Shatter coefficient for a VC family of subsets.

Lemma 66 ([43]). For all t ≥ VS , SCS(t) ≤
(
t e
VS

)VS
.

Next we state the VC-inequality for relative deviation [144, 7].

Theorem 67. Let q be a distribution over R, and S be a VC-family of subsets of R and q̄t denote

the empirical distribution from t i.i.d samples from q. Then for any ϵ, δ > 0 and t = Ω(VS+log 1/ϵ
ϵ2

),

145



with probability ≥ 1− δ,

sup
S∈S

max
{ q̄t(S)− q(S)√

q̄t(S)
,
q(S)− q̄t(S)√

q(S)

}
≤ ϵ.

Another important ingredient commonly used in VC Theory is the concept of covering

number that reflects the smallest number of subsets that approximate each subset in the collection.

Let q be any probability measure over R and S be any arbitrary collection of real sets. A

collection of real sets C is an ϵ-cover of S under distribution q if for any S ∈ S, there exists a

S ′ ∈ C with q(S△S ′) ≤ ϵ. The ϵ-covering number of S is

N(S, q, ϵ) := inf{|C| : C is an ϵ-cover of S}.

If C ⊆ S is an ϵ-cover of S, then C is an ϵ-self cover of S. The ϵ-self-covering number of S is

N s(S, q, ϵ) := inf{|C| : C is an ϵ-self-cover of S}.

Clearly, N s(S, q, ϵ) ≥ N(S, q, ϵ), and we establish the reverse relation.

Lemma 68. For any ϵ ≥ 0, N s(S, q, ϵ) ≤ N(S, q, ϵ/2).

Proof. If N(S, q, ϵ/2) =∞, the lemma clearly holds. Otherwise, let C be an ϵ/2-cover of size

N(S, q, ϵ/2). We construct an ϵ-self-cover of equal or smaller size.

For every subset SC ∈ C, there is a subset S = f(SC) ∈ S with q(SC△ f(SC)) ≤ ϵ/2.

Otherwise, SC could be removed from C to obtain a strictly smaller ϵ/2 cover, which is impossible.

The collection {f(SC) : SC ∈ C} ⊆ S has size ≤ |C|, and it is an ϵ-self-cover of S

because for any S ∈ S , there is an SC ∈ C with q(S△SC) ≤ ϵ/2, and by the triangle inequality,

q
(
S△ f(SC)

)
≤ ϵ. ■

LetNS,ϵ := supqN(S, q, ϵ) andN s
S,ϵ := supqN

s(S, q, ϵ) be the largest covering numbers

under any distribution.

146



The next theorem bounds the covering number of S in terms of its VC-dimension.

Theorem 69 ([143]). For some universal constant c, for all families S and ϵ > 0,

NS,ϵ ≤ c · VS · (4e/ϵ)VS .

Combining the theorem and Lemma 68, we obtain the following corollary.

Corollary 70. For some universal constant c, for all families S and ϵ > 0,

N s
S,ϵ ≤ c · VS · (8e/ϵ)VS .

It is easy to see that the VC dimension of Ak is O(k), hence

Corollary 71. For any k and 0 < ϵ < 1,

N s
Ak,ϵ
≤ O(k) ·

(8e
ϵ

)O(k)

≤ exp

(
O
(
k log

2

ϵ

))
.

Therefore for any distribution q, Ak has an ϵ self cover of the above size.

4.14 Concentration inequalities for good batches

We use the sub-gaussian distribution of the empirical frequencies µ̄b(S) of good batches

b ∈ BG to derive Theorem 65.

Recall BG denotes the collection of all good batches. We use B′
G, B′′

G, etc to denote

sub-collections of good batches, and S, S ′, etc. to denote subsets of R.

For any subset S, let p(S), µ̄b(S), and p̄B′
G
(S) denote the probabilities assigned to S by

the underlying distribution p, the empirical distribution µ̄b of the n samples in a batch b, and the

empirical distribution p̄B′
G

of a sub-collection B′
G ⊆ BG, respectively.

One cannot hope for a meaningful concentration for p̄B′
G
(S) for all S ⊆ R. For the

collection S of all samples in good batches, p̄B′
G
(S) = 1, and yet, since p is continuous and S is

147



finite, p(S) = 0. Recall that ∆ = β√
n

√
log 1

β
is our desired TV-distance accuracy. To achieve it,

it suffices to prove concentration bounds for all subsets S ∈ Ak·i for 1 ≤ i ≤ 1
∆

. As expected,

since Ak·i grows with i, so will the slack in the bounds we derive.

Since the size of sets Ak·i is infinite, we first show the concentration for the appropriate

covers of sets Ak·i, and then we extend it to the set Ak·i itself.

Corollary 71 showed that under any distribution q and for every ϵ > 0, Ak has an ϵ self

cover of size expO(k log 2
ϵ
). It follows that for any i ≥ 1, the set Ak·i has a ∆2-self cover Ci of

size ≤ expO(k log 1
∆
) under the underlying distribution p.

First we show concentration of all good batches BG, later we extend this concentration to

any of their large enough sub-collections B′
G.

For a good batch b ∈ BG and S ⊆ R, n · µ̄b(S) follows the binomial distribution

Bin(p(S), n). It follows that E[µ̄b(S)] = p(S) and µ̄b(S) − p(S) ∼ subG(1/4n) has sub-

gaussian tails, e.g., [121]. We use this fact to show that for all subsets in cover Ci the difference

|
∑

b∈BG
(µ̄b(S)− p(S))| is small. Recall that |BG| = Ω̃(k+log(1/δ)

β2 ) and ∆ = β√
n

√
log 1

β
.

Lemma 72. For any 1 ≤ i ≤ 1
∆

, with probability ≥ 1− δ,

max
S∈Ci

∣∣∣ ∑
b∈BG

(µ̄b(S)− p(S))
∣∣∣ ≤ O(|BG|

√
i · β

√
n log3( 1

∆
)

)
.

Proof. From Hoeffding’s inequality for subgaussians, e.g., [121],

Pr
[∣∣ ∑

b∈BG

(µ̄b(S)− p(S))
∣∣ ≥ |BG|ϵ

]
≤ e−Ω(|BG|ϵ2n).

Taking a union over all subsets in cover of Ci, we get ∀S ∈ Ci

Pr
[
max
S∈Ci

∣∣ ∑
b∈BG

(µ̄b(S)− p(S))
∣∣∣ ≥ |BG|ϵ

]
≤ |Ci| exp

(
−Ω(|BG|ϵ2n)

)
≤ exp

(
−Ω(|BG|ϵ2n− k · i · log

1

∆
)

)
.

148



If |BG| = Ω̃(k+log(1/δ)
β2 ) and ϵ = Ω(

√
i·β√

n log3(∆)
), then |BG|ϵ2n = Ω(k · i · log∆), and the lemma

follows. ■

For any subsets S and S ′ of reals, let

Yb(S, S
′) := (µ̄b(S)− p(S))(µ̄b(S ′)− p(S ′)), and Y c

b (S, S
′) := Yb(S, S

′)− E[Yb(S, S ′)].

Note that random variables Yb(S, S ′) and its centered version Y c
b (S, S

′), both are symmetric in S

and S ′. Let Yb(S) := Yb(S, S) and Y c
b (S) := Y c

b (S, S).

We note a few properties of E[Yb(S, S ′)] that will be useful. First note that E[Yb(S, S ′)]

is the covariance of µ̄b(S) and µ̄b(S ′) and E[Yb(S)] is the covariance of µ̄b(S). It can be easily

shown that

E[Yb(S, S
′)] =

p(S ∩ S ′)− p(S)p(S ′)

n
.

It follows

E[Yb(S)] =
p(S)(1− p(S))

n
≤ p(S)

n
. (4.17)

From Cauchy schwarz inequality

∣∣E[Yb(S, S ′)]
∣∣ ≤ E[|Yb(S, S ′)|] ≤

√
E[Yb(S)] · E[Yb(S ′)] ≤

√
p(S) · p(S ′)

n
. (4.18)

For a good batch b ∈ BG and S ⊆ R, recall that µ̄b(S)− p(S) ∼ subG(1/4n), and since

the product of two sub exponential random variables follows sub expnential [121] distribution, it

follows

Yb(S, S
′)− E[Yb(S, S ′)] = Y c

b (S, S
′) ∼ subE(

16

4n
) = subE(

4

n
).

Here subE is sub exponential distribution.

We first focus on the case when S = S ′. We obtain the following concentration bound on

149



sum of Y c
b (S).

Lemma 73. For any 1 ≤ i ≤ 1
∆

and |BG| = Ω̃(k+log(1/δ)
β2 ), with probability ≥ 1− δ

max
S∈Ci

∣∣∣ ∑
b∈BG

Y c
b (S)

∣∣∣ ≤ O(|BG|
i · β

n log6 1
∆

)
.

Proof. Bernstein’s inequality gives:

Pr[
∣∣∣ ∑
b∈BG

Y c
b (S)

∣∣∣ ≥ |BG|ϵ] ≤ exp (−Ω(|BG|ϵn ·min{1, ϵn})).

Taking union over all subsets S in Ci, we get

Pr
[
max
S∈Ci

∣∣∣ ∑
b∈BG

Y c
b (S)

∣∣∣ ≥ |BG|ϵ
]
≤ |Ci| exp (−Ω(|BG|ϵn ·min{1, ϵn}))

≤ exp

(
−Ω(|BG|ϵn ·min{1, ϵn} − k · i · log 1

∆
)

)
.

If |BG| = Ω̃(k+log(1/δ)
β2 ) and ϵ = Ω( i·β

n log6 1
∆

), then

|BG|ϵn ·min{1, ϵn} = Ω(k · i · log 1

∆
),

hence the lemma follows. ■

The next lemma shows concentration of sum of Y c
b (S, S

′) for good batches.

Lemma 74. For any 1 ≤ i′ ≤ i ≤ 1
∆

and |BG| = Ω̃(k+log(1/δ)
β2 ), with probability ≥ 1− δ

max
S∈Ci

max
S′∈Ci′ :p(S′)≤ 2i′

i

∣∣∣ ∑
b∈BG

Y c
b (S, S

′)
∣∣∣ ≤ O(|BG|

√
i× i′ · β

n log6( 1
∆
)

)
.

150



Proof. Bernstein’s inequality yields,

Pr[
∣∣∣ ∑
b∈BG

Y c
b (S, S

′)
∣∣∣ ≥ |BG|ϵ] ≤ exp (−Ω(|BG|ϵn ·min{1, ϵn})).

Taking union over all subsets S in Ci and S ′ ∈ Ci′ , we get

Pr
[
max
S∈Ci

max
S′∈Ci′

∣∣∣ ∑
b∈BG

Y c
b (S, S

′)
∣∣∣ ≥ |BG|ϵ

]
≤ |Ci||Ci′ | exp (−Ω(|BG|ϵn ·min{1, ϵn}))

≤ exp

(
−Ω(|BG|ϵn ·min{1, ϵn} − k · i · log 1

∆
− k · i′ · log 1

∆
)

)
≤ exp

(
−Ω(|BG|ϵn ·min{1, ϵn} − k · i · log 1

∆
)

)
,

here the last inequality uses i ≤ i′.

Let ϵ = Ω(
√
ii′·β

n log6(n/β)
). First consider the case when ϵn ≤ 1, then using |BG| =

Ω̃(k+log 1/δ
β2 ), we get

|BG|(ϵn)2 = Ω(k · i · log 1

∆
),

hence the lemma holds with probability ≥ 1− δ for this case.

Next, consider the case ϵn ≥ 1. This implies
√
ii′·β

log6 1
∆

= Ω(1). Since i ≥ i′, hence

i · β
log6 1

∆

= Ω(1). (4.19)

The previous lemma showed that for all S ∈ Ci, with probability ≥ 1− δ,

∣∣∣ ∑
b∈BG

Y c
b (S)

∣∣∣ ≤ O(|BG|
i · β

n log6( 1
∆
)

)
.

151



Therefore,

∣∣∣ ∑
b∈BG

Yb(S)
∣∣∣ ≤ ∣∣∣ ∑

b∈BG

(Y c
b (S) + E[Yb(S)])

∣∣∣
(a)

≤ O
(
|BG|

i · β
n log6( 1

∆
)

)
+ |BG|E[Yb(S)]

(b)

≤ O
(
|BG|

i · β
n log6( 1

∆
)

)
+ |BG|

1

n

≤ |BG|
n
O
(
1 +

i · β
log6( 1

∆
)

)
(c)

≤ |BG|
n
O
( i · β
log6( 1

∆
)

)
,

here (a) uses the previous inequality, (b) uses (4.17) and p(S) ≤ 1 and (c) uses (4.19).

Similarly,

∣∣∣ ∑
b∈BG

Yb(S
′)
∣∣∣ ≤ O(|BG|

i · β
n log6( 1

∆
)

)
+ |BG|

p(S ′)

n

(a)

≤ O
(
|BG|

i′ · β
n log6( 1

∆
)

)
+O(|BG|

i′

i · n
)

≤ |BG|
i′

i · n
O
(
1 +

i · β
log6( 1

∆
)

)
(b)

≤ |BG|
n
O
( i′ · β
log6( 1

∆
)

)
,

here (a) uses p(S) ≤ 2i′

i
and (b) uses (4.19).

Applying the Cauchy-Schwarz inequality gives

∑
b∈BG

Yb(S, S
′) ≤

√
(
∑
b∈BG

Yb(S))(
∑
b∈BG

Yb(S ′)) ≤ O
(
|BG|

√
i · i′ · β

n log6( 1
∆
)

)
.

152



Next, from (4.18)

|E[Yb(S, S ′)]| ≤
√
p(S) · p(S ′)

n

(a)

≤
√

2i′/i

n
=

√
2i · i′
i · n

(b)

≤ O
(√i · i′ · β
n log6( 1

∆
)

)
, (4.20)

here (a) uses p(S) ≤ 2i′

i
and (b) uses (4.19). Combining the last two equations we get, for the

case ϵn ≥ 1 and p(S ′) ≤ 2i′

i

|
∑
b∈BG

Y c
b (S, S

′)| = |
∑
b∈BG

(Yb(S, S
′)− E[Yb(S, S ′)])|

≤ |
∑
b∈BG

Yb(S, S
′)|+ |BG|E[Yb(S, S ′)] ≤ O

(√i · i′ · β
n log6( 1

∆
)

)
. ■

Next, to establish the concentration for all sub-collection of size (1− β)|BG|, first we

establish the concentration for all sub-collections of size β|BG|.

The following bounds on the number of sub-collection of BG smaller than a particular

size will be useful.

Lemma 75. For any f ≤ 1 and collection BG the number of sub-collections of BG of size

≤ f |BG|

|{B′
G : B′

G ⊆ BG, |B′
G| ≤ f |BG|}| ≤ exp (O(|BG| · f log

e

f
)).

Proof. For f ≥ 1
2
, the lemma follows as number of subsets of BG are 2|BG|. For f ≤ 1

2
, the proof

follows by combining a simple counting argument and the Stirling’s approximation,

⌊f |BG|⌋∑
j=1

(
|BG|
j

)
≤ f |BG|

(
|BG|
⌊f |BG|⌋

)
≤ f |BG|

( e|BG|
f |BG|

)f |BG|
≤ ef |BG| ln(e/f)+ln(f |BG|) < e2f |BG| ln(e/f),

where last of the above inequality used ln(f |BG|) < f |BG| and ln(e/f) ≥ 1. ■

First we deal with the subsets in Ci for i = Ω(log7( 1
∆
)), and get the following concentration

153



bound.

Lemma 76. For any Ω(log7( 1
∆
)) ≤ i ≤ 1

∆
and |BG| = Ω̃(k+log 1/δ

β2 ), with probability ≥ 1− δ,

max
B′

G:|B′
G|≤2β|BG|

max
S∈Ci

∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≤ O(|BG|
i · β

n log6( 1
∆
)

)
.

Proof. Consider any sub-collection B′
G ⊆ BG of size |B′

G| ≤ f |BG|. Applying Bernstein’s

inequality for B′
G gives:

Pr[
∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≥ |BG|ϵ] ≤ Pr[
∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≥ |B′
G|
|BG|
|B′

G|
ϵ]

= exp

(
−Ω(|BG|ϵn ·min{1, |BG|

|B′
G|
ϵn})

)
= exp

(
−Ω(|BG|ϵn ·min{1, ϵn

f
})
)
.

Taking union over all subsets S in cover Ci, we get

Pr
[
max
S∈Ci

∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≥ |BG|ϵ
]
≤ |Ci| exp

(
−Ω(|BG|ϵn ·min{1, ϵn

f
})
)

≤ exp

(
−Ω(|BG|ϵn ·min{1, ϵn

f
} − k · i · log 1

∆
)

)
.

Taking union over all sub-collections B′ of size f |BG|, we get

Pr
[
max
S∈Ci

max
B′

G:|B′
G|≤f |BG|

∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≥ |BG|ϵ
]

≤ |{B′
G : B′

G ⊆ BG, |B′
G| ≤ f |BG|}| exp

(
−Ω(|BG|ϵn ·min{1, ϵn

f
} − k · i · log 1

∆
)

)
≤ exp

(
−Ω(|BG|ϵn ·min{1, ϵn

f
} − k · i · log 1

∆
− |BG| · f log

e

f
)

)
. (4.21)

For |BG| = Ω̃(k+log 1/δ
β2 ), ϵ = Ω( i·β

n log6( 1
∆
)
), f = 2β and i = Ω(log7( 1

∆
)),

|BG|ϵn ·min{1, ϵn
f
} = Ω

(
max

{
k · i · log 1

∆
, |BG| · f log

e

f

})

154



hence, the statement of the lemma follows. ■

We will need a more nuanced analysis for subsets S ∈ Ci for i = O(log5( 1
∆
)).

Lemma 77. For any n = Ω(log6 1
∆
), 1 ≤ i ≤ O(log7( 1

∆
)) and |BG| = Ω̃(k+log 1/δ

β2 ), with

probability ≥ 1− δ, ∀S ∈ Ci,

max
B′

G:|B′
G|≤2β|BG|

∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≤ O(β|BG| ·
log(1/β)

n
·max

(
p(S) log

( 2

p(S)

)
,

i

log6 1
∆

))
.

Proof. Recall that for any batch b ∈ BG and any subset S of reals µ̄b(S) is the mean of n samples

from Ber(p(S)). For any ϵ > 0, Chernoff bound implies

Pr
[
|µ̄b(S)− p(S)| ≥ ϵ

]
≤ exp

(
−Ω
(
min{ϵ · n, ϵ

2 · n
p(S)

}
))

.

Let

ε1 =

√
log(1/β)

n
· 1

log6 1
∆

, ε2 =

√
log(1/β)

n
· p(S) log

( 2

p(S)

)
, and ε = max{ε1, ε2}.

The above bound implies that

Pr
[
|µ̄b(S)− p(S)| ≥ ε

]
≤ exp

(
−Ω
(
min

{
ε · n, ε

2 · n
p(S)

}))
≤ exp

(
−Ω
(
min

{
ε1 · n,

ε22 · n
p(S)

}))
≤ exp

(
−Ω

(
min

{√n · log(1/β)
log6 1

∆

,
(
log

1

β

)
·
(
log

2

p(S)

)}))

≤ O
(
max

{ β

log5 1
∆

, β · p(S)
})
,

here the last inequality uses n = Ω(log6 1
∆
).

Let BG
ε(S) = {b ∈ BG : |µ̄b(S)− p(S)| ≥ ε}. Then the above equation shows that if

conditions in the lemma holds then E[|BG
ε(S)|] ≤ O

(
|BG|max{ β

log5 1
∆

, β · p(S)}
)

.

155



From the Chernoff bound

Pr
[
|BG

ε(S)| ≥ 2× E[|BG
ε(S)|]

]
≤ exp (−Ω(E[|BG

ε(S)|])) ≤ exp

(
−Ω(|BG|

β

log5 1
∆

)

)
.

Taking union bound over all subsets S ∈ Ci

Pr
[
max
S∈Ci

{
|BG

ε(S)| − 2× E[|BG
ε(S)|]

}
≥ 0
]
≤ exp

(
−Ω(|BG|

β

log5 1
∆

) +O(k · i log 1

∆
)

)
.

(4.22)

Provided i = O(log4 1
∆
) and |BG| = Ω̃(k+log 1/δ

β2 ), then |BG| β

log5 1
∆

= Ω(k · i log 1
∆
), hence the

above probability is small.

For any subset S ∈ Ci and b ∈ BG \BG
ε(S),

|Y c
b (S)| ≤ |Yb(S)|+ |E[Yb(S)]|

= |p(S)(1− p(S))
n

|+ |µ̄b(S)− p(S)|2 ≤ |
p(S)

n
|+ ε2 ≤ ε22 + ε2 ≤ 2ε2, (4.23)

here we used the definition of sub collection BG
ε(S).

Next ,

∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≤ ∣∣∣ ∑
b∈B′

G\BG
ε(S)

Y c
b (S)

∣∣∣+ ∑
b∈BG

ε(S)

∣∣∣Y c
b (S)

∣∣∣
≤ |B′

G| · max
b∈B′

G\BG
ε(S)
|Y c
b (S)|+ max

B′′
G:|B′′

G|≤|BG
ε(S)|

∑
b∈B′′

G

∣∣∣Y c
b (S)

∣∣∣. (4.24)

Combining the two equations we get

max
B′

G:|B′
G|≤2β|BG|

∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≤ 2ε2 · 2β|BG|+ max
B′′

G:|B′′
G|≤|BG

ε(S)|

∑
b∈B′′

G

∣∣∣Y c
b (S)

∣∣∣.
Equation (4.22) showed that w.h.p. the for all sets S ∈ Ci, |BG

ε(S)| ≤ O
(
|BG|max{ β

log4 1
∆

, β ·

156



p(S)}
)

. To complete the proof we bound the last term in the above equation using the

concentration inequality in (4.21).

Let f = max{O( β

log5 1
∆

),O(β · p(S))}. Then

f log
e

f
= max{O( β

log4 5 1
∆

log(
log4 1

∆

β
)),O(β · p(S) log( 1

βp(S)
))}

= O
(
max{ β

log4 1
∆

, β · p(S) log 1

β · p(S)
}
)

Choose ϵ = Ω
(
β log(1/β)

n
·max

(
p(S) log

(
2

p(S)

)
, i
log4 1

∆

))
, then

ϵn = Ω

(
max

(
β · p(S)

(
log

2

p(S)

)(
log

1

β

)
,
i · β log(1/β)

log4 1
∆

))
= Ω(f log

e

f
)

Since ϵn = Ω(f log e
f
),

ϵn ·min{1, ϵn
f
} = ϵn = Ω(f log

e

f
).

Further,

ϵn ·min{1, ϵn
f
} = ϵn = Ω

(iβ log(1/β)
log4 1

∆

)
.

Then, for |BG| = Ω̃(k+log 1/δ
β2 )

|BG|ϵn ·min{1, ϵn
f
} = |BG|ϵn = Ω

(
|BG|

iβ log(1/β)

log4 1
∆

)
= Ω

(
max

{
k · i · log 1

∆

})

Then for f = max{O( β

log5 1
∆

),O(β · p(S))}, the concentration inequality (4.21) shows that with

probability ≥ 1− δ, for all S ∈ Ci

max
B′

G:|B′
G|≤f |BG|

∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≤ |BG|ϵ.

Combining the above equation with Equations (4.24) and (4.22) completes the proof. ■

157



By combining Lemma 76 and Lemma 77, we get

Corollary 78. For any n = Ω(log6 1
∆
), 1 ≤ i ≤ 1

∆
and |BG| = Ω̃(k+log 1/δ

β2 ), with probability

≥ 1− δ, ∀S ∈ Ci,

max
B′

G:|B′
G|≤2β|BG|

∣∣∣ ∑
b∈B′

G

Y c
b (S)

∣∣∣ ≤ O(β|BG| ·
log(1/β)

n
·max

(
p(S) log

( 2

p(S)

)
,

i

log4 1
∆

))
.

Recall that Yb(S) = Y c
b (S) + E[Yb(S)]. And

|E[Yb(S)]| ≤
p(S)

n
≤ O

(
1

n
·max

(
p(S) log

( 2

p(S)

)
,

i

log4 1
∆

))
.

Then the following corollary follows from the above.

Corollary 79. For any n = Ω(log6 1
∆
), 1 ≤ i ≤ 1

∆
and |BG| = Ω̃(k+log 1/δ

β2 ), with probability

≥ 1− δ, ∀S ∈ Ci,

max
B′

G:|B′
G|≤2β|BG|

∣∣∣ ∑
b∈B′

G

Yb(S)
∣∣∣ ≤ O(β|BG| ·

log(1/β)

n
·max

(
p(S) log

( 2

p(S)

)
,

i

log4 1
∆

))
.

Next, recall that Yb(S) = (µ̄b(S)− p(S))2 and

ξ(S, i) = max
(√

p(S) log
( 2

p(S)

)
,

√
i

log3 1
∆

)
.

We derive the following results using the concentration bounds derived so far.

Theorem 80. For |BG| = Ω̃(k+log(1/δ)
β2 ), with probability ≥ 1− δ, for all 1 ≤ i′ ≤ i ≤ 1

∆
,

1. For all B′
G ⊆ BG such that |BG \B′

G| ≤ 2β|BG|,

max
S∈Ci
|p̄B′

G
(S)− p(S)| ≤ O

(
∆ · ξ(S, i)

)
,

158



and

max
S∈Ci

max
S′∈Ci′ :p(S′)≤ 2i′

i

∣∣∣∣∣ 1

|B′
G|
∑
b∈B′

G

(µ̄b(S)− p(S))(µ̄b(S ′)− p(S ′))

− 1

n
(p(S ∩ S ′)− p(S) · p(S ′))

∣∣∣∣∣ ≤ O
(
∆2

β
· ξ(S, i)ξ(S, i′)

)
.

2. For all B′
G ⊆ BG, such that |BG| ≤ 2β|BG|,

max
S∈Ci

max
S′∈Ci′

∣∣∣∣∣ ∑
b∈B′

G

(µ̄b(S)− p(S))(µ̄b(S ′)− p(S ′))

∣∣∣∣∣ ≤ O
(
|BG|

∆2

β
· ξ(S, i)ξ(S, i′)

)
.

Proof. Using a simple relation
∑j

i=1 |xi| ≤
√
j ×

∑j
i=1 x

2
i , implied by the Jensen’s inequality,

in the above corollary gives:

max
B′

G:|B′
G|≤2β|BG|

∑
b∈B′

G

|µ̄b(S)− p(S)| ≤ O
(
ξ(S, i)β|BG|

√
log(1/β)

n

)
≤ O

(
ξ(S, i)|BG|∆

)
.

Lemma 72 showed

∣∣∣ ∑
b∈BG

(µ̄b(S)− p(S))
∣∣∣ ≤ O(|BG|

√
i · β

√
n log3( 1

∆
)

)
≤ O

(
ξ(S, i)|BG|∆

)
.

Then for any B′
G ⊆ BG such that |BG \B′

G| ≤ O(β|BG|),

|B′
G||p̄B′

G
(S)− p(S)| =

∣∣∣ ∑
b∈B′

G

(µ̄b(S)− p(S))
∣∣∣

≤
∣∣∣ ∑
b∈BG

(µ̄b(S)− p(S))
∣∣∣+ ∣∣∣ ∑

b∈BG\B′
G

(µ̄b(S)− p(S))
∣∣∣

≤ O
(
ξ(S, i)|BG|∆

)
,

where the last inequality uses |BG \ B′
G| ≤ 2β|BG| and the previous two inequality. Finally

159



noting that |BG|
B′

G
= 1

(1−2β)
= O(1) shows the first part

|p̄B′
G
(S)− p(S)| ≤ O

(
ξ(S, i)∆

)
.

Recall Yb(S, S ′) = (µ̄b(S)− p(S))(µ̄b(S ′)− p(S ′)). From Cauchy Schwarz inequality,

it follows that ∑
b∈B′

G

|Yb(S, S ′)| ≤
∑
b∈B′

G

√
Yb(S)Yb(S ′).

From the above equation and Corollary 79, we get

max
B′

G:|B′
G|≤2β|BG|

∑
b∈B′

G

∣∣∣Yb(S, S ′)
∣∣∣ ≤ O(β|BG| ·

log(1/β)

n
· ξ(S, i)ξ(S, i′)

)
.

This completes the proof of the third part of the Theorem.

Next, using the equation (4.20), and above equation

max
B′

G:|B′
G|≤2β|BG|

∑
b∈B′

G

∣∣∣Y c
b (S, S

′)
∣∣∣ ≤ max

B′
G:|B′

G|≤2β|BG|

∑
b∈B′

G

∣∣∣Y c
b (S, S

′)
∣∣∣+ ∑

b∈B′
G

∣∣∣E[Yb(S, S ′)]
∣∣∣

≤ O
(
β|BG| ·

log(1/β)

n
· ξ(S, i)ξ(S, i′)

)
.

Combining the above equation with Lemma 74 we get

max
S∈Ci

max
S′∈Ci′ :p(S′)≤ 2i′

i

∣∣∣ ∑
b∈BG

Y c
b (S, S

′)
∣∣∣ ≤ O(|BG|

√
i× i′ · β

n log6( 1
∆
)

)
≤ O

(
β|BG| ·

log(1/β)

n
· ξ(S, i)ξ(S, i′)

)
.

Combining the last two bounds we get the second part of the Theorem. ■

The previous Theorem shows the concentration for covers of sets Ak·i. These properties

can be then extended to all elements in the sets Ak·i, using the standard VC theoretic arguments

as in [76].

160



Extending these properties to sets Ak·i completes the proof of the Theorem 65.

Chapter 4, in full, is a reprint of the material as it appears in Robust Density Estimation

from Batches: The Best Things in Life are (Nearly) Free 2021. Ayush Jain, Alon Orlitsky. In

ICML 2021. The dissertation author was the primary investigator and author of this paper.

161



Chapter 5

Efficient List-Decodable Regression using
Batches

5.1 Introduction

Linear regression is one of the most fundamental tasks in supervised learning with

applications in various sciences and industries [107, 58]. In the standard linear regression

setup, one is given m samples (xi, yi) such that yi = ⟨w∗, xi⟩+ ni where ni is the observation

noise with bounded variance and the covariates xi ∈ Rd are drawn i.i.d from some fixed

distribution. For this setup, the commonly used least-squares estimator that minimizes the square

loss
∑

i(yi − ⟨w, xi⟩)2, provides a good estimate of the unknown regression vector w∗.

In many applications, some samples are inadvertently or maliciously corrupted, for

example, due to mislabeling or measurement errors, or data poisoning attacks. For instance,

such corruptions are commonplace in biology [129, 119] and machine learning security [15, 19].

Even a small number of corrupt samples in the data can cause the least-squares estimator

to fail catastrophically. Classical robust estimators have been proposed in [75, 130] but they

suffer from exponential runtime. Recent works [99, 46, 48] have derived efficient algorithms

for robust mean estimation with provable guarantees even when a small fraction of the data

can be corrupt or adversarial. These works have inspired the efficient algorithms for robust

regression [123, 50, 57, 120] under the same corruption model. [38, 80] have obtained robust

regression algorithms with near-optimal run time and sample complexity.

162



In this paper, we are interested in the setting where a small fraction α, potentially

even less than half, of the data is considered inlier, and the majority of the data may be

influenced by factors such as adversarial manipulation, corruption, bias, or being drawn from

a diverse distribution. This setting also encompasses the problem of learning a mixture of

regressions [84, 154, 95, 117] because any solution of the former immediately yields a solution

to the latter by setting α to be the proportion of the data from the smallest mixture component.

However, it is information-theoretically impossible to output a single accurate estimate

of regression parameter when α < 1/2. Instead, it may be possible to generate a short list of

estimates such that at least one of them is accurate. This relaxed notion of learning is known as

list-decodable learning and is useful since a learner can identify a single accurate estimate from

the list given a small number of reliable samples.

For high dimensional mean estimation, [29] derived the first polynomial time algorithm

for list decodable setting. List-decodable linear regression has been studied in [87, 126]

yielding algorithms with runtime and sample complexity of O(dpoly(1/α)). In contrast to

list-decodable mean estimation, recent work [53] has shown that a sub-exponential runtime and

sample complexity might be impossible for linear regression. These prior results may lead to a

pessimistic conclusion for obtaining practical algorithms for the fundamental learning paradigm

of linear regression when less than half of the data may be inlier or genuine.

However, our work demonstrates that it can be overcome in various real-world applications

such as federated learning [147], learning from multiple sensors [149], and crowd-sourcing [136].

In these and many other applications individual data sources often provide multiple samples. We

refer to a collection of samples from a single source as a batch. If a fraction α of the sources

follow the underlying distribution we aim to learn, then α fraction of the batches will contain

independent samples from that distribution, while the remaining batches may contain arbitrary

samples.

When each batch contains Ω̃(d) samples then one can get the estimate of the regression

vectors for each batch. However, typically in modern applications the dimension of the data is

163



high and only a moderate number of samples are available per batch [66, 118, 95]. As we show

in this paper, for any α ∈ (0, 1], as long as the number of samples provided by each genuine

source is more than a small threshold of Ω̃(1/α), we can use the grouping of samples in batches

to develop a polynomial-time algorithm.

The batch setting has a natural advantage in the context of list-decodable learning. When

there are multiple possible inlier distributions for the data sources, the list will include regression

vectors for all distributions that underlie more than α fraction of sources. To determine the

best-fitting solution for a specific source from the short list generated by the list-decodable

algorithm, a small hold-out portion of the batch provided by that source can be used. This post

hoc identification of the best weight for a source/batch is naturally not feasible in the single

sample setting.

This motivates the problem of list-decodable linear regression using batches. Formally,

there are m batches. Each batch has a collection of ≥ n regression samples which can either all

come from a global regression model with true weight w∗ (good batch) and noise variance σ2 or

are arbitrarily corrupted (adversarial batch). The task is to output a small list of regression vectors

at least one of which is approximately correct given that only α fraction of the batches are good.

It is important to highlight that in this scenario, any algorithm aiming to provide reasonable

estimation guarantees must return a list of estimates. This is because the formulation allows

for data to stem from Θ(1/α) different distributions, each of which generates at least α fraction

of the batches. The regression parameters for each of these distributions can vary arbitrarily.

Without any method to identify the genuine distribution among these Θ(1/α) possibilities, any

algorithm providing a single estimate of the regression parameter would fail to offer a meaningful

estimation guarantee.

Our main result is the following theorem:

Theorem 81 (Informal). For any α ∈ (0, 1], there exists a polynomial time algorithm for

list-decodable regression, that uses m = Õn,α(d) batches each of size n = Ω̃(1/α), and

164



outputs O(1/α2) weights such that with high probability at least one of them, w̃, satisfies

∥w̃ − w∗∥2 = Õ(σ/
√
nα).

We formally state the problem in Section 5.2, introduce necessary notation in Section 5.3,

and present our main result in Section 5.4. In Section 5.5, we describe the main ideas behind our

algorithm and provide a comprehensive overview of our technical contributions. We present our

algorithm and prove its performance guarantee in Section 5.6. We provide a detailed discussion

of related work in Appendix 5.8.

5.2 Problem formulation

We have m sources. Of these m sources at least α-fraction of the sources are genuine

and provide ≥ n i.i.d. samples from a common distribution. The remaining sources may provide

arbitrary data. Since, we can use only the first n samples from each source and ignore the rest,

hence, w.l.o.g. we assume that each source provides exactly n samples. We will refer to the

collection of all samples from a single source as a batch.

To formalize the setting, let B be a collection of m batches. Each batch b ∈ B in this

collection, has n samples {(xbi , ybi )}ni=1, where xbi ∈ Rd and ybi ∈ R.

Among these batches B, there is a sub-collection G of good batches such that for each

b ∈ G and i ∈ [n] samples (xbi , ybi ) are generated independently from a common distribution D

and the size of this sub-collection is |G| ≥ α|B|. The remaining batches B \G are adversarial

batches and have arbitrary samples that may be selected by an adversary depending on good

batches.

Next, we describe the assumption of distribution D. We require the same set of general

assumptions on the distribution, as in the recent work [38], which focuses on the case when

n = 1 and 1− α is small, that is when all but a small fraction of data is genuine.

165



Distribution Assumptions.

For an unknown d-dimensional vector w∗, the sample noises nbi , the covariates xbi and the

outputs ybi are random variables that are related as ybi = xbi · w∗ + nbi . Let Σ = ED[x
b
i(x

b
i)

⊺]. For

scaling purposes, we assume ∥Σ∥ = 1. We have the following general assumptions.

1. xbi is L4-L2 hypercontractive, that is for some C ≥ 1 and all vectors u, ED[(x
b
i · u)4] ≤

CED[(x
b
i · u)2]2.

2. For some constant C1 > 0, ∥xbi∥ ≤ C1

√
d a.s.

3. The condition number of Σ is at most C3, that is for each unit vector u, we have

u⊺Σu ≥ ∥Σ∥
C3

= 1
C3

.

4. Sample noisenbi is independent of xbi , has zero mean ED[n
b
i ]=0, and bounded covariance

ED[(n
b
i)

2]≤σ2.

5. The distribution of noise nbi is symmetric around 0.

We note that the assumptions 1,3, and 4 are standard in heavy-tailed linear regression [38, 100].

Assumptions 2 and 5, on the other hand, are introduced solely for the ease of presentation and we

discuss in Appendix 5.14 that these two assumptions can be eliminated without any impact on

our results.

5.3 Notation

We use hb to denote a function over batches. For a function hb, we use ED[h
b] and

CovD(h
b) to denote the expected value and covariance of hb for a random batch b of n independent

samples from D.1

Next, we define the expectation and covariance w.r.t. the collection of batches B. When

batches are chosen uniformly from a sub-collection B′ ⊆ B, the expected value and co-variance

1With slight abuse of notation, instead of h(b), we use hb to denote function over batches. Note that hb may be a
function of some or all the samples in the batch b.

166



of a function hb are denoted as EB′ [hb] =
∑

b∈B′
1

|B′|h
b and CovB′(hb) =

∑
b∈B′

1
|B′|(h

b −

EB′ [hb])(hb − EB′ [hb])⊺, respectively.

To allow for more general samplings, the definition is extended to use a weight vector. A

weight vector, denoted by β, is a collection of weights, βb, for each batch, b ∈ B, such that βb

is between 0 and 1. The total weight of the vector is represented by βB =
∑

b∈B β
b. It can be

helpful to think of β as a soft cluster of batches, with its components denoting the membership

weight of batches in the cluster.

When defining expectation or covariance of a function w.r.t. a weight vector β, the

probability of sampling a batch, b, is βb

βB . The expectation of a function, hb, over batches,

when using a weight vector β, is represented by Eβ[hb] :=
∑

b∈B
βb

βBh
b, and the covariance is

represented by Covβ(hb) :=
∑

b∈B
βb

βB (h
b − Eβ[hb])(hb − Eβ[hb])⊺.

For weight vector β, the weight of all batches of a subsetB′ is denoted as βB′
:=
∑

b∈B′ βb.

We use f(x) = Õ(g(x)) as a shorthand for f(x) = O(g(x) logk x), where k is some

integer, and f(x) = Oy(g(x)) implies that if y is bounded then f(x) = O(g(x)). Throughout

the paper, we use the notation ci, with i ≥ 1, to represent universal constants.

5.4 Main Results

Recently there has been a significant interest in the problem of list decodable linear

regression. The prior works considered only the non-batch setting. The sample and time

complexity of algorithm in [87, 126] are dO(1/α4) and dO(1/α8), respectively. [126] achieves an

error O(σ/α3/2) with a list of size (1/α)O(log(1/α)), and [87] obtains an error guarantee O(σ/α)

with a list of size O(1/α).

[53] improved the sample complexity. For Gaussian noise and covariates distributed

according to standard Gaussian, they gave an information-theoretic algorithm that uses

O(d/α3) samples and estimates w to an accuracy O(σ
√
log(1/α)/α) using a list of size

O(1/α). They also showed that no algorithm, even with infinite samples, can achieve an error

167



≪ σ/α
√

log(1/α) with a Poly(1/α) size list.

As these works considered the non-batch setting, they do not obtain a polynomial time

algorithm for this problem, which may in fact be impossible [53].

Our main result shows that using batches one can achieve a polynomial time algorithm

for this setting, moreover, the algorithm requires only Õn,α(d) genuine samples.

Theorem 82. For any 0 < α < 1, n ≥ Θ(C3
2C2 log2(2/α)

α
) and |G| = ΩC(dn

2 log(d)), Algorithm 7

runs in time poly(|G|, α, d, n) and returns a listM of size at most 4/α2 such that with probability

≥ 1− 4/d2,

minw∈L ∥w − w∗∥ ≤ O
(
C3C log(2/α)√

nα
σ
)
.

Interestingly, for n = Ω̃(1/α), the estimation error of our polynomial algorithm has a

better dependence on α than the best possible σ/α
√

log(1/α) [53] by any algorithm (even with

infinite resources) in the non-batch setting (i.e. n = 1).

We restate the above result as the following corollary, which for a given ϵ, d and α

characterizes the number of good batches |G| and n required by Algorithm 7 to achieve an

estimation error O(ϵσ).

Corollary 83. For any 0 < α < 1, 0 ≤ ϵ ≤ 1, nmin = ΘC3,C(
log2(2/α)

αϵ2
), n ≥ nmin, and

|G| = ΩC(dn
2
min log(d)), Algorithm 7 runs in time poly(α, d, ϵ) and returns a list M of size at

most 4/α2 such that with probability ≥ 1− 4/d2,

minw∈L ∥w − w∗∥ ≤ O(ϵσ).

For ϵ = Θ(1) in the above corollary, we get n = Ω̃( 1
α
) and |G| = Ω̃C(d log(d)/α

2).

Remark 1. As discussed earlier, for the case where a majority of data is genuine, i.e. α > 1/2,

polynomial time algorithms have been developed in prior works [123, 50, 38] to estimate the

regression parameter even in a non-batch setting. Since the majority of data is genuine, these

algorithms can return a single estimate of the regression parameter instead of a list. In particular,

168



the algorithm in [38] requires O(d/(1 − α)2) genuine samples, and estimates the regression

parameter w∗ to an ℓ2 distance of O(C3

√
(1− α)σ) for any 1− α = O( 1

C3
2 ), where C3 is the

condition number of the covariance matrix Σ of the covariates. A lower bound of Ω(
√

(1− α)σ)

is also known for the non-batch setting. We note that the algorithm in [38] for the case α > 1/2,

can easily be extended to the batch setting, where by using batch gradients instead of sample

gradients in their algorithm, the regression parameter w∗ can be estimated to a much smaller ℓ2

distance of O(C3

√
(1− α)σ/

√
n).

5.5 Technical Overview

This section presents the main ideas behind our algorithm.

For a given batch b from B, the square loss of its ith sample at point w in the parameter

space is represented by f bi (w) := (w · xbi − ybi )2/2.

If all batches in B had samples generated from D then the minimizer of the average

loss across all batches, represented by EB[f bi (w)], would converge to the optimal solution w∗.

However, the presence of even a single outlier sample can cause this method to fail. In our setting,

a majority of batches may contain potentially outlier samples.

The gradient of the loss function f bi (w) is ∇f bi (w) = (w · xbi − ybi ) · xbi . For good

batches, which has i.i.d. samples from distribution D, the expected value of this gradient is

ED[∇f bi (w)] = Σ(w − w∗).

When |G| is sufficiently large, then

∥EG[∇f bi (w)]∥ =
∥∥∥ 1
|G|n

∑
b∈G
∑

i∈[n]∇f bi (w)
∥∥∥

≈∥ED[∇f bi (w)]∥ = ∥Σ (w − w∗)∥. (5.1)

Suppose w̃ is a stationary point of all samples, i.e. EB[∇f bi (w̃)] = 0. If w̃ is far from

w∗, then the above equation implies that the mean of gradients good samples will be large. Then

169



norm of the co-variance of the sample gradients at w̃ will be at least

∥CovB[∇f bi (w̃)]∥ ≥
|G|
|B|∥EG[∇f

b
i (w̃)]− EB[∇f bi (w̃)]∥2

= α∥EG[∇f bi (w̃)]∥2
(a)
≈ α∥Σ (w̃ − w∗)∥2. (5.2)

When the co-variance of good sample points is much smaller than the overall co-variance

of all samples it is possible to iteratively divide or filter samples in two (possibly overlapping)

clusters such that one of the clusters is “cleaner" than the original [136, 51]. Hence, if we had

∥CovB[∇f bi (w̃)]∥ ≫ ∥CovG[∇f bi (w̃)]∥ then we could have obtained a “cleaner version" of B,

that had a higher fraction of good batches.

For batch b ∈ G the norm of co-variance of gradients (of a single sam-

ple) is ∥CovD[∇f bi (w̃)]∥ = Θ(σ2 + ∥Σ(w̃ − w∗)∥2) (using L4-L2 hypercontractiv-

ity). Even if we had ∥CovG[∇f bi (w̃)]∥ ≈ ∥CovD[∇f bi (w̃)]∥, it does not guarantee

|CovB[∇f bi (w̃)]| ≫ |CovG[∇f bi (w̃)]|, as α∥Σ (w̃ − w∗)∥2 ≪ σ2 + ∥Σ(w̃ − w∗)∥2 , regardless

of how large the difference between the stationary point w∗ for the distribution D and the

stationary point w̃ for all samples is. We will now see that focusing on batch gradients rather

than single sample gradients can alleviate this problem.

5.5.1 How Batches Help

In the preceding approach, we didn’t leverage the batch structure. In fact, the SQ lower

bound in [53] suggests that it may be impossible to achieve a polynomial-time algorithm for the

non-batch setting.

To take the advantage of the batch structure instead of considering the loss function and

its gradient for each sample individually, we consider the loss of a batch and the gradient of

the batch loss. The loss function of a batch b is f b(w) = 1
n

∑n
i=1 f

b
i (w) i.e the average of the

loss function in its samples. From the linearity of differentiation, the gradient of the batch loss

function is ∇f b(w) = 1
n

∑n
i=1∇f bi (w).

170



Then from the linearity of expectation, ∥EG[∇f bi (w)]∥ = ∥EG[∇f b(w)]∥ for any

w. However, averaging over n samples reduces the co-variance by a factor n, therefore,

CovD[∇f b(w)] = CovD[∇f bi (w)]/n.

For |G| large enough, we will have population covariance ∥CovG[∇f b(w̃)]∥ ≈

∥CovD[∇f b(w̃)]∥. Further, as ∥CovD[∇f bi (w̃)]∥ = O(σ2 + ∥Σ(w̃ − w∗)∥2), it follows

∥CovG[∇f b(w̃)] = O
(
σ2+∥Σ(w̃−w∗)∥2

n

)
.

If the batch size n = Ω(log2(1/α)/α) and w̃ is stationary point of average loss of all samples inB,

then for a large value of ∥w̃−w∗∥ = Ω(σ log(1/α)/
√
nα), it can be shown thatα∥Σ (w̃−w∗)∥2 ≥

log2( 1
α
)O(σ

2+∥Σ(w̃−w∗)∥2)
n

). Since the expectation of batch and sample gradients are the same

over any batch sub-collection, using a similar argument as for Equation (5.2) one can show that

∥CovB[∇f b(w̃)]∥ ≈ α∥Σ (w̃ − w∗)∥2, Combining this bound with the above bound gives

∥CovB[∇f b(w̃)]∥ ≥ log2(1/α)∥CovG[∇f b(w̃)]∥.

Therefore, either the distance between the stationary point of this cluster and w∗ is≤ O(σ log(1/α)√
nα

)

or the covariance of gradients for the set of all batches is much larger than that for good batches.

If it is the former, then we have a good approximation of w∗ and if it is the latter, we can divide

B into two (possibly overlapping) clusters, where at least one of the new clusters contains a

majority of good batches and has a higher proportion of good batches than the initial cluster.

The same argument can be extended from B to any sub-collection of B that retains a major

portion of good batches G.

To divide the clusters, we use the Multifilter routine from [51]. Instead of hard

clustering, this routine does soft clustering. The soft clustering produces a membership or weight

vector β of length |B| with each entry between [0, 1] that denotes the membership weight of the

corresponding batch in the cluster.

171



The above discussion leads to the following algorithm. We begin with the initial cluster of

all batchesB. We keep applying Multifilter routine iteratively on the clusters (or weight vectors)

until, for all the clusters, the covariance of gradients at the stationary points of the respective

clusters becomes small. Multifilter routine ensures that at least one of the clusters retains a

major portion of good batches and it doesn’t have more than O(1/α2) clusters at any stage.

As discussed, for a cluster that retains a major portion of good batches G, the covariance

of batch gradients is small only if stationary point w̃ of that cluster approximates w∗ with an

accuracy of ∥w̃ − w∗∥ = O(σ log(1/α)√
nα

). Since the final set of O(1/α2) clusters includes at least

one such cluster, the stationary point of at least one of the clusters should approximate w∗ to the

desired accuracy.

However, applying the Multifilter routine for this purpose presents additional challenges,

which we address through various technical contributions in the next section.

5.5.2 Clipping to Improve Sample Complexity

We would like to obtain a high probability concentration bound of ∥CovG[∇f b(w)]∥ ≤

O(∥w−w
∗∥2+σ2

n
) on the empirical covariance of the batch gradients in the good batches. No

such bounds for general n are known in previous literature. And even for n = 1, using known

concentration bounds would require a large number of good batches or samples. For example, [50]

needed d5 samples in total, and in fact, a minimum requirement of d2 samples can be shown for

such a bound to hold. [38] requiredO(d) samples (for n fixed to 1) for a related bound, but for each

point w they need to ignore certain samples from the calculation of empirical covariance. These

samples can be different depending on w. While such guarantees sufficed for their application

where a majority of data was genuine, it is unclear if it can be extended to the list-decodable setting.

To address these challenges, we use clipped loss instead. For clipping parameter κ > 0

172



and any batch b ∈ B, the clipped loss of its ith sample at point w is given by

f bi (w, κ) :=


(w·xbi−ybi )2

2
if |w · xbi − ybi | ≤ κ

κ|w · xbi − ybi | − κ2/2 otherwise.

