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ABSTRACT OF THE DISSERTATION

Learning in the Presence of Adversaries

by

Ayush Jain

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2023

Professor Alon Orlitsky, Chair

Modern applications, including natural language processing, sensor networks, collabora-
tive filtering, and federated learning, necessitate data collection from diverse sources. However,
these sources may be tainted by untrustworthy, erroneous, or adversarial data. Moreover, even in
the absence of corruption, the sources might not conform to a shared underlying distribution. They
could be categorized into different groups, with distinct and arbitrarily varying data distributions.
For instance, consider movie recommendation systems where users rate movies. The ratings

provided by different users can exhibit variations based on their genre preferences, highlighting

XV



the diversity in data distributions among sources.

In this thesis, we consider a range of issues within the aforementioned contexts:

1. Robust estimation of structured distributions, both discrete and continuous,

2. Robust classification,

3. List-decodable regression,

4. Mixed linear regression with small batches,

5. Robust parameter estimation in graph settings.

Previous approaches to these problems have suffered from limitations in terms of computational
complexity, estimation accuracy, and sample complexity due to the presence of corrupted data
sources.

This thesis introduces novel methodologies to address the limitations of previous ap-
proaches, focusing on robust learning from corrupted data sources. By doing so, it broadens the
horizons for achieving precise distribution estimation, regression, classification, and parameter

inference across diverse application domains.
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Chapter 1

Introduction

Modern machine-learning applications have made remarkable progress, due in large part
to the advancements in machine-learning techniques. These applications, however, rely heavily
on the availability of a large amount of data. To meet this demand, data are often collected from
a multitude of sources. However, this collection process is not without its challenges. The data
aggregated from various sources can introduce noise, inaccuracies, faults, or even deliberate
adversarial manipulation, compromising the integrity of the data.

Instances of such scenarios are prevalent across different domains. For instance, in
sensor-based data collection, multiple sensors contribute data, and malfunctioning sensors might
provide inaccurate readings. When estimating author word frequencies from numerous texts,
misattributed texts can skew the results. User preference learning involves feedback from various
users, some of whom might intentionally offer biased responses. Crowdsourcing platforms can
feature unreliable workers, leading to untrustworthy data. Even in federated learning, where data
comes from decentralized devices, some users might deviate significantly from the majority’s
data distribution.

Traditional robust learning setups assume that data is generated independently and
identically distributed (i.i.d.) from a common distribution, with a fraction of the data being
outliers. However, the presence of outliers places constraints on the learning process. The fraction

of corrupt data imposes a fundamental limit on attainable accuracy, even when computational



resources and dataset sizes tend towards infinity.

At first glance, the implications of this situation might appear pessimistic: the existence
of an adversary corrupting a significant fraction of the data could lead to a large loss that is
unavoidable. Yet, this apprehension does not necessarily encapsulate the entire reality.

Fortunately, in the above-mentioned applications, each source typically provides a
batch consisting of multiple samples. This means that if a certain fraction of the sources are
compromised, the corresponding batches contain corruption, while the remaining batches from
the remaining fraction of the sources remain authentic and contain genuine samples.

This thesis delves into various fundamental learning paradigms, such as distribution
learning, classification, and regression. By leveraging the inherent batch structure present in the
data, we achieve significantly higher accuracy compared to approaches that ignore this structure.
Furthermore, this work develops sample-efficient and polynomial-time algorithms for each of
these learning scenarios, demonstrating their practical effectiveness through simulations.

Through a combination of innovative algorithms, novel theoretical analyses, and experi-
mental validations, this thesis contributes to advancing robust machine-learning techniques in

the face of challenges posed by corrupt, unreliable, diverse, and adversarial data sources.

1.1 Thesis Organization

Qiao and Valiant [125] showed that when batches are of size > n and < f3 fraction of
the batches are corrupt then distribution can be learned to a min-max L, distance O(/3//n),
compared to the best possible distance O(/3) achievable without batches. However, their algorithm
ran in exponential time, and for some regimes required a suboptimal number of batches. Chapter 2
provides the first polynomial-time estimator that is optimal in the number of batches and achieves
essentially the best possible estimation accuracy.

In the subsequent Chapter 3, we develop a general framework of robust learning from

batches, and determine the limits of both distribution estimation, and notably, classification,



over arbitrary, including continuous, domains. Building on this framework, we derive the
first robust agnostic: (1) polynomial-time distribution estimation algorithms for structured
distributions, including piecewise-polynomial, monotone, log-concave, and gaussian-mixtures,
and also significantly improve their sample complexity; (2) classification algorithms, and also
establish their near-optimal sample complexity; (3) computationally-efficient algorithms for
the fundamental problem of interval-based classification that underlies nearly all natural-1-
dimensional classification problems.