We specify the choice of clipping parameter κ later. The clipped loss defined above is known as

Huber’s loss in literature. The gradient of this clipped loss is

∇f bi (w, κ) :=
(xbi · w − ybi )
|xbi · w − ybi | ∨ κ

κxbi . (5.3)

We refer to the gradient of the clipped loss above as the clipped gradient.

For a batch b, its clipped loss is simply the average of clipped loss over all its samples.

Clipped loss for a batch b at point w is f b(w, κ) := 1
n

∑
i∈[n] f

b
i (w, κ). By the linearity of

gradients, the gradient of the clipped loss, or clipped gradient, ∇f b(w, κ) is the average of

clipped loss over all its samples, i.e. ∇f b(w, κ) :=
∑

i∈[n]
1
n
∇f bi (w, κ).

Ideal choice of Clipping parameter.

When κ→∞, the clipped loss is the same as the squared loss, hence clipping will have

no effect in reducing the number of samples required. On the other hand, if κ → 0, the loss

function is overly clipped, which can lead to the expected norm of the clipped gradient being

much smaller than that of the unclipped gradients in Equation (5.1). Theorem 89 shows that

as long as the clipping parameter is set to Ω(∥w − w∗∥) + Ωnα(σ), the expected norm of the

clipped gradient will be Ω(∥w − w∗∥)− Õ(σ/
√
nα). This means that for any point w whose

distance from w∗ is greater than Ω̃(σ/
√
nα), the expected norm of the clipped gradient at w is

∥ED[∇f bi (w, κ)]∥ = Ω(∥w − w∗∥), which is of the same order as that of unclipped gradients in

Equation (5.1).

Furthermore, taking advantage of clipping, in Theorem 84 we show that for all pointsw, and

for any clipping parameter κ = O(∥w−w∗∥)+Onα(σ) the covariance of the clipped gradients sat-

173



isfies ∥CovG[∇f b(w, κ)]∥ ≤ O(∥w−w
∗∥2+σ2

n
)with only Õn,α(d) samples. As discussed previously,

the same bound on the covariance of the un-clipped gradients would instead requireΩ(d2) samples.

From the preceding discussion, in order for both the requirements of ∥ED[∇f bi (w, κ)]∥ =

Ω(∥w−w∗∥) and ∥CovG[∇f b(w, κ)]∥ ≤ O(∥w−w
∗∥2+σ2

n
) to be met using only Õn,α(d) samples,

the clipping parameter must be set to κ = Θ(∥w − w∗∥) + Θnα(σ). This requires a constant

factor approximation of ∥w − w∗∥ to be obtained.

Additionally, when using the Multifilter on a cluster, a tight approximation of ∥w−w∗∥ is

necessary to obtain a tight upper bound on ∥CovG[∇f b(w, κ)]∥, which is required by Multifilter

as an input parameter.

Furthermore, recall that when applying the Multifilter on any cluster, we set w to a

stationary point of the clipped loss for that cluster. This stationary point w will depend on the

clipping parameter κ, and the appropriate range for κ depends on w, creating a cyclic dependence

that we must also overcome when estimating ∥w − w∗∥.

5.5.3 Estimating Parameters for Multifilter

Recall that our goal is to return a small set of (soft) clusters, such that at least one of them

retains a major portion of good batches, and its stationary point closely approximates w∗. When

the Multifilter routine is applied to a cluster, it generates sub-clusters. Hence, the sub-clusters

that originate from a cluster that has already lost a majority of good batches are not relevant for

us. Therefore, we will need accurate parameter estimation only for clusters that have retained a

substantial weight of good batches, and will only consider such clusters in the remaining section.

Let vb(w) := 1
n

∑
i∈[n] |w · xbi − ybi | denote the mean absolute loss of a batch at point w.

We developed a subroutine called FindClippingPparameter (Algorithm 8) that over-

comes the cyclic dependence to find appropriate stationary point w and clipping parameter κ

for a given soft cluster β. These values ensure that w is a stationary point for clipped gradients

∇f b(w, κ) for batches in the cluster and κ falls in a range determined by the expected absolute

loss of batches in cluster β at the stationary point w, specifically, κ = Θ(Eβ
[
vb(w)

]
) + Θnα(σ).

174



For |G| = Ω̃(d), we prove that w.h.p.

VarG
(
vb(w)

)
≤ EG

[
(vb(w)− ED

[
vb(w)

]
)2
]

= O
(
σ2+ED[vb(w)]2

n

)
. (5.4)

From the above bound, it follows that for most of the good batches, vb(w) is very close to

ED[v
b(w)].

Further, it can be shown that ED[v
b(w)] = Θ(∥w − w∗∥)±O(σ), where ED[v

b(w)] is

expectation of vb(w) for a batch sampled from D.

We derive a novel way that given a weight vector β estimates upper bound θ1 on variance

VarG
(
vb(w)

)
. Further, the upper bound is tight enough to ensure that if Varβ(vb(w)) = Õ(θ1)

then for most batches b in β, vb(w) will be close to its expectation Eβ[vb(w)] over β. As the soft

cluster contains a significant proportion of good batches, and since vb(w) for most of these good

batches is close to ED[v
b(w)], then Eβ[vb(w)] would also be close to ED[v

b(w)]. Furthermore,

since ED[v
b(w)] = Θ(∥w − w∗∥)±O(σ), it follows that Eβ[vb(w)] = Θ(∥w − w∗∥)±O(σ).

Therefore, if for a certain weight vector β the variance Varβ(vb(w)), is close to our

estimated variance of good batches, θ1, then we can ensure that κ = Θ(∥w − w∗∥) + Θnα(σ)

and use Eβ[vb(w)] as an estimate for ∥w − w∗∥.

However, if the variance Varβ(vb(w)) for a β, is significantly greater than our estimated

variance of good batches, θ1, then we will not use the Multifilter routine for gradients on that

cluster. Instead, we will apply Multifilter routine on this cluster w.r.t. average absolute loss

vb(w). As a result, the estimation of ∥w − w∗∥ and ensuring that κ is within the correct range,

which is necessary for using the Multifilter routine for gradients, is no longer relevant.

Hence, in the estimation part, we either apply Multifilter routine on the cluster for

average absolute loss to obtain new clusters with one of them being cleaner, or else our estimate

of the parameters is in the desired range to apply Multifilter routine w.r.t. the gradients.

175



5.6 Algorithm and Proof of Theorem 82

In subsection 5.6.2, a triplet (β, κ, w) is defined as nice if it meets certain criteria: β

retains a substantial amount of weight among good batches, κ falls within a specific range, w is a

stationary point of the clipped loss, and the covariance of gradients of the clipped loss for the

cluster β is bounded at w. It is noted that any such triplet’s point w is a good approximation of

w∗. In Section 5.5.1, we provided intuition for the same without the clipping.

To identify a cluster with bounded covariance of clipped gradients, we require that the

covariance of clipped gradients for G is bounded. And to estimate the correct range of κ and

an upper bound on the covariance of clipped gradients for G, as described in Section 5.5.3,

we require that the variance of mean absolute loss is bounded for the set of good batches. We

formalize these requirements in the next subsection in form of two regularity conditions.

To specify the range in which the clipping parameter κ should be set, we define κmax and

κmin in Definition 1 in the appendix, which are functions of w, and other distribution parameters.

Finally, in the last two subsections, we describe the algorithm and show that it finds a nice triplet.

5.6.1 Regularity Conditions.

The first condition is that for all unit vectors u, all vectors w and for all κ ≤ κmax,

EG
[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2] ≤ U1,

where U1 := c4
σ2+CED[|(w−w∗)·xbi |2]

n
. The second regularity condition is that for all vectors w,

EG
[(
vb(w)− ED[|w · xbi − ybi |]

)2] ≤ U2,

where U2 := c2
σ2+CED[|w·xbi−ybi |]2

n
. We will repeatedly refer to the upper bounds U1 and U2 in

the regularity conditions throughout this section.

In Section 5.9, we show that even with a minimal number of good batches, |G| = Ω̃n,α(d),

176



the two regularity conditions hold w.h.p.

As a simple consequence, the first regularity condition implies that

∥CovG(∇f b(w, κ))∥ ≤ U1, (5.5)

and similarly, the second regularity condition implies that

VarG
(
vb(w)

)
≤ U2. (5.6)

We note that the expressions for U1 and U2 simplify to Θ(σ2 + ∥w − w∗∥2/n) and the

expressions for κmax and κmin simplify to Θ(∥w − w∗∥ + σ) if one is not concerned with the

dependence on distribution parameters C,C3, Cp.

5.6.2 Nice Triplet

First, we introduce the notion of nice weight vector. A weight vector β is considered nice

if the total weight assigned to all good batches by it is at least βG ≥ 3|G|/4.

We term a combination of a weight vector β, a clipping parameter κ, and an estimate w

as a triplet. Next, we introduce the concept of a nice triplet.

Condition 1. A triplet (β, κ, w) is considered nice if

(a) β is a nice weight vector, i.e. βG ≥ 3|G|/4.

(b) Clipping parameter is in the range, κmin ≤ κ ≤ κmax.

(c) w is an approximate stationary point, namely mean clipped loss for weight vector β at w is

at most ∥Eβ[∇f b(w, κ)]∥ ≤ log(2/α)σ/8
√
nα.

(d) Covariance of the clipped gradients over β at stationary point w is at most

∥Covβ(∇f b(w, κ))∥ ≤ c5C
2 log2( 2

α
)
(σ2+ED[|(w−w∗)·xbi |]2)

n
, where c5 is a positive universal

constant.

177



According to these conditions, a triplet (β, κ, w) is nice if weight vector β is considered

nice, clipping parameter κ is within the appropriate range, w is an approximate stationary point

for clipped loss for this weight vector and covariance of clipped gradient over weight vector β at

this point w is small. As discussed briefly at the beginning of this section, for a triplet satisfying

these conditions w is a good approximation of w∗. Theorem 88 formally shows that for any nice

triplet (β, w, κ), we have ∥w−w∗∥ ≤ O(C3Cσ log(2/α)√
nα

). Then to prove Theorem 82, it is sufficient

to show that the algorithm returns a small list of triplets such that at least one of them is nice.

In the next two subsections, we will describe the algorithm and demonstrate that it returns

a small list of triplets, at least one of which is nice.

5.6.3 Description of the Algorithm

MainAlgorithm starts with L = βinit, where the initial weight vector βinit assigns an

equal weight of 1 to each batch in B. This initial weight vector is nice since βGinit = |G|. In each

iteration of the while loop, the algorithm selects one of the weight vectors β from the list L, until

the list L is empty. Then, it uses the subroutine FindClippingPparameter on this weight vector

β, which returns the values of clipping parameter κ and approximate stationary point of clipped

loss as w.

Next, the algorithm uses the Multifilter subroutine on β. Given a weight vector and a

function over batches, as well as an estimate of the variance of the function for good batches, this

subroutine divides the cluster to produce new clusters, such that each of them is shorter than the

original.

To apply this subroutine, the algorithm first calculates parameters θ1 and θ2, which are

estimates of the upper bounds U2 and U1 in the two regularity conditions for the point w.

If the variance of the mean absolute loss at w for batches in this weight vector β is much

larger than the estimate θ1, namely Varβ
(
vb
)
≥ c3 log

2(2/α)θ1, the algorithm applies the Mul-

tifilter subroutine for the function vb(w). This is referred to as a Type-1 use of this subroutine.

If instead, the variance of vb in the weight vector is small, the algorithm defines a new

178



Algorithm 7. MainAlgorithm
1: Input: Data {{(xbi , ybi )}i∈[n]}b∈B, α, C, σ.
2: For each b ∈ B, βbinit ← 1 and βinit ← {βbinit}b∈B.
3: List L← {βinit} and M ← ∅.
4: while L ̸= ∅ do
5: Pick any element β in L and remove it from L.
6: a1 =

256C
√
2

3
and a2 = a1

4
+ 64.

7: κ,w ← FindClippingPparameter(B, β, a1, a2 {{(xbi , ybi )}i∈[n]}b∈B)
8: Find top approximate unit eigenvector u of Covβ(∇f b(w, κ)).
9: For each batch b ∈ B, let vb = 1

n

∑
i∈[n] |w · xbi − ybi | and ṽb = ∇f b(w, κ) · u.

10: θ0 ← inf{v : β({b : vb ≥ v}) ≤ α|B|/4 and

θ1 ← c2
n

(
σ2 +

(
8
√
Cθ0
7

+ σ
7

)2)
, (5.7)

θ2 ← c4
n

(
σ2 + 16C2

(
Eβ[vb] + σ

)2)
. (5.8)

11: if VarB,β(vb) > c3 log
2(2/α)θ1 then

12: NewWeights←Multifilter(B,α, β, {vb}, θ1). {Type-1 use}
13: Append each weight vector β̃ ∈ NewWeights that has total weight β̃B ≥ α|B|/2 to

list L.
14: else if VarB,β(ṽb) > c3 log

2(2/α)θ2 then
15: NewWeights←Multifilter(B,α, β, {ṽb}, θ2). {Type-2 use}
16: Append each weight vector β̃ ∈ NewWeights that has total weight β̃B ≥ α|B|/2 to

list L.
17: else
18: Append (β, κ, w) to M .
19: end if
20: end while
21: Return M

function on batches, ṽb := ∇f b(w, κ) · u, where u is a top approximate unit eigenvector of

Covβ(∇f b(w, κ)) such that u⊺Covβ(∇f b(w, κ))u ≥ 0.5∥Covβ(∇f b(w, κ))∥. This function ṽb

is a projection of clipped batch gradients along the direction in which covariance is nearly the

highest. From (5.5), it follows that variance of this new function ṽb in good batch collection

G will be bounded by U1. If the variance of ṽb over the weight vector β is much larger than

estimate θ2 of U1, namely Varβ
(
ṽb
)
≥ c3 log

2(2/α)θ2, then the algorithm applies Multifilter

subroutine for function ṽb(w). This is referred to as a Type-2 use of this subroutine.

When Multifilter is applied to a weight vector, it returns a list NewWeights of weight

179



vectors as a result. The MainAlgorithm appends weight vectors in NewWeights that have

total weights more than α|B|/2 to list L and the iteration terminates. The weight vectors that

have total weights less than α|B|/2 are ignored as they can’t be nice weight vectors and can not

result in any nice weight vector in future iterations.

If the variances of both vb and ṽb are small, then the iteration ends by appending (β, κ, w)

to M . Next, we argue that M ends up with at least one nice triplet.

5.6.4 Finding Nice Triplet

We first show that Type-1 application of Multifilter on a nice weight β only occurs

when,

Varβ
(
vb
)
≥ c3 log

2(2/α)VarG
(
vb
)
. (5.9)

Recall that Type-1 application of Multifilter on β takes place when Varβ
(
vb
)
≥ c3 log

2(2/α)θ1.

From Equation (5.6), we have VarG
(
vb
)
≤ U2 and Theorem 94 shows that for a nice weight

vector β the parameter θ1 upper bounds U2. Thus, Type-1 use of Multifilter on a nice weight β

only takes place when Equation (5.9) holds.

The subroutine FindClippingPparameter returns κ and w for a given weight vector β.

Theorem 93 in the Appendix 5.11 shows that these parameters w and κ satisfy:

1. w is an approximate stationary point for {f b(·, κ)} w.r.t. weight vector β.

2.
(
a1
2
Eβ[vb(w)] ∨ a2σ

)
≤κ≤

(
4a21Eβ[vb(w)] ∨ a2σ

)
, where a1 and a2 are input parameters

of FindClippingPparameter.

The first guarantee implies that if a triplet (β, κ, w) ends in setM , then it must satisfy condition (c)

for a nice triplet.

Theorem 97 shows that if Type-1 filtering did not occur for a nice weight vector,

then for this weight vector the range of κ specified in the second guarantee of subroutine

FindClippingPparameter is a subset of the desired range (κmin, κmax). Specifically, if for a

180



nice weight vector β, Varβ
(
vb
)
≤ c3 log

2(2/α)θ1, then κ ∈ (κmin, κmax) and

U1 ≤ θ2 ≤ c5
2c3

C2(σ2+ED[|(w−w∗)·xbi |]2)
n

. (5.10)

Recall that a triplet (β, κ, w) ends up in M only when Varβ
(
vb
)
≤ c3 log

2(2/α)θ1 and

Varβ
(
ṽb
)
≤ c3 log

2(2/α)θ2 are both satisfied.

From the above discussion, it follows that if a triplet (β, κ, w) is in M such that β is

nice then κ ∈ (κmin, κmax) and it satisfies,

Varβ
(
ṽb
)
≤ c5

2
log2(2/α)

C2(σ2+ED[|(w−w∗)·xbi |]2)
n

.

From the definition of ṽb, it follows that ∥Covβ(∇f b(w, κ))∥ ≤ 2Varβ
(
ṽb
)
. Therefore, for any

triplet (β, κ, w) in M such that β is a nice weight vector, conditions (b) and (d) are also satisfied.

This means that any such triplet is a nice triplet. Finally, it remains to be shown that M contains

at least one triplet with a nice weight vector, which we do next.

Recall that Type-2 application of Multifilter on a weight β only takes place when,

Varβ
(
ṽb
)
≥ c3 log

2(2/α)θ2. Since for a nice β, from Equation (5.10), U1 ≤ θ2, from

Equation (5.5), ∥CovG(∇f b(w, κ))∥ ≤ U1, and from the definition of ṽb, VarG
(
ṽb
)
≤

∥CovG(∇f b(w, κ))∥. Therefore, θ2 ≥ VarG
(
ṽb
)
, and hence Type-2 application on a nice

weight β only takes place when,

Varβ
(
ṽb
)
≥ c3 log

2(2/α)VarG
(
ṽb
)
. (5.11)

Theorem 100 in Appendix 5.13 states that if Equation (5.9) holds for all Type-1 uses and

Equation (5.11) holds for all Type-2 uses when using subroutine Multifilter on nice weight

vectors, then at least one of the triplets in the final list M will include a nice weight vector. Since

we have already shown that these two equations hold, it follows that M will contain a nice triplet.

The theorem also shows that the size of M is at most 4/α2 and the total number of iterations of

181



the while loop is at most O(|B|/α2), implying a small list size and a polynomial runtime for the

algorithm

5.7 Conclusion

In summary, this paper addresses the problem of linear regression in the setting when data

is presented in batches and only a small fraction of the batches contain genuine data. The paper

presents a polynomial time algorithm to identify a small list containing a good approximation

of the true regression parameter when genuine batches have at least Ω̃(1/α) samples each. By

utilizing the batch structure, the paper introduces the first polynomial-time algorithm for list

decodable linear regression. Additionally, the algorithm requires a number of genuine samples

that increase nearly linearly with the dimension of the covariates.

SQ lower bounds in [53] for the non-batch setting suggests that a polynomial time algorithm

is impossible with batch size 1, and the paper demonstrates that a batch size of ≥ Ω̃(1/α) is suffi-

cient to obtain a polynomial time algorithm. This poses the question of what the smallest batch size

required is to obtain a polynomial time algorithm, which is a promising direction for future work.

Appendix

5.8 Related Work

Robust Estimation and Regression. Designing estimators which are robust under the

presence of outliers has been broadly studied since 1960s [142, 6, 73]. However, most prior

works either requires exponential time or have a dimension dependency on the error rate, even

for basic problems such as mean estimation. Recently, [46] proposed a filter-based algorithm for

mean estimation which achieves polynomial time and has no dependency on the dimensionality in

the estimation error. There has been a flurry of research on robust estimation problems, including

mean estimation [99, 48, 59, 68, 69, 49], covariance estimation [36, 101], linear regression

and sparse regression [18, 17, 11, 64, 123, 90, 50, 104, 88, 40, 112, 57, 87, 120, 38], principal

182



component analysis [94, 81], mixture models [45, 83, 97, 71]. The results on robust linear

regression are particularly related to the setting of this work, though those papers considered

non-batch settings and the fraction of good examples α > 1/2. [123, 50, 57, 120, 38, 80]

considered the setting when both both covariate xi and label yi are corrupted. When there are

only label corruptions, [18, 40, 93] achieve nearly optimal rates with O(d) samples. Under the

oblivious label corruption model, i.e., the adversary only corrupts a fraction of labels in complete

ignorance of the data, [17, 137] provide a consistent estimator whose approximate error goes to

zero as the sample size goes to infinity.

Robust Learning from Batches. [125] introduced the problem of learning discrete

distribution from untrusted batches and derived an exponential time algorithm. Subsequent

works [32] improved the run-time to quasi-polynomial and [77] obtained polynomial time with

an optimal sample complexity. [78, 31] extended these results to one-dimensional structured

distributions. [76, 96] studied the problem of classification from untrusted batches. [2] studies

a closely related problem of learning parameter of Erdős-Rényi random graph when a fraction of

nodes are corrupt. All these works focus on different problems than ours and only consider the

case when a majority of the data is genuine.

List Decodable Mean Estimation and Regression. List decodable framework was

first introduced in [29] to obtain learning guarantees when a majority of data is corrupt. They

derived the first polynomial algorithm for list decodable mean estimation under co-variance

bound. Subsequent works [51, 39, 52] obtained a better run time. [56, 97] improved the error

guarantees, however, under stronger distributional assumptions and has higher sample and time

complexities.

[87] studies the problem of list-decodable linear regression with batch-size n = 1 and

derive an algorithm with sample complexity (d/α)O(1/α4) and runtime (d/α)O(1/α8). [126] show

a sample complexity of (d/α)O(1/α4) with runtime (d/α)O(1/α8)(1/α)log(1/α). Polynomial time

might indeed be impossible for the single sample setting owing to the statistical query lower

bounds in [53].

183



Mixed Linear Regression. When each batch has only one sample, (i.e. n = 1) and

contains samples of one of the k regression components the problem becomes the classical mixed

linear regression which has been widely studied [55, 32, 102, 134, 154, 153, 26]. It is worth

noting that no algorithm is known to achieve polynomial sample complexity in this setting. The

problem is only studied very recently in the batched setting with n > 1 by [95, 94], where all the

samples in the batch are from the same component. [95] proposed a polynomial time algorithm

which requires O(d) batches each with size O(
√
k). [94] leveraged sum-of-squares hierarchy

to introduce a class of algorithms which is able to trade off the batch size n and the sample

complexity. Both of these works assume that the distributions of covariates for all components is

identical and Gaussian. Since the above problem is a special case of the list-decodable linear

regression, our algorithm is able to recover the k regression components with batch size n = O(k)

and O(d) number of batches. Our algorithms allow more general distributions for the covariates

than allowed by the Gaussian assumption in the previous works. Further, our algorithms allow

the distributions of covariates for the different components to differ. It is worth noting that

list-decodable linear regression is a strictly harder problem than mixed linear regression as shown

in [53] and thus our result is incomparable to the ones in the mixed linear regression setting.

Leaning mixture of linear dynamical systems has been studied in [33].

5.9 Regularity conditions

In this section, we state regularity conditions for genuine data used in proving the

guarantees of our algorithm. Before we proceed we will define upper and lower bounds on the

clipping parameter κ that are functions of w and other distribution parameters,

Definition 1. We define the following upper and lower bounds on the clipping parameter κ as a

184



function of w and other distribution parameters:

κmax =c7C
2
(√

ED[|xbi · (w − w∗)|2] + σ
)
,

κmin =max
{
8
√
CED[|xbi · (w − w∗)|2], 8σ

}
.

κmax will be used in this section to define our first regularity condition, while κmin will

be used in Section 5.10 for defining a nice triplet.

Regularity Conditions.

1. For all κ ≤ κmax, all unit vectors u and all vectors w

EG
[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2] ≤ c4
σ2 + CED[((w − w∗) · xbi)2]

n
,

2. For all vectors w,

EG

 1

n

∑
i∈[n]

|w · xbi − ybi | − ED[|w · xbi − ybi |]

2 ≤ c2

(
σ2 + CED[|w · xbi − ybi |]2

n

)
.

The first regularity condition on the set of good batches G, bounds the mean squared

deviation of projections of clipped batch gradients from its true population mean. The regularity

condition requires clipping parameter κ to be upper bounded, with the upper bound depending

on ∥w − w∗∥ and σ.

As discussed in Section 5.5, when κ→∞, the clipping has no effect, and establishing

such regularity condition for unclipped gradients would require Ω(d2) samples. By using clipping,

and ensuring that clipping parameter κ is in the desired range we are able to achieve Õn,α(d)

sample complexity.

Theorem 84 characterizes the number of good batches required for regularity condition 1

as a function of the upper bound on κ.

185



Theorem 84. There exist a universal constant c4 such that for µmax ∈ [1, d
4n2

C
] and |G| =

Ω(µ4
maxn

2d log(d)), with probability ≥ 1 − 4
d2

, for all unit vectors u, all vectors w and for all

κ2 ≤ µmax(σ
2 + CED[((w − w∗) · xbi)2]),

EG
[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2] ≤ c4
σ2 + CED[((w − w∗) · xbi)2]

n
. (5.12)

We prove the above theorem in Section 5.15.

The second regularity condition on the set of good batches G, bounds the mean squared

deviation of average absolute error for a batch from its true population mean. Theorem 85

characterizes the number of good batches required for regularity condition 2.

Theorem 85. For |G| = Ω(n2d log(d)) and universal constant c2 > 0, with probability≥ 1− 4
d2

,

for all vectors w,

EG

 1

n

∑
i∈[n]

|w · xbi − ybi | − ED[|w · xbi − ybi |]

2 ≤ c2

(
σ2 + CED[|w · xbi − ybi |2]

n

)
.

Proof. Proof of the above theorem is similar to the proof of Theorem 84, and for brevity, we skip

it. ■

Combining the two theorems shows that the two regularity conditions hold with high

probability with Õn,α(d) batches.

Corollary 86. For |G| ≥ ΩC(dn
2 log(d)), both regularity conditions hold with probability

≥ 1− 8
d2

.

We conclude the sections with the following Lemma which lists some simple consequences

of regularity conditions, that we use in later sections.

Lemma 87. If regularity conditions hold then

186



1. For all vectors w and for all κ ≤ κmax,

∥CovG(∇f b(w, κ))∥ ≤ c4
σ2 + CED[((w − w∗) · xbi)2]

n
,

2. For all vectors w

VarG

 1

n

∑
i∈[n]

|w · xbi − ybi |

 ≤ c2

(
σ2 + CED[|w · xbi − ybi |]2

n

)
.

3. For all G′ ⊆ G of size ≥ |G|/2,

∥EG′ [∇f b(w, κ)]− ED[∇f b(w, κ)]∥ ≤
√
2c4

σ +
√
CED[((w − w∗) · xbi)2]√

n
.

Proof. The first item in the lemma follows as

∥CovG(∇f b(w, κ))∥ = max
u:∥u∥≤1

EG
[(
∇f b(w, κ) · u− EG[∇f b(w, κ) · u]

)2]
≤ max

u:∥u∥≤1
EG
[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
≤ c4

σ2 + CED[((w − w∗) · xbi)2]
n

,

where the first inequality follows as the expected squared deviation along the mean is the smallest

and the second inequality follows from the first regularity condition.

Similarly, the second item follows from the second regularity condition.

Finally, we prove the last item using the first regularity condition. Let u be any unit vector

and Zb(u) :=
(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2. Then

∥EG[Zb](u)∥ =

∥∥∥∥∥ 1

|G|
∑
b∈G

Zb(u)

∥∥∥∥∥ ≥
∥∥∥∥∥ 1

|G|
∑
b∈B′

Zb(u)

∥∥∥∥∥ =
|G′|
|G|
∥EG′ [Zb(u)]∥ ≥ 1

2
∥EG′ [Zb(u)]∥,

where the first inequality used the fact that Zb(u) is a positive and the second inequality used

187



|G′| ≥ |G|/2. Then using the bound on ∥EG[Zb(u)]∥ in in the first regularity condition, we get

∥EG′ [Zb(u)]∥ ≤ 2c4
σ2 + CED[((w − w∗) · xbi)2]

n
.

Using the Cauchy–Schwarz inequality and the above bound,

EG′ [
∣∣∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

∣∣] = EG′ [
√
Zb(u)]

≤
√
EG′ [Zb(u)]

≤
√
2c4

σ2 + CED[((w − w∗) · xbi)2]
n

.

Since the above bound holds for each unit vector u, we have

EG′ [
∣∣∇f b(w, κ)− ED[∇f b(w, κ)]

∣∣] ≤√2c4
σ2 + CED[((w − w∗) · xbi)2]

n

≤
√
2c4

σ +
√
CED[((w − w∗) · xbi)2]√

n
.

■

5.10 Guarantees for nice triplet

For completeness, we first restate the conditions a nice triplet (β, κ, w) satisfy.

A triplet (β, κ, w) is nice if

(a) β is a nice weight vector, i.e. βG ≥ 3|G|/4.

(b) κmin ≤ κ ≤ κmax.

(c) w is any approximate stationary point w.r.t. β for clipped loss with clipping parameter κ,

namely ∥Eβ[∇f b(w, κ)]∥ ≤ log(2/α)σ
8
√
nα

.

(d) ∥Covβ(∇f b(w, κ))∥ ≤ c5C2 log2(2/α)(σ2+ED[|(w−w∗)·xbi |]2)
n

.

188



In this section, we establish the following guarantees for any nice triplets. In doing so we

assume regularity conditions hold for G.

Theorem 88. Suppose (β, κ, w) is a nice triplet, n ≥ max{32c4CC3,
256
α
c5C

2C3
2 log2(2/α)}

and regularity conditions holds, then ∥w − w∗∥ ≤ O(C3Cσ log(2/α)√
nα

).

In the remainder of this section, we prove the theorem. First, we provide an overview of

the proof and state some auxiliary lemma that we use to prove the theorem.

In this section, we show that for any nice triplet (β, κ, w) if ∥w−w∗∥ = Ω̃(σ/
√
nα) then

the following lower bound on clipped gradient co-variance, ∥Covβ(∇f b(w, κ))∥ ≥ Ω(α∥w −

w∗∥2) holds. For n = Ω̃( 1
α
) and ∥w−w∗∥ = Ω̃(σ/

√
nα) this lower bound contradicts the upper

bound in condition (d). Hence, the theorem concludes that ∥w − w∗∥ = Õ(σ/
√
nα).

To show the lower bound ∥Covβ(∇f b(w, κ))∥ ≥ Ω(α∥w − w∗∥2), we first show

∥ED[∇f bi (w, κ)]∥ = Ω(∥w − w∗∥) − Õ(σ/
√
nα) in Theorem 89. Since ∥ED[∇f bi (w, κ)]∥ =

∥ED[∇f b(w, κ)]∥, the same bound will hold for the norm of expectation of clipped batch

gradients.

When clipping parameter κ→∞ then∇f bi (w, κ) = ∇f bi (w) and for unclipped gradients,

a straightforward calculation shows the desired lower bound ∥ED[∇f bi (w, κ)]∥ = Ω(∥w − w∗∥).

However, if κ is too small then clipping may introduce a large bias in the gradients and such a

lower bound may no longer hold.

Yet, the lower bound on κ in condition (b) ensures that κ is much larger than the typical

error which is of the order ∥w − w∗∥+ σ. And when clipping parameter κ is much larger than

the typical error, it can be shown that with high probability clipped and unclipped gradients for a

random sample from D would be the same. The next theorem uses this observation and for the

case when κ satisfies the lower bound in condition (b) it shows the desired lower bound on the

norm of expectation of clipped gradient.

189



Theorem 89. If κ ≥ max{8
√
CED[|xbi · (w − w∗)|2], 8σ}, then

∥∥ED[∇f bi (w, κ)]
∥∥ ≥ 3

4C3

∥w − w∗∥.

We prove the above theorem in subsection 5.10.1

Since ED[∇f bi (w, κ)] = ED[∇f b(w, κ)], the same bound holds for the clipped batch

gradients.

Next, in Lemma 90 we show that for any sufficiently large collection G′ ⊆ G of the good

batches ∥EG′ [∇f b(w, κ)]∥ ≈ ∥ED[∇f b(w, κ)]∥.

Lemma 90. Suppose κ and w are part of a nice triplet, n ≥ 32c4CC3 and regularity conditions

holds, then for all G′ ⊆ G of size ≥ |G|/2,

∥∥EG′ [∇f b(w, κ)]
∥∥ ≥ 1

2C3

∥w − w∗∥ −
√
2c4σ√
n

.

Proof. From item 3 in Lemma 87,

∥EG′ [∇f b(w, κ)]− ED[∇f b(w, κ)]∥ ≤
√
2c4 ·

σ +
√
CED[((w − w∗) · xbi)2]√

n

≤
√
2c4σ√
n

+

√
2c4C∥w − w∗∥2∥Σ∥√

n

≤
√
2c4σ√
n

+ ∥w − w∗∥ ·
√
2c4C√
n

.

Using n ≥ 32c4CC3
2,

∥EG′ [∇f b(w, κ)]− ED[∇f b(w, κ)]∥ ≤
1

4C3

∥w − w∗∥+
√
2c4σ√
n

.

From Theorem 89, and the observation ED[∇f bi (w, κ)] = ED[∇f b(w, κ)], we get

∥∥ED[∇f b(w, κ)]
∥∥ ≥ 3

4C3

∥w − w∗∥.

190



The lemma follows by combining the above equation using triangle inequality. ■

Next, the general bound on the co-variance will be useful in proving Theorem 88.

Lemma 91. For any weight vector β, any set of vectors zb associated with batches, and any

sub-collection of vectors B′ ⊆ {b ∈ B : βb ≥ 1/2},

Covβ(zb) ≥
|B′|
2|B|
∥Eβ[zb]− EB′ [zb]∥2.

The proof of the lemma appears in Section 5.10.2.

In Theorem 88 we show that since βG ≥ 3/4|G|, we can find a sub-collection G′ of size

|G|/2 such that for each b ∈ G′, its weight βb ≥ 1/2. The we use the previous results forB′ = G′

and z = ∇f b(w, κ) to get, Covβ(∇f b(w, κ)) ≥ |G′|
4|B|∥Eβ[∇f

b(w, κ)] − EG′ [∇f b(w, κ)]∥ ≥
|G|
8|B|∥Eβ[∇f

b(w, κ)]− EG′ [∇f b(w, κ)]∥ ≥ α
8
∥Eβ[∇f b(w, κ)]− EG′ [∇f b(w, κ)]∥2.

From condition (c) of nice triplets we have Eβ[∇f b(w, κ)] ≈ 0 and from Lemma 90

we have EG′ [∇f b(w, κ)] ≳ ∥w − w∗∥. Then from Lemma 91, we get an upper bound

Covβ(∇f b(w, κ)) ≳ α · ∥w − w∗∥2.

As discussed before, combining this lower bound with the upper bound in condition (d),

the theorem concludes ∥w−w∗∥ = Õ(σ/
√
nα). Next, we formally prove Theorem 88 using the

above auxiliary lemmas and theorems.

Proof of Theorem 88. Let G′ := {b ∈ G : βb ≥ 1/2}. Next, we show that |G′| ≥ |G|/2. To

prove it by contradiction assume the contrary that |G′| < |G|/2. Then

βG =
∑
b∈G

βb =
∑

b∈G\G′

βb +
∑
b∈G′

βb
(a)
≤
∑

b∈G\G′

1

2
+
∑
b∈G′

1 ≤ |G| − |G
′|

2
+ |G′| < 3|G|

4
,

here (a) follows as the definition of G′ implies that for any b /∈ G′, βb < 1/2 and for all batches

βb ≤ 1. Above is a contradiction, as we assumed in the Theorem that βG ≥ 3|G|/4.

191



Applying Lemma 91 for B′ = G′ and zb = ∇f b(w, κ) we have

∥Covβ(∇f b(w, κ))∥ ≥
G′

2|B|
(
∥EG′ [∇f b(w, κ)]∥ − ∥Eβ[∇f b(w, κ)]∥

)2
≥ |G|

4|B|
(
∥EG′ [∇f b(w, κ)]∥ − ∥Eβ[∇f b(w, κ)]∥

)2
≥ α

4

(
∥EG′ [∇f b(w, κ)]∥ − ∥Eβ[∇f b(w, κ)]∥

)2
. (5.13)

In the above equation, using the bound in Lemma 90 and bound on ∥Eβ[∇f b(w, κ)]∥ in

condition (c) for nice triplet we get,

∥Covβ(∇f b(w, κ))∥ ≥
α

4

(
max

{
0,

1

2C3

∥w − w∗∥ −
√
2c4σ√
n
− log(2/α)σ

8
√
nα

})2

.

We show that when ∥w−w∗∥ ≤ O(C3Cσ log(2/α)√
nα

), the above upper bound contradicts the following

lower bound in condition (d),

∥Covβ(∇f b(w, κ))∥ ≤
c5C

2 log2(2/α)(σ2 + ED[|(w − w∗) · xbi |]2)
n

≤ c5C
2 log2(2/α)(σ2 + ∥w − w∗∥2)

n
.

To prove the contradiction assume

∥w − w∗∥
8C3

> max

{
log(2/α)σ

8
√
nα

,

√
2c4σ√
n

,
2
√
c5Cσ log(2/α)√

nα

}
.

Using this lower bound on ∥w − w∗∥, we lower bound the co-variance. Combining the above

192



lower bound on ∥w − w∗∥ and equation (5.13), we get,

∥Covβ(∇f b(w, κ))∥ ≥
α

4

(
1

4C3

∥w − w∗∥
)2

≥ α

4

(
2
√
c5Cσ log(2/α)√

nα
+

1

8C3

∥w − w∗∥
)2

≥ α

4

(
2
√
c5Cσ log(2/α)√

nα

)2

+
α

4

(
1

8C3

∥w − w∗∥
)2

≥ c5C
2 log2(2/α)σ2

n
+

α

256

∥w − w∗∥2

C3
2

≥ c5C
2 log2(2/α)σ2

n
+
c5C

2 log2(2/α)∥w − w∗∥2

n
,

here the last step used n ≥ 256
α
c5C

2C3
2 log2(2/α).

This completes the proof of the contradiction. Hence,

∥w − w∗∥
8C3

≤ max

{
log(2/α)σ

8
√
nα

,

√
2c4σ√
n

,
2
√
c5Cσ log(2/α)√

nα

}
.

The above equation implies ∥w − w∗∥ ≤ O(C3Cσ log(2/α)√
nα

). ■

5.10.1 Proof of Theorem 89

The following auxiliary lemma will be useful in the proof of the theorem.

Lemma 92. For any z1 ∈ R, z2 > 0 and a symmetric random variable Z,

∣∣∣∣E[(z1 + Z)− (z1 + Z)z2
max(|z1 + Z|, z2)

]∣∣∣∣ ≤ 2|z1|Pr(Z > z2 − |z1|)

Proof. We consider z1 ≥ 0 and prove the lemma for this case. The proof for z1 < 0 case then

follows from the symmetry of the distribution of Z around 0.

The term inside the expectation can be expressed in terms of indicator random variables

193



as follows:

(z1 + Z)− (z1 + Z)z2
max(|z1 + Z|, z2)

= (z1 + Z − z2) · 1(Z > z2 − z1) + (z1 + Z + z2) · 1(Z < −z2 − z1)

= (z1 + Z − z2) · 1(z2 − z1 < Z ≤ z2 + z1) + (z1 + Z − z2) · 1(Z > z2 + z1)

+ (z1 + Z + z2) · 1(Z < −z2 − z1).

Next, taking the expectation on both sides in the above equation,

E
[
(z1 + Z)− (z1 + Z)z2

max(|z1 + Z|, z2)

]
= E[(z1 + Z − z2) · 1(z2 − z1 < Z ≤ z2 + z1)] + E[(z1 + Z − z2) · 1(Z > z2 + z1)]

+ E[(z1 + Z + z2) · 1(Z < −z2 − z1)]

= E[(z1 + Z − z2) · 1(z2 − z1 < Z ≤ z1 + z2)] + 2|z1|Pr(Z > z2 + z1),

where the last step follows because Z is symmetric and z1 = |z1| since we assumed z1 ≥ 0.

Then,

∣∣∣∣E[(z1 + Z)− (z1 + Z)z2
max(|z1 + Z|, z2)

]∣∣∣∣
= E[|z1 + Z − z2| · 1(z2 − z1 < Z ≤ z2 + z1)] + 2|z1|Pr(Z > z2 + z1)

≤ 2|z1|Pr(z2 − z1 < Z ≤ z2 + z1) + 2|z1|Pr(Z > z2 + z1)

= 2|z1|Pr(Z > z2 − z1).

■

Next, using the above lemma we prove Theorem 89.

Proof of Theorem 89. Consider a random sample (xbi , y
b
i ) from distribution D. Recall that

194



nbi = ybi − w∗ · nbi denote the random noise and is independent of xbi .

Consider (xbi · w − ybi )xbi − ∇f bi (w, κ). the difference between the unclipped and the

clipped gradient for the sample:

(xbi · w − ybi )xbi −∇f bi (w, κ) = (xbi · w − ybi )xbi −
(xbi · w − ybi )
|xbi · w − ybi | ∨ κ

κxbi

=

(
(xbi · (w − w∗)− nbi)xbi −

(xbi · (w − w∗)− nbi)
|xbi · (w − w∗)− nbi | ∨ κ

κ

)
xbi ,

(5.14)

where in the last equality we used the relation between xbi , ybi and nbi .

Next, by applying Lemma 92, we get:

ED

[
(xbi · (w − w∗)− nbi)xbi −

(xbi · (w − w∗)− nbi)
|xbi · (w − w∗)− nbi | ∨ κ

κ

∣∣∣∣∣xbi
]

≤ 2|xbi · (w − w∗)| · Pr
(
nbi > κ− |xbi · (w − w∗)|

)
,

note that in the above expectation xbi is fixed and expectation is taken over nbi .

Let Z := 1
(
|xbi · (w − w∗)| ≥ κ/2

)
. Observe that Pr(nbi > κ − |(w − w∗) · xbi |) ≤

Z + Pr(nbi > κ/2). Combining this observation with the above equation, we have:

ED

[
((w − w∗) · xbi − nbi)−

((w − w∗) · xbi − nbi)
|(w − w∗) · xbi − nbi | ∨ κ

κ

∣∣∣∣∣xbi
]

≤ 2|(w − w∗) · xbi | ·
(
Pr(nbi > κ/2) + Z

)
. (5.15)

When w ̸= w∗ the bound holds trivially. Hence, in the remainder of the proof, we assume

w ̸= w∗. Let v := w−w∗

∥w−w∗∥ and Zb
i := 1

(
(|xbi · (w − w∗)| ≥ κ/2) ∪ (|nbi | ≥ κ/2)

)
. Then, for

195



unit vector v ∈ Rd, we have

|ED[((w · xbi − ybi )xbi −∇f bi (w, κ)) · v]|

= |ED[ED[((w · xbi − ybi )xbi −∇f bi (w, κ)) · v|xbi ]]|

≤ ED[|ED[((w · xbi − ybi )xbi −∇f bi (w, κ)) · v
∣∣xbi ]]|]

(a)
≤ ED

[
2|(w − w∗) · xbi | · |xbi · v|

(
Z + Pr(nbi > κ/2)

)]
(b)
≤ ED

[
2|(w − w∗) · xbi |2

∥w − w∗∥
(
Z + Pr(nbi > κ/2)

)]
≤ 2

∥w − w∗∥
(
ED[Z · |(w − w∗) · xbi |2] + Pr(nbi > κ/2)ED[|(w − w∗) · xbi |2]

)
, (5.16)

here (a) follows from Equation (5.14) and Equation (5.15), and (b) follows from the definition of

vector v. Next, we bound the two terms on the right one by one. We start with the first term:

ED[Z · |(w − w∗) · xbi |2]
(a)
≤
(
E[(Z)2] · ED[(x

b
i · (w − w∗))4]

)1/2
(b)
≤
(
E[Z] · CED[(x

b
i · (w − w∗))2]2

)1/2
(c)
≤
(
C Pr[|xbi · (w − w∗)| ≥ κ/2]

)1/2 · ED[(x
b
i · (w − w∗))2], (5.17)

where (a) used the Cauchy-Schwarz inequality, (b) used the fact that Z is an indicator random

variable, hence, Z2 = Z and L4− L2 hypercontractivity, and (c) follows from the definition of

Z.

Applying the Markov inequality to (nbi)
2 we get:

Pr[|nbi | ≥ κ/2] ≤ ED[(n
b
i)

2]

(κ/2)2
≤ σ2

(κ/2)2
. (5.18)

Similarly, applying the Markov inequality to |xbi · (w − w∗)|4 yields:

Pr[|xbi · (w − w∗)| ≥ κ/2] ≤ ED[|xbi · (w − w∗)|4]
(κ/2)4

≤ CED[|xbi · (w − w∗)|2]2

(κ/2)4
, (5.19)

196



where the last inequality uses L4− L2 hypercontractivity.

Combining Equations (5.16), (5.17), (5.18) and (5.19), we have

|ED[((w · xbi − ybi )xbi −∇f bi (w, κ)) · v]|

≤ 8ED[(x
b
i · (w − w∗))2]

κ2∥w − w∗∥
(
CED[(x

b
i · (w − w∗))2] + σ2

)
.

Next,

ED[(w · xbi − ybi )xbi · v]
(a)
= ED[((w − w∗) · xbi − nbi)xbi · v]
(b)
= ED[((w − w∗) · xbi)xbi · v]− ED[n

b
i ] · ED[x

b
i · v]

(c)
= ED[((w − w∗) · xbi)xbi · v]

(d)
=

ED
[
((w − w∗) · xbi)2

]
∥w − w∗∥

,

here (a) follows from the relationship between xbi , ybi and nbi , (b) follows from as xbi and nbi are

independent, (c) uses ED[n
b
i ] = 0 and (d) follows from the definition of v.

Combining the previous two equations using the triangle inequality:

|ED[∇f bi (w, κ) · v]| ≥ |ED[(w · xbi − ybi )xbi · v]| − |ED[((w · xbi − ybi )xbi −∇f bi (w, κ)) · v]|

≥ ED

[
((w − w∗) · xbi)2

∥w − w∗∥

]
|
(
1− 8

κ2
(
CED[(x

b
i · (w − w∗))2] + σ2

))
≥ ED

[
((w − w∗) · xbi)2

∥w − w∗∥

](
1− 1

4

)
≥ 3

4
∥w − w∗∥ · ∥Σ∥

C3

=
3

4C3

∥w − w∗∥,

here the second last inequality follows from lower bound on κ.

The theorem then follows by observing,

∥ED[∇f bi (w, κ)]∥ ≥ max
∥u∥=1

|ED[∇f bi (w, κ) · u]| ≥ |ED[∇f bi (w, κ) · v]| ≥
3

4C3

∥w − w∗∥.

197



■

5.10.2 Proof of Lemma 91

Proof. Note that

∥Covβ(zb)∥ =

∥∥∥∥∥∑
b∈B

βb

βB
(zb − Eβ[zb])(zb − Eβ[zb])⊺

∥∥∥∥∥
≥

∥∥∥∥∥∑
b∈B′

βb

βB
(zb − Eβ[zb])(zb − Eβ[zb])⊺

∥∥∥∥∥
(a)
≥

∥∥∥∥∥∑
b∈B′

1

2|B|
(zb − Eβ[zb])(zb − Eβ[zb])⊺

∥∥∥∥∥
(b)
≥ 1

2|B|
∥∥|B′|(EB′ [zb]− Eβ[zb])(EB′ []zb]− Eβ[zb])⊺

∥∥
=
|B′|
2|B|
∥Eβ[zb]− EB′ [zb]∥2,

where (a) used βb ≥ 1/2 for b ∈ B′ and the trivial bound βB ≤ |B| and (b) follows from the fact

that any Z,

∥∥∥∥∥∑
b∈B′

(zb − Z)(zb − Z)⊺
∥∥∥∥∥ ≥ |B′| ·

∥∥(EB′ [zb]− Z
)(
EB′ [zb]− Z

)⊺∥∥.
We complete the proof of the lemma by proving the above fact.

∥∥∥∥∥∑
b∈B′

(zb − Z)(zb − Z)⊺
∥∥∥∥∥

=

∥∥∥∥∥∑
b∈B′

(zb − EB′ [zb] + EB′ [zb]− Z)(zb − EB′ [zb] + EB′ [zb]− Z)⊺
∥∥∥∥∥

(a)
=

∥∥∥∥∥∑
b∈B′

(
(zb − EB′ [zb])(zb − EB′ [zb])⊺ + (EB′ [zb]− Z)(EB′ [zb]− Z)⊺

)∥∥∥∥∥
(b)
≥ |B′| ·

∥∥(EB′ [zb]− Z)(EB′ [zb]− Z)⊺
∥∥,

198



here (a) follows as
∑

b∈B′ zb = |B′|EB′ [zb] and hence,
∑

b∈B′(zb − EB′ [zb])(EB′ [zb] − Z)⊺ =∑
b∈B′(EB′ [zb] − Z)(zb − EB′ [zb])⊺ = 0, and (b) follows as (zb − EB′ [zb])(zb − EB′ [zb])⊺ are

positive semi-definite matrices.

■

5.11 Subroutine FindClippingParameter and its analysis

Algorithm 8. FindClippingPparameter
1: Input: Set B, β, σ, a1 ≥ 1, a2 data {{(xbi , ybi}i∈[n]}b∈B.
2: κ←∞
3: while True do
4: wκ ← any approximate stationary point of clipped losses {f b( · , κ)} w.r.t. weight vector

β such that ∥Eβ[f b(wκ, κ)]∥ ≤ log(2/α)σ
8
√
nα

5: κnew ← max
{
a1
√

Eβ[f b(wκ, κ)], a2σ
}
.

6: if κnew ≥ κ/2 then
7: Break
8: end if
9: κ← κnew

10: end while
11: Return(κ,wκ)

Theorem 93. For any weight vector β, a1 ≥ 1, and a2 > 0, Algorithm FindClippingParameter

runs at most log
(
O
(

maxi,b |ybi |
σ

))
iterations of the while loop and returns κ and wκ such that

1. wκ is a (approximate) stationary point for {f b(·, κ)} w.r.t. weight vector β such that

∥Eβ[f b(wκ, κ)]∥ ≤ log(2/α)σ
8
√
nα

.

2. max
{
a1
√

Eβ[f b(wκ, κ)], a2σ
}
≤ κ ≤ 2max

{
a1
√

Eβ[f b(wκ, κ)], a2σ
}
.

3. κ ≥ max
{
a1
2
Eβ
[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
, a2σ

}
and

κ ≤ max
{
4a21Eβ

[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
, a2σ

}
.

199



Proof. First, we bound the number of iterations of the while loop. Since wκ is a

stationary point for f b(., κ), hence its will achieve a smaller loss than w = 0, hence

Eβ[f b(wκ, κ)] ≤ Eβ[f b(0, κ)]. And, since the clipped loss is smaller than unclipped loss,

Eβ[f b(0, κ)] ≤ Eβ[f b(0)] = Eβ[ 1n
∑

i∈[n](y
b
i )

2] ≤ maxi,b(y
b
i )

2. Therefore after the first iteration

κ ≤ max
{
a1maxi,b |ybi |, a2σ

}
. Also in each iteration apart from the last one κ decreases by a

factor 2 and κ can’t be smaller than a2σ. Hence, the number of iterations between the first one

and the last one are at most log(a1 maxi,b |ybi |
a2σ

)). Therefore the total number of iterations are at

most log(a1 maxi,b |ybi |
a2σ

)) + 2.

The first item follows from the definition of wκ in the subroutine FindClippingPparame-

ter.

Next to prove the lower bound in item 2 we prove the claim that if in an iteration

κ ≥ max
{
a1
√

Eβ[f b(wκ, κ)], a2σ
}

then the same condition will hold in the next iteration.

The condition κ ≥ max
{
a1
√
Eβ[f b(wκ, κ)], a2σ

}
in the claim implies that κ ≥ κnew.

Then from the definition of clipped loss, for each w and each b we have f b(w, κ) ≥ f b(w, κnew).

It follows that Eβ[f b(wκ, κ)] ≥ Eβ[f b(wκ, κnew)]. And further wκnew is stationary point for

f b(., κnew), hence it will achieve a smaller loss, Eβ[f b(wκnew , κnew)] ≤ Eβ[f b(wκ, κnew)]. There-

fore, Eβ[f b(wκnew , κnew)] ≤ Eβ[f b(wκ, κ)]. Hence, κnew = max
{
a1
√
Eβ[f b(wκ, κ)], a2σ

}
≥

max
{
a1
√

Eβ[f b(wκnew , κnew)], a2σ
}

. This completes the proof of the claim.

Since the initial value of κ is infinite the claim must hold in the first iteration, and therefore

in each iteration thereafter. Therefore it must hold in the iteration when the algorithm terminates.

This completes the proof of the lower bound in item 2.

The upper bound in the second item follows by observing that when the algorithm ends

κ ≤ 2κnew and κnew = a1
√
Eβ[f b(wκ, κ)] + a2σ.

Finally, we prove item 3 using item 2. We start by proving the lower bound in item

3. From the lower bound in item 2, we have, κ ≥ a2σ. Then to complete the proof of the

lower bound in item 3, it suffices to prove κ > a1
2
Eβ
[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
. To prove this by

200



contradiction suppose κ < a1
2
Eβ
[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
. Then

Eβ[f b(wκ, κ)]

= Eβ

 1
n

∑
i∈[n]

f bi (wκ, κ)


=

1

n

∑
i∈[n]

Eβ

[
1(|wκ · xbi − ybi | ≤ κ) · (wκ · x

b
i − ybi )2

2

+ 1(|wκ · xbi − ybi | > κ) ·
(
κ|wκ · xbi − ybi | −

κ2

2

)]

≥ 1

n

∑
i∈[n]

(
Eβ
[
1(|wκ · xbi − ybi | ≤ κ) · (wκ · x

b
i − ybi )2

2

]

+ Eβ
[
1(|wκ · xbi − ybi | > κ) ·

(
κ|wκ · xbi − ybi |

2

)])
(a)
≥ 1

2n

∑
i∈[n]

Eβ
[
1(|wκ · xbi − ybi | ≤ κ) · |wκ · xbi − ybi |

]2
+

κ

2n

∑
i∈[n]

Eβ
[
1(|wκ · xbi − ybi | > κ) · |wκ · xbi − ybi |

]
(b)
≥ 1

2

 1

n

∑
i∈[n]

Eβ
[
1(|wκ · xbi − ybi | ≤ κ) · |wκ · xbi − ybi |

]2

+
κ

2n

∑
i∈[n]

Eβ
[
1(|wκ · xbi − ybi | > κ) · |wκ · xbi − ybi |

]
(c)
≥ κ

a1

 1

n

∑
i∈[n]

Eβ
[
1(|wκ · xbi − ybi | ≤ κ) · |wκ · xbi − ybi |

]
+

κ

2n

∑
i∈[n]

Eβ
[
1(|wκ · xbi − ybi | > κ) · |wκ · xbi − ybi |

]
(d)
≥ κ

2a1n

∑
i∈[n]

(
Eβ
[
1(|wκ · xbi − ybi | ≤ κ) · |wκ · xbi − ybi |

]
+ Eβ

[
1(|wκ · xbi − ybi | > κ) · |wκ · xbi − ybi |

])
=

κ

2a1
Eβ

 1
n

∑
i∈[n]

|wκ · xbi − ybi |


(e)
≥ κ2

a21
, (5.20)201



here (a) and (b) follows the Cauchy-Schwarz inequality, (c) and (e) follows from our assumption

κ < a1
2
Eβ
[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
and (d) follows since a1 ≥ 1.

This contradicts the lower bound κ ≥ a1
√

Eβ[f b(wκ, κ)] in item 2. Hence we conclude,

κ ≥ a1
2
Eβ
[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
. This completes the proof of the lower bound in item 3.

Next, we prove the upper bound in item 3. We consider two cases. For the case when

a1
√

Eβ[f b(wκ, κ)] ≤ a2σ then upper bound in item 3 follows from the upper bound in item 2.

Next we prove for the other case, when a1
√

Eβ[f b(wκ, κ)] > a2σ. For this case item 2 implies

Eβ[f b(wκ, κ)] ≥ κ2

4a21
.

Next, from the definition of f b(w, κ),

Eβ[f b(wκ, κ)] = Eβ

 1
n

∑
i∈[n]

f bi (wκ, κ)


≤ Eβ

 1
n

∑
i∈[n]

κ|wκ · xbi − ybi |

 ≤ κEβ

 1
n

∑
i∈[n]

|wκ · xbi − ybi |

. (5.21)

Combining the above equation and Eβ[f b(wκ, κ)] ≥ κ2

4a21
, we get,

κ2

4a21
≤ κEβ

 1
n

∑
i∈[n]

|wκ · xbi − ybi |

.
The upper bound in item 3 then follows from the above equation. ■

5.12 Correctness of estimated parameters for nice weight
vectors

For batch b ∈ B, let vb(w) := 1
n

∑
i∈[n] |w · xbi − ybi |. Since w will be fixed in the proofs,

we will often denote vb(w) as vb.

In this section, we state and prove Theorems 94, 95 and 97. For any triplet with a nice

weight vector, Theorem 94 ensures the correctness of parameters calculated for Type-1 use of

202



Multifilter. For any triplet with a nice weight vector, Theorem 97 ensures the correctness

of parameters calculated for the case when it gets added to M or goes through Type-2 use of

Multifilter. Theorem 95 serves as an intermediate step in proving Theorem 97.

Theorem 94. In Algorithm 7 if the weight vector β is such that βG ≥ 3|G|/4, n ≥ (16)2c2C,

and Theorem 85’s conclusion holds, then for any w, the parameter θ1 computed in the subroutine

satisfies

θ1 ≥ c2

(
σ2 + CED[|w · xbi − ybi |]2

n

)
,

where c2 is the same universal positive constant as item 2 in Lemma 87.

Proof. To prove the theorem we first show that θ0 calculated in the algorithm is≥ 7ED[|w·xbi−ybi |]
8

−
σ

8
√
C

.

Let MED denote median of the set {vb : b ∈ G}. From Theorem 85 and Markov’s

inequality, it follows that

∣∣MED− ED[|w · xbi − ybi |]
∣∣ ≤ 2

√
c2

(
σ2 + CED[|w · xbi − ybi |]2

n

)
≤ ED[|w · xbi − ybi |]

8
+

σ

8
√
C
. (5.22)

where the last inequality uses n ≥ (16)2c2C. It follows that

MED ≥ 7ED[|w · xbi − ybi |]
8

− σ

8
√
C
.

Then to complete the proof we show that MED ≤ θ0. Note that

∑
b∈G:vb<MED

βb ≤ |{b ∈ G : vb < MED}| < |G|
2
.

203



Then,

∑
b∈B:vb≥MED

βb ≥
∑

b∈G:vb≥MED

βb =
∑
b∈G

βb −
∑

b∈G:vb<MED

βb > βG − |G|
2
≥ 3|G|

4
− |G|

2
≥ |G|

4
.

(5.23)

And since from the definition of θ0, we have
∑

b:vb>θ0
βb ≤ α|B|/4 ≤ |G|

4
, it follows that

MED ≤ θ0.

Therefore, θ0 ≥ 7ED[|w·xbi−ybi |]
8

− σ
8
√
C

. The lower bound in the theorem on θ1 then follows

from the relation between θ0 and θ1. ■

Theorem 95. Suppose regularity conditions holds, and β, w and n satisfy n ≥

max{(16)2c2C, (32)
2c3c2C log2(2/α)

α
}, βG ≥ 3|G|/4, and

Varβ
(
vb(w)

)
≤ c3 log

2(2/α)θ1,

then

3ED[|(w − w∗) · xbi |]
4

− σ ≤ Eβ
[
vb(w)

]
≤ 4ED[|(w − w∗) · xbi |]

3
+ 2σ.

In proving Theorem 95 the following auxiliary lemma will be useful. We prove this

lemma in Subsection 5.12.1.

Lemma 96. Let Z be any random variable over the reals. For any z ∈ R, such that Pr[Z >

z] ≤ 1/2, we have

z −

√
Var(Z)

Pr[Z ≥ z]
≤ E[Z] ≤ z +

√
2Var(Z).

and for all z ∈ Z,

|E[Z]− z| ≤

√
Var(Z)

min{Pr[Z ≤ z],Pr[Z ≥ z], 0.5}
.

204



Now we prove Theorem 95 using the above Lemma.

Proof of Theorem 95. Let MED denote median of the set {vb : b ∈ G}. In Equation (5.23) we

showed, ∑
b∈B:vb≥MED

βb ≥ |G|
4
.

Hence, ∑
b∈B:vb≥MED β

b

βB
≥ |G|

4|B|
≥ α

4
.

Similarly, by symmetry, one can show

∑
b∈B:vb≤MED β

b

βB
≥ α

4
.

Then from the second bound in Lemma 96,

|Eβ[vb]−MED| ≤
√

4Varβ[vb]
α

. (5.24)

From Equation (5.22), the above equation, and the triangle inequality,

|Eβ[vb]− ED[|w · xbi − ybi |]| ≤
√

4Varβ[vb]
α

+
ED[|w · xbi − ybi |]

8
+

σ

8
√
C
. (5.25)

Next, from the definition of θ0, we have
∑

b:vb≥θ0 β
b ≥ α|B|/4 and

∑
b:vb>θ0

βb < α|B|/4.

Then ∑
b:vb≥θ0 β

b

βB
≥ α|B|

4βB
≥ α|B|

4|B|
≥ α

4
,

and ∑
b:vb>θ0

βb

βB
<
α|B|
4βB

≤ α|B|
4βG

≤ α|B|
4(3|G|/4)

≤ 1

3
.

205



Then from the first bound in Lemma 96,

θ0 −
√

4Varβ[vb]
α

≤ Eβ[vb]. (5.26)

In this lemma, we had assumed the following bound on the variance of vb,

Varβ[vb] ≤ c3 log
2(2/α)θ1.

Next,

Varβ[vb]
α

≤ c3 log
2(2/α)θ1
α

=
c3 log

2(2/α)c2(σ
2 + (2

√
Cθ0 + σ)2)

nα

≤ (σ2 + 4Cθ20 + 2σ2)

322C
≤ σ2

256C
+

θ20
256

,

here the equality follows from the relation between θ0 and θ1 and the first inequality follows as

n ≥ (32)2Cc3c2 log
2(2/α)

α
.

Then

√
Varβ[vb]

α
≤
√

σ2

256C
+

θ20
256
≤ σ

16
√
C

+
θ0
16
≤ σ

16
√
C

+
1

16

(
Eβ[vb] + 2

√
Varβ[vb]

α

)
,

here the second inequality used
√
a2 + b2 ≤ |a|+ |b| and the last inequality used (5.26). From

the above equation, it follows that

√
Varβ[vb]

α
≤ σ

14
√
C

+
1

14
Eβ[vb].

206



Combining the above bound and Equation (5.25)

|Eβ[vb]− ED[|w · xbi − ybi |]| ≤
σ

7
√
C

+
1

7
Eβ[vb] +

ED[|w · xbi − ybi |]
8

+
σ

8
√
C
.

From the above equation it follows that

49ED[|w · xbi − ybi |]
64

− 15σ

64
√
C
≤ Eβ[vb] ≤

21ED[|w · xbi − ybi |]
16

+
5σ

16
√
C
. (5.27)

Finally, we upper bound and lower bound ED[|w · xbi − ybi |] to complete the proof. To

prove the upper bound, note that,

ED[|w · xbi − ybi |] = ED[|(w − w∗) · xbi − nbi |] ≤ ED[|(w − w∗) · xbi |] + ED[|nbi |]

≤ ED[|(w − w∗) · xbi |] + σ,

here the last inequality used ED[|nbi |] ≤
√
ED[|nbi |2]. Combining the above upper bound with the

upper bound in (5.27) and using C ≥ 1 proves the upper bound in the lemma. Similarly, we can

show

ED[|w · xbi − ybi |] ≥ ED[|(w − w∗) · xbi |]− σ,

Combining the above lower bound with the lower bounds in (5.27) and using C ≥ 1 proves the

lower bound in the lemma. ■

Theorem 97. Suppose regularity conditions holds, and β, w and n satisfy n ≥

max{ (32)
2c3c2C log2(2/α)

α
, (16)2c2C}, βG ≥ 3|G|/4, and

Varβ

 1

n

∑
i∈[n]

|w · xbi − ybi |

 ≤ c3 log
2(2/α)θ1,

then for κ, w returned by subroutine FindClippingParameter and θ2 calculated by MainAlgo-

207



rithm, we have

1. c4
σ2+CED[((w−w∗)·xbi )2]

n
≤ θ2 ≤ c6C2(σ2+ED[|(w−w∗)·xbi |]2)

n
, where c4 is the same positive

constant as in item 1 of Lemma 87 and c6 is some other positive universal constant.

2. max{8
√
CED[|xbi · (w − w∗)|2], 8σ} ≤ κ and κ ≤ c7C

2
(√

ED[|xbi · (w − w∗)|2] + σ
)

,

where c7 is some other positive universal constant.

Note that the range of κ in item 2 of the above Theorem is the same as that in (b).

In proving the theorem the following lemma will be useful.

Lemma 98. For any vectors u, we have

√
ED[|u · xbi |2]

8C
≤ ED[|u · xbi |] ≤

√
ED[|u · xbi |2]

We prove the above auxiliary lemma in Section 5.12.2 using the Cauchy-Schwarz

inequality for the upper bound and L4− L2 hypercontractivity for the lower bound.

Next, we prove Theorem 97 using the above lemma and Theorem 95.

Proof of Theorem 97. We start by proving the first item. For convenience, we recall the definition

of θ2 in (5.8),

θ2 =
c4
n

(
σ2 + 16C2

(
Eβ[vb] + σ

)2)
.

The upper bound in the item follows from this definition of θ2 and the upper bound on Eβ[vb] in

Lemma 95.

Using the lower bound bound on Eβ[vb] in Lemma 95 and definition of θ2,

θ2 ≥ c4
n

(
σ2 + 9C2ED[|(w − w∗) · xbi |]2

)
≥ c4

n

(
σ2 + 9

8
C2ED[|(w − w∗) · xbi |2]

)
,

where the last step used Lemma 98. This completes the proof of lower bound item 1.

208



Next, we prove item 2. From Theorem 93,

max
{
a1
2
Eβ
[
1
n

∑
i∈[n] |w · xbi − ybi |

]
, a2σ

}
≤ κ ≤ max

{
4a21Eβ

[
1
n

∑
i∈[n] |w · xbi − ybi |

]
, a2σ

}
.

Since for any a, b > 0, (a+ b)/2 ≤ max(a, b) ≤ a+ b. Then from the above bound,

a1
4
Eβ
[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
+ a2σ

2
≤ κ ≤ 4a21Eβ

[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
+ a2σ.

Using the bound on Eβ[vb] in Lemma 95 in the above equation

a1
4

(
3ED[|(w−w∗)·xbi |]

4
− σ

2

)
+ a2σ

2
≤ κ ≤ 4a21

(
4ED[|(w−w∗)·xbi |]

3
+ 2σ

)
+ a2σ.

Using Lemma 98, and the above equation,

3a1
32

√
2C

√
ED[|(w − w∗) · xbi |2] +

(4a2−a1)σ
8

≤ κ ≤ 16a21
3

√
ED[|(w − w∗) · xbi |2] + (8a21 + a2)σ.

The upper bound and lower bound in item 2 then follow by using the values a1 = 256C
√
2

3
and

a2 =
a1
4
+ 64. ■

5.12.1 Proof of Lemma 96

Proof of Lemma 96. We only prove the first statement as the second statement and then follow

from the symmetry.

We start by proving the upper bound in the first statement. We consider two cases,

E[Z] ≤ z and E[Z] > z. For the first case, the upper bound automatically follows. Next, we

prove the second case. In this case,

Var(Z) = E[(Z − E[Z])2]

≥ E[1(Z ≤ z)(Z − E[Z])2] ≥ E[1(Z ≤ z)(z − E[Z])2] = Pr[Z ≤ z](z − E[Z])2.

209



Then using Pr[Z ≤ z] = 1− Pr[Z > z] ≥ 1/2, we get

Var(Z) ≥ (z − E[Z])2

2
.

The upper bound from the above equation.

Next, we prove the lower bound. Again, we consider two cases, E[Z] ≥ z and E[Z] < z.

For the first case, the lower bound automatically follows. Next, we prove the second case. In this

case,

Var(Z) = E[(Z − E[Z])2]

≥ E[1(Z ≥ z)(Z − E[Z])2] ≥ E[1(Z ≥ z)(z − E[Z])2] = Pr[Z ≥ z](z − E[Z])2,

from which the lower bound follows.

By symmetry, for any z ∈ R, such that Pr[Z < z] ≤ 1/2, one can show that

z −
√
2Var(Z) ≤ E[Z] ≤ z +

√
Var(Z)

Pr[Z ≤ z]
.

Since for any z, either Pr[Z > z] ≤ 1/2 or Pr[Z < z] ≤ 1/2, Hence, either the first bound in

the Lemma or the above bound holds for each z, therefore for any z ∈ R,

z −max

{√
Var(Z)

Pr[Z ≥ z]
,
√

2Var(Z)

}
≤ E[Z] ≤ z +max

{√
Var(Z)

Pr[Z ≤ z]
,
√

2Var(Z)

}
.

The second bound in the lemma is implied by the above bound. ■

5.12.2 Proof of Lemma 98

Proof of Lemma 98. The upper bound onED[|u·xbi |] follows from the Cauchy-Schwarz inequality,

ED[|u · xbi |] ≤
√

ED[|u · xbi |2] ≤ ∥Σ∥ ≤ 1.

210



Next, we prove the lower bound. From Markov’s inequality

Pr D[∥xbi · u∥2 ≥ 2CED[∥xbi · u∥2]] = Pr D[∥xbi · u∥4 ≥ 4C2(ED[∥xbi · u∥2])2]

=
ED[∥xbi · u∥4]

4C2(ED[∥xbi · u∥2])2
≤ 1

4C
,

where the last step uses L4− L2 hypercontractivity.

Then, from the Cauchy-Schwarz inequality,

ED[∥xbi · u∥2 · 1(∥xbi · u∥2 ≥ 2CED[∥xbi · u∥2])]

≤
√

ED
[
1
(
∥xbi · u∥2 ≥ 2CED[∥xbi · u∥2]

)]
· ED[∥xbi · u∥4]

≤
√
Pr D

[
∥xbi · u∥2 ≥ 2CED[∥xbi · u∥2]

]
· CED[∥xbi · u∥2]2

≤ 1

2
ED[∥xbi · u∥2].

Then,

ED[∥xbi · u∥2 · 1(∥xbi · u∥2 < 2CED[∥xbi · u∥2])]

= ED[∥xbi · u∥2]− ED[∥xbi · u∥2 · 1(∥xbi · u∥2 ≥ 2CED[∥xbi · u∥2])]

≥ 1

2
ED[∥xbi · u∥2]

Next,

ED
[
∥xbi · u∥2 · 1

(
∥xbi · u∥2 < 2CED[∥xbi · u∥2]

)]
≤ ED

[
∥xbi · u∥ ·

√
2CED[∥xbi · u∥2] · 1

(
∥xbi · u∥2 < 2CED[∥xbi · u∥2]

)]
≤
√

2CED[∥xbi · u∥2] · ED[∥xbi · u∥].

211



Combining the above two equations we get

ED[∥xbi · u∥] ≥
ED[∥xbi · u∥2]

2
√

2CED[∥xbi · u∥2]
=

√
ED[∥xbi · u∥2]
2
√
2C

.

■

5.13 Multi-filtering

In this section, we state the subroutine Multifilter, a simple modification of BasicMul-

tifilter algorithm in [51].

The subroutine takes a weight vector β, a real function zb on batches, and a parameter θ

as input and produces new weight vectors.

This subroutine is used only when:

VarB,β(zb) > c3 log
2(2/α)θ, (5.28)

where c3 is an universal constant (Same as 2 ∗ C, where C is the constant in BasicMultifilter

algorithm in [51]).

When the variance of zb for good batches is smaller than θ and the weight vector β is

nice that is βG ≥ 3/4|G|, then at least one of the new weight vectors produced by this subroutine

has a higher fraction of weights in good vector than the original weight vector β.

In BasicMultifilter subroutine of [51] input is not restricted by the condition in Equa-

tion (5.28). However, when input meets this condition BasicMultifilter and its modification

Multifilter behaves the same.

Therefore, the guarantees for weight vectors returned by Multifilter follows from the

guarantees of BasicMultifilter in [51]. We characterize these guarantees in Theorem 99.

Theorem 99. Let {zb}b∈B be collection of real numbers associated with batches, β

be a weight vector, and threshold θ > 0 be such that condition in (5.28) holds. Then

212



Algorithm 9. Multifilter
Input: Set B, α, β, {zb}b∈B, θ. {Input must satisfy Condition (5.28)}
Let a = inf{z :

∑
b:zb<z β

b ≤ αβB/8} and b = sup{z :
∑

b:zb>z β
b ≤ αβB/8}

Let B′ = {b ∈ B : zb ∈ [a, b]}
if VarB′,β(z

b) ≤ c3 log
2(2/α)θ
2

then
Let f b = minz∈[a,b] |zb − z|2, and the new weight of each batch b ∈ B be

βbnew =
(
1− fb

max
b∈B:βb>0

fb

)
βb (5.29)

NewWeights← {βnew}
else

Find z ∈ R and R > 0 such that sets B′ = {b ∈ B : zb ≥ z −R} and B′′ = {b ∈ B : zb <
z +R} satisfy

(βB
′
)2 + (βB

′′
)2 ≤ (βB)2, (5.30)

and

min
(
1− βB′

βB , 1− βB′′

βB

)
≥ 48 log( 2

α
)

R2 . (5.31)

{Existence of such z and R is guaranteed as shown in Lemma 3.6 of [51].}
For each b ∈ B, let βb1 = βb · 1(b ∈ B′) and βb2 = βb · 1(b ∈ B′′). Let β1 = {βb1}b∈B and
β2 = {βb2}b∈B.
NewWeights← {β1, β2}

end if
Return(NewWeights)

Multifilter(B, β, {zb}b∈B, θ1) returns a list NewWeights containing either one or two new

weight vectors such that,

1. Sum of square of the total weight of new weight vectors is bounded by the square of the

total weight of β, namely

∑
β̃∈NewWeights

(β̃B)2 ≤ (βB)2. (5.32)

2. In the new weight vectors returned the weight of at least one of the weight vectors has been

213



set to zero, that is for each weight vector β̃ ∈ NewWeights,

{b : β̃b > 0} ⊂ {b : βb > 0}, (5.33)

3. If weight vector β is such that βG ≥ 3|G|/4 and for good batches the variance VarG(zb) ≤ θ

is bounded, then for at least one of the weight vector β̃ ∈ NewWeights,

βG − β̃G

βG
≤ βB − β̃B

βB
· 1

24 log(2/α)
. (5.34)

Proof. When the list NewWeights contains one weight vector it is generated using Equa-

tion (5.29), and when the list NewWeights contains one weight vector it is generated using

Equations (5.30) and (5.31). In both cases, item 1 and item 2 of the Theorem follow immediately

from these equations. The last item follows from Corollary 3.8 in [51]. ■

5.13.1 Guarantees for the use of Multifilter in Algorithm 7

The following Theorem characterizes the use Multifilter by our algorithm. The proof

of the theorem is similar to the proofs for the main algorithm in [51].

Theorem 100. At the end of Algorithm 7 the size of M is at most 4/α2 and the algorithm makes

at most O(|B|/α2) calls to Multifilter. And, if for every use of subroutine Multifilter by

the algorithm we have VarG(zb) ≤ θ then there is at least one triplet (β, w, κ) in M such that

βG ≥ 3|G|/4.

Proof. First note that the if blocks in Algorithm 7 ensures that for every use of subroutine

Multifilter Equation (5.28) is satisfied, therefore we can use the guarantees in Theorem 99.

First we upper bound the size of M .

The progress of Algorithm 7 may be described using a tree. The internal nodes of this

tree are the weight vectors that have gone through subroutine Multifilter at some point of the

algorithm, and children of these internal nodes are new weight vectors returned by Multifilter.

214



Observe that any weight vector β encountered in Algorithm 7 is ignored iff βB < α|B|/2. If it is

not ignored then either it is added to M (in form of a triplet), or else it goes through subroutine

Multifilter.

It follows that, if a node β is an internal node or a leaf in M then

βB ≥ α|B|/2. (5.35)

From Equation (5.32), it follows that the total weight squared for each node is greater

than equal to that of its children. It follows that the total weight squared of the root, βinit is greater

than equal to the sum of the square of weights of all the leaves. And since all weight vectors in

M are among the leaves of the tree, and have total weight at least α|B|/2,

(βBinit)
2 ≥

∑
β∈M

(βB)2 ≥
∑
β∈M

(
α|B|
2

)2,

here the last step follows from Equation (5.35). Using βBinit = |B|, in the above equation we get

|M | ≤ 4/α2.

Similarly, it can be shown that the number of branches in the tree is at most O(1/α2).

Item 2 in Theorem 99 implies that each iteration of Multifilter zeroes out the weight of one of

the batches. Hence for any weight β at depth d, we have βB ≤ |B| − d. Therefore, the depth of

the tree can’t be more than |B|. Hence, the number of nodes in the tree is upper bounded by

O(|B|/α2). And since each call to Multifilter corresponds to a non-leaf node in the tree, the

total calls to Multifilter by Algorithm 7 are upper bounded by O(|B|/α2).

Next, we show that if for each use of Multifilter we have VarG(zb) ≤ θ then one of the

weight vector β ∈M must satisfy βG ≥ 3|G|/4.

Let β0 = βinit and suppose for each i, weight vectors βi and βi+1 are related as follows:

βGi − βGi+1

βGi
≤
βBi − βBi+1

βBi
· 1

24 log(2/α)
. (5.36)

215



Then Lemma 3.12 in [51] showed that under the above relation, for each i, we have βGi ≥ 3|G|/4.

We show that there is a branch of the tree such that βi and βi+1 are related using the above

equation, where for each i, βi denote the weight vector corresponding to the node at ith level in

this branch. From the preceding discussion, this would imply that for each i, βGi ≥ 3|G|/4.

We prove it by induction. For i = 0, we select βi = βinit. Note that βGinit = |G|, hence

βGi ≥ 3|G|/4.

If βi is a leaf then the branch is complete. Else, since βGi ≥ 3|G|/4, item 3 in Theorem 99

implies that we can select one of the child of βi as βi+1 so that (5.36) holds. Then from the

preceding discussion, we have βGi+1 ≥ 3|G|/4. By repeating this argument, we keep finding the

next node in the branch, until we reach the leaf. Next, we argue that the leaf at the end of this

branch must be in M .

Let β denote the weight vector for the leaf. From the above discussion, it follows that

βG ≥ 3|G|/4. Hence, βB ≥ βG ≥ 3|G|/4 ≥ 3α|B|/4 > α|B|/2.

As discussed earlier any leaf β is not part of M iff βB ≤ α|B|/2. Hence, the leaf at the

end of the above branch must be in M . This concludes the proof of the Theorem. ■

5.14 Eliminating Additional Distributional Assumptions

In this section, we discuss how we can remove assumptions 2 and 5 regarding the

distribution of data in Section 5.2 of the main paper. We demonstrate that our results can still be

achieved without these assumptions.

Assumption 2 states that there exists a constant C1 > 0 such that for random samples

(xbi , y
b
i ) ∼ D, we have ∥xbi∥ ≤ C1

√
d almost surely. In the non-batch setting, Cherapanamjeri et

al. (2020) [38] have shown that this assumption is not limiting. They have proven that if other

assumptions are met, then there exists a constant C1 such that the probability of ∥xbi∥ ≤ C1

√
d

exceeds 0.99. Thus, discarding the samples where ∥xbi∥ > C1

√
d does not significantly reduce the

dataset’s size. Additionally, it has minimal impact on the covariance matrix and hypercontractivity

216



constants of the distribution This reasoning can be easily extended to the batch setting. In the

batch setting, we first exclude samples from batches where ∥xbi∥ > C1

√
d. We then remove

batches that have been reduced by more than 10% of their original size. Since, on average, this

operation would remove ≤ 1% of samples from genuine batches, a simple argument using the

Markov inequality shows that the probability of removing a genuine batch is at most 10%. It can

be demonstrated that with high probability, the fraction of genuine batches that are removed for

any component is ≲ 10%. Therefore, assumption 2 regarding data distribution is not required,

and this simple procedure can be used to enforce assumption 2, resulting in a decrease in batch

size and α by at most 10%. Consequently, the guarantees in our theorem are altered by only a

small factor.

Assumption 5 states that the noise distribution is symmetric. We can address this by

employing a simple technique. Let’s consider two independent samples (xbi , ybi ) and (xbi+1, y
b
i+1),

where ybj = w∗ ·xbj+nbj for j ∈ {i, i+1}. We define x̃bi = (xbi−xbi+1)/
√
2, ỹbi = (ybi −ybi+1)/

√
2,

and ñbi = (nbi −nbi+1)/
√
2. Since nbi and nbi+1 are i.i.d., the distribution of ñbi is symmetric around

0 and the variance of ñbi matches that of nbi . Moreover, the covariance of x̃bi is the same as that of

xbi , and we have ỹbi = w∗ · x̃bi + ñbi . Therefore, the new sample (x̃bi , ỹbi ) obtained by combining two

i.i.d. samples (xbi , ybi ) and (xbi+1, y
b
i+1) in a batch satisfies the same distributional assumptions as

before, and in addition, ensures a symmetric noise distribution. We can apply this approach to

combine every two samples in a batch, which only reduces the batch size by a constant factor of

1/2. Thus, the assumption of symmetric noise can be eliminated by increasing the required batch

sizes in our theorems by a factor of 2.

5.15 Proof of Theorem 84

In Section 5.15.1, we state and prove two auxiliary lemmas that will be used in proving

Theorem 84, and in Section 5.15.2, we prove Theorem 84.

We will use the following notation in describing the auxiliary lemmas and in the proofs.

217



Let S := {(xbi , ybi ) : b ∈ G, i ∈ [n]} denote the collection of all good samples. Note that

|S| = |G|n.

For any function h over (x, y), we denote the expectation of h w.r.t. uniform distribution

on subset S ′ ⊆ S by ES′ [h(xbi , y
b
i )] :=

∑
(xbi ,y

b
i )∈S′

h(xbi ,y
b
i )

|S′| .

5.15.1 Auxiliary lemmas

In this subsection, we state and prove Lemmas 101 and 102. We will use these lemmas in

proof of Theorem 84 in the following subsection.

In the next lemma, for any unit vectors u, we bound the expected second moment of the

tails of |xbi · u|, for covariate xbi of a random sample from the distribution D.

Lemma 101. For all θ > 1, and all unit vectors u ∈ Rd,

Pr D[∥xbi · u∥2 ≥
√
Cθ] ≤ 1

θ2
and ED[1(∥xbi · u∥2 ≥

√
Cθ) · ∥xbi · u∥2] ≤

√
C

θ

Proof. The first part of the lemma follows from Markov’s inequality,

Pr D[∥xbi · u∥2 ≥
√
Cθ] = Pr D[∥xbi · u∥4 ≥ Cθ2] =

ED[∥xbi · u∥4]
Cθ2

≤ 1

θ2
,

where the last step uses L4− L2 hypercontractivity. This proves the first bound in the lemma.

For the second bound, note that

ED[1(∥xbi · u∥2 ≥
√
Cθ) · ∥xbi · u∥2]

(a)
≤
√

ED[1(∥xbi · u∥2 ≥
√
Cθ)] · ED[∥xbi · u∥4]

(b)
≤
√

Pr D[∥xbi · u∥2 ≥
√
Cθ] · CED[∥xbi · u∥2]2

(c)
≤
√
C

θ
ED[∥xbi · u∥2],

here (s) follows from the Cauchy-Schwarz inequality, (b) uses L4− L2 hypercontractivity, and

(c) follows from the first bound in the lemma. ■

218



In the next lemma, for any unit vectors u, we provide a high probability bound on the

expected second moment of the tails of |xbi · u|, wheres xbi are covariates of samples in good

batches G.

Lemma 102. For any given θ > 1, and |G|n = Ω(dθ2 log(C1dθ
C

)), with probability at least

1− 2/d2, for all unit vectors u,

ES
[
1

(
∥xbi · u∥2 ≥ 3

√
Cθ
)
· ∥xbi · u∥2

]
≤ O

(√
C

θ

)
.

The following lemma restates Lemma 5.1 of [38]. The lemma shows that for any large

subset of S, the covariance of covariates xbi in S is close to the true covariance for distribution D

of samples. We will use this result in proving Lemma 102.

Lemma 103. For any fix θ > 1, and |G|n = Ω(dθ2 log(dθ)), with probability at least 1− 1/d2

for all subsets of S ′ ⊆ S of size ≥ (1− 1
θ2
)|S|, we have

Σ−O

(√
C

θ

)
· I ⪯ ES′ [xbi(x

b
i)

⊺] ⪯ Σ +O

(√
C

θ

)
· I.

Remark 2. Lemma 5.1 of [38] assumes that hypercontractive parameter C is a constant and

its dependence doesn’t appear in their lemma but is implicit in their proof. hides/ignores its

dependence.

The following corollary is a simple consequence. We will use this corollary in proving

Lemma 102.

Corollary 104. For any fix θ > 1, and |G|n = Ω(dθ2 log(dθ)), with probability at least 1− 1/d2

for all subsets S ′ ⊆ S of size ≤ |S|
θ2

and all unit vectors u, we have

|S ′|
|S|
· ES′ [(xbi · u)2] ⪯ O

(√
C

θ

)
.

219



Proof. Consider any set S ′ of size ≤ |S|
θ2

. Since |S \ S ′| ≥ (1− 1
θ2
)|S|, applying Lemma 103 for

S \ S ′ and S,

Σ−O

(√
C

θ

)
· I ⪯ ES\S′ [xbi(x

b
i)

⊺],

and

ES[xbi(xbi)⊺] ⪯ Σ +O

(√
C

θ

)
· I.

Next,

ES[xbi(xbi)⊺] =
|S ′|
|S|

ES′ [xbi(x
b
i)

⊺] +
|S \ S ′|
|S|

ES\S′ [xbi(x
b
i)

⊺]

=⇒ |S ′|ES′ [xbi(x
b
i)

⊺] = |S|ES[xbi(xbi)⊺]− |S \ S ′|ES\S′ [xbi(x
b
i)

⊺]).

Combining the previous three equations,

|S ′|ES′ [xbi(x
b
i)

⊺] ⪯ |S|

(
Σ +O

(√
C

θ

)
· I

)
− |S \ S ′|

(
Σ−O

(√
C

θ

)
· I

)

⪯ |S ′|Σ + (|S|+ |S \ S ′|)O

(√
C

θ

)
· I

⪯ 1

θ2
|S|Σ + 2|S|O

(√
C

θ

)
· I ⪯ 3|S|O

(√
C

θ

)
· I,

where the last line used Σ ⪯ I , |S ′| ≤ |S|/θ2, C ≥ 1, and 1/θ2 ≤ 1/θ for θ ≥ 1.

Finally, observing that for any unit vector u⊺ES′ [xbi(x
b
i)

⊺]u = ES′ [(xbi · u)2] completes the

proof. ■

Now we complete the proof of the Lemma 102 with help of the above corollary.

Proof of Lemma 102. From Lemma 101 we have ED[1(∥xbi · u∥2 ≥
√
Cθ)] = Pr[∥xbi · u∥2 ≥

220



√
Cθ] ≤ 1

θ2
Applying Chernoff bound for random variable 1(∥xbi · u∥2 ≥

√
Cθ),

Pr

[
ES[1(∥xbi · u∥2 ≥

√
Cθ)] ≤ 2

θ2

]
= Pr

 1

|S|
∑

(i,b)∈S

1(∥xbi · u∥2 ≥
√
Cθ) ≤ 2

θ2


≤ exp

(
− |S|
3θ2

)
.

Hence, for a fix unit vector u, with probability ≥ 1− exp
(
− |S|

3θ2

)

ES[1(∥xbi · u∥2 ≤
√
Cθ)] ≤ |S| 2

θ2
.

Next, we show that this bound holds uniformly over all unit vectors u.

Consider an
√√

Cθ
2C1d
− net of unit sphere {u ∈ Rd : ∥u∥ ≤ 1} such that for any vector

u in this ball there exist a u′ in the net such that ∥u − u′∥ ≤
√√

Cθ
2C1d

. The standard covering

argument [146] shows the existence of such a net of size eO(d log(
C1d
Cθ

)). Then from the union

bound, for all vectors u in this net with probability at least 1− eO(d log(
C1d
Cθ

))e−
|S|
3θ2 ,

ES[1(∥xbi · u∥2 ≤
√
Cθ)] ≤ |S| 2

θ2
.

Since |S|
3θ2

= |G|n
3θ2
≫ d log(C1dθ

C
) ≥ d log(C1d

Cθ
)), therefore, eO(d log(

C1d
Cθ

))e−
|S|
3θ2 ≪ e−

|S|
6θ2 ≪ 1/d2.

Now consider any vector u in unit ball and u′ in the net such that ∥u − u′∥ ≤
√√

Cθ
2C1d

.

Then

(xbi · u)2 = (xbi · (u′ + (u− u′)))2 = 2(xbi · u′)2 + (xbi · (u− u′))2

≤ 2(xbi · u′)2 + 2∥u− u′∥2∥xbi∥2

≤ 2(xbi · u′)2 + 2

√
Cθ

2C1d
C1d ≤ 2(xbi · u′)2 +

√
Cθ,

where in the last line we used the assumption that ∥xbi∥ ≤ C1

√
d. When (xbi · u′)2 ≤

√
Cθ, then

221



above sum is bounded by 2
√
Cθ. It follows that with probability ≥ 1− 1/d2, for all unit vectors

u,

ES[1(∥xbi · u∥2 ≤ 3
√
Cθ)] ≤ |S| 2

θ2
.

Applying Corollary 104 for S ′ = {∥xbi · u∥2 ≤ 3
√
Cθ}, proves the lemma

ES[1(∥xbi · u∥2 ≥ 3
√
Cθ) · ∥xbi · u∥2] =

|S ′|
|S|

ES′ [∥xbi · u∥2] ≤ O

(√
C

θ

)
.

■

5.15.2 Proof of Theorem 84

Proof of Theorem 84. Note that

EG
[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
=

1

|G|
∑
b∈G

(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2
=

1

|G|
∑
b∈G

(
1

n

∑
i∈n

∇f bi (w, κ) · u− ED[∇f b(w, κ) · u]

)2

=
1

|G|
∑
b∈G

(
1

n

∑
i∈n

(
∇f bi (w, κ) · u− ED[∇f bi (w, κ) · u]

))2

,

where in the last step we used the expectation of batch and sample gradients are the same, namely

ED[∇f bi (w, κ) · u] = ED[∇f b(w, κ) · u].

For any positive ρ > 0 and unit vector u, define

gbi (w, κ, u, ρ) :=
∇f bi (w, κ) · u
∥xbi · u∥ ∨ ρ

ρ.

Recall that for a good batch b ∈ G, ybi = w∗ · xbi + nbi . Using this in equation (5.3), for any good

222



batch b ∈ G, we have

∇f bi (w, κ) =
(xbi · (w − w∗)− nbi)
|xbi · (w − w∗)− nbi | ∨ κ

κxbi . (5.37)

Combining the above two equations,

gbi (w, κ, u, ρ) = κρ

(
(xbi · (w − w∗)− nbi)
∥xbi · (w − w∗)− nbi∥ ∨ κ

)(
xbi · u

∥xbi · u∥ ∨ ρ

)
. (5.38)

From the above expression it follows that |gbi (w, κ, u, ρ)| ≤ κρ a.s.

We will choose ρ later in the proof. Let

Zb
i (w, κ, u, ρ) := gbi (w, κ, u, ρ)− ED

[
gbi (w, κ, u, ρ)

]
.

and

Z̃b
i (w, κ, u, ρ) := ∇f bi (w, κ) · u− ED

[
∇f bi (w, κ) · u

]
− Zb

i (w, κ, u, ρ)

= ∇f bi (w, κ) · u− gbi (w, κ, u, ρ)− ED
[
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

]
.

When w, u, κ, and ρ are fixed or clear from the context, we will omit them from the

notation of Zb
i and Z̃b

i . Then,

EG
[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
=

1

|G|
∑
b∈G

(
1

n

∑
i∈n

(Zb
i + Z̃b

i )

)2

≤ 2

|G|
∑
b∈G

(
1

n

∑
i∈n

Zb
i

)2

+
2

|G|
∑
b∈G

(
1

n

∑
i∈n

Z̃b
i

)2

≤ 2

|G|
∑
b∈G

(
1

n

∑
i∈n

Zb
i

)2

+
2

|G|
∑
b∈G

1

n

∑
i∈n

(Z̃b
i )

2,

(5.39)

223



here in the last step we used Jensen’s inequality (E[Z])2 ≤ E[Z2].

We bound the two summations separately. To bound the first summation we first show

that Zb
i are bounded, and then use Bernstein’s inequality. We bound the second term using

Lemma 102 and Lemma 101.

From (5.38), it follows that |gbi (w, κ, u, ρ)| ≤ κρ a.s., and therefore, |Zb
i | ≤ 2κρ.

Since |Zb
i | is bounded by 2κρ, it is a (2κρ)2 sub-gaussian random variable. Using the

fact that the sum of sub-gaussian random variables is sub-gaussian, the sum
∑n

i=1 Z
b
i is n(2κρ)2

sub-gaussian random variable. Since square of a sub-gaussian is sub-exponential [121] (Lemma

1.12), hence (
∑n

i=1 Z
b
i )

2 − ED(
∑n

i=1 Z
b
i )

2 is sub-exponential with parameter 16n(2κρ)2.

Bernstein’s inequality [121] (Theorem 1.12) for sub-Gaussian random variables implies

that with probability ≥ 1− δ,

1

|G|
∑
b∈G

( n∑
i=1

Zb
i

)2

− ED

( n∑
i=1

Zb
i

)2
 ≤ 16n(2κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
.

Since Zb
i are zero mean independent random variables,

ED

( n∑
i=1

(Zb
i )

)2
 = nED

[
(Zb

i )
2
]
.

224



We bound the expectation on the right,

ED
[
(Zb

i )
2
]

= ED

[(
gbi (w, κ, u, ρ)− ED

[
gbi (w, κ, u, ρ)

])2]
(a)
≤ ED

[(
gbi (w, κ, u, ρ)

)2]
(b)
≤ ED[(n

b
i + (w − w∗) · xbi)2(xbi · u)2]

(c)
= ED[(n

b
i)

2(xbi · u)2] + ED[((w − w∗) · xbi)2(xbi · u)2]
(d)
≤ ED[(n

b
i)

2]ED[(x
b
i · u)2] +

√
ED[((w − w∗) · xbi)4]ED[(u · xbi)4]

(e)
≤ σ2ED[(x

b
i · u)2] +

√
C2ED[((w − w∗) · xbi)2]2ED[(u · xbi)2]2

(f)
≤ σ2 + CED[((w − w∗) · xbi)2],

here inequality (a) uses that squared deviation is smaller than mean squared deviation, inequality

(b) follows from the definition of gbi in (5.38), inequality (c) follows from the independence

of nbi and xbi , inequality (d) follows the Cauchy–Schwarz inequality, (e) uses the L-4 to L-2

hypercontractivity assumption ED[(u · (xbi))4] ≤ C, and (f) follows as for any unit vector

ED[(x
b
i · u)2] ≤ ∥Σ∥ ≤ 1.

Combining the last three equations, we get that with probability ≥ 1− δ,

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i

)2

≤ n(σ2 + CED[((w − w∗) · xbi)2]) + 64n(κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
. (5.40)

The above bound holds for given fixed values of parameters κ, w, and u. To extend the bound

for all values of these parameters (for appropriate ranges of interest), we will use the covering

argument.

With the help of the covering argument, we show that with probability

225



≥ 1− δeO(d log(C1dn) − 1
d2

, for all unit vectors u, all vectors w and κ ≤ (σ + ∥w − w∗∥)d2n,

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w, κ, u, ρ)

)2

≤ 5

2
σ2n+ 13CnED[((w − w∗) · xbi)2] + 384n(κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
. (5.41)

We delegate the proof of Equation (5.41) using Equation (5.40) and the covering argument

to the very end. The use of covering argument is rather standard. The main subtlety is that the

above bound holds for all vectors w. The cover size of all d dimensional vectors is infinite. To

overcome this difficulty we first take union bound for vectors for all w such that ∥w − w∗∥ ≤ R

for an appropriate choice of R. To extend it to any w for which ∥w − w∗∥ > R is large we

show that the behavior of the above quantity on the left for such a w can be approximated by its

behavior for w′ = w∗ + (w − w∗) R
∥w−w∗∥ .

Note that dividing Equation (5.41) by n2 bounds the first term in Equation (5.39). Next,

we bound the second term in Equation(5.39). Note that

1

n|G|
∑
b∈G

∑
i∈n

(Z̃b
i )

2

≤ 1

n|G|
∑
b∈G

∑
i∈n

(
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)− ED

[
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

])2
≤ 2

n|G|
∑
b∈G

∑
i∈n

((
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

)2
+
(
ED
[
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

])2)
≤ 2

n|G|
∑
b∈G

∑
i∈n

((
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

)2
+ ED

[(
∇f bi (w, κ)·u− gbi (w, κ, u, ρ)

)2])
.

226



From the definitions of gbi (w, κ, u, ρ) and ∇f bi (w, κ),

|∇f bi (w, κ) · u− gbi (w, κ, u, ρ)| = 1(∥xbi · u∥ ≥ ρ)

∣∣∣∣∇f bi (w, κ) · u− ρ

∥xbi · u∥
∇f bi (w, κ) · u

∣∣∣∣
≤ 1(∥xbi · u∥ ≥ ρ)

∣∣∇f bi (w, κ) · u∣∣
≤ κ

∣∣xbi · u∣∣ · 1(∥xbi · u∥ ≥ ρ).

From the above equation, it follows that

ED

[(
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

)2] ≤ κ2ED

[
1(∥xbi · u∥ ≥ ρ)

∣∣xbi · u∣∣2].
Combining the above three bounds,

1

n|G|
∑
b∈G

∑
i∈n

(Z̃b
i )

2

≤ 2κ2

n|G|
∑
b∈G

∑
i∈n

(
1(∥xbi · u∥ ≥ ρ)

∣∣xbi · u∣∣2 + ED

[
1(∥xbi · u∥ ≥ ρ)

∣∣xbi · u∣∣2])
= 2κ2

(
ES
[
1(∥xbi · u∥ ≥ ρ)

∣∣xbi · u∣∣2]+ ED

[
1(∥xbi · u∥ ≥ ρ)

∣∣xbi · u∣∣2]),
here the last line uses the fact that S is the collection of all good samples.

For ρ2 ≥ 3
√
C, and |G|n = Ω(dρ4 log(C1dρ

C
)), Lemma 102 implies that with probability

at least 1− 2/d2, for all unit vectors u, we have

ES
[
1(∥xbi · u∥ ≥ ρ)

∣∣xbi · u∣∣2] = ES
[
1(∥xbi · u∥2 ≥ ρ2)

∣∣xbi · u∣∣2] ≤ O(√C/ρ2).
And from Lemma 101, for ρ2 ≥

√
C and any unit vectors u,

ED

[
1(∥xbi · u∥ ≥ ρ)

∣∣xbi · u∣∣2] ≤ O(√C/ρ2).
By combining the above three bounds it follows that, if ρ2 ≥

√
C, and |G|n =

227



Ω(dρ4 log(C1dρ
C

)), with probability at least 1− 2/d2, for all unit vectors u,

1

n|G|
∑
b∈G

∑
i∈n

(Z̃b
i (w, κ, u, β))

2 ≤ O

(√
Cκ2

ρ2

)
.