The results of the previous chapter raise questions regarding the optimal sample complexity
for robustly learning structured distributions, stated explicitly in a concurrent work [31]. We
answer this question in Chapter 4, showing that, perhaps surprisingly, up to logarithmic factors,
the optimal sample complexity is the same as for genuine, non-adversarial, data! To establish
the result, we reduce robust learning of approximately piecewise polynomial distributions to
robust learning of the probability of all subsets of size at most k of a larger discrete domain
and learn these probabilities in optimal sample complexity linear in k regardless of the domain
size. In simulations, the algorithm runs very quickly and estimates distributions to essentially
the accuracy achieved when all adversarial batches are removed. The results also imply the
first polynomial-time sample-optimal algorithm for robust interval-based classification based on
batched data.

Chapter 5 shows the efficacy of batch structures in the context of list-decodable linear
regression. This chapter tackles scenarios where only a fraction o € (0, 1] of batches contain
genuine samples from a common distribution and the rest can contain arbitrary or even adversarial
samples. When genuine batches have > Q(l /) samples each, the proposed algorithm can
efficiently find a small list of potential regression parameters, with a high probability that one of
them is close to the true parameter. This is the first polynomial time algorithm for list-decodable
linear regression, and its sample complexity scales nearly linearly with the dimension of the
covariates. The polynomial time algorithm is made possible by the batch structure and may not

be feasible without it, as suggested by a recent Statistical Query lower bound [53].



Chapter 6 examines scenarios where batches align with one of the £ unknown subgroups,
each potentially possessing distinct input distributions and linear regression models. Prior
work [95] showed that with abundant small-batches, the regression vectors can be learned with
only few, Q(k:3/ %), batches of medium-size with Q(\/E) samples each. However, the paper
requires that the input distribution for all £ subgroups be isotropic Gaussian, and states that
removing this assumption is an “interesting and challenging problem". This chapter introduces a
novel gradient-based algorithm that improves on the existing results in several ways. It extends
the applicability of the algorithm by: (1) allowing the subgroups’ underlying input distributions
to be different, unknown, and heavy-tailed; (2) recovering all subgroups followed by a significant
proportion of batches even for infinite %; (3) removing the separation requirement between
the regression vectors; (4) reducing the number of batches and allowing smaller batch sizes.
Moreover, the algorithm also accommodates sub-groups that are not targeted for recovery to
exhibit arbitrary input-output relationships. Note that in contrast to the previous chapter, in this
chapter we assume that no batches are adversarial, and develop algorithm that can operate with
smaller batches and has a better sample complexity for learning linear regression models that
generates « fraction of batches.

Finally, the concluding chapter 7 considers a situation where data exhibits a structure
akin to batch structures in the presence of adversarial agents. In this chapter, we study the
problem of robustly estimating the parameter p of an Erdds-Rényi random graph on n nodes,
where a [ fraction of nodes may be adversarially corrupted. After showing the deficiencies of
canonical estimators, we design a computationally efficient spectral algorithm that estimates p
up to accuracy O(~/p(1 — p)/n + B+/p(1 — p)/v/n + B/n) for B < 1/60. Furthermore, we
give an inefficient algorithm with similar accuracy for all 8 < 1/2, the information-theoretic
limit. Finally, we prove a nearly-matching statistical lower bound, showing that the error of our

algorithms is optimal up to logarithmic factors.



Chapter 2

Optimal Robust Learning of Discrete Dis-
tributions from Batches

2.1 Introduction

2.1.1 Motivation

Estimating discrete distributions from their samples is a fundamental modern-science
tenet. [86] showed that as the number of sample s grows, a k-symbol distribution can be learned
to expected L, distance ~ /2(k—1)/(ws) that we call the information-theoretic limit.

In many applications, some samples are inadvertently or maliciously corrupted. A simple
and intuitive example shows that this erroneous data limits the extent to which a distribution can
be learned, even with infinitely many samples.

Consider the extremely simple case of just two possible binary distributions: (1,0) and
(1 — B, B). An adversary who observes a 1 — 3 fraction of the samples and can determine the
rest, could use the observed samples to learn the underlying distribution, and set the remaining
samples to make the distribution appear to be (1 — 3, 3). By the triangle inequality, even with
arbitrarily many samples, any estimator for p incurs an L, loss > f for at least one of the two
distributions. We call this the adversarial lower bound.

The example may seem to suggest a pessimistic conclusion. If an adversary can corrupt a

[ fraction of the data, a loss > [ is unavoidable. Fortunately, that is not necessarily so.



In many applications data is collected in batches, most of which are genuine, but some
possibly corrupted. Here are a few examples. Data may be gathered by sensors, each providing a
large amount of data, and some sensors may be faulty. The word frequency of an author may be
estimated from several large texts, some of which are mis-attributed. Or user preferences may be
learned by querying several users, but some users may intentionally bias their feedback.

Interestingly, even when a (-fraction of the batches are corrupted, the underlying
distribution can be estimated to L, distance much lower than 5. Consider for example just
three n-sample batches, of which one is chosen adversarially. The underlying distribution can
be learned from each genuine batch to expected L; distance ~ \/m . Itis easy to
see that the average of the two estimates pairwise-closest in L; distance achieves a comparable
expected distance that for large batch size n is much lower than .