Combining the above bound, Equation (5.41) and (5.39) we get that if ρ2 = Ω(
√
C), and

|G| = Ω(dρ
4

n
log(C1dρ

C
)) then with probability ≥ 1 − δeO(d log(C1dn) − 3

d2
, for all unit vectors u,

all vectors w and κ ≤ (σ + ∥w − w∗∥)d2n,

EG
[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
≤ 2

n2

(
5

2
σ2n+ 13CnED[((w − w∗) · xbi)2] + 384n(κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

})

+O

(√
Cκ2

ρ2

)
.

Recall that 1 ≤ µmax ≤ d4n2

C
. Choose ρ2 = µmax

√
Cn. Note that√

µmax(σ2 + CED[((w − w∗) · xbi)2]) ≤ (σ + ∥w − w∗∥)d2n. Then from the above equation

choosing ρ2 = µmax

√
Cn, for all

κ ≤
√
µmax(σ2 + CED[((w − w∗) · xbi)2]),

with probability ≥ 1− δeO(d log(C1dn) − 3
d2

, for all unit vectors u, all vectors w ,

EG
[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
≤ O

(
σ2 + CED[((w − w∗) · xbi)2]

n

)(
1 + nµ2

max

√
Cmax

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

})
.

Choose δ = e−Θ(d log(C1dn), and |G| = Ω(dρ
4

n
log(C1dρ

C
) + Cµ4

maxdn
2 log(C1dn)) =

Ω(ρ4maxn
2d log(d)). Then with probability ≥ 1− 4

d2
, for all unit vectors u, all vectors w and for

228



all κ2 ≤ µmax(σ
2 + CED[((w − w∗) · xbi)2]),

EG
[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2] ≤ O(σ2 + CED[((w − w∗) · xbi)2]
n

)
,

which is the desired bound.

We complete the proof by proving Equation (5.41).

Proof of Equation (5.41)

To complete the proof of the theorem next we prove Equation (5.41) with the help of

Equation (5.40) and covering argument. To use the covering argument, we first show that

gbi (w, κ, u, ρ) do not change by much by slight deviation of these parameters. From the definition

of Zb
i (w, κ, u, ρ), the same conclusion would then hold for it.

By the triangle inequality,

|gbi (w, κ, u, ρ)− gbi (w′, κ′, u′, ρ)|

≤ |gbi (w′, κ′, u, ρ)− gbi (w′, κ′, u′, ρ)|+ |gbi (w, κ′, u, ρ)− gbi (w′, κ′, u, ρ)|

+ |gbi (w, κ, u, ρ)− gbi (w, κ′, u, ρ)|.

We bound each term on the right one by one. To bound these terms we use Equation (5.38), the

assumption that ∥xbi∥ ≤ C1

√
d and the definition of the function g(). For the first term,

|gbi (w′, κ′, u, ρ)− gbi (w′, κ′, u′, ρ)| ≤ ∥(u− u′)xbi∥κ′ ≤ C1∥u− u′∥
√
dκ′,

for the second term,

|gbi (w, κ′, u, ρ)− gbi (w′, κ′, u, ρ)| ≤ |u ·xbi | · |(w−w′) ·xbi | ≤ ∥xbi∥2 · ∥w−w′∥ ≤ C2
1d∥w−w′∥,

229



and for the last term

|gbi (w, κ, u, ρ)− gbi (w, κ′, u, ρ)| ≤ |κ− κ′| · |u · xbi | ≤ C1

√
d|κ− κ′|.

Combining the three bounds,

|gbi (w, κ, u, ρ)− gbi (w′, κ′, u′, ρ)| ≤ C1∥u− u′∥
√
dκ′ + C2

1d∥w − w′∥+ C1

√
d|κ− κ′|.

For ∥u− u′∥ ≤ 1/(24C1d
5n3), κ′ ≤ 2d4σn2, ∥w − w′∥ ≤ σ/(12dC2

1n) and |κ− κ′| ≤

σ/(12C1dn),

|gbi (w, κ, u, ρ)− gbi (w′, κ′, u′, ρ)| ≤ σ/4n a.s.

This would imply,

|Zb
i (w, κ, u, ρ)− Zb

i (w
′, κ′, u′, ρ)| ≤ σ/2n a.s.

Using this bound,

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w, κ, u, ρ)

)2

≤ 1

|G|
∑
b∈G

(
n∑
i=1

(
Zb
i (w

′, κ′, u′, ρ′) +
σ

2n

))2

≤ 2

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w

′, κ′, u′, ρ′)

)2

+
2

|G|
∑
b∈G

(
n∑
i=1

σ

2n

)2

≤ 2

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w

′, κ′, u′, ρ′)

)2

+
σ2

2
. (5.42)

Let U := {u ∈ Rd : ∥u∥ = 1},W := {w ∈ Rd : ∥w − w∗∥ ≤ d2σn)}, and K := [0, 2d4σn2].

230



Standard covering argument shows that there exist covers such that

U ′ ⊆ U : ∀u ∈ U , min
u′∈U ′

∥u− u′∥ ≤ 1

(24C1d5n3)
, (5.43)

W ′ ⊆ W : ∀w ∈ W , min
w′∈W ′

∥w − w′∥ ≤ σ

12C2
1dn

, (5.44)

and

K′ ⊆ K : ∀κ ∈ K, min
κ′∈K′,κ′≥κ

|κ− κ′| ≤ σ

12C1dn
, (5.45)

and the size of each is |U ′|, |W ′|, |K′| ≤ eO(d log(C1dn).

In equation (5.40), taking the union bound over all elements in U ′,W ′ and K′, it follows

that with probability ≥ 1− δeO(d log(C1dn), for all u′ ∈ U ′, w′ ∈ W ′ and κ′ ∈ K′

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w

′, κ′, u′, ρ)

)2

≤ n(σ2 + CED[((w
′ − w∗) · xbi)2]) + 64n(κ′ρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
.

Combining the above bound with Equation (5.42), it follows that with probability ≥ 1 −

δeO(d log(C1dn), for all u ∈ U , w ∈ W and κ ∈ K and elements u′, w′ and κ′ in the respective nets

231



satisfying equations (5.43),(5.44), and (5.45),

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w, κ, u, ρ)

)2

≤ 2n(σ2 + CED[((w
′ − w∗) · xbi)2]) + 128n(κ′ρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
+
σ2

2

≤ 2n(σ2(1 +
1

4n
) + CED[((w

′ − w∗) · xbi)2]) + 128n(κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}

≤ 2n(
5

4
σ2 + 2CED[((w − w∗) · xbi)2]) + 128n(κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
. (5.46)

here (a) follows from the bound κ ≥ κ′ in Equation (5.45), and (b) follows by first writing

w′−w∗ = (w−w∗)+(w′−w) and then using the bound ∥w′−w∥ ≤ σ
12C2

1dn
in Equation (5.44).

Next, we further remove the restriction w ∈ W and extend the above bound to all vectors

w.

Consider a w /∈ W and κ ∈ [0, (σ + ∥w − w∗∥)d2n]. From the definition of W , we

have ∥w − w∗∥ > d2σn. Let w′ = w∗ + w−w∗

∥w−w∗∥d
2σn and κ′ = d2σn

∥w−w∗∥κ. Observe that

∥w′ − w∥ = d2σn and

κ′ ≤ (σ + ∥w − w∗∥)d2n d2σn

∥w − w∗∥
≤ d2σn

d2σn

∥w − w∗∥
+ d4σn2 ≤ d2σn+ d4σn2 ≤ 2d4σn2,

232



hence, w′ ∈ W and κ′ ∈ K. From Equation (5.38),

∣∣∣∣∥w − w∗∥
d2σn

gbi (w
′, κ′, u, ρ)− gbi (w, κ, u, ρ)

∣∣∣∣
(a)
=

ρ∥xbi · u∥
∥xbi · u∥ ∨ ρ

∣∣∣∣∥w − w∗∥
d2σn

κ′
(

(xbi · (w′ − w∗)− nbi)
∥xbi · (w′ − w∗)− nbi∥ ∨ κ′

)
−
(

(κxbi · (w − w∗)− nbi)
∥xbi · (w − w∗)− nbi∥ ∨ κ

)∣∣∣∣
(b)
≤ ∥xbi · u∥ ·

∣∣∣∣∣κ
(

(xbi · w−w∗

∥w−w∗∥d
2σn− nbi)

∥xbi · w−w∗

∥w−w∗∥d
2σn− nbi∥ ∨ d2σn

∥w−w∗∥κ

)
− κ
(

(xbi · (w − w∗)− nbi)
∥xbi · (w − w∗)− nbi∥ ∨ κ

)∣∣∣∣∣
= ∥xbi · u∥ ·

∣∣∣∣∣κ
(

(xbi · (w − w∗)− d2σn
∥w−w∗∥n

b
i)

∥xbi · (w − w∗)− d2σn
∥w−w∗∥n

b
i∥ ∨ κ

)
− κ
(

(xbi · (w − w∗)− nbi)
∥xbi · (w − w∗)− nbi∥ ∨ κ

)∣∣∣∣∣
(c)
≤ ∥xbi · u∥ ·

∣∣∣∣ d2σn

∥w − w∗∥
nbi − nbi

∣∣∣∣
(d)
≤ C1

√
d|nbi |

d2σn

∥w − w∗∥
(e)
≤ C1

√
d|nbi |,

here (a) follows from the definition of gbi , inequality (b) follows as ρ ≤ ∥xbi · u∥ ∨ ρ, inequality (c)

uses the fact that for any a,∆ and b ≥ 0, we have |b a+∆
(a+∆)∨b − b

a
a∨b | ≤ |∆|, inequality (c) uses

∥xbi∥ ≤ C1

√
d and the last inequality (e) uses ∥w − w∗∥ > d2σn.

Therefore,

∣∣∣∣∥w − w∗∥
d2σn

Zb
i (w

′, κ′, u, ρ)− Zb
i (w, κ, u, ρ)

∣∣∣∣ ≤ C1

√
d
(
|nbi |+ E[|nbi |]

)
≤ C1

√
d
(
|nbi |+ σ

)
.

233



From the above equation,

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w, κ, u, ρ)

)2

≤ 1

|G|
∑
b∈G

(
n∑
i=1

(
∥w − w∗∥
d2σn

Zb
i (w

′, κ′, u, ρ) + C1

√
d|nbi |+ C1

√
dσ

))2

(a)
≤ 1

|G|
∑
b∈G

3

( n∑
i=1

∥w − w∗∥
d2σn

Zb
i (w

′, κ′, u, ρ)

)2

+

(
n∑
i=1

C1

√
d|nbi |

)2

+

(
n∑
i=1

C1

√
dσ

)2


(b)
≤ 3∥w − w∗∥2

d4σ2n2

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w

′, κ′, u, ρ)

)2

+
3dC2

1

|G|
∑
b∈G

(
n

n∑
i=1

|nbi |2
)

+ 3dC2
1n

2σ2

(c)
≤ 3∥w − w∗∥2

d4σ2n2

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w

′, κ′, u, ρ)

)2

+ 3dC2
1n

2σ2(d2 + 1),

here (a) and (b) uses (
∑t

i=1 zi) ≤ t
∑t

i=1 z
2
i and inequality (c) holds with with probability

≥ 1− 1
d2

by Markov inequality, as Pr[ 1
n|G|

∑
b∈G
∑n

i=1 |nbi |2 > d2ED[(n
b
i)

2)] ≤ 1
d2

.

Recall that ∥w′ − w∥ ≤ d2σn and κ ≤ 2d4σn2, therefore in the above equation, we can

bound the first term on the right by using high probability bound in Equation (5.46). Then, with

234



probability ≥ 1− δeO(d log(C1dn) − 1
d2

,

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w, κ, u, ρ)

)2

≤ 3∥w − w∗∥2

d4σ2n2

(
2n(

5

4
σ2 + 2CED[((w

′ − w∗) · xbi)2])

+ 128n(κ′ρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

})
+ 3dC2

1n
2σ2(d2 + 1)

(a)
= 12CnED[((w − w∗) · xbi)2] +

15∥w − w∗∥2

2d4σ2n2
nσ2

+ 384n(κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
+ 3dC2

1n
2σ2(d2 + 1)

(b)
≤ 13CnED[((w − w∗) · xbi)2] + 384n(κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
,

here equality (a) uses the relation w′ − w∗ = w−w∗

∥w−w∗∥d
2σn and κ′ = d2σn

∥w−w∗∥κ, and (b) follows

as CED[((w − w∗) · xbi)2] ≥ C ∥w−w∗∥2∥Σ∥
C3

= C ∥w−w∗∥2
C3

≥ Cd4σ2n2/C3, where C3 is condition

number of Σ, hence CED[((w − w∗) · xbi)2] ≫
15∥w−w∗∥2
2d4σ2n2 nσ2 and CED[((w − w∗) · xbi)2] ≥

C ∥w−w∗∥2
C3

≫ 15∥w−w∗∥2
2d4σ2n2 nσ2 and CED[((w − w∗) · xbi)2]≫ 3dC2

1n
2σ2(d2 + 1).

The above bound holds for all unit vectors u, w /∈ W and κ ≤ (σ + ∥w − w∗∥)d2n,

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w, κ, u, ρ)

)2

≤ 13CnED[((w − w∗) · xbi)2] + 450n(κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
.

Recall that bound in Equation (5.46) holds for all unit vectors u, w ∈ W and κ ≤ K′ with

probability ≥ 1− δeO(d log(C1dn). Note that for w ∈ W , (σ + ∥w − w∗∥)d2n ≤ 2d4σn2, hence

[0, (σ + ∥w − w∗∥)d2n] ⊆ K′. Hence the above bound holds for all unit vectors u, w ∈ W and

κ ≤ (σ + ∥w − w∗∥)d2n. Combining the two bounds, with probability≥ 1−δeO(d log(C1dn)− 1
d2

,

235



for all unit vectors u, all vectors w and κ ≤ (σ + ∥w − w∗∥)d2n,

1

|G|
∑
b∈G

(
n∑
i=1

Zb
i (w, κ, u, ρ)

)2

≤ 5

2
σ2n+ 13CnED[((w − w∗) · xbi)2] + 384n(κρ)2max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
.

This completes the proof of Equation (5.41). ■

Chapter 5, in full, is a reprint of the material as it appears in Efficient list-decodable

regression using batches 2023. Abhimanyu Das, Ayush Jain, Weihao Kong, and Rajat Sen. In

ICML 2023. The dissertation author was the primary investigator and author of this paper.

236



Chapter 6

Linear Regression using Heterogeneous
Data Batches

6.1 Introduction

In numerous applications, including federated learning [147], sensor networks [149],

crowd-sourcing [136] and recommendation systems [148], data are collected from multiple

sources, each providing a batch of samples. For instance, in movie recommendation systems,

users typically rate multiple films. Since all samples in a batch are generated by the same source,

they are often assumed to share the same underlying distribution. However, the batches are

frequently very small, e.g., many users provide only few ratings. Hence, it may be impossible to

learn a different model for each batch.

A common approach has therefore assumed [140] that all batches share the same underlying

distribution and learn this common model by pooling together the data from all batches. While

this may work well for some applications, in others, it may fail, or lack personalization. For

instance, in recommendation systems, it may not capture the characteristics of individual users.

A promising alternative that allows for personalization even with many small batches

assumes that batches can be categorized into k sub-populations. In each sub-population, all

batches are generated by distributions that are close to each other and hence can be represented by

a single distribution. Henceforth, we identify the sub-population with this common distribution.

Even when k is large, our work allows the recovery of models for sub-populations with a

237



significant fraction of batches. For example, in the recommendation setting, most users can be

classified into a few sub-populations such that the distribution of users in the sub-population is

close, for instance, those preferring certain genres.

This paper focuses on the canonical model of linear regression in supervised learning. A

distribution D of samples (x, y) follows a linear regression model if, for some regression vector

w ∈ Rd, the output is y = w · x+ η where input x is a random d dimensional vector and η is a

zero-mean noise. The goal is to recover the regression vectors for all large sub-populations that

follows the linear regression model.

6.1.1 Our Results

This setting was first considered in [95] for meta-learning applications, where they view

and term batches as tasks. [95] argue that in meta-learning applications task or batch lengths

follow a long tail distribution and in the majority of the batches only a few labeled examples

are available. Only a few batches have medium size labeled samples available, and almost all

of them have length≪ d. Note that similar observations have been made in the recommender

system literature where the distribution of a number of ratings per user follows a long-tailed

distribution with an overwhelming number of users rating only a few items while rare tail users

rating hundreds of items [66]. The same has been observed for the distribution of the number of

ratings per item [118]. Therefore, it is reasonable to assume that in these applications of interest,

a handful of medium-size batches along with a large number, Ω(d), batches of constant size are

available. Under this setting our main results allow recovery of all sub-populations that has a

significant fraction of batches and follow a linear regression model:

Let k ∈ N be the number of distinct sub-populations. For α > 0, let I be the collection of

all sub-populations that contribute at least α fraction of the batches and satisfy a linear regression

model with an output-noise variance ≤ σ2. For i ∈ I , let wi be the regression parameter of

sub-population i. Our goal is to estimate wi’s.

238



Theorem 105 (Informal). Given Ω̃(d/α2) small batches of size ≥ 2, and Ω̃(min(
√
k, 1/
√
α)/α)

medium batches of size ≥ Ω̃(min(
√
k, 1/
√
α)), our algorithm runs in time poly(d, 1/α, k) and

outputs a list L of size Õ(1/α) such that w.h.p., for each sub-population i ∈ I , there is at least

one estimate in L that is within a distance of O(σ) from wi and has an expected prediction

error σ2(1 + o(1)) for the sub-population i. Furthermore, given Ω(logL) samples from the

sub-population i, we can identify such an estimate from L.

Note that to recover regression vectors for all sub-populations I , our algorithm only

requires Ω̃(d/α+min(k, 1/α)) samples from each sub-population and Ω̃(d/α2+min(k, 1/α)/α)

samples in total. Note that Ω(d) samples are required by any algorithm even when k = 1. To the

best of our knowledge, ours is the best sample complexity for recovering the linear regression

models in the presence of multiple sub-populations using batch sizes smaller than d.

6.1.2 Comparison to Prior Work

The only work that provides a polynomial time algorithm in dimension, in the same

generality as ours is [41]. They even allow the presence of adversarial batches. However, they

require Ω̃(d/α2) batches from the sub-population of size Ω̃(1/α) each, and therefore, Ω̃(d/α3)

samples in total, which exceeds our sample complexity by a factor of 1/α2. Note that the batch

length in their setting is at least quadratically larger than ours. All other works place strong

assumptions on the distributions of the sub-population and still require a number of samples

much larger than ours, which we discuss next.

Most of the previous works [26, 134, 154, 153, 102, 32, 55, 117] have addressed the

widely studied mixed linear regression (MLR) model where all batches are of size 1, and adhere

to the following three assumptions:

1. All k sub-populations have ≥ α fraction of data. This assumption implies k ≤ 1/α.

2. All k distributions follow a linear regression model.

3. All k regression coefficients are well separated, namely ∥wi − wj∥ ≥ ∆,∀ i ̸= j .

239



Even for k = 2, solving MLR, in general, is NP-hard [152]. Hence all these works on mixed

linear regression, except [102], also made the following assumption:

4. All input distributions (i.e., the distribution over x) are the same for every sub-population, in

fact, the same isotropic Gaussian distribution. This implies the distribution of movies that

users rate is the same across every user.

With this additional isotropic Gaussian assumption, they provided algorithms that have

runtime and sample complexity polynomial in the dimension. However, even with these four

strong assumptions, their sample complexity is super-polynomial overall. In particular, the

sample complexity in [154, 32, 55] is quasi-polynomial in k and [26, 134, 55] require at least a

quadratic scaling in d. In [26, 134, 153] the sample complexity scales as a large negative power

of the minimum singular value of certain moment matrix of regression vectors that can be zero

even when the gap between the regression vectors is large. In addition, [154, 153, 32] required

zero-noise i.e η = 0. The only work we are aware of that can avoid Assumption 4 and handle

different input distributions for different sub-populations under MLR is [102]. However, they

still require all distributions to be Gaussian and η = 0, and their sample size, and hence run-time

is exponential, Ω(exp(k2)) in k.

The work that most closely relates to ours is [95], which considers batch sizes> 1. While

it achieves the same dependence as us on d, k, and 1/α, on the length and number of medium and

small batches, the sample complexity of the algorithms and the length of medium-size batches

had an additional multiplicative dependence on the inverse separation parameter 1/∆. It also

required Assumption 4 mentioned in the section. The follow-up work [94] which still assumes all

four assumptions can handle the presence of a small fraction≪ 1/k2α2 of adversarial batches,

but requires Ω̃(dk2/α2 + k5/α4) samples. It also suffers from similar strong assumptions as

earlier works and the sum of squares approach makes it impractical. The sum of the square

approach, and stronger isotropic Gaussian assumption, allow it to achieve a better dependence

on 1/α on medium-size batch lengths, however, causing a significant increase in the number

240



of medium-size batches required.

Our improvement over prior work. In contrast, our work avoids all four assumptions,

and can recover any sufficiently large sub-populations that follow a linear regression model.

In particular: (1) Even when a large number of different sub-populations are present, (e.g.,

k ≥ 1/α), we can still recover the regression coefficient of a sub-population with sufficient

fraction of batches. (2) The k distributions do not even need to follow a linear regression

model. In particular, our algorithm is robust to the presence of sub-populations for which the

conditional distribution of output given input is arbitrary. (3) Our work requires no assumption

on the separation of regression coefficient ∆, and our guarantees as well have no dependence

on the separation. (4) We allow different input distributions for different sub-populations. (5)

In addition to removing the four assumptions, the algorithm doesn’t require all batches in a

sub-population to have identical distributions, it only requires them to be close so that the

expected value of gradient for a batch is close to one of the sub-population.

6.1.3 Techniques and Organization

We sample a medium-size batch randomly and recover the regression vector of the

population that the sampled batch corresponds to. We estimate the regression vector w.h.p.

if there are enough batches in the collection of medium and small-size batches from that

sub-populations and the sub-population follows a linear regression model.

The regression vector minimizes the expected squared loss for the sub-population.

Therefore, we use a gradient-descent-based approach to estimate such a vector. We start with an

initial estimate (all zero) and improve this estimate by performing multiple rounds of gradient

descent steps.

Our approach to estimating the gradient in each step is inspired by [95]. However, they

used it to directly estimate regression vectors of all sub-populations simultaneously. First, using a

large number of smaller batches we estimate a smaller subspace of Rd that preserves the norm of

the gradient. Next, using the sampled medium-size batch from the sub-population, we test which

241



of the remaining medium-size batches has a projection of gradient close to the sampled batch, and

use them to estimate the gradient in this smaller subspace. The advantage of sub-space reduction

is that testing and estimation of the gradient in the smaller subspace is easier, and reduces the

minimum length of medium-size batches required for testing and the number of medium-size

batches required for estimation. A crucial ingredient of our algorithm is clipping, which limits

the effect of other components and allows the algorithm to work for heavy-tailed distributions.

Sampling more than Ω̃(1/α) medium-size batches and repeating this process for all the

sampled batches ensures that we recover a list containing regression vector estimates for all large

subgroups.

We describe the algorithm in detail in Section 6.3 after having presented our main

theorems in Section 6.2. Then in Section 6.4 we compare our algorithm with the one in [95] on

simulated datasets, to show that our algorithm performs better in the setting of the latter paper as

well as generalizes to settings that are outside the assumptions of [95].

6.2 Problem Formulation and Main Results

6.2.1 Problem Formulation

Consider distributions D0, . . . ,Dk−1 over input-output pairs (x, y) ∈ Rd × R. A batch

b consists of i.i.d. samples from one of the distributions. Samples in different batches are

independent. There are two sets of batches. Batches in Bs are small and contain at least two

samples each, while batches in Bm are of medium size and contain at least nm samples. Next,

we describe the distributions. To aid this description and the remaining paper we first introduce

some notation.

6.2.2 Notation

The L2 norm of a vector u is denoted by ∥u∥ and represents the length of the vector.

The norm, or spectral norm, of a matrix M is denoted by ∥M∥ and is defined as the maximum

242



value of ∥Mu∥ for all unit vectors u. If M is a symmetric matrix, the norm simplifies to ∥M∥ =

max∥u∥=1 |u⊺Mu|, and for a positive semidefinite matrix M , we have ∥M∥ = max∥u∥=1 u
⊺Mu.

The trace of a symmetric matrix M is Tr(M) :=
∑

iMii, the sum of the elements on the main

diagonal of M . We will use the symbol S to denote an arbitrary collection of samples. For a

batch denoted by b, we will use Sb to represent the set of all nb samples in the batch.

6.2.3 Data Distributions

Let Σi := EDi
[xx⊺] denote the second-moment matrix of input for distribution Di.

Let I ⊆ {0, 1, .., k − 1} denote the collection of indices of distributions sampled in at

least αs and αm fractions of the batches in Bs and Bm, respectively, and satisfy the following

assumptions standard in heavy-tailed linear regression [38, 41].

1. (Input distribution) There are constants C and C1 such that for all i ∈ I ,

(a) L4-L2 hypercontractivity: For all u ∈ Rd, EDi
[(x · u)4] ≤ C(EDi

[(x · u)2])2.

(b) Bounded condition number: For normalization purpose we assume min∥u∥=1 u
⊺Σiu ≥ 1

and to bound the condition number we assume that ∥Σi∥ ≤ C1.

2. (Input-output relation) There is a σ > 0 s.t. for all i ∈ I , y = wi · x+ η, where wi ∈ Rd is

an unknown regression vector, and η is a noise independent of x, with zero mean EDi
[η]=0,

and EDi
[η2]≤σ2. Note that by definition, the distribution of η may differ for each i.

We will recover the regression vectors wi for all i ∈ I . For i /∈ I , we require only that the input

distribution satisfies ∥Σi∥ ≤ C1, same as the second half of assumption 1(b). The input-output

relation for samples generated by Di for i /∈ I may be arbitrary, and in particular, does not even

need to follow a linear regression model, and the fraction of batches with samples from Di in Bs

and Bm may be arbitrary.

To simplify the presentation, we make two additional assumptions. First, there is a

constantC2 > 0 such that for all components i ∈ {0, 1, .., k−1}, and random sample (x, y) ∼ Di,

243



∥x∥ ≤ C2

√
d, a.s. Second, for all i ∈ I and a random sample (x, y) ∼ Di, the noise distribution

η = y−wi · x is symmetric around 0. As discussed in Appendix 6.15, these assumptions are not

limiting.

Remark 3. To simplify the presentation, we assumed that the batches exactly follow one of the k

distributions. However, our techniques can be extended to more general scenarios. LetDb denote

the underlying distribution of batch b. Instead of requiringDb = Di for some i ∈ {0, 1, .., k− 1},

our methods can be extended to cases when the expected value of the gradients for Db and Di are

close and if i ∈ I , regression vector wi achieves a small mean square error of at most σ2. This is

guaranteed if (1) ∥EDb [xx⊺] − Σi∥ is small, (2) for all x ∈ Rd, |EDb [y|x] − EDi
[y|x]| is small,

and (3) if i ∈ I then for all x ∈ Rd, EDb [(y − wi · x)2|x] ≤ σ2. The strict identity requirement

Db = Di can therefore be replaced by these three approximation conditions.

6.2.4 Main Results
Estimating regression vectors

We begin by presenting our result for estimating the regression vector of a component Di,

for any i ∈ I . This result assumes that in addition to the batch collections Bs and Bm, we have

an extra medium-sized batch denoted as b∗ which contains samples from Di. W.l.o.g, we assume

i = 0.

Theorem 106. Suppose index 0 is in set I and let b∗ be a batch of ≥ nm i.i.d. samples

from D0. For δ, ϵ ∈ (0, 1], if |Bs| = Ω̃( d
αs

2ϵ4
), nm = Ω̃(min{

√
k, 1

ϵ
√
αs
} · 1

ϵ2
), and |Bm| =

Ω̃( 1
αm

min{
√
k, 1

ϵ
√
αs
}), then Algorithm 10 runs in polynomial time and returns estimate ŵ, such

that with probability ≥ 1− δ, ∥ŵ − w0∥ ≤ ϵσ.

We provide a proof sketch of Theorem 106 and the description of Algortihm 10 in

Section 6.3, and a formal proof in Appendix 6.13. Algorithm 10 can be used to estimate wi

for all i ∈ I , and the requirement of a separate batch b∗ is not crucial. It can be obtained by

repeatedly sampling a batch from Bm and running the algorithm for these sampled b∗. Since

244



all the components in I have ≥ αm fraction of batches in Bm, then randomly sampling b∗ from

Bm, Θ̃(1/αm) times would ensure that, with high probability, we have b∗ corresponding to each

component. We can then return a list of size Θ̃(1/αm) containing estimates corresponding to

each sampled b∗. Then, with high probability, the list will have an estimate of the regression

vectors for all components. Note that in this case, returning a list is unavoidable as there is no

way to assign an appropriate index to the regression vector estimates. The following corollary

follows from the above discussion and Theorem 106.

Corollary 107. For δ, ϵ ∈ (0, 1], if |Bs| = Ω̃( d
αs

2ϵ4
), nm = Ω̃(min{

√
k, 1

ϵ
√
αs
} · 1

ϵ2
), and

|Bm| ≥ Ω̃( 1
αm

min{
√
k, 1

ϵ
√
αs
}), the above modification of Algorithm 10 runs in polynomial-time

and outputs a list L of size Õ(1/αm) such that with probability ≥ 1− δ, the list has an accurate

estimate for regression vectors wi for each i ∈ I , namely maxi∈I minŵ∈L ∥ŵ − wi∥ ≤ ϵσ.

In particular, this corollary implies that for any i ∈ I , the algorithm requires only Ω̃(d/αs)

batches of size two and Ω̃(min{
√
k, 1√

αs
}) medium-size batches of size Ω̃(min{

√
k, 1√

αs
}) from

distribution Di to estimate wi within an accuracy o(σ). Furthermore, it is easy to show that

any o(σ) accurate estimate of regression parameter wi achieves an expected prediction error of

σ2(1 + o(1)) for output y given input x generated from this Di.

Note that results work even for infinite k and without any separation assumptions on

regression vectors. The min(
√
k, 1/
√
αs) dependence is the best of both words. This dependence

is reasonable for recovering components with a significant presence or if the number is few.

The total number of samples required by the algorithm from Di in small size batches Bs

and medium size batches Bm are only Õ(d/αs) and Õ(min{k, 1/αs)). Note that any estimator

would require Ω(d) samples for such estimation guarantees even in the much simpler setting with

just i.i.d. data. Therefore, in the high-dimensional regime, where d ≫ Õ(min{k, 1/αs)), the

samples in the medium-size batches in themselves have≪ d samples and are insufficient to learn

wi. Note that the total number of samples required from Di in Bs and Bm by the algorithm is

within Õ(1/αs) factor from that required in a much simpler single component setting.

245



Prediction using list of regression vector estimates

The next theorem shows that given a list L containing estimates of wi for all i ∈ I and

Ω(log(1/αs)) samples from Di for some i ∈ I , we can identify an estimate of regression vector

achieving a small prediction error for Di. The proof of the theorem and the algorithm is in

Appendix 6.7.

Theorem 108. For any i ∈ I , β > 0, and list L that contains at least one β good estimate of

regression parameter ofDi, namely minw∈L ∥w−wi∥ ≤ β. GivenO(max{1, σ2

β2} log L
δ
) samples

from Di Algorithm 12 identifies an estimate w, s.t. with probability ≥ 1− δ, ∥w − wi∥ = O(β)

and it achieves an expected estimation error EDi
[(ŵ · x− y)2] ≤ σ2 +O(β2).

Combining the above theorem and Theorem 106, we get

Theorem 109. For δ, ϵ ∈ (0, 1], suppose that |Bs| = Ω̃( d
αs

2ϵ4
), nm = Ω̃(min{

√
k, 1

ϵ
√
αs
} · 1

ϵ2
),

and |Bm| ≥ Ω̃( 1
αm

min{
√
k, 1

ϵ
√
αs
}). Then, there exists a polynomial-time algorithm that, with

probability ≥ 1 − δ, outputs a list L of size Õ(1/αm) containing estimates of wi’s for i ∈ I .

Further, given |S| ≥ Ω( 1
ϵ2
log 1

δαm
) samples from Di, for any i ∈ I , Algorithm 12 returns ŵ ∈ L

that with probability ≥ 1− δ satisfies ∥wi − ŵ∥ ≤ O(ϵσ) and achieves an expected estimation

error EDi
[(ŵ · x− y)2] ≤ σ2 +O(ϵ2σ2)

When ϵ = o(1), the corollary implies that for |Bs| = Ω̃( d
αs

2 ), nm = Ω̃(min{
√
k, 1√

αs
}),

and |Bm| ≥ Ω̃( 1
αm

min{
√
k, 1√

αs
}), Algorithm 10 can be used to obtain a list L of size Õ(1/αs)

. Given this list, and |S| ≥ Ω(log 1
αsδ

) samples from Di for any i ∈ I , Algorithm 12 returns

ŵ ∈ L that achieves an expected estimation error EDi
[(ŵ · x− y)2] ≤ σ2(1 + o(1)).

6.3 Algorithm for recovering regression vectors

This section provides an overview and pseudo-code of Algorithm 10, along with an

outline of the proof that achieves the guarantee stated in Theorem 106. As per the theorem,

we assume that index 0 belongs to I , and we have a batch b∗ containing nm samples from the

246



distribution D0. Note that D0 satisfies the conditions mentioned in Section 6.2.3 and that Bs

and Bm each have ≥ |Bs|αs and ≥ |Bm|αm batches with i.i.d. samples from D0. However, the

identity of these batches is unknown.

Gradient Descent. Note that w0 minimizes the expected square loss for distribution D0.

Our algorithm aims to estimate w0 by taking a gradient descent approach. It performs a total ofR

gradient descent steps. Let ŵ(r) denote the algorithm’s estimate of w0 at the beginning of step r.

Without loss of generality, we assume that the algorithm starts with an initial estimate of ŵ(1) = 0.

At step r, the algorithm produces an estimate ∆(r) of the gradient of the expected square loss for

distribution D0 at its current estimate ŵ(r). We refer to this estimate as the expected gradient for

D0 at ŵ(r), or simply the expected gradient. The algorithm then updates its current estimate for

the next round as ŵ(r+1) = ŵ(r) −∆(r)/C1.

The main challenge the algorithm faces is the accurate estimation of the expected gradients

in each step. Accurately estimating the expected gradients at each step would require Ω(d/ϵ2)

i.i.d. samples from D0. However, our algorithm only has access to a medium-size batch b∗ that is

guaranteed to have samples fromD0 and this batch contains far fewer samples. And for batches in

Bs andBm, the algorithm doesn’t know which of the batches has samples fromD0. Despite these

challenges, we demonstrate an efficient method to estimate the expected gradients accurately.

The algorithm randomly divides sets Bs and Bm into R disjoint equal subsets, denoted as

{B(r)
s }Rr=1 and {B(r)

m }Rr=1, respectively. The samples in batch b∗ are divided into two collections

of equal disjoint parts, denoted as {Sb
∗,(r)

1 }Rr=1 and {Sb
∗,(r)

2 }Rr=1. At each iteration r, the algorithm

uses the collections of medium and small batches B(r)
s and B(r)

m , respectively, along with the two

collections of i.i.d. samples Sb
∗,(r)

1 and Sb
∗,(r)

2 from D0 to estimate the gradient at point w(r).

While this division may not be necessary for practical implementation, this ensures independence

between the stationary point ŵ(r) and the gradient estimate which facilitates our theoretical

analysis and only incurs a logarithmic factor in sample complexity.

Next, we describe how the algorithm estimates the gradient and the guarantees of this

estimation. Due to space limitations, we provide a brief summary here, and a more detailed

247



Algorithm 10. MainAlgorithm
1: Input: Collections of batches Bs and Bm, αs, k, a medium size batch b∗ of i.i.d. samples from D0,

distribution parameters (upper bounds) σ, C, C1, an upper bound M on ∥w0∥, ϵ and δ,
2: Output: Estimate of w0

3: R← Θ(C1 log
M
σ ), ϵ1 ← Θ(1), ϵ2 ← Θ

(
1

C1
√
C+1

(ϵ1 +
1√
C1

)
)

, ℓ← min{k, 1
2αsϵ22

} δ′ ← δ
5R

4: Partition the collection of batches Bs into R disjoint same size random parts {B(r)
s }r∈[R].

5: Similarly partition Bm into R disjoint same size random parts {B(r)
m }r∈[R].

6: Divide samples Sb∗ into 2R disjoint same size random parts {Sb
∗,(r)

1 }r∈[R] and {Sb
∗,(r)

2 }r∈[R].
7: Initilize ŵ(1) ← 0
8: for r from 1 to R do
9: κ(r) ← ClipEst(Sb

∗,(r)
1 , ŵ(r), ϵ1, δ

′, σ, C,C1)

10: P (r) ← GradSubEst(B(r)
s , κ(r), ŵ(r), ℓ )

11: ∆(r) ← GradEst(B(r)
m , S

b∗,(r)
2 , κ(r), ŵ(r), P (r), ϵ2, δ

′)
12: ŵ(r+1) ← ŵ(r) − 1

C1
∆(r)

13: end for
14: ŵ ← ŵ(R+1) and Return ŵ

description, along with formal proofs, can be found in the appendix. We start by introducing a

clipping operation on the gradients, which plays a crucial role in the estimation process.

Clipping. Recall the squared loss of samples (x, y) on point w is (w · x− y)2/2 and its

gradient is (x · w − y)x. Instead of directly working with the gradient of the squared loss, we

work with its clipped version. Given a clipping parameter κ > 0, the clipped gradient for a

sample (x, y) evaluated at point w is defined as

∇f(x, y, w, κ) := (x·w−y)
|x·w−y|∨κκx.

For a collection of samples S, the clipped gradient ∇f b(w, κ) is the average of the clipped

gradients of all samples in S, i.e., ∇f(S,w, κ) := 1
|S|
∑

(x,y)∈S∇f(x, y, w, κ).

The clipping parameter κ controls the level of clipping and for κ = ∞, the clipped

and the unclipped gradients are the same. The clipping step is necessary to make our gradient

estimate more robust, by limiting the influence of the components other than D0 (in lemma 111),

and as a bonus, we also obtain better tail bounds for the clipped gradients. Theorem 112 shows

that for κ ≥ Ω(
√

ED0 [(y − x · w)2]), the difference between the expected clipped gradient and

248



the expected gradient ∥ED0 [(∇f(x, y, w, κ)]− ED0 [(x · w − y)x]∥ is small. Therefore, the ideal

value of κ at point w is Θ(
√

ED0 [(y − x · w)2]).

For the estimate ŵ(r) at step r, the choice of the clipping parameter is represented by κ(r).

To estimate a value for κ(r) that is close to its ideal value, the algorithm employs the subroutine

ClipEst (presented as Algorithm 13 in the appendix). The subroutine estimates the expected

value of (y − x · ŵ(r))2 by using i.i.d. samples Sb
∗,(r)

1 from the distribution D0. According to

Theorem 114 in Appendix 6.9, the subroutine w.h.p. obtains κ(r) that is close to the ideal value.

This ensures that the difference between the expectation of clipped and unclipped gradients is

small, and thus, estimating the expectation of clipped gradients can replace estimating the actual

gradients.

Subspace Estimation. The algorithm proceeds by using subroutine GradSubEst

(presented as Algorithm 14 in Appendix 6.10) with B̂ = B
(r)
s , w = ŵ(r), and κ = κ(r) to estimate

a smaller subspace P (r) of Rd.The expected projection of the clipped gradient on P (r) is nearly

the same as the expected value of the clipped gradient, hence to estimate the expected gradient, it

suffices to estimate the expected projection of the clipped gradient on P (r), which now requires

fewer samples since P (r) is a lower dimensional subspace. The subroutine constructs a matrix A

such that E[A] =
∑

i piEDi
[∇f(x, y, w, κ)]EDi

[∇f(x, y, w, κ)]⊺, where pi denotes the fraction

of batches in B̂ that have samples from Di. Since B(r)
s are obtained by randomly partitioning

Bs, w.h.p. p0 ≈ αs. It is crucial for the success of the subroutine that the expected contribution

of every batch in the above expression is a PSD matrix. The clipping helps in bounding the

contribution of other components and statistical noise.

The subroutine returns the projection matrix P (r) for the subspace spanned by the top ℓ

singular vectors of A, where ℓ = min{k,Θ(1/αs)}. It is worth noting that when 1/αs is much

smaller than k (thinking of the extreme case k =∞), our algorithm still only requires estimating

the top ℓ = 1/αs dimensional subspace, since those infinitely many components can create at

most (1/αs− 1) directions with weight greater than αs, therefore the direction ofD0 must appear

in the top Θ(1/αs) subspace. Theorem 116 in Appendix 6.10 characterizes the guarantees for

249



this subroutine. Informally, if B̂ ≥ Ω̃(d/α2), then w.h.p., the expected value of the projection

of the clipped gradient on this subspace is nearly the same as the expected value of the clipped

gradient, namely ∥ED0 [P
(r)∇f(x, y, w, κ)]− ED0 [∇f(x, y, w, κ)]∥ is small.

We note that our construction of matrix A for the subroutine is inspired by a similar

construction in [95], where they used it for directly estimating regression vectors. Our results

generalize the applicability of the procedure to provide meaningful guarantees even when the

number of components k =∞. Additionally, Lemma 118 improves matrix perturbation bounds

in Lemma 5.1 of [95], which is crucial for applying this procedure for heavy-tailed distributions

and reducing the number of required batches.

Algorithm 11. GradEst

1: Input: A collection of medium batches B̂, a collection of samples S∗ from D0, κ, w, projection
matrix P for subspace of Rd, parameter ϵ, δ′

2: Output: An estimate of clipped gradient at point w.
3: T1 ← Θ(log |B̂|

δ′ ) and T2 ← Θ(log 1
δ′ )

4: For each b divide Sb into two equal random parts Sb1 and Sb2
5: For each b further divide Sb1 into 2T1 equal random parts, and denote them as {Sb1,j}j∈[2T1]
6: Divide S∗ into 2T1 equal random parts, and denote them as {S∗

j }j∈[2T1]
7: ζbj :=

(
∇f(Sb1,j , w, κ)−∇f(S∗

j , w, κ)
)⊺
P ⊺P

(
∇f(Sb1,T1+j , w, κ)−∇f(S

∗
T1+j

, w, κ)
)

8: Let B̃ ←
{
b ∈ B̂ : median{ζbj : j ∈ [T1]} ≤ ϵ2κ2C1

}
9: For each b divide Sb2 into T2 equal parts randomly, and denote them as {Sb2,j}j∈[T2]

10: For i ∈ [T2], let ∆i ← 1

|B̃|

∑
b∈B̃ P∇f(Sb2,i, w, κ).

11: Let ξi ← median{j ∈ [T2] : ∥∆i −∆j∥}
12: Let i∗ ← argmin{i ∈ [T2] : ξi} and ∆← ∆i∗

13: Return ∆

Estimating expectation of clipped gradient projection. The last subroutine, called

GradEst, estimates the expected projection of the clipped gradient using medium-size batches

B
(r)
m and i.i.d. samples Sb

∗,(r)
2 from D0. First, GradEst divides each batch in B(r)

m into two equal

parts and uses the first half of the samples in each batch b and samples Sb
∗,(r)

2 to test whether

the expected projection of clipped gradient for the distribution batch b was sampled from and

D0 are close or not. With high probability, the algorithm retains all the batches from D0 and

rejects batches from all distributions for which the difference between the two expectations is

250



large. This test requires Ω̃(
√
ℓ) samples in each batch, where ℓ is the dimension of the projected

clipped gradient.

After identifying the relevant batches, GradEst estimates the projection of the clipped

gradients using the second half of the samples in these batches. Since the projections of the

clipped gradients lie in an ℓ dimensional subspace, Ω(ℓ) samples suffice for the estimation. To

obtain high-probability guarantees, the procedure uses the median of means approach for both

testing and estimation.

The guarantees of the subroutine are described in Theorem 119, which implies that the

estimate ∆(r) of the gradient satisfies ∥∆(r) − ED0 [P
(r)∇f(x, y, w, κ)]∥ is small.

Estimation guarantees for expected gradient.

Using the triangle inequality, we have:

∥∆(r) − ED0 [(x · w − y)x]∥ ≤ ∥ED0 [∇f(x, y, w, κ)]− ED0 [(x · w − y)x]∥

+ ∥ED0 [∇f(x, y, w, κ)]− ED0 [P
(r)∇f(x, y, w, κ)]∥+ ∥∆(r) − ED0 [P

(r)∇f(x, y, w, κ)]∥.

As previously argued, all three terms on the right side of the inequality are small, hence ∆(r)

provides an accurate estimate of the gradient. Moreover, Lemma 126 shows that with an accurate

estimation of expected gradients, gradient descent reaches an ϵ-accurate estimation of w0 after

O(log ∥w0∥
σ

) steps. Therefore, setting R = Ω(log ∥w0∥
σ

) suffices. This completes the description

and proof sketch of Theorem 106. A more formal proof can be found in Appendix 6.13.

As mentioned before, given a new batch of only logarithmically many samples from

subgroup i ∈ I , we can identify the weight vector ŵ in the list L that is close to wi. In the interest

of space, we include the algorithm for selecting the appropriate weight vector from the list in

Appendix 6.7 along with a discussion about how the algorithm (Algorithm 12) achieves the

guarantees in Theorem 108.

251



6.4 Empirical Results

Setup. We have sets Bs and Bm of small and medium size batches and k distributions

Di for i ∈ {0, 1, . . . , k − 1}. For a subset of indices I ⊆ {0, 1, . . . , k − 1}, both Bs and Bm

have a fraction of α batches that contain i.i.d. samples from Di for each i ∈ I . And for each

i ∈ {0, 1, . . . , k − 1} \ I in the remaining set of indices, Bs and Bm have (1− |I|/16)/(k − |I|)

fraction of batches, that have i.i.d samples from Di. In all figures, the output noise is distributed

as N (0, 1). All small batches have 2 samples each, while medium-size batches have nm samples

each, which we vary from 4 to 32, as shown in the plots. We fix data dimension d = 100,

α = 1/16, number of small batches to |Bs| = min{8dk2, 8d/α2} and the number of medium

batches to |Bm| = 256. In all the plots, we average over 10 runs and report the standard error.

Evaluation. Our objective is to recover a small list containing good estimates for the

regression vectors of Di for each i ∈ I . We compare our proposed algorithm’s performance

with that of the algorithm in [95]. Given a new batch, we can choose the weight vector from the

returned list, L that achieves the best error1. Then the MSE of the chosen weight is reported on

another new batch drawn from the same distribution. The size of the new batch can be either 4 or

8 as marked in the plot. More details about our setup can be found in Appendix 6.16.

5 10 15 20 25 30
0

20

40

60

80
KSSKO(4 samples)
KSSKO(8 samples)
Ours(4 samples)
Ours(8 samples)

    
   

 M
SE

 medium batch size 
  

Figure 6.1. Same input dist., k = 16, large
minimum distance between regression vectors.

5 10 15 0 25 30
0

200

400

600

800 KSSKO(4 samples)
KSSKO(8 samples)
Ours(4 samples)
Ours(8 samples)

 

 

   
   

   
  M

SE

medium batch size 

Figure 6.2. Different input dist., k = 16, large
minimum distance between regression vectors.

Setting in [95]. We first compare our algorithm with the one in [95] in the same setting

1This simple approach showed better empirical performance than Algorithm 12, whose theoretical guarantees we
described in Section 6.2.4

252



as the latter paper i.e. with more restrictive assumptions. The results are displayed in Figure 6.1,

where I = {0, 1, . . . , 15} and all 16 distributions have been used to generate 1/16 fraction of the

batches. All the Di’s are equal to N (0, I), and the minimum distance between the regression

vectors is comparable to their norm. It can be seen that even in the original setting of [95] our

algorithm significantly outperforms the other at all the different medium batch sizes plotted on

the x-axis.

Input distributions. Our algorithm can handle different input distributions for different

subgroups. We test this in our next experiment presented in Figure 6.2. Specifically, for each i,

we randomly generate a covariance matrix Σi such that its eigenvalues are uniformly distributed

in [1, C1], and the input distribution for Di is chosen as N (0,Σi). We set C1 = 4. It can be seen

that [95] completely fails in this case, while our algorithm retains its good performance.

In the interest of space, we provide additional results in Appendix 6.16 which include

even more general settings: (i) when the minimum distance between regression vectors can be

much smaller than their norm (ii) when the number of subgroups k can be very large but the task

is to recover the regression weights for the subgroups that appear in a sufficient fraction of the

batches. In both these cases, our algorithm performs much better than the baseline.

6.5 Conclusion

We study the problem of learning linear regression from batched data in the presence

of sub-populations. In this work, we remove several restrictive assumptions from prior work

and provide better guarantees in terms of overall sample complexity. Moreover, we require

relatively fewer medium batches that need to contain less number of samples compared to prior

work. Finally, in our empirical results, we show that our algorithm is both practical and more

performant compared to a prior baseline.

It would be interesting to study robust algorithms for a similar setting where a fraction

of batches can be corrupted i.e. they follow an arbitrary distribution. It can serve as a middle

253



ground between our setting and list-decodable regression from batches, which would be a great

direction for future work.

Appendix

6.6 Other related work

Meta Learning. The setting we considered in this paper is closely related to meta

learning if we treat each batch as a task. Meta-learning approaches aim to jointly learn from past

experience to quickly adapt to new tasks with little available data [132, 139]. This is particularly

significant in our setting when each task is associated with only a few training examples. By

leveraging structural similarities among those tasks (e.g. sub-population structure), meta-learning

algorithms achieve far better accuracy than what can be achieved for each task in isolation

[63, 127, 92, 116, 141, 131]. Learning mixture of linear dynamical systems has been studied

in [33].

Robust and List decodable Linear Regression. Several recent works have focused on

obtaining efficient algorithms for robust linear regression and sparse liner regression when a

small fraction of data may be adversarial [18, 17, 11, 64, 123, 90, 50, 104, 88, 40, 112, 57, 87,

120, 38, 80, 93].

In scenarios where over half of the data may be arbitrary or adversarial, it becomes

impossible to return a single estimate for the underlying model. Consequently, the requirement is

relaxed to return a small list of estimates such that at least one of them is a good estimate for the

underlying model. This relaxed framework, called “List decodable learning," was first introduced

in [29]. List-decodable linear regression has been studied by [87, 126, 53], who have provided

exponential runtime algorithms. Additionally, [53] has established statistical query lower bounds,

indicating that polynomial-time algorithms may be impossible for this setting. However, as

mentioned earlier, the problem can be solved in polynomial time in the batch setting as long as

the batch size is greater than the inverse of the fraction of genuine data, as demonstrated in [41].

254



It’s worth noting that an algorithm for list-decodable linear regression can be used to obtain a list

of regression vector estimates for mixed linear regression.

Robust Learning from Batches. [125] presented the problem of robust learning of

discrete distributions from untrustworthy batches, where a majority of batches share the same

distribution and a small fraction are adversarial. They developed an exponential time algorithm

for the problem. Subsequent works [32] improved the run-time to quasi-polynomial, while

and [77] derived a polynomial time algorithm with an optimal sample complexity. The results

were extended to learning one-dimensional structured distributions in [78, 31], and classification

in [76, 96]. [2] examined a closely related problem of learning the parameters of an Erdős-Rényi

random graph when a portion of nodes may be corrupted and their edges are maybe be chosen by

an adversary.

6.7 Selecting a regression vector from a given list

In this section, we introduce Algorithm 12 and prove that it achieves the guarantees

presented in Theorem 108.

Algorithm 12. Selecting the regression vector
1: Input: Samples S from Di for some i ∈ I , C1, a list L of possible estimates of wi, and
β ≥ 0 s.t. β ≥ minw∈L ∥w − wi∥.

2: Output: An estimate of wi∗ from list L
3: Divide S into T3 = Θ(log(|L|/δ)) equal parts {Sj}T3j=1

4: while max{∥w − w′∥ : w,w′ ∈ L} ≥ 12C1β do
5: pick any w,w′ ∈ L s.t. ∥w − w′∥ ≥ 12C1β.
6: For j ∈ [T3], let aj ←

∑
(x,y)∈Sj

1
|Sj |(x · w − y)x · (w − w

′)

7: a← Median{aj : j ∈ [T3]}
8: If a > ∥w − w′∥2/4 remove w, else remove w′ from L
9: end while

10: Return any of the remaining w ∈ L

Without loss of generality, assume i = 0, and let w∗ = argminw∈L ∥w − w0∥. From

the condition in the theorem, we know that ∥w∗ − w0∥ ≤ β. The algorithm is given access to

|S| = Ω(max 1, σ
2

β2 log
|L|
δ
) samples. The algorithm chooses any two vectors w,w′ ∈ L that are

255



more than 12C1β distance apart and tests which of them is more likely to be within β distance

from w0 using samples in S. The algorithm performs T3 = Θ(log |L|
δ
) such tests and takes the

majority vote. It retains the vector that is more likely to be closer to w and discards the other

from L. The algorithm terminates when all the vectors in L are within a distance of 12C1β from

each other, by choosing a vector from those remaining in L and returning it as an estimate of w0.

If w∗ is retained in L until the end, using the simple triangle inequality for all w that remain in

L at the end, we have ∥w − w0∥ ≤ ∥w − w∗∥ + ∥w∗ − w0∥ ≤ 12C1β + β ≤ 13C1β = O(β).

Therefore, the estimate returned by the algorithm achieves the desired accuracy in estimating w0.

Hence, it suffices to show that w∗ is retained at the end with high probability.

Suppose w∗ is not in the final list L. Then it must have been discarded by the test in favor

of w̃ ∈ L such that ∥w∗ − w̃∥ ≥ 12C1β. The following theorem shows that for any w̃ such that

∥w∗ − w̃∥ ≥ 12C1β, the probability of the testing procedure rejecting w∗ in favor of w̃ is at most

δ/|L|.

Theorem 110. Given β > 0, list L, and samples S from D0, if minw∈L ∥w − w0∥ ≤ β and

|S| = max{1, σ2

β2} log L
δ
, then for the parameter a computed in the while loop of Algorithm 12,

with probability 1 − δ/|L|, we have a ≤ ∥w − w′∥2/4 if w = w0 and a > ∥w − w′∥2/4 if

w′ = w0.

The testing procedure utilized in the algorithm is based on gradients. Specifically, it

calculates the average of the gradient computed on samples at point w projected onto the vector

(w − w′). The expected value of the gradient at w, and its projection onto (w − w′), are

(w − w0)
⊺Σ0 and (w − w0)

⊺Σ0(w − w′), respectively. If w ≈ w0, then the expected projection

will be small. On the other hand. if w′ ≈ w0 and w, then expected value of projection is

≈ (w − w′)⊺Σ0(w − w′) ≳ ∥w − w′∥2. Using these observations, we prove Theorem 110 in the

next subsection.

Finally, since the maximum number of comparisons made by the algorithm is |L| − 1, a

union bound ensures that w∗ will be retained until the end with probability greater than 1− δ,

256



completing the proof of Theorem 108.

6.7.1 Proof of Theorem 110

Proof. Note that a is the median of the set {aj : j ∈ [T3]}, where each aj is computed using

different sets of i.i.d. samples. Consequently, {aj}j∈[T3] are also i.i.d random variables.

We begin by calculating the expected value of aj . Using the linearity of expectations, we

have:

E[aj]
(a)
= E

[∑
(x,y)∈Sj

1
|Sj |(x · w − y)x · (w − w

′)
]

(b)
= ED0 [(x · w − y)x · (w − w′)]

= ED0 [(x · (w − w0)− (y − x · w0))x · (w − w′)]

= ED0 [(x · (w − w0)x · (w − w′)]− ED0 [(y − x · w0)x · (w − w′)]

= ED0 [x · (w − w0)x · (w − w′)] (6.1)
(c)
= ED0 [(x · (w − w′))2] + ED0 [x · (w′ − w0)x · (w − w′)], (6.2)

here, (a) follows from the definition of aj , (b) follows from the linearity of expectation, and since

Sj contains i.i.d. samples from D0, (c) follows as the noise y − x · w0 has a zero mean and is

independent of x.

Next, we compute the variance of aj . Since aj represents the average of (x·w−y)x·(w−w′)

over |Sj| i.i.d. samples, we have

Var(aj) =
1

|Sj|
VarD0((x · w − y)x · (w − w′))

≤ 1

|Sj|
ED0

[
((x · w − y)x · (w − w′))

2
]
. (6.3)

By applying Chebyshev’s inequality, with a probability ≥ 3/4, the following holds for

257



each aj:

E[aj]− 2Var(aj) ≤ aj ≤ E[aj] + 2Var(aj). (6.4)

First, we consider the case when w = w∗. In this case, we have ∥w0 − w∥ ≤ β.

Using Equation (6.3), we can express the variance of aj as follows:

Var(aj) ≤
1

|Sj|
ED0

[
((x · w − y)x · (w − w′))

2
]

=
1

|Sj|
ED0

[
(x · (w − w0)x · (w − w′) + (w0 · x− y)x · (w − w′))

2
]

≤ 2

|Sj|

(
ED0

[
(x · (w − w0)x · (w − w′))

2
]
+ ED0

[
((w0 · x− y)x · (w − w′))

2
])
,

where the last step uses the fact that for any u, v ∈ R, (u+ v)2 ≤ 2u2 + 2v2.

Next, we bound the two terms on the right. For the first term, we have

ED0

[
(x · (w − w0)x · (w − w′))

2
]
≤
√
ED0 [(x · (w − w0))4]ED0 [(x · (w − w′))4]

≤ CED0 [(x · (w − w0))
2]ED0 [(x · (w − w′))2]. (6.5)

For the second term, we have:

ED0

[
((w0 · x− y)x · (w − w′))

2
]
= ED0

[
(w0 · x− y)2

]
ED0

[
(x · (w − w′))

2
]

= σ2ED0

[
(x · (w − w′))

2
]
, (6.6)

where the first inequality follows from assumption 1a and the second inequality follows from

assumption 1b.

258



Combining the above three equations, we obtain:

Var(aj) ≤
2

|Sj|
ED0

[
(x · (w − w′))

2
](
CED0 [(x · (w − w0))

2] + σ2
)

≤ 2

|Sj|
C1∥w − w′∥2

(
CC1∥w − w0∥2 + σ2

)
,

where the last inequality uses assumption 1b.

Using Equation (6.1), the Cauchy-Schwarz inequality, and assumption 1b, we have:

E[aj] ≤ C1∥w − w0∥ · ∥w − w′∥. (6.7)

Combining the two equations above, we obtain:

E[aj] + 2
√

Var(aj) ≤ ∥w − w′∥

(
C1∥w − w0∥+

2
√
2C1√
|Sj|

(
σ +

√
CC1∥w − w0∥

))
(a)

≤ ∥w − w′∥

(
C1β +

√
8C1√
|Sj|

σ +

√
8CC1√
|Sj|

β

)
(b)

≤ 3C1∥w − w′∥β
(c)

≤ ∥w − w
′∥2

4
,

here, in (a), we use w = w∗, which implies ∥w − w0∥ ≤ β, in (b), we utilize |Sj| ≥ 48C and

|Sj| ≥ 12σ2

C1β2 , in (c), we use the fact that for any w and w′ in the while loop of the algorithm,

∥w − w′∥ ≥ 12C1β. Consequently, it follows from Equation (6.4) that each aj ≤ ∥w−w′∥2
4

with

probability ≥ 3/4. Hence, with probability ≥ 1− δ the median of aj is ≤ ∥w−w′∥2
4

.

Next, we consider the case when w′ = w∗. Firstly, we bound the variance using

259



Equation (6.3):

Var(aj) (6.8)

≤ 1

|Sj|
ED0

[
((x · w − y)x · (w − w′))

2
]

=
1

|Sj|
ED0

[(
(x · (w − w′))2 + x · (w′ − w0)x · (w − w′) + (w0 · x− y)x · (w − w′)

)2]
(a)

≤ 3

|Sj|

(
ED0

[
((w − w′) · x)4

]
+ ED0

[
(x · (w′ − w0)x · (w − w′))

2
]

(6.9)

+ ED0

[
((w0 · x− y)x · (w − w′))

2
])

(b)

≤ 3

|Sj|

(
CED0

[
(x · (w − w′))

2
]2

+
(
CED0 [(x · (w′ − w0))

2] + σ2
)
ED0 [(x · (w − w′))2]

)
(c)

≤ 3

|Sj|

(√
CED0

[
(x(w − w′))

2
]
+
(√

CED0 [(x(w
′ − w0))2] + σ

)√
ED0 [(x(w − w′))2]

)2
.

In (a), we use the fact that for any t, u, v ∈ R, (t+ u+ v)2 ≤ 3t2 + 3u2 + 3v2. In (b) the first

term is bounded using assumption 1a, the bound on the second term can be obtained similarly to

Equation (6.5), and the bound on the last term is from Equation (6.6). Finally, in (c) we use the

fact that for any t, u, v ≥ 0, (t+ u+ v)2 ≤ t2 + u2 + v2.

260



Using Equation (6.2) and the equation above, we get

E[aj]− 2
√

Var(aj)

≥ ED0 [(x · (w − w′))2] + ED0 [x(w
′ − w0)x · (w − w′)]

− 2
√
3√
|Sj|

(√
CED0

[
(x(w − w′))

2
]
+
(√

CED0 [(x(w
′ − w0))2] + σ

)√
ED0 [(x · (w − w′))2]

)
(a)

≥

(
1−
√
12C√
|Sj|

)
ED0 [(x · (w − w′))2]−

√
ED0 [(x · (w′ − w0))2]

√
ED0 [(x · (w − w′))2]

−
√
12√
|Sj|

((√
CED0 [(x · (w′ − w0))2] + σ

)√
ED0 [(x · (w − w′))2]

)
(b)

≥

(
1

2

√
ED0 [(x(w − w′))2]− 3

2

√
ED0 [(x(w

′ − w0))2]−
√
12√
|Sj|

σ

)√
ED0 [(x · (w − w′))2]

(c)

≥
(
1

2

√
ED0 [(x · (w − w′))2]− 3

2

√
ED0 [(x · (w′ − w0))2]−

√
C1β

)√
ED0 [(x · (w − w′))2],

here, in (a) we use the Cauchy-Schwarz inequality, (b) follows from |Sj| ≥ 48C, and (c) utilizes

|Sj| ≥ 12σ2

C1β2 . Next, we have:

1

2

√
ED0 [(x · (w − w′))2]− 3

2

√
ED0 [(x · (w′ − w0))2]−

√
C1β (6.10)

(a)

≥ 1

2
∥w − w′∥ − 3

2

√
C1∥w′ − w0∥ −

√
C1β

(b)

≥ 1

2
∥w − w′∥ − 5

2

√
C1β

(c)
>

1

4
∥w − w′∥, (6.11)

here in (a), we use assumption 1b, (b) relies on w′ = w∗, which implies ∥w′ − w0∥ ≤ β, and (c)

uses the fact that for any w and w′ in the while loop of the algorithm, ∥w − w′∥ ≥ 12C1β and

C1 ≥ 1.

Combining the above two equations, we obtain

E[aj]− 2
√

Var(aj) >
1

4
∥w − w′∥2.

261



Then from Equation (6.4) it follows that each aj > ∥w−w′∥2
4

with probability ≥ 3/4. Hence, with

probability ≥ 1− δ/|L| the median of aj is > ∥w−w′∥2
4

. ■

6.8 Properties of Clipped Gradients

The norm of the expected value and covariance of unclipped gradients for components

other than D0 can be significantly larger than D0, acting as noise in the recovery process of D0.

When using unclipped gradients, the algorithm’s batch size and the number of batches must

increase to limit the effect of these noisy components. And while the norm of the expected value

and covariance of the unclipped gradient for D0 follows desired bounds, the maximum value of

the unclipped gradient is unbounded, posing difficulties in applying concentration bounds. The

following lemma shows that the clipping operation described in the main paper is able to address

these challenges.

Lemma 111. Let S be a collection of random samples drawn from distribution Di for some

i ∈ {0, 1, ..., k − 1}. For any κ ≥ 0 and w ∈ Rd, the clipped gradient satisfies the following

properties:

1. ∥E[∇f(S,w, κ)]∥ ≤ κ
√
C1,

2. ∥Cov(∇f(S,w, κ))∥ ≤ 1
|S|κ

2C1,

3. ∥∇f(S,w, κ)∥ ≤ κC2

√
d almost surely,

4. E[∥∇f(S,w, κ)∥2] ≤ C1κ
2d,

5. for all unit vectors u, ∥E[(∇f(S,w, κ) · u)2]∥ ≤ κ2C1.

This lemma implies that for smaller values of κ, the norm of the expectations and

covariance of clipped gradients is bounded by a smaller upper limit. The proof of the lemma is

presented in Subsection 6.8.1.

262



The following theorem demonstrates that by appropriately choosing a sufficiently large

value of κ, the norm of the expected difference between the clipped and unclipped gradients for

distribution D0 can be small:

Theorem 112. For any ϵ > 0, κ2 ≥ 8CC1ED0 [(y − x · w)2]/ϵ the norm of difference between

expected clipped gradientED0 [(∇f(x, y, w, κ)] and expected unclipped gradientED0 [(w ·x−y)x]

is at most,

∥ED0 [(∇f(x, y, w, κ)]− ED0 [(w · x− y)x]∥ ≤ ϵ∥w − w0∥,

where ED0 [(w · x− y)x] = Σ0(w − w0).

The theorem shows in order to estimate the expectation of gradients at point w for

distribution D0, it is sufficient to estimate the expectation of clipped gradients at point w, as long

as the clipping parameter κ is chosen to be at least Ω
(√

ED0
[(y−x·w)2]
ϵ

)
.

Intuitively, when κ is much larger than ED0 [|y− x ·w|], with high probability the clipped

and unclipped gradients at point w for a random sample from D0 will be identical. The proof of

the theorem is a bit more nuanced and involves leveraging the symmetry of noise distribution

and L4− L2 hypercontractivity of distribution of x. The proof appears in Subsection 6.8.2.

In the algorithm, we set κ to approximately Θ(
√
(ED0 [(y − x · w)2] + σ2)/ϵ). This

choice ensures that κ is close to the minimum value recommended by Theorem 112 for preserving

the gradient expectation of D0. By selecting a small κ, we ensure a tighter upper bound on

the expectation and covariance of the clipped gradient for other components, as described in

Lemma 111. The use of the clipping operation also assists in obtaining improved bounds on the

tails of the gradient by limiting the maximum possible norm of the gradients after clipping, as

stated in item 3 of the lemma.

263



6.8.1 Proof of Lemma 111

Proof. Since∇f(S,w, κ) is average of clipped gradients of |S| independent samples from Di, it

follows that

a) E[∇f(S,w, κ)] = EDi
[∇f(x, y, w, κ)],

b) Cov(∇f(S,w, κ)) = 1
|S|CovDi

(∇f(x, y, w, κ)),

c) ∥∇f(S,w, κ)∥ ≤ ess sup(x,y)∼Di
∥∇f(x, y, w, κ)∥ a.s.,

d) E[∥∇f(S,w, κ)∥2] ≤ EDi

[
∥∇f(x, y, w, κ)∥2

]
, and

e) for all vectors u, ∥E[(∇f(S,w, κ) · u)2]∥ ≤
∥∥EDi

[
(∇f(x, y, w, κ) · u)2

]∥∥.

We will now proceed to prove the five claims in the lemma by using these properties.

Firstly, we can analyze the expected norm of EDi
[∇f(x, y, w, κ)] as follows:

∥EDi
[∇f(x, y, w, κ)]∥ = max

∥u∥
∥EDi

[(∇f(x, y, w, κ) · u)]∥

≤ max
∥u∥
∥EDi

[(∇f(x, y, w, κ) · u)2]1/2∥

≤ max
∥u∥
∥EDi

[(κx · u)2]1/2∥ ≤ κ
√
C1,

here the first inequality follows from the Cauchy–Schwarz inequality and the last inequality

follows from assumptions on distributions Di. Combining the above inequality with item a)

above proves the first claim in the lemma.

Next, to prove the second claim in the lemma, we first establish bounds for the norm of

264



the covariance of the clipped gradient of a random sample:

∥CovDi
(∇f(x, y, w, κ))∥ = max

∥u∥
VarDi

(∇f(x, y, w, κ) · u)

≤ max
∥u∥

EDi
[(∇f(x, y, w, κ) · u)2]

≤ max
∥u∥

EDi
[(κx · u)2] ≤ κ2C1.

By using the above bound and combining it with item b), we establish the second claim in the

lemma.

To prove the third item in the lemma, we first bound the norm of the clipped gradient:

ess sup
(x,y)∼Di

∥∇f(x, y, w, κ)∥ ≤ κ ess sup
(x,y)∼Di

∥x∥ ≤ κC2

√
d.

We then combine this bound with item c) to prove the third claim in the lemma.

Next, we bound the expected value of the square of the norm of the clipped gradient of a

random sample,

EDi

[
∥∇f(x, y, w, κ)∥2

]
≤ EDi

[
κ2∥x∥2

]
= κ2Tr(Σi) ≤ κ2d∥Σi∥ ≤ C1κ

2d.

This bound, combined with item d), proves the fourth claim in the lemma.

Finally, for any unit vector u, we bound

∥∥EDi

[
(∇f(x, y, w, κ) · u)2

]∥∥ ≤ κ2
∥∥EDi

[
(x · u)2

]∥∥ ≤ κ2∥Σi∥ ≤ κ2C1.

This bound, combined with item e), shows the fifth claim in the lemma. ■

6.8.2 Proof of Theorem 112

We will utilize the following auxiliary lemma in the proof of the theorem. This lemma

applies to general random variables.

265



Lemma 113. For any a ∈ R, b > 0 and a symmetric random variable z,

∣∣∣∣E[(a+ z)− (a+ z)b

max(|a+ z|, b)

]∣∣∣∣ ≤ 2|a|Pr(z > b− |a|)

Proof. We assume a ≥ 0 and prove the lemma for this case. The statement for a < 0 case then

follows from symmetry.

We rewrite the term inside the expectation in terms of indicator random variables:

(a+ z)− (a+ z)b

max(|a+ z|, b)

= (a+ z − b) · 1(z > b− a) + (a+ z + b) · 1(z < −b− a)

= (a+ z − b) · 1(b− a < z ≤ b+ a) + (a+ z − b) · 1(z > b+ a)

+ (a+ z + b) · 1(z < −b− a).

Taking the expectation on both sides,

E
[
(a+ z)− (a+ z)b

max(|a+ z|, b)

]
= E[(a+ z − b) · 1(b− a < z ≤ b+ a)] + E[(a+ z − b) · 1(z > b+ a)]

+ E[(a+ z + b) · 1(z < −b− a)]

= E[(a+ z − b) · 1(b− a < z ≤ b+ a)] + 2aPr(z > b+ a),

where the last step follows because z is symmetric.

266



Next,

∣∣∣∣E[(a+ z)− (a+ z)b

max(|a+ z|, b)

]∣∣∣∣
= E[|a+ z − b| · 1(b− a < z ≤ b+ a)] + 2|a|Pr(z > b+ a)

≤ E[|2a| · 1(b− a < z ≤ b+ a)] + 2|a|Pr(z > b+ a)

≤ 2|a|Pr(b− a < z ≤ b+ a) + 2|a|Pr(z > b+ a)

= 2|a|Pr(z > b− a).

■

Next, we proceed with the proof of Theorem 112 using the aforementioned lemma.

Proof of Theorem 112. Let (x, y) be a random sample from distributionD0, and let η = y−w0 ·x

denote the noise. Recall that η is independent of x.

Note that:

(w · x− y)x = ((w − w0) · x− η)x.

We will now evaluate the expected value of the unclipped gradient.

ED0 [(w · x− y)x] = ED0 [((w − w0) · x− η)x] = ED0 [((w − w0) · x)x] = Σ0(w − w0).

(6.12)

Next, we will bound the norm of the expected value of (w · x− y)x−∇f(x, y, w, κ),

which represents the difference between the clipped gradient and the true gradient. We first

267



expand this expression:

(w · x− y)x−∇f(x, y, w, κ) =
(
(w · x− y)− (w · x− y)

|w · x− y| ∨ κ
κ

)
x

=

(
((w − w0) · x− η)−

((w − w0) · x− η)
|(w − w0) · x− η| ∨ κ

κ

)
x. (6.13)

Next, by applying Lemma 113, we have

Eη
[
((w − w0) · x− η)−

((w − w0) · x− η)
|(w − w0) · x− η| ∨ κ

κ

]
≤ 2|(w − w0) · x| · Pr(η > κ− |(w − w0) · x|).

Note that in the above expectation, we fixed x and took the expectation over noise η.

Let Z := 1(|x · (w − w0)| ≥ κ/2). Observe that Pr(η > κ − |(w − w0) · x|) ≤

Z + Pr(η > κ/2). Combining this observation with the above equation, we have:

Eη
[
((w − w0) · x− η)−

((w − w0) · x− η)
|(w − w0) · x− η| ∨ κ

κ

]
≤ 2|(w − w0) · x| · (Pr(η > κ/2) + Z).

(6.14)

Then, for any unit vector v ∈ Rd, we have

|ED0 [((w · x− y)x−∇f(x, y, w, κ)) · v]|

= |Ex∼D0 [Eη∼D0 [((w · x− y)x−∇f(x, y, w, κ)) · v]]|

≤ Ex∼D0 [|Eη∼D0 [((w · x− y)x−∇f(x, y, w, κ)) · v]|]

≤ Ex∼D0 [2|(w − w0) · x| · |x · v|(Z + Pr(η > κ/2))]

≤ 2ED0 [Z · |(w − w0) · x| · |x · v|] + 2Pr(η > κ/2)ED0 [|(w − w0) · x| · |x · v|], (6.15)

here the second last inequality follows from Equation (6.13) and Equation (6.14). Next, we

268



bound the two terms on the right one by one. We start with the first term:

ED0 [Z · |(x · (w − w0))(x · v)|]
(a)
≤
(
E[(Z)2] · ED0 [(x · (w − w0))

2(x · v)2]
)1/2

(b)
≤
(
E[Z] · ED0 [(x · (w − w0))

4]1/2ED0 [(x · v)4]1/2
)1/2

(c)
≤
(
E[Z] · CED0 [(x · (w − w0))

2]ED0 [(x · v)2]
)1/2

(d)
≤
(
CC1 Pr[|x · (w − w0)| ≥ κ/2] · ED0 [(x · (w − w0))

2]
)1/2

,

(6.16)

where (a) used the Cauchy-Schwarz inequality, (b) used the fact that Z is an indicator random

variable, hence, Z2 = Z, and the Cauchy-Schwarz inequality, (c) usesL4−L2 hypercontractivity,

and (d) follows from the definition of Z and the assumption that ∥Σ0∥ ≤ C1.

Similarly, we can show that

ED0 [|(w − w0) · x| · |x · v|] ≤
(
C1ED0 [(x · (w − w0))

2]
)1/2

. (6.17)

Applying the Markov inequality to η2 we get:

Pr[|η| ≥ κ/2] ≤ ED0 [η
2]

(κ/2)2
. (6.18)

Similarly, applying the Markov inequality to |x · (w − w0)|4 yields:

Pr[|x · (w − w0)| ≥ κ/2] ≤ ED0 [|x · (w − w0)|4]
(κ/2)4

≤ CED0 [|x · (w − w0)|2]2

(κ/2)4
, (6.19)

where the last inequality uses L4− L2 hypercontractivity.

269



Combining Equations (6.15), (6.16), (6.17), (6.18) and (6.19), we have

|ED0 [((w · x− y)x−∇f(x, y, w, κ)) · v]|

≤ 8C
√
C1(ED0 [(x · (w − w0))

2])
3/2

κ2
+

8
√
C1ED0 [η

2](ED0 [(x · (w − w0))
2])

1/2

κ2

≤ 8C
√
C1(ED0 [(x · (w − w0))

2])
1/2

((ED0 [(x · (w − w0))
2]) + ED0 [η

2]/C)

κ2

(a)

≤ ϵ(ED0 [(x · (w − w0))
2])

1/2

√
C1

· ((ED0 [(x · (w − w0))
2]) + ED0 [η

2]/C)

ED0 [(y − x · w)2]
(b)

≤ ϵ∥w − w0∥ ·
((ED0 [(x · (w − w0))

2]) + ED0 [η
2])

ED0 [(y − x · w)2]
(c)
= ϵ∥w − w0∥,

here inequality (a) follows from the lower bound on κ2 in theorem, inequality (b) follows from

Assumption 1b and C ≥ 1, and the last equality follows since y − x ·w = x(w−w0) + η, and x

and η are independent.

Note that the above bound holds for all unit vectors v, therefore,

∥ED0 [((w · x− y)x−∇f(x, y, w, κ))]∥

≤ max
∥v∥

ED0 [((w · x− y)x−∇f(x, y, w, κ))] · v ≤ ϵ∥w − w0∥.

■

6.9 Estimation of clipping parameter

In round r, to set κ ≈
√

ED0 [(y − x · w)2]/ϵ at point w = ŵ(r), the main algorithm 10

runs subroutine ClipEst 13 for S∗ = S
b∗,(r)
1 and w = ŵ(r). Recall that Sb

∗,(r)
1 is collection of i.i.d.

samples from D0. Using these samples this subroutine estimates ED0 [(y − x · w)2] at w = ŵ(r)

using the median of means and then use it to obtain κ in the desired range. The following theorem

provides the guarantees on the estimation of κ by this subroutine.

270



Algorithm 13. ClipEst
1: Input: A collection of samples S∗ from D0, w, ϵ, δ′, σ, C, and C1.
2: Output: clipping parameter κ
3: T ← Θ(log 1/δ′)
4: Divide S∗ into T equal parts randomly, and denote them as {S∗

j }j∈[T ]
5: θ ← Median

{
1

|S∗
j |
∑

(x,y)∈S∗
j
(x · w − y)2 : j ∈ [T ]

}
6: κ←

√
32(C+1)C1(θ+17σ2)

ϵ

7: Return κ

Theorem 114. For ϵ > 0, T ≥ Ω(log 1/δ′) and |S∗| ≥ 64C2T and w ∈ Rd. With probability

≥ 1− δ′, the clipping parameter κ returned by subroutine ClipEst satisfy,

√
8(C+1)C1·ED0

[(y−x·w)2]
ϵ

≤ κ ≤ 28

√
2(C+1)C1(ED0

[((w−w0)·x)2]+σ2)
ϵ

.

To prove the theorem, we will make use of the following lemma:

Lemma 115. Let S be a collection of m ≥ 64C2 i.i.d. samples from D0 and w ∈ Rd, then with

probability at least 7/8, the following holds:

1

4
ED0 [(w · x− y)2]− 17σ2 ≤ 1

m

∑
(x,y)∈S

(y − w · x)2 ≤ 3ED0 [((w − w0) · x)2] + 32σ2.

Proof. We start by expanding the expression:

1

m

∑
(x,y)∈S

(w · x− y)2 (6.20)

=
1

m

∑
(x,y)∈S

((w − w0) · x+ (w0 · x− y))2

=
1

m

∑
(x,y)∈S

(
((w − w0) · x)2 + 2((w − w0) · x)(w0 · x− y) + (w0 · x− y)2

)
≥ 1

m

∑
(x,y)∈S

(
1

2
((w − w0) · x)2 − (w0 · x− y)2

)
, (6.21)

where the last inequality follows since for any a, b, we have a2 + 2ab+ b2 ≥ a2/2− b2.

271



Similarly, we can show:

1

m

∑
(x,y)∈S

(w · x− y)2 ≤ 1

m

∑
(x,y)∈S

(
2((w − w0) · x)2 + 2(w0 · x− y)2

)
. (6.22)

Since S contains independent samples from D0, we have:

E

 1

m

∑
(x,y)∈S

(((w − w0) · x)2
 = ED0 [((w − w0) · x)2],

and

Var
(

1

m

∑
(x,y)∈S

((w − w0) · x)2
)

=
VarD0(((w − w0) · x)2)

m

≤ ED0 [((w − w0) · x)4]
m

≤ CED0 [((w − w0) · x)2]2

m
,

where the last inequality follows from L4-L2 hypercontractivity.

For any a > 0, using Chebyshev’s inequality,

Pr

∣∣∣∣∣∣ 1m
∑

(x,y)∈S

((w − w0) · x)2 − ED0 [((w − w0) · x)2]

∣∣∣∣∣∣ ≥ a
CED0 [((w − w0) · x)2]√

m

 ≤ 1

a2
.

(6.23)

Using the Markov inequality, for any a > 0, we have:

Pr

 1

m

∑
(x,y)∈S

(w0 · x− y)2 > a2σ2

 ≤ ED0 [(w0 · x− y)2]
a2σ2

≤ 1

a2
. (6.24)

By combining the equations above, we can derive the following inequality:

272



With probability ≥ 1− 2
a2

, the following holds:

1

2
ED0 [((w − w0) · x)2](1− a

C√
m
)− a2σ2 ≤ 1

m

∑
(x,y)∈S

(w · x− y)2

≤ 2ED0 [((w − w0) · x)2](1 + a
C√
m
) + 2a2σ2.

By choosing a = 4 and using m ≥ 64C2 in the above equation, we can conclude that with

probability ≥ 1− 2
a2

, the following holds:

1

4
ED0 [((w − w0) · x)2]− 16σ2 ≤ 1

m

∑
(x,y)∈S

(w · x− y)2 ≤ 3ED0 [((w − w0) · x)2] + 32σ2.

Next, note that

ED0 [(w · x− y)2] = ED0 [((w − w0) · x− (y − w0 · x))2]
(a)
= ED0 [((w − w0) · x)2] + ED0 [(y − w0 · x)2]
(b)

≤ ED0 [((w − w0) · x)2] + σ2,

here (a) follows since x is independent of the output noise y − w0 · x, and (b) follows since the

output noise y − w0 · x is zero mean and has a variance at most σ2. Combining the above two

equations completes the proof. ■

Now we prove Theorem 114 using the above lemma:

Proof of Theorem 114. From the previous lemma and Chernoff bound it follows that with

probability ≥ 1− δ′,

1

4
ED0 [(w · x− y)2]− 17σ2 ≤ θ ≤ 3ED0 [((w − w0) · x)2] + 32σ2.

Then bound on κ follows from the relation κ =
√

32(C+1)C1(θ+17σ2)
ϵ

. ■

273



6.10 Subspace Estimation

Algorithm 14. GradSubEst

1: Input: A collection of medium batches B̂, κ, w, ℓ
2: Output: A rank ℓ projection matrix.
3: For each b ∈ B̂ divide its samples Sb into two equal random parts Sb1 and Sb2
4: A← 1

2|B̂|

∑
b∈B̂
(
∇f(Sb1, w, κ)∇f(Sb2, w, κ)⊺ +∇f(Sb2, w, κ)∇f(Sb1, w, κ)⊺

)
5: U ← [u1, u2, ..., uℓ], where {ui}’s are top ℓ singular vectors of A
6: Return UU⊺

As a part of gradient estimation in step r, the main algorithm 10 uses subrou-

tine GradSubEst for B̂ = B
(r)
s and w = ŵ(r). Recall that B(r)

s is a random subset of the

collection of small batches Bs.

The purpose of this subroutine is to estimate a smaller subspace of Rd such that for

distribution D0, the expectation of the projection of the clipped gradient onto this subspace

closely approximates the true expectation of the clipped gradient, for distribution D0. This

reduction to a smaller subspace helps reduce the number of medium-sized batches and their

required length in the subsequent part of the algorithm.

The following theorem characterizes the final guarantee for subroutine GradSubEst.

Theorem 116. Let p0 denote the fraction of batches in B̂ that are sampled from D0. For

any ϵ, δ′ > 0, and B̂ = Ω
(

d
αsϵ2

(
1

αsϵ2
+

C2
2

C1

)
log d

δ′

)
, p0 ≥ αs/2 and ℓ ≥ min{k, 1

2αsϵ2
}, with

probability ≥ 1− δ′, the projection matrix UU⊺ returned by subroutine GradSubEst satisfy

∥(I − UU⊺)ED0 [∇f(x, y, w, κ)]∥ ≤ 4ϵκ
√
C1.

The above theorem implies that the difference between the expectation of the clipped

gradient and the expectation of projection of the clipped gradient for distribution D0 is small.

Next, we present the description of the subroutine GradSubEst and provide a brief outline of

the proof for the theorem before formally proving it in the subsequent subsection.

274



The subroutine divides samples in each batch b ∈ B̂ into two parts, namely Sb1 and

Sb2. Then it computes the clipped gradients ub := ∇f(Sb1, w, κ) and vb := ∇f(Sb2, w, κ).

From linearity of expectation, for any i and batch b that contain i.i.d. samples from Di,

E[ub] = E[vb] = EDi
[∇f(x, y, w, κ)]. The subroutine defines A =

∑
b∈B̂

1

2|B̂|
ub(vb)⊺ + vb(ub)⊺.

Let pi denote the fraction of batches in B̂ that have samples from Di. Then using the linearity of

expectation, we have:

E[A] =
∑k−1

i=0 piEDi
[∇f(x, y, w, κ)]EDi

[∇f(x, y, w, κ)]⊺.

It is evident that if the matrix U is formed by selecting the top k singular vectors of E[A], then

the projection of ED0 [∇f(x, y, w, κ)] onto UU⊺ corresponds to itself, and the guarantee stated in

the theorem holds. However, we do not have access to E[A], and furthermore, when the number

of components k is large, it may be desirable to obtain a subspace of smaller size than k.

To address the first challenge, Theorem 117 in the next subsection shows that ∥A−E[A]∥

is small. This theorem permits the usage of A as a substitute for E[A]. The clipping operation,

introduced in the previous subsection, plays a crucial role in the proof of Theorem 117 by

controlling the norm of the expectation and the covariance of the clipped gradient for other

components, and the maximum length of clipped gradients across all components. This is

crucial for obtaining a good bound on the number of small-size batches required. Additionally,

the clipping operation ensures that the subroutine remains robust to arbitrary input-output

relationships for other components.

Furthermore, the clipping operation assists in addressing the second challenge by

ensuring a uniform upper bound on the norm of the expectation of all components, i.e.,

∥EDi
[∇f(x, y, w, κ)]∥ ≤ O(κ). Leveraging this property, Lemma 118 demonstrates that it

suffices to estimate the top≈ 1/p0-dimensional subspace. Intuitively, this is because the infinitely

many components can create at most approximately 1/p0 directions with weights greater than p0,

indicating that the direction of D0 must be present in the top Θ(1/p0) subspace.

275



Since B̂ = B
(r)
s is obtained by randomly partitioning Bs into R subsets, and Bs contains

a fraction of at least αs batches with samples fromD0, it holds with high probability that p0 ≳ αs.

Consequently, when ℓ ≥ min{k,Ω( 1
αs
)}, the subspace corresponding to the top ℓ singular vectors

of A satisfies the desired property in the Theorem 116.

We note that the construction of matrix A in subroutine GradSubEst is inspired by

previous work [95]. However, while they employed it to approximate the k-dimensional subspace

of the true regression vectors for all components, we focus exclusively on one distribution D0 at

a time and recover a subspace such that, for distribution D0, the expectation of the projection of

the clipped gradient on this subspace closely matches the true expectation of the clipped gradient.

It is worth noting that, in addition to repurposing the subroutine from [95], we achieve

four significant improvements:

1) A more meticulous statistical analysis and the use of clipping enable our algorithm

to handle heavy-tailed distributions for both noise and input distributions. 2) Clipping also

facilitates the inclusion of arbitrary input-output relationships for other components. The next

two improvements are attributed to an improved linear algebraic analysis. Specifically, our

Lemma 118 enhances the matrix perturbation bounds found in [] and [95]. These enhancements

enable us to: 3) Provide meaningful guarantees even when the number of components k is very

large, 4) reduce the number of batches required when the distance between the regression vectors

is small.

6.10.1 Proof of Theorem 116

To prove Theorem 116, in the following theorem, we will first demonstrate that the term

∥A− E[A]∥ is small when given enough batches.

Theorem 117. For 0 ≤ i ≤ k − 1, let zi = EDi
[∇f(x, y, w, κ)], and pi denote the fraction of

batches in B̂ that have samples fromDi. For any ϵ, δ′ > 0, and B̂ = Ω
(

d
αsϵ2

(
1

αsϵ2
+

C2
2

C1

)
log d

δ′

)
,

276



with probability at least 1− δ′,

∥∥∥∥∥A−
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥ ≤ αsϵ
2κ2C1,

where A is the matrix defined in subroutine GradSubEst.

Proof. Let Zb := ∇f(Sb1, w, κ)∇f(Sb2, w, κ)⊺.

Note that

A =
1

2|B̂|

∑
b∈B̂

(Zb + (Zb)⊺).

Then, from the triangle inequality, we have:

∥∥∥∥∥A−
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥ ≤ 1

2

∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

Zb −
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥∥+ 1

2

∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

(Zb)⊺ −
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

Zb −
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥∥.
For a batch b sampled from distribution Di, we have:

E[Zb] = E[∇f(Sb1, w, κ)∇f(Sb2, w, κ)⊺]

= E[∇f(Sb1, w, κ)]E[∇f(Sb2, w, κ)⊺]

= EDi
[∇f(x, y, w, κ)]EDi

[∇f(x, y, w, κ)⊺] = ziz
⊺
i ,

where the second inequality follows since samples in Sb1 and Sb2 are independent, and the third

equality follows from the linearity of expectation.

It follows that
1

|B̂|

∑
b∈B̂

E[Zb] =
k−1∑
i=0

piziz
⊺
i ,

277



and

∥∥∥∥∥A−
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥ ≤
∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

Zb − 1

|B̂|

∑
b∈B̂

E[Zb]

∥∥∥∥∥∥. (6.25)

To complete the proof, we will prove a high probability bound on the term on the right by applying

the Matrix Bernstein inequality. To apply this inequality, we first upper bound |Zb| as follows:

∥Zb∥ = ∥∇f(Sb1, w, κ)∇f(Sb2, w, κ)⊺∥ ≤ ∥∇f(Sb1, w, κ)∥ · ∥∇f(Sb2, w, κ)⊺∥.

From item 3 in Lemma 111, we have ∥∇f(Sb1, w, κ)∥ ≤ κC2

√
d almost surely, and

∥∇f(Sb2, w, κ)∥ ≤ κC2

√
d almost surely. It follows that ∥Zb∥ ≤ κ2C2

2d. Therefore,

∥Zb − E[Zb]∥ ≤ 2κ2C2
2d.

Next, we provide an upper bound for
∥∥E[(∑b∈B̂(Z

b − E[Zb])
)(∑

b∈B̂(Z
b − E[Zb])

)⊺]∥∥:

∥∥E[(∑b∈B̂(Z
b − E[Zb])

)(∑
b∈B̂(Z

b − E[Zb])
)⊺]∥∥

=
∥∥E[∑b∈B̂(Z

b − E[Zb])(Zb − E[Zb])⊺
]∥∥

≤ |B̂|max
b∈B̂

∥∥E[(Zb − E[Zb])(Zb − E[Zb])⊺
]∥∥

≤ |B̂|max
b∈B̂

∥∥E[(Zb(Zb)⊺
]∥∥

≤ |B̂|max
b∈B̂

(
E[∥∇f(Sb2, w, κ)∥2] ·

∥∥E[∇f(Sb1, w, κ)∇f(Sb1, w, κ)⊺]∥∥)
≤ |B̂| max

b∈B̂,u:∥u∥=1

(
E[∥∇f(Sb2, w, κ)∥2] ·

∥∥E[(∇f(Sb1, w, κ) · u)2]∥∥).
From item 4 and item 5 in lemma 111, we have:

E[∥∇f(Sb2, w, κ)∥2] ≤ C1κ
2d,

278



and

∥∥E[(∇f(Sb1, w, κ) · u)2]∥∥ ≤ κ2C1.

Combining these two bounds, wee obtain:

∥∥∥∥∥∥E
∑

b∈B̂

(Zb − E[Zb])

∑
b∈B̂

(Zb − E[Zb])

⊺∥∥∥∥∥∥ ≤ |B̂|dκ4C1
2.

Due to symmetry, the same bound holds for
∥∥E[(∑b∈B̂(Z

b − E[Zb])
)⊺(∑

b∈B̂(Z
b − E[Zb])

)]∥∥.

Finally, by applying the Matrix Bernstein inequality, we have:

Pr

∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

(Zb − E[Zb])

∥∥∥∥∥∥ ≥ αsϵ
2κ2C1

 ≤ 2d exp

{
− |B̂|2θ2

|B̂|dκ4C1
2 + |B̂|θ(2C2

2κ
2d)

}
.

For B̂ = Ω
(

d
αsϵ2

(
1

αsϵ2
+

C2
2

C1

)
log d

δ′

)
, the quantity on the right-hand side is bounded by δ′.

Therefore, with probability at least 1− δ′, we have:

∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

(Zb − E[Zb])

∥∥∥∥∥∥ ≤ αsϵ
2κ2C1.

Combining the above equation with Equation (6.25) completes the proof of the Theorem. ■

In the proof of Theorem 116, we will utilize the following general linear algebraic result:

Lemma 118. For z0, z1, ..., zk−1 ∈ Rd and a probability distribution (p0, p1, ..., pk−1) over k

elements, let Z =
∑k−1

i=0 piziz
⊺
i . For a symmetric matrix M and ℓ > 0, let u1, u2, .., uℓ be top ℓ

singular vectors of M and let U = [u1, u2, ..., uℓ] ∈ Rd×ℓ, then we have:

∥(I − UU⊺)z0∥2 ≤


2(ℓ+1)∥M−Z∥+maxj ∥zj∥2

(ℓ+1)p0
ℓ < k

2∥M−Z∥
p0

if ℓ ≥ k.

279



Lemma 118 provides a bound on the preservation of the component z0 by the subspace

spanned by the top-ℓ singular vectors of a symmetric matrix M . This bound is expressed in

terms of the spectral distance between matrices Z and M , the maximum norm of any zi, and the

weight of the component corresponding to z0 in Z. The proof of Lemma 118 can be found in

Section 6.14.

Utilizing Lemma 118 in conjunction with Theorem 117, we proceed to prove Theorem 116.

Proof of Theorem 116. From Lemma 118, we have the following inequality:

∥(I − UU⊺)ED0 [∇f(x, y, w, κ)]∥2 ≤


2(ℓ+1)∥A−

∑k−1
i=0 piziz

⊺
i ∥+maxj ∥EDj

[∇f(x,y,w,κ)]∥2

(ℓ+1)p0
ℓ < k

2∥A−
∑k−1

i=0 piziz
⊺
i ∥

p0
if ℓ ≥ k.

By applying Theorem 117 and utilizing item 1 of Lemma 111, it follows that with a probability

of at least 1− δ′, we have:

∥(I − UU⊺)ED0 [∇f(x, y, w, κ)]∥2 ≤


2αsϵ2κ2C1

p0
+ κ2C1

(ℓ+1)p0
ℓ < k

2αsϵ2κ2C1

p0
if ℓ ≥ k.

The theorem then follows by using p0 ≥ αs/2 and ℓ ≥ min{k, 1
2αsϵ2
}. ■

6.11 Grad Estimation

Recall that in gradient estimation for step r, Algorithm 10 utilizes the subroutine

GradSubEst to find a projection matrix P (r) for an ℓ-dimensional subspace. In the previous

section, we showed that the difference between the expectation of the clipped gradient and the

expectation of projection of the clipped gradient on the subspace for distribution D0 is small.

Therefore, it suffices to estimate the expectation of projection of the clipped gradient on the

subspace.

280



The main algorithm 10 passes the medium-sized batches B̂ = B
(r)
m , the ℓ-dimensional

projection matrix P = P (r), and a collection of i.i.d. samples S∗ = S
b∗,(r)
2 from D0 to the

subroutine GradEst. Here, B(r)
m is a random subset of the collection of medium-sized batches

Bm.

The purpose of the GradEst subroutine is to estimate the expected value of the projection

of the clipped gradient onto the ℓ-dimensional subspace defined by the projection matrix P .

Since the subroutine operates on a smaller ℓ-dimensional subspace, the minimum batch size

required for the batches in Bm and the number of batches required depend on ℓ rather than d.

The following theorem characterizes the final guarantee for the GradEst subroutine:

Theorem 119. For subroutine GradEst, let nm denote the length of the smallest batch in B̂,

N denote the number of batches in B̂ that has samples from D0 and P be a projection matrix

for some ℓ dimensional subspace of Rd. If T1 ≥ Ω(log |B̂|
δ′
), T2 ≥ Ω(log 1

δ′
), nm ≥ 4T1Ω(

√
ℓ

ϵ2
),

|S∗| ≥ 2T1Ω(
√
ℓ

ϵ2
) samples, and N · nm ≥ T2Ω(

ℓ
ϵ2
), then with probability ≥ 1− 2δ′ the estimate

∆ returned by subroutine GradEst satisfy

∥∆− ED0 [P∇f(x, y, w, κ)]∥ ≤ 9ϵκ
√
C1.

The above theorem implies that when the length of medium-sized batches is Ω̃(
√
ℓ)

and the number of batches in B̂ containing samples from D0 is Ω̃(ℓ), the GradEst subroutine

provides a reliable estimate of the projection of the clipped gradient onto the ℓ-dimensional

subspace defined by the projection matrix P .

Next, we provide a description of the GradEst subroutine and present a brief outline of

the proof for the theorem before formally proving it in the subsequent subsection.

In the GradEst subroutine, the first step is to divide the samples in each batch of B̂ into

two equal parts. By utilizing the first half of the samples in a batch b along with the samples S∗,

it estimates whether the expected values of the projection of the clipped gradient for D0 and the

distribution used for the samples in b are close or not. With high probability, the algorithm retains

281



all the batches from D0 while rejecting batches from distributions where the difference between

the two expectations is large. To achieve this with an ℓ-dimensional subspace, we require Ω̃(
√
ℓ)

samples in each batch (see Lemma 124).

Following the rejection process, the GradEst subroutine proceeds to estimate the

projection of the clipped gradients within this ℓ-dimensional subspace using the second half of

the samples from the retained batches. To estimate the gradient accurately in the ℓ-dimensional

subspace, Ω(ℓ) samples are sufficient (see Lemma 125). To obtain guarantees with high

probability, the procedure employs the median of means approach, both for determining which

batches to keep and for estimation using the retained batches.

We prove the theorem formally in the next subsection.

6.11.1 Proof of Theorem 119

The following lemma provides an upper bound on the covariance of the projection of the

clipped gradients.

Lemma 120. Consider a collection S of m i.i.d. samples from distribution Di. For κ > 0,

w ∈ Rd and a projection matrix P for an ℓ dimensional subspace of Rd, we have

E[P∇f(S,w, κ)] = EDi
[P∇f(x, y, w, κ)],

and ∥Cov(P∇f(S,w, κ))∥ ≤ 2κ2

m
C1 and Tr (Cov(P∇f(S,w, κ))) ≤ ℓ∥Cov(P∇f(S,w, κ))∥.

Proof. Note that,

E
[
P
(
∇f(S,w, κ)

)]
= PE[∇f(S,w, κ)]] = PEDi

[∇f(x, y, w, κ)] = EDi
[P∇f(x, y, w, κ)],

where the second-to-last equality follows from Lemma 111.

This proves the first part of the lemma. To prove the second part, we bound the norm of

282



the covariance matrix:

Cov(P∇f(S,w, κ)) = max
∥u∥≤1

Var(u⊺P∇f(S,w, κ))

= max
∥v∥≤1

Var(v⊺∇f(S,w, κ))

≤ ∥Cov(∇f(S,w, κ))∥

≤ κ2

m
C1,

where the last inequality follows from Lemma 111. Similarly,

Cov(P∇f(S ′, w, κ)) ≤ κ2

m
C1.