This raises the natural question of whether estimates from even more batches can be
combined effectively to estimate distributions to within a distance that is not only much smaller
than the 3 achieved when no batch information was utilized, but also significantly smaller than the
O(y/k/n) distance derived above when two batches were used. For example can the underlying
distribution be learned to a small L distance when, as in many practical examples, n < k?

To formalize the problem, [125] considered learning a k-symbol distribution p whose
samples are provided in batches of size > n. A total of m batches are provided, of which
a fraction < 3 may be arbitrarily and adversarially corrupted, while in every other batch b
the samples are drawn according a distribution p, satisfying ||p, — p||1 < 7, allowing for the
possibility that slightly different distributions generate samples in each batch.

For this adversarial batch setting, they showed that for any alphabet size £ > 2, and any
number m of batches, the lowest achievable L; distance is > n + \/% We refer to this as the
adversarial batch lower bound.

For < 1/900, they also derived an estimation algorithm that approximates p to L;

distance O(max{n+/y/n,/(n + k)/(nm)}), achieving the adversarial batch lower bound, for

m large enough. Surprisingly therefore, not only can the underlying distribution be approximated



to L, distance O(1/k/n) that falls below 3, but the distance diminishes as 3/+/n, independent
of the alphabet size k.

Yet, the algorithm in [125] had three significant drawbacks. 1) it runs in time exponential
in the alphabet size, hence impractical for most relevant applications; 2) its guarantees are
limited to very small fractions of corrupted batches 5 > 1/900, hence do not apply to practically
important ranges; 3) with m batches of size > n each, the total number of samples is > nm, and
for alphabet size £ < n, the algorithm’s distance guarantee falls short of the information-theoretic
O(y/k/(nm)) limit.

In this paper we derive an algorithm that 1) runs in polynomial time in all parameters;
2) can tolerate any fraction of adversarial batches 5 < 1/2, though to derive concrete constant
factors in the theoretical analysis, we assume 3 < 0.4; 3) achieves distortion O(max{n +
B/ M, \/% }) that achieves the statistical limit in terms of the number nm of samples, and
is optimal up to a small O(1/log(1/5)) factor from the adversarial batch lower bound.

The algorithm’s computational efficiency, enables the first experiments of learning with
adversarial batches. We tested the algorithm on simulated data with various adversarial-batch
distributions and adversarial noise levels up to 5 = 0.49. The algorithm runs in a fraction of
a second, and as shown in Section 2.3, estimates p nearly as well as an oracle that knows the
identity of the adversarial batches.

To summarize, the algorithm runs in polynomial time, works for any adversarial fraction
£ < 0.5, is optimal in number of samples, and essentially optimal in batch size. It opens the door

to practical robust estimation in sensor networks, federated learning, and collaborative filtering.



2.1.2 Problem Formulation

Let Ay be the collection of all distributions over [k] = {1,...,k}. The L, distance

between two distributions p, g € Ay, is

lp—dqlli &> Ip(i) — q(i)] = 2- max p(S) — q(S)]
i€lk] -
We would like to estimate an unknown target distribution p € Ay to a small L, distance from
samples, some of which may be corrupted or even adversarial.

Specifically, let B be a collections of m batches of n samples each. Among these batches
is an unknown collection of good batches B; C B; each batch b € By in this collection has
n independent samples X%, X8 ... X® ~ p, with ||p, — p||; < 7. Furthermore, the batches of
samples in B are independent of each other.

For the special case where 7 = 0, all samples in the good batches are generated by the
target distribution p = p;. Since the proofs and techniques are essentially the same for = 0 and
1 > 0, for simplicity of presentation we assume that = 0. We briefly discuss, at the end, how
these results translate to the case 1 > 0.

The remaining set B4 = B\ Bg of adversarial batches consists of arbitrary n samples
each, that may even be chosen by an adversary, possibly based on the samples in the good batches.
Let « = |Bg|/m, and 8 = |B4|/m = 1 — « be the fractions of good and adversarial batches,
respectively.

Our goal is to use the m batches to return a distribution p* such that |[p* — p||; is small

or equivalently |p(S) — p*(5)| is small for all S C [k].

2.1.3 Result Summary

In section 2.2 we derive a polynomial-time algorithm that returns an estimate p* of p with

the following properties.



k
B*log(1/8)

polynomial in all parameters and its estimate p* satisfies ||p* — p|l; < 1008 M with

Theorem 1. For any given < 0.4, n, k, and m = € ), Algorithm 2 runs in time

probability > 1 — O(e™%).

The theorem implies that our algorithm can achieve the adversarial lower bound to a
small factor of O(4/log(1/3)) using the optimal number of samples. The next theorem shows
that when the number of samples is not enough to achieve the adversarial batch lower bound our

algorithm achieves the statistical lower bound.

Theorem 2. For any given 3 < 0.4, n and k and m, Algorithm 2 runs in polynomial time, and its

estimate p* satisfies ||p* — p||1 < O(max{/3/ M, \/ ==1}) with probability > 1 — O(e™*).