Finally, since random vector P∇f(S ′, w, κ) lies in ℓ dimensional subspace of Rd, correspond-

ing to projection matrix P , hence its covariance matrix has rank ≤ ℓ. Hence, the relation

Tr (Cov(P∇f(S,w, κ))) ≤ ℓ∥Cov(P∇f(S,w, κ))∥ follows immediately. ■

The following corollary is a simple consequence of the previous lemma:

Corollary 121. Consider two collections S and S ′ each consisting of m i.i.d. samples from

distributions Di and D0, respectively. For κ > 0, w ∈ Rd and a projection matrix P for an ℓ

dimensional subspace of Rd, let z = P
(
∇f(S,w, κ)−∇f(S ′, w, κ)

)
, we have:

E[z] = EDi
[P∇f(x, y, w, κ)]− ED0 [P∇f(x, y, w, κ)],

and ∥Cov(z)∥ ≤ 4κ2

m
C1 and Tr (Cov(z)) ≤ ℓ∥Cov(z)∥.

Proof. The expression for E[z] can be obtained from the previous lemma and the linearity of

expectation.

283



To prove the second part, we bound the norm of the covariance matrix of z.

Cov(z) = Cov(P
(
∇f(S,w, κ)−∇f(S ′, w, κ)

)
)

≤ 2(Cov(P∇f(S,w, κ)) + Cov(P∇f(S ′, w, κ))).

Using the bounds from the previous lemma, we can conclude that ∥Cov(z)∥ ≤ 4κ2

m
C1.

Finally, since the random vector z lies in the ℓ-dimensional subspace of Rd defined by

the projection matrix P , its covariance matrix has rank ≤ ℓ. Therefore, we have Tr, (Cov(z)) ≤

ℓ∥Cov(z)∥. ■

The following theorem bounds the variance of the dot product of two independent random

vectors. It will be helpful in upper bounding the variance of ζbj (defined in subroutine GradEst).

Theorem 122. For any two independent random vectors z1 and z2, we have:

Var(z1 · z2) ≤ 3Tr(Cov(z1)) · ∥Cov(z2)∥+ 3∥E[z1]∥2∥Cov(z2)∥+ 3∥E[z2]∥2∥Cov(z1)∥.

Proof. We start by expanding the variance expression:

Var(z1 · z2)

= Var(z1 · z2 − E[z1 · z2])

= Var(z1 · z2 − E[z1] · E[z2])

= Var((z1 − E[z1]) · (z2 − E[z2]) + E[z1] · z2 + E[z2] · z1)

≤ 3Var((z1 − E[z1]) · (z2 − E[z2])) + 3Var(E[z1] · z2) + 3Var(E[z2] · z1)

= 3Var((z1 − E[z1]) · (z2 − E[z2])) + 3E[z1]⊺Cov(z2)E[z1] + E[z2]⊺Cov(z1)E[z2]

≤ 3Var((z1 − E[z1]) · (z2 − E[z2])) + 3∥E[z1]∥2∥Cov(z2)∥+ 3∥E[z2]∥2∥Cov(z1)∥.

284



To complete the proof, we bound the first term in the last expression:

Var((z1 − E[z1]) · (z2 − E[z2])) = E[((z1 − E[z1]) · (z2 − E[z2]))2]

= E[(z1 − E[z1])⊺Cov(z2)(z1 − E[z1])]

≤ E[∥z1 − E[z1]∥2] · ∥Cov(z2)∥

= Tr(Cov(z1)) · ∥Cov(z2)∥.

■

Using the two previous results, we can establish a bound on the expectation and variance

of ζbj .

Lemma 123. In subroutine GradEst, let P be a projection matrix of an ℓ dimensional subspace.

Suppose S∗
j has ≥ m i.i.d. samples from D0 and, Sb1,j and Sb1,j+T1 have ≥ m i.i.d. samples from

Di for some i ∈ {0, 1, ..., k − 1}. Than we have:

E[ζbj ] = ∥EDi
[P∇f(x, y, w, κ)]− ED0 [P∇f(x, y, w, κ)]∥

2

and

Var(ζbj ) ≤
48

m2
κ4ℓC1

2 +
24

m
κ2E[ζbj ]C1.

Proof. Let z1 = P
(
∇f(Sb1,j, w, κ) − ∇f(S∗

j , w, κ)
)

and z2 = P
(
∇f(Sb1,T1+j, w, κ) −

∇f(S∗
T1+j

, w, κ)
)
.

From Corollary 121, we know that

E[z1] = E[z2] = EDi
[P∇f(x, y, w, κ)]− ED0 [P∇f(x, y, w, κ)],

Cov(z1) = Cov(z2) =
4κ2

m
C1

285



and

Tr(Cov(z1)) = Tr(Cov(z2)) =
4

m
ℓκ2C1.

Note that ζbj = z1 · z2. Then bound on the variance of ζbj follows by combining the above

bounds with Theorem 122. Finally, the expected value of ζbj is:

E[ζbj ] = E[z1] · E[z2] = ∥E[z1]∥2.

■

The following lemma provides a characterization of the minimum batch length in B̂ and

the size of the collection S∗ required for successful testing in subroutine GradEst.

Lemma 124. In subroutine GradEst, let P be a projection matrix of an ℓ dimensional subspace,

T1 ≥ Ω(log |B̂|
δ′
), and each batch b ∈ B̂ has at least |Sb| ≥ 4T1Ω(

√
ℓ

ϵ2
) samples, and |S∗| =

2T1Ω(
√
ℓ

ϵ2
). Then with probability ≥ 1 − δ′, the subset B̃ in subroutine GradEst satisfy the

following:

1. |B̃| retains all the batches in B̂ that had samples from D0.

2. B̃ does not contain any batch that had samples from Di if i is such that

∥EDi
[P∇f(x, y, w, κ)]− ED0 [P∇f(x, y, w, κ)]∥ > 2ϵκ

√
C1.

Proof. The lower bound on |Sb| in the lemma ensures that for each batch b and all j ∈ [2T1], we

have Sb1,j = Ω(
√
ℓ

ϵ2
), and the lower bound on |S| ensures that for all j ∈ [2T1], Sj = Ω(

√
ℓ

ϵ2
).

First, consider the batches that have samples from the distribution D0.

For any such batch b and j ∈ [T1], from Lemma 123, we have E[ζbj ] = 0 and Var(ζbj ) =

O(ϵ4κ2C1
2). Therefore, for T1 ≥ Ω(log |B̂|

δ′
), it follows that with probability≥ 1− δ′/2 for every

batch b ∈ B̂ that has samples from D0 the median of {ζbj}j∈[T1] will be less than ϵ2κ2C1, and it

will be retained in B̃. This completes the proof of the first part.

286



Next, consider the batches that have samples from any distribution Di for which

∥EDi
[P∇f(x, y, w, κ)]− ED0 [P∇f(x, y, w, κ)]∥ > 2ϵκ

√
C1.

For any such batch b and j ∈ [T1], according to Lemma 123, we have E[ζbj ] ≥ 4ϵ2κ2C1 and

Var(ζbj ) = O(E[ζbj ]2). Hence, for T1 ≥ Ω(log |B̂|
δ′
), it follows that with probability at least 1−δ′/2,

the median of {ζbj}j∈[T1] for every batch will be greater than ϵ2κ2C1, and those batches will not

be included in B̃. This completes the proof of the second part. ■

The following theorem characterizes the number of samples required in B̃ for an accurate

estimation of ∆.

Lemma 125. Suppose the conclusions in Lemma 124 hold for B̃ defined in subroutine GradEst,

T2 ≥ Ω(log 1
δ′
), each batch b ∈ B̃ has size≥ nm, and |B̃| ·nm ≥ 2T2Ω(

ℓ
ϵ2
), then with probability

≥ 1− δ′ the estimate ∆ returned by subroutine GradEst satisfy

∥∆− ED0 [P∇f(x, y, w, κ)]∥ ≤ 9ϵκ
√
C1.

Proof. Recall that in subroutine GradEst, we defined

∆i =
1

|B̃|

∑
b∈B̃

P∇f(Sb2,i, w, κ).

Let zbi = P∇f(Sb2,i, w, κ). From Lemma 124, for all b ∈ B̃, we have

∥∥E[zbi ]− ED0 [P∇f(x, y, w, κ)]
∥∥ ≤ 2ϵκ

√
C1.

287



Therefore,

∥E[∆i]− ED0 [P∇f(x, y, w, κ)]∥ =

∥∥∥∥∥∥ 1

|B̃|

∑
b∈B̃

E[zbi ]− ED0 [P∇f(x, y, w, κ)]

∥∥∥∥∥∥
≤ max

b∈B̃

∥∥E[zbi ]− ED0 [P∇f(x, y, w, κ)]
∥∥ ≤ 2ϵκ

√
C1.

(6.26)

Next, from Lemma 120,

∥Cov(zbi )∥ ≤
κ2

|Sb2,i|
C1 =

T2κ
2

|Sb2|
C1 =

2T2κ
2

|Sb|
C1 ≤

2T2κ
2C1

minb∈B̃ |Sb|
, (6.27)

where the two equalities follow because for all batches b ∈ B̃, |Sb2,i| = |Sb2|/T2 and |Sb2| = |Sb|/2.

Then

∥Cov(∆i)∥ =
1

|B̃|
max
b∈B̃
∥Cov(zbi )∥ ≤

2T2κ
2C1

|B̃| ·minb∈B̃ |Sb|

Since ∆i lies in an ℓ dimensional subspace of Rd, it follows that

Tr(Cov(∆i)) ≤ ℓ∥Cov(∆i)∥ ≤
2ℓT2κ

2C1

|B̃| ·minb∈B̃ |Sb|

Note that Var(∥∆i − E[∆i]∥) = Tr(Cov(∆i)). Then, from Chebyshev’s bound:

Pr[∥∆i − E[∆i]∥ ≥ ϵκ
√
C1] ≤

Var(∥∆i − E[∆i]∥)
ϵ2κ2C1

≤ 2ℓT2

ϵ2|B̃| ·minb∈B̃ |Sb|
≤ 1/8.

Combining above with Equation (6.26),

Pr[∥∆i − ED0 [P∇f(x, y, w, κ)]∥ ≥ 3ϵκ
√
C1] ≤ 1/4.

Let D := {i ∈ [T2] : ∥∆i − ED0 [P∇f(x, y, w, κ)]∥ ≤ 3ϵκ
√
C1∥}. Then, for T2 =

288



Ω(log 1
δ′
), with probability ≥ 1− δ′, we have

|D| ≥ 1

2
T2.

Recall that in the subroutine, we defined ξi = median{j ∈ [T2] : ∥∆i − ∆j∥} and

i∗ = argmin{i ∈ [T2] : ξi}.

From the definition of D, and triangle inequality, for all i, j ∈ D, we have ∥∆i −∆j∥ ≤

6ϵκ
√
C1. Therefore, if |D| ≥ 1

2
T2, then for any i ∈ D, ξi ≤ 6ϵκ

√
C1. This would imply

ξi∗ ≤ 6ϵκ
√
C1. Furthermore, since |D| ≥ 1

2
T2, there exist at least one i ∈ D such that

∥∆i −∆i∗∥ ≤ 6ϵκ
√
C1. Using the definition of D, and the triangle inequality, we can conclude

that

∥∆i∗ − ED0 [P∇f(x, y, w, κ)]∥ ≤ ∥∆i − ED0 [P∇f(x, y, w, κ)]∥+ ∥∆i −∆i∗∥ ≤ 9ϵκ
√
C1.

■

Theorem 119 then follows by combining lemmas 124 and 125.

6.12 Number of steps required

The following lemma shows that with a sufficiently accurate estimation of the expectation

of gradients, a logarithmic number of gradient descent steps are sufficient in the main algorithm 10.

Lemma 126. For ϵ > 0, suppose ∥∆(r) − Σ0(ŵ
(r) − w0)∥ ≤ 1

2
∥ŵ(r) − w0∥ + ϵσ

4
, and R =

Ω(C1 log
∥w0∥
σ

), then ∥ŵ(r) − w0∥ ≤ ϵσ.

Proof. Recall that ŵ(r+1) = ŵ(r) − 1
C1
∆(r). Then we have:

ŵ(r+1) − w0 = ŵ(r) − w0 −
1

C1

∆(r)

= (ŵ(r) − w0)

(
I − 1

C1

Σ0

)
+

1

C1

(Σ0(ŵ
(R+1) − w0)−∆(r)).

289



Using triangle inequality, we obtain:

∥ŵ(r+1) − w0∥ ≤ ∥ŵ(r) − w0∥
∥∥∥∥I − 1

C1

Σ0

∥∥∥∥+ 1

C1

∥Σ0(ŵ
(r) − w0)−∆(r)∥

≤ ∥ŵ(r) − w0∥
(
1− 1

C1

)
+

1

C1

(
∥ŵ(r) − w0∥

2
+
ϵσ

4

)
≤ ∥ŵ(r) − w0∥

(
1− 1

2C1

)
+

ϵσ

4C1

.

Using recursion, we have:

∥ŵ(R+1) − w0∥ ≤ ∥ŵ(1) − w0∥
(
1− 1

2C1

)R
+

R−1∑
i=0

(
1− 1

2C1

)i
ϵσ

4C1

≤ ∥ŵ(1) − w0∥ exp
(
− R

2C1

)
+ 2C1

ϵσ

4C1

≤ ϵσ,

where the second inequality follows from the upper bound on the sum of infinite geometric series

and the last inequality follows from the bound on R and ŵ(1) = 0. ■

6.13 Final Estimation Guarantees

Proof of Theorem 106. We show that with probability ≥ 1 − δ, for each r ∈ [R], the gradient

computed by the algorithm satisfies ∥∆(r)−Σ0(ŵ
(r)−w0)∥ ≤ 1

2
∥ŵ(r)−w0∥+ ϵσ

4
. Lemma 126

then implies that for R = Ω(C1 log
M
σ
), the output returned by the algorithm ŵ = ŵ(R+1) satisfy

∥ŵ − w0∥ ≤ ϵσ.

To show this, we fix r, and for this value of r, we show that with probability ≥ 1− δ/R,

∥∆(r) − Σ0(ŵ
(r) − w0)∥ ≤ 1

2
∥ŵ(r) − w0∥ + ϵσ

4
. Since each round uses an independent set of

samples, the theorem then follows by applying the union bound.

First, we determine the bound on the clipping parameter. From Theorem 114, for

290



|Sb∗|/R = Ω(C2 log 1/δ′), with probability ≥ 1− δ′, we have

√
8(C+1)C1(ED0

[(y−x·w(r))2])
ϵ1

≤ κ(r) ≤ 28

√
2(C+1)C1(ED0

[(x·(w(r)−w0))2]+σ2)
ϵ1

. (6.28)

Next, employing Theorem 112 and utilizing the lower bound on the clipping parameter in the

above equation, we obtain the following bound on the norm of the expected difference between

clipped and unclipped gradients:

∥∥ED0 [(∇f(x, y, w(r), κ(r))− Σ0(w
(r) − w0)

∥∥ ≤ ϵ1∥w(r) − w0∥. (6.29)

Recall that in Bs, at least αs fraction of the batches contain samples from D0. When Bs

is divided into R equal random parts, w.h.p. each part B(r)
s will have at least αs fraction of the

batches containing samples from D0.

From Theorem 116, if |B(r)
s | = |Bs|

R
= Ω

(
d

αsϵ22

(
1

αsϵ22
+

C2
2

C1

)
log d

δ′

)
, then with probability

≥ 1− δ′, the projection matrix P (r) satisfies

∥ED0 [∇f(x, y, w(r), κ(r))]− P (r)ED0 [∇f(x, y, w(r), κ(r))]∥ ≤ 4ϵ2κ
(r)
√
C1. (6.30)

The above equation shows subroutine GradSubEst finds projection matrix P (r) such that the

expected value of clipped gradients projection is roughly the same as the expected value of the

clipped gradient.

Next, we show that subroutine GradEst provides a good estimate of the expected value of

clipped gradients projection. Let N denote the number of batches in Bm that have samples from

D0. If N ≥ Ω(R + log 1/δ′) then with probability ≥ 1− δ′, B(r)
m has Θ(N/R) batches sampled

from D0. If each batch in Bm and batch b∗ has more than nm samples, nm

R
= Ω(

√
ℓ

ϵ22
log( |Bm|

δ′
)),

291



and N ·nm

R
≥ Ω( ℓ

ϵ22
log 1/δ′), then from Theorem 119, with probability ≥ 1− δ′

∥∥∆(r) − ED0 [P
(r)∇f(x, y, w(r), κ(r))]

∥∥ ≤ 9ϵ2κ
(r)
√
C1. (6.31)

Combining the above three equations using triangle inequality,

∥∆(r) − Σ0(ŵ
(r) − w0)∥ ≤ 13ϵ2κ

(r)
√
C1 + ϵ1∥w(r) − w0∥, (6.32)

with probability ≥ 1− 5δ′.

In equation (6.28) using the upper bound, ED0 [(x · (w(r)−w0))
2] ≤ ∥w(r)−w0∥2∥Σ0∥ ≤

C1∥w(r) − w0∥2 we get

κ(r) ≤ 28

√
2(C + 1)C1

2∥w(r) − w0∥2 + (C + 1)C1σ2

√
ϵ1

≤
28
√

2(C + 1)
√
ϵ1

(C1∥w(r) − w0∥+
√
C1σ).

Combining the two equations,

∥∆(r) − Σ0(ŵ
(r) − w0)∥ ≤

364ϵ2
√

2(C + 1)C1√
ϵ1

(C1∥w(r) − w0∥+
√
C1σ) + ϵ1∥w(r) − w0∥,

(6.33)

with probability ≥ 1− 5δ′ There exist universal constants c1, c2 > 0 such that for ϵ1 = c1 and

ϵ2 = c2
C1

√
C+1

(
ϵ+ 1√

C1

)
, the quantity on the right is bounded by ∥w(r) − w0∥/2 + ϵσ/4. We

choose these values for ϵ1 and ϵ2 and δ′ = δ
5R

.

From the above discussion, it follows that if |Bs| = Ω̃
(

d
αs

2ϵ4

)
, nm ≥ Ω̃(

√
ℓ

ϵ2
), and Bm has

≥ 1
nm

Ω̃
(
ℓ
ϵ2

)
batches sampled from D0, then with probability ≥ 1− δ/R,

∥∆(r) − Σ0(ŵ
(r) − w0)∥ ≤

1

2
∥ŵ(r) − w0∥+

ϵσ

4
.

292



Using ℓ = min{k, 1
ϵ2αs
}, we get the bounds on the number of samples and batches required by

the algorithm. ■

6.14 Proof of Lemma 118

To establish the lemma, we first introduce and prove two auxiliary lemmas.

Lemma 127. For k > 0, and a probability distribution (p0, p1, ..., pk−1) over k elements, let

Z =
∑k−1

i=0 p0ziz
⊺
i , where zi are d-dimensional vectors. Then for all ℓ ≥ 0, ℓth largest singular

value of Z is bounded by maxi ∥zi∥2/ℓ.

Proof. Note that Z is a symmetric matrix, so its left and right singular values are the same. Let

v1, v2, ... be the singular vectors in the SVD decomposition of Z, and let a1 ≤ a2 ≤ a3 ≤ ... be

the corresponding singular values. Using the properties of SVD, we have:

∑
i

ai =
∑
i

v⊺i Zvi =
∑
i

v⊺i

(
k−1∑
j=0

pjzjz
⊺
j

)
vi =

k−1∑
j=0

pj
∑
i

(vi · zj)2 ≤
k−1∑
j=0

pj∥zj∥2

≤ max
j
∥zj∥2.

Next, we have: ∑
i

ai ≥
∑
i≤ℓ

ai ≥
∑
i≤ℓ

aℓ = ℓ · aℓ.

Combining the last two equations yields the desired result. ■

Lemma 128. Let u1, u2, .., uℓ ∈ Rd be ℓ mutually orthogonal unit vectors, and let U =

[u1, u2, ..., uℓ] ∈ Rd×ℓ. For any set of k vectors z0, z1, ..., zk−1 ∈ Rd, non-negative reals

p0, p1, ..., pk−1, and reals a1, a2, ..., aℓ, we have:

∥(I − UU⊺)z0∥2 ≤

∥∥∥∑k−1
i=1 piziz

⊺
i −

∑
j∈[ℓ] ajuju

⊺
j

∥∥∥
p0

.

293



Proof. Let v = (I − UU⊺)z0. First we show that for all j ∈ [ℓ], the vectors v and uj are

orthogonal,

u⊺j (I − UU⊺)z0 = (u⊺j · z0)− (u⊺j · z0) = 0.

Then,

∥∥∥∥∥∥v⊺
k−1∑

i=0

piziz
⊺
i −

∑
j∈[ℓ]

ajuju
⊺
j

v
∥∥∥∥∥∥ =

∥∥∥∥∥v⊺
(
k−1∑
i=0

piziz
⊺
i

)
v

∥∥∥∥∥ =

∥∥∥∥∥
k−1∑
i=0

pi(z
⊺
i v)

2

∥∥∥∥∥ ≥ ∥∥p0(z⊺0v)2∥∥
Next, we have:

z⊺0v = z⊺0(I − UU⊺)v + z0UU
⊺v = z⊺0(I − UU⊺)v = v⊺v = ∥v∥2

Combining the last two equations, we obtain:

∥v∥2 ·
∥∥∥∑k−1

i=0 piziz
⊺
i −

∑
j∈[ℓ] ajuju

⊺
j

∥∥∥ ≥ ∥∥∥v⊺(∑k−1
i=0 ziz

⊺
i −

∑
j∈[ℓ] ajuju

⊺
j

)
v
∥∥∥ ≥ p0∥v∥4.

Dividing both sides by ∥v∥2 completes the proof. ■

Next, combining the above two auxiliary lemmas we prove Lemma 118.

Proof of Lemma 118. Let Λi(·) denote the ith largest singular value of a matrix. Let M̂ be rank

ℓ truncated-SVD of M , then it follows that,

∥M − M̂∥ = Λℓ+1(M).

First, we consider the case ℓ < k. By applying Weyl’s inequality for singular values, we

have

Λℓ+1(M) ≤ Λℓ+1(Z) + Λ1(M − Z) ≤
maxj ∥zj∥2

ℓ+ 1
+ ∥M − Z∥,

where the last equation follows from Lemma 127.

294



First applying the triangle inequality, and then using the above two equations, we have

∥M̂ − Z∥ ≤ ∥M − M̂∥+ ∥M − Z∥ ≤ maxj ∥zj∥2

ℓ+ 1
+ 2∥M − Z∥.

Combining the above equation with Lemma 128, we have:

∥(I − UU⊺)z0∥2 ≤
2(ℓ+ 1)∥M − Z∥+maxj ∥zj∥2

(ℓ+ 1)p0
.

This completes the proof for ℓ < k. To prove for the case ℓ > k, we use Λℓ+1(Z) = 0 in place of

the bound Λℓ+1(Z) ≤ maxj ∥zj∥2
ℓ+1

in the above proof for the case ℓ < k. ■

6.15 Removing the Additional Assumptions

To simplify our analysis, we made two assumptions about the data distributions. We now

argue that these assumptions are not limiting.

The first additional assumption was that there exists a constant C2 > 0 such that for

all components i ∈ {0, 1, . . . , k − 1} and random samples (x, y) ∼ Di, we have ∥x∥ ≤ C2

√
d

almost surely. In the non-batch setting, Cherapanamjeri et al. (2020) [38] have shown that this

assumption is not limiting. They showed that if other assumptions are satisfied, then there exists

a constant C2 such that with probability ≥ 0.99, we have ∥x∥ ≤ C2

√
d. Therefore, disregarding

the samples for which |x| > C2

√
d does not significantly reduce the data size. Moreover, it has

minimal impact on the covariance matrix and hypercontractivity constants of the distributions.

This argument easily extends to the batch setting. In the batch setting, we first exclude samples

from batches where ∥x∥ > C2

√
d. Then we remove small-sized batches with fewer than or

equal to 2 samples and medium-sized batches that have been reduced by more than 10% of their

original size. It is easy to show that w.h.p. the fraction of medium and small size batches that

gets removed for any component is at most 10%. THence, this assumption can be removed with

a small increase in the batch size and the number of required samples in our main results.

295



Next, we address the assumption that the noise distribution is symmetric. We can

handle this by employing a simple trick. Consider two independent and identically distributed

(i.i.d.) samples (x1, y1) and (x2, y2), where yi = w∗ · xi + ηi. We define x = (x1 − x2)/
√
2,

y = (y1 − y2)/
√
2, and η = (η1 − η2)/

√
2. It is important to note that the distribution of η is

symmetric around 0, and the covariance of x is the same as that of xi, while the variance of η is

the same as that of ηi. Furthermore, we have y = w∗ · x+ η. Therefore, the new sample (x, y)

obtained by combining two i.i.d. samples satisfies the same distributional assumptions as before,

and in addition, the noise distribution is symmetric. We can combine every two samples in a

batch using this approach, which only reduces the batch size of each batch by a constant factor of

1/2. Thus, the assumption of symmetric noise can be eliminated by increasing the required batch

sizes in our theorems by a factor of 2.

6.16 More Simulation Details

Setup. We have sets Bs and Bm of small and medium size batches and k distributions

Di for i ∈ {0, 1, . . . , k − 1}. For a subset of indices I ⊆ {0, 1, . . . , k − 1}, both Bs and Bm

have a fraction of α batches that contain i.i.d. samples from Di for each i ∈ I . And for each

i ∈ {0, 1, . . . , k − 1} \ I in the remaining set of indices, Bs and Bm have (1− |I|/16)/(k − |I|)

fraction of batches, that have i.i.d samples from Di. In all figures the output noise is distributed

as N (0, 1).

All small batches have 2 samples each, while medium-size batches have nm samples each,

which we vary from 4 to 32, as shown in the plots. We fix data dimension d = 100, α = 1/16,

number of small batches to |Bs| = min{8dk2, 8d/α2} and the number of medium batches to

|Bm| = 256. In all the plots, we average our 10 runs.

Evaluation. Our objective is to recover a small list containing good estimates for the

regression vectors of Di for each i ∈ I . We compare our proposed algorithm’s performance with

that of the algorithm in [95]. We generate lists of regression vector estimates LOurs and LKSSKO

296



using our algorithm and [95], respectively. Then, we create 1600 new batches, each containing

nnew i.i.d samples randomly drawn from the distribution Di, where for each batch, index i is

chosen randomly from I .

Each list enables the clustering of the new sample batches. To cluster a batch using a list,

we assign it to the regression vector in the list that achieves the lowest mean square error (MSE)

for its samples.

To evaluate the average MSE for each algorithm, for each clustered batch, we generate

additional samples from the distribution that the batch was generated from and calculate the error

achieved by the regression vector in the list that the batch was assigned to. We then take the

average of this error over all sets. We evaluate both algorithms’ performance for new batch sizes

nnew = 4 and nnew = 8, as shown in the plots.

Minimum distance between regression vectors. Our theoretical analysis suggests that

our algorithm is robust to the case when the minimum distance between the regression vectors

are much smaller than their norms. In order to test this, in Figure 6.3, we generate half of the

regression vectors with elements independently and randomly distributed in U [9, 11], and the

other half with elements independently and randomly distributed in U [−11,−9]. Notably, the

minimum gap between the vectors, in this case, is much smaller than their norm. It can be seen

that the performance gap between our algorithm and the one in [95] increases significantly as we

deviate from the assumptions required for the latter algorithm to work.

Number of different distributions. Our algorithm can notably handle very large k (even

infinite) while still being able to recover regression vectors for the subgroups that represent

sufficient fraction of the data. In the last plot, we set k = 100 and I = {0, 1, 2, 3} to highlight

this ability. In this case, the first four distributions each generate a 1/16 fraction of batches,

and the remaining 96 distributions each generate a 1/128 fraction of batches. We provide the

algorithm with one additional medium-size batch from Di for each i ∈ I for identification of a

list of size I . The results are plotted in Figure 6.4, where we can see that the performance gets

better with medium batch size as expected. Note that the algorithm in [95] cannot be applied to

297



this scenario.

0 5 10 15 20 25 30 35
0

100

200

300

400

500
KSSKO(4 samples)
KSSKO(8 samples)
Ours(4 samples)
Ours(8 samples) 

 

medium batch size 

   
   

   
M

SE

Figure 6.3. Same input dist. (standard normal),
k = 16, small minimum distance between
regression vectors, recovering all

5 10 15 20 25 30

10

20

30

40

50

60

70

80 Ours(4 samples)
Ours(8 samples)

 medium batch size 

 

 

 

   
   

   
M

SE

Figure 6.4. Different input dist, k = 100,
large minimum distance between regression
vectors, recovering 4 components that have
1/16 fraction of batches each

Chapter 6, in full, is a reprint of the material as it appears in Linear Regression using

Heterogeneous Data Batches 2023. Abhimanyu Das, Ayush Jain, Rajat Sen, Weihao Kong,

Abhimanyu Das, and Alon Orlitsky. Submitted in Neurips 2023. The dissertation author was the

primary investigator and author of this paper.

298



Chapter 7

Robust Estimation for Random Graphs

7.1 Introduction

Finding underlying patterns and structure in data is a central task in machine learning and

statistics. Typically, such structures are induced by modelling assumptions on the data generating

procedure. While they offer mathematical convenience, real data generally does not match with

these idealized models, for reasons ranging from model misspecification to adversarial data

poisoning. Thus for learning algorithms to be effective in the wild, we require methods that are

robust to deviations from the assumed model.

With this motivation, we initiate the study of robust estimation for random graph models.

Specifically, we will be concerned with the Erdős-Rényi (ER) random graph model [65, 60].1

Definition 2 (Erdős-Rényi graphs). The Erdős-Rényi random graph model on n nodes with

parameter p ∈ [0, 1], denoted as G(n, p), is the distribution over graphs on n nodes where each

edge is present with probability p, independently of the other edges.

We consider graphs generated according to the Erdős-Rényi random graph model, but

which then have a constant fraction of their nodes corrupted by an adversary. When a node is cor-

rupted, the adversary can arbitrarily modify its neighborhood. This setting is naturally motivated

by social networks, where random graphs are a common modelling assumption [114]. Even if a

1This model was introduced in [65], simultaneously with the related G(n,m) model in [60]. Nevertheless, the
community refers to both models Erdős-Rényi graphs.

299



fraction of individuals in the network are malicious actors, we still wish to perform inference with

respect to the regular users. Apart from adversarial settings, tools for robust analysis of graphs

may also assist in addressing deficiencies of existing models, such as in model misspecification.

For example, certain random graph models have been criticized for not capturing various statistics

of real-world networks [114], and some notion of robustness may facilitate better modelling.

7.1.1 Problem Setup

Let β ∈ [0, 1] denote the fraction of corrupted nodes, andG ∼ G(n, p) be a random graph,

where p is unknown. Without loss of generality, we assume that the node set is [n] := {1, . . . , n}.

An adversary A is then given G, and is allowed to arbitrarily ‘rewire’ the edges adjacent to a set

B ⊆ [n] of nodes of size at most βn, resulting in a graph A(G). In other words, the adversary

can change the status of any edge with at least one end point in B. We call B the set of corrupted

nodes. We consider two kinds of adversaries.

• β-omniscient adversary: The adversary knows the true value of the edge probability p

and observes the realization of the graph G ∼ G(n, p). They then choose B and how

to rewire its edges.

• β-oblivious adversary: The adversary knows the true value of the edge probability p. They

must choose B and the distribution of edges from B without knowing the realization G.

Note that the oblivious adversary is weaker than the omniscient adversary. Given a corrupted

graph A(G), our goal is to output p̂ (A(G)), an estimate of the true edge probability p.

7.1.2 Results

We first analyze standard estimators from the robust statistics toolkit, and show that they

provide sub-optimal rates. We then propose a computationally-efficient spectral algorithm to

estimate p with improved rates. Finally, we prove a lower bound for this problem, showing that

our algorithms are optimal up to logarithmic factors. We note that our upper bounds hold for

300



omniscient adversaries, whereas the lower bounds are tight even against the weaker oblivious

adversary.

Standard Robust Estimators and Natural Variants

At first glance, the problem appears deceptively simple, as our goal is to estimate a single

univariate parameter p. A standard technique is the maximum likelihood estimator, which in this

case is the empirical edge density. We call the following the mean estimator

p̂mean(A(G)) =
# of edges present in A(G)(

n
2

) . (7.1)

In robust statistics, the median often provides better guarantees than the mean. Let deg(i)

denote the degree of node i ∈ [n] in A(G). The median estimator is given by

p̂med(A(G)) =
Median{deg(1), . . . , deg(n)}

n− 1
. (7.2)

Absent corruptions (i.e., β = 0), we have A(G) = G. In this simple setting, the mean

and median are both very accurate. Specifically, it is not hard to show that |p̂mean(G)− p| ≤

O
(√

p(1− p)/n
)

and |p̂med(G)− p| ≤ O (1/n) (Lemma 133). However, both estimators

perform much worse under even mild corruption. In Lemma 134 we describe and analyze a simple

oblivious adversaryA such that both the mean and median estimator have |p̂(A(G))− p| ≥ β/2.

Note that if even a single node is corrupted (i.e., β = 1/n), the “price of robustness” (informally,

the additional error term(s) introduced in the corrupted setting) dominates the baseline O(1/n)

error in the uncorrupted setting.

The adversary against the mean and median estimators is easy to describe: either add or

remove all edges incident to the nodes inB. This suggests the strategy of first pruning a set of cβn

nodes with the largest and smallest degrees and then applying either the mean or median estimator

to the resulting graph. These prune-then-mean/median algorithms are described in Algorithm 15.

Despite this additional step, the pruned estimators are still deficient. We design an oblivious

301



adversary such that the prune-then-median estimate satisfies |p̂(A(G))− p| ≥ Ω(β) and the

prune-then-mean estimate satisfies |p̂(A(G))− p| ≥ Ω(β2) (Theorem 136). Interestingly, we

show the tightness of both these bounds, showing that prune-then-mean improves the error to

O (β2) (Theorem 135). These results are summarized in the theorem below.

Theorem 129 (Informal). The price of robustness of the prune-then-mean/median estimators are

Θ(β2) and Θ(β), respectively.

A Spectral Algorithm for Robust Estimation

Given the failings of the approaches described so far, it may appear that a poly(β) cost

for robustness may be unavoidable. Our main result is a computationally-efficient algorithm that

bypasses this barrier.

Theorem 130. Suppose β < 1/60 and p ∈ [0, 1]. Let G ∼ G(n, p) and A(G) be a rewiring of

G by a β-omniscient adversary A. There exists a polynomial-time estimator p̂(A(G)) such that

with probability at least 1− 10n−2,

|p̂(A(G))− p| ≤ C ·

(√
p(1− p) log n

n
+
β
√
p(1− p) log(1/β)√

n
+
β

n
log n

)
,

for some constant C. This estimate can be computed in Õ(βn3 + n2) time.

The first term is the error without corruptions, while the other two terms capture the price

of robustness. Except at extreme values of p, the last term will be dominated by one of the other

two. In this case, note that the cost of robustness in the second term decreases as the number of

nodes n increases. This is in contrast to the previously described approaches, for which the price

of robustness did not decrease with n. Observe that the non-robust error will dominate for most

regimes when β ≤ 1/
√
n.

As our lower bounds will establish, our algorithm provides a nearly-tight solution to the

problem. Note that while this algorithm requires knowledge of β, [79] recently proposed a simple

302



argument which using Lepski’s method generically removes the need to know the corruption

parameter for robust estimation tasks, leading to such an algorithm with the same rates.

Our upper bound requires β < 1/60.2 On the other hand, note that if β ≥ 0.5, an

identifiability argument implies that no estimator can achieve error better than 0.5.3 This raises

the question of whether the above rates are achievable for all β < 0.5. We show that this is

indeed the case, providing a computationally inefficient algorithm with the following guarantees.

Theorem 131. Suppose β < 1/2. There exists an algorithm such that with probability at least

1− n−2,

|p̂(A(G))− p| ≤ C

1/2− β
·

(√
p(1− p)√

n
+

√
log n

n

)
,

for some constant C.

Note that for β > 1/60, the error bound above matches that presented in Theorem 130 up

to a factor of 1/(0.5− β), and therefore extends the error rates of Theorem 130 to the regime

β ∈ [1/60, 1/2) at the cost of computational efficiency.

Information-theoretic Lower Bounds

We provide a lower bound to establish near-optimality of our algorithms. While our upper

bounds are against an omniscient adversary, the lower bounds hold for the weaker oblivious

adversary.

Theorem 132. For every β < 1/2, p ∈ [0, 1], and n ≥ 0 and a universal constant C ′, let

∆ = C ′ ·

(√
p(1− p)
n

+
β
√
p(1− p)√
n

+
β

n

)
.

2We have not tried to optimize the value of β for computationally efficient algorithms, and could likely be made
larger than 1/60 through a more careful analysis.

3Consider an empty graph G(n, 0). An adversary can corrupt half the graph into a clique, making it look like it
came from G(n, 1). No algorithm can identify which half of the graph was the original.

303



For any p′ ∈ [p + ∆, p − ∆] and G ∼ G(n, p) and G′ ∼ G(n, p′), there exists an oblivious

adversary A such that no algorithm can distinguish between A(G) and A(G′) with probability

more than 0.65.

7.1.3 Techniques

Upper bound techniques. Broadly speaking, robust estimation is only possible when samples

from the (uncorrupted) distribution enjoy some nice structure. Work in this area generally

proceeds by imposing some regularity conditions on the uncorrupted data, which hold with high

probability over samples from the distribution. The algorithm subsequently relies solely on

these regularity conditions to make progress. For example, for mean estimation problems, it is

common to assume that the mean and covariance of the uncorrupted samples are close to the true

mean and covariance. However, the appropriate regularity conditions in our setting are far less

obvious. We employ conditions which bound the empirical edge density and spectral norm for

submatrices of the adjacency matrix, when appropriately centered around the true parameter p

(Definition 3), which can be proven using tools from random matrix theory.

With our regularity conditions established, the algorithmic procedure proceeds in two

stages: a coarse estimator, followed by a fine estimator.

Stage 1: A coarse estimate. Our regularity conditions are suggestive of the following intuition

about how one might estimate the value of p. If one could locate a sufficiently large subgraph S

of the uncorrupted nodes, such that their adjacency matrix centered around p has small spectral

norm, then the empirical edge density of this subgraph would give a good estimate for the true

parameter p. More precisely, we let A be the (corrupted) adjacency matrix of A(G), let AS×S be

the submatrix of A indexed by the set S, and pS be the empirical edge density of the subgraph S.

The goal is to obtain an S where ∥AS×S − p∥ is small,4 at which point we can output pS .

There are two clear challenges with this approach. First off, we can not center the

adjacency matrix around the unknown parameter p, since estimating that parameter is our goal.

4For clarity: in the expression AS×S − p, p is subtracted entry-wise.

304



However, we demonstrate that it instead suffices to center around pS (Theorem 139). The other

issue is that it is not clear how to identify such a set S of uncorrupted nodes. One (inefficient)

approach is to simply inspect all sufficiently large subgraphs. This will be accurate (quantified in

Theorem 140), but not computationally tractable.

Instead, our main algorithmic contribution is an efficient algorithm which achieves this

same goal. We give an iterative spectral approach, which starts with S = [n]. In Lemma 142 we

show that if the spectral norm of AS×S − pS is large, then the top eigenvector assigns significant

weight to the set of corrupted nodes. Normalizing this eigenvector and sampling from the

corresponding probability distribution identifies a corrupted node with constant probability. We

eliminate this node from S and repeat the process. Finally, using this approach, we obtain a

subset S∗ ⊂ [n] of nodes such that pS∗ is a coarse estimate of p.

Stage 2: Pruning the coarse estimate. It turns out that the above coarse estimate gives a price

of robustness which is roughly O(1/
√
n), rather than the O(β/

√
n) we are trying to achieve.

However, a simple pruning step allows us to complete the argument. Specifically, our coarse

estimator gave us a set S∗ such that the spectral norm of AS∗×S∗ − pS∗ is small and pS∗ is close

to p. We employ this to show that most nodes must have degree close to p (Lemma 157). Thus,

we remove Θ(βn) nodes whose degree (restricted to the subgraph S∗) is furthest from pS∗ . Our

final estimate is the empirical density of the resulting pruned subgraph.

Lower bound techniques. A strategy for proving lower bounds is the following: Suppose there

exists an adversary that with βn corruptions can convert the distribution G(n, p) and G(n, p+ δ)

into the same distribution of random graphs, then we cannot estimate p to accuracy better than

δ/2. This is akin to couplings between G(n, p) and G(n, p+ δ) by corrupting only a βn nodes.

Designing these couplings over Erdős-Rényi graphs can be tricky due to the fact that degrees of

nodes are not independent of each other.

We instead consider directed Erdős-Rényi graphs, where an edge from a node i to j is

present independently of all others. Then, the (outgoing) degrees of all the nodes are independent

305



Binomial distributions. Using total variation bounds between Binomial distributions we can

design couplings between directed ER graphs with different parameters, thus showing a lower

bound on the error of robustly estimating directed ER graphs. Our final argument is a reduction

showing that estimating the parameters of undirected of graphs is at least as hard as estimating

the parameters of directed ER graphs. Combining these bounds we obtain the lower bounds.

7.1.4 Related Work

Due to the wealth of study in robust estimation and the page limits, we mention here only

a fraction of the most relevant related work. For additional discussion, please see Section 7.6.

Robust statistics is a classic and mature branch of statistics which focuses on precisely this

type of setting since at least the 1960s [142, 74]. However, since the classic literature typically

did not take into account computational considerations, proposed estimators were generally

intractable for settings of even moderate dimensionality [16]. Recently, results in [47] and [99]

overcame this barrier, producing the first algorithms which are both accurate and computationally

efficient for robust estimation in multivariate settings. While they focused primarily on parameter

estimation of Gaussian data, a flurry of subsequent works have provided efficient and accurate

robust algorithms for a vast array of settings.

A common tool in several of these robust estimation results is to prune suspected outliers

from the dataset so that a natural estimator over the remaining points has a small error. We also

use this meta technique in this paper. We note that as in the previous works, the main challenge

lies in designing efficient schemes to detect and remove corrupted data-points for the particular

task at hand. In most prior works, the uncorrupted data-points are unaffected by corruptions.

In our setting however, the edges from the good nodes are also affected by corruptions to the

corrupted nodes. This presents a new challenge requiring new insights.

306



7.2 Notation and Preliminaries

Problem Formulation.

Let G ∼ G(n, p). An adversary observes G and chooses a subset B ⊆ [n] of nodes with

|B| ≤ βn. It can then change the status (i.e., presence or non-presence) of any edge with at least

one node in B to get a graph A(G). Let F = [n] \B. We call B the corrupted nodes, and F the

uncorrupted nodes. Let Ã and A be the n × n adjacency matrix of the original graph G and

the modified graph A(G) respectively. Then AF×F = ÃF×F and the remaining entries of A can

be arbitrary. Given A, the goal is to estimate p, the parameter of the underlying random graph

model. The algorithm does not know the set B, though we assume that it knows the value of β.

Notation.

The ℓ2 norm of a vector v = [v1, . . . , vn] ∈ Rn is ∥v∥ :=
√∑n

i=1 v
2
i . Suppose M is an

m× n real matrix. The spectral norm of M is

∥M∥ := max
u∈Rm,v∈Rn:∥u∥=1,∥v∥=1

|uTMv|. (7.3)

It is easy to check that ∥M∥ = maxv∈Rn:∥v∥=1∥Mv∥. For a matrix M and real number a ∈ R,

let M − a be the matrix obtained by subtracting a from each entry of M . For S ⊆ [m], S ′ ⊆ [n],

let MS×S′ be the m× n matrix that agrees with M on S × S ′ and is zero elsewhere. Similarly

for a vector v ∈ Rn and S ⊆ [n], let vector vS be the vector that agrees with with v on S and has

zero entries elsewhere. Our proofs will use several standard properties of the matrix spectral

norm, which we state in Appendix 7.7 for completeness.

7.3 Mean- and Median-based Algorithms

To demonstrate the need for our more sophisticated algorithms in Section 7.4, we first

analyze canonical robust estimators for univariate settings – specifically, approaches based on

trimming and order statistics (i.e., the median).

307



Recall the mean and median estimators for p in (7.1) and (7.2). The following simple

lemma quantifies their guarantees in the setting absent corruptions.

Lemma 133. Suppose β = 0. There exists a constant C > 0 such that with probability at least

0.99, |p̂mean(G)− p| ≤ C ·
√
p(1−p)
n

, and |p̂med(G)− p| ≤ C · 1
n
.

The analysis of these estimators is not difficult, but we include them for completeness in

Section 7.9.1. Analysis of the median estimator is slightly more involved due to correlations

between nodes.

While both estimators are optimal up to constant factors (for constant p) without

corruptions, their performance decays rapidly in the presence of an adversary, scaling at least

linearly in the corruption fraction β. In particular, consider an adversary that picks βn nodes at

random and either adds all the edges with at least one endpoint in B or removes all of them. In

Section 7.9.2 we prove the following lower bound on the performance of the mean and median

estimators for such an adversary. Observe that if even one node is corrupted (i.e., β ≥ 1/n), the

error in Lemma 134 dominates the error without corruptions in Lemma 133.

Lemma 134. There exists an adversary A such that for p̂ ∈ {p̂mean(A(G)), p̂med(A(G))} with

probability at least 0.5, we have |p̂− p| ≥ β/2.

A common strategy in robust statistics is to prune or trim the most extreme outliers.

Accordingly, in our setting, one may prune the nodes with the most extreme degrees, described

in Algorithm 15. This strategy bypasses the adversary which provides the lower bound in

Lemma 134.

Algorithm 15. Prune-then-mean/median algorithm
Input: A graph A(G), corruption parameter β, a constant c > 0

Remove cβn nodes with largest and smallest degrees from A(G)

Apply the mean/median estimator from (7.1)/(7.2) to the resulting graph on (1 − 2cβ) · n

nodes

308



However, this strategy can only go so far. Roughly speaking, pruning improves the

mean’s robust accuracy from Θ(β) to Θ(β2), while pruning does not improve the median’s robust

accuracy. The upper and lower bounds are described in Theorems 135 and 136, and proved in

Sections 7.9.3 and 7.9.4, respectively.

Theorem 135. For c ≥ 1 and 0 < β · c < 0.25, the prune-then-mean and prune-then-median

estimators described in Algorithm 15 prune 2cβn nodes in total and with probability 1− n−2

estimates p to an accuracy O
(
cβ2 + logn

n

)
and O

(
cβ +

√
logn
n

)
, respectively.

Theorem 136. Let p = 0.5, β > 100 ·
√
log n/n, and c > 0 be such that cβ < 0.25. There

exists an adversary such that with probability at least 0.99, the prune-then-median estimate

that deletes cβn satisfies |p̂(A(G))− p| ≥ C ′β, and the prune-then-mean estimate satisfies

|p̂(A(G))− p| ≥ C ′β2.

To summarize: none of the standard univariate robust estimators we have explored are

able to achieve error better thanΩ(β2). To bypass this barrier, we turn to more intricate techniques

in designing our main estimator in Section 7.4.

7.4 An Algorithm for Robust Estimation

Non-trivial robust estimation in Erdős-Rényi graphs is possible because even if the set of

edges connected to a small set of nodes is changed arbitrarily, the subgraph between the remaining

nodes retains a certain structure. In Section 7.4.1, we formalize this structure as deterministic

regularity conditions and show that the subgraph corresponding to the set of uncorrupted nodes

satisfy them with high probability. In the following subsections, we use only the fact that the

subgraph of uncorrupted nodes satisfy these regularity conditions to derive our robust algorithms

for estimating p.

In Section 7.4.2, we first derive a simple but novel inefficient spectral algorithm for coarse

estimation of p. Our efficient algorithm consists of two parts: an efficient version of the spectral

309



algorithm in Section 7.4.2 that, as its inefficient counterpart, provides a coarse estimate of p,

followed by a trimming algorithm which achieves near-optimal error rates for estimating p. We

describe and analyze the spectral and trimming components of the algorithm in Sections 7.4.3

and 7.4.4, respectively. Finally, in Appendix 7.10.8, we put the pieces together to show that

guarantees for these algorithms imply our upper bound in Theorem 130.

7.4.1 Regularity Conditions

In this section we state a set of three deterministic regularity conditions. We will then

show that the set of uncorrupted nodes of a random Erdős-Rényi graph satisfy these regularity

conditions with high probability. First, we define the following quantities κ and η, which we

use in stating the regularity conditions and in the bounds of several lemmas and theorems. For

p ∈ [0, 1] and n > 0, let

η(p, n) := c ·max
(√p(1− p)

n
,

√
lnn

n

)
. (7.4)

For α ∈ (0, 1], p ∈ [0, 1] and n > 0, let

κ(α, p, n) := c1 ·max
(
α

√
p

n
ln
e

α
,
α

n
ln
e

α
,

√
p lnn

n

)
. (7.5)

In the above definitions c and c1 are some constants that we determine in Theorem 138.

We employ the following regularity conditions.

Definition 3. Given α1 ∈ [0, 1/2), α2 ∈ [0, 1/2), and an [n]× [n] adjacency matrix A, a set of

nodes F ⊆ [n] of the graph corresponding to A satisfy (α1, α2, p)-regularity if

1. |F c| ≤ α1n.

2. For all F ′ ⊆ F ,

∥(A− p)F ′×F ′∥ ≤ n · η(p, n).

310



3. For all F ′, F ′′ ⊆ F such that |F ′|, |F ′′| ∈ [0, α2n] ∪ [n− α2n, n], then

∣∣∣∑
i∈F ′

∑
j∈F ′′

(Ai,j − p)
∣∣∣ ≤ n2 · κ(α2, p, n).

Item 2 implies that upon subtracting p from each entry of the adjacency matrix A, the

spectral norm of the matrix corresponding to all subgraphs of the subgraph F × F is bounded.

Item 3 implies that upon subtracting p from each entry of the adjacency matrix A, the sum of the

entries over any of its submatrices F ′ × F ′′ ⊆ F × F has a small absolute value, as long as each

of F ′ and F ′′ either leave out or include at most α2n nodes. We will informally refer to nodes in

the set F ⊆ [n] that satisfy (α1, α2, p)-regularity as good nodes.