The above theorem follows from Theorem 1 and a short proof appears in Appendix 2.7.
Note that our polynomial time algorithm achieves the statistical limits for L, distance and

achieves the adversarial batch lower bounds to a small multiplicative factor of O(/log(1/3)).

2.1.4 Comparison to Recent Results and Techniques

In a paper concurrent and independent of this work, [30] propose an algorithm that uses

the sum of squares methodology to estimate p to the same distance as ours. Their algorithm

(nk)o(log(l/ﬁ))
e

. ~ O(1og”(1/)) .
) batches and has a run-time (9(%). Both the sample complexity

needs O(
and run time are much higher than ours, and is quasi-polynomial. They also considered certain
structured distributions, namely ¢-piecewise degree-d polynomial, not addressed in this paper. For
this distribution class they provide an algorithm with similar quasi-polynomial run time and the
number of batches required was quasi-polylogarithmic in domain size k, and quasi-polynomial in
other parameters.

In the follow up work [76], we generalized our techniques to improve both the run time
and the number of batches required for learning piece-wise polynomial distributions. We gave
an algorithm that runs in polynomial time in all parameters and uses the number of batches

Q(M@#/m), which has an optimal linear dependence on ¢ and d and is independent of



domain size k. Further, we developed first algorithm for robust classification in a similar
adversarial batch setting.
Another follow up work [31], concurrent and independent to [76], combined their previous

work [30] with the techniques presented here, and also obtained a polynomial time algorithm for

t2-d? log?® k-polylog(n/3)
B2

learning piecewise-polynomial distributions, which requires €2( ) batches.

2.1.5 Other Related Work

The current results extend several long lines of work on learning distributions and their
properties.

The best approximation of a distribution with a given number of samples was determined
up to the exact first-order constant for KL loss [22], and L; loss and 2 loss [86]. These settings
do not allow adversarial examples, and some modification of the empirical estimates of the
samples is often shown to be near optimal. This is not the case in the presence of adversarial
samples, where the challenge is to devise algorithms that are efficient from both computational
and sample viewpoints.

Our results also relate to classical robust-statistics work [142, 74]. There has also been
significant recent work leading to practical distribution learning algorithms that are robust to
adversarial contamination of the data. For example, [47, 99] presented algorithms for learning
the mean and covariance matrix of high-dimensional sub-gaussian and other distributions with
bounded fourth moments in presence of the adversarial samples. Their estimation guarantees
are typically in terms of Lo, and do not yield the L;- distance results required for discrete
distributions.

The work was extended in [29] to the case when more than half of the samples are
adversarial. Their algorithm returns a small set of candidate distributions one of which is a
good approximate of the underlying distribution. For more extensive survey on robust learning
algorithms in the continuous setting, see [135, 46].

Another motivation for this work derives from the practical federated-learning problem,

10



where information arrives in batches [108, 109].

2.1.6 Preliminaries

We introduce notation that will help outline our approach and will be used in rest of the
paper.

Throughout the paper, we use B’ to denote a sub-collection of batches in B and use By,
and B’ for a sub-collection of batches in By and B4, respectively. And S is used to denote a
subset of [k], we abbreviate singleton set of [k] such as {j} by j.

For any batch b € B, we let [i;, denote the empirical measure defined by samples in batch
b. And for any sub-collection of batches B’ C B, let pp: denote the empirical measure defined
by combined samples in all the batches in B’. We use two different symbols to distinguish the
empirical distribution defined by an individual batch and the empirical distribution defined by a
sub-collection of batches. Let 15(.) denote the indicator random variable for set S. Thus, for any

subset S C [k],

fin(S) & % > 1s(X))

1€[n]

and

Zﬂb(5)~

be B’

~ooya L by L
pB'<S) - |B/|nzzls<Xz) |B/|

beEB’ i€(n]
Note that pp is the mean of the empirical measures i, defined by the batches b € B’. For subset
S C [k], let med(fz(S)) be the median of the set of estimates {i,(S) : b € B}. Note that the
median has been computed using the estimates ji,(.S) for all the batches in b € B.

Forr € [0,1], welet V(r) = %, which we use to denote the variance of sum of n
i.i.d. random variables distributed according to Bernoulli(r).

We pause briefly to note the following two properties of the function V(r) that we use
later.

|r = s

Ve s e [0,1], V(r) < % and |V(r) — V(s)] < @.1)

n

11



Here the second property made use of the fact that the derivative |V'(r)| < 1/n, Vr € [0, 1].
For b € Bg, 15(X?) for i € [n] are i.i.d. with distribution 15(X?) ~ Bernoulli(p(S5)).

For b € Bg, since i, (.9) is average of 15(X?), i € [n], therefore,

E[fi(S)]=p(S) and  E[(7(S) - p(5))*] = V(p(S5)).