For a subset S ⊆ [n] and adjacency matrix A, we will use pS :=
∑

i,j∈S Ai,j

|S|2 to denote

(approximately) the empirical fraction of edges present in the subgraph induced by a set S. Note

that this differs slightly from expression one might anticipate,
(|S|

2

)−1
(∑

i<j: i,j∈S Ai,j

)
. For

convenience, our sum double-counts each edge and also includes the Ai,i terms (which are always

0 due to the lack of self-loops). The double counting is accounted for since the denominator

is scaled by a factor of 2. The inclusion of the diagonal 0’s is not accounted for, thus leading

to pS being a slight under-estimate of the empirical edge parameter for this subgraph, but not

big enough to make a significant difference.

The following lemma lists some simple but useful consequences of the regularity

conditions that we use in later proofs. We prove it in Appendix 7.10.1.

Lemma 137. Suppose 0 ≤ α1, α2 < 1/2 and adjacency matrix A has a node subset F ⊆ [n]

that satisfies (α1, α2, p)-regularity, then

1. For all F ′ ⊆ F ,

∥(A− pF ′)F ′×F ′∥ ≤ 2n · η(p, n). (7.6)

311



2. For all F ′ ⊆ F of size ≥ (1− α2)n,

|pF ′ − p| ≤ 4κ(α2, p, n). (7.7)

Equation (7.6) implies that if the adjacency matrix of any subset of good nodes is centered

around its empirical fraction of the edges, then its spectral norm is bounded. Equation (7.7)

implies that for any subset of good nodes that excludes at most α2n nodes, the empirical fraction

of edges in the subgraph induced by it estimates p accurately.

The next theorem shows that the set of uncorrupted nodes of a random Erdős-Rényi

graph satisfy these regularity conditions with high probability. The proof of the Theorem is in

Appendix 7.10.2.

Theorem 138. For any β ∈ [0, 1/2), n > 0 and p > 0, let A be a β-corrupted adjacency matrix

of a sample from G(n, p). There exist universal constants c and c1 in Equations (7.4) and (7.5),

respectively, such that with probability at least 1− 4n−2 the set of uncorrupted nodes F satisfy

(α1, α2, p)-regularity for all α1 ∈ [β, 1/2] and α2 ∈ [0, 1/2].

7.4.2 An Inefficient Coarse Estimator

In this section we propose a simple inefficient algorithm to recover a coarse estimate of p,

which has an optimal dependence on all parameters other than α1.

The following theorem serves as the foundation of our coarse estimator. It shows that if,

for any subset S ⊆ [n] of size ≥ n/2 nodes, the spectral norm of its submatrix centered with

respect to pS is small, then pS is a reasonable estimate of p.

Theorem 139. Suppose 0 ≤ α1, α2 < 1/2, and let A be an adjacency matrix containing a

(α1, α2, p)-regular subgraph. Then for all S ⊆ [n] such that |S| ≥ n/2, we have

|pS − p| ≤
∥(A− pS)S×S∥+ n · η(p, n)

(1/2− α1)n
.

312



Proof. Let F be the (α1, α2, p)-regular subgraph of A. From the triangle inequality,

∥(A− pS)(S∩F )×(S∩F )∥ ≥ |p− pS| · |S ∩ F | − ∥(A− p)(S∩F )×(S∩F )∥.

Then by Lemma 147,

|p− pS| · |S ∩ F | ≤ ∥(A− pS)(S∩F )×(S∩F )∥+ ∥(A− p)(S∩F )×(S∩F )∥

≤ ∥(A− pS)S×S∥+ ∥(A− p)F×F∥.

Finally, noting that |S ∩ F | ≥ |S| − |F c| ≥ |S| − α1n ≥ n/2− α1n proves the theorem. ■

With this in hand, it suffices to locate a subset of nodes S such that ∥(A− pS)S×S∥ is

small. We provide the accuracy guarantee of our inefficient algorithm in the following theorem.

Theorem 140. Suppose 0 ≤ α1, α2 < 1/2, and let A be an adjacency matrix containing a

(α1, α2, p)-regular subgraph. Let

Ŝ = argminS⊆[n]:|S|≥n/2 ∥(A− pS)S×S∥.

Then ∥(A− pŜ)Ŝ×Ŝ∥ ≤ 2n · η(p, n) and |pŜ − p| ≤ 3
(1/2−α1)

· η(p, n).

Proof. Let F be the (α1, α2, p)-regular subgraph of A. From the definition of Ŝ,

∥(A− pŜ)Ŝ×Ŝ∥ ≤ ∥(A− pF )F×F∥ ≤ 2n · η(p, n),

where the last inequality uses Equation (7.6). The proof follows from Theorem 139. ■

Theorem 140 implies the following simple algorithm to estimate p: compute Ŝ by

iterating over all subsets of [n], and then output pŜ . Combining with Theorem 138, this proves

Theorem 131. The clear downside of this approach is that it is not computationally efficient,

with a running time that depends exponentially on n. Also, as we will later establish, while this

313



algorithm gives near-optimal rates for all constant β bounded away from 1/2 by a constant, it

may be sub-optimal for smaller β. In the following sections, we address both of these issues: we

provide a computationally efficient algorithm which provides near-optimal rates for β < 1/60.

7.4.3 An Efficient Coarse Spectral Algorithm

In this section, we propose an efficient spectral method (Algorithm 16) which finds a

subset S∗ ⊆ [n] such that both the set (S∗)c and the spectral norm ∥(A− pS∗)S∗×S∗∥ are small.

Note that the latter guarantee is comparable to the inefficient algorithm from Section 7.4.2. Then

Theorem 139 implies that pS∗ is an accurate estimate of p. We note that this is still a coarse

estimate of p, which has a sub-optimal dependence on α1.5 In the following section, we will

post-process the set S∗ returned by Algorithm 16 to provide our near-optimal bounds.

Theorem 141. Suppose α1 ∈ [ 1
n
, 1
60
], α2 ∈ [0, 1/2] and let A be an adjacency matrix containing

an (α1, α2, p)-regular subgraph. With probability at least 1 − 1/n2,6 Algorithm 16 returns a

subset S∗ with |S∗| ≥ (1 − 9α1)n such that ∥(A − pS∗)S∗×S∗∥ ≤ 20n · η(p, n). Furthermore,

these conditions on S∗ imply |pS∗ − p| ≤ 45 · η(p, n).

5The guarantees are comparable to Theorem 140, up to constant factors.
6The probability of success of Algorithm 16 is Pr[Bin(⌊9α1n⌋, 0.15) ≥ ⌊α1n⌋] ≥ 1− exp(−Ω(α1n)). Note

that for all values of α1n the success probability is > 1/2. When α1n = Ω(log n) then it gives the probability
of success at least 1 − 1/n2. When α1n = O(log n), to get the probability of success ≥ 1 − 1/n2 one can run
Algorithm 16 O(log n) times and choose an S∗ for which ∥(A− pS∗)S∗×S∗∥ is the minimum among all runs.

314



Algorithm 16. Spectral algorithm for estimating p
Input: number of nodes n, parameter α1 ∈ [1/n, 1/60], adjacency matrix A

S ← [n], Candidates← {}

Candidates← Candidates ∪ {S}

for t = 1 to 9α1n do

Compute a top normalized eigenvector v of the matrix (A− pS)S×S

Draw it from the distribution where i ∈ S is selected with probability v2i

S ← S \ {it}

Candidates← Candidates ∪ {S}

end for

S∗ ← argminS∈Candidates ∥(A− pS)S×S∥

Output: S∗

In the remainder of this section we will prove that Algorithm 16 indeed outputs a subset

S∗ with the guarantee in Theorem 141. Let F (unknown) be the (α1, α2, p)-regular subgraph of

A. The key technical argument is that if the spectral norm of (A−pS)S×S is large, the normalized

top eigenvector v of (A− pS)S×S places constant weight on the subset S ∩F c. Thus, if at a given

iteration Algorithm 16 possesses an unsatisfactory set S, it will remove a node from S ∩ F c with

a constant probability. We formalize this argument in the following key Lemma 142. The proof

of the lemma appears in Appendix 7.10.3.

Lemma 142. Suppose α1 ∈ [ 1
n
, 1
60
], α2 ∈ [0, 1/2] and letA be an adjacency matrix containing an

(α1, α2, p)-regular subgraph F . Let S ⊆ [n] be of size |S| ≥ (1−9α1)n, and v be the normalized

top eigenvector of (A− pS)S×S . If ∥(A− pS)S×S∥ ≥ 20n · η(p, n) then ∥vS∩F c∥2 ≥ 0.15.

We conclude this section with the proof of Theorem 141.

Proof of Theorem 141. It suffices to show that at least one of the sets S encountered by Algo-

rithm 16 satisfies the condition ∥(A− pS)S×S∥ ≤ 20n · η(p, n). From Lemma 142 it follows that

315



until the algorithm finds such a subset S, in each deletion step the probability of deleting a node

from F c is at least 0.15. Since there are 9α1n steps, a standard Chernoff-style argument implies

that either a subsetS (including nodes from bothF c andF ) satisfying the conditions of the theorem

will be created, or with probability at leastPr[Bin(⌊9α1n⌋, 0.15) ≥ ⌊α1n⌋] ≥ 1−exp(−Ω(α1n)),

all nodes from F c will be deleted and thus S ⊆ F . In the latter case we apply Equation (7.6),

which implies that ∥(A− pS)S×S∥ ≤ 20n · η(p, n) and the theorem. ■

Remark 4. Algorithm 16 runs for 9α1n rounds, and in each round the algorithm finds the top

eigenvector of an n × n matrix. This may be expensive to compute when the spectral gap

is small. However, Lemma 155 shows it suffices to find any unit vector v ∈ Rn such that

|v⊺(A− pS)S×Sv| ≥ 0.99||(A− pS)S×S||. Note that such a unit vector can be found in Õ(n2)

time [113]. Therefore, one can implement Algorithm 16 to run in Õ(α1n
3) time.

7.4.4 A Fine Trimming Algorithm

In this section, we provide a trimming method (Algorithm 17), which refines the output

of Algorithm 16, improving its guarantee (quantified in Theorem 141) by up to a factor of α1.

The algorithm (Algorithm 17) is easy to describe. For a subset S∗ ⊆ [n] and a node

i ∈ S∗, we define p(i)S∗ :=
∑

j∈S∗ Ai,j

|S∗| to be the normalized degree of node i in the subgraph induced

by S∗. We remove the 3α1n nodes for which this normalized degree deviate furthest from the

average parameter pS∗ . Its guarantees are quantified in Theorem 143, whose proof appears in

Appendix 7.10.7.

Theorem 143. Let α1 ∈ [ 1
n
, 1
60
], and A be an adjacency matrix containing an (α1, 13α1, p)-

regular subgraph. Suppose we have someS∗ such that |S∗| ≥ (1−9α1)n and ∥(A−pS∗)S∗×S∗∥ ≤

20n · η(p, n), Algorithm 17 outputs pSf such that for some universal constants c2, c3 > 0,

∣∣pSf − p
∣∣ ≤ c2α1η(p, n) + c3κ(13α1, p, n).

316



Algorithm 17. Trimming Algorithm
Input:number of nodes n, parameter α1 ∈ [1/n, 1/60], adjacency matrix A, subset S∗ ⊆ [n]

Define the score for each node i ∈ S∗ to be |pS∗ − p(i)S∗|

Remove the 3α1n nodes in S∗ with the highest scores to obtain Sf

return pSf

At this point, we have all the pieces to prove our main upper bound (Theorem 130). The

argument first reasons that a random graph will satisfy certain regularity conditions with high

probability. With these guarantees, we feed it into our coarse spectral algorithm (Algorithm 16),

followed by our fine trimming algorithm (Algorithm 17). Some (mundane) case analysis is

required to achieve the optimal bounds in certain parameter regimes; the full argument is

rigorously described in Appendix 7.10.8.

7.5 Lower Bounds

In this section, we prove our main lower bound for robust parameter estimation in

Erdős-Rényi random graphs establishing that our algorithms are tight up to logarithmic factors.

First we consider the problem of parameter estimation for directed version of Erdős-Rényi

random graphs. Such graphs have independent (outgoing) degrees across the nodes. We then

show a reduction showing that the directed version of the problem is at least as hard as the

standard version. We start by describing the directed Erdős-Rényi graphs.

Definition 4 (Directed Erdős-Rényi graphs). The directed Erdős-Rényi random graph model on

n nodes with parameter p, denoted as DG(n, p), is the distribution over directed graphs on n

nodes where each edge is present with probability p, independently of the other edges.

We show the following reduction from the directed problem to standard. We provide the

proof in Appendix 7.12.

317



Lemma 144. If there exists an algorithm that estimates p inG(n, p) to within±∆with probability

at most 1− δ under β-corruptions, then there exists an algorithm for estimating p in DG(n, p)

to within ±∆ with probability at most 1− δ under β-corruptions.

Then to prove the lower bound in Theorem 132, we prove its analogue for directed

Erdős-Rényi graphs.

Theorem 145. Let p ≤ 0.5. Then there exists a β-oblivious adversary such that no algo-

rithm can distinguish betweenDG(n, p) andDG
(
n, p+ 0.1max

(
β
√
p/n, β/n,

√
p/n
))

with

probability at least 0.65.

By symmetry, a similar statement holds for p > 0.5, with p replaced by 1− p. Combining

these two statements and Lemma 144 gives the lower bound in Theorem 132.

We prove Theorem 145 formally in Appendix 7.12, and conclude the section with a proof

sketch. We consider a weaker β-oblivious adversary for DG(n, p) that does the following: (a)

randomly choose a subset B of βn nodes, (b) for each node i ∈ B, remove all the outgoing edges

from i, and draw a number di independently from a different distribution over {0, 1, . . . , n},

and (c) select di nodes from [n] \ {i} at random and add an edge from i to them. Note that

both for the uncorrupted nodes and for nodes corrupted by such an adversary the out-degrees of

nodes completely determine its distribution and is therefore a sufficient statistic. For a random

directed graph DG ∼ DG(n, p), the out-degree of a node is distributed Bin(n − 1, p). We

can think of observed degrees of n nodes of an uncorrupted directed Erdős-Rényi random

graph DG ∼ DG(n, p) as independent samples from binomial distribution Bin(n − 1, p).

Let ∆p = 0.1max
(
β
√
p/n, β/n

)
. We show that for p ≤ 0.5, the TV distance between

Bin(n− 1, p) and Bin(n− 1, p+∆) is less than 0.15β. Then we show that an adversary that

chooses a random set of size Bin(n, 0.15β), can choose the distribution of their out-degree in a

way that the overall distribution of out-degrees is same for the both graphs DG ∼ DG(n, p) and

DG ∼ DG(n, p+∆p) after corruption. Finally, we show that even without corruption (when

β = 0), no algorithm can reliably distinguish between DG(n, p) and DG(n, p+ 0.1
√
p/n).

318



Appendix

7.6 Additional Related Work

Beyond the aforementioned results on efficient robust estimation [47, 99], several works

have focused on similar estimation tasks in a variety of related settings, including under

weaker moment assumptions [48], with a larger fraction of corrupted data [29], under sparsity

constraints [11, 104], for regression or other supervised learning tasks [90, 50, 123, 120], under

more general robustness conditions [135], with alternate perturbation models [155], for mixture

models [71, 97, 56], approaching information-theoretic barriers to accuracy [49], fast algorithms

for robust estimation [34, 36, 59], and with gradient descent algorithms [35]. See [54] for a

survey.

Our algorithm relies on a spectral outlier-removal technique common to several works

in robust estimation. Prior to this line of work, similar approaches were employed for robust

supervised learning tasks, namely learning halfspaces with malicious noise [91, 9].

There has been significant work on robust community detection in the presence of

adversaries [111, 106, 135, 13]. Most of this focuses on monotone adversaries (which make

only “helpful” changes to the graph) or edge corruptions. It is not clear how to define monotone

adversaries for the Erdős-Rényi setting, and for our estimation problem under edge corruptions,

the empirical estimator is trivially optimal in the worst case. [23] also considers a node corruption

model similar to ours. However, all of the aforementioned work studies community detection in

stochastic block models, which is different from our goal of parameter estimation.

Our corruption model may seem reminiscent of the classic planted clique problem [89,

82, 98], in which an algorithm must distinguish between a) G(n, 1/2) and b) G(n, 1/2) with

the addition of a planted clique of size βn. Our adversary is given much more power (i.e.,

they can make arbitrary changes to the neighbourhoods of their selected nodes), though

the two goals are incomparable. The planted clique problem is known to be information-

319



theoretically solvable for any β > 2 logn
n

. However, polynomial-time algorithms are only known

for β > 1/
√
n [4], and there is strong evidence that efficient algorithms do not exist for smaller

values of β [61, 62, 110, 42, 70, 14]. We have not run into issues in our setting related to this

intractability, though deeper connections between our model and the planted clique problem

would be interesting. Note that our task of parameter estimation is not interesting for the cases of

the planted clique problem when β ≤ 1/
√
n. Simply using the empirical estimator on the two

instances would give error ≈ 1/n and ≈ 1/n+ β2 = O(1/n), which are identical up to constant

factors.

Some prior works have studied robust estimation for graphical models, including Ising

models [103, 122] and Bayesian networks [37]. Despite the common nomenclature, these works

are rather different from our work on random graph models. Graphical models are distributions

over vectors, where correlations between coordinates exist based on some latent graph structure.

On the other hand, random graph models are distributions over graphs, sampled according

to some underlying parameters. While existing work on graphical models necessitates many

samples from the same distribution (due to parameters outnumbering the samples), our setting

requires a single sample from a random graph model.

Our setting is related to the untrusted batches setting in [125], where many batches of

samples are drawn from a distribution, but a constant fraction of batches may be adversarially

corrupted, see also followup works [77, 76, 78] and [30, 31]. This is somewhat similar to our

setting, where each batch is the set of edges connected to a node. However, the key difference is

that in our setting, each edge belongs to both its two endpoint nodes, whereas in the untrusted

batches setting, a sample is only associated with a single batch.

Estimation in random graph models has also been studied under the constraint of

differential privacy [20, 21, 133]. Despite superficial similarities between the two settings, we

are unaware of deeper technical connections.

Our setting bears some conceptual similarity to a line of robustness work focused on

decomposing a matrix as a sum of a low rank matrix and a sparse matrix [28, 24, 72]. Our

320



true parameter matrix is the rank-1 matrix pJ , where J is the all-ones matrix. However, the

uncorrupted adjacency matrix is a sample from the distribution where each entry is a Bernoulli

with the corresponding parameter, which is in general not low rank. Furthermore, our corruption

model allows for a bounded number of rows/columns to be changed, whereas this line of work

requires that the corruptions satisfy some further sparsity, such as a limited number of changed

entries per row/column, or that the corruption positions are chosen randomly.

7.7 Spectral norm properties

Matrix Properties.

We state some useful properties of matrix spectral norm that will be useful in our proofs.

Lemma 146. Let M,M ′ ∈ Rm×n, then ∥M +M ′∥ ≤ ∥M∥+ ∥M ′∥.

Lemma 147. For any M ∈ Rm×n, S ⊆ [m], S ′ ⊆ [n], ∥MS×S′∥ ≤ ∥M∥.

Proof. For any unit vectors u ∈ Rm and v ∈ Rn, let ũ = uS/∥uS∥ and ṽ = vS′/∥vS′∥. Then

|u⊺MS×S′v| = |u⊺SMvS′ | = ∥uS∥ · ∥vS′∥ · |ũ⊺Mṽ| ≤ |ũ⊺Mṽ| ≤ ∥M∥,

where the second last inequality used ∥uS∥ ≤ ∥u∥ = 1 and ∥vS′∥ ≤ ∥v∥ = 1 and the last

inequality used that ũ and ṽ are unit vectors. Finally, in the above equation taking maximum over

all unit vectors u, v completes the proof. ■

Lemma 148. For any M ∈ Rm×n, ∥M∥ ≥ |
∑

i,j Mi,j|√
mn

.

Proof. Consider u = 1√
m
[1, 1, . . . , 1] and v = 1√

n
[1, 1, . . . , 1]T , which are unit vectors in Rm

and Rn, respectively. Then |uTMv| = |
∑

i,j Mi,j |√
mn

≤ ∥M∥ by (7.3). ■

321



7.8 Concentration Inequalities

Lemma 149 (Chernoff bound). Let X1, X2, ..., Xt ∼ Ber (p) be t independent Bernoulli random

variables. Then for any λ > 0

Pr

[∣∣ t∑
i=1

Xi − tp
∣∣ ≥ λ

]
≤ 2 exp

(
−min

(
λ2

3tp
,
λ

3

))
. (7.8)

7.9 Proofs for Mean- and Median-Based Algorithms

In this section we provide the proofs for algorithms based on mean and medians.

Throughout this section we assume that n is at least 14400 for computational simplifications.

7.9.1 Upper Bounds for Mean and Median Estimators without
Corruptions

Mean estimate. The total number of edges in G ∼ G(n, p) is a Binomial distribution with

parameters
(
n
2

)
and p. Therefore, its expectation and variance are

(
n
2

)
p and

(
n
2

)
p(1 − p),

respectively. Thus, E [p̂mean(G)] = p and Var(pmean(G)) = p(1− p)/
(
n
2

)
≤ 4p(1− p)/n2. By

Chebyshev’s inequality,

Pr

(
|p̂mean(G)− p| ≥ 20 ·

√
p(1− p)
n

)
≤ 0.01.

Median estimate. We will show that with probability at least 0.995, the median degree of G

is at least (n− 1)p− C for some constant C. The main hurdle in showing this is the fact that

the node degrees deg(i) are not independent, which requires a careful analysis. For i ∈ [n], let

Yi := I (deg(i) ≤ p(n− 1)− 121). Then,
∑

i Yi is the number of nodes with degree at most

p(n− 1)− 121.

322



We establish the following bounds for n ≥ 14400:

E

[∑
i

Yi

]
≤ n

2
− 15
√
n (7.9)

Var
(∑

i

Yi

)
≤ n (7.10)

With these, we can apply Cantelli’s inequality to obtain:

Pr

(∑
i

Yi ≥
n

2

)
≤ Var (

∑
Yi)

Var (
∑
Yi) + (15

√
n)2

< 0.005.

This shows that with probability at least 0.995 the median degree is at least (n − 1)p − 121.

By symmetry, with probability at least 0.995 the median degree is at most (n − 1)p + 121.

By the union bound, with probability at least 0.99 the error of the median estimate is at most

121/(n− 1).

We now prove (7.9) and (7.10) to complete the proof.

To prove (7.9), note that deg(i) ∼ Bin(n − 1, p) and E [Yi] = Pr[Bin(n − 1, p) ≤

p(n− 1)− 121].

We show that for any n′, Pr[Bin(n′, p) ≤ pn′ − 121] ≤ 1
2
− 15√

n′+1
, then (7.9) follows

from the linearity of expectation. If Pr(Bin(n′, p) ≤ pn′ − 1) ≤ 1
2
− 15√

n′+1
then we are done.

We prove for the case when Pr(Bin(n′, p) ≤ pn′ − 1) ≥ 1
2
− 15√

n′+1
. By Chebyshev’s inequality,

Pr
(
Bin(n′, p) ≤ n′p−

√
n
)
≤ 1

4
.

323



Then, for n′ ≥ 14400,

Pr
(
Bin(n′, p) ∈ [n′p−

√
n′, pn′ − 1)

)
= Pr(Bin(n′, p) ≤ pn′ − 1)− Pr

(
Bin(n′, p) ≤ n′p−

√
n
)

≥ 1

2
− 15√

n′ + 1
− 1

4
≥ 1

8
.

Since the binomial distribution has a unique mode ≥ pn′ − 1, then for any t ≤
√
n′,

Pr (Bin(n′, p) ∈ [n′p− t, pn′ − 1)) ≥ t− 1√
n′ − 1

· 1
8
≥ t− 1√

n′ + 1
· 1
8
.

Since the median ofBin(n′, p) is≥ n′p− 1, [85], hence Pr[Bin(n′, p) ≤ pn′− 1] ≤ 1/2. From

it subtracting the above equation for t− 1 = 15 · 8 = 120, we get Pr[Bin(n′, p) ≤ pn′ − 121] ≤
1
2
− 15√

n′+1
.

We now prove (7.10). Since Yi’s are identically distributed indicator random variables,

Var
(∑

i

Yi

)
= nVar (Y1) + n(n− 1)Cov(Y1, Y2) ≤

n

4
+ n(n− 1)Cov(Y1, Y2). (7.11)

Let t = (n − 1)p − 121, then Yi = I (deg(i) ≤ t). Let Y12 be the number of edges from

node 1 to [n] \ {2} and I (E1,2) be the indicator that edge between 1 and 2 is present. Then

Y12 ∼ Bin(n−2, p). Elementary computations using the observation that Y1 = I (Y12 ≤ t− 1)+

I (Y12 = t) · (1− I (E1,2)) show that

Cov(Y1, Y2) = p(1− p) · Pr (Y12 = t)2 .

From Stirling’s approximation at t = np, we have Pr (Y12 = t) ≤ 1/
√
πp(1− p)(n− 2), and

therefore,

Cov(Y1, Y2) = p(1− p) · Pr (Y12 = t)2 ≤ 1

π(n− 2)
≤ 1

3n

324



for n > 1202. Plugging this in (7.11) proves (7.10).

7.9.2 Lower Bounds for Mean and Median Estimators under Corrup-
tions

We will prove the β/2 lower bound for the mean and median estimates. Consider the

following oblivious adversary A.

• Pick a random subset B ⊂ [n] of size βn.

• Let A1(G) be the graph obtained by adding all edges (u, v) that have at least one node in

B to the graph G, and let A2(G) be the graph obtained by removing all edges that have at

least one node in B from the graph G.

• Output A1(G) or A2(G) chosen uniformly at random.

Any node in A1(G) has degree at least βn more than the corresponding node in A2(G).

Therefore, |p̂mean(A1(G))− p̂mean(A2(G))| ≥ β, and |p̂med(A1(G))− p̂med(A2(G))| ≥ β.

Therefore by the triangle inequality, with probability 0.5, |p̂mean(A(G))− p| ≥ β/2, and

|p̂med(A(G))− p| ≥ β/2.

7.9.3 Upper Bounds for Prune-then-Mean/Median Algorithms

Recall the prune-then mean/median algorithm in Algorithm 15. We remove cβ fraction of

nodes with the highest and lowest degrees, and then output the median (or mean) of the remaining

subgraphs. We restate the performance bound of the algorithm here.

Theorem 135. For c ≥ 1 and 0 < β · c < 0.25, the prune-then-mean and prune-then-median

estimators described in Algorithm 15 prune 2cβn nodes in total and with probability 1− n−2

estimates p to an accuracy O
(
cβ2 + logn

n

)
and O

(
cβ +

√
logn
n

)
, respectively.

Proof. LetG ∼ G(n, p). By Chernoff bound (Lemma 149) and the union bound, with probability

≥ 1− 1/n2,

deg(i) ∈
(
np− 100

√
nlog n, np+ 100

√
nlog n

)
325



for all nodes i ∈ [n] of G. We condition on this event.

Suppose an adversary converts G into A(G) by corrupting nodes in B ⊂ [n] with

|B| ≤ βn. Note that the degree of a node in F = [n] \ B cannot change by more than βn.

Therefore, for all nodes i ∈ F in A(G),

deg(i) ∈
(
np− 100

√
nlog n− βn, np+ 100

√
nlog n+ βn

)
. (7.12)

Therefore, at most βn nodes do not satisfy (7.12). Since we remove cβn nodes with the highest

and the lowest degrees for c ≥ 1 all such nodes are pruned. The degree of any node not pruned

decreases by at most 2cβn, and after pruning all degrees are in the following interval

(
np− 100

√
nlog n− (2c+ 1)βn, np+ 100

√
nlog n+ βn

)
. (7.13)

We can rewrite this interval as follows

(
n(1− 2cβ)p−100

√
nlog n+ (2cp−2c−1)βn, n(1− 2cβ)p+100

√
nlog n+(2cp+1)βn

)
.

The prune-then-median estimator outputs one of these degrees (normalized), and its error is at

most (
100
√
n log n+ (4c+ 1)βn

(1− 2cβ)n

)
= O

(√
log n

n
+ cβ

)
.

We now bound the performance of prune-then-mean estimator. Let V ′ ⊆ [n] be the

nodes that are not pruned, so |V ′| = (1− 2cβ)n. Let F p := V ′ ∩ F and Bp := V ′ ∩ B be the

uncorrupted and corrupted nodes that remain after pruning. We have |Bp| ≤ |B| ≤ βn and

|F p| ≥ (1− (2c+ 1)β)n.

There are three types of edges among the nodes in V ′: (i) E1: edges whose both end points

are good nodes (in F p), (ii) E2: edges with at least one end point in Bp. The mean estimator

326



outputs
|E1|+ |E2|(|V ′|

2

) .

Its error is at most

∣∣∣∣∣ |E1|+ |E2|(|V ′|
2

) − p

∣∣∣∣∣ =
∣∣∣∣∣ |E1| −

(|F p|
2

)
p(|V ′|

2

) ∣∣∣∣∣+
∣∣∣∣∣ |E2| − (|V ′| − |F p|)((|V ′|+ |F p| − 1)/2)p(|V ′|

2

) ∣∣∣∣∣
=

∣∣∣∣∣ |E1| −
(|F p|

2

)
p(|V ′|

2

) ∣∣∣∣∣+
∣∣∣∣∣ |E2| − |Bp|((|V ′|+ |F p| − 1)/2)p(|V ′|

2

) ∣∣∣∣∣
We will bound each term individually. Since the subgraph F p × F p between the uncorrupted

nodes remains unaffected from the original graph G, then Theorem 152 implies that, with

probability ≥ 1− 3n−2,

∣∣∣∣∣ |E1|(|F p|
2

) − p∣∣∣∣∣ = O
(
max

{
cβ

√
ln(e/cβ)

n
,
cβ log n

n
,
1

n

})
≤ O

(
cβ2 +

log n

n

)
.

Therefore,

∣∣∣∣|E1| − (|F p|
2

)
p

∣∣∣∣ = (|F p|
2

)
·O
(
cβ2 +

log n

n

)
≤
(
|V ′|
2

)
·O
(
cβ2 +

log n

n

)
.

This shows that the first error term is at most O
(
cβ2 + logn

n

)
.

We now consider the second term. Note that |n− (|V ′|+ |F p| − 1)/2| ≤ 3cβn. By the

triangle inequality,

∣∣∣∣|E2| − 1

2
· |Bp|(|V ′|+ |F p| − 1)p

∣∣∣∣ ≤ ||E2| − |Bp| · np|+ 3βnp · |Bp|. (7.14)

Let deg(i) be the degree of node i after pruning. By the triangle inequality adding and

327



subtracting
∑

i∈Bp deg(i) to the first term we obtain,

||E2| − |Bp| · np| ≤

∣∣∣∣∣|E2| −∑
i∈Bp

deg(i)

∣∣∣∣∣+∑
i∈Bp

| deg(i)− np|.

Now note that |E2| is the number of edges with at least one endpoint in Bp. Therefore∣∣|E2| −∑i∈Bp deg(i)
∣∣ is the number of edges inside Bp × Bp and is at most |Bp|2. For the

second term we use the fact that each node in Bp satisfies (7.13), and |Bp| ≤ βn. This gives

||E2| − |Bp| · np| ≤

∣∣∣∣∣|E2| −∑
i∈Bp

deg(i)

∣∣∣∣∣+∑
i∈Bp

| deg(i)− np|

≤ |Bp| ·
(
100
√
nlog n+ (2c+ 2)βn

)
.

Plugging this along with the fact that |Bp| ≤ βn in (7.14), we obtain

∣∣∣∣|E2| − 1

2
· |Bp|(|V ′|+ |F p| − 1)p

∣∣∣∣ ≤ βn ·
((

100
√
nlog n+ (5c+ 2)βn

))
.

Since
(|V ′|

2

)
> (n/2)2, the second term can be bounded by

O

(
4β ·

(√
log n

n
+ (5c+ 2)β

))
= O

(
cβ2 +

log n

n

)
,

thus proving the result.

■

7.9.4 Lower Bounds for Prune-then-Mean/Median Algorithms

We will prove the following result showing the tight dependence of the upper bounds on

β.

Theorem 136. Let p = 0.5, β > 100 ·
√
log n/n, and c > 0 be such that cβ < 0.25. There

328



exists an adversary such that with probability at least 0.99, the prune-then-median estimate

that deletes cβn satisfies |p̂(A(G))− p| ≥ C ′β, and the prune-then-mean estimate satisfies

|p̂(A(G))− p| ≥ C ′β2.

Let G ∼ G(n, 0.5). The oblivious adversary A operates as follows. It partitions G

into five random sets B, S0, S1, S2, and S3 with |B| = βn, |S0| = cβn, |S1| = cβn, |S2| =
2
3
(1− (2c+ 1)β)n, |S3| = 1

3
(1− (2c+ 1)β)n.

• Remove all edges with at least one endpoint in B.

• Remove all edges between S0 and B.

• Add all edges between S1 and B.

• Connect each node in B to each node in S2 independently with probability 3/5.

• Connect each node in B to each node in S3 independently with probability 3/10.

• Connect nodes within B to each other with probability 3/5.

By the Chernoff bound (Lemma 149) and the union bound, we obtain the following

bounds on the node degrees in A(G).

Lemma 150. In A(G), the following hold with probability at least 1− 3n−3

deg(u) = n

(
1

2
+
β

10

)
± 4
√
n log n for u ∈ B,

deg(u) = n ·
(
1

2
− β

2

)
± 4
√
n log n for u ∈ S0,

deg(u) = n ·
(
1

2
+
β

2

)
± 4
√
n log n for u ∈ S1,

deg(u) = n ·
(
1

2
+
β

10

)
± 4
√
n log n for u ∈ S2,

deg(u) = n ·
(
1

2
− β

5

)
± 4
√
n log n for u ∈ S3.

329



Since β > 100
√
log n/n, the nodes in S0 are the cβn nodes with the lowest degrees

and the nodes in S1 are the cβn nodes with the highest degrees, and they are pruned by the

algorithm. Now since the sets S0 and S1 were randomly chosen ahead of time, in the pruned

graph, once again by the Chernoff bound (Lemma 149) and the union bound, the following holds

with probability at least 1− 3n−3

deg(u) = n

(
1− 2cβ

2
+
β

10

)
± 8
√
n log n for u ∈ B,

deg(u) = n ·
(
1− 2cβ

2
+
β

10

)
± 8
√
n log n for u ∈ S2,

deg(u) = n ·
(
1− 2cβ

2
− β

5

)
± 8
√
n log n for u ∈ S3.

Since we assume that cβ < 0.25, there are more nodes in S3 than in S2 ∪ B and every node

in S2 ∪ B had a higher degree than any node in S3. Therefore a node in S3 is chosen as the

median node, thus deviating from the median degree by at least β/5± 8
√

log n/n > β/10 for

β > 100
√

log n/n. This proves the lower bound for prune-then-median estimate.

Now for the prune-then-mean estimate, note that each edge that remains after pruning

is chosen at random, independent of all other edges. The total expected number of edges after

pruning is 1
2
· n

2(1−2cβ)2

2
+ n2β2

20
and the variance is at most n2/4. Therefore, the total error of the

prune-then-mean estimate is at least β2/20±O(1/n), and since β > 100
√

log n/n, the error is

at least β2/40.

7.10 Upper Bound Proofs

7.10.1 Proof of Lemma 137

Proof. We first prove Equation (7.6). From the triangle inequality

∥(A− pF ′)F ′×F ′∥ ≤ ∥(A− p)F ′×F ′∥+ |p− pF ′ | · F ′.

330



From Lemma 148 we have

∥(A− p)F ′×F ′∥ ≥ |F ′| · |pF ′ − p|.

Combining the above two equations with regularity proves Equation (7.6),

∥(A− pF ′)F ′×F ′∥ ≤ 2∥(A− p)F ′×F ′∥ ≤ 2n · η(p, n),

where the last inequality follows from regularity condition 2.

Next, Equation (7.7) is obtained by using F ′ = F ′′ in regularity condition 3 and

|F ′| ≥ n/2. ■

7.10.2 Proof of Theorem 138

Proof. In a β-corrupted graph the set of uncorrupted nodes F has size≥ (1− β)n, which proves

regularity condition 1.

We use the following bound on the spectral norm of a centered version of Ã, which

follows from Remark 3.13 of [12].

Lemma 151. Let Ã be the adjacency matrix of a sample from G(n, p) and I be the n × n

identity matrix. There exist a universal constant c such that with probability at least 1− n−2,

∥Ã− p+ pI∥ ≤ c
√
np(1− p) + lnn.

To establish regularity condition 2, note that A and Ã agree on (i, j) ∈ F × F , and

therefore by Lemma 147 and Lemma 151, ∥(A− p)F ′×F ′∥=∥(Ã− p)F ′×F ′∥ ≤ ∥(Ã− p)∥ ≤

∥(Ã− p+ pI)∥+ p∥I∥ ≤ c
√
np(1− p) + lnn+ 1.

The following theorem implies regularity condition 3. The proof uses a Chernoff and

union bound style argument, and is provided in Section 7.11.

331



Theorem 152. Let Ã be the adjacency matrix of a sample fromG(n, p). With probability at least

1− 3n−2, simultaneously for all α ∈ [0, 1
2
], we have

max
|S|,|S′|∈Cα

∣∣∣∣∣ ∑
i∈S, j∈S′

(Ãi,j − p)

∣∣∣∣∣ ≤ 6max
{
16αn

√
pn ln

e

α
, 60αn ln

e

α
, 5n
√
p ln(en)

}
,

where we define Cα := [0, αn] ∪ [n− αn, n].

■

7.10.3 Proofs for Lemma 142

Proof. We first require the following lemma, which lower bounds the spectral norm of a matrix

(A− pS)S×S primarily in terms of the empirical estimates of p corresponding to the submatrices

induced by S and S ∩ F . The proof appears in Section 7.10.4.

Lemma 153. Given any symmetric matrix A, and subsets S, F ⊆ [n]

∥(A− pS)S×S∥ ≥
|pS∩F − pS| · |S ∩ F |

3
·min

{√
|S ∩ F |
|S ∩ F c|

,
|S ∩ F |
|S ∩ F c|

}
.

For α1 ≤ 1/60 and |S| ≥ (1−9α1)n, we can deduce that |S∩F | ≥ n(1−10α1) ≥ 5n/6

and |S ∩ F c| ≤ |F c| ≤ α1n ≤ n/60. Therefore, |S ∩ F c|/|S ∩ F | ≤ 1/50. By Lemma 153,

|S∩F | · |pS∩F−pS| ≤ 3∥(A−pS)S×S∥max
{√ |S ∩ F c|
|S ∩ F |

,
|S ∩ F c|
|S ∩ F |

}
≤ 3√

50
·∥(A−pS)S×S∥.

Applying Equation (7.6) with F ′ = S ∩ F , we have

∥(A− pS∩F )(S∩F )×(S∩F )∥ ≤ 2n · η(p, n).

332



This implies ∥(A− pS∩F )(S∩F )×(S∩F )∥ ≤ 0.1∥(A− pS)S×S∥. Next, by the triangle inequality,

∥(A− pS)(S∩F )×(S∩F )∥ ≤ ∥(A− pS∩F )(S∩F )×(S∩F )∥+ |S ∩ F | · |pS∩F − pS|

≤
(

1

10
+

3√
50

)
∥(A− pS)S×S∥.

To interpret the derivation above: we have reasoned that if the spectral norm of (A−pS)S×S

is large, the contribution due to S ∩ F (i.e., the submatrix induced by the intersection with the

good nodes) is relatively small. This suggests that any top eigenvector must place a constant mass

on S ∩F c. Indeed, the following theorem formalizes this reasoning, showing that the normalized

top eigenvector contains significant weight in this complementary subset of indices. The proof

appears in Section 7.10.5.

Theorem 154. Let M be a non-zero n× n real symmetric matrix such that for some set S ⊆ [n]

and 0 ≤ ρ ≤ 1 we have ∥MS×S∥ ≤ ρ∥M∥. Let v be any normalized top eigenvector of M . Then

∥vSc∥2 ≥ (1−ρ)2
1+(1−ρ)2 .

Applying Theorem 154 with ρ = 1
10

+ 3√
50

implies that ∥vS\(S∩F )∥2 = ∥vS∩F c∥2 ≥
(1−ρ)2

1+(1−ρ)2 > 0.15. ■

7.10.4 Proof of Lemma 153

First note that

0 =
∑
i,j∈S

(Ai,j − pS) =
∑

i,j∈S∩F

(Ai,j − pS) +
∑

i,j∈S∩F c

(Ai,j − pS) + 2
∑

i∈S∩F, j∈S∩F c

(Ai,j − pS).

Therefore,

∣∣∣∣∣ ∑
i,j∈S∩F

(Ai,j − pS)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
i,j∈S∩F c

(Ai,j − pS)

∣∣∣∣∣+ 2

∣∣∣∣∣ ∑
i∈S∩F, j∈S∩F c

(Ai,j − pS)

∣∣∣∣∣.

333



Hence,

|
∑

i,j∈S∩F (Ai,j − pS)|
3

≤ max

{∣∣∣∣∣ ∑
i,j∈S∩F c

(Ai,j − pS)

∣∣∣∣∣,
∣∣∣∣∣ ∑
i∈S∩F, j∈S∩F c

(Ai,j − pS)

∣∣∣∣∣
}
. (7.15)

From Lemma 147 , Lemma 148 and the above inequality, it follows that

∥(A− pS)S×S∥ ≥ max
{
∥(A− pS)(S∩F c)×(S∩F c)∥, ∥(A− pS)(S∩F c)×(S∩F )∥

}
(7.16)

≥ max
{ |∑i,j∈S∩F c(Ai,j − pS)|

|S ∩ F c|
,
|
∑

i∈S∩F c, j∈S∩F (Ai,j − pS)|√
|S ∩ F | · |S ∩ F c|

}
(7.17)

≥ min
{ |∑i,j∈S∩F (Ai,j − pS)|

3|S ∩ F c|
,
|
∑

i,j∈S∩F (Ai,j − pS)|
3
√
|S ∩ F | · |S ∩ F c|

}
(7.18)

=
|
∑

i,j∈S∩F (Ai,j − pS)|
3
√
|S ∩ F | · |S ∩ F c|

·min
{√ |S ∩ F |
|S ∩ F c|

, 1
}

=
|pS∩F − pS∥S ∩ F |

3
·min

{ |S ∩ F |
|S ∩ F c|

,

√
|S ∩ F |
|S ∩ F c|

}
,

where (7.16) is from Lemma 147, (7.17) follows from Lemma 148, (7.18) from (7.15).

7.10.5 Proof of Theorem 154

Since eigenvalues of symmetric matrices are real, let v ∈ Rn be the normalized top

eigenvector of M with eigenvalue λ ∈ R such that Mv = λv and ∥M∥ = |λ|. Since Mv = λv,

we have MS×[n] v = λvS , and

MS×[n] v =MS×S vS +MS×Sc vSc (7.19)

334



By Lemma 146 on (7.19),

∥MS×[n] v∥ ≤ ∥MS×S vS∥+ ∥MS×Sc vSc∥

⇒ |λ| · ∥vS∥ ≤ ρ|λ| · ∥vS∥+ |λ| · ∥vSc∥ (7.20)

⇒ (1− ρ)∥vS∥ ≤ ∥vSc∥

⇒ (1− ρ)2∥vS∥2 ≤ ∥vSc∥2

where (7.20) uses the assumption of the lemma. Finally using ∥vS∥2 + ∥vSc∥2 = 1 gives the

bound.

7.10.6 An Approximate Top Eigenvector Suffices

As discussed in Remark 4, computing an exact top eigenvector in Algorithm 16 may be

costly. The guarantees associated with this top eigenvector are quantified in Lemma 142, which

relies upon Theorem 154. In this section, we prove a variant of Theorem 154, which works with

an approximate rather than an exact top eigenvector. By repeating the proof of Lemma 142 with

Lemma 155 swapped in place of Theorem 154, we can instead use approximate top eigenvector

procedures, reducing the runtime.

Lemma 155. Let M be a nonzero n × n real matrix such that for some set S ⊂ [n] we

have ∥MS×S∥ ≤ 0.53∥M∥. Let v ∈ Rn be a unit vector such that ∥Mv∥ ≥ 0.99∥M∥, then

∥vSc∥2 ≥ 1
8
.

Proof. Let u =Mv. Note that MS×[n] v = uS and MSc×[n] v = uSc , therefore

vT M v = vT (MS×[n] +MSc×[n]) v = vT (uS + uSc) = vTS uS + vTSc uSc .

335



Then by the triangle inequality,

|vT M v| ≤ ∥vS∥ · ∥uS∥+ ∥vSc∥ · ∥uSc∥

⇒ 0.99∥M∥ ≤ ∥vS∥ · ∥uS∥+ ∥vSc∥ · ∥uSc∥

⇒ 0.99∥M∥ ≤
√

1− ∥vSc∥2 · ∥uS∥+ ∥vSc∥ ·
√
∥M∥2 − ∥uS∥2.

In the last line, we used the fact that ∥u∥ ≤ ∥M∥ · ∥v∥ = ∥M∥ and ∥u∥2 = ∥uS∥2 + ∥uSc∥2.

Rearranging this expression, it is easy to show that in the case ∥uS∥2 ≤ 3∥M∥2
4

, the inequality is

violated if ||vSc∥2 ≤ 1
8
. Therefore, ∥uS∥2 ≤ 3∥M∥2

4
implies ||vSc∥2 ≥ 1

8
.

To prove the lemma, we must handle the remaining case: we show that if ∥uS∥2 ≥ 3∥M∥2
4

,

then ∥vSc∥2 ≥ 1
8
.

Note that

MS×[n] v =MS×S vS +MS×Sc vSc .

Then

∥MS×[n] v∥ ≤ ∥MS×S vS∥+ ∥MS×Sc vSc∥

⇒ ∥uS∥ ≤ 0.53∥M∥ · ∥vS∥+ ∥M∥ · ∥vSc∥

⇒ ∥uS∥2 ≤ 2(0.532)∥M∥2 · ∥vS∥2 + 2∥M∥2 · ∥vSc∥2

⇒ ∥uS∥2 ≤ 0.5618∥M∥2(1− ∥vSc∥2) + 2∥M∥2 · ∥vSc∥2

⇒ ∥uS∥2 ≤ 0.5618∥M∥2 + 1.4382∥M∥2 · ∥vSc∥2.

When ∥uS∥2 ≥ 3∥M∥2/4, the above equation implies ∥vSc∥2 ≥ 1/8, which completes the proof

of the lemma. ■

336



7.10.7 Proofs for Theorem 143

Before proving the Theorem we state and prove two auxiliary lemmas. The first lemma

shows that the average of entries of all small submatrices of S∗ × S∗ are close to pS∗ .

Lemma 156. Assume the conditions of Theorem 143 hold. For all S1, S2 ⊆ S∗ with |S1|, |S2| ≤

3α1n we have

∣∣∣∣∣ ∑
i∈S1, j∈S2

(Ai,j − pS∗)

∣∣∣∣∣ ≤ 60α1n
2 · η(p, n).

Proof. Since ∥(A− pS∗)S∗×S∗∥ ≤ 20n · η(p, n), and using Lemma 147 and Lemma 148, we get

∣∣∣∣∣ ∑
(i,j)∈S1×S2

(Ai,j − pS∗)

∣∣∣∣∣≤√|S1| · |S2| · ∥(A− pS∗)S1×S2∥

≤ 3α1n∥(A− pS∗)S∗×S∗∥

≤60α1n
2 · η(p, n).

■

We now show that all the nodes in Sf have normalized degree close to pS∗ .

Lemma 157. Assume the conditions of Theorem 143 hold, and letSf be the output of Algorithm 17,

then for every node i ∈ Sf ,

|p(i)S∗ − pS∗ | ≤
(2κ(13α1, p, n)

α1

+ 210η(p, n)
)
.

Proof. Suppose to the contrary that after 3α1n nodes are deleted by Algorithm 17, there is a node

i ∈ Sf such that |p(i)S∗ − pS∗| >
(

2κ(13α1,p,n)
α1

+ 210η(p, n)
)

. Therefore, all the nodes deleted by

Algorithm 17 are such that |p(i)S∗ − pS∗| >
(

2κ(13α1,p,n)
α1

+210η(p, n)
)

. LetD+ be the set of nodes

deleted by Algorithm 17 such that p(i)S∗ > pS∗ for i ∈ D+ andD− be the set of deleted nodes i such

337



that p(i)S∗ < pS∗ for i ∈ D−. Since |D+|+ |D−| = 3α1n and |(D+ ∪D−) \F | ≤ |F c| ≤ α1n, we

have that |D+ ∩ F | ≥ α1n or |D− ∩ F | ≥ α1n. Suppose |D+ ∩ F | ≥ α1n. Let F ′ = D+ ∩ F .

Then, using |F ′| ≥ α1n and |S∗| > n/2, we have

∑
i∈F ′,j∈S∗

(Ai,j − pS∗) =
∑
i∈F ′

|S∗|(p(i)S∗ − pS∗) > |F ′| · |S∗| ·
(2κ(13α1, p, n)

α1

+ 210η(p, n)
)

≥ n2κ(13α1, p, n) + 105|F ′|n · η(p, n).

Now, note that

∑
i∈F ′,j∈S∗

(Ai,j − pS∗)

=
∑

i∈F ′,j∈S∗∩F

(Ai,j − p) + |F ′| · |S∗ ∩ F | · (p− pS∗) +
∑

i∈F ′,j∈S∗∩F c

(Ai,j − pS∗)

By Lemma 156 with S1 = F ′ and S2 = S∗ ∩ F c the last term in the expression above is at most

60 α1 n
2·η(p, n). For the second term note that |p− pS∗| < 45 · η(p, n) and therefore, the second

term is at most 45|F ′|n · η(p, n). Finally using regularity condition 3 with F ′ and F ′′ = S∗ ∩ F

and α2 = 13α1 bounds the first term by n2 · κ(13α1, p, n). Combining the three bounds and

using |F ′| ≥ α1n,

∑
i∈F ′,j∈S∗

(Ai,j − pS∗) ≤ n2κ(13α1, p, n) + (45|F ′|+ 60α1n)n · η(p, n)

≤ n2κ(13α1, p, n) + 105|F ′|n · η(p, n),

This shows the contradiction and completes the proof for the case |D+ ∩ F | > α1n. The case

when |D− ∩ F | > α1n has a similar argument and is omitted. ■

Combining these lemmas appropriately allows us to conclude our main result on the

guarantees of Algorithm 17.