For any collection of batches B’ C B and subset S C [k], the empirical probability fi;(.5)
of S based on batches b € B’ will differ for the different batches. The empirical variance of these

empirical probabilities fi,(S) for batches b € B’ is denoted as

1
|B'|

Ve(S) 2 = " (i(S) — pw(S))%

beB’

2.1.7 Organization of the Paper

In Section 2.2 we present the algorithm, its analysis along with the key insights used in
developing the algorithm. Section 2.3 reports the performance of the algorithm on experiments

performed on the simulated data.

2.2 Algorithm and its Analysis

At a high level, our algorithm removes the adversarial batches — which are "outliers"
— possibly losing a small number of good batches as well in the process. The outlier removal
method forms the backbone of many robust learning algorithms. Notably [47, 48] have used this
idea to learn the mean of a high dimensional sub-gaussian distribution up to a small L, distance,
even in an adversarial setting. The main challenge in designing a robust learning algorithm is
actually the task of finding the outlier batches efficiently. Several new ideas are needed to identify
the outlier batches in the setting considered here.

We begin by illustrating the difficulty of identifying the adversarial batches. Even if p

is known, in general, one cannot determine whether a batch b has samples from p or from a

12



distribution at a large L, distance from p. The key difficulty is that, for a batch having n samples
from p, typically the difference between [i,(S) and p(S) is large for some of the subsets among
2" subsets of [k]. For example, consider batches of samples from a uniform distribution over k.
The empirical distribution of the samples in any batch of size n is at an L, distance > 2(1 —n/k),
which for the distributions with large domain size £ can be up to two, which is the maximum L,
distance between two distributions. To address this challenge, we use the following observation.

For a fixed subset S C [k] and a good batch b € Bg, fi,(S) has a sub-gaussian distribution
subG(p(S), 7-) and the variance is V(p()). Therefore, for a fixed subset .S, most of the good
batches assign the empirical probability fi;(S) € p(S) + O(1/y/n). Moreover, the mean and the
variance of i,(S) for b € B¢ converges to the expected values p(S) and V(p(S)), respectively.

The collection of batches B along with good batches also includes a sub-collection B4
of adversarial batches that constitute up to an S—fraction of B. If for adversarial batches b € B4,
the average difference between fi,(.S) and p(S) is within a few standard deviations O(ﬁ)a then
these adversarial batches can only deviate the overall mean of empirical probabilities fi,(.S) by
(5(\%) from p(S). Hence, the mean of ji,(.S) will deviates significantly from p(S) only if for
a large number of adversarial batches b € B4 empirical probability ji,(S) differ from p(S) by
quantity much larger than the standard deviation O(\/iﬁ)

We quantify this effect by defining the corruption score. For a subset S C [k], let
med(fi(S)) = median{i,(S) : b € B}.

For a subset S' C [k] and a batch b, corruption score 1,(.S) is defined as

0, if m(S) — med(a(S))] < 3/,

(s(S) — med((S)))?,  else.

Up(S) =

Because p(S) is not known, the above definition use median of fi,(S) as its proxy.
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From the preceding discussion, it follows that for a fixed subset S C [k], corruption score
of most good batches w.r.t. S is zero, and adversarial batches that may have a significant effect
on the overall mean of empirical probabilities have high corruption score 1 (.5).

The corruption score of a sub-collection B’ w.r.t. a subset S is defined as the sum of the

corruption score of batches in it, namely

W(B,S) 2> h(S).

beB’

A high corruption score of B’ w.r.t. a subset S indicates the presence of many batches b € B’ for
which the difference |f,(S) — med(z(S))| is large. Finally, for a sub-collection B’ we define
corruption as

V(B 2 max (5, 5).

Note that removing batches from a sub-collection reduces corruption. We can simply make
corruption zero by removing all batches, but we would lose all the information as well. The
proposed algorithm reduces the corruption below a threshold by removing a few batches while
not sacrificing too many good batches in the process.

The remainder of this section assumes that the sub-collection of good batches By; satisfies
certain deterministic conditions. Lemma 3 shows that the stated conditions hold with high
probability for sub-collection of good batches in B. Nothing is assumed about the adversarial
batches, except that they form a < 3 fraction of the overall batches B.

Conditions: Consider a collection of m batches B, each containing n samples. Among
these batches, there is a collection B; C B of good batches of size |Bg| > (1 — )m and a

distribution p € Ay, such that the following deterministic conditions hold for all subsets S C [k]:

1. The median of the estimates {fi,(S) : b € B} is not too far from p(S).

imed((5)) — p(5)] < v/ In(6)/n.

14



2. For all sub-collections By, C B¢ of good batches of size |By,| > (1 — 3/6)|Bg],

< 8, [oiCelB)

|pB/G<s> —p(8) <

> () = p(S))* = V(p(S))]| <

be B,

!B |
3. The corruption for good batches B is small, namely

m In(6e
o(Be) < BmnGe/B)
n
Condition 1 and 3 above are self-explanatory. Condition 2 illustrates that for any sub-
collection of good batches that retains all but a small fraction of good batches, empirical mean

and variance estimate the actual values p(.S) and V(p(.5)).

Lemma 3. When samples in Be come from p and |Bg| = Q5775 (1 75 ), then conditions 1- 3

hold simultaneously with probability > 1 — O(e™%).

We prove the above lemma by using the observation that for b € Bg, fi,(S) has a sub-
gaussian distribution subG(p(S), 4 ), and it has variance V(p(S)). The proof is in Appendix 2.4.
For easy reference, in the remaining paper, we will denote the upper bound in Condition 3

on the corruption of B as
a fmIn(6e/s )

n

Ra

Assuming that the above stated conditions hold, the next lemma bounds the L distance between
the empirical distribution pg: and p for any sub-collection B’ in terms of how large its corruption

is compared to Kg.

Lemma 4. Suppose the conditions 1- 3 holds. Then for any B’ such that |B'N Bg| > (1— g) | B¢|

15



and let (B') =t - kg, for some t > 0, then

17 — plln < (10 + 3vD)3 %

Observe that for any sub-collection B’ retaining a major portion of good batches, from

condition 2, the mean of fi;, of the good batches B’ N B¢ approximates p. Then showing that a

small corruption score of B’ w.r.t. all subsets S imply that the adversarial batches B’ N B4 have

limited effect on pps proves the above lemma. A complete proof is in Appendix 2.5.

We next exhibit a Batch Deletion procedure in Algorithm 1 that lowers the corruption score

of a sub-collection B’ w.r.t. a given subset S by deleting a few batches from the sub-Collection.

This will be a subroutine of our main algorithm. Lemma 5 characterizes its performance.

Algorithm 1. Batch Deletion

1:

2:

3:

Input: Sub-Collection of Batches B’, subset S C [k], med=med(j(S)), and 5.
Output: A collection DEL C B’ of batches to delete.

DEL = {};

while ¢(B’,S) > 20k do

Samples batch b € B’ such that probability of picking a batch b € B’ is ij’g(,‘?;);
DEL + DELUD;
B' <+ {B'"\ b};

end while

return (DEL);

Lemma 5. For a given B’ and subset S procedure 1 returns a sub-collection DEL C B’, such

that

1. For subset S the corruption score (B’ \ DEL, S) of the new sub-collection is < 20k.

2. Each batch b € B’ that gets included in DEL is an adversarial batch with probability
> 0.95.

16



3. The subroutine deletes at-least (B', S) — 20k¢ batches.

Proof. Step 4 in the algorithm ensures the first property. Next, to prove property 2, we bound the

probability of deleting a good batch as

wb(S) ZbeBG ¢b(5) Ra
2. UB S S B8 S Tmg

beB'NBg

here the last step follows from condition 3 and while loop conditional in step 4. Property 3
follows from the observation that the total corruption score reduced is > (¢(B’, S) — 20k¢) and

corruption score of one batch is bounded as v,(.5) < 1. [

We will use procedure 1 to successively update B to decrease the corruption score for
different subsets S C [k]. The next lemma show that even after successive updates the resultant

sub-collection retains most of the good batches.

Lemma 6. Let B’ be the sub-collection after applying any number of successive deletion updates
suggested by the Algorithm 1 on B, for any sequence of input subsets Sy, Ss, .... C [k|, then
|B' N Bg| > (1 — 8/6)|Bg|, with probability > 1 — O(e™%).

Therefore, one can make successive updates to the collection of all batches B by deleting
the batches suggested by procedure 1 for all subsets in S C [k]| one by one. This will result in a
sub-collection B’ C B, which still has most of the good batches and corruption score 1(B’, S)
bounded w.r.t. each subset S. However, this will take time exponential in £ as there are ok
subsets, and therefore, we want a computationally efficient method to find a subsets S with high
corruption score and use procedure 1 for only those subsets. Next, we derive a novel method to
achieve this objective.

We start with the following observation. A high corruption score of sub-collection B’
with respect to an affected subset S implies a higher empirical variance of fi,(.S) for such S than
the expected value of the variance of i,(S). While an affected subset S the empirical variance

V(9) is higher than expected, it is not necessarily higher than the empirical variance observed
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for all non-affected subset. This is because V(p(S)), the expected value of the variance of i,(5),
for some subsets S may be larger compared to the other. Hence, simply finding the subset S with
the largest variance doesn’t work.

We use the following key insight to address this. Recall that the mean of empirical
probabilities fi,(.5) for good batches b € B converges, or equivalently pg,,(S) — p(S). This
implies that V(pp.(S)) — V(p(S)). Also, since the empirical variance V. (S) converges to
V(p(S)), we get Vp..(S) — V(pp,(S)) — 0. Therefore, without corruption by the adversarial
batches the difference between two estimators of the variance would be small for all subsets
S C [k], and its large value, we show in Lemma 7, can reliably detect any significant adversarial
corruption. This happens because empirical variance of fi,(.S) depends on the second moment
whereas the other estimator V(pg/(.S)) of variance depends on the mean of fi;(S5), hence the
corruption affects the second estimator less severely. The next Lemma shows that the difference

between the two variance estimators for subset S can indicate the corruption score w.r.t. subset S
Lemma 7. Suppose the conditions 1- 3 holds. Then for any B’ C B such that |B' N Bg| >
(1-— §)|Bg| and let (B', S) =t - kg for some t > 0, then following holds.