338



Proof of Theorem 143. We will partition Sf × Sf into the following groups and bound each

term separately.

∑
i,j∈Sf

Ai,j =
∑

i,j∈Sf∩F

Ai,j + 2
∑

i∈Sf ,j∈Sf∩F c

Ai,j −
∑

i,j∈Sf∩F c

Ai,j.

Since pSf =
∑

i,j∈Sf Ai,j/|Sf |2, by the triangle inequality,

∣∣pSf − p
∣∣ ≤ ∣∣∣∣∣

∑
i,j∈Sf∩F (Ai,j − p)

|Sf |2

∣∣∣∣∣+ 2

∣∣∣∣∣
∑

i∈Sf j∈Sf∩F c(Ai,j − p)
|Sf |2

∣∣∣∣∣+
∣∣∣∣∣
∑

i,j∈Sf∩F c(Ai,j − p)
|Sf |2

∣∣∣∣∣.
For the first term, |Sf∩F | ≥ (1−13α1)n ≥ n/2. Using Equation (7.7) withF ′ = Sf∩F

and α2 = 13α1,∣∣∣∣∣
∑

i,j∈Sf∩F (Ai,j − p)
|Sf |2

∣∣∣∣∣ ≤
∣∣∣∣∣
∑

i,j∈Sf∩F (Ai,j − p)
|Sf ∩ F |2

∣∣∣∣∣ = |pSf∩F − p| ≤ 4κ(13α1, p, n).

Since |Sf × (Sf ∩ F c)| ≤ α1n
2, and |Sf | ≥ n/2, by the triangle inequality, the second

term is bounded by

2

∣∣∣∣∣
∑

i∈Sf j∈Sf∩F c(Ai,j − p)
|Sf |2

∣∣∣∣∣ (7.21)

≤ 2

∣∣∣∣∣
∑

i∈Sf j∈Sf∩F c(Ai,j − pS∗)

n2/4

∣∣∣∣∣+ 2α1n
2

n2/4
|pS∗ − p|

≤ 8

∣∣∣∣∣
∑

i∈S∗ j∈Sf∩F c(Ai,j − pS∗)

n2

∣∣∣∣∣+ 8

∣∣∣∣∣
∑

i∈S∗\Sf j∈Sf∩F c(Ai,j − pS∗)

n2

∣∣∣∣∣+ 8α1 · 45 · η(p, n).

Since |S∗ \Sf | ≤ 3α1n and |Sf ∩F c| ≤ α1n, by taking S1 = S∗ \Sf and S2 = Sf ∩F c

339



in Lemma 156 bounds the second term above by 8(60α1 · η(p, n)). For the first term,

∣∣∣∣∣
∑

i∈S∗ j∈Sf∩F c(Ai,j − pS∗)

n2

∣∣∣∣∣ ≤ ∑
j∈Sf∩F c

∣∣∣∣∣
∑

i∈S∗(Ai,j − pS∗)

n2

∣∣∣∣∣
≤

∑
j∈Sf∩F c

|S∗|
n2

∣∣∣∣∣
∑

i∈S∗(Ai,j − pS∗)

|S∗|

∣∣∣∣∣
≤

∑
j∈Sf∩F c

1

n
|p(j)S∗ − pS∗ |

≤ α1 ·
(2κ(13α1, p, n)

α1

+ 210η(p, n)
)
,

where we use Lemma 157 and |Sf ∩ F c| ≤ α1n.

For the final term, since |(Sf ∩ F c)× (Sf ∩ F c)| ≤ α2
1n

2,

∣∣∣∣∣
∑

i,j∈Sf∩F c(Ai,j − p)
|Sf |2

∣∣∣∣∣ ≤
∣∣∣∣∣
∑

i,j∈Sf∩F c(Ai,j − pS∗)

|Sf |2

∣∣∣∣∣+ |pS∗ − p| · |S
f ∩ F c|2

|Sf |2
,

which can be bounded again by taking S1 = S2 = Sf ∩ F c in Lemma 156. ■

7.10.8 Putting Things Together: Proof of Theorem 130

We now combine our methods from previous sections to prove our main upper bound.

This primarily consists of running Algorithm 16 followed by Algorithm 17, as described by

Algorithm 18 and quantified by Theorem 158. For technical reasons, to get the correct scaling

of the error with respect to the parameter p, we run this procedure on both the graph and its

complement, and output the appropriate of the two estimates. This is described in Algorithm 19,

and quantified in Theorem 159. This theorem implies our upper bound (Theorem 130).

Theorem 158. Supposeα1 ∈ [ 1
n
, 1
60
] and letA be an adjacency matrix containing an (α1, 13α2, p)-

regular subgraph. With probability at least 1− n−2, Algorithm 18 outputs pSf such that for some

340



universal constants c2, c3 > 0,

∣∣pSf − p
∣∣ ≤ c2α1η(p, n) + c3κ(13α1, p, n).

The running time of this algorithm is Õ(α1n
3).

Proof. The estimation guarantees in Theorem 158 follows by combining the guarantees of

Theorems 141, and 143. We conclude the proof by analyzing the running time. As discussed in

Remark 4, Algorithm 16 can be implemented in Õ(α1n
3) time. Algorithm 17 takes O(n2) time.

Hence, Algorithm 18 runs in Õ(α1n
3) time. ■

Algorithm 18. Algorithm for estimating p
Input:number of nodes n, parameter α1 ∈ [1/n, 1/60], adjacency matrix A

S∗ ← run the spectral algorithm (Algorithm 16) with inputs n, α1, A

pSf ← run the trimming algorithm (Algorithm 17) with inputs n, α1, A, S∗

return pSf

Observe that the κ(13α1, p, n) error term in Theorem 158 scales proportional to √p,

which gives improved error when p is close to 0. To enjoy the same improvement for p close to 1,

we can run the algorithm on the complement of the graph. Theorem 159 describes the resulting

guarantees, and the procedure appears as Algorithm 19. Note that we apply Theorem 138 to

convert from adjacency matrices containing regular subgraphs (which we have considered up to

this point) back to our original problem.

Theorem 159. Suppose β ∈ [ 1
n
, 1
60
] and p ∈ [0, 1]. Let G ∼ G(n, p), and A be the adjacency

matrix of a rewiring of G by a β-omniscient adversary. With probability at least 1 − 10n−2,

running Algorithm 19 will output a p̂ such that

|p̂− p| ≤ C ·

(√
p(1− p) log n

n
+
β
√
p(1− p) log(1/β)√

n
+
β

n
log n

)
,

341



for some universal constant C. The running time of this algorithm is Õ(βn3).

Proof. Theorem 158 and Theorem 138 imply that with probability≥ 1−5n−2, p∗ in Algorithm 19

satisfies:

∣∣p∗ − p∣∣ ≤ c2βη(p, n) + c3κ(13β, p, n). (7.22)

By symmetry, with probability ≥ 1− 5n−2, q∗ in Algorithm 19 satisfies:

∣∣q∗ − (1− p)
∣∣ ≤ c2βη(1− p, n) + c3κ(13β, 1− p, n). (7.23)

When p ≤ 0.1, equation (7.22) implies p∗ ≤ 0.5, and hence p̂ = p∗ and |p̂−p| = |p∗−p|. Similarly,

when p ≥ 0.9, (7.22) implies p∗ > 0.5, and hence p̂ = 1 − q∗ and |p̂ − p| = |(1 − q∗) − p| =

|(1 − p) − q∗|. Finally, for 0.1 ≤ p ≤ 0.9, we have |p̂ − p| ≤ max{|p∗ − p|, |q∗ − (1 − p)|}.

Combining the bound for the three cases completes the proof. ■

Algorithm 19. Algorithm for Robust Erdős-Rényi parameter estimation
Input:number of nodes n, parameter β ∈ [1/n, 1/60], adjacency matrix A

p∗ ← run Algorithm 18 with inputs n, β, A

q∗ ← run Algorithm 18 with inputs n, β, (1 − I − A) (1 and I are the n × n all-ones and

identity matrix)

if p∗ ≤ 0.5 then

p̂← p∗

else

p̂← 1− q∗

end if

return p̂

342



7.11 Proof of Theorem 152

Throughout this proof, let γ = max
{
16αn

√
pn ln e

α
, 60αn ln e

α
, 5n
√
p ln(en)

}
. First

fix α ∈ [0, 1/2].

We first consider the entire matrix Ã, namelyS = S ′ = [n]. Recall that the diagonal entries

of Ã are zero. Then, note that
∑

(i,j)∈[n]×[n](Ãi,j − p) = 2·
∑

(i,j)∈[n]×[n]: i>j(Ãi,j − p) − np.

Now since all the entries Ãij are independent for i > j, we can apply the Chernoff bound

(Equation (7.8)) with λ = γ over these entries and with probability at least 1− n−3,

∣∣∣∣∣ ∑
(i,j)∈[n]×[n]: i>j

(Ãi,j − p)

∣∣∣∣∣ ≤ γ. (7.24)

Since np ≤ n
√
p ≤ γ, then from the above equation we get |

∑
(i,j)∈[n]×[n](Ãi,j − p)| ≤ 3γ, with

probability at least 1− n−3. Note that for α < 1/n the statement only applies to S = S ′ = [n],

and thus this case is handled. In the remaining proof α ∈ [1/n, 1/2].

Conditioned on the event |
∑

(i,j)∈[n]×[n](Ãi,j − p)| ≤ 3γ, note that for all T ⊂ [n]× [n],

∣∣∣∣∣ ∑
(i,j)∈T

(Ãi,j − p)

∣∣∣∣∣ > 6γ ⇒

∣∣∣∣∣ ∑
(i,j)∈T c

(Ãi,j − p)

∣∣∣∣∣ > 3γ, (7.25)

where T c = [n]× [n] \ T . In particular, if T = S × S ′ with |S| ≥ n− αn and |S ′| ≥ n− αn,

then |T c| < 2αn2 and if min{|S|, |S ′|} ≤ αn, then |T | ≤ αn2. Therefore, for T = S × S ′ with

|S|, |S ′| ∈ Cα, either |T | or |T c| is smaller than 2αn2. With this in hand, the theorem will follow

from the following lemmas.

Lemma 160. Let T ⊂ [n]× [n] be a given subset of size at most 2αn2, then

Pr

[∣∣∣∣∣ ∑
(i,j)∈T

(Ãi,j − p)

∣∣∣∣∣ ≥ 3γ

]
≤ 4 exp (−20αn ln e/α) .

343



We now bound the number of subsets of interest.

Lemma 161. For a given α ∈ [1/n, 1/2], the number of sets S, S ′ with |S|, |S ′| ∈ Cα is at most

4 exp(4αn ln(e/α)).

For a given α ∈ [1/n, 1/2] and T = S × S ′ such that |S|, |S ′| ∈ Cα, since either of T

or T c have size ≤ 2αn2, therefore, combining the two lemmas implies that with probability

≥ 1− 16 exp (−16αn ln e/α) ≥ 1− n3,

min

{∣∣∣∣∣ ∑
(i,j)∈T

(Ãi,j − p)

∣∣∣∣∣,
∣∣∣∣∣ ∑
(i,j)∈T c

(Ãi,j − p)

∣∣∣∣∣
}
≤ 3γ.

Then from Equation (7.25), with probability ≥ 1− n3 − n3,
∣∣∣∑(i,j)∈T (Ãi,j − p)

∣∣∣ ≤ 6γ. This

completes the proof for a given value of α. To extend it to all α ∈ [1/n, 1/2] first note that it

suffices to prove the theorem for α ∈ { 1
n
, 2
n
, ..., ⌊0.5n⌋

n
}, and then upon taking the union bound

over these values of α completes the proof.

We now prove Lemma 160. Note that

∑
(i,j)∈T

(Ãi,j − p) =
∑

(i,j)∈T :i>j

(Ãi,j − p) +
∑

(i,j)∈T :i<j

(Ãi,j − p)−
∑

(i,i)∈T

p. (7.26)

Then using the triangle inequality, {(i, i) ∈ T} ≤ n and np ≤ γ to disregard the third

term (as done before),

Pr

[∣∣∣∣∣ ∑
(i,j)∈T

(Ãi,j − p)

∣∣∣∣∣ ≥ 2γ

]

≤ Pr

[∣∣∣∣∣ ∑
(i,j)∈T :i>j

(Ãi,j − p)

∣∣∣∣∣ ≥ γ

]
+ Pr

[∣∣∣∣∣ ∑
(i,j)∈T :i<j

(Ãi,j − p)

∣∣∣∣∣ ≥ γ

]
.

The two events on the right hand side are for sums of independent mean-centered

Bernoulli random variables. We will now apply the Chernoff bound (Equation (7.8)). Note that

for a fixed λ the right hand side of (7.8) is a non-decreasing function of t. Further note that

344



|{(i, j) ∈ T : i > j}|, |{(i, j) ∈ T : i < j}| ≤ |T | < 2αn2. Therefore,

Pr

[∣∣∣∣∣ ∑
(i,j)∈T :i>j

(Ãi,j − p)

∣∣∣∣∣ ≥ γ

]
≤ 2 exp

(
−min

(
γ2

6αn2p
,
γ

3

))
≤ 2 exp

(
−20αn ln e

α

)
.

Similarly,

Pr

[∣∣∣∣∣ ∑
(i,j)∈T :i<j

(Ãi,j − p)

∣∣∣∣∣ ≥ γ

]
≤ 2 exp

(
−20αn ln e

α

)
.

Combining the two bounds completes the proof of Lemma 160.

We finally prove Lemma 161. The number of such sets can be upper bounded by

4 ·
(∑⌊αn⌋

j=0

(
n
j

))2
, where

⌊αn⌋∑
j=0

(
n

j

)
≤ (αn+ 1) ·

(
n

⌊αn⌋

)
≤ (αn+ 1) ·

( e
α

)αn
≤ eαn ln( e

α)+ln(αn+1) ≤ eαn ln( e
α)+αn ≤ e2αn ln(e/α).

7.12 Lower bound proofs

Proof of Lemma 144. We prove this lemma by converting a β-corrupted graph from DG(n, p)

to a β-corrupted graph from G(n, p). Then one can run the algorithm for the undirected setting

to obtain an estimate of p, which implies the same error guarantees for the directed instance.

Suppose there exists a random directed graph DG ∼ DG(n, p) which is β-corrupted

by an adversary. Assume there exists some lexicographic ordering of the nodes (e.g., they are

numbered from 1 to n). We define a corresponding undirected graph G as follows: let there

be an edge between nodes i and j in G if there exists an edge from i to j in DG and i < j.

Sans corruptions, this converts DG(n, p) into G(n, p) since the edges are still independent and

the probability of each edge existing is p. Furthermore, when at most βn nodes in the original

345



directed graph are modified, at most βn nodes are changed in the corresponding undirected

graph. ■

Proof of Theorem 145. Our β-oblivious adversary for the directed graph model works as follows.

The adversary picks a set B of size Bin(n, 0.15β) to corrupt, by independently picking each

node in [n] with probability 0.15β. Note that it is possible that the size of the set of corrupted

nodes B may exceed βn with small probability. We will address this issue later.

The adversary will corrupt outgoing edges of the nodes in B. The adversary’s strategy to

corrupt the neighborhood of node i ∈ B is as follows. They first choose node i’s new out-degree

deg (i) independently from some distribution P over {0, . . . , n − 1}. Then, they select an

independent random subset Si of nodes [n] \ {i} of size deg (i). Finally, they introduce the

directed edge (i, j) for each j ∈ Si, and remove the directed edge (i, j) for each j /∈ Si. The

distribution of the degree of corrupted nodes, P , depends on the parameter p of the Erdős-Rényi

graph and will be specified later.

By this construction, all graphs with a given outgoing degree distribution d1, d2, . . . , dn

have the same probability, and they form a sufficient statistic for estimating p. The out-degree of

any uncorrupted node is distributed as Bin(n− 1, p) and the out-degree of any corrupted node

has distribution P . Since each node is corrupted with probability 0.15β, the out-degree of each

node is an i.i.d. sample from the mixture distribution (1− 0.15β) ·Bin(n− 1, p) + 0.15β · P .

Next, we show that for any p1 ≤ 1/2 and p2 = p1 + 0.1max
(
β
√
p/n, 0.1β/n

)
there

exist distributions P1 and P2 such that

(1− 0.15β) ·Bin(n− 1, p1) + 0.15β · P1 = (1− 0.15β) ·Bin(n− 1, p2) + 0.15β · P2.

(7.27)

This will imply that, with the aforementioned adversary, any estimator that distinguishes between

the two cases will be correct with probability at most 1/2. At this point, we account for the

probability that the adversary selects a set B of size > βn, which is not allowed according to the

346



corruption model. By Markov’s inequality, this occurs with probability at most 0.15. Therefore,

even counting such violations as a success at distinguishing the two cases, it still succeeds with

probability at most 0.5 + 0.15 = 0.65.

To prove the existence of P1 and P2 satisfying (7.27) we use the following folklore

fact: given any two distributions D1 and D2 and ϵ > 0, if dTV (D1, D2) ≤ ϵ, then there exist

distributions Q1 and Q2 such that (1− ϵ)D1 + ϵQ1 = (1− ϵ)D2 + ϵQ2.

Hence, it suffices to show that

dTV (Bin(n− 1, p1), Bin(n− 1, p2)) ≤ 0.15β. (7.28)

The total variation distance between two binomials can be bounded as [128], [3, Eq (2.16)].

dTV (Bin(n′, p), Bin(n′, p+ x)) ≤
√
e

2

τ(x)

(1− τ(x))2
, (7.29)

where τ(x) = x
√

n′+2
2p(1−p) . We also use the trivial upper bound dTV (Bin(n′, p), Bin(n′, p+x)) ≤

n′x.

For the case when β
√
p/n ≥ 0.1β/n, applying the first bound for x = 0.1β

√
p/n and

n′ = n− 1 we get

τ(x) = 0.1β

√
p

n

√
n+ 1

2p(1− p)
≤ 0.1 · 1.1β = 0.11β.

For this case, using (7.29) gives

dTV ((Bin(n− 1, p1), Bin(n− 1, p2)) ≤ 0.15β.

For the other case when β
√
p/n < 0.1β/n, applying the trivial bound gives

dTV ((Bin(n− 1, p1), Bin(n− 1, p2)) ≤ 0.1β(n− 1)/n < 0.1β.

347



This proves (7.28) and shows the existence of P1 and P2, which completes the proof of the first

two terms in ∆p.

Finally, we show that the third term in the max in ∆p holds even when there is no

corruption. To show this we first note that in absence of corruption the sufficient statistics

for estimating p is the total number of edges in the directed graph, which has a distribution

Bin((n − 1)2, p). Then to show that for p ≤ 0.5 no algorithm can distinguish between

between DG(n, p) and DG(n, p + 0.1
√
p/n) with probability ≥ 0.6 it suffices to show that

dTV(Bin((n− 1)2, p), Bin((n− 1)2, p+ 0.1
√
p/n)) < 0.2, which can be verified using (7.29)

for x = 0.1
√
p/n, n′ = (n− 1)2, and any p < 1/2. ■

Chapter 7, in full is a reprint of the material as it appears in Robust estimation for random

graphs 2022. Jayadev Acharya, Ayush Jain, Gautam Kamath, Ananda Theertha Suresh, and

Huanyu Zhang. In COLT 2022. The dissertation author was the primary investigator and author

of this paper.

348



Bibliography

[1] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. Sample-optimal
density estimation in nearly-linear time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1278–1289. SIAM, 2017.

[2] Jayadev Acharya, Ayush Jain, Gautam Kamath, Ananda Theertha Suresh, and Huanyu
Zhang. Robust estimation for random graphs. In Conference on Learning Theory, pages
130–166. PMLR, 2022.

[3] José A Adell and Pedro Jodrá. Exact kolmogorov and total variation distances between some
familiar discrete distributions. Journal of Inequalities and Applications, 2006(1):64307,
2006.

[4] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a
random graph. Random Structures and Algorithms, 13(3-4):457–466, 1998.

[5] Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s inequality. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
72–80. ACM, 2004.

[6] Frank J Anscombe. Rejection of outliers. Technometrics, 2(2):123–146, 1960.

[7] Martin Anthony and John Shawe-Taylor. A result of vapnik with applications. Discrete
Applied Mathematics, 47(3):207–217, 1993.

[8] Hassan Ashtiani and Abbas Mehrabian. Some techniques in density estimation. arXiv
preprint arXiv:1801.04003, 2018.

[9] Pranjal Awasthi, Maria Florina Balcan, and Philip M. Long. The power of localization
for efficiently learning linear separators with noise. In Proceedings of the 46th Annual
ACM Symposium on the Theory of Computing, STOC ’14, pages 449–458, New York, NY,
USA, 2014. ACM.

[10] Pranjal Awasthi, Avrim Blum, Nika Haghtalab, and Yishay Mansour. Efficient pac learning
from the crowd. In Conference on Learning Theory, pages 127–150. PMLR, 2017.

349



[11] Sivaraman Balakrishnan, Simon S. Du, Jerry Li, and Aarti Singh. Computationally
efficient robust sparse estimation in high dimensions. In Proceedings of the 30th Annual
Conference on Learning Theory, COLT ’17, pages 169–212, 2017.

[12] Afonso S. Bandeira and Ramon Van Handel. Sharp nonasymptotic bounds on the norm of
random matrices with independent entries. The Annals of Probability, 44(4):2479–2506,
2016.

[13] Jess Banks, Sidhanth Mohanty, and Prasad Raghavendra. Local statistics, semidefinite
programming, and community detection. In Proceedings of the 32nd Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’21, pages 1298–1316, Philadelphia, PA, USA,
2021. SIAM.

[14] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and
Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem.
SIAM Journal on Computing, 48(2):687–735, 2019.

[15] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security of
machine learning. Machine Learning, 81(2):121–148, 2010.

[16] Thorsten Bernholt. Robust estimators are hard to compute. Technical report, Technische
Universität Dortmund, 2006.

[17] Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, and Purushottam Kar. Consistent
robust regression. Advances in Neural Information Processing Systems, 30, 2017.

[18] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression via hard thresholding.
Advances in neural information processing systems, 28, 2015.

[19] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. arXiv preprint arXiv:1206.6389, 2012.

[20] Christian Borgs, Jennifer Chayes, and Adam Smith. Private graphon estimation for sparse
graphs. In Advances in Neural Information Processing Systems 28, NIPS ’15, pages
1369–1377. Curran Associates, Inc., 2015.

[21] Christian Borgs, Jennifer Chayes, Adam Smith, and Ilias Zadik. Revealing network struc-
ture, confidentially: Improved rates for node-private graphon estimation. In Proceedings
of the 59th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’18,
pages 533–543, Washington, DC, USA, 2018. IEEE Computer Society.

[22] Dietrich Braess and Thomas Sauer. Bernstein polynomials and learning theory. Journal
of Approximation Theory, 128(2):187–206, 2004.

350



[23] T. Tony Cai and Xiaodong Li. Robust and computationally feasible community detection
in the presence of arbitrary outlier nodes. The Annals of Statistics, 43(3):1027–1059, 2015.

[24] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component
analysis? Journal of the ACM, 58(3):1–37, 2011.

[25] Center for Disease Control. CDC influenza vaccine 2020/2021. https://www.cdc.gov/flu/
season/faq-flu-season-2020-2021.htm, 2020.

[26] Arun Tejasvi Chaganty and Percy Liang. Spectral experts for estimating mixtures of linear
regressions. In International Conference on Machine Learning (ICML), pages 1040–1048,
2013.

[27] Siu-On Chan, Ilias Diakonikolas, Rocco A Servedio, and Xiaorui Sun. Efficient density
estimation via piecewise polynomial approximation. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, pages 604–613, 2014.

[28] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky. Rank-
sparsity incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–
596, 2011.

[29] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
47–60. ACM, 2017.

[30] Sitan Chen, Jerry Li, and Ankur Moitra. Efficiently learning structured distributions from
untrusted batches. In Proceedings of the 52nd Annual ACM Symposium on the Theory of
Computing, STOC ’20, pages 960–973, New York, NY, USA, 2020. ACM.

[31] Sitan Chen, Jerry Li, and Ankur Moitra. Learning structured distributions from untrusted
batches: Faster and simpler. arXiv preprint arXiv:2002.10435, 2020.

[32] Sitan Chen, Jerry Li, and Zhao Song. Learning mixtures of linear regressions in
subexponential time via Fourier moments. In STOC. https://arxiv.org/pdf/1912.07629.pdf,
2020.

[33] Yanxi Chen and H. Vincent Poor. Learning mixtures of linear dynamical systems. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 3507–3557. PMLR,
17–23 Jul 2022.

[34] Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust mean estimation in
nearly-linear time. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete

351

https://www.cdc.gov/flu/season/faq-flu-season-2020-2021.htm
https://www.cdc.gov/flu/season/faq-flu-season-2020-2021.htm
https://arxiv.org/pdf/1912.07629.pdf


Algorithms, SODA ’19, pages 2755–2771, Philadelphia, PA, USA, 2019. SIAM.

[35] Yu Cheng, Ilias Diakonikolas, Rong Ge, and Mahdi Soltanolkotabi. High-dimensional
robust mean estimation via gradient descent. In Proceedings of the 37th International
Conference on Machine Learning, ICML ’20, pages 1768–1778. JMLR, Inc., 2020.

[36] Yu Cheng, Ilias Diakonikolas, Rong Ge, and David P Woodruff. Faster algorithms for
high-dimensional robust covariance estimation. In Conference on Learning Theory, pages
727–757. PMLR, 2019.

[37] Yu Cheng, Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Robust learning of
fixed-structure Bayesian networks. In Advances in Neural Information Processing Systems
31, NeurIPS ’18, pages 10304–10316. Curran Associates, Inc., 2018.

[38] Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I Jordan, Nicolas
Flammarion, and Peter L Bartlett. Optimal robust linear regression in nearly linear time.
arXiv preprint arXiv:2007.08137, 2020.

[39] Yeshwanth Cherapanamjeri, Sidhanth Mohanty, and Morris Yau. List decodable mean
estimation in nearly linear time. arXiv preprint arXiv:2005.09796, 2020.

[40] Arnak Dalalyan and Philip Thompson. Outlier-robust estimation of a sparse linear model
using ℓ1 -penalized huber’s m-estimator. Advances in neural information processing
systems, 32, 2019.

[41] Abhimanyu Das, Ayush Jain, Weihao Kong, and Rajat Sen. Efficient list-decodable
regression using batches. arXiv preprint arXiv:2211.12743, 2022.

[42] Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for hidden
clique and hidden submatrix problems. In Proceedings of the 28th Annual Conference on
Learning Theory, COLT ’15, pages 523–562, 2015.

[43] Luc Devroye and Gabor Lugosi. Combinatorial Methods in Density Estimation. Springer
Science & Business Media, 2001.

[44] Ilias Diakonikolas. Learning structured distributions. Handbook of Big Data, 267, 2016.

[45] Ilias Diakonikolas, Samuel B Hopkins, Daniel Kane, and Sushrut Karmalkar. Robustly
learning any clusterable mixture of gaussians. arXiv preprint arXiv:2005.06417, 2020.

[46] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robust estimators in high-dimensions without the computational intractability.
SIAM Journal on Computing, 48(2):742–864, 2019.

352



[47] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robust estimators in high dimensions without the computational intractability. In
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
655–664. IEEE, 2016.

[48] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Being robust (in high dimensions) can be practical. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 999–1008. JMLR. org,
2017.

[49] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. Robustly learning a gaussian: Getting optimal error, efficiently. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2683–2702. SIAM, 2018.

[50] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob Steinhardt, and
Alistair Stewart. Sever: A robust meta-algorithm for stochastic optimization. In Proceedings
of the 36th International Conference on Machine Learning, ICML ’19, pages 1596–1606.
JMLR, Inc., 2019.

[51] Ilias Diakonikolas, Daniel Kane, and Daniel Kongsgaard. List-decodable mean estimation
via iterative multi-filtering. Advances in Neural Information Processing Systems, 33:9312–
9323, 2020.

[52] Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard, Jerry Li, and Kevin Tian. List-
decodable mean estimation in nearly-pca time. Advances in Neural Information Processing
Systems, 34:10195–10208, 2021.

[53] Ilias Diakonikolas, Daniel Kane, Ankit Pensia, Thanasis Pittas, and Alistair Stewart.
Statistical query lower bounds for list-decodable linear regression. Advances in Neural
Information Processing Systems, 34:3191–3204, 2021.

[54] Ilias Diakonikolas and Daniel M. Kane. Recent advances in algorithmic high-dimensional
robust statistics. arXiv preprint arXiv:1911.05911, 2019.

[55] Ilias Diakonikolas and Daniel M Kane. Small covers for near-zero sets of polynomials and
learning latent variable models. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 184–195. IEEE, 2020.

[56] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable robust mean
estimation and learning mixtures of spherical gaussians. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 1047–1060. ACM, 2018.

[57] Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower

353



bounds for robust linear regression. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2745–2754. SIAM, 2019.

[58] Terry E Dielman. Applied regression analysis for business and economics. Duxbury/Thom-
son Learning Pacific Grove, CA, 2001.

[59] Yihe Dong, Samuel Hopkins, and Jerry Li. Quantum entropy scoring for fast robust mean
estimation and improved outlier detection. Advances in Neural Information Processing
Systems, 32, 2019.

[60] Paul Erdős and Alfréd Rényi. On random graphs i. Publicationes Mathematicate,
6:290–297, 1959.

[61] Uriel Feige and Robert Krauthgamer. The probable value of the lovász–schrĳver relaxations
for maximum independent set. SIAM Journal on Computing, 32(2):345–370, 2003.

[62] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S Vempala, and Ying Xiao.
Statistical algorithms and a lower bound for detecting planted cliques. Journal of the ACM,
64(2):1–37, 2017.

[63] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the 34th International Conference on
Machine Learning (ICML), pages 1126–1135, 2017.

[64] Chao Gao. Robust regression via mutivariate regression depth. Bernoulli, 26(2):1139–1170,
2020.

[65] Edgar N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144,
1959.

[66] Michael Grottke, Julian Knoll, and Rainer Groß. How the distribution of the number of
items rated per user influences the quality of recommendations. In 2015 15th International
Conference on Innovations for Community Services (I4CS), pages 1–8. IEEE, 2015.

[67] Yi Hao, Ayush Jain, Alon Orlitsky, and Vaishakh Ravindrakumar. Surf: A simple,
universal, robust, fast distribution learning algorithm. arXiv preprint arXiv:2002.09589,
2020.

[68] Sam Hopkins, Jerry Li, and Fred Zhang. Robust and heavy-tailed mean estimation made
simple, via regret minimization. Advances in Neural Information Processing Systems, 33,
2020.

[69] Samuel B Hopkins et al. Mean estimation with sub-gaussian rates in polynomial time.
Annals of Statistics, 48(2):1193–1213, 2020.

354



[70] Samuel B Hopkins, Pravesh Kothari, Aaron Henry Potechin, Prasad Raghavendra, and
Tselil Schramm. On the integrality gap of degree-4 sum of squares for planted clique.
ACM Transactions on Algorithms, 14(3):1–31, 2018.

[71] Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1021–1034, 2018.

[72] Daniel Hsu, Sham M Kakade, and Tong Zhang. Robust matrix decomposition with sparse
corruptions. IEEE Transactions on Information Theory, 57(11):7221–7234, 2011.

[73] Peter J Huber. Robust estimation of a location parameter. Annals Mathematics Statistics,
35, 1964.

[74] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics,
pages 492–518. Springer, 1992.

[75] Peter J Huber. Robust statistics. In International encyclopedia of statistical science, pages
1248–1251. Springer, 2011.

[76] Ayush Jain and Alon Orlitsky. A general method for robust learning from batches. In
Advances in Neural Information Processing Systems 33, NeurIPS ’20, pages 21775–21785.
Curran Associates, Inc., 2020.

[77] Ayush Jain and Alon Orlitsky. Optimal robust learning of discrete distributions from
batches. In Proceedings of the 37th International Conference on Machine Learning, ICML
’20, pages 4651–4660. JMLR, Inc., 2020.

[78] Ayush Jain and Alon Orlitsky. Robust density estimation from batches: The best things in
life are (nearly) free. In International Conference on Machine Learning, pages 4698–4708.
PMLR, 2021.

[79] Ayush Jain, Alon Orlitsky, and Vaishakh Ravindrakumar. Robust estimation algorithms
don’t need to know the corruption level. arXiv preprint arXiv:2202.05453, 2022.

[80] Arun Jambulapati, Jerry Li, Tselil Schramm, and Kevin Tian. Robust regression revisited:
Acceleration and improved estimation rates. Advances in Neural Information Processing
Systems, 34:4475–4488, 2021.

[81] Arun Jambulapati, Jerry Li, and Kevin Tian. Robust sub-gaussian principal component
analysis and width-independent schatten packing. Advances in Neural Information
Processing Systems, 33, 2020.

[82] Mark Jerrum. Large cliques elude the Metropolis process. Random Structures and

355



Algorithms, 3(4):347–359, 1992.

[83] He Jia and Santosh Vempala. Robustly clustering a mixture of gaussians. arXiv preprint
arXiv:1911.11838, 2019.

[84] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em
algorithm. Neural computation, 6(2):181–214, 1994.

[85] Rob Kaas and Jan M Buhrman. Mean, median and mode in binomial distributions.
Statistica Neerlandica, 34(1):13–18, 1980.

[86] Sudeep Kamath, Alon Orlitsky, Dheeraj Pichapati, and Ananda Theertha Suresh. On
learning distributions from their samples. In Conference on Learning Theory, pages
1066–1100, 2015.

[87] Sushrut Karmalkar, Adam Klivans, and Pravesh Kothari. List-decodable linear regression.
Advances in neural information processing systems, 32, 2019.

[88] Sushrut Karmalkar and Eric Price. Compressed sensing with adversarial sparse noise via
l1 regression. In 2nd Symposium on Simplicity in Algorithms, 2019.

[89] Richard Karp. Probabilistic analysis of some combinatorial search problems. traub, jf
(ed.): Algorithms and complexity: New directions and recent results, 1976.

[90] Adam Klivans, Pravesh K Kothari, and Raghu Meka. Efficient algorithms for outlier-robust
regression. In Conference On Learning Theory, pages 1420–1430. PMLR, 2018.

[91] Adam R Klivans, Philip M Long, and Rocco A Servedio. Learning halfspaces with
malicious noise. Journal of Machine Learning Research, 10(12):2715–2740, 2009.

[92] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for
one-shot image recognition. In ICML deep learning workshop, volume 2, 2015.

[93] Weihao Kong, Rajat Sen, Pranjal Awasthi, and Abhimanyu Das. Trimmed maximum
likelihood estimation for robust learning in generalized linear models. arXiv preprint
arXiv:2206.04777, 2022.

[94] Weihao Kong, Raghav Somani, Sham Kakade, and Sewoong Oh. Robust meta-learning for
mixed linear regression with small batches. Advances in Neural Information Processing
Systems, 33, 2020.

[95] Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, and Sewoong Oh. Meta-
learning for mixed linear regression. In International Conference on Machine Learning,
pages 5394–5404. PMLR, 2020.

356



[96] Nikola Konstantinov, Elias Frantar, Dan Alistarh, and Christoph Lampert. On the sample
complexity of adversarial multi-source pac learning. In International Conference on
Machine Learning, pages 5416–5425. PMLR, 2020.

[97] Pravesh K Kothari, Jacob Steinhardt, and David Steurer. Robust moment estimation and
improved clustering via sum of squares. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1035–1046, 2018.

[98] Luděk Kučera. Expected complexity of graph partitioning problems. Discrete Applied
Mathematics, 57(2-3):193–212, 1995.

[99] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and
covariance. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 665–674. IEEE, 2016.

[100] Guillaume Lecué and Shahar Mendelson. Performance of empirical risk minimization in
linear aggregation. 2016.

[101] Jerry Li and Guanghao Ye. Robust gaussian covariance estimation in nearly-matrix
multiplication time. Advances in Neural Information Processing Systems, 33, 2020.

[102] Yuanzhi Li and Yingyu Liang. Learning mixtures of linear regressions with nearly optimal
complexity. In COLT. arXiv preprint arXiv:1802.07895, 2018.

[103] Erik M. Lindgren, Vatsal Shah, Yanyao Shen, Alexandros G. Dimakis, and Adam Klivans.
On robust learning of Ising models. In NeurIPS Workshop on Relational Representation
Learning, 2018.

[104] Liu Liu, Yanyao Shen, Tianyang Li, and Constantine Caramanis. High dimensional robust
sparse regression. In Proceedings of the 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS ’20, pages 411–421. JMLR, Inc., 2020.

[105] Wolfgang Maass. Efficient agnostic pac-learning with simple hypothesis. In Proceedings
of the seventh annual conference on Computational learning theory, pages 67–75, 1994.

[106] Konstantin Makarychev, Yury Makarychev, and Aravindan Vĳayaraghavan. Learning
communities in the presence of errors. In Proceedings of the 29th Annual Conference on
Learning Theory, COLT ’16, pages 1258–1291, 2016.

[107] John H McDonald. Handbook of biological statistics, volume 2. sparky house publishing
Baltimore, MD, 2009.

[108] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-
efficient learning of deep networks from decentralized data. arXiv preprint

357



arXiv:1602.05629, 2016.

[109] H Brendan McMahan and Daniel Ramage. research.google.com/pubs/pub44822.html.
2017.

[110] Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for
planted clique. In Proceedings of the 47th Annual ACM Symposium on the Theory of
Computing, STOC ’15, pages 87–96, New York, NY, USA, 2015. ACM.

[111] Ankur Moitra, William Perry, and Alexander S Wein. How robust are reconstruction
thresholds for community detection? In Proceedings of the 48th Annual ACM Symposium
on the Theory of Computing, STOC ’16, pages 828–841, New York, NY, USA, 2016.
ACM.

[112] Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, and Purushottam Kar. Globally-
convergent iteratively reweighted least squares for robust regression problems. In The
22nd International Conference on Artificial Intelligence and Statistics, pages 313–322,
2019.

[113] Cameron Musco and Christopher Musco. Randomized block Krylov methods for stronger
and faster approximate singular value decomposition. In Advances in Neural Information
Processing Systems 28, NeurIPS ’15, pages 1396–1404. Curran Associates, Inc., 2015.

[114] Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. Random graph models of
social networks. Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572,
2002.

[115] Carl M O’Brien. Nonparametric estimation under shape constraints: Estimators, algorithms
and asymptotics. International Statistical Review, 84(2):318–319, 2016.

[116] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent
adaptive metric for improved few-shot learning. In Advances in Neural Information
Processing Systems, pages 721–731, 2018.

[117] Soumyabrata Pal, Arya Mazumdar, Rajat Sen, and Avishek Ghosh. On learning mixture of
linear regressions in the non-realizable setting. In International Conference on Machine
Learning, pages 17202–17220. PMLR, 2022.

[118] Yoon-Joo Park and Alexander Tuzhilin. The long tail of recommender systems and how to
leverage it. In Proceedings of the 2008 ACM conference on Recommender systems, pages
11–18, 2008.

[119] Peristera Paschou, Jamey Lewis, Asif Javed, and Petros Drineas. Ancestry informative
markers for fine-scale individual assignment to worldwide populations. Journal of Medical

358



Genetics, 47(12):835–847, 2010.

[120] Ankit Pensia, Varun Jog, and Po-Ling Loh. Robust regression with covariate filtering:
Heavy tails and adversarial contamination. arXiv preprint arXiv:2009.12976, 2021.

[121] Rigollet Philippe. 18.s997 high-dimensional statistics. Massachusetts Institute of Technol-
ogy: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA,
2015.

[122] Adarsh Prasad, Vishwak Srinivasan, Sivaraman Balakrishnan, and Pradeep Ravikumar.
On learning Ising models under Huber’s contamination model. In Advances in Neural
Information Processing Systems 33, NeurIPS ’20. Curran Associates, Inc., 2020.

[123] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar.
Robust estimation via robust gradient estimation. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 82(3):601–627, 2020.

[124] Mingda Qiao. Do outliers ruin collaboration? In International Conference on Machine
Learning, pages 4180–4187. PMLR, 2018.

[125] Mingda Qiao and Gregory Valiant. Learning discrete distributions from untrusted batches.
In Proceedings of the 9th Conference on Innovations in Theoretical Computer Science, ITCS
’18, pages 47:1–47:20, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[126] Prasad Raghavendra and Morris Yau. List decodable learning via sum of squares. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 161–180. SIAM, 2020.

[127] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In
International Conference on Representation Learning, 2017.

[128] Bero Roos. Binomial approximation to the poisson binomial distribution: The krawtchouk
expansion. Theory of Probability & Its Applications, 45(2):258–272, 2001.

[129] Noah A Rosenberg, Jonathan K Pritchard, James L Weber, Howard M Cann, Kenneth K
Kidd, Lev A Zhivotovsky, and Marcus W Feldman. Genetic structure of human populations.
science, 298(5602):2381–2385, 2002.

[130] Peter J Rousseeuw. Tutorial to robust statistics. Journal of chemometrics, 5(1):1–20, 1991.

[131] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv
preprint arXiv:1807.05960, 2018.

359



[132] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning
how to learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[133] Adam Sealfon and Jonathan Ullman. Efficiently estimating Erdos-Renyi graphs with node
differential privacy. In Advances in Neural Information Processing Systems 32, NeurIPS
’19, pages 3765–3775. Curran Associates, Inc., 2019.

[134] Hanie Sedghi, Majid Janzamin, and Anima Anandkumar. Provable tensor methods for
learning mixtures of generalized linear models. In Artificial Intelligence and Statistics
(AISTATS), pages 1223–1231, 2016.

[135] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for
learning in the presence of arbitrary outliers. arXiv preprint arXiv:1703.04940, 2017.

[136] Jacob Steinhardt, Gregory Valiant, and Moses Charikar. Avoiding imposters and delin-
quents: Adversarial crowdsourcing and peer prediction. Advances in Neural Information
Processing Systems, 29, 2016.

[137] Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, and Prateek Jain. Adaptive hard
thresholding for near-optimal consistent robust regression. In Conference on Learning
Theory, pages 2892–2897. PMLR, 2019.

[138] Michel Talagrand. Sharper bounds for gaussian and empirical processes. The Annals of
Probability, pages 28–76, 1994.

[139] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media,
2012.

[140] Kai Ming Ting, Boon Toh Low, and Ian H Witten. Learning from batched data: Model
combination versus data combination. Knowledge and Information Systems, 1:83–106,
1999.

[141] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle.
Meta-dataset: A dataset of datasets for learning to learn from few examples. arXiv preprint
arXiv:1903.03096, 2019.

[142] John W Tukey. A survey of sampling from contaminated distributions. Contributions to
probability and statistics, pages 448–485, 1960.

[143] Aad W Vaart and Jon A Wellner. Weak convergence and empirical processes: with
applications to statistics. Springer, 1996.

[144] Vladimir Vapnik and Alexey Chervonenkis. Theory of pattern recognition, 1974.

360



[145] VN Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280,
1971.

[146] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
In Yonina C. Eldar and Gitta Kutyniok, editors, Compressed Sensing, pages 210–268.
Cambridge University Press, 2012.

[147] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan
Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A
field guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

[148] Jun Wang, Arjen P De Vries, and Marcel JT Reinders. Unifying user-based and item-
based collaborative filtering approaches by similarity fusion. In Proceedings of the 29th
annual international ACM SIGIR conference on Research and development in information
retrieval, pages 501–508, 2006.

[149] Mati Wax and Ilan Ziskind. On unique localization of multiple sources by passive sensor
arrays. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7):996–1000,
1989.

[150] Wikipedia. Historical annual reformulations of the influenza vaccine. https://en.wikipedia.
org/wiki/Historical_annual_reformulations_of_the_influenza_vaccine, 2020.

[151] Yannis G Yatracos. Rates of convergence of minimum distance estimators and kolmogorov’s
entropy. The Annals of Statistics, pages 768–774, 1985.

[152] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Alternating minimization
for mixed linear regression. In International Conference on Machine Learning, pages
613–621. PMLR, 2014.

[153] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture of many
random linear equations by tensor decomposition and alternating minimization. arXiv
preprint arXiv:1608.05749, 2016.

[154] Kai Zhong, Prateek Jain, and Inderjit S Dhillon. Mixed linear regression with multiple
components. In Advances in neural information processing systems (NIPS), pages
2190–2198, 2016.

[155] Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Generalized resilience and robust
statistics. arXiv preprint arXiv:1909.08755, 2019.

361

https://en.wikipedia.org/wiki/Historical_annual_reformulations_of_the_influenza_vaccine
https://en.wikipedia.org/wiki/Historical_annual_reformulations_of_the_influenza_vaccine

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Thesis Organization

	Optimal Robust Learning of Discrete Distributions from Batches
	Introduction
	Motivation
	Problem Formulation
	Result Summary
	Comparison to Recent Results and Techniques
	Other Related Work
	Preliminaries
	Organization of the Paper

	Algorithm and its Analysis
	Extension to > 0
	Efficient Detection Algorithm

	Experiments
	Proof of Lemma  3
	Statistical Properties of the Good Batches
	Completing the proof of Lemma 3

	Proof of the other Lemmas
	Proof of Lemma 4
	Proof of Lemma 6
	Proof of Lemma 7

	Proof of Theorem 9
	Proof of Theorem 2

	A General Method for Robust Learning from Batches
	Introduction
	Motivation
	Summary of techniques and contributions

	Results
	Estimating distributions in F distance
	Learning distributions in total-variation distance
	Learning univariate structured distributions
	Binary classification

	Other related and concurrent work
	Overview of the filtering framework for learning in F distance
	Preliminaries
	Vapnik-Chervonenkis (VC) theory
	A framework for distribution estimation from corrupted sample batches
	Using subsets as filters
	Filtering algorithms for finite collection of subsets
	Robust covering theorem for learning in F distance and Proof of Theorem 17
	Computationally efficient algorithm for subsets generated by a partition
	Computationally efficient algorithm for learning in Fk distance and proof of Theorem 18

	Properties of the Collection of Good Batches
	Proof of Lemma 35

	Remaining proofs
	Proof of Theorem 21
	Proof of Lemma 22
	Proof of Theorem 24
	Proof of Theorem 25


	Robust Density Estimation from Batches: The Best Things in Life are (Nearly) Free
	Overview
	Robust learning
	Robust learning from batches
	Robust learning large and continuous distributions
	Overview of results and applications
	Other related works
	Organization of the paper

	Main techniques, results, and applications
	Density estimation in Ak distance
	Density estimation in TV distance
	Application to interval-based classification
	Application to the top k heavy hitters problem

	Two simplifications of Ak-distance learning
	Discretization using partitioning
	Reduction to learning k element subset

	Filtering algorithm for Ak distance
	Notation
	The filtering algorithm

	Experiments
	Overview of supplementary material
	Experiments for continuous distributions
	Essential properties of good batches
	Two useful results
	The filtering algorithm and its analysis
	Proofs of Lemmas 60 and 61

	Proof of some simple results in the main paper
	Essential properties of good batches
	Proof of Theorem 56

	Cover of set Ak
	Concentration inequalities for good batches

	Efficient List-Decodable Regression using Batches
	Introduction
	Problem formulation
	Notation
	Main Results
	Technical Overview
	How Batches Help
	Clipping to Improve Sample Complexity
	Estimating Parameters for Multifilter

	Algorithm and Proof of Theorem 82
	Regularity Conditions.
	Nice Triplet
	Description of the Algorithm
	Finding Nice Triplet

	Conclusion
	Related Work
	Regularity conditions
	Guarantees for nice triplet
	Proof of Theorem 89
	Proof of Lemma 91

	Subroutine FindClippingParameter and its analysis
	Correctness of estimated parameters for nice weight vectors
	Proof of Lemma 96
	Proof of Lemma 98

	Multi-filtering
	Guarantees for the use of Multifilter in Algorithm 7

	Eliminating Additional Distributional Assumptions
	Proof of Theorem 84
	Auxiliary lemmas
	Proof of Theorem 84


	Linear Regression using Heterogeneous Data Batches
	Introduction
	Our Results
	Comparison to Prior Work
	Techniques and Organization

	Problem Formulation and Main Results
	Problem Formulation
	Notation
	Data Distributions
	Main Results

	Algorithm for recovering regression vectors
	Empirical Results
	Conclusion
	Other related work
	Selecting a regression vector from a given list
	Proof of Theorem 110

	Properties of Clipped Gradients
	Proof of Lemma 111
	Proof of Theorem 112

	Estimation of clipping parameter
	Subspace Estimation
	Proof of Theorem 116

	Grad Estimation
	Proof of Theorem 119

	Number of steps required
	Final Estimation Guarantees
	Proof of Lemma 118
	Removing the Additional Assumptions
	More Simulation Details

	Robust Estimation for Random Graphs
	Introduction
	Problem Setup
	Results
	Techniques
	Related Work

	Notation and Preliminaries
	Mean- and Median-based Algorithms
	An Algorithm for Robust Estimation
	Regularity Conditions
	An Inefficient Coarse Estimator
	An Efficient Coarse Spectral Algorithm
	A Fine Trimming Algorithm

	Lower Bounds
	Additional Related Work
	Spectral norm properties
	Concentration Inequalities
	Proofs for Mean- and Median-Based Algorithms
	Upper Bounds for Mean and Median Estimators without Corruptions
	Lower Bounds for Mean and Median Estimators under Corruptions
	Upper Bounds for Prune-then-Mean/Median Algorithms
	Lower Bounds for Prune-then-Mean/Median Algorithms

	Upper Bound Proofs
	Proof of Lemma 137
	Proof of Theorem 138
	Proofs for Lemma 142
	Proof of Lemma 153
	Proof of Theorem 154
	An Approximate Top Eigenvector Suffices
	Proofs for Theorem 143
	Putting Things Together: Proof of Theorem 130

	Proof of Theorem 152
	Lower bound proofs 

	Bibliography