Vi (S) — V(5w (9)) < (t FAVES 28) K,

Vir(S) — V(g (S)) > (0.575 — 8V - 25) ke

The next Lemma shows that a subset for which Vz/(S) — V(pp/(S)) is large, can be
found using a polynomial-time algorithm. In subsection 2.2.2 we derive the algorithm. We refer
to this algorithm as Detection — Algorithm. The next lemma characterizes the performance
of this algorithm. In subsection 2.2.2, we show that the algorithm achieves the performance

guarantees of the next Lemma.

Lemma 8. Detection — Algorithm has run time polynomial in number of batches in its input
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sub-collection B" and alphabet size k, and returns S7, such that

Vi(Sg) = V(ps (Sp))]

> (. Vp/(S) — V(pp: :
> 0.56 gng%WB (S) = V(pp(9))]

This leads us to the Robust distribution Learning Algorithm 2. Theorem 9 characterizes

its performance.

Algorithm 2. Robust Distribution Estimator

1: Input: All batches b € B, batch size n, alphabet size k, and 5.
2: Output: Estimate p* of the distribution p.
3: i< land B, < B.
4: while True do
5. 8% = Detection — Algorithm(B])
6: i [Ap(S%)| < T5k¢ then
7: Break;
8: endif
9:  med < med(fi(S%)).
10 DEL eBatch—Delletion(Bg , Sgg, med).

: end while
. return (p* < ppr).

—_
N =

Theorem 9. Suppose the conditions 1- 3 holds. Then Algorithm 2 runs in polynomial time and with
probability > 1 — O(e™*) returns a sub-collection By C B such that |B; N Bg| > (1 — %)’Bg|
and for p* = PBY»

1
o — ol < 100y 0L

Outline of the Proof of Theorem 9: In each round of the algorithm, Subroutine
Detection — Algorithm finds subsets for which the difference between the two variance
estimates is large. Lemma 7 implies that the corruption w.r.t. this subset is large. The deletion
subroutine updates the sub-collection of batches by removing some batches from it and reduces

the corruption w.r.t. the detected subset .S.
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The algorithm terminates when for some sub-collection B’ subroutine Detection —
Algorithm returns a subset S small difference between the two variance estimators. Then
Lemma 8 implies that the difference is small for all subsets. Lemma 7 further implies that if the
difference between the two variance estimators is small then the corruption is bounded w.r.t. all
subsets for sub-collection B’. Finally, Lemma 4 bounds the L, distance between p B and p. U

Proof of Theorem 1: Combining Lemma 3 and Theorem 9 yields Theorem 1.

2.2.1 Extension ton > 0

Recall that when 1 > 0, for each good batch b € B¢, the distribution p, of samples in
batch b is close to the common target distribution p, such that ||p, — p|| < 7, instead of necessarily
being the same. For simplicity, we have given the algorithm and the proof for only = 0. The
algorithm and the proof naturally extend to this more general case; here we get an extra additive
dependence on 7 for the bounds in the lemmas and the theorems, and for the parameters of the

algorithm. And with this slight modification in the parameters algorithm estimates p to a distance

O(n + B+/In(1/8)/n), and has the same sample and time complexity.
2.2.2 Efficient Detection Algorithm

In this subsection, we derive the procedure Detection — Algorithm, that runs in the
polynomial time and achieves the performance in Lemma 8.

Given a collection B’ of batches, we construct two covariance matrices %Y and CEM of
size k X k.

For an alphabet size k, we can treat the empirical probabilities estimates i, and pps as
a k-dimensional vector such that j'* entry denote the empirical probability of the j** symbol.
Recall that pp is the mean of fi,, b € B'.

The first covariance matrix, CLY | is the covariance matrix of ji, for b € B’, with entries
for 5,1 € [k],

CE (1) = 7 S ti) = 5o 0)) (D) = 5 (D)

beB’
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The second covariance matrix CEM, is an expected covariance matrix of fi, if samples in

the batches b were drawn from the distribution pg.. Hence, its entries are
Dn ) D / l
vy = 2P0 o sy e ), 41,
n

and

CEM(j, ) = ﬁB'(j)(ln— ﬁB'(j)).

Let Dpg: be the difference of the two matrices:

Dy =Cg/ — CgM.

For a vector z € {0, 1}*, let

S(z) = {j € [K] : 2(j) = 1},

be the subset of [k] corresponding to the vector z.

Observations
1. The sum of elements in any row and or column for both the covariance matrices, and hence

also for the difference matrix, is zero, hence

CEV1=CEM1=Dg1=0.
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Proof: We show for CEY, the proof for CEM is similar. For any j € [k,

S CE () = ,lzz — B (1) (1) — B (1)

le[k] le[k] be B’
= Z Ay )Z(ﬁb(l) — i (1))
beB’ le[k]
= (m(j) = pr(j)(1—1) = 0.

beB’

2. Itis easy to verify that for any vector z € {0, 1}*,

(CEV waT) =

Z —pp(S(2)))?

I’ beB’

= Vi (S(2)),

the empirical variance of fi,(S(z)) for b € B’. Similarly,

(CEMry = PE(S(@)(1 = Pp(5())

= V(ps (5(2))).

Therefore,

(Dpr, 22"y = (CE) — CEM, zaT)

= Vo (5(2)) — V(o (S(x).
3. Note that y — $(y + 1) is a 1-1 mapping from {—1,1}* — {0, 1}*, and that

(Ch <y+1>§<y+1>> <0 (T 1T 1T )

<CB’ YY)
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Figure 2.1. L, estimation error with different Parameters
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Let

=arg ma Dpryy")].
y=arg max [(Dp.yy")|

Then from y one can recover the corresponding subset S(z), with = %(y + 1), maximizing
Vi (S(x)) = V(pp (S(x)))]

In [5], Alon et al. derives a polynomial-time approximation algorithm for the above optimization
problem. The algorithm first uses a semi-definite relaxation of the problem and then uses
randomized integer rounding techniques based on Grothendieck’s Inequality. Their algorithm

recovers yp/ such that

[(Dp,ysyh)| =056 max  [(Dpr,yy")|-
ye{flvl}k

Letxp = %(y + 1). Then from observation 3 it follows that

|<DB’; {L‘B/IETB/>| Z 056 xér{l(%ic}k |<DB/7.ZU{L‘T>|.

Therefore for S5, = S(zp) we get

Vi (Sg) — V(e (Sk))| = 0.56 max Ve (S) = V(pp(9))].

2.3 Experiments

We evaluate the algorithm’s performance on synthetic data.

We compare the estimator’s performance with two others: 1) an oracle that knows the
identity of the adversarial batches. The oracle ignores the adversarial batches and computes the
empirical estimators based on remaining batches and is not affected by the presence of adversarial

batches. The estimation error achieved by the oracle is the best one could get, even without the
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adversarial corruptions. 2) a naive-empirical estimator that computes the empirical distribution
of all samples across all batches.

Two non-trivial estimators have been derived for this problem. Both have prohibitively
large sample and/or computational complexity. The estimator in [125] has run time exponential
in k, making it impractical. The time and sample complexities of the estimator in [30] are
either super-polynomial or a high-degree polynomial, depending on the range of the parameters
(k,n,1/ ), rendering their simulation prohibitively high as well.

We tried different adversarial distributions and found that the major determining factor of
the effectiveness of the adversarial batches is the distance between the adversarial distribution
and the target distribution. If the adversarial distribution is too far, then adversarial batches are
easier to detect. For this scenario our algorithm is even more effective than the performance
limits shown in Theorem 1 and the performance between our algorithm and the oracle is almost
indistinguishable. When the adversarial distribution is very close to the target distribution p,
the adversarial batches don’t affect the estimation error by much. The estimator has the worst
performance when the adversary chooses the distribution of its batches at an optimal distance
from target distribution. This optimal distance differs with the value of the algorithm’s parameters.
Hence for each choice of algorithm parameters, we tried adversarial distributions at varying
distances and reported the worst performance of our estimator.

All experiments were performed on a laptop with a configuration of 2.3 GHz Intel Core
i7 CPU and 16 GB of RAM. We choose the parameters for the algorithm by using a small
simulation. We provide all codes and implementation details in the supplementary material.

We show four plots here. In each plot we vary one parameter and plot the L, loss incurred
by all three estimators. For each experiment, we ran ten trials and reported the average L
distance achieved by each estimator.

For the first plot we fix batch-size n = 1000 and § = 0.4 and vary alphabet size k. We
generate m = k/(0.4)? batches for each k. Our algorithm’s performance show no significant

change as the size of alphabet increases and its performance nearly matches the performance of
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the Oracle and outperforms the naive estimator by order of magnitudes.

In the the second plot we fix § = 0.4 and £ = 200 and vary batch size n. We choose
m = 40 X ﬁ% X %, this keeps the total number of samples n x m, constant for different n. We
see that the L loss incurred by our estimator is much smaller than the naive empirical estimator
and it diminishes as the batch size increases and comes very close to the performance of the
oracle. Note that this roughly matches the decay O(1/+/n) of L error characterized in both the
lower and the upper bounds.

For the next plot we fix batch size n = 1000 and £ = 200. The number of good batches
(1 — B)m = 400k is kept same. We vary the adversarial noise level and plot the performance of
all estimators. We tested our estimator for fraction of adversarial batches as high as 0.49 and still
our estimator recovered p to a good accuracy and in fact at the lower noise level it is essentially
similar to the oracle and it increas